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FOREWORD 

This final report summarizes the work performed for NASA/Marshall Space Flight 

Center under Contract NAS8-31016 in the period 26 August 1974 through-31 December 

1975. The subject is the development of solar cell. interconnect bonding technology 

and selection of bonding materials and process controls for fabrication of large 
flexible solar cell arrays. Thermocompression bonding and conductive adhesive 

bonding were developed and evaluated as methods of joining solar cells to their inter­

connect circuitry. LMSC has received a contract follow-on to continue the study 

through 1976.
 

The MVSFC Technical Monitor is George Filip. The LMSC project supervisor is Gene 

J. Antonides. 
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Section 1 

INTRODUCTION AND SUMMARY 

The purpose of this study is to develop and evaluate thermocompression bonding and con­

ductive adhesive bonding as alternate methods of joining solar cells to their inter­

connect assemblies, and to select bonding materials and process controls applicable 

to fabrication of large, flexible substrate solar cell arrays. A bonding method other 

than soldering is necessary on lightweight, flexible substrate arrays to obtain life­

times in orbit of 5 years or more, because solders cannot withstand the orbital 

temperature cycling. 

Previous work at LISC* established that parallel-gap welding is a satisfactory solar 

cell/interconnect joining technique. There are, however, difficulties and potential 

problems with parallel-gap welding; namely, tight process control requirements, 

frequent welding tip cleaning, and possible degradation of the solar cell electrical 

output. This study is intended to determine whether thermocompression or conductive 

adhesive bonding could substitute for parallel-gap welding on flexible solar arrays. 

The primary potential use of,the techniques developed in this study is on the solar 

array being developed-by NASA/MSFC and LMSC for solar electric propulsion (SEP) 

and Shuttle payload applications. This array is made up of flexible panels approxi­

mately 0.7 by 3.4 meters. , It is required to operate in space between 0.3 and 6 AU for 

5 years with limited degradation. Materials selected must be capable of enduring this 

space environment, including outgassing and radiation. 

The study includes the following: 

* Evaluation of 9 conductive epoxies 

0 Development of optimum thermocompression bonding process parameters 

0e Comparison of 13 different interconnect materials 

*Contract NAS8-28432/Solar Array Flexible Substrate Design Optimization, Fabrication, 
Delivery and Test Evaluation Program. 
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* 	 Fabrication of solar array test modules, using best material combinations 

and both conventional and high-efficiency solar cells 

* 	 Temperature cycling and other testing of 3 72-cell modules of different 

designs 

* 	 Shipment of a second set of 3 72-cell modules to MSFC for additional 

temperature cycling testing 

Some of the work is closely related to ongoing Independent Development projects at 

LMSC. These projects include pull tab tests of conductive epoxies and interconnect 

materials, and fabrication and test of some 12-cell solar array modules. Pertinent 

results are includedin this report. 

The candidate conductive epoxies and interconnect materials were: 

Epoxies: 

Ablebond 36-2 Epotech H31D
 

Ablebond 58-1 Epotech H44
 

DuPont 5504 Transene Ohmex-Ag
 

Epotech H20E Transene GE-10
 

Epotech H21D
 

Interconnects: 

Copper, 1 oz. * Moly, 1 mil, silver-plated
 

Copper, 2 oz. Moly, 1 mil, gold-plated

Copper, I oz, silver-p]iated Kovar, I mil, silver-plated
 
Copper, 2 oz, silver-plated Kovar, 1 mil, gold-plated
 

Copper, 2 oz, gold-plated Silver, 1 mil
 

Copper, 2 oz, gold-plated Silver, 2 nail
 

Invar, 	 1 mil, silver-plated 

* loz. 	= 1.34 nail 
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Bond strengths were measured by pulling tabs,at a 450 angle. Pull strengths for the 

four most promising epoxy/interconnect material combinations ranged from 113 to 

369 grams before temperature cycling and from 91 to 284 grams after 50 temperature 

cycles from -196 to 150'C. Bond failures were caused predominantly by bond inter­

face separation, although there were some by silicon divoting. 

Thermocompression bonding parameters were varied as follows: pressure from 35.7 

to 52.1 MN/m 2 (5170 to 7560 psi), temperature from 204 to 5380C (400 to 1000 0 F) 

and time from 0.5 to 10 seconds. The optimum parameters, which applied to all the 
2interconnect materials, were 48 MN/m (6960 psi), 450cC (8500F) and 1. 1 seconds. 

Average (of 5 tabs) 450 pull strengths for the 4 best interconnect materials ranged from 

573 to oyer 800 grams before temperature cycling and from 420 to 684 grams after 50 

cycles from -196 to 150°C. Bond failures were of several types, in the following order 

of occurrence: separation at bond interface, divoting of silicon, tearing of pull tab, 

and peeling of plating on tab. 

A total of 10 12-cell test modules were fabricated of these selected materials 4 of which 

were conductive epoxy bonded and 6 thermocompression bonded. The modules were 

.temperature-cycled from -196 to 1500C in LMSC's Quick-Look Temperature Cycler. 

The silver-plated molybdenum, DuPont 5504 epoxy-bonded module performed-best, 

losing just one of 48 bonds in 1080 cycles. 

Based on the pull tab and 12-cell module testing three interconnect material/bonding 

combinations were selected as the most promising:, 

* Silver-plated molybdenum, bonded with DuPont 5504 silver-filled epoxy 

* Silver-plated molybdenum, thermocompression bonded 

* Gold-plated copper, thermocompression bonded 

Six 72-cell solar cell array modules were fabricated, two each of the above. One set 

of 3 modules was tested in the LMSC Solar Panel Temperature Cycling Facility. The 

other three modules were shipped to MSFC where they will be similarly temperature 

cycled. 
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The modules tested at L1VtSC were exposed to 604 90-minute cycles from -160 to 1500C, 

except that during the first 84 cycles they were mistakenly overheated to 3250C, 

adversely affecting the test results. The conductive epoxy bonded module performed 

best of the three; 17% of its bonds had failed after 604 cycles. The thermocompression 

bonded modules, with silver-plated molybdenum and gold-plated copper interconnects, 

lost 63% and 100% of their bonds, respectively. 

The thermocompression bonded modules did not do as well as expected, considering the 

pull tab testing results. The reason for this may be the polyester adhesive on the 

substrate film which melted and flowed onto the bond access areas during the bonding 

process and may have contaminated the bond interface, preventing a good bond. If so, 

the use of an acrylic adhesive should improve the performance of thermocompression 

bonded arrays up to the level of the pull tab specimens. 

Despite the number of bond failures on the test modules during temperature cycling, 

both thermocompression bonding and conductive adhesive bonding appear to be viable 

methods of joining solar cells to their interconnect circuitry. The bond strengths 

typically are not as high as obtained with parallel-gap welding, but may be sufficient. 

Compared to parallel-gap welding, conductive epoxy bonding ban be applied much more 

efficiently, using screen printing techniques. But it requires a complicated 

setup and a curing operation. Thermocompression bonding is accomplished at a lower 

temperature, allows less exact control of the bonding parameters, and requires less 

frequent cleaning of the tip. However, the higher bonding pressure presents a greater 

danger of cell damage and the longer bonding time may cause overheating of parts of 

the array (such as the substrate adhesive). 

