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PROPAGATION OF A LASER BEAM IN A PLASMA
Jon M. Chapman
Jirair Kevorkian
Loren C. Steinhauer
Juris Vagners
ABSTRACT
This paper shows that for a nonabsorbing medium with a
prescribed index of refraction, the effects of beam stability,
line focusing, and bearm distortion can all be predicted from
simple ray optics, When the paraxial approximation is used,
diffraction effects are examined for Gaussian, Lorentzian,
and square beams. Most importantly, it is shown that for a
Gaussian beam, diffraction effects can be included simply by
adding imaginary solutions to the paraxial ray equations.
A!so presented are several procedures to extend the paraxial

approximation so that the solution will have a domain of

validity of greater extent.




PROPAGATION OF A LASER BEAM IN A PLASMA

1.) Introduction

The process of heating a plasma 1n a solenoid using a
laser beam is difficult to describe analytically when one
wants to examine in a self-consistent manner, the coupled
behsvior of plasm~ heating and beam propagation. Some insight
into the beam behavior may be obtained however, when the 1on
density 1s arbitrarily prescribed. Consequently, heating has
only been partially accounted for by allowing the 1on density
to change without an accompanyina loss of energy from the
laser beam. This also implies that in the plasma, only the
electron 'fluid' is excitable.

The impressed magnetic field along the solenoid 15 assuned
to be zero since its effect upon beam propacgation is small. A
constant magnetic field in the direction of beam propagation
effects right and left circularly polarized light differently
so that Faraday rotation is observed for a plane polarized
wave. However, for frequencies much larger than the cyclotron
and plasma frequencies, the plane of polarization is essentially
fixed and the impressed magnetic field can be ignored [1]. In
the case of interest, the ratio of the cyclotron frequency to
the exciting laser frequency is 0(70°?) for a magnetic field

of 100 G and a laser wavelength of 0.6 u .



The cold plasma approximation regquires that

/‘:;"'
where _ 1s the speed of light, + 1s the Boltzmann constant,
and = 1s the mass of an electron. '@ - electron temperatures
of ! k¢v the above ratio is E

The above assumptions motivates the study of beam proraga-
tion through a cold, collisionless and field-free plasma. The
dimensionless parameters that are pertinent to the discription
of the interaction are obtained by nondimensionalizing Maxwell's
equations and the momentum equation for an c¢lectron fluaid.

These parameters are then determined to be r , ¥ , and « ;
the first measures a typical electron (1ion) density n, to the
critical electron density _ the second measures the elec-
tron quiver velocity rj to the speed fo light ", and the
third parameter compares the laser wavelength * to the

L

cylinder circumference “7i . The parameter n is also given
through the ratio of the plasma frequency w_ to the exciting

laser frequency w . We thus have
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electric field 18 determined from the beam intensity

(¢ and are physical constants).
If the laser intensity is of the order of [0'* watta/ o=*
and the wavelength of the laser beam 18 ...7 . then ' =
. Also, for ion densities of [7'* «=' and a cylinder
radius of | »= we find that - = 107 and « = 107 ;

The effect that ¥ nas on beam propagation may be under-
itooua by considering a plane wave traveling through a homogenecus,
old, and field-free plasma. This analysis 1s straightforward
and wi1ll not be presented here, We find that the transverse
components of the electric and magnetic fields are unchanged
to e and that sinusoidal charge separation occurs with
a magnitude e at twice the exciting frequency. Conse-
juent ly, its effects upon beam propagation are small when

= 15" and will be 1gnored here.
The i1ndex of refraction =« 1s then casily obtained using

the above simplifications. We find that
v g "-.‘.,'l!. ‘lol)

where ». 18 the nondimensionalized ion density. In this
paper we are going to analyze the case when » satisfies the

rclation

»12 = k* (n) - »z;;‘.'::-'r-" (1-2)



Here &/z/ and .’z are determined from the ion density
and are arbitrary functions of the parameter =z , the axial
distance along the cylinder nondimensionalized by the cylinder's
radius : . The coordinate » 1s the nondimensional radial
distance from the cylinder axis. From Eq. (1.2) we see that
the 1on density 1s always parabolic but is allowed to vary
with axial distance. Time variation of the ion density involv-
ing the hydrodynamic time scale will be ignored in this
presentation.

