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ABSTRACT

Concatenated coding systems utilizing a convolutional code as the inner

code and a Reed-Solomon code as the outer code are considered. In order to

obtain very reliable communications over a very noisy charnel with relatively

small coding complexity, it is proposed to concatenate a byte-oriented unit-

memory convolutional code with an RS outer code whose s ymbol size is one byte.

It is further proposed to utilize a real-time minimal-byte-error probability

decoding algorithm, together with feedback from the outer decoder, in the

decoder for the inner convolutional code. The performance of the proposed

concatenated coding system is studied, and the improvement over conventional

concatenated systems due to each additional feature is isolated.
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I. IN r RODUCT I ON

The complexity of conventional coding systems grows exponentially with the

block length of block codes (or with the constraint length of convolutional

codes). To circumvent the prohibitive complexity of directly using very

long codes, the idea of cascading two or more codes of less complexity to

achieve highly reliable communications was considered first by Elias [1],

and later by Forney [2]. Forney's technique of using two or more block codes

over different alphabets to obLaiu a very low error rate over noisy channels

is known as concatenated coding.

Guided by the premise that a convolutional code generally performs

better than a block code of the same complexity, Falconer [3], and later

Jelinek and Cocke [4], considered cascading an outer block code with an

inner convolutional code. Figure 1 shows a general representation of such a

block-convolutional concatenated coding system. In both the Falconer and

Jelinek-Cocke schemes, sequential decoding was used for the inner decoder;

the outer block coding system was used only to intervene when the sequential

decoder experienced computational overflow. Therefore, these systems can

be regarded, more or less, as primarily sequentially-decoded convolutional

coding systems.

Maximum likelihood (i.e., Viterbi [51) decoding of convolutional

codes with a moderate constraint length can provide an error rate of less

than 10-2 at a rate slightly higher than Rcomp of the noisy channel.

Forney's work [2] suggested that a concatenated coding system with a power-

ful outer code can perform reasonably well when its inner decoder is operated

with a probability of error in the range between 10
-2
 and 10-3 . It was

natural then for Odenwalder [6] to choose a Viterbi decoder for the inner

coding system in his block-convolutional concatenated coding system.
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Because the output error patterns of Viterbi-type decoders for con-

volutional codes are bursty, block codes over a large alphabet, such that

many bits of the inner code form one symbol of the outer code, appear very

attractive for the outer coding system. The Reed-Solomon (RS) block codes

are particularly appealing because they can be decoded by relatively simple

procedures (such as the Berlc:kamp-Massey [7], [8] algorithm) and Have

optimum distance properties. Because the lengths of the bursts of output

errors made by Viterbi decoders are widely distributed, it is generally

necessary to interleave the inner convolutional code so that errors in the

individual RS-symbols of one block are independent; otherwise, a very long

block code would be required to operate the system efficiently. Because

the most likely length of the output error patterns made by the inner decoder

are on the order of the constraint length, K, of the convolutional code,

Odenwalder chose the RS symbol alphabet to be GF(2K).

In a block-convolutional concatenated coding system such as Odenwalder's

employing a Viterbi decoder with conventional convolutional codes, it is

very unlikely that the beginning of a decoding error burst is always aligned

with the boundary between tj,o RS symbols; in fact, such a burst only two

bits long may affect two RS symbols. This fact led us to consider using;

good convolutional codes which are symbol-oriented rather than bit-oriented.

In [9], we reported a class of unit-memory convolutional codes for which

k0-bit information segments are encoded into n o-bit encoded segments. It

was shown there that an (n 
0 , 

k 
0 ) 

convolutional cede with unit memory always

achieves the largest free distance possible for codes of the same rate

k /n and the same number 2M o of encoder states, where M is the encoder
0 0

memory. The unit-memory codes are naturally byte-oriented with byte size

equal to k0 information bits. It will be shown that the improved free
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distance and the symbol-oriented nature of these codes provides an improve-

ment of approximately 0.3db in the overall performance of the

concatenated coding system when these codes replace bit-oriented convolutional

codes.

Another improvement is to modify the decoder for the convolutional code

so that the decoder emits not only the most-likely estimated symbol, but

also reliability information about the estimated symbol. The outer decoder

may then use this reliability information to perform either "erasures-and-

errors" decoding or "generalized-minimum-distance" (GRID) decoding as

suggested by Forney [2]. Zeoli [10] and Jelinek [11] proposed to extracc

reliability information by annexing a long tail to the original convolutional

code and using this added tail to provide an error detection capability for

the estimate made by the Viterbi decoder for the original shorter convolutional

coda. This approach requires the feedback of symbols previously c-coded by

the Viterbi decoder and, more importan.ly, -ses the output of the outer

decoder to restart the inner Viterbi decoder whenever an error is corrected

by the outer decoder. It will be shown that the error detecting capability

used with an "erasures-and-errors" outer decoder provides an improvement of

0.2 db and that the feedback from the outer decoder further improves the

performance by 0.3 db.

An alternative approach to extracting reliability information from the

inner decoder is to compute the a posteriori probability of correctness for

cacti decoded symbol from the decoder for the short constraint length con-

volutional code and then use this probability as the reliability information

provided to the outer coding system. It will be shown that, when used

with an errors-and-erasures outer decoder, this scheme improves performance

by only 0.05 dB to 0.1 dB compared to hard-decision decoding and hence is

less powerful than Zeoli's tail annexation scheme; yet its performance is
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undoubtedly optimal among all schemes employing only the short constraint

length convolutional code (with no annexed tail). However, it will be shown

that, in confection with the use of feedback from the outer decoder, the

a posteriori probability inner decoder provides about 0.2 db more improve-

ment than does the Viterbi decoder aided by feedback. In fact, the a posteriori

inner decoder, used with feedback from the outer decoder, offers a slight

improvement over Zeoli's scheme; moreover the inner encoder and the inner

decoder have the same constraint length so that the inner decoder generally

and automatically returns to normal operation only a few branches after

making an error.