Further development and evaluation are necessary, particularly of tooling and fabrica­

ion processes, before either bonding method can be accepted on a flight array. 

-4 
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Section 2 

THERMOCOMPRESSION BONDING PROCESS DEVELOPMENT 

2.1 Introduction 

Thermocompression bonding is a process in which two metal surfaces are joined by 
solid state diffusion under high pressure and an elevated temperature below the melting 

point. Other names for the process are diffusion welding, thermal diffusion bonding, 
solid phase welding, and mechanical thermal pulse bonding. 

Thermocompression bonding is a two-stage process. First, the two materials are 

placed together under sufficient pressure to cause plastic deformation of one or both 
materials. This ruptures and displaces surface films such as oxides which would 
otherwise interfere with good bonding. It also smooths surface asperities, providing 
more intimate contact. Second, the combination of high interface pressure and elevated 
temperature produces a reaction between the two metals, resulting in the bond. The 
reaction can be one of three kinds: 1) solid state diffusion of the two materials across 
the bond interface, 2) formation of a eutectic of lower melting point, or 3) formation 
of an intermetallic compound. 

For the maximum possibility of success the interconnect material should be as soft 
and ductile as possible (such as copper or gold) so that it will readily deform under 

pressure and come into intimate contact with the silver plating on the solar cell. For 
corrosion resistance the interconnect should be coated with gold or another -corrosion 
resistant material. Hard materials such as nickel or molybdenum, uriless heavily 
plated with softer materials, are very difficult to bond using this technique. Although 

the low thermal expansion coeffiient of molybdenum is desirable because it matches 
that of silicon, it creates additional difficulty in achieving a good thermocompression 

bond. 

The advantages of thermocompression bonding over parallel-gap welding are 1) a lower 
temperature requirement reducing the possibility of cell degradation, 2) less critical 

LQCKHEED MISSILES & SPACE COMPANY. INC.
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surface preparation, and 3) less exacting bond parameters. Potential problems in the 

use of thermocompression bonding are 1) higher pressures causing cell damage and 

2) longer time durations required per bond. These factors were thoroughly investigated. 

To obtain successful thermocompression bonds, the bond parameters should be in general 

as follows: 

* 	 Temperature - approximately at one-half the absolute melting point, and 

above the oxide dissociation temperature 

* 	 Pressure - above yield point of material at the interface temperature 

* 	 Time - a few tenths of a second minimum. The optimum time must be 

determined empirically for each set of conditions, since different times 

may produce different metallurgical results. 

The work performed to develop thermocompression bonding for the large area, flexible 

solar array application was essentially a five-step procedure: 

1. 	 Select best bonding equipment. 

2. 	 Determine process requirements and optimum bonding parameters for several 

interconnect materials. Evaluate bond performance, including temperature 

cycling testing. 

3. 	 With 4 best interconnect materials, build 4 12-cell test modules of design 

similar to SEP array. 

4. 	 Temperature cycle and electrically test the 12-cell modules. 

5. Select best interconnect materials for fabrication of 72-cell test modules. 

A flow chart, describing in detail the work done, is given in Figure 2-1. 

6 

LOCKHEED MISSILES & SPACE COMPANY, INC.­



SELECTION AND SETUP, 

OF BONDING EQUIPMENT 


Determine best bond parameters 
(temperature, pressure, time) with 
each of 3 methods: 1) mechanical 

0 	 thermal pulse (Jade), 2) parallel gap 
n (Unitek), 3) shunted tip (Unitek). Use 

I .approx. 30 mechanical cells, 10 bonds 
1, per cell, and both Cu and Ag/Mo tabs.[w 

Perform 450 pull test on each bond. 

Select best method for subsequent 
process development, 

F Design and fabricate single bond 
U) tooling, 

Utare
-BONDING 	 PROCESS DEVELOPMENT 

_ _ __ 	 _5 

o 	 Develop optimum single bond 
O 	 process and parameters for each 

interconnect material (tabs), using>approx. 	 20 mechanical cells and 10 
aror. 20 me cells 
or more bonds per cell. 

Prepare 10 bonds per cell at optimum 
parameters using conv. mech. cells 

P for each of 10 interconnect materials 
(10 cells total). 

Perform 450 pull test on 5 bonds 
from each cell. 

Subject cells to 50 high/low tempera­
ture cycles.
 

Perform 450 pull test on remaining
 
5 bonds per cell.
 

Select 4 interconnect materials.
 

Prepare another 10 bonds per cell
 
at optimum parameters using cony.
 
mech. cells and selected 4 inter­
connect materials (4 cells). 

Perform 1200 pull test on 5 bonds
 
from each cell.
 

Subject cells to 50 high/low tempera­
cycles
 

Perform 1200 pull test on remaining
bonds per cell 

Prepare 10 bonds per cell at optimum 

parameters using hi-eft, cells and 
above 4 interconnect materials (4
 
hi-eff cells)
 
Perform 450 pull test on 5 bonds from
 
each cell
 

Subject cells to 50 hgh/low tempera­
ture cycles
 
Perform 450 pull test on remaining 

15 bonds per cell 
FB 

Figure 2-1 Flow Chart for Thermocompression Bonding Development and Testing 



12-CELL MODULE FABRICATION 

Measure electrical performance of
24 cony. and 24 hi-eff. covered cells.

8 cony. and 4 hi-eff. covered cells. 
Bond2ad n-ontat-conactinterconnect 	 Fabricate 4 12-cell modules using 422 	 materials and 6 cony.Bond 2 n-contact and p-contact 

r tabs on each cell at optimum para- ande6chi-ecellster m o. 

0 meters for 4 interconnect materials, and 6 hi-eft, cells er module. 

A.2 	 conv. cells and 1 hi-eff. cell per: 	 "interconnect material (48 bonds on 
M, 	 12-CELL MODULE TESTINGP, 	 12 cells). 

0 	 1 
< Measure electrical resistance of each Measure electrical performance of 
U_ bond (48bonds). 4 12-cell modules 
F Measure electrical performance of 

each cell (12 cells). Subject 12-cell modules to 1000 thermal 

eh ccycles in Quick-Look Tester. 
ko 0. Subject cells to 50 high/low tempera- Inspect modules. 
(n 	 ture cycles.
 
'0 
> Visually inspect all bonds. 	 Measure electrical performance of 4 
C) 	 12-cell modules after temperature
P1 Measure electrical performance of 	 cycling 

o 	 each cell. 
Perform 45' pull test on minimum of<Measure M electrical resistance of 2 e~e od 

>each bond. 

. Prfom 4 ° pul tst n al bods.72-CELL 	 MODULE DESIGN SELECTION 

P I 	 Select best interconnect design and 
material and optimum bond schedule 
for both cony. and hi-eff. 72-cell 
modules. 

NOTE: All cells used in TC bonding tJ 
development have covers installed. 

Figure 2-1 (continued)Flow Chart for Thermocompression Bonding Development 
to 

and Testing 
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Pull tabs, of the dimensions shown in Figure 2-2, were made to test bond strengths. 

The pull tests were done on a Unitek Micropull Pull Strength Tester, pictured in 

Figure 2-3. 

