
NASA CR-


COLOR ILLUSTRATIONS 

FINAL REPORT ON SKYLAB-EREP STUDIES IN COMPUTER MAPPING 

OF TERRAIN IN THE CRIPPLE-CREEK-CANON CITY AREA OF COLORADO 

by 

Harry W. Smedes, U.S. Geological Survey, Denver, Colorado, Principal
 

Investigator; K. Jon Ranson, Colorado State University, Fort Collins, Colorado;
 

and Roland L. Hulstrom, Martin Marietta Aerospace Corporation, Denver, Colorado
 

T- ./0 s. 

-(NASA-CR-147844) SKYLAB-EREP STUDIES IN N76-32622 

COMPUTER MAPPING OF TERRAIN IN THE CRIPPLE 

CREEK-CANON CITY AREA OF COLORADO 
(Geological Survey) 77 p HC $5.00 CSCL 08B 63/43 Unclas05282 



Contents
 

Page
 

Abstract---------------------------------------------------------------	 I
 
Introduction- 3
 

Calculated spectral responses for mixtures----------------------------- 6
 

Calculations from on-site measurements---------------------------- 7
 
Mixtures----------------------------------------------------- 7
 

Modeling of spectral responses of mixtures------------------- 8
 
Extraction of spectral response ------------------------------ 10
 

Simulations of LANDSAT-I data-------------------------------- 11
 
Creation of simulated data fields------------------------ 11
 

Classification of two component and three mixture
 
classes---------------------------------------------- 13
 

Classification of three component and six mixture
 

Summary and conclusions------------------------------------------------ 41
 

Revision of work plan-------------------------------------------------- 3
 
The mixture problem---------------------------------------------------- 4
 

Basic concept ----------------------------------------------------- 6
 

Calculations from LANDSAT-l data---------------------------------- 8
 

Estimating component-class spectral responses---------------- 10
 

Classification of component classes--------------------- 12
 

classes ------------------------------------ 15
 
Tests of technique of extracting spectral responses ------ 17
 

Tests using LANDSAT-l MSS data---------------------------------- 24
 
Elevenmile Canyon Reservoir Study Area----------------------- 25
 
Manitou Study Area ------------------------------------------ 28
 

Effect of the atmosphere on spectral response -------------------------- 33
 
Remote sensing of target spectral response------------------------ 33
 

Terrain map from'S-192 data-- ----------------------------------------- 35
 

References ------------------------------------------------------ 43
 
Appendices ------------------------------------------------------------- 45
 

A. RECOG computer-program blocks--------------------------------- 45 
B. 	Flow chart of procedures for computer-assisted classification
 

of mixtures in multispectral scanner data------------------- 47
 
C. Equations----------------------------------------------------- 48
 

Figures---------------------------------------------------------------- 50-72
 



Illustrations
 

Page
 

Figure 	1. Location of test site---------------------------------------- 50
 

2. 	Spectral response of two component terrain classes and a
 

mixture of them-------------------------------------- 51
 

3. 	Comparison of total solar irradiance and reflectivity of
 
Coniferous Forest and Pikes Peak Granite------------------- 52
 

4. 	Spectral radiance of Pikes Peak Granite, Coniferous Forest,
 
and mixtures of the two------------------------------------ 53
 

5. 	Spectral radiance of Pikes Peak Granite, Coniferous Forest,
 
and mixtures of the two------------------------------------ 54
 

6. 	Spectral response of two component terrain classes and a
 
mixture of them ------------------------------------------- 55
 

7. Microfilm graymap of nine-class simulated data set----------- 56
 
8. 	Mean spectral response for two component classes and
 

modeled mixture classes------------------------------------ 56
 
9. 	Microfilm classification display for component-class
 

analysis --------------------------------------------------- 57
 

10. Microfilm classification display for five-class analysis----- 57
 
11. 	 Mean spectral-resoonse curves for simulated Grassland-Water
 

mixtures ------------------------------------ 58
 

12. 	 Mean spectral-response curves for component and mixture
 
classes used for nine-class analysis----------------------- 59
 

13. Microfilm classification display of nine-class analysis------- 60
 

14. 	 Microfilm classification display for nine-class analysis
 
using calculated component-class signatures from uniform
 
data--------- --------------------------------------------- 61
 

15. 	 Graphical representation of uniform and nonuniform training
 
sets------------------------------------------------------- - 62
 

16. 	 Microfilm classification displays for component-class
 
analysis using estimated mean vector and covariance
 
matrices------- -------------------------------------------- 63
 

12. 	 Microfilm classification display of nine-class analysis
 
using calculated component-class mean vectors and common
 
covariance matrix------------------------------------------ 64
 

18. 	Microfilm classification diaplay of nine-class analysis
 
using calculated mean vectors and common covariance matrix- 65
 

19. 	 Microfilm classification display for nine-class analysis
 
using calculated mean vectors and averaged common
 
covariance matrix------------------------------------------ 66
 

20. 	Microfilm graymap of LANDSAT-l MSS Band 5 of the Elevenmile
 
Canyon Reservoir Study Area-------------------------------- 67
 

21. 	Microfilm classification map of Elevenmile Canyon
 
Reservoir Study Area with five component classes----------- 68
 

22. 	 Microfilm classification map of Elevenmile Canyon
 
Reservoir Study Area with five component 'classes and
 

nine mixture classes--------------------------------------- 69
 

,23. 	Microfilm classification map of Elevenmile Canyon Reservoir
 
Study Area with five component classes and ten mixture
 
classes ---------------------------------------------------- 70
 

ii 



Page
 

Figure 24. Mean spectral-response curves of the Manitou Study Area 
for estimated ponderosa pine and background 
extracted mixture plots---------------------------------- 71 

25. Terrain map prepared by computer-implemented techniques ---- 72 

Table
 

Table 1. Summary of terrain classes mapped----------------------------- 37-38
 

iii 



FINAL REPORT ON SKYLAB-EREP STUDIES IN COMPUTER MAPPING
 

OF TERRAIN IN THE CRIPPLE CREEK-CANON CITY AREA OF COLORADO
 

by 

Harry W. Smedes, U.S. Geological Survey, Denver, Colorado, Principal Investigator;
 
K. Jon Ranson, Colorado State University, Fort Collins, Colorado; and Roland L.
 
Hulstrom, Martin Marietta Aerospace Corporation, Denver, Colorado
 

ABSTRACT
 

Multispectral-scanner data from satellites are used as input to computers
 
for automatically mapping terrain classes of ground cover. Some major problems
 
faced in this remote-sensing task include i) the effect of mixtures of classes
 
and, primarily because of mixtures, the problem of what constitutes accurate
 
control data, and 2) effects of the atmosphere on spectral responses. This
 
paper presents the fundamental principles of these problems and some of the
 
results of our studies of them for a test site of Colorado, using LANDSAT-I data.
 

The natural terrain comprises a mixture of diverse classes, including combi­
nations of such things as tree, grass, and other types of vegetative cover,
 
different types of soil and rock, and water bodies of different size, depth, and
 
clarity. Because the terrain features generally are small compared to the
 
ground-resolution element (pixel) of multispectral-scanner data from spacecraft,
 
it is unusual for very many contiguous pixels to consist of a single terrain
 
class. Commonly, each pixel is a mixture of two or more classes.
 

It has been shown that the spectral response of a mixture of terrain
 
classes is not representative of any of the component classes composing the
 
mixture. Automatic-recognition processors (computers) may therefore misclassify
 
pixels which are mixtures of classes. This often leads to an underestimation of
 
the amount of component classes present in the area scanned.
 

Even a single class may have a range in spectral response depending on such
 
things as size of pixel (sample area), solar aspect, orientation of objects that
 
make up the class, atmospheric conditions, and season.
 

Because of this problem of mixtures in pixels, we at first attempted to
 
compile control maps whose classes were designated by different increments of
 
the more widely occurring mixtures and to train the computer to recognize them
 
by selecting specific TRAINING AREAS of known proportions of classes. Not only
 
was this a monumental task, loaded with subjective judgments and difficult to
 
calibrate, but the TESTING of accuracy of the resulting computer-derived map
 
proved to be equally monumental. After much effort we concluded that--if not
 
impossible--it was certainly not at all feasible to prepare a truly accurate
 
ground-control map. In fact, while checking for errors in the computer map, the
 
ground-control map continually had to be upgraded. A serious problem that needs
 
to be faced is: what constitutes an accurate control-data base? Our first major
 
conclusion was that, if properly trained on end-member and mixed classes, the
 
computer made a more accurate map of terrain cover than we were able to compile
 
as control data.
 

1
 



However, it is very difficult to measure precise proportions of mixtures
 
and to locate those areas in terms of Skylab S-192, or other scanner pixels,
 

especially in areas of mountainous terrain. This difficulty and the resulting
 
uncertainty and imprecision led us to experiment with techniques to calculate
 
mixes from data for end members and to use those calculated spectral responses
 
in lieu of training areas for the mix classes, extending our LANDSAT-I research
 
in the same area. Previous research in this problem has largely been confined
 
to classes of crops in flat agricultural fields. Our data and techniques apply
 
equally well to conditions ranging from croplands to wilderness.
 

Inasmuch as the radiance from a pixel is integrated over the entire area
 
of the pixel (the instantaneous field of view of the scanner), mixture-class
 
spectral responses can be determined from the known mean vectors and covariance
 
matrices of the component classes and the proportional areas occupied by each
 
component in the pixel. Spectral responses for mixed classes were calculated
 
using spectral radiance from on-site measurements. In addition, several experi­
ments were conducted using simulated LANDSAT-I multispectral (MSS)-type data to
 
show the expected improvement in accuracy of automatic classification using
 
simulated mixture-class spectral responses. We also'studied methods for .
 
determining component-classspectral responses when- there were insufficient data
 
points for conventional extraction of spectral-respQnse data.
 

Those techniques of calculating the mixes or th end members, either from­
on-site measurements or from the satellite data, are highly successful in terms
 
of shorter preparation time and greater accuracy. In addition, the calculated
 
spectral responses afford insights into what the appropriate increments of mixes
 
and what the optimum wavelength bands are for the most accurate discrimination
 
among specific classes.
 

Results are presented of a test area in mountainous terrain of south-central
 
Colorado for which an initial classification was made using simulated mixture­
class spectral response and actual LANDSAT-I MSS data. A terrain map was also
 
made from Skylab S-192 data without simulating mixture-class spectral response.
 
Evaluations of both maps are presented.
 

Atmospheric effects must be known in order to combine spectral responses
 
derived directly from LANDSAT-I or Skylab scanner tape-data with those measured
 
on site and from aircraft. A few large homogeneous sites such as large bodies
 
of deep clear water, l@rge expanses of bare rock, dense forests, large nonvegetated
 
dry lakebeds, areas of desert sand, and snow may serve as known natural calibration
 
panels on the ground. These would be visible from spacecraft, from whose sensor
 
data the atmospheric path radiance and transmittance can be derived for each
 
mission or flight. This calculated path radiance aid transmittance can then be
 
applied to correct the tape data for true radiance values of the terrain classes.
 
Used in another sense, this technique can serve as a'useful means of monitoring
 
atmospheric quality from spacecraft or aircraft, as atmospheric path radiance
 
and transmittance are measures of air quality.
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INTRODUCTION
 

Among the results of our Skylab research program on computer mapping of
 
terrain, we emphasize the following: (1) the concept of training areas and
 
test areas is not as simple as generally thought because of the problem of pixels
 
that represent a mixture of terrain classes; (2) this mixture problem needs to be
 
more widely recognized and dealt with by techniques of calculating spectral
 
signatures of mixed classes, such as those we used, or by other methods; (3) the
 
concept of a ground-control map needs to be revised; (4) atmospheric effects
 
should be considered in computer mapping of terrain and in monitoring changes in
 
the terrain; and (5) terrain features may be used as calibration panels on the
 
ground, from which atmospheric conditions can be determined and monitored.
 

The test site (fig. 1) comprises about 2,280 sq km (880 sq mi) of generally
 
wild-land terrain in south-central Colorado. It includes such landmarks as
 
Pikes Peak, the Cripple Creek mining district, and Canon City. Altitudes range
 
from 1,525 m to 4,300 m (5,000 ft to 14,100 ft). The~terrain is highly varied
 
and includes a diversity of rock types, soil, and vegetative cover, and a wide
 
range of slope angle and aspect.
 

The research was carried out as an integral part of LANDSAT-l and Skylab
 
Earth Resources Experiment Package (EREP) projects funded by the National
 
Aeronautics and Space Administration (NASA), and by in-house research supported
 
by the Martin Marietta Aerospace Corporation. Computer support was provided by
 
Colorado State University and a computer-derived map was made by the Environmental
 
Research Institute of Michigan (ERIM) as their part of separate but coordinated
 
projects funded by NASA. The maps provide further insights into the nature of
 
the mixtures problem. This research effort was conceived, initiated, and
 
coordinated by Smedes. Fulstrom measured atmospheric properties and studied their
 
effects, made on-site measurements of spectral signatures, and used these data in
 
a computer program to calculate signatures of mixtures. Ranson studied the
 
effects of mixtures using simulated LANDSAT- data as part of a dissertation for
 
an advanced degree at Colorado State University and made the principal evaluations
 
of accuracy of the terrain map prepared from Skylab S-192 data.
 

We wish to express our appreciation for the helpful comments, discussion,
 
and data furnished by Roy Mead, Gary Raines, Ralph Root, Frank Sadowski, James
 
Smith, Fred Thomson, and Earl Verbeek. Special thanks go to Phyllis Adams and
 
Martha Morris who did the typing;
 

REVISION OF WORK PLAN
 

The following two factors adversely affected the original work plan:
 

1) Although three Skylab EREP passes were made over the test area, data from
 
the first and best one were not made available to us because the contract
 

was not signed until shortly after the date of that mission. We were not
 
notified of that first mission, but found out about it through colleagues
 
at the Colorado School of Mines. We were not notified about the remaining
 
two missions until after they had been completed. Therefore, although we
 
had equipment and crews available, it was not possible to obtain measure­
ments of atmospheric parameters and on-site spectral reflectance of
 

terrain targets at the same time the Skylab data were acquired.
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2) A computer-generated terrain map was not made available to us by ERIM
 
until-late October, 1975. This was well past the original termination
 
date of the contract and close to the end of the extended-contract
 
period. Along with that map was a copy of the BRIM final report (dated
 
August, 1975). Because important terrain classes were deleted or combined,
 
that map was not acceptable. Subsequently, at our project expense, a new
 
map was prepared by ERIM and delivered on November 26, 1975.
 

