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FOREWORD

This report describes an investigation of the flaw growth behavior,
during proof testing, and the subsequent cyclic crack growth char-
acteristics of deep surface flaws in the 2219-T87 aluminum alloy per-
formed by the Boeing Aerospace Company from July 1974 through September
1975. The work was administered by Mr. Gordon T. Smith of the NASA-

Lewis Research Center.

This program was conducted by the Research and Engineering Division of
the Boeing Aerosapce Company, Seattle, Washington, under the supervision
of Mr. H. W. Klopfenstein, Structures Research and Development Manager.
The Program Leader was Mr. J. N. Masters, Supervisor, Failure Mechanisms
Group. The Technical Leader was R. W. Finger; A. A. Ottlyk and H. M.
Olden provided testing engineering support, and G. Buehler produced the
technical illustration and art work. This technical report is also

released as Boeing Document D180-20100-1.
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1.0 INTRODUCTION

A very high degree of reliability is essential for aerospace structures;
therefore, much effort has been expended in developing analytical and ex-
perimental procedures for definition and better understanding of the associ-
ated fracture problem. Experience has shown the semi-elliptical surface

flaw to be a realistic representation of common failure origins. Accordingly,
this surface flaw model has been used extensively in the development of both
the analytical procedures and cexperimental data for a description of the

tank wall failure processes.

Initially the work was directed toward understanding the catastrophic (burst)
failure problem. This situation occurs when the critical defect depth is less
than the wall thickness; resulting in a failure mode which is fracture rather
than a leak producing wall penetration. These studies have developed around

the stress intensity factor solution for a semi-elliptical flaw in a finite
thickness plate which was initially presented by Irwin. Multiplicative coef-
ficients which are functions of the crack depth-to-thickness ratio and the

crack depth-to-surface length ratio have been derived analytically and defined
experimentally to extend the basic two-dimensional Green-Sneddon solution for

an elliptical crack in an infinite solid to finite wall thicknesses representa-
tive of practical aerospace pressure vessel applications. Irwin estimated his
original solution to be valid for surface flaws with depth to thickness ratios,
a/t, of less than 0.5. Subsequent analytical and experimental efforts (1 through
7)* have provided '"magnification factor" coefficients which extend the useability
by accounting for effects of the stress free rear surface boundary condition and
for limited plasticity about the crack tip. These developments were incorpor-
ated into a design methodology (8) which provided a well defined basis for
utilizing nondestructive inspection and proof testing methods to verify that

the design life could be realized in service operations.

Having recognized the factors causing failures of aerospace hardware, a gradual
but marked change in design philosophy has occurred. The most prominent fea-
ture of this change has been the development and selection of materials which
exhibit a high level of tolerance to crack-like defects inherent in either the
raw material or manufacturing processes. An excellent example of this was the
selection of 2219 aluminum, rather than the higher strength of 2014 aluminum

alloy, for many of the space shuttle components.

*  Numbers in parentheses refer to references at the end of the report.



The use of flaw tolerant materials does present some unique problems.

These problems are a consequence of the defect size, which will cause
failure (burst) during proof testing, being greater than the wall thick-
ness. The procedures developed for assuring the service lives of vessels
produced from brittle material are no longer directly applicable. Although
the procedures for minimizing the chances of service failure are available
for the "brittle" vessels, the probability of costly proof test failures
and resultant schedule problems was sufficient impetus to cause the selec-
tion of the more flaw tolerant alloy. Although the selection of flaw
tolerant materials could virtually eliminate the possibility of a catas-
trophic failure, deep flaws which survived the proof test cycle could grow
through the thickness during service, thereby compromising mission objectives

or possibly causing a total loss of the mission.

This program was directed toward developing a better understanding of the
effect cf proof testing a thin walled tank. The program was divided into
two sections; the first was directed at determining the crack growth be-
havior of surface flaws during the application of a simulated proof test
cycle, and the second was designed to evaluate the use of a proof test cycle
in assuring subsequent service life. The program was an experimental effort
which employed specimens fabricated from 2219-T87 aluminum - both base and
weld metal. A variety of different surface flaw shapes were tested at temp-
eratures ranging from 20°K (—423°F) to room temperature in specimen thick-

nesses from 3.18 mm to 9.53 mm (0.125 to 0.375 in).

The following sections of the report present a brief review of related back-
ground data, a description of the materials and experimental procedures,

and a discussion of the results and a summary of the significant conclusions.
Applicable data from other studies are incorporated into the analysis of the

results.



2.0 BACKGROUND

Significant progress had been made in developing procedures for handling
the shallow flaw problem when experimental work strictly devoted to the
deep flaw problem was initiated in 1967. This work, published in Reference
1, involved static and cyclic tests of thick and thin gages of material,
using a variety of different flaw shapes in order to bracket the problem.
The resulting data were used to empirically derive deep flaw magnification
terms to be applied to Irwin's surface flaw stress intensity solution.
Instrumentation for determining whether breakthrough had occurred prior to
fracture was not available during this program, although it was suspected

that such behavior had occurred and influenced the results.

A subsequent experimental program (9) was undertaken to further explore the
static and cyclic behavior of combinations of flaw depth, flaw shapes and
thicknesses through that range where failure mode changed from ''catastrophic
failure" to leak-before-failure. Instrumentation was added to detect flaw
breakthrough (leakage) prior to failure. The results from this program were

used to establish the empirical formula

2
t -a=0.10 (KIE/cys) (1)

t thickness

1

a flaw depth

for determining the point where the failure mode changes from fracture to leak-
before-fracture. Additionally, the results of this study indicated that KIE
values obtained from any of three available deep flaw solutions (1, 2, 3) can
be used to describe fracture stress/flaw size loci for a wide range of thick-

nesses, flaw shapes, alloys, and stress loads. These ranges were:

a) - maximum failing stresses of about 0.90 Uys
b) - minimum thickness of about 0.25 (KIE/cys)z;
c) - ligament size greater than about 0.10 (KIE/OYS)Z;

For ligaments less than this value, leakage prior to failure would be ex-
pected. Final fracture strength is dependent on flaw length and the appropri-

ate through crack toughness, KCN'



Initial studies (1, 9, 10) had established that significant crack growth can
occur during loading and had also determined the range of applicability of

the available stress intensity solutions in determining the fracture stress/
flaw size loci. Additionally, a criteria was presented to be used in deter-
mining the point at which the failure mode changes from fracture to leak-
before~fracture. The primary emphasis of the initial studies was the fracture

and cyclic flaw growth of aluminum and titanium base metal specimens.

A subsequent study, Reference 11, was performed to evaluate weldment flaw
growth and fracture characteristics. 2219-T87 aluminum as-welded weldments
and 6Al-4V STA titanium weldments were tested at room and cryogenic temper-
atures and on several thicknesses. KIE values (for gross stress levels less
than yield) were obtained only on the thicker/lower temperature combinations
of the titanium specimens. Leakage occurred on several of these tests and
substantiated the ligament restrictions developed in Reference 9. Validity
of the ligament restriction could not be evaluated on the aluminum weldment
tests because the surface flaw toughness is higher than can be measured in
the thicknesses of interest. As expected, fracture prior to leakage was not

observed except with small flaws which caused fracture well in excess of

yvield strength.

Cyclic tests on both proof loaded and non-proof loaded specimens were conducted
under the Reference 11 study. Three major observations resulted from the

analysis of the cyclic test data:

A) Cyclic lives of proof tested specimens always equalled or exceeded the
lives of unproofed specimens. Although significant growth occurred
during the proof loading, the subsequent cyclic growth was retarded
due to the proof overload, and the resultant cyclic life was

not adversely affected by the prior proof cycle.

B) The cyclic lives of the specimens increased with increasing initial
flaw shape ratio (a/2c). For specimens of equal criticality (leak-
age) at proof, the stress intensity associated with the cyclic load-
ing is less for the rounder flaws; therefore, the growth rate will

be less and their subsequent cyclic life greater.



c) In tests of several dozen specimens which were proof tested to a
point as close as possible to leakage, measurable subsequent cyclic
life (at stresses of 85 percent of the proof stress) was realized.
This observation was significant in that it provided confidence
that safe life can be assured by proof testing of thin walled tank-

age fabricated from high toughness materials.

In addition to the published results presented above, a considerable amount
of data has been generated at the Boeing Aerospace Company pertinent to the
subcritical crack growth of surface flaws in 2219~T87 aluminum (base and weld
metal) specimens. The key observations of the preceding discussion and the

unpublished Boeing work pertinent to the subject report are:

o} The failure stress-flaw size loci for surface flaw specimens can
be divided into one or more of three regions,
- Region I - inelastic range (020.90 Oys)
- Region II - elastic fracture

- Region III - leakage prior to fracture.

o A complete description of the failure locus in Region I is not
yet available; however, it appears that the failure locus lies
along a relatively straight line extending from ultimate strength
at zero flaw size to the point at about 0.90 Oys’ where Region IIL

begins.

o Region II can be described using available surface flaw stress
intensity solutions (which account for a/t effects) up to the
point where the initial ligament (t-a) is less than about 0.10

2 . ,
(KIE/oys) , whereupon Region IIT begins.

o Final fracture strength in Region III can be described by consid-
eration of original surface flaw length and the thru-crack tough-

ness, KCN’ of the material (see Section 4.4 for KCN calculation).

o There is very little stable flaw growth data available with which
to perform in-depth resistance curve studies on surface flaws.
Limited data which has been generated suggests that the resis-

tance curve approach to analysis may prove to be quite useful.



o Flaw growth "damage" occurring during proof testing appears to
be more than compensated for by subsequent retarded flaw growth

rates.

o For equally critical long and short flaws surviving a given proof

cycle, the long flaw has the shortest subsequent cyclic life.

o Considerable data is available to suggest that safe life (without
leakage) can be assured by proper selection of relative proof and

operating stress ratios.