Figure 2-2 Pull Tab for Bonding Development Tests 

Figure 2-3 Unitk Mtcropull Tester 
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I 
2.2 Selection and Setup of Bonding Equipment 3 
Three 	different types of thermocompression bonding equipment were evaluated, 

using both bare copper and silver-plated molybdenum pull tabs on covered solar 

cells: 

(1) 	 heated ram (also named mechanical thermal pulse method) j 
(2) 	 parallel-gap tip, operating at values of voltage, pressure and time which
 

result in thermocompression bonds 
 I 
(3) 	 shunted tip with closed-loop temperature control 

In the 	heated ram method a relatively massive volume of metal (ram) with a tip 

chosen to have high thermal conductivity is heated to an accurately controlled 5 
temperature. The ram is mechanically pressed against the workpiece with sufficient 

force 	to provide low values of thermal resistance between the work parts and the tip. 5 
This allows the thermal energy stored in the ram to be rapidly transferred to the 

work parts by thermal conduction. The heat and pressure at the interface of the 

workpieces results in a thermocompression bond. For evaluation of this method a 

Jade Model CA-1 Mechanical Thermal Pulse bonder was used (Figure 2-4). LMSC 

also has a Model Mark IA bonder, used in microelectronic assembly (Figure 2-5). 

The most consistent bond strengths for bare copper and silver-plated molybdenum £ 
were obtained at machine settings: 

Pressure = 4.5 to 6 kg (10 to 13 lbs.) 	 f 
Ram 	Temperature = 500 +30-15 
Time = 5 seconds 	 5 

This gave 900 pull strengths of 75 to 250 gm with an average of 130 gm. Samples for 

these and all other tests were prepared by abrading oxides from cells and contacts 

and wiping clean with isopropyl alcohol. 

In the parallel-gap tip method, current is passed between two closely-spaced tips 

through the material to be joined. By reducing the voltage between the tips and 3 
increasing the pressure and dwell time over what are normally applied in parallel­

gap welding, a solid state diffusion bond (thermocompression bond) can be made. 

10 
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£ 

II 
IW FigureI2-4 Jade Model CA-1 Mechanical Thermal Pulse Bonder at LMSC 

I 
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j Figure 2- Jade Markl A Mechanical Thermal Pulse Bonder at LMSC
Figure 2-4 Jade Model A- Mechanical Thermal Pulse Bonder at LMSCI 
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A Unitek Model 1-137-02 welder was used with a tip used previously on parallel-gap £
 
welded, solar array test modules (Figure 2-6 and 2-7). Each electrode tip was .38
 

by .63 mm (. 015 by .025 inches), spaced .2 mm (. 008 in.) apart.
 

Bond strengths (900 pull) from 63 grams to 522 grams with an average of 222 grams
 

were obtained with welder settings of: 
 I 
Force = 1Kg (2.2 lb)
 

Voltage setting = 3.6£
 

Time = 10 seconds
 

The Unitek welder has a foot pedal to apply tip pressure. The welding arm is brought 

down onto the workpiece by a cable attached to the pedal. Tip pressure is determined 3 
by deflection of flexible metal bands in the arm which is limited by a stop in the foot 

pedal. Thus tip pressure varies with height of the workpiece as well as setting of 3 
the stop. Tip force is established using a force gauge under the tip which is located at 

the same height as the workpiece. Force limits are •45-45 Kg (1 to 10 lbs. ). For the f 
2Unitek. 38x. 63 mmparallel-gap tip this corresponds to a pressure of 9.2 to 92 MN/m(1)" 

(1300-13,000 psi). According to Conti ( )*, pressure for successful thermocompression 

bonding should be between 38 and 100 MN/m 2 (5500 to 14,700 psi). The pressure 
settings on the Unitek welder are considered adequate for this contract, because 

minimum values are being sought to avoid cell damage and for ease of manufacturing. 3 
The tip force at which current begins to flow is adjustable. Setting the switch to close 5 
at just below the final force value will ensure satisfactory pressure through the full 

dwell time. The technique for bonding is to watch temperature control light while 

depressing the foot pedal, hold against stop while light is on, and then release. 

In the shunted-tip method, a tip similar to that used for parallel-gap welding but with 3 
material bridging the end is used. The heat is generated by the electrical resistance 

of the shunt rather than the resistance of the interconnect and solar cell metalization. j 
With a thermocouple attached to the shunt, the tip temperature can be controlled 

accurately. j 
*See Bibliography Reference 1 at end of this Section. 
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The Unitek Model 1-137-02 bonder was used for this evaluation also. Two shunted tip 3 
designs were used. The first was a special LMSC design with two tips each made of 

tungsten carbide and inconel (Figure 2-8). Several good bonds were obtained with 

I 
£ 

INSULATING j 
SHIM 

- I 
SHANK (COPPER
 
CHROMIUM,
 
RWMA CLASS 2)
 

£ 
II 

I' 1 
BRAZE SHANKS
 

TUNGSTEN CARBIDE TO TIP
 
OR INCONEL TIP
 

THERMOCOUPLE, APPROX I 
0.020 FROM TIP 0.005 RAD 1/2 INCH 

TYP 
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Figure 2-8 Shunted Tip, LMSC Design £ 
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the tungsten carbide tips. However, before the optimum bond parameters could be 

determined, both tips had been broken at the bridge of the tip, due partly to careless­

ness in mounting the tip in the bonder. Then two more tips were purchased, with a tougher 

material--inconel--replacing the tungsten carbide. 

The inconel bonding tips were tried, but the temperature difference between the 
thermocouple on the tip and the interface to be bonded was so large that a good bond 

could not be obtained even at the highest temperature setting (540°C) on the bonder. 

The thermocouple could have been re-welded closer to where the tip contacts the 

workpiece. Instead, at this time a standard Unitek shunted tip was obtained. 

The Unitek Model 10-128-01 tip, sketched in Figure 2-9, has a short cylindrical shunt 

which is clamped between two shanks. A thermocouple is welded near the end of the 

shunt and connects to a control circuit in the power supply, providing closed loop 

control of the tip temperature. 

The principal advantage of the shunted tip method is that the important bonding process 

parameters--temperature, pressure and time--can be better controlled and known. 

For this reason, the pulse-heated shunted tip method, using the Unitek bonder and tip, 

was selected for all subsequent work. 

Measurements were made to determine the difference between the shunt temperature 

as represented by the thermocouple and the actual bond surface temperature. A 3-mil 

thermocouple was placed on an alumina plate. A piece of interconnect circuit/substrate 

was placed over them with a bond pad area centered on the thermocouple. The bonding 

tip then was brought down as if to make a bond, and the maximum thermocouple tempera­

ture was recorded. Measurements were made for 3 temperature settings and 3 time 

settings on the bonder. The results are shown in Figure 2-10. Although there is con­

siderable scatter in the data, it is seen the actual bond interface temperature is from 

60'C to 1800C below the bonder setting due to temperature drop between the two thermo­

couples. The temperature drop is dependent on the thermal conductivity of the substrate 

(in this case alumina). It would be somewhat larger with a solar cell in place of the 

alumina. Since all the bonding process data to be presented gives the temperature 

setting, it must be remembered the actual interface temperature is well below that 
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Figure 2-10 	 Bonder Temperature Setting vs Actual 
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value. Also, when using feedback temperature control it is important to have the 

thermocouple located as close as possible to the end of the tip contacting the work­

piece. This will provide the best knowledge and control of bond interface temperature. 
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2.3 Bonding Process Development 

The steps taken in determining the best interconnect metals and optimum bonding 

parameters (temperature, pressure, time) were summarized in Figure 2-1. 