The parabolic assumption is useful when the beam boundary
18 contained well inside a favcrable density profile so that
'beam trapping' occurs. This aprroximatior. has been discussed
by Steinhauer [2] and Mani, et al. [3] and is coupled with the
additionali approximation of extending the effective boundary
conditions at the cylinder wall to infinity.

The preceding discussion thus motivates the study of the
following reduced wave equation for the transverse component

of the polarized laser beam.

Semmgrit B 0 (1.3)

The symbol A? represents the Laplacian in cylindrical coor-
dinates. Time has been nondimensionalized w.r.t. the exciting
frequency w so that £ is understood to include the factor

-it
e



An asymptotic representation for F: 1s obtained when
the intensity of the incident beam 1s negligible 1in regions
wherc the 1on density 1s close to or greater than the critical
1on density (this condition in fact motivates the parabolic
approximation . This asymptotic representation 1is easily
obtained from the exact sclut on of Eq. (1.3) when ~ and
in Eq. (1.2) are constants. This procedure will be developed
in Section 2. Alternatively, the asymptotic representation
for ir can be obtained directly from the differential Eq. (1.3)
ard will be presented in Section 3.

when &~ and . are constants the usua! asymptotic repre-
sentation predicts a periodic structure for the beam propaga-
tion (as does the standard paraxial approximation) and thus
does not include 'washout' effects of the beam's intensity
distribution. The term washout means that the original inten-
sity distribution (at =z = [ ) can never be regencrated for
any value of =z and that it continually changes for increas-
ingly larger values of the vaviable =2 . Ray optics predicts
this distortion effect from the result that rays with different
initial displacements from the axis have different focal lengths
in the parabolic focusing medium [4]. It is because of this
property that line focuses appear with monotonically increas-

ing lengths.



In Seciion 2 we will exarine the 'beam boundary' describ-
\ng the propagation of Gaussian beams. Some results are also
given for beams that have nonGaussian distributions; in parti-
cular we will look at a beam that 1s initially Lorentzian and
a beam that 1s .nitially squure.

In Section 3, of prime importance, 1s the development of
a less complicated equation which describes the beam boundary
trajectories for Gauss:an beams. Analysis here will be mostiy
jevoted to the case when - and . are 'slowly' varying func-
rions of =z . However, cther specilal situations will be
examined. In particular, we will see that instabilities can
occur even in a 'favorable' density profile.

In Section 4 we will see how the normally negl.~ted wash-
out effects of the beam's intensity distribution may be
included i1n the asymptotic representation,

Section 5 includes for completeness, the analysis of
the ray optics egquations when - and . are slowly vary.ng
functions. The 1dea here 1s that a uniformly valid solution
can be obtained 1in regions away from the line focuses. Con-
sequently, washout effects have been obtained at the expense
of neglecting diffraction.

Section 6 considers higher order terms for a Gaussian
beam. The small secular effects of beam distortionr and line

focusing are then examined.



2.) The As totic Development from the Exact Solution: Fixed
Parabolic Profiles

The solution for the transverse component of the electric
field E: can be represented through an infinite sum of
Laguerre polynomials. To accomplish this introduce the complex

field amplitude ¢ expressed in transformed variables o and ¢

sc¢ that
ika
£ 'CL Yip,E,e)
T 90"
where
p = ur?
guEB
£ s (2.1)

liere ~ and u arz constants.

The differential equation for Yio. £ ie obtained from
Eqq. (1.3). Thus
) 1 2
"’[[\ + 'g.r'“ = i..;!{ + E w{ + ?;—;\7 .‘;J{F - U {2-2)

Separation of variables and the physical requirement of bounded-
ness of | as ¢ approaches infinitv gives rise to the expo-
nential Laquerre polynomials as eigenfunctions of Eq. (2.2).

In terms of these eigenfunctions ¢ can be exvrecsed as

m
- o
(P, 6,6} = ”/"z f: (£,¢) L (p) (2.3)

4
4
(8]



where Ln(p} is the Laguerre polynomial of order n and
r,(E,c) = r P72 1, (0) W(0,8) db (2.4)
0

Applying the transform defined by Eq. (2.4) to Eq. (2.2) gives

the differential equation for rnrg,sJ . Thus
2
%—f,—i‘n"wrai rn'-4rn+§-) rn-a (2.5)

The prime denotes differentiation w.r.t. £ .