The above points had a significant influence on the design of the experi-
mental program reported herein. The results of this program are used to
expand upon or modify several of the above points. These discussions are

presented in the '"discussion of results" section of this report.



3.0 MATERIALS

The test specimens were fabricated from 2219-T87 aluminum sheet and plate.
The sheet material, 6.35 x 1219 x 2438 mm (0.25 x 48 x 96 in), was orig-
inally purchased for NAS3-17764 (Effect of Thermal Profile on Cyclic Flaw
Growth in Aluminum) per Boeing Specification BMS7-105C (equivalent to
Military Specification MIL-A-8920A). The plate material, 12.7 x 1219 x
3658 mm (0.50 x 48 x 144 in), was also purchased per Boeing Specification
BMS 7-105C. The specification chemical compositions are presented in

Table 1.

Welding was accomplished using a direct current straight polarity (DCSP)

gas tungsten arc (GTA) welding process. A Merrick Power Supply and a

Sciaky Boom Manipulator were used for the welding. The plate material was
used to produce 12.7 mm (0.50 in) thick weld panels and the sheet was used
to produce the 6.35 mm (0.25 in) panels. Weld wire (2319) was required on
the 6.35 mm (0.25 in) panels only. The panel halves were prepared with a
square butt edge preparation, then cleaned per BAC5765, wrapped and held

for welding. Immediately prior to welding, the top and bottom surfaces, 1.0
inch back from the edges, were cleaned with a Scotch-Brite rotary wheel
and the faying surfaces were hand-scraped to remove surface oxides. The
weld panel halves were aligned on a hold-down tool and manually tack welded.

Welding was then accomplished using the following parameters.

0.50 in. Thick 2219-T87 Aluminum Panels

Gas Tungsten Arc Weld, Square Butt, Two Pass (one per side)
Pass #1 and #2

Travel Speed - 127 mm/min (5 in/min)

Voltage - 13.5

Amperage - 245

Torch Gas - Helium at 2.5 m3/hr (90 ft3/hr)

Backup Gas - None used
Backup Bar - None used
Hold-Down Bar - None used - Panels restrained on outer edges (6 places)

Electrode 3.18 mm (0.125 in) diameter - 2% Thoriated



0.25 in Thick 2219-T87 Aluminum Panels

Gas Tungsten Arc Weld, Square Butt, Two Pass from One Side
Pass {1

Travel Speed - 180 mm/min (7 in/min)

Voltage - 13.2

Amperage - 195

Wire Speed - 500 mm/min

Torch Gas - Helium at 2.5 m3/hr (90 ft3/hr)

Backup Gas - None

Backup Bar - Copper

Hold-Down Bars -~ Copper, spaced 6.4 mm (0.25 in) each side
of weld centerline

Electrode - 3.18 mm (0.125 in) diameter, 27 Thoriated

Pass #2

Travel - 180 mm/min (7 in/min)

Voltage - 15.4

Amperage - 180

Wire Speed - 635 mm/min (25 in/min)

Torch Gas - Helium at 2.5 m3/hr (90 ft3/hr)

Backup Gas - None

Backup Bar - Copper

Hold-Down Bars - Copper, spaced 6.4 mm (0.25 in) each
Electrode - 3.18 mm (0.125 in) diameter, 27 Thoriated.

NOTE: Amperage and voltage figures were measured through a calibrated 500 amp
50 MV shunt. Readout was made using a Fluke Differential Voltimeter; voltage

figures were measured at the Merrick Control Unit.

After welding, all of the weldments were x-rayed to Boeing BAC 5935 Class
A acceptance criteria. Areas in the weldments which did not meet the BAC
5935 Class A specifications were marked on the panels so they could be

avoided during specimen fabrication.



4.0 PROCEDURES
4.1 Specimen Fabrication

The test specimens were machined using conventional milling techniques per
the configuration presented in Figures 1 through 4. The specimen config-
urations were selected such that the test section widths would be sufficient
to preclude any width effects. The specimens having a test section thickness
of 9.53 mm (0.375 in) were machined from either the plate stock or the 12.7
mm (0.50 in) thick weld panels. The other specimens were machined from the
6.35 mm (0.25 in) sheet or weld panels. All of the specimens were removed
from the parent material so that the loading would be applied perpendicular

to the weld and/or rolling direction.

Fatigue crack starter slots were introduced into both the center crack and
surface flaw specimens by Electric Discharge Machining (EDMing). The

EDM electrodes were machined from 1.5 mm (0.06 in) packanite sheet. The
starter slots terminated in a 30° included angle and a 0.08 mm (0.003 in)

root radius. Low stress cyclic fatigue was used to produce fatigue cracks

at the root of the starter slots. All of the surface flaw specimens having
the same flaw size were precracked at the same stress level and cyclic
frequency. The precracking frequency was 30 Hz for the center crack specimen,
but varied from 15 to 30 Hz for the surface flawed specimens. The maximum
stress level used for precracking the center crack specimens was 110 MN/m2
(16 ksi) and 90 MN/m2 (13 ksi) for the base and weld metal specimens, respect-
ively. For the surface flawed specimens the maximum precracking stress

levels were 83 MN/m2 (12 ksi) and 70 MN/m2 (10 ksi) for the base and weld
metal, respectively. 1In general, 10,000 cycles were sufficient to produce

the desired precrack. The precrack operation was monitored visually with

the aid of a 30 power microscope.
4.2 Tésting

During the course of the experimental program, three distinctly different
types of tests were conducted (load/unload, fracture, cyclic). The load/
unload tests consisted of monotonically loading to a predetermined load in
approximately one minute and then unloading rapidly. The hold time at max-

imum load was essentially zero and the unloading time was generally less than
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15 seconds. Fracture tests consisted of monotonically loading a specimen
until it had fractured. The loading rate for the fracture tests was pro-
grammed so that fracture would occur in one to two minutes. Cyclic tests
were conducted at room temperature and 78°K (-320°F) at a cyclic frequency
of 60 or 1 cpm. The 60 cpm tests employed a sinusoidal loading profile,
whereas the 1 cpm loading sequence was an equally segmented trapezoidal
profile having 15 second rise, fall and hold (at maximum and minimum load)
times. The 20°K (-423°F) cyclic tests employed either a 3 cpm sinusoidal
profile or the 1 cpm trapezoidal profile. 1In all of the cyclic tests the
minimum load was approximately zero; therefore, all of the cyclic test
results are for an R ratio of zero. The cryogenic temperatures were main-
tained by surrounding the entire test section with either liquid nitrogen
or liquid hydrogen. The liquid hydrogen level was monitored by liquid level
sensors inside the cryostat. The fluid level within the liquid nitrogen
cryostat was monitored visually. The minimum soak time of 30 minutes, after
the entire test section had been covered, was used in all of the cryogenic

tests.
4.3 Instrumentation

An Electrical Deflection Indicator (EDI) clip gage was used on all specimens,
both center cracked and surface flawed, in order that a continuous record of
crack opening displacement could be obtained. Additionally, the surface flaw
specimens were equipped with pressure cups for determination of breakthrough
(i.e., the flaw penetrating through the rear surface) and the center crack
panels had crack propagation gages (CPG). The CPG gages (Type TK-090CPC03-
003) consist of 20 parallel grid lines spaced at 2.03 mm (0.08 in) in a

39.6 x 19.1 mm (1.56 x 0.75 in) frame. Crack propagation through a grid line
results in the failure of that line and is denoted by a stepwise change in re-
sistance of the gage. The stress crack length relationship can be obtained by
recording load versus gage resistance on an X-Y plotter. For determination of
crack breakthrough, pressure cups are placed symmetrically on the specimen,
one directly over and one behind the flaw. The front cup (i.e., the one over
the flaw) is pressurized with helium and the pressure in the rear cup is

plotted versus the applied load on an X-Y plotter. Breakthrough is denoted
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by an abrupt increase in pressure in the rear cup. Immediately

prior to the application of any load, the rear cup is vented so that any
pressure differential can be relieved. This is especially important for

the cryogenic tests since a slight vacuum exists in the rear cup as a result
of the cooldown cycle. Failure to vent the cup could therefore result in an
erroneous breakthrough indication from seal leakage. The crack opening dis-
placement gage was attached to the specimen by spring loading the gage arms
against knife edges as illustrated in Figure 5. Integrally machined knife
edges were used on the two thicker gages tested and the clip gage brackets
were used for the remaining 6.35 mm (0.125 in) thick specimens. During
fracture or load/unload testing, the crack opening displacement was recorded
versus load on an X-Y plotter. For the cyclic tests, the COD was recorded

versus time on a strip chart recorder.

The determination of the flaw dimensions were made directly from the fracture
faces. The measurements were made with the aid of a 30 power microscope and
polarized light. A load sequence technique was employed throughout the
experimental portion of the program so that the flaw size measurements could
be made from the fracture faces. The crack opening displacement records were
used as guidelines and to provide further substantiation of the visual

measurements.
4.4 Stress Intensity Solutions

Surface Flawed Specimens

The surface flaw stress intensity values reported in the tables were calculated
using the Irwin Surface Flaw equation presented in Reference 7, modified with
the deep flaw magnification term presented in Reference 1. The resulting

equation is:
K; = 1.1 (ra/Q)*/2 Mo )

where K, = surface flaw stress intensity at maximum flaw depth

[l

= applied gross area stress
= maximum flaw depth
= shape parameter (presented in Figure 6)

deep flaw magnification factor (presented in Figure 7)

A o » a
]
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Center Cracked Stress Intensity

The stress intensity values presented for the center crack specimens were

calculated using the following formula:

C oy P((:)1/2
CN BW
where KCN = gstress intensity
P = maximum load
¢ = one half the total initial crack length (2c)
B = specimen thickness
W = specimen width
Y = width correction factor presented in Figure 8

(from Reference 12).