The plan of this paper is as follows. In Section II, a "real time" de-

coding algorithm; for unit-memory convolutional codes is developed which

calculates the a posteriori probability for each value of the byte being de-

coded. In Sections III, IV, and V, the performances of several b 7 ock-

convolutional concatenated coding systems having unit-memory convolutional

inner codes are compared with similar ,ystems having conventional bit-

oriented convolutional inner code q . In each case, we chose Lhe (18,6) unit-

memory convolutional code as the inner code because it has practically

minimum complexity in terms of decoder implementation, and because of its

reasonably large free distance (d free- 16). We chose the Reed-Solomon codes

over CF(2 6 ), with block length 63 symbols, as the outer codes so that the

symbol size of the RS codes would be matched to the byte-size (six bits) of

the unit-memory code. In Section VI, the degradation of performance, when

the rate 1/3 inner convolutional code is replaced by a rate 112 convolutional

code, is considered in order to demonstrate the tradeoff between bandwidth

expansion and signal-energy-to-noise ratio. In Section VII, the 95% con-

fidence intervals for the simulation results are obtained and interpreted.
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II. REAL-TIME MINIMAL-BYTE-ERROR PROBABILITY

DECODING OF UNIT-MD- IORY CODES

We now develop i.n algorithm for real-time minimal-byte-error probability

decoding of the unit-memory convolutional codes described in [9].

Let a t (t = 1,2,...) denote the byte (or subblock) of k  information

bits to be encoded at time t, and let b  (t = 1,2,...) be the corresponding

encoded subblock of n
0 

slits. For a unit-memory code,

b 
	 at GO + a t-1 G1
	 (1)

where GO and G 1 are k  x n o matrices and where, by way of convention, o = 0.

We assume that the sequence b 1 , b 2 , ... has been transmitted over a discrete

memoryless channel and that r  (t = 1,2,...) is the received subblock corre-

sponding to the transmitte r subblock b . We shall write a	 to denote

[at, a..+1, ... a t ,); similarly for b [t	 t , ] and 
r It	 t']'

By real-time decoding, with delav G, we mean that the decoding decision

for a is made from the observation
—t

byte-error probability (RTMBEP) dec

its estimate a t as that value of at

t = 1,2, ... . To find a recursive

of r [ 1,	 +A]' The real-time minimal-—	 t

Dding rule then is that which chooses

which maximizes P(a t lr [1, t + A] ) for

algorithm for this decoding rule, we

begin by noting that

P(atIr[l,t +t, 	 = P(at, r[l,t +C,])/IP(a, r[l,t+AJ)	 (2)

where we have used a to denote a running variable for a t . It suffices then

to find a recursive method for calCUlating Pla
t' r [1, t + AJ)'

We next observe that

P(a t lr [l ^ t+A] ) = P(a
t' r[1,tj)}'(r(t+1, t+,, la t' r[l,t])

P( '1 t , r 11.tI )P(r It+1, t{; ] I 
-a)	 (3)
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where we have used the facts that the channel is memoryles:. and that the

code has unit memory. It remains to find recursive rules for obtaining

the two probabilities on the right in (3).

Obtaining the recursion for Pla t , r (l,t] ) is quite standard [12]-[14];

P(at' r[l,t])	
aL	

P(a[t-1, t]' r[l,t])

-t-1

	

c L	
P(a

t-1' r(1, t-11 )P(at' rt la t-1' r [1, t-1])•
	 (4)

at-1

But also

'(a t . f lat-1' r [1, t-1]) 
= 

N a t la t-1' rt-1 (rt Ia [t-1, t]' r[1, t-1])

-k
2 

0 
P(r 

tlb(aIt-1, 
t] ))	 (5)

where we have written b(a
[t-1, 

t]) for the value of b  determined by (1)

from	 t,, and where we assume here and hereafter that all information

sequel,..-es are equally likely (as corresponds to maximum-likelihood decoding.)

Substituting (5) into (4), we have our desired recursion

-k

Pla t , r t ) = 2 0	
P(at-1' r[1, t-11)P(rtI 11(a [t-l' t ] ))•	 (6)

at-1

We now turn to the quantity P(r [t+1 t+,',]jat) which we note is the

i = 1 value of

P(r	 la	 ) _	 I	 P(a	 , r	 la	 ).	 (7)
[t+i, t+G] -t+i-1	 -t+i	 [t+i, c+A] -l).-1

at+i

Proceeding in the same manner that (6) was obtained from (4), we find the

desired recursion

-k

P(r
[t+i, t+A] lat+i-1 ) = 2 

0 1 P(r	 l	 M r	 (na	 lb	 )).	 (8)
—	 —(t+i+1,c+,] —t+i	 —t+i — — [ c +i—l,t+i]

<1 
t+i

This recursion is initialized with its i = A value
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P(rt+A 1it+A-1 ) = L	 Plat+A' r t+A l at+A-1 )	.
-at+A

-k c

2 0 L	 P(rt+A lb(a [t+A-1, t+A]))'	
(9)

at+A

and evaluated with i = A-1, A-2, ..., 1. It should be noted that, because

of the restriction to unit-memory codes, the recursion (8) is much simpler

than the corresponding one required for RTMBEP decoding of general con-

volutional codes [14].

An algorithm to carry out the recursive rules given by (6) and (8)

requires, for each byte (or "state" in the usual Viterbi decoding terminology)

a, the storage of two real numbers, f(a) and h(a); namely,

f(a) = P(a t = a, r [l,t] )	 (10)

and

h(a) = P(r[t+i, t+A]'at+i-1	
a)	 (11)

where i will be decremented from A to 1 as the algorithm progresses.