The roots Ln, " of the characteristic equation corres-
»

ponding to Eg. (2.5) are

2.
=-’i-lr:3/1-4m+-§,—)}%f- (2.6)

The choice of the minus or plus sign corresponds to right or
left propagating waves respectively. Since we are interested
in beam propagation down a solenoid the second root can be
ignored.

Several observations considering the exact solution may
now be made:

(1) Different eigenfunction solutions have different

periods in £ so that a solution representing a sum
of such terms cannot be strictly periodic.



(2) If the initial distribution car he represented by a
sum of eigenfunctions of relative'v low order then the
sclution will be nearly periodic. This will be the
basis of the asymptotic analysis.

(3) To each eigenfunction there is an associated bundle
of rays located at a particular initial radius from the
axis. This is due to the fact that ray optics predicts
d.fferent periods for rays with different initial dis-

p.acements. For larger values of n we obtain larger

initial displacements.

(4) By the analogy of (3) we see that a damped high order
eigenfuncticn solution corresponds to a ray entering the

medium with an initial off axis displacement large enough
so that the ion density exceeds the critical density.

We now scek an asymptotic expression for wrn g o in
F Y B
the following way. Let the infinite sum in Eq. (2.3) be
replaced by a finite sum of the first N terms. If V is

large enough this sum will converge to the exact solution.

Now let & be small enough so that

4(N +

R [
~—
x:l
A
-—

The square root in Eq. (2.6) can now be expanded. We find that
G, = ilan+l) + 0(e?) Vn< W {2.7)

The expansion for anc,cl is then represented by the series

(1-i2ns1)? ¥E £ 4 ...} (2.8)

-1(5n+1)F,
e :‘,;_J

I' (E,e) = ¢
n n

We also obtain a corresponding series for y(p,f,c.) . Thus



N
-p/2 i 2

Vo, E,c) = e h ot (W18 1 (o)

0
(2.9)

e :
ipe? -i(2n+1)
e L cy(me1)? @ Si000 4. ..

The coefficients e, are to be determined from the initial
conditions.

Since N 1is a measure of the degree of accuracy by which
one can replace an infinite sum by a finite sum, we expect
that the first sum in Eq. (2.9) may be considered in the
limit as N » = ,

Let wo(p,gi be defined by this infinite sum. Thus

-p/2 % Sl ,
2:, e, € L,(p) (2.10)

wo(o.ﬂ.' = g

Consequently, the solution for y(p,£,e/ can be expressed

asymptotically by the series

.

Aty
2
W(D,E,CJ - WO + %i_;'a_}:!g * 5 » % (2.11}

We sec that the representation is usefgl when both the secular
3%y
2 0 r
term uec?f and the curvature term I?ﬁﬁ'l ar- small. When
the latter condition is fulfilled a 'multi-variable' procedure
[S] can be used to extend the domain of validity of the asymp-

totic representation.

10



It is evident that v, in periodic in 7 and that
downstream ‘washout' effects are not included. If Le®l << ]
where . 1s *he extent of the domain of ¢ that is of inter-
est, then the distortion effects can be considered by 1includ-
ing the next term in Eg. (2.11). However, if .7 = 0
thern one must rescrt tc the multi-variable procedure of
Section 4.

To obtain .,  in a 'summed' form we must consider the
coefl ~lents *, Given by the relation

= ‘ " L.(p) wip,0) di (2.12)

If we introduce this expression into Eq. (2.10) and inter-
change summation and integration, the following expression

can be obtailned

v (0.5) :l“"'-:el—n-" : ‘.""'” (g 0) o {_';'i'.n_._‘ n (2.13)
We will consider three cases of beam propagation that involve
an infinite sum of Laguerre polynomials. These cases may be
designated by their initial field distribution. The designa-
tions are i

i) Gaussian Y, 0) =

11



-\/2p

ii) Lorentzi 8 o Bass o
) rentzian wip,2) Y33
iii) Square 1 p< 8 (2.14)
vip,0) =
p > ud?
Here a_  , ¢, and d are constants defined through the

given intensity distribution and v is consids ed to be
small.
When the beam is initially Gaussian the integral in

Eg. (2.13) can be easily evaluated. We find that

: 1 ip dh
WofU.EJ - ’I(EJ exp lﬁ 3E]

h(E) = cos E n:[—’,]un £ (2.15)
l'uO

We may also represent the complex function h(f) by its

amplitude a(E)/ao and phase ¢(f) so that

h(E) = ?i et
0

and ., = a(0) {2.16)