12
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5.0 RESULTS AND DISCUSSION

5.1 Mechanical Property Tests

The tensile properties of the 2219-T87 aluminum alloy, both parent and

weld metal, are presented in Tables 2 and 4. The tests were conducted at
room temperature, 75°K (—3200F) and 20°K (—4230F). The effect of tempera-
ture on yield strength, ultimate strength, Poisson's Ratio and elongation are
presented in Figures 9, 10 and 11. The uniaxial yield strength values re-
ported were calculated using the 0.27 offset method. A 50.8 mm (2.00 inch)

gage length was used in determining the yield strength.

Poisson's Ratio was determined from continuous strain gage recordings of
both longitudinal strain (EL) and transverse strain (ET). The elastic Poisson's

Ratios were then calculated using the following formula:
L
W= ——= § —— 4)

where u 1is Poisson's Ratio and P is the load.
5.2 Center Crack Panel Tests

Static fracture tests were conducted on center crack panels at room temper-
ature, 75°K (-3200F) and 20°K (—4230F). All the specimens were monotonically
loaded to failure in approximately one minute. The results of these tests
have been summarized and are presented in Tables 5 through 12. All of the
specimens were instrumented to provide a continuous record of both the crack
opening displacement (COD) and crack length. The crack opening displacement
record was obtained from an EDI clip gage. Crack propagation gages were used

to monitor the crack length of each specimen.

Although.crack propagation gages were applied to all of the specimens, valid
outputs were not obtained from the weld metal specimens. This was a conse-
quence of the extremely low yield strength of the weld nugget. The gages
are capable of withstanding a 1.5% strain; for the weld nugget this only

represents a stress of 22 ksi (at R.T.). Therefore, it was not possible to
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determine whether the gage output was an indication of crack extension

or a result of yielding of the weld nugget. Local yielding was not a
problem with the base metal specimens because a strain of 1.5% at room
temperature represents a stress of 462 MN/m2 (67 ksi). Although the room
temperature 0.2% offset yield strength of the base metal material is

379 MN/m2 (55 ksi) a strain of 1.5% corresponds to a stress of 462 MN/m2

(67 ksi). For the base metal specimens the stresses at the start of crack
extension and the critical crack length (i.e., crack length at instability)
were determined from the crack propagation gages. An X-Y recorder was

used to plot load versus CPG resistance. The instability crack length was
the minimum crack length at maximum load as determined from the record load
versus CPG resistance. Quite possibly the use of high-speed cameras or

other more sophisticated crack length monitoring methods would have resulted
in different crack lengths being defined as the critical ones. If the
critical crack length is considered to be the point at which the crack propa-
gation changes from a stable mode to an unstable mode, then the determination
of the critical crack length is going to be highly dependent upon the manner
in which crack length is monitored. For the alloy/temperature/gage combina-
tions tested under the subject program, crack growth continues at an increas-
ingly higher velocity from initiation to final fracture. The methods employed
in the program cannot detect changes in crack length at crack growth velocity
greater than approximately 300 mm/sec (1 Fps). This is orders of magnitude
slower than velocities associated with dynamically propagating cracks. How-
ever, for most structural applications, crack propagation velocities of

300 min/sec (1 Fps) will be sufficient to insure failure of the component

unless crack arrestment procedures are employed.

The base metal center crack panel data is presented in terms of gross section
failure stress versus initial crack length in Figures 12 and 13. At net
section levels in excess of 80% of the yield strength of the material (as
determined from the mechanical property tests) there is a reduction in the
apparent KCN of the material. This apparent reduction in KCN at high stress
levels is commonly encountered and is consistent with the reduction in

apparent K__ value from surface flawed specimens when the net section stress

1E
exceeds 90% of yield. At net section stress below 80% of yield, the majority
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of the data falls within a +107% scatter band. There is a minor layering
tendency throughout the data with the thinnest gages having the highest
failure stresses. This tendency is most pronounced at the lower failure
stresses and could be construed to be a shift in failure mode from plane
stress toward plane strain. Observation of the fracture surfaces did
indicate a shift from full shear to mixed mode as thickness increased.
Note that thicknesses in excess of 25 mm (1.0 inch) are necessary if the
plane strain thickness requirement B = 2.5 (KIC/(Jys)2 is to be met. The
layering tendency was not affected by test temperature over the range
tested. Although the majority of the data fell within a +107% scatter
band, which is typical for this type of testing, the variation in gage

thickness did exert a slight influence on the failure stress.

The base metal data is also presented in Figures 14 and 15 in terms of
gross section stress at the start of crack growth versus initial crack
length. The initiation of crack growth was determined from the CPG records.
Constant stress intensity lines have been drawn on the figures so that a
comparison of the stress intensity associated with the initiation of crack
growth can be made with the KCN values presented in previous figures. The
layering tendency present in previous figures is not present here. Stable
crack growth initiates at a stress intensity of approximately 53 MN/m3/2
(48 ksi Vin) regardless of gage thickness or test temperature over the range
of variables tested. This stress intensity value is roughly 75% of the KCN
values obtained previously. A plot of initial crack length versus critical
crack length is presented in Figure 16. The relationship between the initial

and critical crack lengths for the base metal specimens can be approximated

by a straight line defined by:

(2C)cr = 1.24 (20)i + B (5)

where: 2C = total crack length (see Figure 8)
cr = critical
i = initial
B=14.7 mm (0.58 inch)
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The extent of stable crack growth (i.e., critical crack length minus
initial crack length) is insensitive to both gage thickness and tempera-
ture over the ranges tested. The stable crack growth between the initial
and critical crack lengths was a uniform process in which the crack tip
velocity increased monotonically from initial to critical crack length.

A constant loading rate was employed in all of the center crack testing.
Typical relationships between load and crack length are presented in

Figure 17. As previously stated, the fracture process for the center crack
panels consisted of a crack advancing across the specimen width at steadily
increasing velocity. It was not possible to identify an instability point
at which the crack velocity instantaneously increased to one which would be

associated with a dynamically propagating crack.

Results of the weld metal center crack panels are presented in Figures 18
and 19. The data is presented in terms of gross section failure stress
versus initial crack length. Resistance curve data presentation is not

made because it was not possible to identify whether the change in resistance
was related to crack extension or a consequence of the gage wires failing due
to general yielding of the weld nugget. None of the weld metal specimens
failed at net section stresses below their yield strength as determined by
the mechanical property tests conducted at Boeing. The minor thickness
effect experienced by the base metal specimen was not noticed in the weld
metal panels. Lines of constant stress intensity are not presented in the
figures because the linear elastic stress intensity concept has been shown
to be inappropriate for correlating failure stresses significantly in excess
of yield. From the figures it can be seen that for a 2219-T87 aluminum
welded structure having 2 to 1 weld lands, the initial through-crack length
ratio which will cause failure will be roughly 3 to 1 between the weld metal
and base metal, respectively. Although the crack growth could not be deter-
mined from the CPG instrumentation, it is safe to assume that the failure
mechanism of the weld metal panels was similar to the base metal panels.
Results from the surface flaw specimen tests which will be discussed later
(Section 5.3), suggest that crack growth may have initiated at a lower per-
centage of fracture load for the weld metal panels than for the base metal.

There was, however, absolutely no indication from the crack opening displacement



record that any abrupt instability occurred between the initiation of

crack growth and final failure of the panel.

References 1 and 11 have concluded that for conditions in which the flaw
penetrated the rear surface prior to fracture, the fracture stress can be
estimated by considering the initial crack length and appropriate through-
crack toughness. A number of the surface flaw specimen tests (which will

be discussed later) were terminated when the crack had propagated through

the rear surface. Additionally, some specimens experienced breakthrough

but the loading was continued until fracture had occurred. A summary of

the fracture data from the surface flaw specimens having crack depths

equal to the gage thickness is presented in Figures 20 through 23. The

data is presented in plots of gross section failure stress versus initial
crack length. The initial crack length presented in these figures repre-
sents the maximum lateral crack dimension present at the initiation of frac-
ture loading. All of the data from the base metal specimens fall within the
scatter band established for the center crack panels. The agreement between
the weld metal results (penetrated surface flaws versus center crack) was

not as good as for the base metal. The greatest discrepancy is among the
3.18 mm (0.125 inch) thick specimen results. All of the center crack speci-
mens were 305 mm (12.0 inch) wide, whereas the surface flaw specimen widths
were 125 mm (5.0 inch), 229 mm (9.0 inch) and 356 mm (14.0 inch) for the

3.18 mm (0.125 inch), 6.35 mm (0.250 inch) and 9.53 mm (0.375 inch) thick
specimens, respectively. The reduction in failure load from the center crack
results to the surface flaw results for the 3.18 mm (0.125 inch) thick speci-
mens is related to the increase in net section stress as a result of the narrower
specimen width. Although the net and gross section stresses in the center
crack panels are very similar for crack lengths of 12.7 to 25.4 mm (0.50 to
1.00 inch), the net section stress in the thinnest surface flaw specimen is
10 to 20% greater than the gross section stress. For specimens in which
fracture occurs at elastic stress levels, discrepancy of this magnitude be-
tween gross and net section stresses are insignificant. However, the weld
metal specimens were failing at gross area stress levels well in excess of
yield. In this region the higher net section stress of the penetrated surface

flawed specimens would be expected to cause a reduction in their gross area
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failure stress compared to the gross area failure stresses of the wider
center cracked panels. The results for these tests do indeed confirm that
the initial surface flaw crack length and the appropriate through-crack
toughness can be used to estimate the failure stress of penetrated surface
flaws if the panels are of sufficient size to preclude net section stress

effects.
5.3 Surface Flaw Growth on Loading Tests

This portion of the experimental program was directed at determination of
thegrowth-on-loading behavior of surface flaws in 2219-T87 aluminum, both
parent and weld metal. The various gage thicknesses, test temperature,
material condition and flaw shape combinations investigated are presented in
Table 13. The primary emphasis has been placed on the low aspect ratio (a/2c)
flaws because previous investigations (References 11 and 13) have shown these
to be the most critical in terms of the extent of crack growth that can be
encountered during loading. The failure mode for most of the conditions
tested was leak-before~break. The limited number of conditions for which the
failure mode was anticipated to be fractured was confined to the thicker base
metal specimens having the lowest aspect ratio flaws. Conceivably, proof-
testing a vessel for which the failure mode is leakage rather than fracture
could grow a pre-existing flaw sufficient to cause failure by leakage on the
first operational cycle. This problem has been recognized for a long time
and the subject program was designed to develop data so that a better defini-

tion of the severity of the problem could be formulated.