Because it was impossible to obtain and compare on-site measurements of
 
atmosphere and terrain targets simultaneously with the EREP data, or to experiment
 
with the computer terrain-map data, the following research was conducted as deemed
 
vital by previous and partly overlapping LANDSAT-l studies in the same area:
 

A) Continuing research on the effects of mixtures of classes in computer
 
mapping of terrain;
 

B) developing improved techniques for establishing spectral responses of
 
mixtures;
 

C) evaluating effects of atmospheric properties on spectral responses;
 

D) determining which atmospheric properties are most important for terrain
 
mapping via satellite remote-sensor data; and,
 

E) preliminary testing of the feasibility of using natural terrain features
 
for determing and/or monitoring atmospheric conditions.
 

THE MIXTURE PROBLEM
 

The natural terrain is composed of mixtures of classes of ground cover. This
 
is true regardless of the size of the ground-resolution element (pixel) of the
 
sensor system, and holds for satellite data having resolution on the order of 100
 
square meters, to that of the microscope having resolution on the order of a square
 
micron or less. By tradition, each discipline of the natural sciences has accommo­
dated this mixture problem by means of graded orders or hierarchies of classifica­
tions. We thus have, in order of decreasing size of resolution element, such
 
classes as galaxies; stars and planets; continents and oceans; mountains, ridges,
 
valleys, plains, and deserts; woodlands, meadows, bare rock, and soil; spruce,
 
aspen, bunchgrass, graphite, and quartz veins; bark, needles, leaves, stems,
 
quartz, feldspar, and mica grains; petioles, chloroplasts, mitochondria; perthite,
 
albite containing fluid inclusions, and magnetite inclusions in biotite. Because
 
we are dealing with current satellite scanners, the resolution element or pixel
 
size we are concerned with is 65 to 80 m square (213 to 262 ft square). Any
 
given pixel, therefore, very likely will contain two or more classes such as
 
woodlands, meadow, bare rock, and soil. If a recognition processor (computer) is
 
trained to recognize only the homogeneous component classes (trees, grass, rock,
 
etc.), the overall consequences of a mixture of these classes occurring within a
 
pixel is a misclassified or unclassified pixel, which tends to make estimates of
 
the area covered by a terrain class lower than the true values (ref. 1). Errors
 
in classification due to the mixture problem alone will be 25 to 30 percent (refs.
 
2 and 3).
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There are two basic kinds of mixtures within pixels. One consists of two
 
or more homogeneous end-member component classes, such as water and dense
 
coniferous forest. This results in a boundary or edge effect. The resulting
 
spectral response would not be representative of a pixel that contained only one
 
of these classes. The other mixture consists of homogeneous mixtures of such
 
things as forest canopy and a grass, rock, or soil understory. In the first kind
 
of mixture, only those pixels along the interface will be misclassified. In the
 
second kind of mixture, large clusters of pixels throughout the forest will be
 
misclassified if only the component classes were used to train the computer
 
(refs. 4, 5, 6, 7).
 

Variations in the amount of vegetative cover result in corresponding mixtures
 
of the vegetation and underlying material. Consequently, if the computer is
 
trained to recognize only one vegetation density, then misclassifications would
 
occur for densities above or below that of the training class, within the constraint
 
of some response threshold. These misclassifications occur because, when a mixture
 
of terrain classes is contained within the instantaneous field of view (IFOV) of
 
a scanner, the spectral response obtained is unlike that of any of the component
 
classes (ref. 8). To illustrate this concept, three terrain classes were identi­
fied on graymaps of August 20, 1972 (frame no. 1028-17135): LANDSAT-l MSS data
 
that appeared representative of grassland (A), dense forest assumed to be 100­
percent cover (B), and a class representing an assumed 50-50 mixture (C) of
 
classes A and B, on the interface between them. Spectral responses were extracted
 
with 21 data points sampled for class A, 72 for class B, and 24 for class C. The
 
mean spectral-response curves for the three classes are shown in figure 2. Note
 
that the spectral response for mixture-class C is uncharacteristic of either of
 
its component classes (A and B) but falls between the two componentst curves.
 
Researchers investigating this phenomenon have found that the relationship of
 
the spectral response of a mixture to that of the component classes is a function
 
of the area of the pixel occupied by each component terrain class and the
 
respective spectral responses of those classes.
 

Because of this problem of mixtures in pixels, we at first attempted to
 
compile ground-control maps whose classes were designated by different increments
 
of the more widely occurring mixtures, and to train the computer to recognize them
 
by selecting specific training areas of known proportions of classes. This method,
 
described in detail in references 6 and 7, is extremely time consuming, loaded
 
with subjective judgments, and very difficult to calibrate. Testing the accuracy
 
of the resulting computer-derived map is even more time consuming.
 

Our conclusion, supported by other work (such as refs. 6, 7, and 9), was
 
that if the computer is properly trained on end-member components and on commonly
 
occurring mixtures, it could make a more accurate map of the terrain cover than
 
we were able to compile as control data. This cast serious doubt upon and calls
 
for reconsideration of what constitutes adequate control data.
 

However, it is very difficult to measure precise proportions of mixtures and
 
to locate those areas in terms of LANDSAT-I MSS, Skylab S-192, or other scanner
 
pixels, especially in areas of mountainous terrain. This difficulty and the
 
resulting uncertainty and imprecision led us to experiment with techniques to
 
calculate mixes from data for end members and to use those calculated radiance
 
data in lieu of training areas for the mix classes. Previous research in this
 
problem has largely been confined to classes of crops in flat agricultural fields.
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Our data and techniques will apply equally well to conditions ranging from crop­
lands to wilderness.
 

Inasmuch as the radiance from a pixel is integrated over the entire area of
 
the pixel (the instantaneous field of view of the scanner) mixture-class signatures
 
can be determined from the known mean vectors and covariance matrices of the
 
component classes and the proportional areas occupied by each component in the
 
pixel.
 

Two approaches were taken. One was to measure the reflectivity of pure end­
member components on site and then calculate radiances of various mixtures. The
 

- other was to use the satellite data itself to extract the radiance data for known 
end-member targets and then calculate radiance for various mixtures. Simulated 
LANDSAT-l MSS-type data were used. These twb approaches show the expected-improve­
ment in accuracy of automatic classification using simulated mixture-class 
radiances. In addition, methods have been developed for determining the component­
class radiances from mixtures when there were insufficient data points for 
conventional radiance extraction of the end-member components. 

CALCULATED SPECTRAL RESPONSES FOR MIXTURES
 

Basic Concept
 

There is a basic problem in using simulated mixture radiances to identify
 
ground-resolution elements that contain mixtures. The problem is in obtaining
 
representative spectral-response data for the end-member components of the mix.
 
A component class is an arbitrarily selected group of materials that makes up a
 
terrain type which is not readily subdivided and which is useful for land­
management purposes. The component classes must be degcribable in quantitative
 
terms such that map boundaries can be drawn around them. Because these component
 
classes may be found in combination with others, as mixtures, they constitute
 
end-members of the mixtures. For example, in an area where there is a sparse
 
covering of grass with bare soil showing through, the grass and soil may be
 
considered as two discrete'mapping classes. Because of the 0.4-ha (1-acre)
 
resolution of the LANDSAT-I scanner, the scene would be viewed as a mixture of
 
grass and bare soil, so these two classes would most likely be combined into one
 
component class for analysis. If another class were identified as dense forest,
 
then any time enough trees existed on the grass-soil unit to affect the scanner
 
response from a pixel, a.mixture of these two classes (forest and grass-soil
 
association) would exist. Discrete mapping-class determinations can usually be
 
considered a function of the natural associations, the objectives of the user,
 
spectral radiance, and the limitations of the MSS data.
 

When selecting component classes for mapping mixtures, care must be taken to
 
avoid situations where the data for a class form a multimodal distribution.
 
Multimodal distributions occur where the response data for a class are affected
 
by variables such as slope-and aspect, vegetation vigor, underlying soil spectra,
 
and sensor-scan-angle effects. The standard method for dealing with this problem
 
is to divide the multimodal class distribution into subclasses as a functibn of
 
slope, etc., classify the data, and then combine the results for each subclass
 
(refs. 10, 11) for final',display.
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Calculations From On-Site Measurements
 

Mixtures.--For on-site and near-surface measurements (negligible atmospheric
 
absorption and path radiance) the radiance, Nt, of a pure target end member can
 
be given as
 

N = + C. ()t i 

Where H is the total solar irradiance, p is the target reflectivity, and N is a 
noise or error term, the radiance from a mixture of n targets, Nm, can be 
approximated as 

N = H (p1A1 + P2A2 + P3A3 + ... p A ) ± N (2) 

m 11f n n
 

where Pl, P2, etc. are the reflectivity signatures of each component target, and
 
Al, A2 , etc. are the fractional proportions of the pixel that each component
 
target occupies. The assumption is made that none of the component targets has
 
strong specular reflectivities.
 

Nt is the total solar radiance. Because the target reflectivity p, changes
 
with wavelength, Nt will also change as a function of wavelength. The noise or
 
error term, C, includes re-reflected radiation such as the cloud-bright-spot
 
phenomenon (ref. 12) and the effect of scattered light affecting the target. For
 
example, a white object surrounded by green objects will appear slightly gr&en.
 
In terrain mapping, this phenomenon will be most pronounced at boundaries, and will
 
disappear or become negligible away from those boundaries. The effect will appro­
priately be included in the solution of the mixture problem, dealt with below.
 

Note that even for near-surface conditions, there are atmospheric effects to
 
be considered (H, in equations 1 and 2, above).
 

In order to simulate mixed-target spectral response, a knowledge of the total
 
incoming solar irradiance (H), the pure target reflectivity, and the fractional
 
area of each target need to be known. In this study the spectral distribution
 
and magnitude of the incoming solar irradiance were measured for various sun
 
angles and atmospheric conditions (refs. 13, 14); the pure target reflectivities
 
were measured on site. The fractional area occupied by each target is simply
 
varied to simulate various combinations of mixtures.
 

The first mixture problem addressed was that of Precambrian Pikes Peak-

Granite and Coniferous Forest. This is a very simple and common mixture.. The
 
reflectivity for the Pikes Peak Granite and the total incident solar irradiance
 
were measured on site (as discussed in the following sections) while the reflecti­
vity signature for Coniferous Forest was arbitrarily taken from reference 12
 
because of the lack of opportunity to get above the forest for proper measurement
 
in this test site. The data are assumed to be sufficiently close to be adequate
 
for this test. Figure 3 shows all three of the parameters. The resultant simu­
lations of component and mixture signatures for the LANDSAT-1 bands and for the
 
continuous spectral region from 0.5 to 1.1 pm are shown in figures 4 and 5.- It
 
is interesting to note that in MSS-band 6, forest and granite are indistinguishable,
 
as are all mixtures of the two (fig. 4).
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Calculations from LANDSAT-1 Data
 

Modeling of spectral responses of mixtures.--Because we lacked Skylab
 
S-192 tapes and the capability of working with such tape formats, we continued
 
our studies using LANDSAT-1 data. This was appropriate inasmuch as the mixture
 
problem is common to both LANDSAT-l and Skylab scanner data, and the results are
 
applicable to both. Two approaches for modeling were used in this study. The
 
first is a widely reported method that describes a mixture-class signature in
 
terms of weighted combinations of component-class mean vectors and covariance
 
matrices (refs. 1,, 2, 8, and 13). The model describes the mean spectral 
response from a pixel as: 

NiM(3) 

i=l
 

where MP. = mean-response vector for a mixture of N component classes;
 
1 

P. = relative amount (proportion) of class i;
 

M. = mean-response vector for the ith component class.
 

The above relationship assumes statistical independence of normally distri­
buted data points belonging to class i.
 

Assuming statistical independence for variables associated with elements
 
from different object classes, the relationship for a mixture-class covariance
 
matrix can be written as:
 

Cp = N P.C. (4) 

i i 

where Cp = covariance matrix for a mixture of N component classes;
 

Pi = relative amount (proportion) of class i;
 

C. = covariance matrix describing the distribution of the ith component class.
 

Equations 3 and 4 represent the model used for automatic classification of
 
mixtures of classes having a maximum-likelihood processing algorithm. For
 
supervised-learning recognition processors, component-class mean vectors and
 
covariance matrices must be determined and proportions for each possible mixture
 
must be specified. The approach presented here is based on modeling the spectral
 
response within a single pixel and should be applicable to standard maximum­
likelihood algorithms in such programs as RECOG (refs. 10, 15, 16), which we
 
used because of its ready availability, LARSYS (ref. 16), and others that involve
 
classification point by point.
 

Most of the work reported in the literature utilizing this modeling technique
 
required sophisticated algorithms that calculate various mixture-class signatures
 
and select the one that gives the closest approximation to that from a given
 
pixel. In our study, however, we used the model to obtain a set of spectral
 
signatures for specified mixtures of component-terrain classes that are used by
 
the pattern-recognition routines to identify all MSS data points that show that
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response. The value of this method lies in its straightforward applicability to
 
the existing-RECOG processing sequence which was available to us, thus eliminating
 
the need to develop new processing algorithms.
 

Equation 3 was used to simulate the spectral response-expected from a mixture
 
of the two component classes (A and B) whose extracted mean vectors are shown in
 
figure 2. Figure 8 shows the resulting simulated mean vector (D) for a 50-percent
 
mixture of the two classes, i.e., PA = PB = 0.5. A likely explanation for the
 
difference between curves C and D is the difficulty of accurately estimating cover
 
densities from high-altitude aerial photographs used as ground control (in this
 
case Mission 205, NASA RB-57 photographs having an approximate scale of 1:100,000)
 
and the difficulty of locating nonhomogeneous (mixture) training sets on graymaps
 
(ref. 17).
 

When a set of representative component terrain-class spectral responses are
 
obtained, then the response of any mixture of these component classes'may be
 
determined using equations-3 and 4. :A computer program MIX was written to take
 
two component-class signatures and two proportion vectors and calculate the.
 
spectral response of any combination. The method involves scaling the mean vector
 
and covariance matrix of a component class by a proportion factor and adding the
 
result to the scaled mean vector and covariance matrix of another component class. 
The proportion factors p must be within the set 0 < p < l'and %p = 1. The result­
ing spectral signature may then be used to classify all pixels in a set of LANDSAT-l 
MSS data that show a similar spectral response. 

The second modeling technique used linear regression to-predict the qpectral
 
response of a-mixture-containing pixel on the basis of mean-response vectors for
 
known mixtures of terrain classes. The regression model for a two-component
 
mixture takes the form:
 

Y. = C + B(X) (5) 

where Y. = estimated mixture response in wavelength band i; 

C = constant (Y intercept); 

B = coefficient (slope of regression line); 

X = proportion of one component of the mixture in the pixel scene. 

