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A LIMITING ANALYSIS FOR EDGE EFFECTS IN ANGLE-PLY LAMINATESI

Peter W. Hsu b Carl T. Herakovich
Department of Engineering Science 6 Mechanics

Virginia Polytechnic Institute 6 State University
Blacksburg, Virginia 24061

ABSTRACT

This paper develops a zeroth-order solution for edge effects in angle-ply

composite laminates using perturbation techniques and a limiting free body

approach. The general method of solution for [to] laminates is developed and

then applied to the special case of a [±45] s graphite/epoxy laminate. Inter-

laminar stress distributions are obtained as a function of the laminate thick-

ness-to-width ratio h/b and compared to existing numerical results.

The solution predicts stable, continuous stress distributions, determines

finite maximum tensile interlaminar normal stress aZ for both [te] s and [Te]s

laminates, and provides mathematical evidence for singular interlaminar shear

stresses T xZ and TyZ .



Introduction:

Recent numerical [1-6] and experimental [7-10] investigations have

demonstrated the free edge effect in composite laminates subjected to remote

tension. Such effect has been suggested to play the dominant role in the de-

lamination failure initiation of some laminates. In an attempt to obtain more

accurate free edge stress intensitites the problem of uniaxial extension of thin,

,	 elastic, balanced, symmetric, bidirectional laminates was investigated in an

earlier paper [11] based upon a perturbation analysis [12,13]. A key feature

of the analysis was the force and moment equilibrium of a limiting free body

containing the interfacial plane between two layers. The interlaminar stresses

thus obtained were compared with the finite difference solution of Pipes [6].

It was shown that the perturbation solution provides better results for the

stress behavior near the free edge of the laminate.

The present paper presents a similar analysis for angle-ply laminates by

perturbing the three coupled dimensionless partial differential equations

resulting from a displacement formulation.

GoveAni.ng Equations

For the balanced, symmetric 2m layer laminate of Fig. 1, the displacement

functions take the following forms [2]:

U ' t xJt ♦ U (Y• z ) (a)

v ' v(Y+ z )	 (b)	 (1)

w ' M1(Y.z)	 (c)

where 
tx 

is the applied axial strain and U(y,z), V(y,z), and W(y,z) are three

Y

unknown functions.

The dimensionless displacement equilibrium equations (with zero body forces)

[14] are

1

V-



2

(Q66(1/b)2U 'YY + Q55U,ZZ + Q26(h/b)2V 'YY + 145"ZZ

+ (Q36 
+ Q45)(h/b)W'YZ)(k) . 0

(Q26
(h/b)2U 'YY + Q45U 7Z + Q22(h/b)2V 'YY + Q44V"ZZ	 (2)

+ 023 + Q44)(h/b)W,YZ))(k) n O

(045 + Q36)( h/b )U ,YZ + (Q44 + Q23)(h!b)VNZ

+ Q44(h/b)2W 'YY + Q33W IZ
} ( k ) . 0

where Q(k ) n C( k ) /C(kk) with C() being the transformed stiffness
coefficients

of the material properties from the natural coordinates to the xy coordinate.,

and C(k) the largest stiffness coefficient of the kth layer.	 Y y/b, t • z/h

are the dimensionless coordinates, and U n U/h. V • V!h, and W W/h are the

dimensionless unknown displacement functions. Symmetry conditions lead to [14]

U(Y,Z) n U(Y,-Z) (a)

V(Y,Z) n V(Y,-Z) (b)

W %'	 ,Z) n -W(Y,-Z) (c)
(3)

U(Y,Z) n 	 -11(-Y,Z) (d)

V(Y,Z)	 -V(-Y,Z) (e)

W(Y,Z) n W(-Y.Z) (f)

which yield the following symmetry constraints on the displacement functions:

(U.Z(Y.0))(m) n 0

(V.Z(Y.0))(m) • 0	 (4)

(W(Y.0))(m) •. 0

T

(U(p,Z))(k) • 0

(V(O.Z))(k) ` 0	 (5)

(WI 
y(O, Z )) (k)	0
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where m denotes the layer adjacent to the midplane Z • 0, and arbitrary layers

are denoted by k.