In terms cf these real functions we find that

a

0o _-i¢ 1P da [
4@ =g e @ Uz 2 - R

12



2 > 2 - l' \
with 1“(£) = ;'{coszu* h;r7f uln‘fi

>y |
and ¢(f) = tan ° |——y tan -'_‘ (2.17)
| vdia

We see from Eqs. (2.17) that :/7/ 1is the so-called 'beam
boundary' because it gives the value of » at which the
intensity is down by a factor of [ . as compared to 1its
value along the axis. Moreover, we find that the ray paths
for L, are simply described by some constant times /(7
These results concerning Gaussian beams have been obtained
previously by various authors [3,6].

The integral in Eq. (2.13) is harder to evaluate for
non-Gaussian beams. There may be special circumstances
however, when one might use to advantage the complex con-
volution theorem concerning Laplace transforms. To given
an example of this procedure we will consider the Lorentizian
beam.

Let. //.) = L|fS] denote the Laplace transform of a

function f(¢) . For the Lorentzian beam we have

.z[r,,;: wl o1 ;b (2.18)

13



Here ElraJ is the exponenti~l integral written as
P
E{l)-r—dv (2.19)
1 s v

We are interested in the case when

a-%(v-icotﬁ) (2.20)
Since
; [YHe
Llfl(p).fz(o)l '2—1"{[ . Fl(wJ F!(a-wJ dw (2.21)
e

the integral in Eq. (2.13) can be expressed in convoluted form.
Let I(s) represent this integral. We find that the

contour of I(s) may be closed to the right so that

b
1 [ % 1 /e .
I(s) 'E?{{  — [c '..’u.\/c)] dw (2.22)

There is an essential singularity at the point w = § .
Consequently, the integral can be evaluated by Cauchy's

integral theorem of complex analysis to give

L] 1
e =1 3 2 :‘:n— [a & g (a/c)] (2.23)

Needless to say, this form is also difficult to interpret.

14



It may be of use however, in that it may converge faster
than the corresponding infinite series of Laguerre polyno-
mials. Of course, Eq. (2.22) is of interest in itself in
that it represents an alternate expression for the integral
in Eq. (2.13) and that powerful techniques of analysis are
available to examine its behavior.

We next ask if _‘here are any special values for ¢ in
which the integral of Eq. (2.13) can be simply evaluated.
We see that the focal point £ = 1/? is such a point and we

obtain the following results:

i) Lorentzian wo(o ’ %) = - (%A'o(-/p/c
ii) Square v, (0, %) = - id fu/p J (d/ip) (2.24)

Here K is the modified Bessel function of order zero and
Ji is the standard Bessel function of order one. Diffrac-
tion rings at the focal point are apparent for the square
beam because of the zeros of Jl . However, when ¢ = 1
these fade away and the solution regenerates its initial
distribution. This is just the periodic behavior of
Vo(Ps8)

An alternate apprroach for the description of beam propa-
gation can be accomplished with use of higher order Gaussian
modes since any beam can be considered to be an infinite

sum of such modes. The advantage of such an approach is

15



that the ray paths of each mode can be easily determined;
the disadvantage is that the solution still involves an

infinite sum.

16



3.) Changing Parabolic Profile \

The asymptotic representation for £. can be obtained
directly from the differential equaticn (1.3) when ¥ and .
in Eq. (1.2) are arbitrary functions of the scaled variable

2 =tz . Thus
]

and ula,e) = uia (3.1)

Physically, this has the interpretation that the ion density
is allowed to vary on an axial scale length comparable to
or slower than the focal length of the parabolic focusing

medium,

We now obtain the equation for the complex field ampli-

tude , through the transformations

where 5 =

and —— = k(a ) (3.2)
da 1

The differential equation for ¢ 1is then given as
ok T

. 9 .
—t =g ¢ k= ¢+ 1 3 ~urte’ = ¥
ar roar an d::I ' a.-:l }
1

17



We may now neglect the last term in Eq. (3.3) whenever the
curvature tarm I%%*[ is small. From our previous analysis
we see that this is just the paraxial approximation and con-
sequently washout and line focusing effects are neglected.
when the beam is initially Gaussian, then the equation
for the beam boundary ar:IJ as expressed by Tien, et al.
[6)] can be obtained through the following transformation.

