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ABSTRACT

This paper shows	 that for a nonabsorbing medium with a

prescribed index of refraction, the effects of beam stability,

line focusinq, and beam distortion can all be predicted from

Wim p le ray nn t ics, when the p g raxial approximation is used,

diffraction effects are examined for Gaussian, Lorentzian,

and square beans. Most importantly, it is shown that for a

Gaussian beam, diffraction effects can be included simply by

adding imdgina ry solutions to the paraxial ray equations.
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PROPAGATION Or A LAGER BEAM IN A PIASMA

1.1	 Introduction

The process )f heating a plasma in a solenoid using a

laser l:eam is difficult to describe analytically when one

wants to examine in a self-consistent manner, the couplet:

ben-ivior of plasx,,- heating and beam propagation. Some insight
	 i

into the beam behavior may be obtained however, when the ion

density is arbitrarily prescribed. Consequently, heating has

only been partially accounted for by allowing the ion density
1

to change without an accompanyinq loss of energy from the

laser beam. This also implies that in the plasma, only the

Plectron 'fluid' is excitable. 	 ]

The impressed magnetic field along the solenoid is assured

to be zero since its effect upon beam propa gation is small. A

constant magnetic field in the direction of beam propagation

effects right and left circularly polarized liqht differently

so that Faraday rotation is observed for a plane polarized

wave. However, for frequencies much larger than the cyclotron

and plasma frequencies, the plane of polarization is essentially

fixed and the impressed magnetic field can be ignored [1]. In

the case of interest, the ratio of the cyclotron frequency to

the exciting laser frequency is 	 for a magnetic field

of	 100 k,,^, and a laser wavelength of 10.E u .
	 M

M.
1
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The cold plasma approximation requires that

where
	

is the speed of light,	 is the Boltzmann constant,	 1

and -	 is the mass of an electron. '. 	 electron tempe.etsres

of
	 *he above ratio is

The above assumptions motivates the st.:dy of beam proiaga-

tton through a cold, collisionless and field-free plasma. The

dimensionless parameters that are pectin-nt to the description

of the interaction are obtained b •, • nondi!nensionalizinq Maxwell's

equations and the momentum eq uation for an electron fluid.

These parameters are then determined to be	 v , and

the first measures a typical electron (ion) density 	 to the

critical electron density	 the second measures the elec-

tron quiver velocity	 to the speed fo light C, and the

third parameter compares the laser wavelength	 to the

cylinder circumference -T ;	The parameter	 is also given

through the ratio of the plasma frequency 	 to the exciting

laser frequency W	 we thus have

2	 F -̂rF

n e 2	et

Here wi z -"^ and :' _	 y where the magnitude of the

2
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r i c `. i•- ld	 .s it . t , .. 1 n l : r')r inn Learr, interisit*.

(• 1-lu	 lrt•	 hj'S:, 11 cost i n ts I

1! the last • r iritenslt 'j is o! the order of

and :no . w,svvi• ..;th of tht laser bev- is	 then	 -

A:s•,, to i'in densities	 :	 -in Li 3	 ; lindrr

..s Ut	 we find that	 -	 and

►ic	 ::ect thAt	 Aas or. [cart 1,ropag.•tior. -a; bo un:1( r-

ltoo : :)y .: •_jnsiderin , . _j :..lane wave travelinv thrD, y h i ho>tnooeneous,

:(:, an'. fi•-1d- fr • • s• :jlasr^.	 This analysis 1s strll4htf>r w ,iri

. i «111 nr,t nc preso•nte,,i here	 i► e	 ind that the tr:*jns ersv

('omp.nents '•t tilt C1t•(- r i c •ind ma uriet i , ' fieiuF iru lnch,irvird

_ .	 ana ttl_jt sinusr)idal char :	 so-a.arat 1	 occurs with

 it twi g.( . tho . excitinu f.-e . :uency.	 C:)nsc'-

;uent l.:	 its • ffects ul)- , n L-.ar propa.atinn ar.- smal l .teen

and w i i 1 b • 	 :3 he r , .