(Of course, the received segment 
r
[t+1, t+A] must also be stored so that

P(rt+i
lh(a [t+i-1, t+i])) can also be found for i = A, A-1, ..., 1.) We may

now state:

The RTMBEP Decodinv Alporithm for Unit-Nemor y Codes

k

Step 0: Set f(0) = 2 
0 

and set f(a) = 0 for a 1 0. Set t = I.

Step 1: Make the replacement, for all states a,

-k

f(a)	 2 0	 f(a') P(r t Ib(a', a)).
CL

Step 2: Set 1 = A and, for all states a, set

-k

h(a) - 2 
0	

P(r	 Ib(a, a')).

a	
t+t
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Step 3: Decrease i by 1 and make the replacement, for all states a,

-k CC

h(a) 
,-2 o
	 h W )P(rt+ilb(a, 

a'))•a, 

If now i = 1, go to Step 4. Otherwise, return to Step 3.

Step 4: Emit, as the estimate of a t , that byte a  which maximizes f(a)h(a),

and emit, as the reliability indicator, the probability

P la t	 a o ^ r [ 1  t+A ]) = f(a0)h(^)/ 1 f(a)h(a).
a

Increase t oy 1 and return to Step 1.

The only feature of the algorithmu that should require any comment is
k

thk initialization of f(0) at 2 0 . This is require.: so that the first time

step 1 is performed on, .,btains the correct initial value f(a) = P(r 1 11(0 ' co).

In fact, however, it makes no difference in the output from the algorithm

if the f and h values are scaled by fixed positive constants,,o that
-k

f(0) = 1 is permisc.ible in Step 0 and the factors 2 o can be removed in

Steps 1, 2 and 3.

Note that Step 3 of the algorithm, which has the same complexity as

Step 1, is performed A - 1 times for each time that Step 1 is performed.

It is clearly desirable then to keep A as small as possible. Table I shows

the variation of the decoding byte-error probability, P BE , with the decoding

delay, A, for the (n
0	 0
= 18, k = 6) unit-memory code of [9) used on a

simulated three-bit- quantized additive white Gaussian noise (AhGN) channel.

We see that A = 8 gives virtually the same P BE as the "optimum" choice

e a W

We now point out, however, that one can reduce the ratio of Step 3

operations to Step 1 operations to as close to unity as desired without any

degradation in performance but at the cost of additional storage. The

"trick" is to use a variable decodin, delay A. Each a t is decoded from
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Table I.	 Variation of Decoding Byte-Error Probability p with Decoding

Delay A for RTMBEP Decoding of the (18,6) Unit-Memory Code on

a Simulated AWCN Channel with an Eb/N 0 of 1.25 db.

(4000 bytes decoded for each A).

A (bytes)	 4	 (	 6	 8	 I	 16

	

p	 .0285	 I .0248	 .0193	 .0193

Table II. Byte-Error Probability, p, for Viterbi Decoding of Three

R = k /n. = 1/3 Convolutional Codes on a Simulated AWCN
0 0

Channel. (8000 bytes deeded for each point shown, decod-

ing delay A in bits of 48 in all cases.)

E^/N0	I	 1.00 db	 I	 1.25 db	 1.50 db	 1.75 db

p(95% confidence)	
!•0305 (+.0053) 1 .0200 (+.0044) 1 .0118 (+.0033) I .0065 (+.0025)

(18,6) unit-memory code	 —	 —	 —	 —

p(95% confidence)	 I

M = 6, (3,1) code	
•0488 (±•0068) 1.0325 (+.0056)	 .0233 (+.0048)	 .0128 (+.0035)

p(95% confidence)

M = 1, (3,1) code	
.0400 (+.0062)	 .0225 (+.0047)	 0140 (+.0037)	 0103 (~.0032)

	

—	
I	

!

	Data	 Block	 Interleaver	 >— Convolutional --^

	

Source	 Encoder	 I Encoder

Discrete
Memoryless
Channel

Decoder for

	

Data	 -^ Decoder for —E	 Reinter-	
Convolutional

	

User	 Block Code	 leaver
--Cud4A

	

Figure 1.	 A concatenated coding system employing a cc,nvolution:il

code as the inner code and a block code as the outer code.
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P(et lr [l, t+A]) 
but A, depending on the value of t, takes some value in the

range Am < A < LM. The minimum decoding de l -, Am , is chosen large enough

to ensure - !gligible degradation, say A m = 8, while the maximum decoding

delay, AM , is chosen small enough to make the increased memory tolerable

as will soon become apparent.

In this variable real-time minimal-byte-error probability (VRTMBEP)

decoding, one stcres A M - Am { 2 real numbers for cacti state a, namely:

f i (a) for i = 1,2,..., AM - Am + 1 and h(a) where

f i (a) = P(a
t+i-1	 a, r [1, t+i-1])	

(12)

and where h(a) is as in (11) with A replaced by AM.

Observe now that, in the process of executing Step 2 of the RT'1i3EP

algorithm with A = AM , one would obtain sequentially the quantities

P(r[t+i, t+AM]lat+i-1	 °—`)
	

(1.3)

for i = AM 1, AM 2, ..., 1. But the product of the quantity in (13) with

f i (a) as in (12) is, according to (3), equal to P(a
t+i-1	 °—̀ Ir {1, t+GM])'

this is precisely the statistic nLCded to estimate _t+i-1 with a decoding

delay of A = AM - i + 1. Hence, if we had the foresight to perform Step 1

of the MW EP algorithm A M - Am + 1 times and to store the resulting fi(a),

then we could make AM	Am + 1 decoding decisions during the A M - 1 times

that Step 3 is performed. Thus, for each time we use Step 1, we would be

using Step 3 only (AM W (AM - Am + 1) times. For instance, with Gm = 8 and

AM = 13, we would perform Step 3 only twice for each time we performed Step

1; and we would be storing only A M	.^.m + 2 = 7 real numbers per state rather

than 2 as in the original RPWEP algorithm in which Step 3 is performed

A - 1 - 7 times for cacti time that Step 1 is performed.