The appropriate stress free boundary conditions can be expressed as:

(k) (tl,Z) •° y
(C124x +

h r
C22 V,
	 (t1,Z) +–FY

C23 W.
_i	 I

(tl.Z) + C26 U,	 (t1.Z))(k)•0	 (a)_F	 Y

T ) (tl,t) . { C1— x + C26V,Y(:1'., + C3
^^

6 w. t ( , l.t) + C-^ U.Y(:l.t)}(k)•0	 (b)(6)

T(k)(t1,Z) . ( C44 V. Z (*_1,Z) + CC4 W, Y ( t l.Z) + C^ U,Z(t1,Z) }(k)•0 	 (c)

along the free edges, and

°(i)(Y,tl) . { C1_.	 + C..S V. Y (Y.tl) + C
33 w. Z (Y.:1) + C-S U.Y(y.±1)}(1)• 0	 (a)

T M (Y,tl) . (C44 V, t (Y.tl) + C^ W, Y (Y,tl) + C45 U,Z(Y,tl)}(1)n 0	 (b)(7)

Txz)(Y,tl) . (C45 V. Z (Y. t l ) + C45 W, Y (Y,tl ) + C55 U. Z (Y 't 1)l (1) • 0	 (c)

on the top and the bottom surfaces.

To solve the boundary value problem defined by Equations (2) and (4)-(7),

only the first quadrant of the YZ-plane needs to be considered due to the favor-

able symmetry of the laminate. Recognizing that :he boundary layer effect exists

near the free edge Y n 1 # the perturbation solution is sought by considering two

regions of the laminate: the interior region (away from the free edge) and the

boundary layer region (near the free edge).

PettuAbati.on Sotuti.on

(1) The interior region (00<1)

In this region the free edge stress boundary conditions (6) are dropped and

attention is focused on the solution to Equations (2) subject to Equations (4),

(5) and (7). To seek a straight forward asymptotic expansion, let
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U(k) n F. CnUn(k)(y,Z)
n•0

V(k) _cnVn(k)(Y,Z)	 (e)
n•0

W (k ) n E cnWn (k) ( y ,Z)	 k	 1,2.3,...^m

n•0

wherR the subscript i denotes the interior region and the small parameter c(« 1)

represents the thickness-to-width ratio h/b. Substituting these expansions into

Equations (2) and equating coefficients of equal powers of c to zero result in

Infinite sets of equations. The zeroth-order equations take the form

Co : IQ55'0,ZZ + Q45 Vo.ZZJ (k) • 0

	(Q45 Uo.ZZ + 044Vo,Z1 (k) = 0	 (9)

^Q33Wo,Zt (k) = 0

As a result of the symmetry conditions (3), Equations (9) have solution

in the fora

U0 (k)	 0= B (k)(Y)

V0 (k)	 D 0 (k)(Y)

W
0 
(k) • E 

0 
(OZ

where B ( o ) (Y), D ( o) (Y), E ( o ) must satisfy the vanishing stress conditions to

recover the lamination theory in this interior region. That is,

C
(C 13t x (1-e)Y/h + F Do (Y) + C^ E 0 Y + C--5-	 (k)Bo(Y)} 	 p	 (11)

(10)
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which are in effect generalizations of Equations (4) which satisfy the symmetry

constraints (4) and (5). The nonzero centrsl plane stresses are now required to

satisfy the equilibrium conditions (Fi g . 2):

t (a(')(O.Z)hk), h	 L (Ci2(1-c)/<, ♦ C	 Eo)(k)hktx
y Wkl

C22(k)hk D(kr
	

M 
C26(k)hk B (k),(Y)	 0♦ E	 (12)

^— o (
Y) +	 b	 0kl	 k. l

M Txk)(O,Z)hk • h 

m 
(C 160 -c)/h + C36Eo)(k)hktx

.	 /kl\ y 	^kl

♦ £C2(kk)hkD(k)(Y) + m C66 (k)hk B (k)ty )	 0	 (13)

0	 0b	 o
k• 1	 k:.