In order for the data to be directly applicable to the failure (either leakage
or fracture), stresses of the specimens had to be representative of proof test
stresses. Therefore, the initial flaw sizes were selected so that the failure
stresses would be 45, 50 and 59 ksi for the R.T., -320°F and —4230F base metal
specimens and 22.5, 25.0 and 29.5 ksi for the R.T., -320°F and -423°F weld '
metal specimens. The base metal failure stress levels represent 907 of the
material's minimum yield strength at the corresponding temperature and are
typical of proof test stress levels. The weld metal failure stress levels
were selected to be one-half the base metal value because weld lands twice

the nominal base metal thickness are common in 2219-T87 aluminum pressure



vessels. A review of available data was made and the flaw sizes were
established before testing was initiated. The failure stresses were gen-

erally within 10 percent of the targeted values.

It was the purpose of this portion of the program to determine the growth-
on-loading behavior of surface flaws from initiation to imminent failure.
Since there will always be specimen-to-specimen variation in failure load
even for nominally identical specimens, determining the proximity of failure
from the average failure load of several specimens does not provide an
accurate assessment of the imminency of failure for a given specimen. The
crack opening displacement instrumentation was used extensively for determin-
ing the maximum stress to which a specimen could be subjected to without
failing. The manner in which this was accomplished is illustrated in Figure 24,
The first specimen (3BN21-2) was loaded directly to failure and its crack
opening displacement was used as a guideline in determining when to terminate
the loading of specimen 2BN21-2. The crack opening displacement record of
the failed specimen is typical of those normally encountered, having a linear
initial portion and a rounded section which reflects the crack extension and
the localized plasticity associated with the surface flaw. It is obvious
from Figure 24 that failure was imminent for specimen 2BN21-2 when unloading
took place, even though its peak load was somewhat less than that of the
previous specimen. All of the crack opening displacement recqrds have been

compiled and are presented in Volume II of this report.

All of the growth-on-loading specimens were loaded at a rate such that the
maximum load was obtained in approximately one minute; unloading was accomp-
lished at a rate such that zero~load was obtained in less than 15 seconds.
Subsequent to the growth-on-loading (or proof load) cycle, the specimens

were either subjected to cyclic loading or low stress fatigue marking. The
results of the cyclic tests will be presented and discussed in a later section
of this report. Using this load sequencing procedure, it was possible to

determine the flaw sizes directly from the fracture faces of the specimens.

The results of the growth-on-loading tests have been summarized and are pre-
sented in Figures 25 through 36 and Tables 14 through 43. The data is

presented in the figures in terms of gross area applied stress versus flaw
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depth. The flaw depths, both initial and final, are plotted at the maxi-

mum stress level the specimen was subjected to. The open symbols denote ini-
tial conditions and the closed symbols denote the final condition. When

only one open data point is presented, it means that the specimen did not
experience any distinguishable crack growth during the loading cycle. The
crack depth has been chosen to characterize the results because failure by
leakage is a consequence of crack growth in the depth-wise direction and crack
depth is a first order parameter in the stress intensity formula. Data from
both the growth-on-loading and failure specimens are presented in these figures.
Two things are immediately obvious from the figures. First, there is a sig-
nificant degree of specimen-to-specimen variability in stable crack growth.
Second, the crack growth-on-loading is a uniform process which is related to
the proximity of failure at maximum load. There was no indication throughout
the data that an instability condition exists by which a surface flaw "pops"
through the rear surface and then arrests. All the data indicates that the
transformation from a surface flaw to a through-crack is a smooth stable
growth process. The lack of an instability during the penetration process is
certainly not surprising when the center crack results are considered. Here
the crack growth was a stable process related to the proximity of failure. A
limited amount of work has been conducted at Boeing aimed at determining if
the growth-on-loading behavior of surface flaws is sensitive to loading rate.
The results of these tests (which were also conducted on 2219-T87 aluminum
specimens) indicated that crack growth during loading is a stable process in-
sensitive to loading rate. This conclusion is based on a limited number of
tests conducted at two different loading rates, roughly 350 MN/mz/minute

(50 ksi/minute) and 14 MN/ﬁz/minute (2 ksi/minute). Within these limits, how-
ever, the loading rate did not have any distinguishable effect on the crack

growth associated with loading.

The other most distinguishable feature of the data presented in Figures 25
through 36 is the variability in results. During the course of the program
particular attention was paid to the flaw preparation and testing procedures
in the hope that data scatter could be minimized. All specimens of a particu-
lar flaw size were precracked under identical conditions because it was be-

lieved that variations in precrack could have a significant effect on the
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results. Delamination at the crack tip, which is often encountered in
surface flaw specimen tests of the subject alloy, would be expected to

have a significant effect on the growth-on-loading behavior. However,
examination of the fracture faces of the specimens with the aid of a

30-power microscope revealed delamination in only three specimens. The
results from these specimens are presented in Figure 27 and have been denoted
as having delaminated. The extent of crack depth growth experienced by these
specimens is indeed less than would be anticipated from the results of the
other tests. Since neither the testing procedure nor delamination (except

as noted) are responsible for the data scatter, what other parameters could
affect the results? The location of the crack tip with relation to grain
boundaries, micro-delaminations not visible to a 30-power microscope,
localized variation in micro-structure -- all could have influenced the test
results. It is not possible, however, to exercise any control over these
parameters; therefore, the degree of variability among the results must be

accepted as being inherent to this type of testing.

The results of the growth-on-loading tests have been summarized and are pre-
sented in Figures 37 through 41. 1In these figures the data is presented in
terms of KIi/Kcr versus percent increase in crack depth. Kli/Kcr were calcu-
lated using Equation 7 presented in Section 3.4. The initial flaw size and
maximum gross section stress were used to calculated KIi and the initial flaw
size and gross section stress at failure were used to calculate Kcr' A KCr
was calculated for each particular combination of material condition, gage
thickness, flaw shape and test temperature. Where more than one failure

point was available, an average value was calculated. Determining KCr in this
manner can result in KIi/Kcr values which are not precisely accurate because
of the specimen-to-specimen variability in Kcr' It is impossible, however,

to calculate KCr for each individual specimen and the resultant error of

this calculation method will be minor. There are some data points presented
at KIi/KC'r > 1.0 because of this procedure. The parameters KIi/Kcr and
percent increase in flaw depth were selected for summarizing the data because
KIi/Kcr expresses the proximity of failure when unloading occurred and the
percent increase in crack length is related to the increase in stress intensity.

Since stress intensity is proportional to the squére root of flaw depth, the



percent increase in stress intensity is proportional to the square root

of the percent increase in flaw depth if the minor variations in the deep
flaw magnification and shape parameter terms are ignored. It is recognized
that the basic constraints of the linear elastic fracture mechanics theory
are violated by most of the test conditions. For this reason consideration
was given to using Ok/(%r instead of KIi/Kcr; this was discarded, however,
because it ignores variations in flaw depth, flaw length and a/t, all of
which would have an influence on the results. The stress intensity concept
is useful for characterizing the behavior of flaws, however procedures used

to analyze and apply the data must be consistent.

When the results are reviewed in terms of K i/KCr versus percent increase

in flaw depth (Figures 37 through 41), the ;arameters exhibiting the great-
est influence on the data are the flaw shape and the material condition. All
of the a/2c = 0.15 base metal data is presented in Figure 37. Neither the
temperature nor the gage thickness had a systematic influence on the results.
Since the fracture toughness yield strength ratio is not significantly
affected by temperature, the lack of temperature dependance is not surprising.
The absolute crack growth is affected by gage thickness; however, the percent
increase is not. Therefore, the percent increase in stress intensity would
also be insensitive to gage thickness. For the a/2c = 0.15 base metal results,
a KIi/Kcr ratio of approximately 0.70 is required for the initiation of crack
growth and a value of approximately 0.90 is required if a 10 percent increase
in flaw depth is to be obtained. The results of the base metal specimens
having a/2c ratios of 0.30 and 0.45 are presented in Figures 38 and 39. The
results here are similar to the a/2c = 0.15 results, inasmuch as gage thick-
ness and test temperature did not influence the data and a KIi/Kcr of approxi-
mately 0.70 is required to initiate crack growth during loading. For a given
KIi/Kcr ratio, there is a significant reduction in the percent increase in
flaw depth for the a/2¢ = 0.45 specimens over the entire range in which growth
occurred, and somewhat of a reduction in growth for the a/2c = 0.30 specimens
at KIi/KCr ratios in excess of 0.90. _The weld metal specimen tests were re-
stricted to a/2c ratios of 0.15 and 0.30. These test results are presented

in Figures 40 and 41. Again, neither the test temperature nor the gage thick-

ness influenced the results. Crack growth did initiate at a lower KIi/Kcr ratio
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(approximately 0.60) for the weld metal and a 10 percent increase in

crack depth also occurred at a lower KIi/Kcr (approximately 0.75) for

the weld than for the base metal. Although the weld metal specimens gen-
erally experienced a greater percent increase in flaw depth for a given
KIi/Kcr ration, the maximum increases were similar between the base and
weld metal specimens. Increases in flaw depth of 10 percent (which would
correspond to approximately a 5 percent increase in stress intensity) only

occurred over a limited range of KIi/Kcr for both base and weld metal.