Mead (ref. 5) indicated that this method may be useful in estimating the
 
spectral response for varying densities of ponderosa pine, but also noted that
 
the mean spectral response may be affected by the arrangement of distribution
 
of ponderosa pine within a training set as described by the standard deviation.
 

The methods presented below, with the exception of signature extraction,
 
were developed for mixtures of two component classes. The following is a
 
synopsis of the techniques used to obtain component- and mixture-class spectral
 
signatures for automatic analysis of MSS data:
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METHOD TECHNIQUE COMPUTER PROGRAM USED 

Extraction of Statistical sampling of MSS RECOG (Phase 2, Appendix A, 
spectral response data points B) (see refs. 15 and 16) 

Estimation of Solving simultaneous equations SIGCALC 
spectral response 
of components Linear regression STAT38R 

Simulation of Addition of weighted mean MIX 
spectral response vectors and covariance 
of mixtures matrices 

Extraction of spectral response.--When areas on the ground have been satis­
factorily identified as containing a known terrain class or mixture of terrain
 
classes and the graymap coordinates have been determined, then spectral responses
 
may be obtained by statistically sampling these points. This process is known
 
as signature extraction and represents the conventional mode for obtaining
 
spectral responses that are assumed to characterize a class of objects. The
 
designated data points known to contain a terrain class are sampled and the
 
overall mean is determined for each channel of MSS data. These means, four for
 
LANDSAT-l, are collectively known as the mean vector. Because of the inherent
 
variability found in natural objects this set of statistics is obtained. The
 
technique used in this work is contained in the RECOG routines, specifically
 
Phase 2 (Appendix A). The formulas used in these routines are described in
 
Appendix B. The same approach applies to Skylab S-192 data.
 

Estimating component-class spectral responses.--One method for estimating
 
component-class spectral responses from known mixture-class responses involves
 
solving two equations containing two unknowns. The spectral responses for
 
unknown mixture classes are assumed to be related and can be described in
 
equation form in the following manner:
 

Pa (MSRa)i + Pb(MSR b)i = M (6) 

where Pa, Pb = proportions of classes A and B in the training set, respectively;
 

(MSRa)iV (MSb)i =.mean spectral responses of the component classes A and B,
 

respectively, in wavelength band i;.
 

lip = mean spectral response recorded at the scanner for the mixture of
 

classes A and B in wavelength band i.
 

The terms Pa, Pb, and M2 are known for each training set, leaving the mean
 
spectral responses of the component classes A and B to be determined. If two
 
sets of spectral response@ exist describing training sets having similar com­
ponents but of different proportions, then it is possible to calculate the two
 
component classes by solving the two equations simultaneously. -A general solution
 
for the two-component-class case takes the form:
 

(MS ) i =MP.liPa2 - P2i 1l (7) 

Pa Pb Pb 2 P a1 
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Equation 7 produces the mean spectral response for class B. To derive the
 
mean spectral response for class A, the result can be substituted into equation
 
6 which can be rewritten as:
 

(MSR a) i = MPi - Pb(MS)i (8) 

P 
a 

If the elements of the covariance matrix for a terrain-class spectral
 
response behave in a similar fashion, then this method could be used to obtain
 
a calculated covariance matrix for a component-terrain class. The covariance
 
matrix for a four-channel case such as LANDSAT-l can be treated as a 10-element
 
array to simplify the calculations. This treatment can be done because the off­
diagonal elements of the covariance matrix are mirror images of each other.
 

A computer program called SIGCALC was written to take two extracted-mixture
 
terrain-class spectral responses and calculate the mean vector and covariance
 
matrix for the component classes. In addition, the proportions of the component
 
classes in the training set determined from control data must be specified.
 
Situations where
 

P p 1
Pa2Pbl ba
Pb1 =2 
P2 a1
 

must be avoided because the denominator of equation 7 cannot equal zero.
 

The above method for determining component-class spectral signatures provides
 
reliable results if the proportion estimates for the component classes are
 
accurate. However, it is often difficult to measure the proportions of component
 
classes with the accuracy needed to estimate representative component-class
 
spectral responses. Also, owing to the variability of spectral responses for
 
component classes found in nature, it was decided to use another method that
 
estimates the component-class spectral responses for more than two mixture-class
 
responses. This method involves using a stepwise linear regression analysis.
 

The stepwise linear regression analysis used is an applications program
 
available at Colorado State University called STAT38R (refs. 15, 16). This
 
program was used to develop a regression model that estimates the spectral
 
response of a terrain class, either a component or mixture, given a set of
 
mixture-class spectral responses and the proportions of the component classes.
 

Simulations of LANDSAT-l data.--In order to examine the applicability of
 
modeling mixture-class spectral signatures for automatic classification of
 
LANDSAT-l MSS data, a series of experiments was performed using simulated data.
 
These experiments included: identifying the expected improvement of automatic
 
classification using modeled mixture terrain-class spectral responses versus
 
conventional component-class analysis, comparing modeled and extracted mixture­
class mean vectors and covariance matrices, and analyzing the spectral-responses
 
calculation technique.
 

Creation of simulated data fields.--The automatic classification procedure
 
conducted for these experiments approximates that of conventional LANDSAT-l MSS
 
maximum-likelihood analysis (refs. 10, 14, 15, 16) with the exception of using
 
modeled mixture-class spectral responses and simulated LANDSAT-l data. The
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procedure is: 1) Examine control data on site to establish locations of
 
representative training sets, determining the line and column numbers of the
 
training sets on graymaps and extracting the mean vectors and covariance matrices
 
from the data. 2) Simulate mixture signatures using the component-class


"signatures obtained in step 1 using a program which requires the mean vectors
 
and covariance matrices of the component classes as input, as well as the
 
mixture proportions desired for each mixture class. The simulated mean vectors
 
and covariance matrices are punched on computer cards by this program for
 
future use. 3) Generate a random-normal data field for each class. This is
 
done by a program which uses a random-number generator that selects points as
 
belonging to a given class based on the mean spectral' response in each LANDSAT-l
 
MSS band and the appropriate covariance matrix, all within a Gaussian distribu­
tion. The overlying assumption here is that wild-land terrain classes are
 
normally distributed, which conforms to the assumptions imposed on the mixture
 
modeling method (ref. 8) and maximum-likelihood pattern-recognition algorithms.
 
A program was designed to create simulated data fields of specified size for
 
each class described by a mean vector and covariance matrix. The generated
 
data points are written on a permanent file and stored for later use by any
 
routine that uses data in'the same format.
 

The simulated data fields for each of the component and mixture classes
 
were generated to contain 1,000 spectral-response values in each wavelength
 
band, each point being described by four variables (spectral response in each
 
wavelength band).
 

The data fields generated represent LANDSAT-l MSS data with the added
 
advantage of "absolute" ground-control information. 'Using these fields it is
 
possible to analyze the'accuracy of automatic classification using conventional
 
maximum-likelihood routines and mixture terrain-cla's modeling method. An
 
example data field is shown in figure 7 as a graymap of a nine-class field. The
 
class fields can be seen as horizontal bands 100 points across and 10 points
 
down.
 

Classification of'component classes.--The initial experiment performed
 
involved using a classification of simulated data that contained fields of two
 
component classes and three mixture classes modeled from these components. Two
 
component classes, Grassland (denoted by the symbol G), and Forest (F), were
 
identified on NASA RB-57 (scale 1:100,000) color IR aerial photographs and
 
located on a graymap of August 20, 1972, LANDSAT-l MSS (frame no. 1028-17135)
 
data over south-central'Colorado. Spectral responses were extracted and then 
used to obtain mixture-class spectral responses with program MIX (ref, 10). 
The mixture classes were simulated by means of a specified proportion increment 
of 0.25, producing three mixture classes of 75 percent Grassland-25 percent 
Forest (C), 50 percent Grassland-50 percent Forest'(D), and 25 percent Grassland­
75 percent Forest (E). The mean spectral-response curves for the five classes 
are-shown in figure 8. 

The simulated data fields were then treated as actual LANDSAT-l MSS data
 
for purposes of classification. Component-class spectral responses were ex­
tracted from those fields created from component-cihss responses (top three
 
rows, fig. 7) and used to classify the entire set of simulated data. The
 
classification display is shown in figure 9, the Grassland field at the top and
 
the Forest field at the bbttom. The mixture-class fields are between the
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components, C nearest the Grassland field, D in the middle, and E nearest the
 
Forest field. Note the number of unclassified points (seen as blanks in the
 
display) in each of the mixture-class fields. These points were thresholded
 
out at the 11.100 percentile as not belonging to either of the component
 
classes. Misclassifications of the mixture-class fields occur only in fields
 
C and E, points being misclassified as the component class which has the
 
highest proportion in the mixture.
 

The absolute classification accuracies were determined for each class.
 
Because each data point was created as a snecified class, a point was considered
 
misclassified if it was classified as any class other than that specified. The
 
results are summarized in the following classification-confusion matrix (CCM)
 
listing each class, the number of points that were classified correctly, and
 
the number of points misclassified as other classes. 

CLASS F E D C G UNCLASSIFIED 

FOREST (F) 1,000 

25 PERCENT GRASSLAND­
75 PERCENT FOREST (E) 148 852 

50 PERCENT GRASSLAND­
50 PERCENT FOREST (D) 1,000 

75 PERCENT GRASSLAND­
25 PERCENT FOREST (C) 376 624 

GRASSLAND (G) 1,000 

The true class name and symbol are on the left side of the table and the symbols 
of classes to which a point was assigned are across the top. The diagonal
 
elements of the matrix represent accurate classifications. The off-diagonal
 
elements represent either Type I or Type II errors, defined as follows:
 

Decision True Classification
 

X belongs to A X does not belong to A
 

Classify as A Correct decision Type I error
 

Do not classify as A Type II error Correct decision
 

The overall accuracy of this classification was only 40.0 percent, which in most
 
LANDSAT-l applications should be considered quite poor even though the component
 
classes were classified perfectly.
 

Classification of two component and three mixture classes:--The objectives
 
of the study presented in this section were twofold. The first was to verify
 
that the technique of modeling mixture-class spectral responses produces signa­
tures that can be used to classify pixels that contain mixtures. The second,
 
assuming the first to be satisfied, was to determine the increase in information
 
acquired using modeled mixture-class spectral responses compared with classifi­
cation conducted using only component-class spectral responses.
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The same data field generated for the analysis of component classes was
 

used for this experiment. Treating the data file as actual LANDSAT-l MSS data,
 
component-class mean vectors and covariance matrices were extracted. Spectral
 
responses for the mixture class fields were not extracted from the data but
 
instead were modeled from the component-class mean vectors and covariance
 
matrices. This procedure follows that which could be used with actual LANDSAT-1
 
data because representative mixture-class training sets are usually difficult
 
to locate in natural situations. The two extracted-component and three modeled
 
mixture-class spectral responses were used to classify the simulated data file.
 

At this point it was desirable to compare modeled and extracted mean
 
vectors and covariance matrices. The spectral responses of the mixture classes
 
were extracted from the simulated data and compared with those that were modeled
 
from the two component classes, as follows:
 

Extracted Modeled
 

r'
GRASS
CLASS 

BAND 1 2 3 4
 
MEAN 32.45 34.13 39.10 19.40
 
STANDARD
 
DEVIATION 1.07 1:82 1.54 .88
 

CLASS 75 PERCENT GRASS-25 PERCENT FOREST
 
BAND 1 2 3 4 :1 2 3 4 
MEAN 28.57 28.48 34.40 17.26 28.57 28.46 34.35 17.21 
STANDARD 
DEVIATION 1.06 1.8b 1.65 1.01 1.04 1.72 1.66 .99 

CLASS 50 PERCENT GRASS-50 PERCENT FOREST
 
BAND 1 2' 3 4 1 2 3 4
 
MEAN 24.71 22.86 29.62 15.04 24.68 22.78 29.61 15.01
 
STANDARD
 
DEVIATION 1.05 1.,5,4 1.74 1.11 1.00 1.54 1.76 1.09
 

CLASS 25 PERCENT GRASS-75 PERCENT FOREST
 
BAND 1 2 3 4 1 2 3 4
 
MEAN 20.84 17.14 24.93 12,91 20.80 17.11 24.86 12.82
 
STANDARD
 
DEVIATION .99 1.42 1.87 1.21 .97 1.35 1.86 1.18
 

CLASS FOREST
 
BAND 1 2' 3 4
 
MEAN 16.92 11.44 20.12 10.63
 
STANDARD
 
DEVIATION .95 1.12 1.96 1.26
 

The standard deviations 'shown represent the square root of diagonal covariance
 
elements. The results indicate that extracted and modeled mean and standard­
deviation vectors vary by less than 0.1 of one standard deviation unit.
 

Figure 10 shows the classification results obtained by adding the modeled
 
mixture-class responses t6 the data set. The classification-confusion matrix
 
of the data of figure 10 is as follows:
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CLASS F E D C G UNCLASSIFIED 

FOREST (F) 997 3 

25 PERCENT GRASSLAND­
75 PERCENT FOREST (E) 9 977 14 

50 PERCENT GRASSLAND­
50 PERCENT FOREST (D) - 8 967 25 

75 PERCENT GRASSLAND­
25 PERCENT FOREST (C) 12 970 18 

GRASSLAND (G) 8 992 

The classification results indicate that simulated mixture-class spectral
 
responses can be used to classify MSS data using the RECOG program. The classi­
fication information and accuracy were also greatly increased by the use of
 
mixture responses. The overall classification accuracy using this technique
 
increased to more than 98 percent, with only a slight decrease in the accuracies
 
of component classes. It should be noted here that automatic classification of
 
generated data fields will normally produce high classification accuracies owing
 
to the lack of "alien objects" which are often found in real-life situations
 
(ref. 3). The accuracies produced here should, instead, be considered a measure
 
of the effectiveness of the classification technique. These results do indicate
 
that it should be possible to accurately identify a pixel containing a mixture,
 
using this method.
 

Classification of three component and six mixture classes.--The successful
 
results obtained in the five-class analysis warranted further study, so a
 
additional component class was added to the data set. A mean vector and
 
covariance matrix for Water (W) was extracted from August 20, 1972, LANDSAT-l
 
MSS data. Mixture spectral responses were modeled from the Grassland component
 
class and the new Water class, using a proportion increment of 0.25. The result­
ing three mixture classes and the component class combined with the original
 
spectral-response set, bringing the total number of spectral responses used to
 
nine. Figure 11 shows the mean spectral-response curves for the Grassland-Water
 
mixture classes. The separation of these classes was adequate in all bands.
 
The mean spectral-response curves for all nine classes are illustrated in
 
figure 12.
 