Assume

a(0) . (kr? da r?
virae) = [tz Tats 7 i & - ¥ - gl A

Substitution of this equation into Eq. (3.3) gives the
differential equations for the transformed functions a(:l)

and orsl) . Thus
2 L. -1—- .
k (zlid‘—‘+ U Hll)a + kk'a - el (3.5)
k(z ) - 4 (3.6)
) a¥

These equations can be written in simpler form if we

introduce the variable z'* where

da 1

# - k_(l ')' (3.7)
1 1

2%00) =0 (3.8)

18



With this transformation Egs. (3.5) and (3.6) become

LT tuilsla- =0 (3.9)

-4 (3.10)

The function u(al) is to be considered as an implicit
funct.on of sl+ obtained through use of Eq. (3.7).
Obviously the analysis of Eq. (3.5) or (3.9) is diffi-
cult because of the nonlinear term. One can obtain however,
a linear equation that describes the beam boundary trajec-

tories. To do this we assume that

o i 1d._d,
/k(0) 1 2 ‘h dz
w(r,zl.c) =/k(zl) h(alﬂ e 1 (3.11)
The differential equation for h(al+) is then easily
determined to be
d*h 2 &
W + U (El)k = (] (3. 12)
1
This is exactly Eq. (3.9) without the nonlinear term.
Comparing Egs. (3.11) and (3.4) gives the following
relationships
+
alz ") :
1 ] i1
h(zl ) = s © $3.13)

19



1 1 1
bl b
1 1
alz *)
From Eq. (3.13) we see that jinfr—- is just the amplitude

of the complex function k(s.*} and o(zl‘} is the phase.
To determine the solution of Eq. (3.12), initial condi-
tions must be specified. These can be obtained from Egs.

(3.13) and (3.14) when the initial conditions on the beam

boundary a2re known. When a(0) = & » j%i (0) = do and

1
¢(0) = 0 we obtain

h(g) = 1
k d .
dh 00 i
(0) = ¢ ==y
Z;l; a, a,
when ko = k(0) (3.1%)

If the initial conditions on k were arbitrarily speci-
fied to be real then Eq. (3.12) describes the trajectories of
the beam's center [6]. Consequcntly, by allowing complex
values for h(zl*) , we are able to describe the trajectories
of the beam's boundary. Moreover, since the real and imaginary
parts of h(sl*) satisfy the same equation, stability or
instability of the beam's center occurs together with t..e

stability or instability of the beam's boundary.

20



The solution of Eq. (3.12) is readily determined when
~ and . are slowly varying. We measure this slowness through

the small parameter . so that

ais ,v) = Fia
|

where 2 = vs (3.16)
4e now represent sl'.. asympcotically and assume this
to depend upcn two axial scales . and = so that

miz *v) - 2'%%2a ) o't (2,300, .. (3.17)

! : 2
where | 1s defined by
=~ sl ; - (3.18)

1
The derivative term i1n FEg. (3.12) can be obtained through
the relation

“”‘ il M R U (31.19)

Notice must also be made of 1nitial cenditions and we obtain

these from (3.15).

21



Standard multiple scale technigques then yield

. (0) Yo *o%o ot d
( (Z,l,) = u—(;;-)- {c0l7.+ (uoaollln?-'i' ‘l-(WJlinZ} (3.20)

Observe that the real part of this solutior is just what
one would obtain from ray optics for a paraxial ray. The
addition of an imaginary term satisfying special initial
conditions then improves the optics approximation by includ-
ing the effects of diffraction. We have also remarked that
a uniformly valid solution could be obtained by extending
the paraxial approximatioi.. If thus seems feasible that this
may be accomplished by allowing complex rays where the real
part satisfies the exact ray optics equation and where the
imaginary part satisfies special initial conditions. This
has not yet been verified.

A case exhibiting various regions of stability and
instability can be examined by studying Mathieu's equation.

j:h & /A 09 " (1
—!}T +2JdcoslX)h = (3-21)

Eq. (3.12) can be placed in this form when k is constant a
and u? wvaries sinusoidally. When A is zero the medium
exhibits periodic focusing and the solution is first stable

for values of . less than 7.4¢ [6). Regions of stability

22



and instability alsc occur for positive 4 and are again
determined by the values of @ . Consequently, instabilities
can occur even in a 'favorable' density profile.