The discussion of the growth-on-loading tests have thus far been restricted
to the depth-wise flaw growth. In a limited number of tests (almost exclu-
sively the base metal specimens having a/2c = 0.30 and 0.45), crack growth
in the lateral or 2c¢ direction was also experienced. The manner in which
the various aspect ratio flaws grew is illustrated in Figure 42. The frac-
ture faces of several specimens exhibiting the crack growth behavior illus-
trated in Figure 42 are presented in Figures 43 and 44. The lowest aspect
ratio flaws tended to grow mainly in the depth-wise direction, whereas the
highest aspect ratio flaws did have a tendency to growth also in the lateral
direction. In all cases, however, there was no growth experienced on the
front face of the specimen. The final 2c¢ length was always considered to be
the maximum lateral dimension. A summary of the percent increases in flaw
length is presented in Figure 45. Only the results from base metal speci-
mens having a/2c's of 0.30 and 0.45 are presented in the figure because very
few of the other specimens tested experienced any lateral crack growth and
in all cases the increase was less than 10 percent. Of the a/2c¢ = 0.30 and
0.45 base metal specimens, only one in three experienced any lateral growth.
Although the maximum percent increases in crack length were significantly
greater than the percent increases in crack depth, lateral growth did not
initiate until KIi/Kdr was in excess of 0.90. Although lateral crack growth

was severe when it did occur, the frequency of occurrence was low.

The growth-on-loading results have a significant impact on the discussion of
the cyclic results, presented in a later section. For convenience, there-
fore, a summary of the most important points pertaining to the growth-on-

loading behavior is presented below. The observations presented were derived
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from tests of 2219-T87 aluminum base and weld metal specimens at tempera-
tures ranging from 295°K (72°F) to 78°K (—3200F) for thicknesses from 3.18
to 9.53 mm (0.125 to 0.375 inch).

a) Low aspect ratio flaws (a/2c = 0.15) experience more growth
in the depthwise direction than higher aspect ratio flaws
(a/2c¢ = 0.30 and 0.45). However, crack growth in the length
direction is more prevalent in the rounder flaws, but only at

K../K ratios in excess of 0.90.
Ii" "cr

b) Stable crack growth initiates at a lower KIi/Kcr ratio and is
more severe in weld metal specimens than in base metal speci-
mens. The ratios of KIi/KCr required to initiate stable crack
growth are approximately 0.70 for base metal and 0.60 for

weld metal.

¢) Significant stable crack growth under increasing load can occur
prior to failure. However, significant variability in results
can be anticipated even when carefully controlled laboratory

procedures are employed.

d) Initial flaw shapes and material condition (base or weld metal)
have a significant influence on the extent of growth occurring

during the loading cycle.

e) Neither test temperature nor specimen thickness exhibit any
influence on the crack growth behavior when the data is viewed

in terms of KIi/Kcr versus percent increase in flaw depth.

As previously noted, the results were empirically derived and attempts to
extrapolate them to other alloy systems or beyond the range of the condi-

tions tested should be avoided.
5.4 Fracture Toughness Tests

During the growth-on-loading portion of the program, a limited amount of

static fracture data was developed. The KIE values calculated from

24



surface flaw specimens which fractured at stress levels less than 90%

of their yield and did not break through prior to fracture are presented
in Table 44. The KIE values obtained from these tests are typical for the
allov. The stress intensity formula presented in Equation 2 was used in

the calculation of the KIE values.

5.5 Single Cycle Penetration Criteria Tests

Recently, the use of resistance curves to characterize the onset of instability
has become increasingly popular. In order to determine if the crack growth
resistance techniques could be useful in the evaluation of the surface flaw
data, the relationship between load and flaw size must be known. The data

from the room temperature base metal specimens, 3.18 and 6.35 mm (0.125 and
0.250 inch) thick, was used to establish the relationship between stress and
flaw size (see Figures 46 and 47). From Figures 46 and 47 the stress intensitv/
flaw depth relationship (resistance curves) was calculated, assuming the flaw
shape (a/2c¢c) remained constant. Thev are presented in Figures 48 and 49.
Additional driving curves (i.e., stress intensity/flaw depth curves calculated
assuming a constant stress and flaw shape) are also presented in these figures.
Neither the tangency point nor the stress intensity at which crack growth
initiated were constant for the 3.18 mm (0.125 inch) data. Similar calcula-
tions were made for some of the other combinations of test conditions where the
failure mode was leakage. Consistent (constant) tangency points were not ob-

tained for any of the cases.

For the thicker room temperature base metal specimens, 6.35 mm (0.250 inch),
the driving and resistance curves were tangent at similar stress intensity
values for the two lower flaw aspect ratios. This would be expected since the
failure mode of these two was fracture rather than leakage. The tangency
point for the a/2c = 0.45 curves was significantly less than the previous two.
The a/2c¢ = 0.45 is approaching the condition where the failure mode is leak-

age rather than fracture.

Reference 9 suggested that an estimate of the transition in failure mode
from fracture toc breakthrough could be made by considering the following

criteria:
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2

Breakthrough if t - a< 0.10 (KIE/oyS) (6)
Fracture if t - a> 0.10 (KIE/ o] )2 (7
ys
t = material thickness
a = flaw depth
oys = yield strength
KIE = fracture toughness

Using the above equations and the K__ and o&s values previously presented,

the remaining ligaments (t - a) whiiﬁ separate breakthrough from fracture

are 1.91 mm (0.075 inch), 1.52 mm (0.060 inch) and 1.35 mm (0.053 inch)

for the R.T., 78°k (—3200F) and 20°K (—423OF), respectively. The validity

of this criteria, as applied to the data generated in the subject program,

is checked in Figure 50. Here the remaining ligament flaw shape combina-
tions are presented in terms of their predicted and actual failure mode.
Generally, equations 6 and 7 accurately predicted the failure mode. The major
exception to this was the 3.18 mm (0.125 in) liquid hydrogen test results. The
remaining ligaments for these specimens were approximately one-half the maxi-
mum for which breakthrough should occur. Breakthrough, however, did not occur
even though the specimens failed at elastic stress levels. For the few other

cases where breakthrough was predicted and fracture occurred, the remaining

ligament was 70 percent or greater of the maximum allowed by the criteria.

The breakthrough criteria represented by equations 6 and 7 provides no flaw
shape parameters. Flaw shape, however, has a very significant influence on
the stress intensity which can be generated in a specimen of a given thick-
ness. Flaw shape also has a significant effect on the extent of stable growth
that can be encountered prior to failure. From Figures 37, 38 and 39 it is
apparent that the maximum percent increases in flaw depth which can be ex-
pected prior to fracture, for base metal specimens, are 25, 20 and 8 for flaw

shapes (a/2c) of 0.15, 0.30 and 0.45, respectively.

26



An alternate method for establishing a ligament penetration criteria

can be developed from the growth on loading data presented in Figures

37, 38 and 39. Figures 37 through 39 have defined the maximum flaw growth
that can be anticipated prior to fracture. Penetration occurs when the
remaining ligament is less than the stable growth that can occur prior to
fracture. Therefore, knowing the maximum stable growth which can occur
prior to fracture it is possible to determine the failure mode for a given
failure stress-thickness-flaw shape combination. The procedures for doing

this is outlined below.

1) The following parameters are known or selected

a) Failure Stress - o
b) Flaw Shape - a/2c
¢) Material Thickness - t

2) Determine Q from Figure 6

3) Knowing a/2c determine the maximum percent increase in flaw
depth from Figures 37 through 39 (i.e., Aa/ai = 25% for
af2c = 0.15; Aa/a:,L = 20% for a/2c = 0.30 etc.)

4) Let the initial flaw depth a; plus the maximum stable growth prior

to fracture Aa equal some thickness t
o

i.e., a, +ha=rt (8)
a, (1 + Aa/ai) = to : (9)
D S
ai/to 1+ Aa/ai (10)

5) Know a./t and a/2c determine MK from Figure 7.
A )

6) From Equation 2, calculate a;

KIE\/'(T
1.10 MKVTF
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Where KIE is the fracture toughness determined from tests of surface

flawed specimens.
£, = a, @+ Aa/ai) (9
7) Fracture will occur when

t <t (11D
Penetration will occur when

t > t (12)

The thickness (to) calculated is the minimum gage which will yield a
failure by fracture for the selected stress and flaw shape. For thicknesses
less than those calculated by Equation 9 the failure mode will be leakage
because the initial flaw depth plus the stable crack growth during loading
will exceed the wall thickness. If, however, the thickness is greater than
that calculated by Equation 9 the extent of stable growth occurring during
loading will not be sufficient to allow the flaw to penetrate the thickness
and failure by fracture will occur. The above calculation procedure permits
the calculation of the failure mode for a selected failure stress and flaw
shape, therefore, it could be extremely useful in determining the proof stress
level which would assure failure by leakage, if a failure did occur, during

proof testing.