Enforcing exact displacement continuities in U and V across each interface,

yields

B0 (1) (Y) n B0 
(2) ( y

).... • Bo (k) (Y) • Bo (r)	 (14)

Do (
1 )(Y). DO (2) (Y) •	 • Do (k) (Y) " po( Y )	 (15)

These equations reduce Equations (11)-(13) to m+2 equations for the m+2 unknowns

Bo (Y), a
0 
(Y), E ( k ) . The solution to these reduced equations uniquely determines

the zeroth-order interior region solution (10). This is the solution from

lamination theory as will be demonstrated later for a four layer angle-ply

laminate.

It is important to note that although exact displacement continuity in W was

not imposed in the interior region, it will be shown to be satisfied automatically

for angle-ply laminates.
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(2) The boundary layer region (Yel)

Introducing the stretching transformation

0-Y b)	 (16)

near the free edge Y e 1 to the governing equations (2) results in the following

eqLations:

(Q66U nn + Q55U.7Z + Q26Yrnn + Q45V9ZZ - (036 + 
Q45 )W -nZ )(k) ' 

0 (a)

{026U -nn + Q45U•ZZ + 
Q22V,nn + Q44V,ZZ - (Q23 + Q44) W1nZ )(k) - 

0 (b) (17)

( -(Q45 + Q35)U, nZ - 044 + Q23) V -nZ + Q44W ,nn + Q33W -ZZ )(k) e 
0 (c)

To seek a solution which satisfies the symmetry conditions (3), the constraint

equations (4), and the asymptotic recova-y of the lamination theory for large n,

the following expansions are assumed:

A n
U(b)	

nI0 [Br,M + Pne n cos anZ](k) en

V(b) ' 
nMO [p

n(Y) + Rne ^ cos anZ](k) En

	
(18)

W ( b ) = E [EnZ + Sne Ann sin anZ](k) en

no0

where B (k) , 0 (k) , E ( n ) are the interior region solution given by Equations (11)-

(15)
9
 P (k) , R ( n)  and S (k) are undetermined coefficients, and a(k) are undetermined

positive quantities (in radians). The subscript b denotes the boundary layer

region.

Substituting Equations (18) into Equations (17) and neglecting higher-order

-	 terms results in the following set of three simultan pous algebraic equations

n -

corresponding to the order e°:



M-

7

{(Q66Ao2 - Q55oo
2 )Po + (Q26 10 - Q45002)Ro - 036 + Q45 )A000So) (k) ' 0

((Q26Aa - Q45002)Po + (Q22' 02
 - Q440o2)Ro - (Q23 + 044)AOaoSo)(k) . 0 (19)

(045 
+ Q36)aodoPo + 044 + Q23 ) AoaoRo + (Q44 AO - Q33ao2 )S0 ) (k) , 0

k n 1,2,... ,m

For each nontrlvlal term of Equations (19) to exist the determinants of the

algebraic equations (19) must vanish individually. This leads to a sixth-order

algebraic equation for each layer which can be regarded as a third-order equation

by classical treatment (15]. The six roots may be expressed as

(AO(1,2) - t a 00) 
(k)

(AO (3,4) - t 6 oo)(k)
	 (20)

(A0(506),w t C ao)(k)

where j(k) 9 6 (k) o c (k) are three constants in terms of the material

properties of the k th layer. For matching considerations, however, the

positive roots must be dropped since they lead to exponential growth of the

displacement, strain and stress fields for large n (or small y ). Hence, the

zeroth-order expansions of Equations (18) take the following general form:

U%) - (80 ( y ) + ( p
1 

a -axon + P2ebaon + P3 -coon) Cos ao Z)(k)

V(k) . (p (y) + (R 
eaaon + R2e600n + R3eCoon) Cos ao Z) (k)	 (21)

•	 b	 o	 1

W(k) (E OZ + 
(Sl iaoon + S2e6aon + YZOon ) sin ao Z)(k)•	 b	 o
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where Po has been replaced by P1 . P2 . P3 . etc.