The bond parameters were scanned as follows: 

Pressure 35.7 to 52.1 MN/m 2 (5172 to 7559 psi)
 

Time .5 to 10 sec
 

Temperature 204 to 5380C (400 to 10000 F)
 

Using 	silver-plated 1 mil molybdenum tabs the optimum pull strengths were obtained 

at the following parameters (See Table 2-1): 
Pressure 48.0 MN/m 2 (6962 psi) 

Time 1.7 sec
 

Temperature 4270C (800 0 F)
 

Of all the materials and parameters tested, the minimum parameters which yielded 

good pull strengths were: 

Pressure 35.7 MN/m 2 (5172 psi)
 

Time .75 sec
 

Temperature 3710C (700°F)
 

The following plan then was executed to establish optimum bond parameters for several 

interconnect materials by varying pressure, time, and temperature. Bond parameters 

were compared by evaluating pull strengths at 45'. The materials used were those 

shown 	in Table 2-2. 

1. 	 Prepare 10 cells: which meet mechanical specifications and have similar metali­

zation thickness (mechanical cells) with 12 bonds each (Group I) using optimum 

bond parameters for silver-plated 1 mil molybdenum. 

* 	 Pull 6 bonds at 450 

* Temp cycle 50 times(-1960 C to 150'C)
 

a Pull remaining 6 bonds at 450
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TABLE 2-1 

AVERAGE PULL STRENGTHS (gn). 

1 mil silver-plated molybdenum bonded at 4270C (8000F) 

Tip Pressure 2.3 - - 1 - Time 

MN/m 2(psi) 5 Ii, 231 1.7 14 1.1 13 .75 12 .50 11" 'Sec) 

52.1 (7559) 288 227 74 198 49 
(3) (29) (2) (4) (2) 

50.7 (7360) 547 459
 
(3) (3) 

48.0 (6962) 424 649­(4) . . . .4%_ . 

45.3 (6564) 442 
(2) 

42.5 (6167) 196(2) 

39.1 (5669) 300 
(5)
 

35.7 (5172) 241 234 
(7) - -- (3) 

-- optimum1 mmDia Tip 


450 Pulls

* Force/time not controlled
 

(i.e., temp turned on before full force was applied)
 

[ J machine setting for time
 
number of samples
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2. 	 Prepare 10 mechanical cells with 12 bonds each (Group II) using minimum 

parameters which yielded good bond strengths. 

* 	 Pull 6 bonds at 450 

* 	 Temp cycle 50 times (-196°C to 1500C) 

* 	 Pull remaining 6 bonds at 450 

TABLE 2-2 

INTERCONNECT MATERIAL CANDIDATES 

FOR THERMOCOMPRESSION BONDING 

A - 1 oz. copper 

B - 1 mil silver 

C - Silver-plated 1 oz. copper 

D - Silver-plated 1 mil Invar 

E - Silver-plated 1 mil Kovar 

F - Gold-plated I oz. copper 

G - Silver-plated 1 mil molybdenum 

H - Gold-plated 1 mil molybdenum 

I -	 2 mil silver 

J - Gold-plated 1 mil Kovar 

3. 	 Prepare 10 mechanical cells at parameters which are selected after evaluating 

results of Groups I and H. 

* 	 Pull 6 bonds at 450 

* Temp cycle 50 times(-196°C to 150'C)
 

0 Pull remaining 6 bonds at 450
 

The pull strengths before and after temperature cycling and other data from Groups 

I, II and III are given in Table 2-3. 

4. 	 Select 4 best interconnect materials and their bonding parameters, based on 

high pull strength (450 pull), low degradation during temperature cycling, and 

a minimum pull strength of 200 grams. Prepare 4 cells with 12 bonds each 

(Group IV). 
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TABLE 2-S 

AVG. PULL STRENGTHS (gin at 450) BEFORE AND AFTER 
TEMPERATURE CYCLING FOR TEN TAB MATERIALS 

GROUPI GROUP 1 GROUP HI 

Before After Character Before After Character Before After Character 
TO TO TO TC __ _ TO TCj 

C 800 1736 s, d C 569 F *448 s D800 D 684 s 

1711 !i 639 s B 383 D 421 s C800 0 666 s 

D 592 E 625 s, d 1 354 1 400 s 1 800 E481 s,d 

E452 C 609 s, d IF 295 B 398 It F 769 ' 477 s,d 

F419 F 542 s, d D180 C 357 s G573 F420 sd 

B 378 G 516 s, d E 113 E 351 s E 566 B417 It 

* 245 B 371 it G 97 G 338 s A 461 1408 s,d 

A138 :A218 S A89 J287 s B460 -A 3672 s 

H 137.i H181*I**I s, d J 86 H 170 s H454 1365 s 

J133 J134 'Tm H 35 A 140 s J429 J336 s 

See Table 2-2 for material code letters 

* contains readings below 200 gm 

GROUP ITemp 427 0C(8000 F) Duration 1.7 see Pressure 48.0 MN/m 2 (6962 psi) 

GROUP H 
23710C(700°F), .75 sec 35.7 MN/m (5172 psi) 

GROUP II2 454°C(850°F) 1.1 sec 248.0 MN/m (6962 psi) 

Character of break (after temperature cycling) 

d = divot 

s = surface bond 

It tab material broke before bond 

Tm = tab plating peeled 
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* Pull 6 bonds at 1200 

* Temp cycle 50 times(-196°C to 1500C) 

* Pull remaining 6 bonds at 1200 

Table 2-4 lists the selected materials and their pull tab strengths before and after 

temperature cycling from Group III data. 

5. 	 Using same materials prepare.4 high-efficiency cells with 12 bonds each 

(Group V). 

* -Pull 6 bonds at 120*
 

- Temp cycle 50 times (-196°C to 1500C)
 

* Pull remaining 6 bonds at 1200 . 
Table 2-5 gives pull strength data for the 1200 pull tests (Groups IV and V).. 

6. 	 Measure electrical output (I-V) of 8 conventional and 4 high-efficiency cells 

(covered with 6 mil covers). For each-of 4 selected interconnect materials, 

bond 2 conventional and i high-efficiency cells with 2 N-tabs and 2 P-tabs­

(Group VI). 