The above procedure has been used to calculate the remaining ligaments which
separate the failure modes for the selected stress levels used in the growth-
on-loading tests. The calculated transition ligaments are compared to the
test results in Figure 51. The failure mode of every specimen was accurately
predicted using the method outlined above (equations 8 through 12). A com-
parison of the predicted transition ligaments using the procedures described
in Equations 8 through 12 (Method II) and Reference 9 criteria, Equations 6

and 7 (Method I) is presented in Figure 52. Flaw shape (a/2c¢) does not

28



influence the Method I calculation; it does however influence the cal-
culated transition ligament size calculated using the Method II procedure.
There is not a very large variation in the sizes of the remaining ligaments
calculated using Method II over the range of a/2c's considered. Although
the rounder flaws experienced a lower percent increase in flaw depth, their
initial size was larger, thereby causing the absolute growth to be com-
parable.It must be remembered that these calculations are being made for

a selected failure stress. The two calculation procedures did yield similar
remaining ligaments, however, the Method I values are consistently greater
than the Method II values. This is partially a consequence of Method I
being derived from data which generally had a lower failure stress than that
used in the Method II calculation. There was a wide variety of failure
stresses among the data used in deriving Method I, however, among the 2219-T87
aluminum specimens tested at 78°k (—3200F) the average failure stress was
approximately 310 MN/m2 (45 ksi) which is 10 percent lower than the failure
stress used for the Method II calculation. The KIE values obtained from the
two programs were the same for the 78°K (—3200F) aluminum tests. The Method
II procedure is quite sensitive to failure stress since ai is proportional
to (72; therefore, the calculated remaining ligaments will be proportional

to the failure stress squared. The Reference 9 study also included tests

of 7075-T651 aluminum and 6A1-4V STA titanium at room temperature. The re-
sults from these tests were also used in determining the breakthrough criteria.
Again, among these tests there also was a wide variety in failure stress.
Using the average failure stress for each alloy, the remaining ligaments are
calculated using both procedures and presented in Figure 53. The predictions
from the two procedures are very similar for these two alloys. Since the
Method II procedure worked successfully on the 7075-T651 aluminum and 6A1-4V
STA titanium data, the growth-on-loading characteristics of these alloys must

be similar to the 2219-T87 aluminum behavior.

Both of .the procedures yielded acceptable prediction of failure mode for the
data considered. For the Method II procedure to be valid for other alloy

systems, their growth-on-loading behavior must be similar to that of 2219-T87
aluminum. The range of KIE/(rys values for the alloys considered is approx-

imately 0.5 to 1.0. Application of these procedures to alloy systems having
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a KIE/ 0}3 value significantly different than the above is not advised.
The growth-on-loading behavior of alloys having a significantly lower
KIE/ 0&3 value could differ substantially, rendering both methods of failure

mode transition to be erroneous.
5.6 Surface Flaw Specimen Cyclic Tests

A total of 107 cyclic tests were conducted during the course of the sub-
ject program. All of the specimens were subjected to a simulated proof
cycle prior to the cyclic test. Of the 107 specimens, 91 were subjected to
a proof cycle such that failure was imminent when the proof stress was ob-
tained. The crack opening displacement recording was used as a guideline

in determining the imminency of failure (see Section 5.3). As would be ex-
pected, there were several failures during the proof load cycle. Neverthe-
less, 91 specimens out of better than 100 did successfully survive the proof
load cycle. If there had not been any failures during the proof loading,

it would have been suspected that the estimates of the failure loads were
too conservative. The results of the cyclic tests are presented in the
tables. Additionally, they have been summarized and are presented in Figures

54 through 57.

In the figures the cyclic data have been presented in terms of KIi/Kcr ver-
sus cycles to failure. Failure means either fracture or breakthrough. For
the vast majority of the results the failure mode was breakthrough. Since
either occurrance would constitute a failure of a pressure vessel, no attempt
has been made to distinguish between the failure modes on the figures. The
KCr values were calculated for each combination of temperature/gage/flaw
shape and material conditions the same as in Section 5.3. The KIi values
were calculated using the initial (preproof) flaw size and the cyclic stress.
The cyclic loading was applied using either a .017 Hz (1 cpm) trapezoidal
profile or a sinusoidal profile at 1 or 0.05 Hz (60 or 3 cpm). The 0.017 Hz
(1 cpm) data have been distinguished from the rest on the figures. Gen-

erally, all of the tests were continued to failure except for the 0.017 Hz

(1 cpm) tests, which were terminated at 100 cycles.
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The cycles to failure curves from Reference 14 are presented on the
figures. These curves are best fit, not lower bound, curves for speci-
mens in which the failure mode was fracture. The results presented in
Reference 14 were for straight cyclic tests; none of the specimens were
subjected to a prior proof cycle. All of the results from this program
compare well with the cycles to failure curve generated in the reference
study. The reference study did not present any cycles to failure curves
for the weld metal tests, so the base metal curves have been drawn on
Figures 55 and 57 so that a comparison can be made between base and weld

metal results.

For the cryogenic tests all of the data is fairly evenly dispersed about

the reference curves. The room temperature results, however, tend to be

to the right of the reference curve. The reference curves were generated
from tests in which the failure mode was fracture; whereas, the failure

mode for the majority of the data presented is breakthrough. Even for

the cases where failure was by fracture, the agreement between proof loaded
and non-proof loaded data could be effected by the stable crack growth
associated with the proof overload. The previous sections have shown that
significant crack growth can occur during the proof cycle. It has also been
established (15,18) that the overload of these tests (1.33 or less) is not
.sufficient to exert a significant influence on the cyclic growth rate. Al-
though the retardation of a slight overload would be small, or nmnon-existent,
the difference in the stable crack growth between the overload cycle and

the first cycle of the cyclic test would also be small. Since the crack
growth associated with the first cycle of a cyclic test cannot be disting-
uished on the fracture surface, there has been a tendency to assume that the
cyclic crack growth progresses at a uniform rate influenced only by the stress
intensity. This assumption is not valid and has probably led to the obser-
vation that thin specimens have a higher crack growth rate than thick speci-
mens. ‘'Consider Figure 58 (Figure 67 in Reference 11), which shows an increase
in crack growth with a decrease in thickness. If the data are replotted, and
all specimens which received less than 300 cycles are eliminated the resultant
plot is presented in Figure 59. There is no apparent effect of thickness on

crack growth rate in Figure 59. Thin specimens generally receive less cycles;
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therefore, the stable growth associated with the first cycle exhibits a
greater influence on the growth rate than it would in thick specimens.
Thus, it is possible to influence crack growth rates by selecting the test
duration. Therefore, the crack growth rates generated from specimens sub-
jected to a limited number of cycles should not be applied to structures
which will see a large number of cycles and conversely growth rates from
ldng—term tests should not be applied to structures which will experience

a limited number of loadings. The latter could result in a nonconservative

answer; whereas, the former could result in an overly conservative answer.

The results from three specimens have not been included in Figures 54 and
56. These three specimens (3BR11-1, 4BR14-2 and 4BN11-1) all failed on the
first loading cycle after proof cycle. The failure mode in each of these
specimens was leakage rather than fracture. Two of the specimens, 4BR14-2,
and 4BN11-1 were cycled at 0.017 Hz (1 cpm) and breakthrough was noted
during the 15 second hold time at the peak cyclic load. Specimen 4BR14-2
was 3.18 mm (0.125 in) thick, tested at room temperature, and had an initial
a/2c of 0.45. The proof stress was 293.0 MN/m2 (42.5 ksi) and the cyclic
stress was 263.4 MN/m2 (38.2 ksi). Specimen 4BN11-1 was also 3.18 mm

(0.125 in) thick, tested at 78°k (-320°F) and had an initial a/2c of 0.15;
the proof stress was 324.1 MN/m2 (47.0 ksi) and the cyclic stress was 258.6
MN/m2 (37.5 ksi). Both of these specimens were subjected to the trapezoidal
cyclic loading profile. The leakage rate of the helium was slight, but
detectable, on the first cycle. Because there was a hold time at peak load
for the cyclic test and there wasn't any during the proof cycle, the possi-
bility does exist that breakthrough occurred during the proof cycle and was
not detected. There was, however, no indication on the pressure traces that
this had occurred. Specimen 3BR11-1, a 3.18 mm (0.125 in) thick specimen
having an initial a/2c of 0.15, was subjected to a room temperature proof
cycle to 275.8 MN/m2 (40.0 ksi). The cyclic test was to be at 1 Hz (60 cpm)
with a' peak stress of 220.6 MN/m2 (32 ksi). All of the test machines are
equipped with a shutdown system which is activated by an increase in pres-
sure in the rear cup. When the cyclic loading was initiated the shutdown
switch was actuated at 129.6 MN/m2 (18.8 ksi). Since the machine was pro-

grammed to run at 1 Hz (60 cpm) and the shutdown load was roughly half the
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programmed load, the shutdown was activated approximately 1/4 second

after the test had been initiated. The unloading time from the proof
overload level to 129.6 MN/m2 (18.8 ksi) was at least two seconds. Al-
though it is possible, it is extremely unlikely that breakthrough occurred

undetected on the proof overload cycle.

The purpose of the cyclic test program was to establish the residual cyclic
life of flaws subjected to proof load condition causing growth-on-~loading
damage sufficient to produce an incipient penetration condition at the
maximum proof load. 1In about 3 percent of these tests a leakage failure
developed on the first loading cycle. Duplicating the three tests in which
failure occurred on the first cycle would probably require another 100
specimens. The condition by which the proof cycle flaw growth could be
maximized, without developing a through crack, was known for all of the
cyclic tests. The application of these conditions resulted in a first cycle
failure only 3 percent of the time. The occurrence of a first cycle failure

by leakage will be rare, even under carefully controlled laboratory conditions.