It may be shown that due to the separate variable nature of Equations (21),

no exact satisfaction of the free edge stress boundary conditions (6a) and (6b)

(for ail 1) and the stress boundary conditions (7) on the top and bottom sur-

faces (for all Y) can be achieved. By arguing that higher-order term; serve

as correction terms, attention can now be focused on points (n-O. Zk +C) and

(n ,80.Zk-t) on the free edge (Fig. 3). That is. requiring exact satisfaction

of the boundary conditions (6a.6b.6c) at these points only [11.14] with

Equations (21) and considering the resulting force and moment equilibrium

of the limiting free body of thickness 2C Wc<c0) result in the algebraic

equations:

([:26('P l +6P2+cP3) + C22(eRl+6R2+cR3)

+ C
23 (Sl +S2+S3 )]aocos(ao (Zk " ))	 (a)

C	 C	 C
..[ C12'^ 1 

Cx + -^3 Eo + -5 Oo (!1) + -S Bo (±1)]h? (k)

(CC
66

(aP l +6P2+cP3 ) + C26(aRl+6R2+cR3i

+ C36 ( S 1 +S2+S3 )]aocos(ao (Zk ± c))	 (b)(22)

.. [ C16 1 -c x + Ch Eo + —F po' ( tl ) + _ Bp (+-1)]h?(k)

(C44
[(R 1 +R2+R3 ) - (Sla+S26+S3c)] + C 45 (P l +P2+P3 )) (k) - 0	 (c)

k - 1.2.. ..... ,m

Note that the right hand sides of Equations (22a) and (22b) are all known

quantities from the interior region solution. Solving nine equations (three

from (17a). three from (17b) and three boundary conditions (22a)-(22c)) leads

to the determination of the nine unknown coefficients P i . R i , S i (1-1,3) in
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terms of a ( o ) . The validity of the solution thus obtained can be readily

checked by the self-equilibrating condition of the stress resultant

b 
o= ff ")dY ► 0	 (23)

0

for any level of Z. Finally, equating the force and moment resulting from the

boundary layer displacement fields (21) with the interior region stress

resultants determines the values of a(k)((tktc)) to their order of accuracy.

Thus, the "near-interlaminar" stress distributions can be obtained based upon

a reference layer. It should be noted that displacement continuity in this

boundary layer region has not yet been imposed as a physical requirement.

It will be imposed subsequently in a numerical example.

Four Layeh Angte-Pty Lami.natee

For advanced fiber-reinforced composites having three mutually perpendicu-

lar planes of elastic symmetry, the stiffness coefficients C 45 ) vanish. For a

four laver angle-ply laminate with symmetric Cte] orientations (Fig. 4a), the

following relations between material constants (with respect to xyz coordinates)

are found to exist (14]

C i ^ l 	C i p)	 i = 1,2,3 and J - 1,2,3

Ckkl) = Ck(2)	
k - 4,5,6

Cn6 l ) _ - Cn6 (2)	 n - 1,2,3

The zeroth-order interior region solution (10) yields

i
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Uo(1) n 
Uo(2) 

n 0

(l) ^	 (2) ^ _ (C12C33 ' C13C23)(l)txbY(1-c)

V°	 y°	 (C22C33 - C23C23) tM

(1)	 (2) - - (C13C22 - C12C23)(1)fx Z(1-c)
wo	 wo

(C22C33 ' C23C23)

It can be seen from. (24) that the exact continuity in W results automatically.

On the central plane (Y-0), the stresses are obtained by combining

Equations (24), the constitutive equations, and the strain-displacement re-

lations. The results are

ay (l) (O,Z) -	 vy (2) (0,Z) - 0	 (a)

^xy(1)(o,Z) - - txy(2)(O,Z)	
(25)

C26 (C 12 C33 - C 13C23 ) ♦ C36 (C 13C22 - C12C331	 ) & X 0-0(b)   
CC 16	

C22C33 - C23C23	
] 

which indicates that the lamt;.ation theory (or the zeroth-order interior

region solution) contributes no normal stress along the central plane Y-0.

For equilibrium considerations the interlaminar shear stress resultant and

Or couple moment due to the interlaminar normal stress a  should both be

expected to vanish (Fig. 5). Thus, two more self-equilibrating conditions

are established, in addition to Equation (23), as

b
Tyz dy - 0	 (26)

0

b
a  ydy - 0	 (27)

0

.

(24)
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where ty= and a  are both determined by solving the boundary layer Nquations

(16-22) with W .2.