The classification procedure followed that of all previous experiments, a
 
new data'field being generated to include all nine classes. The classification
 
display is shown in figure 13. A classification-confusion matrix for the nine­
class analysis is as follows:
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CLASS F E D C G Q R S W UNCLASSIFIED 

FOREST (F) 997 3 

25 PERCENT GRASSLAND­
75 PERCENT FOREST (E) 8 982 10 

50 PERCENT GRASSLAND­
50 PERCENT FOREST (D) 8 962 22 8 

75 PERCENT GRASSLAND­
25 PERCENT FOREST (C) 10 954 12 24 

GRASSLAND (G) 14 986 

75 PERCENT GRASSLAND­
25 PERCENT WATER (Q) 6 18 976 

50 PERCENT GRASSLAND­
50 PERCENT WATER (R) 999 1 

25 PERCENT GRASSLAND­
75 PERCENT WATER (S) 996 4 

WATER (W) 962 38 

These results show a good classification accuracy for-all the'classes and an
 
average classification accuracy of 98 percent. Note that the greatest confusion
 
exists between mixture classes that have the same proportion factor for a given
 
component class, e.g., 75 percent Grassland-25 percent Forest and 75 percent
 
Grassland-25 percent Water. This is probably the result of masking of the
 
lesser components by the Grassland response. It suggests that increments
 
smaller than 25 percent would not be accurately classified.
 

The following comparison of the modeled and extracted mean and standard
 
deviations was made as an additional check of the method of modeling mixtures:
 

Extracted Simulated
 

CLASS GRASSLAND
 
BAND 1 2 3 4
 
MEAN 32.49 34.19 39.09 19.46
 
STANDARD
 
DEVIATION 1.11 191 1.49 .92
 

CLASS FOREST
 
BAND 1 2 3 4
 
MEAN 16.95 11t48 20.19 10.67
 
STANDARD
 
DEVIATION .95 115 1.95 1.26
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Extracted Simulated
 

CLASS WATER
 
BAND 1 2 3 4
 
MEAN 16.72 8.13 3.98 0.24
 
STANDARD
 
DEVIATION .55 .74 .63 .44
 

CLASS 75 PERCENT GRASSLAND-25 PERCENT FOREST
 
BAND 1 2 3 4 1 2 3 4. 
MEAN 28.57 28.48 34.40 17.26 -28.60 28.51 34.36 17.5p 
STANDARD 
DEVIATION 1.06 1.80 1.65 1.01 1.06 1.75 1.62 1.00 

CLASS 50 PERCENT GRASSLAND-50 PERCENT FOREST
 
BAND 1 2 3 4 1 2 3 4
 
MEAN 25.68 22.81 29.61 15.01 24.72 22.84 29.64 15.06
 
STANDARD
 
DEVIATION 1.00 1.52 1.77 1.08 1.02 1.57 1.73 1.1p
 

CLASS 25 PERCENT GRASSLAND-75 PERCENT FOREST 
BAND 1 2 3 4 1 2 3 4 
MEAN 20.83 17.10 24.82 12.83 20.84 17.16 24.91 12.87 
STANDARD 
DEVIATION 1.01 1.33 1.82 1.17 .94 1.38 1.84 1.18 

CLASS 75 PERCENT GRASSLAND-25 PERCENT WATER
 
BAND 1 2 3 4 1 2 3 4
 
MEAN 28.49 27.62 30.30 14.59 28.55 27.67 30.31 14.65
 
STANDARD
 
DEVIATION 1.01 1.62 1.35 .83 1.00 1.69 1.33 .82
 

CLASS 50 PERCENT GRASSLAND-50 PERCENT WATER
 
BAND 1 2 3 4 1 2 3 4
 
MEAN 24.55 21.04 21.47 9.77 24.61 21.16 21.53 9.85
 
STANDARD
 
DEVIATION .85 1.39 1.20 .76 .87 1.44 1.14 .71
 

CLASS 25 PERCENT GRASSLAND-75 PERCENT WATER
 
BAND 1 2 3 4 1 2 3 4
 
MEAN 20.67 14.63 12.75 5.00 20.66 14.64 12.76 5.04
 
STANDARD
 
DEVIATION .71 1.11 .91 .68 .73 1.14 .92 .59
 

As in the case of the five-class classification, the simulated-mixture signatures
 
closely approximate those extracted from the generated data fields. These results
 
imply that if a representative set of component signatures can be found, then
 
mixtures of these classes may be successfully modeled and used to classify pixels
 
containing those mixtures.
 

Tests of technique of extracting spectral responses.--In wild-land areas
 
where large areas of homogeneous terrain classes are difficult to locate, repre­
sentative spectral response must be obtained from a relatively small number of
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pixels. In some areas it is even difficult to find any pixels that contain
 
only one terrain class (ref. 18). Consequently, methods to obtain component
 
terrain-class spectral responses from pixels containing mixtures of terrain
 
classes in known proportions have been investigated (for example, ref. 19).
 
The method assumes that the data are from a Gaussian distribution and each
 
spectral response has a common covariance matrix, and involves solving a set
 
of linear equations. Our study used a similar but much simplified technique to
 
attempt to acquire component-class spectral responses from training-set data
 
of terrain classes of known mixtures. A test of the method to obtain component­
class spectral responses using equations 8 and 9 was conducted using simulated
 
data fields created in the same manner as' the preceding experiments. The
 
specific objectives of this test were: 1) to verify that this method could be
 
used to determine component-class spectral responses suitable for automatic
 
mapping of LANDSAT-1 type MSS data when only mixed-terrain classes were available
 
for signature extraction, and 2) to determine the degree of classification
 
accuracies that can be expected when implementing these estimated spectral
 
responses as input into the model and the computer classification program (RECOG
 
in this study).
 

The initial test used the random-normal data fields for the nine-class
 
analysis described above:, Spectral responses were 'extracted from the data for
 
mixture classes 75 percent Grassland-25 percent Forest (C), 50 percent Grassland­
50 percent Forest (D), 75 percent Grassland-25 peraent Water (Q), and 50 percent
 
Grassland-50 percent Waier (R). The pairs of extracted spectral responses and
 
their corresponding proportion factors were input and the component spectral
 
responses for Grassland, Forest, and Water were calculated.
 

Comparison between component-class mean and standard-deviation vectors ex­
tracted from the data set and those calculated is as follows:
 

Extracted Calculated 

CLASS GRASS 
BAND 1 2 3 4 1 2 3 4 
MEAN 31.93 33;64 38.58 18.89 32.05 33.70 38.62 19.05 
STANDARD 
DEVIATION 1.14 1..91 1.53 .92 1.30 1.97 1.48 .97 

CLASS FOREST 
BAND 1 .]i 3 4 1 2 3 4 
MEAN 16.43 10.93 19.69 10.13 16.41 10.94 19.58 9.95 
STANDARD 
DEVIATION .92 1.19 1.99 .96 1.05 1.21 1.98 1.31 

CLASS WATER 
BAND 1 2 3 4 1 2 3 4 
MEAN 16.21 7.61 3.50 0.04 :16.17 7.70 3.64 0.00 
STANDARD 
DEVIATION .63 80 .66 .19 .61 .82 .76 .52 

The calculated component-class spectral responses closely approximate the extracted
 
values, the average deviation being 0.08 for mean vectors and 0.15 for standard
 
deviations.
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In order to compare the effectiveness of estimated versus extracted
 

specttal responses, the nine-class data field was classified by the computer.
 

The class spectral responses used as input included the three estimated component­

and six mixture-class spectral responses modeled from the estimated spectral
 

responses. The classification accuracy obtained was approximately 96 percent
 

compared to 98 percent obtained when using extracted-component spectral responses.
 

The classification map is shown in figure 14. The classification-confusion matrix
 

of this data set is as follows:
 

CLASS F E D C G Q R S W UNCLASSIFIED 

FOREST (F) 984 13 3 

25 PERCENT GRASSLAND­
75 PERCENT FOREST (E) 17 973 10 

50 PERCENT GRASSLAND­
50 PERCENT FOREST (D) 20 964 11 4 1 

75 PERCENT GRASSLAND­
25 PERCENT FOREST (C) 27 876 25 65 

GRASSLAND (G) 59 907 34 

75 PERCENT GRASSLAND­
25 PERCENT WATER (Q) 28 24 2 942 6 

50 PERCENT GRASSLAND­
50 PERCENT WATER (R) 1000 

25 PERCENT GRASSLAND­
75 PERCENT WATER (S) 1000 

WATER (W) 1000 

An overall classification accuracy of 96.1 percent was obtained, indicating that
 

good classification results can be expected using this method.
 

The simulated data fields that contain the mixture-class spectral responses
 

used to calculate the component classes represent uniform data. That is, each
 

data point (pixel) represents a similar class of objects. Because this condition
 

is sometimes difficult to find in natural situations, the technique was tested
 

for mixture spectral responses extracted from nonuniform data or training sets.
 

Nonuniform training sets can be defined as areas that contain a mixture of
 

component classes having single pixels containing various proportions'of the
 

components. If the nonuniform training set is considered in its entirety, the
 

mean spectral response should approximate that from a uniform training set having
 

The concept of uniform and nonuniform
the same proportions of component classes. 

one containing a
data is illustrated in figure 15 as two 20-pixel training sets, 


uniform mixture of two component classes (white and shaded) (a) and one containing
 

but both having identical overall proportions of
a nonuniform mixture (b), 

component classes. In the uniform training set each pixel (outlined by heavy
 

black lines) contains a 50-percent mixture of two component classes, producing
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a 50-percent mixture within the entire training set. Because the spectral­
response from a pixel is integrated at the scanner optics, the within-cell
 
distribution of the components does not affect the between-cell variance of
 
the training set. The nonuniform training set is composed of some pixels con­
taining 100 percent of one class, some containing 100 percent of the other
 
class and some that contain various mixtures of the two components. The overall
 
mixture proportion averaged over the entire training set is 50 percent of each
 
component class. Referring to equation 14 (Appendix C), it can be easily
 
deduced that the mean vectors obtained from each training set should be equal,
 
assuming constant illumination and no within-class variability. By equation 16
 
(Appendix C), however, it can be seen that covariance matrices will most likely
 
vary owing to the between-pixel variability existing in the nonuniform training
 
set.
 

To demonstrate these-statements, mixture-class spectral responses from
 
simulated nonuniform data were extracted and compared with those extracted
 
from uniform data created with the same input signatures. A comparison of
 
extracted and calculated mean and standard-deviation vectors of the component
 
classes for uniform and nonuniform(*) data are as follows:
 

'xtracted Calculated
 

CLASS GRASS 
BAND 1 2- 3 4 11 2 3 4 
MEAN 32.02 33.,68 38.60 18.97 -31.81 33.69 38.67 18.77 
STANDARD 1 ' 
DEVIATION 1.16 t17 1.52 .96 1.08 1.86 1.64 1.00 

CLASS GRASS* 
BAND 1 . 2 3 4 1 2 3 4 
MEAN 32.02 33.68 38.60 18.97 31.98 33.67 38.61 18.95 
STANDARD 
DEVIATION 1.16 1.97 1.52 .96 5.17 8.59 11.15 6.02
 

CLASS FOREST
 
BAND 1. 2 3 4 "1 2 3 4
 
MEAN 16.43 10,93 19.69 10.13 16.53' 10.93 19.55 10.13
 
STANDARD
 
DEVIATION .92 1.19 1.99 1.29 1.04 1.21 .88 1.31
 

CLASS, FOREST* -

BAND 1 2 3 4 1 2 3 4 
MEAN 16.43 10.93 19.69 10.13 16.47 10.93 19.75 10.18 
STANDARD 
DEVIATION .92 1,9 1.99 1.29 5.02 7.32 6.33 4.35 

CLASS WATER
 
BAND 1 2. 3 4 1 2 '3 4
 
MEAN 16.23 7:62 3.47 0.03 16.27 7.71 3.53 0.00
 
STANDARD
 
DEVIATION .63 .79 .67 .17 .63 .84 .56 .47
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Extracted Calculated
 

CLASS WATER* 
BAND 1 2 3 4 1 2 3 4 
MEAN 16.23 7.62 3.47 0.03 16.28 7.71 3.47 0.09 
STANDARD 
DEVIATION .63 .79 .67 .17 10.10 16.50 22.20 12.10 

Note the close agreement of means and standard deviations derived from the uniform
 
data and the close agreement of means but nonagreement of standard deviations
 
derived from the nonuniform data.
 

The consequence of using such large covariance matrices obtained from the
 
nonuniform data is illustrated in figure 16. The nine-class simulated data
 
fields were classified with the calculated component spectral responses listed
 
above. The first classification map (fig. 16a) was obtained using spectral
 
responses calculated from uniform training sets and the second (flg. 16b) was
 
obtained using spectral responses calculated from nonuniform training sets. The
 
classification accuracy of component classes obtained for the uniform sets was
 
99.1 percent, whereas the accuracy obtained for the same classes in the nonuniform
 
sets was only 33.3 percent. The latter figure is misleading in that the nine­
class data set was classified as 97.9 percent Grassland, 1.7 percent Forest and
 
0.4 percent Water. These figures indicate that the class distribution for
 
Grassland was improperly defined by the covariance matrix.
 

The above study, coupled with the frequent lack of uniform mixture-class
 
training sets in natural situations, lends itself to implementing an artificial
 
covariance matrix for describing distributions of component classes. The use of
 
a.covariance matrix common to each class was discussed (ref. 8) for another, more
 
sophisticated, technique of calculating spectral responses. Mean vectors for
 
component classes can be successfully calculated froi nonuniform mixture-class
 
training sets, as shown above. If a common covariance matrix that describes
 
the proper distribution can be found, then with the calculated mean vectors, the
 
spectral response should be representative of its respective class. To verify
 
this, the component-class mean vectors calculated from nonuniform mixture-class
 
training sets and various common covariance matrices were used to classify the
 
simulated nine-class data fields.
 

The first classification utilized a covariance matrix having diagonal
 
elements (2ii.) of 1,3,3,1 and off-diagonal elements of 0.5. The determinations
 
for the covariance elements were made by a priori inspection of covariance
 
matrices for component and mixture classes extracted from simulated uniform data.
 
The standard deviations in each band represent an estimate of the average standard
 
deviations for all classes. The off-diagonal elements were established to be
 
0.5 as an estimated average of the correlation values for all of the nine-class
 
correlation matrices.
 