It should now le obvious that the following algorithm is the necessary

modification to the RTM EP decoding algorithm for obtaining reduced computation
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at the price of additional storage as has Just been Jescribed.

11te VRTML'EP Decoding A1£orithm for Unit -Mer:ory Codes

k
Step 0: Set f	 (0) = 2 0 and set f	 (a) = 0	 a J 0.A 	 A PH 1	 AM - Am-4-1 -	 -

Set t = 1.

-k

Step ]:	 Set f l ( a ) = 2 0	 fA - A +](a')l'( r t^ b (`` ' ► a)),

	

a'	 h1	 m	

-

-k CC
	 I

and set fi
+1(DO = 2 0 L^ fi(a)1)(rt+i`b(a' u))

a

for i = 1,2,..., 1M - Am in order.

Ste-	 Set i = A 	 .or --ill states a, set

-k
h(a)	 = 2 

0	
P(r	 Ib(a, a'))•

a'	 -t+^1

St	 Decrease i by 1 and mane the replacement, for all states a,

-k
h(a) < 1	

0	
}^(_^')t(r-,i-i1b(n, a'))•

Ot

If now i

St j) 4: Limit, as

f
i 

(a)l^ (_^

P(a

< AM - Ln1 + I.,

the v,timatc c

and emit, as

a Ir
--o -[ 1 , t+:,M

F.o to Step 4. Othel'Wise, return to Step 3.

F `'-t+i-1' that byte whi,h :.iaximizes

the reliability indicator, the prol,t:bilit"

a

If i = 1, inc rease t by 1, - A + 1 and return to St(. • l) 1.1 . 1	 m

Otherwise, decrease i by 1 aad return to Step 3.

It is satisfying, to notc that ehc 1'N,T."BET decoding; all ,.orit!tm r-eiuces

to the R11-WEP algorithm w!wn LM - A m .	 It slic • ild be pointcd "lit th.it vhi-n

only a finite number, L, of infomation bytes are encoded and one takes

t  , L, thn. la rycst possible choice, than the V1:T?MIT algorithr.i reduces to
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that riven by Bahl et al. [12] (when the latter algorithm is specialized to

unit-memory ^.odes) and does about twice the computation of the usual Viterbi

decoder; but this case also maximizes the memory requirements. The chief

advantage which both RTMBEP and VRTM13EP decoding of unit-memory codas have

over Viterbi decoding is in their providing reliability information about

the decoding decisions; information of considerable value to the outer de-

coder in a concatenated coding system.

Because the resulting performance of the RTMBEP and VRTMI3EP algorithms

are indistinguishable when A = Lm is chosen large enough for negligible

	

degradation compared to A	 say
m
 = 8, we will not hereafter distinguish

between the two algorithms in our discussion of concatenated coding systems.

III. ODENWALDEI:' S CONCATENATED CODING SYSTEM AND SOFT-DECISION
MODIFICATION WITH THE RTMBEP DECODING ALGORM-211

The concatenated coding system proposed by Odenwalder [G], which we

shall call System I, is as shown in Figure 1 where the inner decoder is a

hard-decision Viterbi. decoder and where the outer decoder is a t-error

correcting decoder for the RS outer block code. Here and hereafter, we

assume that the interleaving is "perfect", i.e., that the symbols in each

RS block at the output of the inter.leaver have been independently decoded

by the inner Viterbi decoder. Thus, we can then calculate the probability

of a decoding error in an RS block, 
PERS' 

as

n

PERS	 L	
( i ) pi(1-p)n-i^

i= t+1

where n is the RS block length (in bytes) and p is the byte-error probability

at the Viterbi decoder output. Further, since almost all the incorrectly

decoded RS codewords are dmin 
= 2t + 1 symbols away from the correct code-

word (where d
min 

is the minir;um distance. of the RS code), the hvtc-error

(14)
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probability, PBL , of the concatenated coding system is given closely by

P	
= 2t+1 1,

BE	 n	 ERS'

For a byte size of 6 bits, as will be assumed hereafter, the RS code

nas length n = 2 6 - 1 = 63 bytes. For convenient reference, we give in

Table 11 the byte-error probability of a Viterbi decoder for the three

different convolutional codes of rate R
CON = k

o /n c = 1/3 that will be used

in our subsequent comparisons when used on four different AWGN channels;

this data is taken from [9). The AWGN channels are specified by the ratio

of channel energy per encoder input bit to one-side noise power spectral

density, Eb/N O . :Vote that the energy per channel input bit (decoder output

bit), E
s	

s given by E s = R 
CON E^. But also Eb = RRSEb where 

RRS 
is the

rate of the RS code and E b is the channel energy per information bit entering

the RS encoder. Thus, the channel energy per information bit to one-sided

noise power spectral density ratio for the overall concatenated coding system,

Eb /No is given by

Eb /No =	 I 
	 (Es/N o ).	 (16)

'RS CON

Using the results of Table II together with (14) and (15), we can

calculate the b y te-error probability for Odenwalder's System I for various

RS outer codes. The results of this calculation are shown in Fib;. 2 for

the three different RCO` = 1/3 convolutional codes, namely (i) the con-

ventional (3,1) code with 1.1 = 6, i.e., K = 7; (ii) the conventional (3,1)

code with M = 7, i.e., K = 8; and (iii) the (18,6) unit-memory code. Codes

(i), (ii) and (iii) have free distances of 15, 16 and 16, respectively, and

their corresponding; Vitorbi decoders have 64, 128 and 64 states, respectively.