Numerical example

(1) [45/-45]s graphite-epoxy laminate

Consider the [45/-45]s graphite-epoxy laminate of constant layer thickness

h/2 (Fig. 4a). The material properties are

E
l 1

- 20 x 106 (psi)

E22 ' E
33 ' 2.1 x 106(psi)

G
12 ' G23 ' G

13 - 0.85 x 10
6
 (psi)

(28)

"12""23	 x'13'0.21

The transformed stiffness coefficients are

45(x 10-6 psi) -45(x 10-6 psi)

C 1 (1)	 - 6.745
C1 

(2) - 6.745

C& ) - 5.045 C1(2) - 5.045

C 1 3 1)
-0.521 C1(2) -0.521

Cj (1)	 - 6.745 C2(2) - 6.745

C2 (1)	 = 0.521 C2(2)
- 0.521

C3 (1)	 - 2.213 L(2) - 2.213	 (29)

C	 (1)	 -
16

C (1) n -4 506
26

C	 (2)
16

- C (2) - 4.506
26

.	 C36(1)	 - -0.04387 C3(2) - 0.04387

C	 (1)	 -44 C	 (1)	 n 0.8555 C	
(2)

44
- C (2) - 0.85

55

66 1)	 - 5.33 C6(2) = 5.33

045 1) 0 X4(2) - 0
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The interior solution (24) yields

Uo(1) • Uo(2) - 0

Yo ( 1 )	 Yo(2) n -0.7433 
c 

b YO-C)	 (30)

WO 
(1) n Wo (2) _ 70.0604 L

xZ (1-c)

which lead to the central plane stresses

•	 t(1)(0,Z)	 - t (2) (O,Z)	 1.154 t (1-c)(106psi)
xy	 xy	 x

(31)

oy1) (0,Z)	 - oy2) (O,Z) • 0

The boundary layer equation (17-19) yield two identical sixth-order algebraic

equations [14] which give three pairs of real roots. For matching considerations

only the three negative roots are taken. Finally the composite solution (in

the perturbation sense) is formed as

Uc (k) . {(p l e
8laon 

+ P2e62mon + P3-03aon )cos aoZ)(k)

(k)	 b	 -610101	 -92aon

Vc	- 0.7433 E x ( 1 -0-F Y + {(Rl e	 + R2e

+ R3e63a°n )Cos aoZ)(k)

-Bl ao n	 -B2aon

W
C
	0.0604 0.0604 &X 0-0Z+ {(Sle	 + S 2

+ S3es3(`on
)sin aoZ) (k)	 (32)

where

01 (k) = 1.2364

02 (k) - 0.2903

03 (k) - 0.9659

!

0
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Exact satisfaction of the governing equations and the boundary conditions at

points ( nn0.1/2+c) and ( n•0.1/2-0 leads to the following equations:

Pl (l)	 n - 0.5871 #1 9	 P1 (2) . 0.5871 02

P20) . 0.1707 4 1 P2(2) _ - 0.1707 v2

P30) - 1.2021 Oi
P3(2) -	 - 1.2021 m2

R1 ( l )	 . - 0.6309 o1 ,	
R1(2)	 -	 - 0.6309 42

R2(1) - - 0.1813 t1 9	 R2 (2)	 -	 - 0.1813 f2

R30) - 1.1897 41
R3(2) - 1.1897 02

SI M - 1.1358
ml

Sl(2)	 = 1.1358 02

S20) . 0.0347 m l S2(2) . 0.0347 m2

S3 (1)	 - - 1.0736 ml S3(2) - - 1.0736 12

(33)

where

_
	 x 0 -r)

l	 00	 COs (a0 0)(I + ti ) )

f.X0-e)
	

(34)

2	
a0	 cos (a0	 ( l - C))

0	 <<<1

It can be shown that these coefficients lead to identical satisfaction of the

self-equilibrating conditions (Equations (23; and (26)) when the lower limit

is replaced by infinity - the corresponding zeroth-order domain of the
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interior region. Furthermores requiring the force equilibrium condition

b 

TXk) (Y+ 1/2 t t) dy + l(k) (0,Z) 
h ' 0

XY
leads to	 °

tan
 (

ag 
(k)

—°^ t c oo(k)}
n 0.5	 (0 < C « c 1)	 (35)

130 
(k)

Now consider Equations (32) and (33). It 1s clear that Layer 1 (+450)

and Layer 2 (450 ) are antlsymmetrlc to U and symmetric in both V and W with

respect to the infinitesimal thin slice (Fig. 4d). Upon enforcing exact

continuity in displacement U. V, W at 1 n 112, the following equation is

obtained

(1)	 (2)