The case when X has small sinusoidal variations and
u 1is constant has also been examined by Tien, et al. [6].
A more general stability analysis is needed for the case
when both %k and u are varying sinusoidally w.r.t. the fast

variable a3 but are alsc allowed to vary slowly w.r.t. the

parameter xz = vz
1

23



4.) Extended Paraxial Approximation

In Section 2 we obtained n apm~roximation that was valid
as long as the secular term puelf << 1, If we define

An through the relation
nén = e?y? (4.1)

so that &n represents the normalized change in the ion
density at the cylinder's edge compared to the axis when
the distribution has the assumed parabolic profile, then
the secular criterion can be expressed as nitn €z << ] .,
Since =z has been nondimensionalized by a dimension on the
order of 1 ¢m and € = 0(10°%) we find that the paraxial
approximation is valid for distances less than l%ﬁgﬂ . If
fn is small, that is if the density distribution is fairly
flat, then the approximation will be valid over the domain
of interest for fusion reactors; whereas if &n = 0(10%)
then clearly we need to extend the domain of validity of
the approximation. Note that if we require the second term
in Eq. (2.11) tc¢ be less than 10% of the first term, then
fh = 0(10) would require us to examine che extended asymp-
totic representation.

The meivhod of analysis will be to introduce a new 'slow

i o
variable' T = &%ré and to obtain the necessary functional

dependence of the approximation on this variable by considering

24



both the Laguerre series solution and the differential equa-
tions cbtained directly from the reduced wave equation (1.3).
For simplicity we will consider here only the case when &
and . 1in Egq. (1.2) are constants.

From the expansion of (2.6) we can easily obtain the

dependence of ¢ wupon T . Thus

-0/t ~ilinel)i=ilne1)? *
y = o/ e t{Enel)C-t(2ne2)" L (o' ¢+ a(e™r) (4.2)

o~

when the beam is initially Guassian, it 1s hoped that we can
sum the above series. This summation may be best accomplished
however, if we examine the partial differential equations
directly.

To do this we introduce the transformat.ons

E

L] B} 2€ M a
T o P
Or, oL, }2 Tf-
bip, €0 = g (p,6,T) ¢ 0(e") (4.3)
L

The Eq. (2.2) is then transformed into the pair of equations

32 3 i1 4 -
"535"55"% toal %< (4.4)
d 1' --;—j— + L ..i? ‘ ] - N (4 5)
. at T 7 ak) " :

25



Let the function wofp,ﬂ.al satisfy Eq. (4.4). When
the beam is initially Gaussian, we can specify V(P E,0)
through Eq. (2.15). Separation of variables of Eq. (4.5)

leads us to suspect that

wofp.ﬁ,?) = I- glE,n,7) v, (e,n,0) dn (4.6)

< =273 (E-n)-12%F
when ,-'{E;"-.T} - %- r e & NS dA (‘.7)

o n

The integral (4.8) is gquickly evaluated to be

i(n-£)° in
1 4
2(6,m,7) = & — (4.8)
so that Eg. (4.7) takes the form
ey iln-¢)?
Wo-’n.f’..ﬂ = e,ﬁ' Jr" € t wo(o,n,JJ dn (4.9)

Powerful techniques of complex analysis may now be used
to study the behavior of y_(p,£,T) once it has been veri-
fied that Eq. (4.9) is correct. We find that this is indeed
so by substituting the Laguerre series representation for

W0(0,£.05 from Eq. (2.10) into Eq. (4.9) to recover Eq. (4.2).

26



5.) Ray Optics and Slow Variations

A uniformly valid solution can be obtained in regions
away from line focuses he neglecting diffraction. With
this approximation, ray trajectories are simply obtained
frcm the standard ray optics equation. Here we again con-
sider a medium with an axially symmetric index of refraction
and which is also allswed to vary slowly. We thus specify

the index of refraction to be given by

n? = k2(z) - Witz rt

(5.1)

tar
[l

<

]

so that the slowness is defined by the small parameter Vv .

In terms of previous notation we have the following identities.

=
]

™

T

= vz (5.2)

e

The ray equation for a medium with index of refraction

(5.1) i simply

2 2 _ -
y - [I——',i,.—,-l - (5.3)
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Introduce a new function P(z,v) through the relation

2
P(a,v) = —_L(P (5.4)

1+£)

Then tne above ray equation becomes a system of two equations

for r and P .