* Measure electrical resistance of each bond and'electrical output (I-V) 

of each cell
 

" Temp cycle 50 times (-196°C to +1500C)
• 

* Inspect bonds visually 

* . Measure electrical output of each cell and resistance of each bond 

* Pull tabs at 450 

The results of the Group VI electrical tests are given in Table 2 -6. The contact 

resistances increased 0 to 54% due to teniperature cycling. 
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TABLE 2-4 
SELECTED MATERIALS FROM GROUP III 
BOND STRENGTHS (45? PULL, gm)BEFORE 
AND AFTER TEMPERATURE CYCLING 

MATL BOND STRENGTH* 
'CODE MATERIAL BEFORE TC AFTER TC 

D Silver-plated 1 mil.Invar 	 '800 684 

C Silver-plated 1 oz. copper 	 800 666 

F Gold-plated 1 oz. copper 	 769 420 

G Silver-plated 1 mil molybdenum 573 477 

*Bond Parameters:
 
2
4540C (850 0 F), 1.1 sec, 48 MN/m (6962 psi) 

Temperature Cycling = 50 cycles 

-1960C to +1500C 

TABLE 2-5
 

GROUP IV & V
 
PULL STRENGTHS (120' PULL, 'gin)
BEFORE AND AFTER TEMPERATURE CYCLING 

GROUP MATERIAL 	 Silver Plated Gold Plated Silver Plated Silver Plated 
1 oz Copper I oz Copper Iml Invar I mil Moly 

Iv
 
Conven- Before TC 293 205 196 150
 
tional After TC 306 294 280 203
 

Efficiency 

V Before TC 287 225 105 118 
High After TC 192 198 141 172 

Efficiency 
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TABLE 2-6 
GROUP VI ELECTRICAL PERFORMANCE BEFORE/AFTER TC 

450 PULL i CURRENT AT 470 MV RESI§TANCE OF P-CONTACT AT 
STRENGTH (milliamps) 25 C (milliohms)
AFTER TC CELL I
 
ATrs TOT BEFORE FIER AFTER AFTER EON AFTER TC
 
(grams) CELL NO. MATL. 1"2-311 2 3
 

800 85.500 800 (VI-H1) HE18 C 244.9 283.4 282.3 1.4 1.4 1.80 1.85 

462 426!265 350 (VI-H2) HE19 D 252.3 280.2 274.3 3.6 4.2 3.6 4.3 

530 143: 460 341 (VI-H3) HE21 F 249.6 277.6 275.5 1.8 2.4 2.2 2.5 

245 275; 191 X (VI-H4) HE22 G 238.5 281.4 285. 1.4 1.7 1.85 2.20 

63 800 800 800 (VI-Cl) 393 C 252.5 251.7 248.7 i 3.7 1.7 1.9 1.9 

123 X 800 800 (VI-C2) 394 C 256.1 230.5 234.7 . 14.8 3.8 7.4 5.7 

800 800 637 612 (VI-C3) 395 D 255.1 251.8 252.7 1.1 10 1.15 1.1 

482 621 800 200 (VI-C4) 396 D 255.1 250.2 245.5 10.9 0.9 1.15 1.25 

35 .X 800 630 (VI-C5) 397 F 252.2 --- --- - i3.2 4.1f 
800 412 473 640 (VI-C6) 398 F 260.1 258.2 260.5 0.9 0.8 1.0 1.05 

346 270 479 202 (VI-CT) 399 G 258.8 248.9 258.1 I 1.2 '1.2 I 1.3 1.4 

288 395 430 627 (VI-C8) 400 G 254.6 244.7 250.4 4.1 3.0 3.5 

TC - temperature cycling 50 times from -196°C to +1500 C in air 

X - bond failed prior to pull test 
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The effect of cell temperature on bond electrical resistance is shown in Table 2-7. 

Resistance values, measured at 250C, -196oC and 1500C, increase significantly with. 

temperature, although they remain too small to affect significantly the electrical 

output of a solar array. The resistance values at 250C, before and after temperature 

cycling, are repeated from Table 2 -6. One bond broke before the measurements 

were star ted; there were no bonds which failed as a result of either the temperature 

cycling o handling during resistance measurements. 

Several variables were found to affect thermocompression bond quality. These are 

listed in Table 2 -8 below. 

TABLE 2-8 

VARIABLES AFFECTING THERMOCOMPRESSION BOND QUALITY 

Bonding Parameters Cell Metalization 

* Temperature * Adherence to cell 

0 Pressure Cleanliness of Parts 

* Duration Oxide Formation 

Tip Geometry Handling Requirements 

Interconnect 

* Material(s) used
 

4 Thickness
 

* Adherence of plating 

In summary, the 4 interconnect materials which performed best and were selected for 

fabrication of 12-cell test modules are: 

Silver-plated, 1 mil Invar 

Silver-plated, 1 ounce (approx. 1.3 nail) copper 

Gold-plated, 1 ounce copper 

Silver-plated, I mil molybdenum 

A single set of bonding parameters was selected for all 4 materials: 
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ELECTRICAL RESISTANCE IN MILLIOHMS 
TEMP TEMPERA- Copper, 1 oz. , Silver-Plated Invar. 1 Mil, Silvei'-Plated 
CYCLING TURE Cell No. 393 Cell No. 394 Cell No. 395 Cell No. 396 
EXPO3URE (0C) P1 P2 P1 P2 P1 P2 P1 P2 

-196 0.5 0.4 1.5 1.3 0.25 0.27 0.25 0.25 

r Before 25 1.7 1.7 4.8 I 3.8 1.1 1.0 0.9 0.90 Beor 
00 , . I 

150 2.9 . 3.0 8.2 6.5 2.5 2.2 2.0 2.0 
Mmi 

After 25 1.9 1.9 7.4 5.7 1.15 1.1 . 1.15 1.25!:i t 

U) 

Iii 
U ELECTRICAL RESISTANCE IN MILLIOHMS

TEMP TEMPERA- Copper, 1 oz, Gold-Plated Molybdenum, 1 Mil, Silver-Plated 
toCYCLING TURECYCING TUR Cell No. 397 Cell No. 398 Cell No. 399 Cell No. 400 

UEXOS[RE (0 C) P1 P2 Pi P2 Pl P2 P1 I P2 
>I 

-196 -- 1.0 0.24 0.2 0.3 0.3 I 1.25 0.96 
M 

0 Before 25 -- 3.2 0.9 0.8 1.2 1.2 4.1 3.0 

> 150 -- 5.6 1.7 1.8 2.4 2.0 6.1 4.8 
z 

After 25 -- 4.1 1.0 1.05 1.3 1.4 4.2 3.5 

P1, P2 refer to the two tabs on P-contact of solar cell
 
-- = bond failed prior to resistance measurement
 

TABLE 2 -7 w
0 

ELECTRICAL RESISTANCE IN MILLIOHMS OF THERMOCOMPRESSION 
BONDS, CONVENTIONAL EFFICIENCY CELLS 

to 

C;) 

cc 



r 

0 

m
mI o 

m 

TEMP TEMPERA-CYCLING TURE 

M'URE (CC) 
0 

-196 

Before 25 

)o150 

After 25 

ELECTRICAL RESISTANCE IN MILLIOHMS 
Cu. 1 oz. Invar, 1 Mil, Cu, 1 oz, Gold-Pl 
Silver'-Pl Silver-Pi Gold-Pl 
Cell No. HE-18 Cell No. HE-19 Cell No. HE-21 
P1 P2 P P2 P1 P2 

0.43 0.44 1.21 1.44 j 0.63 0.69 . 

1.4 1.4 3.6 4.2 1.8 2.4 -
I I 

2.3 2.4 4.9 i6.0 2.7 3.2 

1.80 1 1.85 3.6 4.3 2.2 2.5 

Moly, 1 Mil, 
Silver-Pi 
Cell No. HE-22 
Pl i P2 

0.40 0.60 

1.4 1.7 
-

2.2 2.8 

1. 