11m Cos a-^°--- + ao(1) C 	 Iim cos a—°^--- - ao(2)t	 0	 (36)

whlcin yields

COS 00   + S a0 
(1) ' COS ate_ - ao(2) 0	 (37)

for 0<c«<1

and

•tan 

ao(k) 

± a (k)S	 s °°Jim 	 —^' o
(38)
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The interlaminar stresses based upon the lower layer (450) may now be ex-

pressed from the stress-displacement relations as

Txt 
n (0.85 x 106)(1-c)tx[-0.5871e1•2364an + 0.1701e0.2903an

t 1.20210 .9659
"Itan(O - at)	 (a)

T• n (0.85 x 106 )(1-c) tx[2.0350e1.2364an + 0.1913e0.2903an

- 2.2263e0.965'"Itan(O - a{)	 (b)	 (39)

a  - (1-c) tx (106 )[2.1389i1.2364an + 0.0472e0.2903an

- 1.8281e0.9659an)	
(c)

0<{«<l

If the stacking sequence is reversed to [-45/451 s . (Fig. 4e) the interlaminar

stresses become

Tx= • (0.85 x 106)(1-c)tx[+0.5871e1.2364an - 0.1707e0.2903an

- 1.2021e
0.9659an

]tan( a - at)
	

(a)

Tyz n (0.85 x 106)(1-c)tx[2.0350e1.2364an + 0.1913e0.2903an

I

- 2.2263e
0.9659an ]tan( a - a{)
	

(b)	 (40)

vz	( 1-e)tx(106)[2.1389e1.2364an + 0.0472e0.2903an
	

;r

- 1.8281e0.9659ani
	

(c)

0<4«< l

Results and Discussion

From Equations (39) and (40) it is clear that the interlaminar shear

stresses Txz and Tyz are both proportional to the near singular value of
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tan( - ac) which results from Equation (35 b 38). Hence a serves as a problem

parameter which may be more realistically determined experimentally. Figure

6 shows the influence of -a on the interlaminar shear stress T xz . Obviously,

Txz 
becomes more singular as a is increased and may attain a much higher

finite maximum value at the free edge than the calculated finite difference

result of [3]* This is in agreement with the work of Pipes and Pagano [7]

in which they found that 
Txz 

tends to grow without bound. Figure 7 shows

the interlaminar shear stress Tyz as a function of the problem parameter

a. Although 
Tyz 

is proportional to the near singular value tan(' -ac)

(0<c<<<l) it is zero at the free edge thus satisfying the stress free boundary

condition. It should be noted that r yz attains larger peak values, for higher

values of a. The negative-positive variation of 
Tyz 

confirms the validity of

the self-equilibrating condition (26). The finite difference solution, however,

does not predict such variation. In a later paper, it will be shown that the

negative-positive variation agrees well with the finite element result by

Renieri [16] which further supports the present theory. The variation of the

interlaminar normal stress a  in Fig. 8 (Eqn. 40c) indicates that the maximum

finite value of oz at the free edge is independent of the problem parameter a.

The only influence of a on o z lies in the boundary layer width. The positive-

negative (tensile-compressive) variation of o z confirms the solution validity

by satisfying the self-equilibrating condition (23). The finite difference

results, on the other hand, indicate instability near the free edge [14].

The present theory (Egns. (8) - (22)) is based upon the zeroth-order

analysis of the geometric ratio h/b. Hence the smaller h/b, the better the

* All finite difference reusits presented in this paper were obtained by
the authors using the program supplied by Professor Pipes.
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solution accuracy [14]. The effects of this ratio on the interlaminar stress

components can be observed In Figs. 9-11. In Fig. 9, for a smaller h/b, Txz

has a smaller boundary layer width while attaining a higher maximum value at

the free edge (for a fixed a). Similar behavior is found for T yz (Fig. 10)

where the stress attains a higher peak value and a smaller boundary layer

width for a smaller h/b. In Fig. 11, a higher a  
max 

and a smaller boundary

layer width are obtained for a smaller h/b. The lnterlaminar stress distri-

butions for the reversed stacking sequence [-45/45] s Gr/E are not plotted.