We see, from Fig. 2, _h-i •	use of the unit-memory code provides an advantage

of about 0.3 db over the con%ontional code with the same state complexity,

part of which gain Is attributable to the larger free distance of the unit-

A

(15)
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PBE
	

Concatenated with:

0 t = 4 RS code

A t = 6 R.S code

o t = 8 RS code

Sys.tem I with
M = 6, (3,1) code

System I with

M = 7, (3,1) code

System I with

(18,6) unit-memory code

System II with

(18,6) unit-memory code

	

1.9	 2.0	 2.1	 2.2	 2.3 2.4	 2.5 2.6	
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Figure 2.	 The Performance of Concatenated Coding Systems I and

II with RS codes o%, cr GP(2 0 ) on a simulated AWGN
channel with E /to o = 1.25 db.
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memory code. But the unit-memory code is also abou t: 0.1 db superior to the

conventional code with the same free distance (and doubled number of decoder

states); this gain is attributable entirely to the byte-oriented structure

of the unit-memory code.

It should be mentioned that gains of 0.1 db are not insignificant in

concatenated coding systems. As can be seen from Fig. 3, a gain of 0.1 db

corresponds co a reduction of P BE by nearly an order of magnitude, such

steepness of the P BE vs. Eb /No curves being characteristic of well-designed

concatenated coding systems.

The inner decoder, i.e., the Viterbi decoder, in System I makes "hard

decisions" on the decoded bytes. The system performance can be improved by

using a "soft decision" decoder which passes along to the outer decoder a

reliability indicator for each decoded byte. Such a system, in which the

inner decoder is a RUIBEP decoder and the outer decoder is an errors-and-

erasures decoder for the RS code, will be called System II. (For ease 04

reference, we summarize in Table III the characteristics of each of the six

concatenated coding systems that will be considered in this paper.) When

the reliability indicator, P(atir[l 
t+A]) 

for a decoded byte is less than

sonic specified T, the outer decoder treats the byte as having been "erased."

The erasures-and-errors decoder for the RS code can correct t errors and e

erasures, whenever 2t + c < 
d 
min . Thus, the block error probability for

the outer decoder is given by

	

nn	
oc
d/2

PF.RS	 Y	 L

	

d=d	 t=0
min

e=d-2t

( t n e ) p t g 2 (1-p-q)
n-t-e
	(17)

where p is again the byte-error probability for the inner decoder, where q

is the byte-er-aure probability for the inner decoder, and where

( Il ) -	
n!

t,c^	 t!e!(n-t-c)!^
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Table	 III. The Six Bloc.-Convolutional Concatenated Coding Systems Studied.

(EO = errors only decoder, E + E = errors and erasures decoder,

FBTID = feedback to inner decoder.)

Inner Decoder Type Outer Decoder Type	 Inner Code Tail Annexation

System I Viterbi hard-decision EO NO

System II RTMBEP soft-decision E + E NO

System III Viterbi hard-decision EO with FBTID NO

System IV RTMBEP hard-decision EO with FBTID NO

System V RTMBEP soft-decision E + E with FBTID NO

System VI I	 Viterbi soft-decision E + E with FBTID YES

Table IV. Variation of Inner Decoder Byte-Error Probability p	 and Byte-

Erasure Probability q	 and of Outer Decoder Byte -Error Probability

PBE with the Erasure Threshold	 T	 for the	 (18,6) Unit-Memory Code

on a Simulated AWGN Channel and with the Minimum Distance d	 .	 of
min

the Outer RS Code.

Eb/No T p	 q PBE for PBE for PB1, forI

in db d	 .	 = 9 d	 .	 =	 13 d	 .	 =	 17
min min i	 min

1.00 .70 .01325 .04150 .740>:10-2 .477x10-3 .128x10-4

" .50

' 

02100 .01950 .677x10-2 .555x10-3 I	 .213x10-4

" .80 .00675 .03400 .123x10-2 .244x10-4 .193x10-6

1.25 .70 .00800 .02650 .902x10-3 .179x10-4 .149x10-6

It .01350 .01125 .107>:10-2 .332x10-4 i	 .481xlO-6

" .80 .00425 .02125 .112x10-3	

I

.691x10-6
i

.173x10-8

1.50 .70	 I .00525 .01625 .981>:10-4 .684x10-6 .204>:10-8

to .00900 .00400 .113:;10-3 .136x1O-5 .774x10-8

It .00250 .01050 .416x10-5 .636x10-8 .416x10-11

1.75 .70	 I .00250 .00825 .249x10-5 .334x10-8 .196x10-11

01 .50	 I .00400 .00250 .336x10-5 .816x10-8 I	 .927x1O-11
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The byte-error probability of the overall system is again obtained from (15).

The byte-error-probability, p, and the erasure probability, q, depend

on the particular threshold, T, specified. The optimal threshold is a

function of F.b/N o and the minimum distance, 
drain, 

of the Reed-Solomon code.

Roughly speaking, for a given block length n, as dmin gets larger, the over-

all block Error probability is minimized at a higher erasure rate. Ve have

found no :p imple way to determine the optimal threshold analytically. Instead,

we have found p and q for T = 0.5, 0.7 and 0.8 by simulation and have used

these values of p and q to calculate the byte-•_rror probability of the coding

system. In Table IV, we show the result of this calculation. We see, for

Eb/No in the range from 1.25 db to 1.75 db, that T = 0.7 is the best threshold

among the three candidates.

The performance of System II with T = 0.7 is also plotted in Figure 2.

The ii^.provement over System I of the performance due to the erasure scheme,

as observed from Figure 2, is dependent on the error correcting capability

of the outer coding system as well as on Eb/No and is approximately 0.1 dB.

This slight improvement is probably not significant enough to justify the

increased complexity of the RTMBEP decoder over the Viterbi decoder. However,

as we shall soon see, the RTIMBEP decoder coupled with an "erasures-and-error"

block decoder performs much better than the Viterbi decoder when feedback

from the outer decoder is utilized.
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IV. FEEDBACK FROM THE OUTER DECODER TO THE INNER DECODER

Because of the nature of a convolutional code and the Viterbi decoding

algorithm, once an "error event" occurs the decoder often makes a number of

closely spaced erroneous estimations before it recovers to correct operation.