(0 
-: Pl, P2 refer to the two tabs on P-contact of solar cells 

m 
6 
0 

-U 

Z 

TABLE 2-7 (cont.) ELECTRICAL RESISTANCE OF THERMOCOMPRESSION 
HIGH EFFICIENCY CELLS 

BONDS, 

0 

tj
pI 

CD 

N' 
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450°C (850°F) 

1.1 second
 

48 MN/m2 (6960 psi)
 

Bond strengths (450 pull) for these materials after 50 temperature cycles -(-196°C to 1500C) 

were from 420 to 684 grams. 

Electrical contact resistance increased 0 to"50% after temperature cycling. 
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12-Cell Module Fabrication 

Four 12-cell test modules, one of which is shown in Figures 2-11 and 2-12, were 

made using the thermocompression bonding parameters and 4 interconnect materials 

selected at the end of the bonding process development task. The design was as 

much as possible like the SEP solar array baseline design. The solar cells were 

2 x 4 cm, 8-ruil thick, end tab wraparound cells with a 6-mil fused silica cover. 

Figure 2-13 shows the flexible printed interconnect circuit configuration, which is 

made up of the interconnect circuit sandwiched between sheets of 0. 5-mil Kapton/ 

0. 5-mil polyester laminate, the polyester acting as a thermosetting adhesive to hold 

the 2 layers of Kapton and circuit together. The interconnect circuitry includes 3 

terminal pads to permit electrical measurement of each half-circuit (3 cells in 

parallel by 2 in series) or the full circuit (3 by 4). 

The fabrication of the flexible printed circuit was done as follows: 

(1) 	 Cut Kapton/polyester laminate film pieces and punch. 100 in. dia. holes 

at 48 bond locations. 

(2) 	 Heat-laminate interconnect foil to base film at 350°F, 300 psi for 10 min. 

(3) 	 Print and etch interconnect circuit onto foil using KMER resist. 

(4) 	 Laminate cover film to base film/interconnect assembly at 350*F, 300 psi 

for 10 min. 

The interconnect bonding was done on the Unitek Model 1-137-02 bonder with Model 
10-128-01 tip using the following parameters: 

Temperature = 4540 C (8501F) 

Time 	 = 1.1 seconds 

Pressure = 48 MN/m2 (6960 psi) 
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Figure 2-11 12-Cell Test Module, Thermocampresslon-Bonded - Front Side 
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Figure 2-13 Interconnect Circuit, 12-Cell Test Modules 3 
Much difficulty was encountered In making all the bonds hold, especially with the gold- 3 
plated copper module. Loose joints were subjected again to the bonding process, and if 
that did not succeed the entire cell was replaced. In removing a cell, it was always 3 
possible to break the good bonds on the cell without damaging the interconnect. Table 
2-9 gives data on the number of loose bonds repaired and the number of cells that hadI 

to be replaced in repairing those bonds. 

TABLE 2-9 3 
BOND REPAIRS ON THERMOCOMPRESSION-BONDED MODULES 

NO. OF LOOSE BONDS NO. OF CELLS i 
MODULE REPAIRED REPLACED 

Silver-Plated Copper 2 2 3 
Gold-Plated Copper 17 9
 
Silver-Plated Molybdenum 5 3 
 3 
Silver-Plated Invar 2 2 

I 
32 3 
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The cause of the bond failures is evidently due to the addition of the Kapton/polyester 

substrate, since such failures did not occur with the thermocompression-bonded pull 

tab specimens. The most likely cause is the polyester adhesive which melts locally 

during bonding and flows out over the bond access area, potentially contaminating the 

bond interface. 

Two additional 12-cell modules with silver-plated copper and gold-plated copper were 

made to investigate the poor temperature cycling performance of the first two made of 

these materials. The bonding parameters were varied on these modules as shown in 

Figure 2-14. 
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SILVER-PLATED COPPER: 

4270C 5380C 
(800°F) (1000-F)
 

(e3700C
pi2 (700°F)
 
(7560 psi) 315C,
 

2.3 See J 300 
(600'F) 

1.1 See 37000F)
 
36 MN/m 2 (700°F)
 
(5170 psi) j 35
I23oc


2.3 Sec (600°F) !
 

GOLD-PLATED COPPER: 

3702C 4270C 5380C 
(700°F) (800°F) (1000-F) 

36 MIN/rn 2 Sec I_. 

(5170 psi) 1.1 See 

12.3 Sec 

52 MN/m 2 j
(7560 psi) 23

2.3 See 

NOTE: The blocks represent solar cell locations in the test module 

Figure 2-14 Thermocompression Bonding Parameters for Additional 
12-Cell Test Modules 
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12-Cell Module Testing 

The 4 thermocompression-bonded 12-cell test modules with their 4 different interconnect 

materials were tested electrically under 1 sun using the Spectrolab X-25 simulator. 

Their outputs are given in Table 2-10, and were satisfactory in all respects. 

The modules then were temperature-cycled from -196°C to 150'C in the Quick-Look Tester. 

The Quick-Look Temperature Cycling Tester, pictured in Figure 2-15, was built to pro­

vide preliminary temperature cycling data rapidly, comprehensively and inexpensively. 

The test chamber uses the boil-off from an open container of liquid nitrogen to provide 

an inert environment at atmospheric pressure. Heat lamps are installed at the top of 

the chamber. A drive mechanism automatically cycles the test modules in 10-minute 

cycles between the lamps and the liquid nitrogen bath. During cooling, the modules 

were lowered just over the liquid nitrogen surface until they reached -125 0 C, then 

they were dunked into the liquid to be certain each sample was cooled to -196 0 C. 

The modules' bond performance during 380 cycles is shown in Figures 2-16 and'2-17. 

None of the modules performed well, and the gold- and silver-plated copper interconnected 

modules lost most of their. bonds. Consequently, 2 new gold- and silver-plated copper 

modules were made (ref. Section 2.4) to see whether better performance could be 

obtained with these materials. 

The new modules replaced the old copper modules in the Quick-Look Tester since only 

4 modules could be cycled at one time. Also the silver-plated Invar module was replaced 

by one conductive adhesive bonded module with silver-plated molybdenum interconnects. 

This was done to get more cycling data on the conductive epoxy module. The silver­

plated Invar interconnect was dropped as a candidate because it was outperformed by 

the silver-plated molybdenum material and it is magnetic. Figures 2-18 and 2-19 give 

bond failure data for the new copper modules and 2 molybdenum modules. Only one bond 

failed on the DuPont 5504 conductive epoxy bonded module in 1080 cycles. This failure 

may have been due more to the probing to count -bond failures (over 14 times) than to 

temperature cycling exposure. On the thermo compression-bonded, silver-plated 

molybdenum module there were no bond failures from 380 through 1080 cycles. 