The- irAex _j: retraction	 is then c•asil_, • Obta. -.Ld -IS 111C;

the abn •3<• s imp I i f icat iuns. 	 +Wc• f ind that

where • -	 is the nondinensionalized ion density.	 In this

taper we are aoi n c a to analyze the cas , when	 sat i sfies the

r(.: iation
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Here w'z , and ..'z	 are determined froci the ion density

and are arbitrary functions of the parameter . , the axial

distance along the cylinder nondimensionalized by the cylinder's

radius . . The coordinate r is the nondimensional radial
1

.listance from the cylinder axis. From Eq. (1.2) we see that

the ion density is always parabolic but is allowed to vary

with axial distance. Time variation of the ion density involv-

ing the hydrodynamic time scale will be ignored in this

presentation.

The parabolic assumption is useful wEen the beam boundary

is contained well inside a favorable density profile so that

'beam trapping' occurs. This ail roximatior, has been discussed

by Steinhauer 121 and Mani, et al. 13; and is coupled with the

31ditionai approximation of extending the effective boundary

conditions at the cylinder wall to infinity.

The preceding discussion thus motivates the study of the

following reduced wave equation for the transverEe component

of the polarized laser beam.

1	 z	 z
LA	

(1. 3)

	

z	 r 

The symbol C	 represents the Laplacian in cylindrical coor-

dinates. Tisane has been nondimensionalized w.r.t. the exciting

frequency ., so that t is understood to include the factor

e
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An asymptotic representation for 	 is ibtained when

the intensity of the incident be.,m is negligible in regions

wner._ th.• ion density is clnstr to or (Treater t.han the critical

i , )n density (this Mrldlt ion ir. fact motivates tht- Larsbol:c

approximat.ion . This asymptotic representation is easily

obtaineG from the enact sc lur _)n of Eq. (1. 3) when . and

in Uj. (1.2) are constants. This procedure will be developed

in Section 2. Alternatively, the asymptotic representation

for	 X can be obtained directly from the differential Eq. (1.3)

3rd will be presented in Section 3.

When	 and a are constants the usual asymptotic- ropre-

sentation predicts a periodic structure for the beam propaga-

tion (as does the standard paraxial approximation) and thus

does not include 'washout' effects of the beam's intensity

distribution. The term washout means that the original inten-

sity distribution (at .. _	 ) can never be rr-gener.atrd for

any value of ., and that it continually changes for incr-is-

ingly larger values of the v:aiianle .. . Ray optics predicts

this distortion effect from the result that rays with different

initial displacements from the axis have different focal lengths

in the parabolic focusing medium [4]. It is because of this

property that line focuses appear with monotonically increas-

ing lengths.

5
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In Sect.ion 2 we will examine the 'bears boundary' describ-

ins the propagation of Gaussian beams. Some :ecults are also

4ivvn for beams that have nonGaussian listributionre; in parti-

cular we will look it a b•-arr that is initially Lorentzian and

a beam that is .n.it ially 9,1,i-re.

1. Section. 3, of trine importance, is the development of

.i 'Less corpl icated e-44at ion. which describes the beam boundary

trale,:tories for rid'iSS:.ln beams.	 Analysis; here will be nost:iv	 i

ii-voted to the case when.	 and	 ire 'slowly' vary inns f unc-

t1:.)ns of ..	 nowever, :ether speci31 situations will be
1

c,x.imined.	 In partic.ilar, we wi ll see that instabilities can
1

occur even in a 'favorable' density profile.

In Secti:^n 4 we wil. s et, how the normally negl.-ted wash-

out effects Df the bean's intvnsit, • distribition may be

incl,.ded in the asympt-^t is re;-resentatir,,n.

Section 5 includes f(jr completeness, the analysLn of

the ray ol,t ics equations when - and .. 	 ire slowly

functions. The ilea here is that a uniformly valid solution

can be obtained in regions away from the line focuses. Con-

sequently, washout effects have been obtained at the expense

of neglecting diffraction.