The classification procedure followed that of all earlier runs, the mixture­
class mean vectors being modeled from the component-class mean vectors calculated
 
from nonuniform data. The classification map is shown in figure 17; its corres­
ponding classification-confusion matrix is as follows:
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CLASS F E D C Q R S W UNCLASSIFIED 

FOREST (F) 993 5 2
 

25 PERCENT GRASSLAND­
75 PERCENT FOREST (E) 13 975 11 1
 

50 PERCENT GRASSLAND­
50 PERCENT FOREST -(D) 17 959 15 9 2
 

75 PERCENT GRASSLAND­
25 PERCENT FOREST (C) 19 897 21 63
 

GRASSLAND (G) 26 974
 

75 PERCENT GRASSLAND­
25 PERCENT WATER (Q) 20 23 956 1
 

50 PERCENT GRASSLAND
 
50 PERCENT WATER (R) 1000
 

25 PERCENT GRASSLAND­
75 PERCENT WATER (S) 1000
 

WATER (W) 1000
 

The acceptable level of classification accuracy obtained (97.2 percent) indicates
 
that utilizing a common covariance matrix may help solve the problem of establishing
 
representative spectral signatures for component classes when insufficient points
 
for conventional signature extraction exist.
 

An additional classiffcation was conducted using the same class mean vectors
 
as the above analysis, but using a common covariance matrix having the same
 
diagonal elements and off-diagonal elements set to 00. The purpose of this
 
run was to establish the expected classification accuracy for 0.0 correlations
 
among channels. The classification results were-again promising, the average
 
accuracy obtained being 9.5 percent. The classification map is shown in
 
figure 18; its corresponding classification-c6nfusion matrix is.as follows:
 

CLASS F E D C G Q R S W UNCLASSIFIED 

FOREST (F) 970 .25 5 

25 PERCENT GRASSLAND­
75 PERCENT FOREST (E) 26 939 35 

50 PERCENT GRASSLAND­
50 PERCENT FOREST (D) 20 942 13 20 5 

75 PERCENT GRASSLAND­
25 PERCENT FOREST (C) 13. 896 25' 66 

GRASSLAND (G) 15 983 2 
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CLASS F E D C G Q R S W UNCLASSIFIED 

75 PERCENT GRASSLAND­
25 PERCENT WATER (Q) 20 22 958
 

50 PERCENT GRASSLAND­
50 PERCENT WATER (R) 1000
 

25 PERCENT GRASSLAND­
75 PERCENT WATER (S) 1000
 

WATER (W) 1000
 

One additional common covariance matrix was calculated and tested as
 

suggested by Nalepka and others (ref. 8, p. 17). This matrix consisted of an
 

average of the covariance matrices of their spectral response set. One immedi­

ately recognizable disadvantage of this method is that a set of representative
 

covariance matrices must be obtained from the MSS data which have small values
 

such as those expected from compon&nt-class covariance matrices extracted from
 

uniform data. The results of using this technique for calculating the diagonal
 

elements, but setting the off-diagonal elements to 0.0, are shown in figure 19.
 

The corresponding classification-confusion matrix is as follows:
 

CLASS F E D C G- Q R S W UNCLASSIFIED 

FOREST (F) 960 23 .17
 

25 PERCENT GRASSLAND­
75 PERCENT FOREST (E) 25 939 35 1
 

50 PERCENT GRASSLAND­
50 PERCENT FOREST (D) 20 941 13 22 4
 

75 PERCENT GRASSLAND­
25 PERCENT FOREST (C) 10 893 26 70 1
 

GRASSLAND (G) 18 977 5
 

75 PERCENT GRASSLAND­
25 PERCENT WATER (Q) 23 25 952
 

50 PERCENT GRASSLAND­

50 PERCENT WATER (R) 1000
 

25 PERCENT GRASSLAND­
75 PERCENT WATER (S) 1000
 

1000
WATER (W) 


Note that the nine-class data-classification results using this method of average
 

covariance matrices (95.0 percent) are only slightly less than those obtained
 

using an estimated average of the diagonal elements and setting the off-diagonal
 

elements to 0.0 (96.5 percent).
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A summary of the results of each of the classification experiments using
 

simulated LANDSAT-l MSS data is as follows: 

Classification accuracy 

Experiment description (Percent correct) 

Two component classes 40.0 

Two component classes and three mixed classes 98.1 

Two component classes having "close" spectral 
responses 39.8 

Two component classes and three mixed classes 
havingclose spectral.responses 58.2 

Three component classes and six mixed classes 97.9 

Three component classes and six mixed classes 
having estimated mean vectors and covariance 
matrices from uniform data 96.1 

Three component classes and six mixed classes 
having estimated mean vectors and common 
covariance matrix (diagonal elements = 1,3,3,1; 
off-diagonal elements = 0.5) 97.2 

Three component classes arid six mixed classes 

having estimated mean vectors and common 
covariance matrix (diagonal elements = 1,3,3,1; 
off-diagonal elements = 0.0) 96.5 

Three component classes -and six mixed classes 
having estimated mean yectors and averaged 
covariance matrix (diagonal elements = 0.89, 
2.12, 2.14, .87; off-diagonal elements = 0.0) 95.0 

The overall result.' obtained from using common covariances appear promising
 

for classifying LANDSAT-l-type MSS data when spectral responses must be obtained
 
from nonuniform mixture-diass training sets. Skylab S-192 data produced a basic
 
terrain map only slightly more accurate than that from LANDSAT-l MSS data. The
 
advantage of narrower S-192 wavelength bands apparently is offset by the larger
 
cell size and lower sigrfal-to-noise ratio. It seems reasonable to assume that
 
similar improvements cduld be obtained from S-192 data using all of the techniques
 

described above. Those techniques, applied to automatic classification of actual
 

wild-land data, are described in the next chapter.
 

Tests using LANDSAT-l MSS data.--Experiments similar to those performed
 
using simulated MSS data';ere conducted using actual LANDSAT-l MSS data. An
 
initial experiment was .performed using extracted assumed "pure" component-class
 
spectral responses and mixture-class spectral responses simulated from these
 
component classes to ciad ify an area designated as the Elevenmile Canyon
 

Reservoir Study Area (fig. 1). An additional experiment using estimated-component
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spectral responses and simulated-mixture spectral responses was performed using
 
severalJplots located in the Manitou Study Area (fig. 1) where ground-control
 
data were more detailed. Both of these experiments utilized methods described
 
above. The objective of these experiments was to relate the concepts just
 
presented to a real-world application. We hope they will provide insight as to
 
how well the techniques work to improve classification accuracies andlor what
 
other factors may need to be considered to obtain optimum results.
 

The set of LANDSAT-l MSS data analyzed is from an August 15, 1973, (frame
 
no. 1388-17134) overpass of the test site. The data set was provided by Dr.
 
Richard S. Driscoll, Remote Sensing Project Leader at the U.S. Forest Services
 
Rocky Mountain Forest and Range Experiment Station in Fort Collins, Colorado.
 
The data were geometrically corrected (deskewed) by the Laboratory for Applica­
tions of Remote Sensing (LARS) at Purdue University, West Lafayette, Indiana
 
(refs. 5, 20). The advantage of the deskewed data is its better conformity
 
to aerial photographs, especially when displayed as a microfilm graymap or
 
recognition map. A large section of this LANDSAT-l frame was also studied by
 
Heller and others (ref. 4) and Fleming (ref. 21).
 

Experiments were conducted in the study areas using extracted component­
class and simulated mixture-class spectral responses to classify a part of
 
LANDSAT-l MSS data. The steps involved in the classifications are: (1) select­
ing component classes, (2) extracting representative spectral responses, (3)
 
simulating specified mixture-class spectral responses, (4) classifying the data
 
using a maximum-likelihood processor, and (5) analyzing the results.
 

Elevenmile Canyon Reservoir Study Area.--This area was selected because it
 
is representative of the diversity of topography, geology, and vegetative cover
 
-throughout much of the total test site, and because of the availability of
 
LANDSAT-I MSS tape data. The location of the site is shown in figure 1. Eleva­
tions range from 2,500 to 3,020 m. The site is at the southwest margin of South
 
Park; it includes the eastern part of Elevenmile Canyon Reservoir. Mountainous
 
terrain lies to the north and east; a wide rolling grassland area lies primarily
 
to the south of the reservoir. Wet meadows occur primarily along stream courses.
 

Two principal types of rocks occur: Tertiary volcanic rock and Precambrian
 
granodiorite. The most commonly found volcanics are upper and lower members of
 
the Oligocene Thirtynine Mile Andesite of the Thirtynine Mile volcanic field.
 
The upper member is generally associated with high flat-topped mountains and the
 
lower member with low rolling grass-covered hills characteristic of South Park
 
which lies immediately west of this area.
 

The Precambrian X granodiorite of Boulder Creek type found in the site is
 
dark gray, medium to coarsely crystalline, and locally gneissic. It is
 
correlated with the Precambrian Boulder Creek Granodiorite of the central.Front
 
Range of the Rocky Mountains. It is found mainly in the northern part of the
 
test area where it forms high steep mountains. Several outcrops can be found
 
east of Elevenmile Canyon Reservoir and on both sides of Elevenmile Canyon, but
 
their areal extent is limited. Elsewhere, most of the bedrock is covered by
 
some form of vegetation.
 

The vegetation in the area consists of a variety of forests and grasslands.
 
The forests, which cover approximately one-third of the test site, include
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ponderosa pine, Douglas-fir, spruce fir, subalpine fir, and aspen. According
 
to Heller and others (ref. 4), these forest species occur as homogeneous stands
 
and as various mixtures of species. A wide range of tree-canopy densities
 
exists, from very open to so dense that crowns nearly touch. In open stands of
 
trees enough sunlight enters to allow the development of an extensive herbaceous
 
and/or shrubby understory, but where tree cover is dense, little understory cover
 
has developed.
 

The principal understory vegetation associated with a ponderosa-pine forest
 
includes Arizona fescue and mountain muhly. At higher elevations these species
 
give way to Idaho fescue, Thurber fescue, and oatgrass.
 

Approximately one-third of the study site consists of low rolling hills
 
covered with vegetation characteristic of the short-grass prairie found throughout
 
South Park. The principal species are blue grama and slim-stem muhly. Mountain
 
bunchgrass communities can also be found at the interface between grassland and
 
forest.
 

Also occurring in the area are wet-meadow and stream-bank communities. These
 
communities occur along the shore of Elevenmile Canyon Reservoir and along streams.
 
Various species of sedges, rushes, and bulrush occur either as monospecific or
 
mixed stands in the moist areas. In drier areas, bluegrass and tufted hairgrass
 
are found in mixed communities. The prominent shrubby communities consist of
 
willow and shrubby cinquefoil. Although they occur'sparsely throughout the
 
study area, these communities are generally found associated with the wet
 
meadows.
 

Five component classes were selected for use in this study area. They are
 
Forest, Prairie Grassland, Water, Mountain Grassland and Wet Meadow. These
 
classes were selected because of their importance in the area and also because
 
mixtures of these various types occur. The Forest class is composed of several
 
types of trees and a minimal amount of understody vegetation showing through the
 
canopy. The Prairie Grassland class is characteristic-of the short-grass prairie
 
community and usually has much bare soil associated with it. The Water class
 
is represented by the water of the reservoir. The Mountain Grassland class
 
represents grassland communities found at higher elevations and at the interface
 
between Forest and Prairie Grassland. The Wet Meadow class was selected to
 
represent irrigated meadow areas and stream-bank communities.
 

Homogeneous uniform areas representative of each component class were delineated
 
on aerial photographs. These areas (training sets) were then transferred to
 
LANDSAT-I graymaps and the line and point coordinates were determined. Figure 20
 
shows the microfilm graymap of MSS band 5 for the tudy site. Some modification
 
of the photograph locations were made on the graymaps as dictated by the gray­
levels associated with each training set. In this way, anomalous data points
 
(that is, those that had high likelihood of representing some other class) were
 
avoided before spectral responses were extracted. "A number of training sets
 
were located for each class to provide statistically representative spectral
 
responses. The number of points used to calculate each class signature were:
 
Forest (75), Grassland (28), Mountain Grassland (20), Wet Meadow (20), and Water
 
(96). The number of points for Grassland, Mountain Grassland, and Wet Meadow
 
was small due to difficulties encountered in locating training sets on computer
 
graymaps, but is assumed representative for this study.
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Mean vectors and covariance matrices were extracted for each training set
 
for each class. The mean vectors for a class were compared with one another
 
and the eigenvdlues and eigenvectors for each class training bet were determined
 
and analyzed. Those training sets showing dissimilar mean vectors and eigenvector
 
plots were discarded so that final spectral responses obtained were as represen­
tative of pure end-member classes as possible.
 

The final component-class spectral responses were then used to classify
 
the area. The resulting classification map is, shown in figure 21 as a microfilm
 
display. As a check of how well the spectral responses identify their respective
 
classes, the number of correct classifications in each training set was determined.
 
All of the classes had training-set classification accuracies of 100 percent
 
except Water which had 99 percent. A total of 60.5 percent of the test area was
 
classified as one of the component classes, indicating that for a conventional
 
analysis such as this, more classes need to be added in order to classify the
 
entire area. To satisfy this need, the following mixture classes were selected:
 

1. 	Grassland-Forest--selected to identify pixels covering areas having
 
trees growing within Grassland areas and at interfaces between the
 
two communities.
 

2. 	Grassland-Wet Meadow--selected to identify pixels falling on the
 
interface of the ,grass-covered areas and irrigated meadows and stream­
bank communities.
 

3. 	Forest-Mountain Grassland--selected to identify pixels covering the
 
interfaces between the two communities and to locate areas of Mountain
 
Grassland that appear as openidgs in the Forest which are smaller than
 
the resolution of the LANDSAT-l MSS scanner.
 

A proportion increment of 0.25 was selected for each combination of classes,
 
and mixture-class spectral responses were simulated using program MIX. The
 
final spectral-response set used to classify the test area included the five
 
extracted-component classes and nine intermediate mixture classes. The micro­
film classification map at the 11.100 Chi-Square threshold level is shownlin
 
figure 22. An increase in the number of classified points resulted in 86;35
 
percent of the area being classified, rather than 60.5 percent. Most of the
 
unclassified points are associated with the interface between Grassland and
 
Water, as no spectral response characteristic of these mixtures was used in
 
the classification.- Classification of Grassland-Wet Meadow and Forest-Mountain
 
Grassland mixtures appears reasonable on the basis of detailed study of aerial
 
photographs. Grassland-Forest mixtures of 50-percent Grassland-50-percent
 
Forest and 25-percent Grassland-75-percent Forest also appear to be classified
 
well. The 75-percent Grassland-25-percent Forest mixture class contained-a
 
large number of obvious misclassifications in areas where no Forest was present.
 