Since the outer decoder of a concatenated coding system is designed in such

a way that it is able to detect and correct almost all of the errors made

by the inner decoder, it is then of significant advantage if the corrected

estimates of the outer decoder are fed back tb restart the inner decoder

from the point where it first erred in order to eliminate the "burst" of

errors. Figure 3 illustrates the general concept of such a block-convolutional

concatenated coding system.

To study the gain provided by feedback from the outer decoder, we first

implemented a software Viterbi decoder and a software RTMBEP deco'er which

can be restarted with feedback. Assuming that the outer decoder always makes

correct decisions, a justifiable assumption since the probability of byte-

error at the outer decoder output is at least several orders of magnitude

less than that at the inner decoder's output, we obtained the results shourn

in Table V for the (18,6) unit-memory convolutional code on a simulated Ai:GN

channel with an Eb/No of 1.25 db. From Table V, we see that the RTMBEP

decoder rec^fives a considerably greater benefit from the feedback than does

the Viterbi decoder. We then considered the following block-convolutional

concatenated coding systems:

System III: A hard-decision Viterbi inner decoder with feedback from

the errors-only RS outer decoder, i.e., System I. with feedback.

System IV: A hard-decision RTMBEP inner decoder with feedback from the

errors-only RS outer decoder.
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Data	 I	 Block	 Interleaver -->— Eonvolutiona

S.-urce	 Encoder	 Encoder

Discrete
Memoryless
Channel

Feedback

Decocei for
Decoder for	 Deinter- 	 onvolutional

Block Code	 leaver	 Code

Figure 3.	 A block/convolutional concatenated coding system with
feedback from the outer decoder to the inner decoder.

Table V.	 The Effect of Feedback from the Outer Decoder on the Byte-Error

Probability for a Viterbi Decoder and an RTMBEP Decoder on a

Simulated AWGN Channel with an TN" 0 of 1.25 db. (8000 bytes

decoded for each point shown, decoding delay L of 48 bits in

each case.)

p for (18,6) unit-memory code 	 p for M = 7, (3,1) coda

(95% confidence)	
L 

(95% confidence)

^'o feedback	 pith feedback
	

No feedback	 ' :•;ith Feed back

Viterbi Decoder	 .0200 (+.0032)	 .0110 (+.0023)
	 .0225 (+.0034)	 .0133 (+.0025)

RTMBEP Decoder	 .0193 (+.0031) .0075 (+.0019)
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System V: A soft-decision RTMI3EP inner decoder with feedback from the

Erasures-and-errors RS outer decoder, i.e., System II with feedback.

The performances of Systems III, IV and V when used with the (18,6)

unit-memory code on the AWGN channel are shown in Fig. 4. For ease of

comparison, the corresponding performances of Systems I and II, given in

Fig. 2, are repeated in Fig. 4. By comparing performances between Systems

I and I1I, we see from Fig. 4 that feedback from the outer decoder improves

the system by about 0.3 db for a hard-decision Viterbi inner decoder. As

can be seen from Table V, the performance of a hard-decision RTMBEP inner

decoder is virtually indistinguishable from that of a Viterbi inner decoder

for a unit-memory code; thus, the performance of System I in Fig. 4 is also

the performance of the system with an RTMBEP inner decoder without feedback

from an errors-only RS outer decoder. Hence, by comparing the performances

of Systems t an6 IV in Fig. 4, we can conclude that feedback from the outer

decoder improves the system by a full 0.5 db for a hard-decision RTMBEP inner

decoder. By comparing the performances of Systems IV and V in Fig. 4, we

can further conclude that, when feedback from the outer decoder is used, an

additional 0.1 db improvement can be gained by using a soft-decision RTMBF.P

inner d-coder rather than a hard-decision one--the same improvement as was

observed in the previous section when there was no feedback from the outer

decoder.

V. ZEOLI' S TAIL A]NNEYATIOV SCHME APPLIED
TO A UNIT-MD101:1 CONVOLUTIONAL CODL

In [10), Zeoli proposed a concatenated coding; system that employed a

rather long constraint length (K = 32, i.e., M = 31) convolutional code

obtained by annexing a long tail to the M = 7, (3,1) convolutional code.

The longer code is then decoded by the same Viterbi decoder as for the short
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Figure 4.	 Performance of Concatenated Coding Systems I-V

employing; the (18,6) unit-m^mory convolutional

code and RS codes over CF(2 ) on a simulated A',+CN

channel with YN 0- 1.25 db.
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code with the exception that the information sequence along the best path

to each state is treated as correct and used to "cancel" the effect of the

longer tail from the encoded sequence. Thus, the decoder state complexity

remains the same as that for the original code and the annexed tail has

absolutely no effect on the hard-decision decoding error probability until

after an error has been made. But the tail provides excellent "error-detection"

once the Viterbi decoder starts to make mistakes. Because the tail is not

cancelled when a decoding error is made, the state metrics become extremely

ominous after a few decoded branches and can be used as the basis for excellent

erasure rules for the output of the inner decoder. However, feedback from

the outer decoder is no longer an option, but now a necessity in order to

reset the decoder to the correct state and thus to terminate the very "error

propagation" used to trigger the erasure alarm.

To study the improvement resulting from Zeoli's scheme, we annexed, to

the (18,6) unit-memory convolutional code, a three-branch-long "random tail"

such that the resultant code is actually an M = 4, (18,6) convolutional code.

The encoding matrices of this latter convolutional code are shown in Table

VI. The length of the tail was chosen to be comparable in memory to the

M = 31, (3,1) code used in [10].	 (Because the decoder is intended to make

mistakes continually after its first error, it makes no difference whether

the annexed M = 4, (18,6) code is catastrophic [15] or not.) The last of

the systems to be considered in this paper, System VI, is that of Zeoli [10],

namely a soft-decision :iterbi inner decoder with feedback from an errors-

and-erasures RS juter decoder, with the M = 4, (18,6) code replacing, his

conventional M = 31, (3,1) code.