On the silver- and gold-plated copper modules, the bonds failed very rapidly. The gold­

plated copper module withstood long-term temperature cycling somewhat better, perhaps 

because gold has a lower coefficient of thermal expansion than silver. 
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TABLE 2-10 

ELECTRICAL OUTPUT BEFORE TEMPERATURE CYCLING 12-CELL MODULES, 
THERMOCOMPRESSION BONDING 

A __ 

BfIn! 
+ 

CZ 

INTERCONNECT A TO B B TO C A TO CMATERIAL I at .94V Ise Voe ,, at . 94V .sc Voc ati. 8V 
_ _ _ _ I at.9V_ __Vo I _ 

__(amps) (volts) (amps) (amps) (volts) (amps): (amps) (volts) (amps) 

Silver-Plated Copper .81 1.15 .65 .89 1.16 .68 .84 2.3 .71 

Gold-Plated Copper .79 1.13 .57 .88 1.14 .57 .80 2.3 .63 

Se-edn 9.57 .89 .57 .8 _ 

Silver-Plated Invar .79 i 1.13 42 .86 1.16 .45 .82 2.3 .54
 

__ __ _ I __ I__ _ _ _ __ __ _
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Figure 2-15 Quick-Look Temperature Cycling Tester 
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2. 6 72-Cell Module Design Selection 

Based on the tests performed and other pertinent data it was decided to build 72-cell 

modules of 2 different interconnect materials. The silver-plated molybdenum was an 

obvious selection having performed best in the temperature cycling of 12-cell modules. 

Copper was still of interest because the baseline SEP array uses a bare copper inter­

connect, even though copper did not perform well during the 12-cell module tempera­

tare cycling. Since the gold-plated copper 12-cell module performed better in 

temperature cycling than the silver-plated copper, it was selected as the second inter­

connect material. Gold also does not oxidize and thus requires less preparation than 

the silver-plated copper before bonding. The silver-plated Invar was eliminated because 

it did not perform as well as the silver-plated molybdenum, has a relatively high electri­

cal resistance, and is magnetic. 

Each module has 36 conventional efficiency cells and 36 high-efficiency cells. The 

interconnect circuitry has 2 separate 36-cell circuits; thus each cell type can be evaluated 

independently of the other. 

The interconnect configuration and flexible printed circuit are the same as used on the 

12-cell modules and conductive epoxy bonded 72-cell modules, except there are no holes 

through the interconnect at the bond locations. 

The bond parameters selected are as established before except a longer duration was 

chosen based on the final copper module test data. 

Temperature = 4540C (850 0F)
 

Pressure = 48 MN/m 2 (6960 psi)
 

Time = 2.3 seconds
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Section 3 

CONDUCTIVE ADHESIVE DEVELOPMENT 

3.1 Introduction 

Epoxies, silicones and other polymers can be made electrically conducting by blending 

in metallic or carbon particles in the form of powder, fibers or flakes. To acquire a 

high conductivity, the particles must be mixed in the polymer in sufficient density to 

establish, contact between a large percentage of them, thus providing continuous 

electrical pathways through the mixture. Possible conductive materials include 

silver, gold, palladium and platinum. Metals whose oxides-are non-conductive are 

not desirable. 

Electrically conductive adhesives are in common use in microelectronics for the 

electrical connection of semiconductors, capacitors and resistors. The advantages 

of adhesives over soldering or welding are: 

" lower temperature bonding 

" choice of interconnect materials not as critical 

* ease of application 

* adaptability to automated assembly 

Epoxy-based conductive adhesives are favored over silicones and other polymers for 

the solar array application because of their: 

* higher bond strength 

* lower cure temperature
 

" relatively high electrical conductivity
 

A bibliography on conductive adhesives is included at the end of this Section. 

NOiT FIL;1J10pgCFDG pAGE BLANK 
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Initial Screening Tests 

A wide variety of conductive adhesives is available from numerous manufacturers. 

This large number of potential candidates makes itnecessary to develop a process for 

screening them. A group of nine conductive epoxies was selected based on avail­

able industry experience and on a comparison of the required properties of electrical 

conductivity, bond strength, service temperature range, and outgassing. Six of the 

epoxies were suggested by MSFC and had met outgassing requirements. To these 

were added 2 Transene epoxies in common use in microelectronics at LMSC and 

Epotels H20E which the manufacturer stated was superior to H21D or H31D with 

respect to bond strength and pot life. 

These 9 epoxies were put through comprehensive tests which are described in the 

Flow Chart for Conductive Adhesive Development and Testing, Figure 3-1. Essentially, 

the screening procedure was first to compare bond strengths of the 9 epoxies before and 

after temperature cycling, then to evaluate twelve candidate interconnect metals with 

-the 4 best epoxies, and finally to select the four best epoxy/interconnect combinations. 

The method of application was the first task undertaken. Sophisticated dot dispensers, 

available in LMVSC's MVicroelectronics facilities, were tried; and it was verified that 

this equipment could apply epoxy dots on solar cells satisfactorily. However, because 

of small quantities of the candidate epoxies purchased and because the dispensers were 

not equipped to apply large enough dots, the epoxy was applied by hand with a needle 

for all of the single solar cell specimens. During this application evaluation, it was 

decided to try a screening technique for the 12-cell test modules because of its obvious 

potential for high production efficiency. 

The test specimens were single solar cells with up to 20 pull tabs bonded on them. A 

minimum of 5 bonds was made for each test case to obtain statistically meaningful 

results. 
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Evaluate adhesive application 

methods-positive displacement dot, 
pressure dot, and silk screen- Subject cells to 50 high/low temperaturef 
based on application ease, control cycles, -196 to 150C
and suitability for production Perform 45' pull'test on remaining -
Bond 10 bare copper pull tabs on bonds 
a cell for each adhesive candidate 
(9 mech. cells) Select the 4 best interconnect material/ 

adhesive combinations based on pull
 
Perform 450 pull test on 5 bonds strength after temperature cycling, etc.
 
from each cell
 

Subject cells to 50 high/low tempera­
ture cycles, -196 to 1000C Prepare another 10 bonds for each of 4
 

adhesive/interconnects
 
Perform 450 pull test on remaining
 
5 bonds per cell Perform 1200 pull test on 5 bonds
 

Bond 10 silver-plated copper pull Subject cells to 50 high/low. temperature
 
tabs on a cell for each adhesive cycles, -196 to 15000
 
candidate (9 mech cells)
 

Perform 1200 pull test on remaining
 
Perform 450 pull test on 5 bonds 5 bonds
 
from each cell
 

Measure electrical resistance of
 
remaining 5 bonds at room temp. Obtain IV curves of 20 electrical cells
 

with covers
 
Subject cells to 50 high/low
 
temperature cycles, -196 to 10000 Bond 4 tabs (2+, 2-) to each cell, using
 

5 cells for each of 4 adhesive/interconnect 
Measure electrical resistance of combinations (20 conv. cells) 
remaining 5 bonds at room temp.
Iafter temp cycling Obtain IV curves 

Perform 45' pull test on remaining Measure electrical resistance of bonds at 
5 bonds per cell room temp. and at LN2 temperature and 

1500C 
Select 4 best adhesives, based on 
pull strength after temp cycling, Subject cells to 50 high/low temperature 
,elect. resist., etc. cycles, -196 to 1500C 

Measure electrical resistance of bonds at 
room temp. after temp cycling
 

With 12 interconnect candidates, each
 
with the 4 selected adhesives, bond Obtain IV curves
 
20 pull tabs on each of 24 mech cells
 
to give 10 tabs per adhesive/inter- Perform 45' pull test on all bonds
 
connect combination
 

Select 4 adhesive/interconnect material
 
Perform 450 pull test on 5 bonds of combinations
 
each combination
 

Figure 3-1 ±ow Chart for Conductive Adhesive Screening Tests 
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The 9 conductive epoxies along with the filler metal and the number of components 

are listed in Table 3-1 below. The tabs were held in position during cure by the 

clamp shown in Figure 3-2. Curing was done for several hours, so it would undoubtedly 

be completed rather than be a variable in the early evaluation of adhesives. 