Section 6 considers higher order terms for a Gaussian•.

beam. The small secular effects of bearr distortion and line

focusing are then examined.
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2.) The Asymptotic Development from the Exact Solution: Fixed
Parabolic Pt ofii les

1'he solution for the transverse component of the electric

field c. r can be represented through an infinite sum of

La(;uerre polynomials. To accomplish this introduce t'ie complex

field amplitude	 expressed in transformed variables o and

^c that

L eT.

X = e E V(A,C,`-)

where
o=ur2

t

1

(2.1)

Here : and ,, ar2 constants.

The differential equation for W 	 F ^ is obtained from

I . 3) .	 Thus

+	 - L^^ +	 fit, + ^.^.2 y^ F - 0	 (2. 2)

o(!paration of variables and the physical requirement of bounded-

ness of	 as c , approaches infinit y qives ri.:e to the expo-

nential Laquerre polynomials as eigenfunctions of Eq. (2.2).

In terms of these eigenfunctions V) can be expre s sed as

^n

	

(2. 3)
	

I 

0
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I

__ _ k2i	 1	 z
(2.6)

1

.	 I

where L n (p) is the Laguerre polynomial of order n and

rn	 I	 -P/2 11 r,
	

^ ( P,E) dP	 (2.4)

0

Apply ing the transform defined by Eq. (2.4) to Eq. (2.2) gives

the differential equation for r n (C,f) . Thus

2

T2- ,
n " + 2i rr ' - 4(n+2) r 	 0	 (2.5)

The prime denotes differentiation w.r.t. f, .

The roots
ni,z 

of the characteristic equation corres-

ponding to Eq. (2.5) are

1

The choice of the minus or plus sign corresponds to right or

left propagating waves respectivel y . Since we are interested

in beam propagation down a solenoid the second root can be

ignored.

Several observations considering the exact solution may

now be made:

(1) Different eigenfunction solutions have different
periods in F so that a solution representing a sum
of such terms cannot be strictly periodic.

8



(2) If the initial distribution cra , t)e represented by a

	

sum of eigenfunctions of relative	 low order th,,.-n the
solution will be nearly periodic. This will be the
basis of the asymptotic analysis.

(3) To each eigenfunction there is an associated bundle
of rays located at a particular initial radius from the
axis. This is due to the fact that ray optics predicts
d'._fferent periods for rays with different initial dis-
p-acements. For larger values of n we obtain larger
initial displacements.

(4) By the analogy of (3) we see that a clamped high order
eiyenfunction solution corresponds to a ray entering the
medium with an initial off axis displacement large enough
so that the ion density exceeds she critical density.

We now sF.ek an asymptotic expression for 1y (n,F f) in

the following way. Let the infinite sum in Eq. (2.3) be

replaced by a finite sum of the first PJ terms. If	 is

large e:iough this sum will converge to the exact solution.

Now let	 be small enough so that

L
11 C4 ( IV + 1) --7- < 1

The square root in Eq. (2.6) can now be expanded. We fine] that

ni

	

= i (7.n+1) + 06- 2 )   	 V )7	 !V	 ( 2 . 7 )

The expansion for 
r 

(f,,t) is then represented by the series

f	 2
i ' n ( F;,E) 

_ n e-i(`n+1)	 {1-^ (?n+1)2 k1 f, +	 . }	 (2.8)

We also obtain a corresponding series for ,^(^,F,r:: 	 Thus

9
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.46_. 

El	 e-P/2 I 
Cn 

P-i(2n+1)^ Ln(P)

0
(2.9)

 I C (2n+1)z e-i(2n+Il^ L(P) t	 .
zkz	

n	 n

0

The coefficientsare to be determined from the initial
^n

conditions.

Since ti is a measure of the degree of accuracy by which

one can replace an infinite sum by a finite sum, we expect

that the first sum in Eq. (2.9) may be considered in the

limit as N - - .