None of the test variables exhibited a significant impact on the cycles re-
quired to cause failure for a given KIi/Kcr ratio. The application of the
proof test and cyclic loadings at different temperatures was not investigated;
therefore, its effect cannot be evaluated. The data does show that the
careful selection of a proof and operating stress can be used to ensure, with
a high degree of confidence, that minimum required cyclic life can be obtained.
The test program was designed to be applicable to spacecraft type pressure
vessels. These vessels are generally subjected to a limited number of cycles.
Attempts should not be made to extrapolate any of the data beyond the scope

of the program or beyond the conditions tested.
5.7 Post Proof Test Inspection

It has been established in the previous sections that significant crack
growth can be encountered during proof loading, and under very specialized
conditions failure,by leakage,can occur on the first loading cycle subse-
quent to the proof test. The probability of a first cycle failure is remote.

Under carefully controlled conditions it was only possible to accomplish this
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in 3 out of 100 tests. In these tests, the original flaw size was known

and the proof stress was selected such that it would cause maximum damage

to the specimen. A first cycle failure, after proof testing, can only be

a result of a very deep flaw having grown almost to breakthrough during

the proof cycle. References 9, 10, 16 and 19 have all shown that under

these conditions there will be a visible dimple located behind the flaw.
Therefore, it is proposed that subsequent to a proof test, but prior to
placing the vessel in service, a careful surface inspection of the entire
vessel be made. This surface inspection should locate any flaw which has
grown sufficiently to cause failure on the first loading cycle. Addition -
ally, the crack opening displacement records presented in Volume II clearly
indicate that the proof test will induce a residual opening on a pre-existing
flaw. The residual opening will be related to the flaw size, the larger
flaws having the greatest opening. This residual opening would greatly
enhance the probability of detecting the flaw using conventional inspection
technigques. The combination of an intelligent proof test and post proof
inspection should allow for a high degree of confidence in the safe operation
of the vessel. Additionally, the proof test will eliminate any possibility of

a first service cycle catastrophic failure.

34



6.0 CONCLUSIONS

The following conclusions were derived from an experimental program

conducted on both center-crack and surface flaw specimens of 2219-T87
aluminum base metal and weld metal. Three thicknesses of material

3.18, 6.35 and 9.53 mm (0.125, 0.250 and 0.375 inch) were tested at each

of three different temperatures; 295°K and 20°Kk (720F, -320°F and -423°F).
All of the tests were conducted using wuniaxial specimens. The following
conclusions should not be extrapolated to other conditions without additional
experimental verification.

1) Significant stable crack growth under increasing load can occur
prior to failure. However, significant variability in results
can be anticipated even when carefully controlled laboratory
procedures are employed.

2. Initial flaw shapes and material conditions have a significant
influence on the extent of growth occurring during the loading
cycle.

3. Neither test temperature nor specimen thickness exhibit any
influence on the crack growth behavior when the data is viewed
in terms of KIi/Kcr versus percent increase in flaw depth.

4. Stable crack growth initiates at a lower KIi/Kcr ratio and is
more severe in weld metal specimens than in base metal specimens.
The ratios of KIi/Kcr required to initiate stable crack growth
are approximately 0.70 for base metal and 0.60 for weld metal.

5. Low aspect ratio flaws (a/2c = 0.15) experience more growth in
the depthwise direction than higher aspect ratio flaws (a/2c =
0.30 and 0.45). However, crack growth in the length direction
is more prevalent in the rounder flaws, but only at KIi/Kcr ratios
in excess of 0.90.

6. Proof testing assures that any failure on the first service life
'cycle will be leakage and not catastrophic.

7. Minimum service lives can be assured, with a high degree of con-
fidence, if an intelligently designed proof test is used in con-

junction with a post proof inspection.
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FIGURE 2: 2219-T87 ALUMINUM SURFACE FLAWED SPECIMEN
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Clip Gage
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Knife Edge Slots

\ Clip Gage

Micro-Spot Weld

Clip Gage Bracket

Retaining Strap

FIGURE 5: FLAW OPENING MEASUREMENT OF SURFACE FLAW SPECIMENS
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FIGURE 31: CGROWTH-ON-LOADING TEST RESULTS FOR 2219-T87
ALUMINUM BASE METAL AT 20°K (-423°F)

71



JINLVIIdWIL WOO LV SINIWAT1IM WNNIWNTY 6122
ADIHL (HONI §Z1°0) wwgl*e JO4 SLINSIY 1SIL ONIQGVOT-NO-HIMO¥D  Z¢ NNOI

(HONI) ~° "Hid3a MV14 (HONI) ~© “H1d3a MV4
£L°0 Lo 60°0 Z1°0 oL°0 80°0
 § { ¥ F | § L L | L | LA |
(ww) ~ ©'H143Q MV (ww) ~ 0 ‘141430 MV
G°¢ 0°€ Gz 0°¢ G°¢ 0°¢ Gz 0°Z
| 1 ¥ ¥ ] | |
- -y
0£°0 292/° s = s « s
- n_-\_u - O_. m_.-o “UN\U Nl O—. M
» 9 A A
S z @
=100l = A ool 2 Q
=0 “oqoz & <« 3 oz
. O d °1°9 l o " OAN i
‘1°g - O
- ‘1°9 -
00z | ot 00z ot

HONOYHINVNIE ~ °| "¢
H1d30 MVTd TYNId ~ STO09WAS dISO1D
H1d3d MV14 TVILINI ~ STOSWAS N3IJO

72



INLVIIIWIL WOON LV SLNIWATIM WNANIWNTY 6122
MDOIHL (HONI0SZ°0) wwge 9 YO SLINSIY 1S3L ONIGVOT-NO-HLMOY¥D ‘€€ NNOH

(HONI) ~© ‘H1d3d MV14 (HONI) ~° ‘H1d3a MV14
vZ°0 22°0 0Z°0 vZ°0 2270 02°0
¥ L4  § 1 3 ' LJ 1 v ] d L
(ww) ~ © ‘H1430 MVT4 (Www) ~ o ‘H1 430 MVT4
0°9 'S 0's 0°9 S°g 0°g
r T r T !
- L
) qos © " ‘0 =57 /o =10s £
0£°0 = °z/° mdot S0 =/ m - ol
(V] w w
- ’S -
qo012 4 Q 00. 9 -
S| 2 1 > Z
o——pr S0z = Ph 340z
L] * z z
- ol

HIMOYO ON~TOEWAS NIJO TIONIS
HONOYHINAVIYE ~ °L1°8
H1d3d MV1d TVILINI ~ STOSWAS N3IdO
H1d3Q MVTd IVNId ~ STOIWAS 435010

(15)) .0 ‘SSNLS

73



NNLVYIIWIL WOOUY LV SINIWATIIM WNNIWNIY 6122
ADIHL (HONI 6£€°0) ww €6°6 YO S1INSIY 1531 ONIGVO1-NO-HIMO¥D

(HONI) ~° "H1d430 MV14
8E'0 ¥€°0 0£°0
L ] | | ] | ¥ f |
(ww) ~ 0 ‘H143Q MV

6 06 6'8 0'8 G°L 0°/

]

109 ‘
= -0l
0E°0 =2z/° A
<
<Joo1 S &
<
<« Z
¥a) w/z. oz
‘1°8 -0 =106L~

—00Z  Jdog

(1sM) 0 'SSIS

‘y€ WNOIL

(HONI) ~P ‘Hl1d3a mVv1d

RE"O ye'0 0E"0
/T

(ww) ~ 0 ‘H1d43Q MV1d

m. L] m‘w - m.h

GL°0 =93¢/°

"1°g *~rD
‘1°8 U%A

HONOYHINVIYE ~ °1°8
H1d3d MV1d TYNId ~ STOEWAS Q3SOTD

H1d3a MY1d TVULINT ~ STOSWAS N3IdO

o
—

(1SM) O “SSIULS

[}
o~

0t

74



. 30p
30r 2004 ¢ B.T. 200p
{ Kf_-‘ B.T. O______. B T.
- ® 3 N
0—a J—«
‘Q Z N Z O
< = g >3
b Fi00k & =00l
a | a |°
:‘._‘_J'IO -m q/2cn.0.]5 E ]O -$ 0/2(:‘ 0.]5
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n L ] | I T I T T
2.5 3.0 14.5 4.0 45 5.0 5.5 6.0 6.5
FLAW DEPTH, a ~ (mm) FLAW DEPTH, a ~ (mm)
L 1 1 o [l | I | 1 Nl [ [ 2 ]
0.08 0.10 0.12 0.14 0.16 0.20 0.24
FLAW DEPTH, a ~ (INCH) FLAW DEPTH, a ~ (INCH)
30 B 200 O 4 B.T.
A
L | o ewe & AT
150k <I—<
~20fe L OPEN SYMBOLS ~ [NITIAL FLAW DEPTH
[Ve]
X % CLOSED SYMBOLS ~ FINAL FLAW DEPTH
O g 100} B.T. ~ BREAKTHROUGH
w
m L3
v
glo-ﬁ a/2c = 0.15
—~ sol- tx~ 0.38
-3
g 1 1 | 2 1 3 .
7.0 7.5 80 8.5 9.0 95 10.0
FLAW DEPTH, a ~ (mm) |
L [ ] Il 1 [} N
0.30 0.34 0.38
FLAW DEPTH, a ~ (INCH)
FIGURE 35: GROWTH-ON-LOADING TEST RESULTS FOR 2219

ALUMINUM WELDMENTS A1 78°K (-320°F)
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~ 30 "N’; 200 AQ—4A-¢
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]0 L ; Q, [of .
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FIGURE 36: GROWTH-ON-LOADING TEST RESULTS FOR 2219