However it is important to point out [14] that only r Xz experiences a sign

reversal when the stacking sequence is reversed. The sign of the remaining

two components of interlaminar stress is not a function of the stacking

sequence. Thus for reliable design fo angle-ply laminates, the delamination

failure mode due to the tensile a  at the free edge should always be taken

into consideration.

Conclusions

A method of solution for the problem of elastic, balanced, symmetric

laminates subject to uniaxial extension has been developed based upon the

perturbation theory. Attention has been focused on the force and moment

equilibrium for an infinitesimally thin slice containing the interfacial

plane. The solution provides better insight into the free edge interlaminar

stress behavior for thin angle-ply laminates (h/b«1) than existing numerical

solutions.
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fo ẑ dy=fo O'Z ydy •0

FIGURE 5, ANGLE -PLY LAMINATE OF 2 m LAYERS

free edge y = b



11
^	 11

M ^u
W
Z
W

U
W

Z^
W W
W ~Z

M Off. u.
O
u

N ^ L

MQ ^

LL 10

ou
z

Q z
>'6"i

O = fr
.a o

^ W
cnH

Zn

o
W
cr-

Cn

aW',

d; V
w W
ir-

D
it

W
M
ri

0
77

U-
V-

0 0 0 O o °	 o
L6	 rii	 N

(Isd) 9_0l x "^ / :x1



In

( sd) 9_01 x x P / 2I1

N	 O

	

N	 ^	 ^

	

1	 I	 1i

N	 ^
n

8
OD
m

!!s

a.

°ag

w
ao

V
m

U
Z
W
Ix

L ..
U. r---^

W

? uLL

0 c
Z ._
Q

^- H
O
W

1- LL,

H U)

JW

W V)
cr W

CL

W
cr
M

W ^

r-I

u

^v
sZW w
F=- ^
Ho
2W W
W

U.
O
u

N 1 ^t



a

4
r

9

co

0
w
ao

N 0
OIO O d ^ o d

I

w
2
w
crw

too o
w
z to
E u
zz z
a

^ e0
i ct

U-

w F"
c
w cn

a cr

06

w
crD0
U-

ag

0

cD

0

o ,^

cli

0

d

( ISd)9 01 x x .* / z.D



r

_Q
00

r r

O	 O
N

O
M

8
O

9
CO

N ^
O

00

w^

W M
H to
cn 4t

a Lc)

u
z

a r

W
tz-	

O

o^

W Z

PL
LD
UL

Q

t
r

(isd)ol x	 :x1



V-- J	 .

'' .
i

1
1

ls
M
M

r 00
N N	 I

t r m
ao
m

N ( N	 ^
a

I;	 N	 p	 cv
O	 d	 C3 	O

(isd)9„pl x xvo/ 2AL

Q

O
cn
 cn
W

O

W

W

N
a? d

LOu
O Z

Z
O
O

J
W ^
H
Z

L

LL
0

O

d ^ O

co li DO l-



Vo
2 M
O O

0	 0 0	 o
t

l

j

^q

bH
cn
cn

n

Q ^O ^ ^
c
O uZ

O
Q

zN	 >.%
rn

Z
O

Q
.\n

J '^
O W U-

0O Z

co z
Ow

W U
z

cp
co

cr

U-
U

Q

(i sd )9_OI x x.3p / :.o


	GeneralDisclaimer.pdf
	0034A02.pdf
	0034A03.pdf
	0034A04.pdf
	0034A05.pdf
	0034A06.pdf
	0034A07.pdf
	0034A08.pdf
	0034A09.pdf
	0034A10.pdf
	0034A11.pdf
	0034A12.pdf
	0034A13.pdf
	0034A14.pdf
	0034B01.pdf
	0034B02.pdf
	0034B03.pdf
	0034B04.pdf
	0034B05.pdf
	0034B06.pdf
	0034B07.pdf
	0034B08.pdf
	0034B09.pdf
	0034B10.pdf
	0034B11.pdf
	0034B12.pdf
	0034B13.pdf
	0034B14.pdf
	0034C01.pdf
	0034C02.pdf
	0034C03.pdf
	0034C04.pdf
	0034C05.pdf
	0034C06.pdf
	0034C07.pdf
	0034C08.pdf