Let W 0 (P,^) be defined by this infinite sum. Thus

y 0 (p, ^.^ = e- P
12  C 

C 
	 e -i (2 •:t1) ^ L  (P)	 (2.10)0

Consequently, the solution for ^y(P,f,,e; can be expressed

asymptotically by the series

	

z	 ^ 
z

i

We see that the representation is useful when both the secular
a2^

I

	

	 term ue 2 ^ and the curvature term a . 1 ar, small. When

the latter condition is fulfilled a 'multi-variable' procedure

1
[51 can be used to extend the domain of validity of the asymp-

totic representation.
.i
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It is evident that 410 in periodic in	 and that

downstream 'washou r ' effects arP not included. If 	 1

where L is *he extent of the domain of 	 that is of inter-

est, then the distortion effects can be considered by includ-

my the noxt term in Lq. (2.11). However, if 	 - 0.:

ther. one must resort tc the multi-variable procedure of

S. ct ion 4.

To obtain	 in a 'summed' form we must consider the

t._ let . -cents	 given by the relation

(2. 121

0

If we introduce this expression into Eq . (2.10) ind inter-

chanv,e summation and integration, the following f,xpr(•ssion

can b#- obtained

cot	 1
12 1 3)

sin	 in - 1

We will consider three cases of beam propaq.-it icon t h.it i nvolvt•

an infinite sum of Laquerre polynomials. These cases may be

desjgnated by their initial field distribution. The designa-

tions are

i) Gaussi An	 yi, rl

f

i

11

•
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0i

ii) Lorentzian	 4,(P,:) - 
e

1 ♦ c^

iii) Square	 1	 o < x.12 	(2.14)
W (P, 0) s	 r^

	

0	 o > 
ud2	 1

Here a 0 	and d are constants defined through the

given intensity distribution and v is considf ed to be

small.

When the beam is initially Gaussian the integral in 	
I^

Eq. (2.13) can be easily evaluated. We find that

h ^^ J esP I h

h(r) = cos r + i l T)sin

	

ll	 0 111

We may also represent the complex function h(^) by its 	 +

amplitude a(r) /a 0 and phase	 so that

h(^1 = ,z( l eim
ao

and	 a0 = a(0)	 (2.16)

In terms Lf these real functions we fine: that

1, (0,^) = a( ^ 1 e z exp { ^ da

12
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with

	

cuR1 	 titn` r

and	 = tan	 i^^ tan '. l	(2.17)

we see from Eys. (2.17) that 	 is the so-called 'beam

boundary' because it dives the value of r at which the

intensity is down by a factor of	 as compared to its

value along the axis. Moreover, we find that the ray paths

fur	
J 

are simply described by some constant times

These results concerning Gaussian beams have been obtained

previously by various authors 13,6 •	 {

The integral in Eq. (2.13) is harder to evaluate for

non-Gaussian beams. There may be special circumstances

however, when one might use to advantage the complex con-

volution theorem concerning .Laplace transforms. To given

an example of this procedure we will consider the Lorentizian

beam.

het_	 I;'I denote the Laplace transforri of a	 •

function	 (:	 ror the Lo;entzian beam we have

' 1 fCvJ	^•	 ^

;,
L

l (^'	 = 1	 -1 /r	 (2. 18)

13



^-r

Here F, (s) is the exponential integral written as

-v
E (s) _	 ev d v	 (2.19)

i	
a

We are interested in the case when

,
s = Z (v- i cot E)	 ( 2.20)

Since

fL( f 1 (p), fz ( p) = 2ni 	 F1 (w) F I (s-w) dw	 ( 2.21)

•	 Y-im

the integral in Eq. ( 2.13) can be expressed in convoluted form.

Let 1(a) represent	 this	 integral. We find that the

contour of 1(a) may be closed to the right so that

b
^s r

1(8) = 2i
	 w-8 LC ew/c E (w/c)^ dw	 (2.22)

There is an essential singularity at the point w = S .

Consequently, the integral can be evaluated by Cauchy's

integral theorem of complex analysis to give

0o	 n

1(8) _	
(n	

- e
^c 

e8/c E
I
 (alc)^	 (2.23)

Needless to say, this form is also difficult to interpret.