ALUMINUM WELDMENTS AT 20°K (-423°F)
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(a) 2BR34-4

(b) 2BN23-4

(c) 3BN31-2

Figure 43: FRACTURE SURFACES OF SPECIMENS 2BR34-4, 2BN23-4
AND 3BN31-2
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ROOM TEMPERATURE
STRESS INTENSITY CURVES —
CRACK GROWTH RESISTANCE KR CURVES

X FLAW DEPTH = THICKNESS

STRESS INTENSITY, KI ~ (KSI VIN)

60 g
50
B 2
sole 0 =282.7 MN/m" (41,0 KSI) 3/2
_ a/2¢ =0,15 K=47.8 MN/m = (43.5 KSI \/IN)
N
E . 0=299.9 MN/m" (43.5 KS! )
% 40 b= a/2c = 0,30 3/2
\; . K =36.7 MN/m’ (33.4 KSIVIN)
30 -
< 30 0 =299.9 MN /m~(43.5 KSI)
E a/2¢c =0.45
w
2 n 3/2
20} & i K =24.9 MN/m/ (22.7 KSI\/Tt-\l)
Z 20
w
2 2l gl 2
L o ol o
10fe 108 I i I
O
O1 O
2.6 2.8 3.0 3,2 3.4
CRACK DEPTH, a ~ (mm)
L {1 | |
0,10 0,11 0,12 0.13

CRACK DEPTH, a ~ (INCH)

FIGURE 48:  STRESS INTENSITY VERSUS FLAW DEPTH FOR
3.18mm (0.125 INCH) THICK 2219-T87 ALUMINUM
BASE METAL SURFACE FLAW SPECIMENS
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O=1324.1 MN/mZ (47.0 KSI)

a/2c =0,15 3/2
70r K = 64.3 MN/m’ “(58.5 KSI Y IN)
60
O =341.3 MN/m? (49,5 KSt)
60 . a/2¢'= 0,30
50|
50} - (51.7 KSI/IN)
Z g'\ / 0= 368.9 MN/m? (53,5 KSI)
L; aad oS a/2 = 0,45
% Z 40}
L S /
ol - — K =39.8 MN /m" 2
~ [ =~ (36.2 KS1VIN)
= > 30 1y
z 2 | < ROOM TEMPERATURE
(78]
> = o STRESS INTENSITY CURVES == == =
z 20k & Q
2 o 205 RACK GROWTH RESISTANCE,
o 2 2(ls K Curves
v | o o
v il 1}
& [ = sl
2N | AN
o] (o]
ol oLl 1 1 1 N |
4.0 2.5 5.0 5.5 5.0
FLAW DEPTH, a ~ (mm)
L i L 1 )
0.16 0,18 0.20 0.22 0.24

FLAW DEPTH, a ~ (INCH)

FIGURE 49:  STRESS INTENSITY VERSUS FLAW DEPTH FOR 6,35 mm
(0.250 INCH) THICK 2219-T87 ALUMINUM BASE METAL
SURFACE FLAW SPECIMENS
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FRACTURE SPECIMEN [BREAKTHROUGH
20°K | 78°K | 295°K | THICKNESS [Fog5e T 780k
#(—423°F) (-320°F) (72°F) | mm (INCH) | (72°F) |(-320°F)
® o O |3.18(0.125y O b | ﬂ
A A A 6.35(0.250)| @
L o O |9.53(0.375)
* BREAKTHROUGH PREDICTION ERRONEOUS
CRITERIA: K
IE \2
0.20 5.0 ® FRACTURE WHEN f.-o>o,\o(5;-) «
s 2
8 BREAKTHROUGH WHEN § -a < 0.10(3.15)
ys
4.0 0 Above Line - Fracture Predicted
E;O.ls- Below Line - Breakthrough Predicted
y4 E
= £
h ) 300 s
O o] ‘ g 8
i 0,10 A 295°K (72°F)
2.0L ﬁ T 78°K (~320°F)
0.05}= SA " B
1.01- % 20°K (~423°F)
O O
0Lt 0 1 gﬂ 1]
0.15 0.30 0,45
FLAW ASPECT RATIO, a/2¢
FIGURE 50: COMPARISON OF PREDICTED AND ACTUAL FAILURE MODE

(Method 1)
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t - a ~(INCH)

0.20

0.15

0.05

t -a ~ (mm)

20°K (-423°F)

FRACTURE SPECIMEN |[BREAKTHROUGH
20°K | 78°K | 295°K | THICKNESS Toosex T 780k
(~423°F)|(-320°F)| (72°F) | mm (INCH) | (72°F) [(-320°F)
o 0o O [3.18(0.125 O 1]
A A A |6.35(0.250)] Q@
. ¢ O 19.53(0.375)
Above Line—Fracture Predicted
5 OL_ L Below Line— Breakthrough Predicted
>
4.0}
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A 3 8
2 ok 3 295°K (72°F)
78°K (-320°F)
/eA A
T T —
03 D <
0 . o Q

0.15
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Figure 51: COMPARISON OF PREDICTED AND ACTU AL FAILURE MODE
(Method II)



295°K (72F) —— —— — — O FAILURE =310 MN/m? (45 KSI)
78°K (-320°F) O FAILURE = 345 MN/m2 (50 KsI)
20°K (-423°F) : . O EAILURE = 407 MN /m? (59 KSI)

Above Line - Fracture Predicted
Below Line - Breakthrough Predicted

3.0~
0.10 -
?5" __2.0f — — . FAILURE MODE
Z £ TRANSITION PREDICTION
< Y ; USING METHOD |
0.05 |- ==
o N =
; [N = ///\\\ FAILURE MODE
- . "==-«< | TRANSITION PREDICTION
USING METHOD H
0L Q I ] A

0.15 0,30 0.45
FLAW SHAPE, a/2c

FIGURE 52: COMPARISON OF FAILURE MODE TRANSITION REMAINING
LIGAMENT (t -a ) PREDICTIONS FOR 2219-T87 ALUMINUM

BASE METAL
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t —a ~ (INCH)

7075-T651

T EAILURE = 310 MN/m2 (45 KSI) == === s o= e= ALUMINUM
_ 2 6Al - 4V STA
O FAILURE = 690 MN/m” (100 KSI) TTANIUM

0.05

0,04

0.03

0,02

0.01

FIGURE 53:

Above Line - Fracture Predicted
Below Line - Breakthrough Predicted

FAILURE MODE

TRANSITION
PREDICTION
1,0 = METHOD Il 7~
7~ ~ FAILURE MO
DE
TRANSITION
PREDICTION
METHOD |
0 | | J
0 0.15 0.30 0.45

FLAW SHAPE, a/2c

COMPARISON OF FAILURE MODE TRANSITION REMAINING
LIGAMENT (t - o ) PREDICTIONS FOR 7075-T651 ALUMINUM

AND 6 Al -4V STA TITANIUM ALLOY (ROOM TEMPERATURE)
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TABLE 1:

CHEMICAL COMPOSITIONS OF MATERIALS

2219 2319
ELEMENT ALUMINUM | ALUMINUM
(% BY WEIGHT) PLATE WELD WIRE
MIN ., | MAX, | MIN. | MAX,
COPPER 5.80 | 6.80 | 5.80 | 6.80
SILICON - 0.20 - 0,20
MANGA NESE 0.20 | 0.40 | 0,20 | 0.40
MAGNESIUM - 0.20 —_ 0.02
IRON - 0.30 -— 0.30
CHROMIUM - - - -
ZINC - 0.10 - 0.10
VANADIUM 0.05 {0.15 | 0,05 | 0,15
ZIRCONIUM 0.10 | 0.25 | 0.10 | 0,25
CARBON - - - -
NITROGEN (ppm) - - - -
OXYGEN (ppm) - - - -
HYDROGEN (ppm) - -] - | -
TITANIUM 0.02 {0.10 | 0,10 | 0,20
ALUMINUM REMAINDER | REMAINDER
OTHER - - - 0.15
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TABLE 44:  2219-187 ALUMINUM BASE METAL STATIC
FRACTURE TEST RESULTS
SPECIMEN|  TEST GAGE FLAW TOSE{%TE;SE K é;:/,fck;?gREE
NUMBER | TEMP. TH'CKNEZS) 5“’/“2"5 MN/m2 E|TOUGHNESS Kig
L KCF) | mm (N /e ksl JIN)  [MN/m? (ks IN)

3BR21-1 6.35(0,250) | 0.15 50.8 (46.2)
3RIN-1 | o) | 9.5300.375)] 0,15 53.5 (48.7) |  52.1 (47.4)
4BR31-1 9.53 (0.375) | 0.15 52.1 (47.4)
3BN21-1 6,35 (0.250) | 0.15 55,9 (50.9)
3BN21-2 6.35(0,250) | 0.15 58,2 (53,0)
2BN23-1 . 6,35 (0,250) { 0,30 54,6 (49.7)
3BN31-1 (_252059 9.53 (0.375) | 0.15 56,2 (51.1) 55.8 (50.8)
3BN31-1 9.53 (0.375) | 0.15 56,5 (51.4)
3BN33-1 9.53 (0.375) | 0,30 54,1 (49.2)
3BN33-2 9.53 (0.375) | 0.30 55,5 (50.5)
2BH11-1 3,18 (0,125) 0,15 53,0 (48,2)
2BH11-4 3.18 (0.125) | 0.15 54,0 (49.1)
2BH21-1 (-243359 6.35 (0.250) | 0,15 56,0 (51.0) | 55-3(50.3)
3BH21-1 6.35(0.250) | 0.15 58,3 (53.1)
48H31-1 9.53(0.375) |} 0,15 55,0 (50.0)
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