To investigate the source of these misclassifications, spectral-response
 

data were extracted from the data for areas classified as the 75-percent Grass­
land-25-percent Forest class. A comparison of the mean and standard-deviation
 
vectors for the extracted spectral responses and the simulated mixture response
 
showed them to be almost identical, as shown below:
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Extracted Simulated 

MSS BAND 
MEAN 
STANDARD 
DEVIATION 

1 
29.42 

.94 

2 
28.79 

1.66 

3 
37.34 

1.51 

4 
19.21 

1.00 

1 
28.97 

1.62 

2 
28.87 

2.02 

3 
37.19 

2.10 

4 
19.09 

1.15 

This close correlation indicates that the material that is being classified
 
as a Grassland-Forest Mixture probably has a vegetation and/or soil type that
 
produces a response similar to that calculated for the mixture. The consequences
 
of such misclassification are an overestimation of the amount of Forest in the
 
scene and an underestimation of Grassland and/or soil. Because of the difficulties
 
in establishing mixture densities from high-altitude aerial photographs, no
 
quantitative accuracy analysis was obtained for this experiment.
 

Because of the gross misclassifications of the 75-percent Grassland-25-percent
 
Forest class, the proportion increment used to simulate mixture-class spectral
 
responses was changed to 0.33 and new spectral responses were simulated. The
 
resulting signature set included the five component classes and ten two-component
 
mixture classes. Combinations of Grassland and Water and Water and Wet Meadow
 
were made in an attempt to identify those pixels left unclassified around the
 
reservoir in the previous experiment.
 

A classification was made, producing the microfilm display shown"in figure
 
23. The results indicated that the areas previously misclassified as 75-percent
 
Grassland-25-percent Forest were still being incorrectly identified. A number
 
of points along the shoreline of the reservoir *ere identified as either 67­
percent Grassland-33-percent Water or 33-percent Grassland-67-percent Water.
 
There appeared to be some confusion of 67-percent Wet Meadow-33-percent Water
 
and 33-percent Wet Meadow-67-percent Forest as the component class having the
 
greatest amount occurring in the mixture. The other mixture classes seem to be
 
classified correctly as they appeared where mixtures would logically exist.
 

Manitou Study Area.-'The Manitou Study Area (fig. 1) is northeast of the
 
Elevenmile Canyon Reservoir Study Area in and around the U.S. Forest Service
 
Manitou Experiment Forest. Only a few selected plots identified by Mead (ref. 5)
 
were studied in this work.
 

The plots lie along and just north of the area shown in figure 1. The area
 
typifies the mountainous part of the east slope of the Rocky Mountains, and
 
has a large variation of slopes and aspects. The topography is dominated by
 
mountains and valleys having a north-south orientation due to extensive faulting
 
that occurred during the Pliocene Epoch and earlier. Elevations range from
 
about 2,600 to 3,300 m (8,530 to 10,830 ft).
 

For the most part, geologic materials in the ar~a are covered with vegetation.
 
The underlying bedrock unit is the reddish-brown Permiian and Pennsylvanian 
Fountain Formation, but exposures are limited. The-principal materials are 
pinkish to reddish soils derived from the Precambrian X Pikes Peak Granite-and 
washed into this area.
 

Variations in topography in the area have resulted in a complex mixing of
 
plant communities generally aligned with the topography. For the most part,
 
the plant communities are similar to those described for the forested hillslopes,
 
mountains, and wet-meadow areas of the Elevenmile Canyon Reservoir Study Area.
 

28
 

REPRODUCIBILITY OF THE 
ORIGINAL PAGE IS POOR 



In the Manitou Study Area, experiments were performed to classify LANDSAT-l
 
MSS data using component-class spectral responses estimated by solving simul­
taneous equations and linear regressions. Both of these techniques require
 
data where the component classes and their respective proportions of the scene
 
are known.
 

Several plots in the Manitou Study Area and identified by Mead (ref. 5)
 
were analyzed to obtain a number of plots suitable for estimation of spectral
 
response. Mead was specifically interested in the percentage of ponderosa-pine
 
cover of the plots so it was a logical choice for one of the component classes.
 
The second component class was identified as the other materials in the scene
 
and denoted as Background. The Background class is actually a mixture in 'itself
 
of soil, bare rock, and understory vegetation. Use of this Background class
 
necessitated using only those plots which contained similar species occurring
 
in the same relative amounts. It was also necessary to identify plots having
 
similar slopes and aspects to avoid the variability in spectral response
 
associated with these factors. In summary, the criteria used for selecting
 
the plots used for estimation of spectral response were:
 

1. 	The plots must have known percentage of ponderosa-pine cover. (The
 
percentage of the Background class was determined by subtracting the
 
percentage of ponderosa-pine cover from 100.)
 

2. 	The plots must contain similar background materials such as vegetation,
 
rocks, and bare soil.
 

3. 	The plots must have similar orientation as determined by slope and
 
aspect.
 

The first criterion was met by analysis of aerial photography by five photo­
interpreters from the U.S. Forest Service. The second was accomplished by field
 
studies by Mead using a line-transect method to establish the materials present
 
in each plot as well as their frequency of occurrence. The third was met by
 
locating the plots on topographic maps and determining slopes and aspects by a
 
computer program called TOPOGO (refs. 5, 22).
 

Analyzing all plots using these criteria produced a small subset of only
 
six plots representing 120 total LANDSAT-l-MSS data points. The plots are as
 
follows:
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FREQUENTLY
 
MEAD'S PERCENTAGE OCCURRING
 

PLOT PLOT OF SLOPE ASPECT BACKGROUND
 
NUMBER NUMBER PONDEROSA (Percent) VEGETATION
 

(ref. 5) PINE COVER (see species- list,
 
below)
 

1 1 46 7.9 96 J, B, M, P, Q, D
 
2 2 74 17.0 53 B, J, M, P, D,
 
3 3 76 6.9 108 J, B, M, Q, P, D
 
4 6 64 5.0 59 B, M, J, Q, F, D
 
5 14 22 8.1 77 .B, M, F, P, B
 
6 17 16 91.9 134 M, AF, PQ, BB
 

SPECIES LIST
 

ABBREVIATION NAME
 

F Fringed sagebrush (Artemisia frigida Willd)
 
B Bear berry (Arctostaphylos uva-ursi (L.,) Spreng.)
 
AF Arizona -fescue (Festuca arizonica Vasey)
 
J Common juniper (Juniperus communis (L.)) 
P Prairie jvnegrass (Koelaria cristata (L.) Pers.)
 
M Mountain muhly (Muhlenbergia montana (Nutt.) Hitch.)
 
Q Quaking aspen (Populus tremuloides (Michx.))
 
D Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco)
 
BB Bottlebrush squirreltail (Sitanion hystrix (Nutt.) J.G.Sm.)
 

Spectral responses for the six mixture plots were extracted from the LANDSAT-l
 
MSS data. The mean spectral-response curves for-the six plotstare shown in
 
figure 24. Several pairs of signatures along with their respective mixture
 
proportions of Ponderosa pine and Background were used as input for signature­
calculation program. The results showed a wide variation in the estimated mean
 
vectors for both of the-component classes. In addition, the estimated covariance
 
matrices contained very unrealistic values. Consequently, this method was found
 
to be unreliable for estimating component-class spectral responses for this case.
 
Because results obtained using simulated data, described above, were acceptable,
 
the error was probably -due to inaccurate estimates.of percentage of cover And
 
variations of materials associated with the Background class. Since no repre­
sentative spectral respondes could be obtained, no.modeling of mixture-class
 
spectral responses or classification of MSS data was attempted.
 

Because the technique of estimating spectral response used in the above
 
study uses data for only two mixture training sets, slight errors in estimates
 
of percentage of cover will result in large errors for the calculated values of
 
spectral responses. Also, the spectral responses, if successfully estimated,
 
may be representative only of the material found in the specific training areas.
 
To compensate for these errors, all of the mixture training sets were used to
 
determine component-c-lass spectral re ponses by means of linear-regression
 
techniques. Additional cover estimates were made using a dot grid superimposed
 
on enlarged aerial photographs of the six plots.
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The method used for estimating component-class spectral responses using
 

linear regression was a stepwise multiple-regression FORTRAN computer program.
 
The necessary input data were the mean spectral response recorded from each of
 

the plots in each wavelength band and the proportions of the two component
 

classes, Ponderosa pine and Background. Models were developed for each wave­

length band as follows:
 

R2
 MSS band Regression model 


4 (0.5-0.6 pm) MSR = 28.21-9.41 (Pp). 0.90
 

5 (.6-.7 pm) MSR = 26.59-13.11 (PP) .89
 

6 (.7-.8 pm) MSR = 35.27-10.75 (Pp) .91
 

7 (.8-1.1 pm) MSR = 20.15-7.23 (PP) .99
 

where MSR = Estimated mean spectral response
 

Pp = Proportion of ponderosa pine in the scene
 

R2 
 = Correlation coefficient.
 

High R2 values indicate that the grid estimates for the plots are reasonable
 

values for the amounts of Ponderosa pine and Background. Because only six plots
 

were used in developing the regression models, they may be applicable only for
 

analysis of these plots. Component-class signature estimates can be determined
 

from the models by setting the proportion of Ponderosa pine (Pp) to 1.0 and
 

calculating the MSRs in each band to determine the Ponderosa-pine signature, and
 

setting Pp to 0.0 to determine the spectral response of the Background. The
 

mean spectral-response curves for the estimated spectral responses of the
 

Ponderosa pine and Background are shown along with the extracted mixture curves
 

for each of the plots in figure 24.
 

The estimated mean vectors for the Ponderosa pine and Background classes
 

were used as inputs into the computer program and mixture-class spectral responses
 

were simulated. The proportion increment used was 0.25, producing three
 

intermediate-mixture spectral responses. No covariance matrices for the
 

component-class spectral responses were estimated by the regression models owing
 

to the nonuniformity of the mixture plots, so a common covariance matrix having
 

diagonal elements of 1,3,3,1, and off-diagonal elements of 0.0, was used for
 

each of the classes.
 

The six plots selected for the study were classified with a maximum-likelihood
 

pattern recognition processor. Initially, only the estimated signature responses
 

for Ponderosa pine and Background were used to classify the plots. The total
 

number of points classified as these classes was only five of 120, or approxi­

mately 4 percent, illustrating the need to account for pixels that contain
 

mixtures. A second classification was conducted using the two-component-class
 

spectral responses plus the three simulated mixture-class spectral responses.
 

The number of classified points increased to 100, or 100 percent upon implemen­

tation of the mixture-class signatures.
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The total amount of each component class in the plots was determined by
 
summing the number of points classified as a class and multiplying by the
 
proportion of each component class. The percentage of foliar cover of ponderosa
 
pine determined from ground-control data, component-class classification, and
 
component-class plus simulated mixed-class'classification results are summarized
 
on a plot-by-plot basis, as follows: 

PLOT 

1 2 3 4 5 Average 

Ground-control estimates -(percent) 83 87 85 55 15 65 

Component-classification estimates 
(percent) 75 95 100 15 5 58 

Component-mixture classification 
estimates (percent) 85.00 90.00 86.25 63t75 42.50 73.5 

Those plots having higher control-data estimates of Ponderosa pine (plots
 
1, 2, and 3) were overestimated by the component-class classification by an
 
average of 10.33 percent. .The component- and mixed-class classification
 
results for the same plots were overestimated by only 2.10 percent. The remain­
ing two plots having control-data estimates of 55 percent (plot 4) and 15 percent
 
(plot 5) of Ponderosa-pine foliar cover yielded much higher deyiations. Although
 
it is difficult to validate a trend using the limited number of plots in this
 
study, it appears that those plots having a greater proportion of the Background
 
class showed poorer classification estimates of Ponderosa pine. These estimates
 
may be due to varying mixtures of constituent vegetation types occurring within
 
these plots (ref. 5), and/or to errors in the dot-grid method used for determin­
ing proportions from aerial photographs.-


The results of this test show an improved estimate of the percentage of
 
foliar cover of Ponderosa pine for plots having higher proportions of Ponderosa
 
pine. In addition, the effects of an unrepresentative component class (Background)
 

of degrading the classifidation estimates is indicated.
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EFFECT OF THE ATMOSPHERE ON SPECTRAL RESPONSE
 

Remote Sensing of Target Spectral Response
 

The spectral response of a target, as viewed from a satellite remote sensor
 
(LANDSAT-l, Skylab EREP), is a radiance value NS, given by
 

NS pHT +N+C (9) 

where H is the total (1800, global) incoming soiar irradiance, T is the beam
 
transmittance (either the reflected target beam or the solar beam) of the atmos­
phere, Np is path radiance (between the satellite sensor and the target)
 
introduced by atmospheric scattering of sunlight,-p is the target reflectivity,
 
and C is the error or noise term as in equation 1. This target reflectivity, p,
 
is the true spectral response of the target. As can be seen in equation 9, the
 
target's radiance response is made up of three parameters other than the true
 
target reflectivity. These parameters are the total incoming solar irradiance
 
(H), the atmospheric beam transmittance (T), and the atmospheric path radiance
 
(Np). These atmosphere parameters are discussed in detail in references 12,
 
13, and 14, and will not be repeated here inasmuch as it was not possible to
 
conduct the planned studies of the effects of atmosphere using either LANDSAT-I
 
or Skylab data.
 

One new technique of deriving path radiance was formulated in this project,
 
but was not tested. The technique is to employ the satellite data itself and
 
measurements from helicopter of selected targets on the ground. The purpose of
 
the helicopter is to enable measurements to be made of component classes of
 
areal extent comparable to the satellite pixel size (0.4 ha or 1 acre) thereby
 
including effects of variation in leaf orientation, range in particle size of
 
materials, and other attributes,which need to be integrated over the full
 
pixel size.
 

wNt
 
t -Nt (assumes Lambertian target). (10) 

Hence, one can determine the path radiance and HT/7. Therefore, the reflectivity
 
of other (unknown) targets can be derived by
 

p = (N -N ) x iT/HT. (11)
 
s p
 

The advantages of this technique are:
 

(1) it measures path radiance as "seen" from the satellite sensor;
 

(2) it measures the combined atmospheric effects of total solar irradiance,
 
H, and atmospheric transmittance, T;
 

(3) numerous ground-based measurements are not required in order to calibrate
 
atmospheric effects. It is required that natural targets be selected
 
whose reflectivities -remainnearly constant over periods of time- not
 
subject to rapid seasonal changes of growth such as in'grasslands.
 

The possible shortcomings of this technique are:
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(1) it assumes fairly uniform atmospheric conditions of the surface area
 
within which all'the natural target "calibration" sites are located.
 
This shortcoming is minimized if the sites are all located near each
 
other;
 

(2) it assumes that the sum angle with respect to the targets--both material
 
"calibration" and unknown targets--is similar. 
This assumption is
 
apparent from the sum-angle dependence, I cos 0o, of the total solar
 
irradiance and the product HT/r.
 