The state metric used in the "real time Viterbi decoder" [14] of System

VI, namely r(t+G) = log P(3[1, t+G Lr	 when 5	 is the "bast

Patti" at time t+A, can be used as the basis for an effective erasure
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Table VI. The Encoding Matrices of the M = 4 (18,6) Convolutional Code

Obtained by Annexing a Randomly-Chosen Tail to the (18,6) Unit-

Memory Code.

	

111000 110100 1100007	000011 000111 001011

	

011100 011010 011000 1	000110 001110 010110

	

G a 001110 001101 001100	 G	 001100 011100 101100
°	 000111 100110 000110	 1	 011000 111000 011001

	

100011 010011 000011	 110000 110001 110010

	

110001 101001 100001	 100001 100011 100101

	

000110 000001 101111 	 11000 111001 011000

	

100011 000011 010011	 110001 110010 110000

	

110001 100110 100001	 G	 100011 100101 100001

	

G2 
c 111000 110101 001000 	 3	 000111 000011 001011

	

011000 011010 011100	 000110 001110 010110

	

001100 011100 110110	 001100 011100 101100,

111111 010100 000000
000111 111010 100000

G4	000000 111111 010100
100000 000111 111010!
010100 000000 111111
111010 100000 0001111

Table VII. Variation of Inner Decoder Byte-Error Probability p and Byte-

Erasure Probability q and of Outer Decoder Byte-Error Probability

PBE with the Erasure Parameter a for the M = 4 (18,6) Code

Obtained by Annexing a Tail Io.the (18,6) Unit-Memory Code on a

Simulated AWGN Channel with an'/N 0 of 1.25 db and with the

Minimum Distance dmin of the Outer RS Code.

'BE for	 PBE for	 PBE for

a	 P	 q	 dmin - 9	 dmin = 13	 dmin = 17

	

1.50	 .00125	 .03788	 2.095x10 4	 8.175x10 7	 9.465x10 10

	

1.80	 .00263	 .02088 3.602x10 5	 1.074x10 7	 1.245x10 10

	

2.00	 .00425	 .01450	 4.168x10 5	 1.899x10 7	 3.708x10 10

l_i_
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rule as follows. The difference, u(t+L) - p (t), is, along the correct encoded

path, the sum of An  statistically independent random variables, each corre-

sponding to one encoded bit. Note that, for System VI, Ln
0
 = 8(18) = 144.

The central-limit-theorem can thus be invoked to assert that u(t+A) - W(t)

is approximately Gaussian. Letting m and a be the (easily calculable) mean

and standard deviation of u(t+L) - u(t), it is natural to use the erasure

rule: Erase a t whenever u(t+L) - u(t) is more than ), :candard deviations

above m. In Table VII , we give the performance of System VI using this

erasure rule for a = 1.5, 1.6 and 2.0; the value 1.8 is seen to give the best

performance. Note that if u(t+p ) - p(t) were truly Gaussian, the probability

that it would exceed m +'1.8a (i.e., the probability of an erasure in the

Viterbi decoder output) would be .036; the observed value-of .021 given in

Table VII is rough confirmation of the appropriateness of the Gaussian

Lpproximation.

The performance of System VI on the ALIGN channel is shown in Fig. 5;

for comparison, the performance of Zeoli's original s ystem, taken from [10],

is also shown. The performance of Systems III and V, given in Fig. 4, are

also repeated in Fig. 5 to indicate how System VI compares to rha systems

previously considered. By comparing the performance c, Systems III and VI,

we see that Zeoli's tail annexation scheme (and the resulting erasure

capability) has improved the performance of the feedback system with a Viterbi

inn	 ;ecoder by about 0.2 db.

VI. DEGRADATION OF PERFORMANCE FOR EMPLOYING

HIGHER RATE INNER CODES

We have studied, rather extensively, block-convolutional concatenated

coding systems employing rate 1/3 convolutional codes and Reed-Solomon codes

over GF (2 6 ). However, it is owmetimes desired in practice to operate the
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inner convolutional codes at a higher rate (i.e., narrower bandwidth), rate

1/2 in particular, in order to ease the burden imposed on the phase-lock

loops in the receiver. We now describe an heuristic approach to estimate

the performance of similar concatenated coding systems with rate 1/2 coding

sys'_ems from the rate 1/3 results.

From past experience [16], it has been observed that the performance

of a rate 1/2 convolutional coding system is about 0.5 db inferior to that

of a rate 1/3 convolutional coding system of the same complexity. To verify

the general applicability of this rule-of-thumb, we used a hard-decision

Viterbi decoder (without feedback) for an M = 6, (2,1) convolutional code

on a simulated AWGN channel at Eb/No = 1.75 db, or, equivalently, Es/No

-1.25 db. The results of this simulation and the calculated overall byte-

error-probability when this decoder is used with an errors only RS outer

decoder concatenated with Reed-Solomon codes are given in Figure 6. For

comparison, the performance of the similar R = 1/3 system employing the

M = 6, (3,1) code is also shown. We see f:r•i Fig. 6 that the latter system

is about 0.5 db superior to the former. It seems r_asonable then to conclude

that a concatenated block-convolutional coding system with a rate 1/2 inner

code will be about 0.5 db inferior to that with a rate 1/3 inner code for

the same number of decoder states for the Viterbi inner a^.coder.