14



r)
It may be of use however, in that it may converge faster

than the corresponding infinite series of Laguerre polyno-

mials. Of course, Eq. (2.22) is of interest in itself in

that it represents an alternate expression for the integral

in Eq. (2.13) and that powerful techniques of analysis are

available to examine its behavior.

We next ask if There are any special values for E, in

which the integral of Eq. (2.13) can be simply evaluated.

We see that the focal point F = n,," is such a point and we

obtain the following results:

i) Lorentzian	 (P, W) = - ` K0 4)

ii) Square	 ^ 
0 
(p, o _ - i ,i u p J (,?	 )	 (2.24)

^

Here K	 is the modified Bessel furction of order zero and
0

J	 is the standard Bessel function of order one. Diffrac-
t

tion rings at the focal point are apparent for the square

beam because of the zeros of J 	 However, when	 = n
i

these fade away and the solution regenerates its initial

distribution. This is just the periodic behavior of

^0(P,^)

An alternate approach for the description of beam propa-

gation can be accomplished with use of higher order Gaussian

modes since any beam can be considered to be an infinite

sum of such modes. The advantage of such an approach is

15
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that the ray paths of each mode crn be easily determined;

the disadvantage is that the solution still involves an

infinite sum.

i
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3.) Changing Parabolic Profile	 N

The asymptotic representation for f. r can be obtained

directly from the differential equation (1.3) when 1 , and ..

In E<(, (1.2) are arbitrary functions of the scaled variable 	 III

=	 Thus
,

and
	

(3.1)
t

Physically,this has the interpretation that the ion density

is allowed to vary on an axial scale length comparable to

or slower than the focal length of the parabolic focusing

medium.

We now obtain the equation for the complex field ampli--

tude .1 through the transformations

t

where

is
and	 - _{:: J	 ( 3.2)

The differential equation for ip is then viven as

d'1 d
	 -)	 ilk _ p 1	 2	 %,?	

_t	 r	 t i ^.	 11 r' t E. 	 (3 . 3 )
rf_ 1"	 P X11 1	a:

17
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We may nor. neglect the last term in Eq. ( 3.3) whenever the

curvature tjrm la- I is small. From our previous analysis

we see that this is just the paraxial approximation and con-

sequently washout and line focusing effects are neglected.

When the beam is initially Gaussian, then the equation

for the beam boundary a(x
i ) 

as expressed by Tien, et al.

(61 can be obtained through the following transformation.

Assume

	

k (z ) 2 z7 
exp^ i ^ ^	 - OJ - 

^T}	
(3.4)

Substitution of this equation into Eq. (3.3) gives the

differential equations for the transformed functions a(z 1
i

and ^ ( z	 Thus
i

1
K 2 !z 1	 + v^rz l.z + kk'a - I

a
j = D	 (3.5)

k(a1 A _ ^	
( 3.6)

I

These equations can be written in simpler form if we

introduce the variable s + where
i

dz +

	

k(z 1	 ( 3. 7)
i	 1

	

z + ()J = G	 (3.8)
i

18
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With this transformation Eqs. (3.5) and (3.6) become

d2

r

	

d-z+2	 (3.10)	 }

The function u( y 1 is to be considered as an implicit

function of z + obtained through use of Eq. (3.7).

Obviously the analysis of Eq. (3.5) or (3.9) is diffi-

cult because of the nonlinear term. One can obtain however,

a linear equation that describes the beam boundary trajec-

tories. To do this we assume that

	

i r 	 1	 ill

y(r,	 E) _ 3k(
(0)) 

h(zl+) e	
h riz^	 (3.11)

The differential equation for h(z +) is then easily

determined to be

^ T
i

	

+^, 2 (z)k =0 	(3.12)
i

This is exactly Eq. (3.9) without the nonlinear term.