Although time and funds were insufficient to test this technique in the
 
field, it is described here because it seems worthy of further study by someone.
 

Properties of the atmosphere play an important role in affecting the spectral
 
radiance received at the satellite by the scanner. Some atmospheric properties
 
can be measured on site. Others must be determined by comparing satellitedata
 
with the on-site measurements (ref. 23). Once their spectral responses have
 
been determined, it may be possible for some large natural terrain features to
 
serve as calibration panels from which atmospheric properties can be calculated
 
by the satellite data. When the desired remote-senor product is an image having
 
only rough spectral information, atmospheric effects can be ignored. However,
 
when quantitative spectral information is required,'atmospheric effects cannot
 
be neglected (refs. 13, 14, 25).
 

Transmittance, optical depth, path radiance, and total incident solar ir­
radiance determine contrast reduction and the satellite-measured target radiance.
 
Our work and that cited demonstrates the techniques and instrumentation for
 
making ground-based measurements of optical depth, diffuse sky irradiance, and
 
total irradiance. These techniques and instrumentation will allow satellite
 
data to be corrected for atmospheric effects. Our research has also demonstrated
 
temporal and spatial variations in these narameters (ref. 13). Therefore,
 
atmospheric effects should be derived for several locations within any given
 
satellite frame.
 

Model calculations of LANDSAT-l MSS radiance for several targets under
 
different atmospheric conditions showed that satellite radiance measured over a
 
target of deep water at iavelengths in the near-infrared region (greater than
 
0.750 pm) is essentially equal to.the atmospheric path radiance because of. the
 
very low reflectivity of tater at these wavelengths; It was then determined that
 
for given solar zenith and observation angles, the'satellite-measured path
 
radiance could be related to atmospheric optical depth, ratio of diffuse to
 
total irradiance, and visibility (refs. 13, 14). Hence, the measurement of
 
satellite radiance over water targets is concluded to be a potential technique
 
for defining atmospheric effects, contrast reduction oftarget-to-background, and
 
visibility from a satellite or high-altitude aircraft. Additional work is
 
required to expand these studies to include a greater range of wavelength and
 
solar aspect and wider range of expected reflectivities from water surfaces,
 
including turbid water.
 

Simultaneous measurements at two sites only 13 km (8 mi) apart revealed a
 
30-percent variation ii optical depth for the 0.3- to 2.8-pm region, a 25-percent
 
variation for the visible range, and a 36-percent variation in optical depth for
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the near-IR region. Hence, even under "clear" conditions, spatial variations
 
did occur that would significantly affect remote sensing. It was also discovered
 
(ref. 12) that clouds can act as mirrors which cause as much as a 30-percent
 
increase (compared to clear-sky conditions) in the total solar irradiance.
 
This effect would result in a variation of 30 percent in the radiance recorded by
 
the satellite-borne sensor.
 

Analyses of these data revealed that the spectral ratio of diffuse to total
 
irradiance is extremely sensitive to and hence a good measure of atmospheric
 
clarity (ref. 12). This ratio varied from about 0.45 for the shorter (blue)
 
wavelengths to 0.05 for the near IR, and varied markedly from one supposedly

"clear" day to the next.
 

It was shown that field measurements of target reflectivity, incident total
 
irradiance, and atmospheric transmission/optical depth could be combined with
 
computer calculations (based on field measurements of total irradiance and optical
 
depth) to adequately predict the radiance value measured at the satellite (refs.
 
14 and 24).
 

TERRAIN MAP FROM S-192 DATA
 

A terrain-classification map was prepared for the western part of the area,
 
shown in figure 25, using Skylab EREP S-192 data of August 4, 1973. The map
 
area, about 32 x 40 km (20 x 25 mi), is centered near Cripple Creek and extends
 
from Colorado Springs west to Elevenmile Canyon Reservoir. Elevations range from
 
1,500 to 4,270 m (4,900 to 14,000 ft). Cripple Creek lies at about 3,050 m
 
(10,000 ft) elevation.
 

The terrain map, shown in figure 25, was prepared by ERIM by computer­
implemented pattern-recognition processing of S-192 digital-tape data. Most of
 
the processing was done on an IBM 7094 computer as described in the final report
 
by Thomson (ref. 25), Although the terrain map used in Thomson's report was
 
not used in this study, the processing described by him is the same as was used
 
for the map of figure 25.
 

The following six channels of S-192 data were determined to be best suited
 
for discriminating the units described in Table 1 and shown on the map of figure 25.
 

S-192 channel Wavelength (pm) 

4 0.56 - 0.61 
5 .62 - .67 
6 .68 - .76 
9 1.09 - 1.19 

11 1.55 - 1.75 
12 2.05 - 2.35 

These channels were selected on the basis of ordering of the channels accord­
ing to signal/noise ratios for best overall mapping by rock type, as follows:
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Order Signal-to-noise ratio Channel 

1 1 12 
2 2 4 
3 3 1i 
4 4 5 
5 6 6 
6 8 9 

The statistical probabilities of misclassification for each pair of signa­
tures used in the recognition processing were the basis for combining volcanic
 
and plutonic rocks except for the Pikes Peak Granite, and for designating rock
 
units having more than 75 percent forest as a Forest category.
 

The average pairwise probability of misclassification for each of the
 
channels selected is:
 

Channel Average probability of misclassification
 

12 0.0171842
 
4 .0063140
 

11 .0914933
 
5 .0101393
 
6 .0076549
 
9 .0242315
 

The terrain classes'mapped (fig. 26) are summarized in table 1. A more
 
detailed description of the rock units can be found in reference 26.
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Table l.--Summary of terrain classes mapped
 

unit 

1 

Class 

Dakota 
Sandstone 

General 
locGeeao 

locationite 
site 

Southern 
corner 

2 Fountain 
Formation 

Southern 
part 

3 Niobrara 
Shale 

South-
eastern 

part 

4 Pikes 
Peak 
Granite 

Central 
to extreme 
north-
eastern 
part 

5 

6 

Pierre 
Shale 

Dakota 
Sandstone 
and 
vegetation 
composite 

Southern 
corner 
and east 
edge 

Southern 
corner 

, 

Description of class 


Cretaceous gray to brown medium-

to 	fine-grained sandstone. Forms 

moderate slopes that face south 

and are covered by a grass-park
 
community containing sparse sage­
brush. Deep gullies dissect this
 
unit in many places, possibly
 
creating edge-effect mixture
 
problem in computer mapping.
 

Permian and Pennsylvanian moderate 

reddish-brown arkosic conglomerate, 

coarse yellow-gray arkosic sand-

stone, and thin interbedded pale-

green and dark-reddish-brown 

shale. Virtually devoid of vege­
tation. Forms wide valleys and
 
gentle slopes.
 

Cretaceous yellowish-brown, soft, 

thin-bedded calcareous shale 

interbedded with thin beds of 

limestone. This is the Smoky 

Hill Member of the Niobrara Shale. 

Sparse vegetative cover of 

grasses, forbs, and sagebrush 

which do not appreciably mark
 
this underlying bedrock unit.
 

Precambrian pink to reddish-tan 

medium- to coarsely-crystalline 

biotite or hornblende biotite 

granite and quartz monzonite. 

Weathers readily to a coarse
 
loose sand.
 

Cretaceous dark marine shale 

containing bentonite beds and
 
well-preserved fossils.
 

Same as unit 1 except this unit 

here has approximately 50-percent
 
cover of pinyon pine and juniper
 
and understory of grass-forb
 
community. Sparse sagebrush.
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Classes misclassified
 

as 	this unit (in de­
creasing order)
 

3, 6, and nonvegetated
 
alluvium and windblown
 
sand.
 

12, 5, 1, 4, and non­
vegetated windblown
 
sand deposits in the
 
southern part of the
 
test site.
 

4, 	1, and undivided
 
limestone member of the
 
Greenhorn Limestone
 
which was considered to
 
be of too limited areal
 
extent to form a
 
separate class.
 

12,-6, 5, 3, nonvege­
tated alluvium,
 
certain areas of
 
Colorado Springs.
 

1, 	4, 2, 12, 3.
 

12, 1.
 



Table l.--continued
 

Map 
unit 

Class 

General 
location 
in test 

site 

7 Forest All but 
the eastern 
edge and 
southern 
corner 

8 Unclassi-
fied 

Small 
scattered 

sites near 

Description of class 


Greater than 75-percent canopy of 

trees. Includes pinyon-juniper
 
forest in the arid southern part
 
and forests of ponderosa pine,
 
lodgepole pine, and spruce fir
 
throughout most of the central
 
and western part.
 

Principally clouds. Scattered
 
areas of pavement and other man­

made structures in or near
 
east corner- Colorado Springs.
 

9 Cloud 
shadow 

Central 
and 

northern 
part 

10 Meadow Throughout 
the site 

11 Water Throughout 
the site 

12 Volcanic 
and 
plutonic 
rocks, 
undivided 

From 'the 
south-
central 
to the 
western 
edge 

Shadows of clouds. 


Alluvium having dense cover of 

grasses, commonly associated 

with irrigated fields. 


Lakes and reservoir of'clear 

water. Most are manmade im­
poundments.
 

Upper and lower members of the 

Oligocene Thirtynine Mile Andesite, 

Precambrian granodiorite, quartz 

4iorite, and biotite gneiss.
 

Classes misclassified
 

as this unit':(in de­

creasing order)
 

4, 12, 11.
 

11, 7.
 

4 and an unmapped unit
 
of granodiorite having
 
vegetative cover of
 

scrub oak-grass commun­
ity east of largest
 
cloud mass of fig. 25.
 

7, 9.
 

1, 4, 2, 5, 3, 10, and
 
local small areas of
 
nonvegetated alluvium.
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A large amount of Pikes Peak Granite was misclassified as 'the volcanic­
plutonic unit. Numerous areas consist of nonvegetated arkosic alluvium composed

of erosional debris from the Pikes Peak Granite and less abundantly from
 
volcanic and undivided plutonic rocks, misclassified as Pikes Peak Granite.
 
These misclassifications are caused by the similar chemical and spectral character­
istics of the units. Although it is desirable to be able to sort out genetic

units such as granite from those such as alluvium derived from the granite, such
 
distinctions are inappropriate for multispectral sensors. They require other
 
criteria for distinguishing them from one another.
 

Because of the large amount of cloud cover, cloud shadows were included as
 
a map unit. However, because some 15 to 20 percent of the cloud shadow was
 
misclassified as water, the result is a marked overestimation of the limited
 
water resources in the test site. Away from cloud shadows, water bodies were
 
mapped with an accuracy of about 95 percent, indicating the accuracy to be
 
expected from S-192 data on a cloud-free day.
 

The recognition map (fig. 25) was evaluated quantitatively by two methods.
 
The first consisted of identifying several points that were identifiable on the
 
recognition map and the RB-57 aerial photography and constructing corresponding
 
grid overlays for the recognition map and the photography. The resulting cell
 
size encompassed a 5 x 5-pixel array. Several cells were then compared with
 
ground truth to determine the accuracy of classification. The second method
 
consisted of constructing overlays of 5 x 5- and 10 x 10-pixel arrays and
 
comparing areas on the recognition map known to contain a specific terrain class
 
as determined from ground-control data. Several areas were sampled using both
 
methods and the results were compiled in the classification-confusion matrix
 
shown below, data shown in percent. Diagonal elements are underlined.
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CLASSIFIED AS 

Sample 
points 

Class and 
abbreviation DSS DSC FTN NS PS PPG V-P MDW FOR WAT SC 

Unclassi­
fled 

346 fDakota 
Sandstone.DSS S8.7 3.2 8.1 

200 Dakota Sand­

stone and 
vegetation 
composite DSC 1.5 90.5 8.0 

518 Fountain 
Fbrmation FTN 6.6 61.2 11.2 '3.8 17.2 

499 "'Niobrara 
Shale NS 4.6 90.2 5.2 

492 Pierre Shale PS 10.0 8.5 .5 69.7 8.7 2.6 

478 Pikes Peak 
Granite PPG 2.9 .4 1.3 61.7 33.7 

718 Volcanic-plutonic 
rocks V-P 1.4 21.2 6.7 1.8 2.4 13.9 51.9 0.7 

200 Meadow MDW 5.5 94.5 

364 Forest FOR 14.0 9.9 -73.6 2.5 

131 Water WAT 4.6 94.7 0.7 

400 Cloud shadow SC 2.0 17.5 80.5 



For comparison, the diagonal elements of S-192 data (underlined in the
 
preceding table) and of corresponding LANDSAT-l data are as follows (in percent;
 
dash leaders indicate not used): 

Class S-192 LANDSAT-1 MSS 

Dakota Sandstone 88.7 
Dakota Sandstone plus vegetation 90.5 --

Fountain Formation 61.2 67.7 
Niobrara Shale 90.2 g5. 7 
Pierre Shale 69.7 8.3 
Pikes Peak Granite 61.7 71.2 
Volcanic and plutonic rocks 51.9 --

Meadow 94.5 73.7 
Forest 73.6 95.2 
Water 94.7 70.6 
Cloud shadow 80.5 100.0 
Rocks, undivided 99.9 68.0 
Vegetation, undivided 84.1 93.5 

Rocks were generally classified better by S-192 than by LANDSAT-1 MSS data,
 
in part because the training units were selected to detect or emphasize the rock
 
understory rather than the vegetative canopy to a higher degree than was done
 
using the LANDSAT-l data. For example, grassland was a major category of the
 
LANDSAT-l map but is not a class for this study. Instead, it was classed
 
largely as the undivided volcanic-plutonic class which underlies most of the
 
grassland in the test site. Hence, part of the improved accuracy is due more
 
to semantics than to performance of the scanner.
 

The technique of using simulated mixture signatures could be expected to
 
materially improve the accuracy, as described in earlier sections of the report.
 

SUMMARY AND CONCLUSIONS
 

Methods have been discussed for simulating spectral response of mixtures
 
of two terrain classes for automatic analysis of LANDSAT-l MSS data using on­
site measurements, simulated LANDSAT-l data, and actual LANDSAT-l data. Tests
 
of the methods for estimating component-class spectral response and for
 
simulating two component-class mixture responses using simulated MSS data
 
indicated .that improvements in classification results over conventional-component
 
class analysis are possible, using these techniques. Applying these techniques
 
to actual LANDSAT-l MSS data of wild-land areas showed an increase in classifi­
cation information over conventional analysis, but no quantitative accuracy
 
analysis could be made owing to difficulties of estimating mixture proportions
 
from the control data. Similar improvements in accuracy should result if these
 
techniques are applied to Skylab S-192 data.
 