VII. CONFIDENCE INTERVALS FOR THE SIMULATION '.ZESULTS

In the preceding, we have reported the performances of n^.nerous block-

convolutional concatenated coding systems. The overall byte-error rate was

`	 calculated from the byte-error rate of the inner decoder as obtained by

simulation. The rather large values of P BE for the inner decoding imply

that the simulations require only a modest sample size. Assuming that the

decoder makes an error with probability P BE independently for each byte-decision,
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the number of byte errors for L decisions is a binomial random variable with

parameters L and 
PBE. 

The mean value of this random variable, is, LP 
BE'

and the standard deviation is 3LPBE (1-PBE ). L is sufficiently large for this

binomial random variable to be well approximated b- a Gaussian random variable

with the same mean and variance. Since 95.4% of the samples of a Gaussian

random variable are within the .interval specified by the mean plus and minus

twice the standard deviation, we can be 95% confident that the actual byte-

error rate for the inner decoder is in the interval P BE +2 VLP
BE(1-PBE).

Such 95% confidence intervals are indicated in Tables II and V.

The performances of System I for the M = 6, (3,1) inner code and for

the (18,6) unit-memory inner code are shown in Fig. 7 together with their

corresponding confidence intervals. We conclude that we may be 95% confident

that the actual performance of the concatenated coding system deviates no

more than about 0.1 db from our simulation results. Moreover, since all the

simulation results are obtained through the same pseudo-random number sequence,

the relative differences in performance among various systems are, in fact,

:.such more accurate than the 0.1 db confidnnce interval alone would indicate.

VIII. SUMMARY AND CONCLUSIONS

We have extensively stadied block-convolutional concace.:ated coding

systems with various modifications. We have found that employing unit-memory

convoluticnal codes rather than conventional codes can improve the performance

by nearly 0.3 db. Feedback from the outer decoder to restart a Viterbi

inner decoder also contributes an improvement of about 0.3 db. But, sur-

prisingly, feedback from the outer decoder to restart an R111-IBEP inner decoder

provides an approximately 0.5 db advantage; this might be the principal

occasion where the use of RTMBEP decoding rather than Viterbi decoding is

justified. Another unexpected result is that soft-decisions by the inner
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decoder in conjunction with an erasures-and-errors outer decoder improves

the overall performance by only about 0.1 db for RTMBEP decoding. Even with

Zeoli's modification, which provides an excellent erasure capability, soft-

decisions in conjunction with an erasures-and-errors outer decoder improves

performance by about only 0.2 db.

In Fig. 8, we summarize the effects of each feature discussed above on

the performance of block-convolutional concatenated coding systems. The

figure is drawn in terms of a db scale. As a communications engineer starts

to choose a coding system, the first question he faces is whether his phase-

locked-loop can tolerate the burden of a rate 1/3 coding system, if the

answer is positive, he gains 0.5 db over that of a rate 1/2 inner coding

system. Then, he decides which inner code to employ; to choose the M = 7,

(3,1) code gives a 0.2 db advantage over the M = 6, (3,1) code but requires

twice the number of states in the decoder, whereas to choose the M = 1,

(18,6) code gives a 0.3 db advantage with same number of states, but more

branch connections required in the inner decoder. The third question is

whether he will allow the decisions of the outer decoder to be fed back to

the inner decoder; if not, the obvious choice is Viterbi decoding, otherwise,

he can gain 0.3 db or 0.5 db depends on whether a Viterbi decoder or an RTMBEP

decoder is utilized. And finally, if a soft-decision inner decoder is used,

he can gain 0.2 db through Zeoli's erasure scheme if tie uses a Viterbi decoder,

or gain about 0.05 db if an RTMBEP decoder is employed.

The leading contenders for a good concatenated system are Zeoli's

annexation scheme with the unit-memory code (System VI), or either hard

decision (System IV) or soft-decision (System V) RTMBEP decoding of the unit-

memory code with feedback from the outer decoder. Among them, the soft-

decision RTMBEP decoder with feedback performs the best. In terms of Hard-

ware implementation, Zeoli's modification with the unit-memory code and the
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hard-decision RTMBEP decoder are of approximately the same complexity. How-

ever, since the operation of the Viterbi decoder for Zeoli's system depends

on the correct feedback from the outer decoder, there is always a slim

chance that the outer decoder fails to provide correct decisions to the

Viterbi decoder. Since the encoder constraint length is much larger than

the decoder constraint length, this can cause endless errors as if a cata-

strophic convolutional code were used. Thus, it is necessary to send

synchronization signals periodically t3 reset the Viterbi decoder to guarantee

restoration of normal operation. The RTMBEP decoder has the same constraint

length as that of the encoder, therefore the decoder is able to recover

fmi errors in a few branches by itself without feedback. The feedback from

the outer decoder only speeds this process up; therefore, when an error is

fed back, the most damage it can cause is for the RTMBEP decoder to make a

few more errors before it recovers by itself. This is certainly a very de-

sirable advantage for a concatenated coding system. Moreover, because the

decoder can restore its normal operation quickly, the degree of interleaving

required for this scheme is considerably less than the full Reed-Solomon

block length interleaving required for the Zeoli's scheme.

Finally, as a remark to information theorists, we note that for System III

(the RTMBEP inner decoder for the rate 1/3 (18,6) unit-memory code concatenated

with the (63,51), 6-error-correcting RS code with feedback from the RS errors-

only decoder) we can achieve a byte-error-probability of 10 -7 at Fb /` o of

2.25 db, or, equivalently, at F.s /;l o of 3.25 db. The cut-off rate. Rcomp'

of this 8-level quantized AWGN channel is 0.275 whereas its channel capacity

is 0.44. The overall rate of the concatenated coding; system is 0.27. 	 It

seems that the cut-off rate, rather than the channel capacity, is still the

practical limit of rate for reliable communications, even for a very
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sophisticated concatenated coding system, just as it is in a conventional

convolutional coding system employing sequential decoding [16]. The

advantage of the concatenated coding system resides only in the elimination

of "deleted data" such as is always present in a sequential decoding system

because of the latter's highly variable computation.
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