Comparing Eqs. (3.11) and (3.4) gives the following

relationships

a(z +)
h (z 1 +) =	 1

(1(0) 
	 ( 3. 13)

19
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when k = k(0)
0

(3.1S)

I

i

1 dh	 I da	 i	 (
 3.14)h ds + = a 	 + 7

I

a(a +i
From Eq. ( 3.13) we see that a(011 	 is just the amplitude

of the complex function h(z +) and T(z	 is the phase.

To determine the solution of Eq. ( 3.12), initia' condi-

tions must be specified. These can be obtained from Eqs.

(3.13) and ( 3.14) when the initial conditions on the beam

boundary are known. When a(0)	 a	 da (0i	 d ando	 dz	 o
i

m(0) = 0 we obtain

h (0) - 1

k d

da (0) a—° + a^

	

0	 0

If the initial conditions on k were arbitrarily speci-

fied to be real then Eq. (3.12) describes the trajectories of

the beam's center [6]. Consequcntly, by allowing complex

values for h(z +) , we are able to describe the trajectories
i

of the beam's boundary. Moreover, since the real and imaginary

parts of h(z 
i 
+) satisfy the same equation, stability or

instability of the beam's center occurs together with t..e

stability or instability of the beam's boundary.

20



The solution of t'g. (3.12) is readily determined when

and .. are slowly varying. we measure this slowness through

the small parameter v so that

whert,	(3.16)

le now represent	 asymptotically and assume this

to 1epend up(.n two ax.a 1 scales	 and :.	 so that

where	 is defined by

n	 (3, 181

The dt.rivativ# - term in E:({. l 3. ll) can be obt.iined thrnuoh

the relation

_	 ( 3. 19)

:4oticc. must also be made of initial conditions and we :)btain

these from (3.15).

21
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Sol

Standard multiple scale techniques then yield

	

^^ IOJ
(Z,z 7 ) _ 

3 u(zU) +cosZ
+ u0

a
0 )9in7 + i(u	)sinZ}	 ( 3.20)

2	 O O	 0 0

Observe that the real part of this solutior is just what

one would obtain from ray optics for a paraxial ray. The

addition of an imaginary term satisfying special initial

conditions then improves the optics approximatic n by includ-

ing the effects of diffraction. We hove also remarked that

a ur.iforml} valid solution could be obtained by extending

the paraxial approximatio,.. If thus seems Feasible that this

may be accomplished by allowing complex rays where the real

part satisfies the exact ray optics equation and where the

imaginary part satisfies special initial conditions. This

has not ye t been verified.

A case exhibiting various regions of stability and

instability can be examined by studying Mathieu's equation.

P h
 
+ 'A+'.; cos ::X)h	 n

	
(3.21)

Eq. (3.12) can be placed in this form when k is constant a

and	 varies slnusoidally. When A is zero the medium

exhibits periodic focusing and the solution is first stable

for values of	 less than 1 .86 (6). Regions of stability

►.1
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i^

and instability alsc occur for positive A and are again

determined by the values of Q	 Consequently, instabilities

can occur even in a 'favorable' density profile.

The case when k has small sinusoidal variations and

W is constant has also been examined by Tien, et ,al. (6].

A more general stability analysis is needed for the case

when both k and u are varying sinusoidally w.r.t. the fast

variable z	 but are also allowed to vary slowly w.r.t. the

parameter z = vz
z	 i
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4.) Extended Paraxial Approximation

In Section 2 we obtained to ar-roximation that was valid

as long as the secular term uc"^ << I . If. we define

1n through the relation

n gn = E 2 U ?	(4.1)

so that Gn represents the normalized change in the ion

density at the cylinder's edge compared to the axis when

the distribution has the assumed parabolic profile, then

the secular criterion can be expressed as nGn cz << 1 .

Since z has been nondimensionalized by a dimension on the

order of 1	 and c = 0(70 - 3 ) we find that the paraxial

approximation is valid for distances less than 19 km 	 If

1n is small, that is if the density distribution is fairly
i	 ,

flat, then the approximation will be valid over the domain

of interest for fusion reactors; whereas if D-n = 0(104)

then clearly we need to extend the domain of validity of

the approximation. Note that if we require the second term

in Eq. (2.11) tc• be less than 10% of the first term, then

fin = 0(10) would require us to examine the extended asymp-

totic representation.