It was found that misclassification of pixels as mixtures can occur where
 
the simulated spectral response approximates that of component classes or other
 
mixtures in the scene. There was also evidence of misclassifications due to the
 
existence of more than two component classes within a single pixel. Within-class
 
variability, slope and aspect variability, and the sensitivity of the scanner in
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detecting changes in mixture proportions may also contribute to degrading the
 
classification performance using these methods.
 

These techniques may ,prove valuable in areas where vegetation masks the
 
characteristic spectral response of the underlying geologic material, and future
 
work should include an examination of this application. Emphasis should also
 
be placed on methods of acquiring better ground-control information upon which
 
the spectral-response estimation and simulation techniques are based.
 

The conclusion was reached that for computer mapping of terrain one has
 
to choose between two options for acquiring spectral-response data to be used
 
for establishing training sets:
 

1) 	Use on-site measurements, preferably from a helicopter, in order to
 
ensure proper sample size compatible with the satellite sensor-cell
 
size. These measurements must be corrected for atmospheric effects
 
to agree with the radiance values recorded by the remote sensor.
 
Measurements of target and of atmosphere must be made simultaneously
 
with the satellite pass.
 

2) 	Extract spectraltresponse data directly from the satellite remote­
sensor data. In this case, the use of simulated mixture provides a
 
real advantage as-described above.
 

We conclude that the particular LANDSAT-l MSS aid Skylab S-192 data sets
 
analyzed were acquired at times when the atmosphere Xias "clear," except for.the
 
clouds. We were able to map some terrain classes with accuracy greater than
 
95 percent without correcting for the atmosphere. Under these conditions it
 
probably is not economical'"to attempt to improve the:'accuracy by correcting
 
for atmosphere. The only real test of the atmosphereproblem would be to
 
analyze a data set acquired-during a time of very hazy atmosphere.
 

We also conclude that,' because of the variability of natural terrain
 
classes, mixture incremefnts smaller than about 25 percent are not feasible.
 

The technique of using natural terrain features"as calibration panels may
 
be a satisfactory substitute for on-site measurements, and has the advantage of
 
serving to monitor air quality as well as to aid in calibrating sensor data for
 
mapping of terrain"
 

Additional application? of some of the data and concepts developed during
 
this LANDSAT-l-Skylab study'apply to other problems 6f atmospheric visibility.
 
For example, the Environmental Protection Agency (EPA)Yhas requirements for
 
defining clear-air visibiiity in order to establish'clear-air baselines.
 
Vertical and horizontal atmosphere visibility have obvious effects on aircraft
 
operations add military surveillance. -"
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APPENDIX A
 

RECOG computer-program blocks
 

At Colorado State University, conventional automatic analysis of MSS data
 
is accomplished through the use of a series of pattern-recognition programs
 
called RECOG. RECOG consists of six program blocks which are a modification
 
of an original version called LARSYS, developed at Purdue University (ref. 17).
 
These programs provide a logical procedure for processing MSS data using super­
vised learning techniques. A brief description of each program block or phase
 
is presented here.
 

Phase 1
 

Phase 1 is a display routine that provides the user with a ,computer line
 
printer or microfilm representation of the scene that is to be automatically
 
analyzed. The MSS data are displayed as a graymap representing the radiation
 
response from each pixel.. A range of radiation responses (either specified or
 
default) are coded as a symbol and displayed for a selected wavelength band.
 
This display provides a pictorial representation of the MSS data from which the
 
user may delineate boundaries of terrain dlasses that he may wish to map.
 

Phase 2
 

The fields identified on the Phase-l graymaps are used as training sets
 
from which the mean spectral response and standard-deviation vectors and corre­
lation and covariance matrices are determined by Phase 2. The mean-spectral­
response vector and covariance matrix provide a statistical spectral signature
 
for a terrain class that is used in a later phase to automatically classify
 
each point in the MSS data set.
 

Phase 3
 

When the multispectral scanner has a large number of channels available,
 
processing the data using all of the information becomes quite expensive.
 
Phase 3 is designed to select a subset of optimum channels for identifying all
 
of the terrain classes, utilizing divergence criteria.
 

Phase 4
 

The spectral signatures obtained for each terrain class from Phase 2 can bE
 
analyzed as to how well they represent the class by selecting a subset of the
 
MSS data and classifying it with Phase 4. Phase 4 is designed as an instructioi
 
mode and allows classification of the data set by means of three algorithms:
 
LEVELS, a level-slicing routine; EUCLID, a Euclidian-distance routine; and GLIK
 
a maximum-likelihood routine. GLIKE is the algorithm used to classify the data
 
in the next phase so it is valid to test the representativeness of the signatur
 
set using it. This allows refinement of each spectral signature by redefining I
 
training set to discard any point that has high likelihood of not belonging,to
 
the class.
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Phase 5
 

Phase 5 is the actual classification mode for the RECOG pattern-recognition
 
sequence. The mean vector and dovariance matrix for each terrain class are
 
used with the maximum-likelihood-decision rule GLIKE to classify each pixel
 
in the specified MSS data set. As the classification results are generated
 
they are written onto a magnetic tape and stored as a permanent file.
 

Phase 6
 

The final step in the processing scheme, Phase 6, displays the results
 
generated by Phase 5. The user is given the option to specify a threshold level
 
which sets a confidence limit for the classified data points. This is designed
 
to eliminate false classifications of data which do not fit any of, the terrain
 
classes. Current display modes available with Phase 6 include a thematic map
 
produced on the computer line printer and/or microfilm similar to that produced
 
by Phase 1, except each pixel is identified by a symbol or intensity. level "(line
 
printei and microfilm, respectively) representing a terrain class. A more
 
detailed description of RECOG can be found in references 15 and 16.
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APPENDIX B
 

Flow chart of procedures for computer-assisted
 

classification of mixtures in multispectral scanner data
 

START 


Preprocessifig decisions based on the 

problem objectives. Include data
 
acquisition and determining component
 
terrain classes to be classified.
 

Obtain component-class spectral 

responses from MSS data either by 

1) signature extraction, 2) 

signature estimation from mixed-class 

training-set data. If mixed-class 

data is nonuniform then implement
 
common covariance matrix for each
 
class.
 

Simulate mixed-class spectral 

responses from component-class
 
responses using specified proportions
 
of each class.
 

Train the computer using the component 

and simulated mixed-class spectral
 
responses and classify MSS data set.
 
Obtain classification diplay
 

Evaluate results of the computer-
assisted classification. " 


TECHNIQUE
 

Decision making.
 

Ground-truth data
 
analysis and 1) Phases
 
1 and 2 of RECOG, or
 
2) Phases 1 and 2 of
 
RECOG and SIGCALC.
 

Program MIX.
 

Phases 5 and 6 of RECOG.
 

Comparison of computer­
"classified areas with
 

corresponding areas op
 
aerial photography or
 
other ground truth.
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APPENDIX C
 

Equations
 

The mean vector and covariance matrix that describe the spectral response
 
of a terrain class are determined from a set of MSS data points known to contain
 
that class. The statistical equations used to compute them are discussed below.
 

Because the radiation response from a ground-resolution element sensed by
 
a multispectral scanner can be described by the column vector
 

XA =A (12)
 

for LANDSAT for other scanners X3
x3 


x4 n
 

where each x component represents the radiance recorded in a spectral channel, w(
 
can find expressions for MA and CA in terms of the radiation response XA (ref. 1(
 

The mean vector MA is given by the column vector
 

~m2 ll m2
 

M m2= m2 (13)
 

for LAflSAT for other scanne
m3 n3
 

m4 mn
 

where mi is the mean spectral response in wavelength band i (for LANDSAT-l
 
il .. ,4) given by
 

mi nA xik (14)
 
A
 n ?
 

~k=l
 

where nA is the number bf"pixels (sample points) in the training set describing
 
terrain-class A, and k is the sample-point index.
 

The covariance matrix which indicates how the radiation response in one
 
MSS channel varies with the response in the other channels can be described as
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where cr. is the covarianee between channels i and j given by
 

2 1 nA ) i k in1). (16)
i3 ,,A (ik mi x
 

k- 1
 

The standard deviation for channel i in class A is oii, and the dorelat-id 
coefficient rij between channel i and channel j for class A is givel by 

(97
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COLORADO
 

Denver
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Figure 1. Location of test site in parts of Teller, El Paso, Park, Fremont,
 
and Pueblo Counties, Colorado. Shaded area shows approximate limits of
 
area covered by terrain map made from S-192 data (fig. 26). ECR, Eleven­
mile Canyon Reservoir Study Area; black area, Elevenmile Canyon Reservoir.
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Figure 2. Spectral response of two-component terrain classes (A, B)
 

and a mixture of. them (C) extracted from LANDSAT-I MSS data.
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Figure 3. Comparison of total solar irradiance and reflectivity of
 
Coniferous Forest and Pikes Peak Granite. Positions of absorption
 
band shown for water vapor (H20).
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Figure 4. Spectral radiance of Pikes Peak Granite, Coniferous Forest,
 

and mixtures of the two. Curves: G-=100 percent Pikes Peak Granite,
 
F=100 percent Coniferous Forest, 1=90 percent G-10 percent F, 2=80
 

percent G-20 percent F, 3=70 percent G-30 percent F, 4=50 percent
 
G-50 percent F. Data from May 29, 1974; lat. 38.800 N., long.
 

,
105.260 W., solar elevation 64.510, solar azimuth 126.620 time
 

10:30 AM MST. Curves traced from computer printout.
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Figure 	5. Spectral radiance of Pikes Peak Granite, Coniferous Forest,
 

and mixtures of the two. Curves: C=100 percent Pikes Peak Granite,
 
F=100 percent Coniferous Forest, 1=90 percent G-10 percent F, 2=80
 
percent G-20 percent F, 3=70 percent G-30 percent F, 4=50 percent
 

G-50 percent F. Data from May 29, 1974; lat. 38.80' N., long.
 
105.260 W., solar elevation 64.510, solar azimuth 126.620, time
 
10:30 AM MST. Curves traced from computer printout.
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Figure 6. Spectral response of two component terain classes (A,B),
 
a mixture of them (C) extracted from I.ANDSAT-1 MSS data, and the
 
mixture response (D) calculated using equation 3. A, B, and C
 
are same data as in figure 2.
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Figure 7. Microfilm graymap of nine-class simulated data set. Each
 
horizontal band represents a field of simulated data for a given
 
class, as labeled. F=Coniferous Forest, G-grassland, W=water.
 

46
 

0
 
38 

4) C 
C 

0 

0 D 
S30 

>E 

22 F 

14
 

4 5 6 7 

Wavelength (LANIDSAT-1 MSS bands) 

Figure 8. Mean spectral response for two component classes and modeled
 
mixture classes. Curves: G=100 percent grassland, F=100 percent
 
forest, C=75 percent G-25 percent F, D=50 percent G-50 percent F,
 
E=25 percent G-75 percent F. Dotted lines represent standard
 
deviations.
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Microfilm classification display for component-class analysis.
Figure 9. 

Blanks denote unclassified points.
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Figure 10. Microfilm classification display for five-class analysis.
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Figure 11. Mean spectral-response curves for simulated Grassland-

Water mixtures. Dotted lines indicate standard deviations.
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Figure 12. Mean spectral-response curves for component and mixture
 
classes used for nine-class analysis. Dotted lines indicate
 

standard deviations.
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Figure 13. Microfilm classification display of nine-class analysis.
 
True class field symbols noted at left of display are same as
 
in matrix on p. 14.
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Figure 14. Microfilm classification display for nine-class analysis using
 
calculated component-class signatures from uniform data. True class
 
field symbols noted on left of display are same as in matrix on p. 14.
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Figure 15. Graphical representation of uniform and nonuniform training sets.
 
a) Uniform mixture of 50 percent White-SO percent Shaded. b) Nonuniform
 
mixture of 50 percent White-5O percent Shaded.
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Figure 16. Microfilm classification displays for component-class analysis
 

using estimated mean vectors and covariance matrices, a) Spectral

signatures estimated from uniform training sets. ar
Spectral signatures
 

estimated from nonuniform training sets.
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Figure 18. Microfilm classification display of nine-class analysis using
 
calculated mean vectors and common covariance matrix. True field
 
class symbols noted at left of display are same as in classification­
confusion matrix on p. 14.
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Figure 17. Microfilm classification display of nine-class analysis using
 
calculated component-class mean vectors and common covariance matrix.
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Figure 19. Microfilm classification display for nine-class analysis using
 
calculated mean vectors and averaged common covariance matrix. True
 
class field noted at left of display are same as in matrix on p. 14.
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Figure 20. Microfilm graymap of LANDSAT-I MSS Band 5 of the Elevenmile
 

Canyon Reservoir Study Area. For location see figure 1. Dark area
 

is east part of Elevenmile Canyon Reservoir, containing island.
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Figure 21. Microfilm classification display of Elevenmile Canyon Reservoir 
Test Area with five component classes. 
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Figure 22. Microfilm classification map of Elevenmile Canyon Reservoir Study
 
Area with five component classes and nine mixture classes. Because of
 

limitations of the microfilm display, separate symbols could not be shown
 

for the mixtures (x); however, for study purposes they were printed
 

separately by a conventional line printer.
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Figure 23. Microfilm classification map of Elevenmile Canyon Reservoir Study
 

Area with five component classes and ten mixture classes. Because of
 

limitations of microfilm display, separate symbols could not be shown
 
for the mixtures (x); however, for study purposes they were printed
 

separately by a conventional line printer.
 

EXPLANATION 

Component classes Mixture classes 

G Grassland Symbol Component Component 

x W Water (percent) (percent) 
F Forest 67 G 33 F 

' MG Mountain Grassland * 67 G 33 W 

MW Wet Meadow x 67 WM 33 W 

blank areas are x 33 G 67 W 

unclassified x 67 G 33 WM 

x 33 WM 67 W 
x 33 G 67 F 
x 67 F 33 MG 
x 33 F 67 MC 
x 33 G 67 W 
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Figure 24. Mean spectral-response curves of the Manitou Study Area for
 
estimated Ponderosa pine and Background (curves A and B, respectively)
 
and extracted mixtures. Numbers refer to plots listed on p. 30.
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Figure 25, (opposite) Color-coded terrain claassification map of test site
 
shown in figure 1. Map unit. (see numbered color patches on side of
 
map) ares 

1, Dakota Sandstone 7. Forest 
2. Fountain Formation 
3, Niobrara Shale 

8. Unclassified (largely clouds) 
9. Cloud shadow 

4. Pikes Peak Granite 10, Meadow 
5. Pierre Shale 11. Water 
6. Dakota Sandstone and 

vegetation Composite 
12. Volcanic and plutonic rocks, 

undivided 

For more detailed description of the map units, see table 1 and
 
reference 26.
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