(G -"?- 1 (5.5)
S -ma (5.6)

By differentiating Eq. (5.5) w.r.t. =z and using Eg. (5.1)

the above equations can be expressed in the following form

2
é%f} + 12(3)r =0 (5.7)
f = 2v[kk' - {ili'r? PR (5.8)

where the new variable z* has been introduced by

2t00) =0 (5.9)

The prime denotes differentiation w.r.t. the parameter 3
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Again 2 is interpreted to be an implicit function of =z*
obtained through use of Eq. (5.9).
We now assume r(z%,v) and P(z*,v) to have asymptotic

expansions dependent upon two axial scales Z and z so that
+ - -~
r(z ,v) = rO(Z,a) + url(Z,sJ o
P(z*,v) = Po(Z,3) + VP (2,5) + . .. (5.10)
when the new vav-iable Z is defined by
dZ

P = 2 u(z) 2(0) =0 (5.11)

The derivative terms are obtained through the relation

~ d )
2o = W(E) 55 = (5.12)

Usual multiple scale techniques then yield

g i(0)
r'O(Z,z) - (3 cos(2+¢a0)
P (2,3) = k*(3) - v *ii(0) §i(3) (5.13)

The constants ' and ¢o are determined from initial
conditions.
It can be seen from Egs. (5.13) that slow on axis

density variations effects only the period of each ray
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and does not influence its slowly changing ampl._.tude. This

result is in agreement with Steinhauer [4]).

30



6.) tiHigher Order Considerations

In Section 4, the multiple scale technique was used to
extend the domain of the asymptotic representation so that
ue% = 071) is allowable. On the other hand, if we are
interested in the higher order terms with ur’% << [ then
a particularly effective method of including the secular terms
in the asymptotic formula can be obtained by 'straining' the

coordinates ¢ and 7 . The small effects of beam distortion

and line focusing can then be examined under the stated res-

2 -

triction ue‘f << 1 .
The asymptotic expansion of (0,7« was found to be
2
pu :. -’"_'2:' a “"'n s Dol
"""'-"‘*a*.‘:'i’"eﬁ? + 0(e"¢g {2.11)

The secular term can be removed from this expansion by use
of the strained coordinates ~ and : defined through the

reciprocal transformations

= 3 + £E"8 (A, +
1
p = + ?l"'.,::,'*... (6.1)
From these eguations one can determine = and ~ as functions

of 7 @and v . Thus

'-=poi‘.t (Pl * o« « & (6.2]



The functions & and :l are to be so chosen that the secular
term in (2.11) is eliminated. This can be accomplished by

substituting (6.1) into (2.11) expanding and collecting terms

N

of 0/¢*) . This term must be identically zero. Thus
3v0 3W0 tuz 32W°I
8 -'-="' + t _ + - - 0 (6- 3)
1 o& . 1 39 2k 53’
{R,3) (R,5) (R,z)

From this we see that we are at will to specify one of the
straining coefficients. We thus set & equal to zero for
this choice allows readily interpretable results. We then

must choose

iz ¥V [ ¥
T 10 A i

Performing the required differentiations on A when
the beam 1s Gaussian gives the result
!

ipn' ie* 2(1-8%) ... h v (1=8% )2 _
i i ?."_19 g (vl 37 ~ Sggite. - 1)}

‘. =5ﬁ%7-' (6.5)

We may express #'/h in terms of its real and imaginary

parts through the relation

P L
Te iy (6.6)
Also h -a&-e”
(+]
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Using these expressions, the amplitude of ¢  can be found.

Thus

2 a? ]
__IJ_{',] [2(1-32)[7?]]0 {"7 cos !)¢-f1-;§*5] sin 2¢)

1.0
ke

.
2/,1_p2)2 4 \
- 9—”—48—) (';q] sind@l} (6.7)

The beam has its maximum and minimum amplitude when ¢ = n7
and = : “n+!) respectively. At these points the intensity
distribution determined from (6.7) is identical to that which
ignores the secular term. Consequently, the beam i1s undis-

torted at these pcints. Line focusino effects can also be

‘:termined from (6.7).
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(1)

(2]

(3]

(4]

(5]

6]
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