The method of analysis will be to introduce a new 'slow
z

variable' t = ''k	 and to obtain the necessary functional

dependence of the approximation on this variable by considering



both the Laquerre series solution and the differential equa-

tions obtained directly from the reduced wave equation (1.3).

For simplicity we will consider here only the case when k

and	 in Eq. (1.2) are constants.

From the expansion of (2.6) we can easily obtain the

dependence of	 upon i . Thus

Y

^: ►t^;)',-i(^n^J)2 _ L ►2(ai + 0(F `	(4.2)L •n

When the beam is initially Guassian, it is hoped that we can

sum the above series. This summation may be best accomplished

however, if we examine the partial differential equations

directly.

To do this we introduce the transformat.ons

a	 A_ + ,

1 r	;; 	 2	 ^T

. 9 F .cl - ^0 i
fj"r.r? + I(f `;	 (4. 3)

The Eq. (2.2) is then transformed into the pair of equations
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Let the function iy o (p,^,0) satisfy Eq. (4.4). When

the beam is initially Gaussian, we can specify * 0 (R,^,O)

through Eq. (2.15). Separation of variables of Eq. (4.5)

leads us to suspect that

^,^(R,^,T) _ F ; ( F, r r) '^ (R, n,0) d-	 (4.6)
CID

T1	
1	 e 2T 

dAwhen	 ^^,^,	 _	 J	 (4.7)
y I

_ m

The integral (4.8) is quickly evaluated to be

f	 IT

e	 4

so that Eq. (4.7) takes the form

i (r^-S)zm 

	

lyo (f1, %,t) _ ^^—	 e	 ;	 r6 0) dr	 (4.9)
_m

Powerful techniques of complex analysis may now be used

to study the behavior of y- o (R,^,T1 once it has been veri-

fied that Eq. (4.9) is correct. We find that this is indeed

so by substituting the Laguerre series representation for

^ n (G,^,:	 from Eq. ( 2.10) into Eq. (4.9) to recover Eq. (4.2).

j 26

N



I

5.) Ray Optics and Slow Variations

A uniformly valid solution can be obtained in regions

away from line focuses he neglecting diffraction. With

this approximation, ray trajectories are simply obtained

frcm the standard ray optics equation. Here we again con-

sider a medium with an axially symmetric index of refraction

and which is also allwwed to vary slowly. We thus specify

the index of refraction to be given by

(5.1)

so that the slowness is defined by the small parameter v .

In terms of previous notation we have they following identities.

v=EV

C = E1,

(5.2)i
The ray equation for a medium with index of refraction

(5.1) it simply

:^ [. * try 2^ 	 a ^ (5.3)

1 1
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Introduce a new function P(z,v) through the relation

P (z, v) :	
?i z _

T
1 + I (5.0

Then the above ray equation becomes a system of two equations

for r and P .

dr 2 n 2
() = P - 1	 (5.5)

dF	 an
dz	 3z

By differentiating Eq. (5.5) w.r.t. z and using Eq. (5.1)

the above equations can be expressed in the following form

z
(5.7)

dz = 2v [kk' - uu ► r 2 ]Pin	 (5.8)

where the new variable z + has been introduced by

dz+ = Pin	 l
dz	 1

z + (0) = 0	 (5.9)

The prime denotes differentiation w.r.t. the parameter z	 ► ?
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Again a is interpreted to be an implicit function of z+

obtained through use of Eq. (5.9).

We now assume r(z + ,v) and P(z +,v) to have asymptotic

expansions dependent upon two axial scales Z and 4 so that

r(z+,v) = ro (Z,zl + vr l (Z,F) +	 .

P(z+,v) = Po (Z,	 + VP l (Z,a) +	 (5.10)

when the new va:iable Z is defined by

^d̂ = 5(D 7.(0) = 0 (5.11)

The derivative terms are obtained through the relation

dz+ = u 
(r) az + vf'j" Ti
	 (5.12)

Usual multiple scale techniques then yield

r (Z, z) = r	 -(0) cos(7+^ )
U

	

Po (Z,a) = k^(s) - rm 2 u(0) u(z̀ 1	 (5.13)

The constants r  and m 0 are determined from initial

conditions.

It can be seen from Eqs. (5.13) that slow on axis

density variations effects only the period of each ray

29
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and does not influence its slowly changing amplA ude. This

result is in agreement with Steinhauer [4). 	 A

...

P,I
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6.) Higher Order Considerations

In Section 4, the multiple scale technique was used to

extend the domain of the asymptotic representation so that

is allowable. On the other hand, if we are

interested in the higher order terms with u r ''.	 then

a particularly effective method of includinq the secular terms

in the asymptotic formula can be obtained by 'straining' the

coordinates c; and	 The small effects of beam distortion

and line focusinq can then be examined under the stated res-

triction u£ 2 ", << 1

The asymptotic expansion of	 .2.9t	 was found to be

. .t ► 	 n+u'-'k--	 3^^'+	 r 1 ^	 (2. 11)

The secular term can be removed from this expansion by use

of the strained coordinates	 and	 defined through the

reciprocal transformations

..+^	 +.
i

+	 r	 :,.:^ +	 (6. 1 1

From these equations one can determine :: and 	 as Functions

of	 and p	 Thus

F2. 	 +..r

U -	 1 t (0, ) +	 (6.2)
1
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^o	 aW1)

1 -	 ^;,z d- f' 	3G
(6.4)

The functions o and t	 are to be so chosen that the secular

term in (2.11) is eliminated. This can be accomplished by

substituting (6.1) into (2.11) expanding and collecting terms

of 0(C /	 This term must be identically zero. Thus	 '^

z

From this we see that we are at will to specify one of the

straining coefficients. We thus set s equal to zero for
i

this choice allows readily interpretable results. We then

must choose

Performing the required differentiations on 	 when
.J

the beam is Gaussian gives the result

? ^	 t

j ke 	 h2 h	 4h"	
(6.5)

We may express %r'lh in terms of its real and imaginary

parts through the relation

^h = 
à + i ( z l	 (6.6)

Also	 h = a ezm
0
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( 12 ) sin 4dI ( (6.7)

I

T.

Usinq these expressions, the amplitude of y O can be found.

Thus

	

4	
1^	 ((	 2 l I (( n 	 2	 2^:	 Q^

	

) 'j► i • --	 `u'^	 )expl- ^,;.'tll..( 1-;3 )^ ^^( ►̂ 	 cos".Q- ^l -	 ^) sin^Q,(
O	 ^:	 `	 ..r.	 1	 /	 7	 U7

T;hv beam has its maximum and minimum amplitude when

and	 respectively. At these points the intensity

distribution determined f rom (6.7) is identical to that which

ignores the secular term. Consequently, the beam is undis-

tortcA at these points. Line focusinc, effects can also be

6-termined from (6.7).
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Beam propagation, laser solenoid fusion, beam trapping and stability,
laser heating, plasna heating, modified parax i al equations

APSTRAC T 'Cf.'Iww A.. h.A," •.M 11 MtAOAA W /rd 1 408wN1► M N.•A P"'Weelwt

This paper shays that for a nor.absorb.ng mec+ium With a prescribed index of
refractiul., the ef f ects of bear.i stability, line .ocusing, and beam distortion
can be predicted fror. simple ray optics. When the paraxial approximation is
used, diffraction ci`ects ale examined for Gaussian, Lorentzian, and square

beams. Most importantly, it is shown that for a Caua sian b,:am, diffraction
effects can be included simply by adding triag'nary solutions to the paraxial

ray equations. Also presented are several precedurus to extend the paraxial
approximation so that the s(11uc ; (,n will have a do-_iln ,)f validit y of vrcaterzexte t.
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