TABLE 3-1 
CONDUCTIVE ADHESIVE CANDIDATES 

S NO. OF 

ADHESIVE FILLER O.POF 
____________________ __________ COMPONENTS I 

Ablebond 36-2 Silver 1 

Ablebond 58-1 Gold 1 

DuPont 5504 Silver 1 

Epo-TekH20E Silver 2 (1:1)* 

Epo-TekH21D Silver 2 (10:1) 

Epo-TekH31D Silver 1 

Epo-TekH44 Gold 1 

Transene Olimex-Ag Silver 1 

Transene GE-10 Gold I 

- Mixture ratio 

The first set of pull tab specimens, shown in Figure 3-3, was made using copper tabs. 

After cure, 5 of the 10 tabs were pulled at 45 The cure times and pull strength data 

are shown in-Table 3-2. 

Every bond failed at the copper-adhesive interface. There were several very poor 

bonds suggesting intermittent weakness due to copper oxidation and that better results 

would be obtained using silver-plated tabs. Because of the low pull strengths obtained, 

testing of these specimens was suspended. 
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VIEW A-A 

1/2 SCALE SILICONE RUBBERPRESSURE PAD 

A A 

Figure 3-2 Curing Clamp 

A second group of 9 solar cells, shown in Figure 3-4, was used to test the 9 conductive 

epoxies with silver-plated copper pull tabs. This time the end of the pull tab with the 

*060-inch hole was used to find out whether good bonds could be made by applying 

adhesive from the outside. The tab was first taped in position, which eliminated the 

need for clamping during cure. Then the epoxy was applied by hand, wetting the 

surface of the cell in the hole and covering most of the ring around the hole, thus pro­

viding a mushroom-shaped volume of adhesive. Ten (10) tabs were bonded onto a cell 
.for each adhesive. Five (5) of the tabs were pulled at 45 Then the electrical resistance 

of the 5 remaining tabs on each cell was measured, the cells were subjected to 50 

temperature-cycles from -196*C to +1000 C, and the electrical resistance and pull 

strengths of the remaining bonds were measured. The data obtained are shown in 

Table 3-3. The primary mode of bond failure during pull testing was the epoxy 

pulling out of the hole in the tab, followed by failure at the epoxy/cell interface. There 

also were 4 bonds which failed during temperature cycling or during pull testing after­

ward by silicon divoting. 

49 

LOCKHEED MISSILES & SPACE COMPANY. INC. 



r 
0 
X 
MF 
Lq 

'i
 

U) 

> 

n 
0 

L d 
...U)I I ril u 

Figure 3-3 Copper Pull Tab Specimens 



TABLE 3-2 

INITIAL SCREENING OF CONDUCTIVE ADHESIVES, COPPER PULL TABS 

r Cure Pull Strength 
Adhesive Filler Temp (°C) Cure Time (Hrs) in Grams (5Bonds) 

S 

P1 Ablebond 36-2 Silver 1500 2.5 186, 95, 59, 45, 41 
o " (2ndsample) " 17.0 127, 64, 54, 14, 0 

x Ablebond 58-1 Gold 17.0 168, 118, 100, 73, 54 
(A DuPont 5504 Silver 17.0 45, 45, 5, 0, 0 
r Epo-Tek H20E Silver 15.0 36, 27, 9, , * 

(A 
86, 73, 50, 50, * w Epo-Tek H21D Silver 17.0 

1) Epo-Tek H31D Silver 5.0 104, 73, 41, 32, 9 

0 Epo-Tek H44 Gold 3.5 191, 145, 118, 100, 68 

0

O Transene Ohmex-Ag Silver 16.5 227, 145, 109, 73, 59 
3 

Transene GE-10 Gold 16.0 408, 363, 313, 159, 104
 
z
 

-- *Tab lost during diasssembly, before pull test
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Figure 3-4 Sliver-Plated Copper Pull Tab Specimens 



TABLE 3-3 

PERFORMANCE OF 9 CONDUCTIVE EPOXY CANDIDATES SILVER-PLATED 
2 OZ. COPPER TABS 

r 

I45 PULL STRENGTH IN GRAMS ELECTRICAL RESISTANCE IN MILLIOHMS 

..Li ADHESIVE ( 1 2 2 3 4 562)65 1(2) 2 3 4 5 

0 36-2 B 599 422 363 363 358 5.0 5.0 6.0 6.5 8.0T 
62 A 167 0 0 0 0 6.0 >106 (4) 

1) BA 494541 408343 318218 19591 17231 5.013 5.537 5.549 6.094 6.5249 

Mn
Ro 

B 
A
B 

372
346
748 

358
113
508 

281
99

540 
249 

60
404 

222 
45

145 
2.5 
2.9
4.0 

3.0 
3.5
5.0 

3.0 
3.5
5.0 

3.0 
3.7
6.0 

3.2 
4.0
8.0 

c A 128 60 0 0 0 4.5 34 
U)TU H21D B 472 381 358 41 36 4.0 5.0 5.0 5.5 6.0 
> A 284 238 71 0 0 5.0 6.0 26 
o3 
m 
o 

H31D 
H44 

B 
A 
B 

721 
794 
812 

490 
638 
308 

404 
550 
227 

277 
0(3)

177 

191 
0( 3 )

145 

6.0 
7.8 
3.5 

6.5 
8.5 
4.5 

8.5 
17 
5.0 

8.5 
20 
5.2 

18.5 
38 
6.3 

9 A 819 814 802 369 298 4.3 4.8 5.9 6 A 6.5 
T 

hmex-Ag B 
A 

404 
0 

222 
0 

145 
0 

127 
0 

77 
0 

3.5 4.5 5.0 5.2 6.3 

< GE-j1B09 B 
SA 

494 
652 

413 
445 

308 
252 

277 
232 

268 
128 

2.3 
5.0 

4.8 
6.5 

5.2 
11.0 

7.0 
13.5 

9.7 
14.5 

(1) B - Before temperature-cycling 

(2) 
A - After temperature-cycling
Data listed 1-5 from best to worst 

(3) 
(4) 

Tab broke loose by divoting silicon after temperature cycling. 
Blank spaces represent broken-off tabs 

Adhesive was not downgraded because of this result. 0 

to 
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TABLE 3-4 

SELECTION OF BEST CONDUCTIVE EPOXIES 

PuTF Electrical Cost of Ease of Total 
Adhesive Strength Resistance Weight Adhesive Application Score Rank 

10* 7 3 3 3 

36-2 0 0 24 24 21 69 7 
58-1 7Q 14 12 6 21 123 '5 
5504 60 63 24 24 15 186 3 
1120E 0 0 24 24 18 66 8 
1121D 0 7 24 24 9 64 9 
1131D 100 42 24 24 27 217 1 
1144 100 56 12 6 27 201 2 
Ohrnex Ag 
GE-10 il 

0 
90 

0 
49 

24 
12 

24 
6 

27 
21 

75 
178 

6 
4 

*Weighting Factor 

The temperature cycling of all the pull tab specimens was done by heating them under 

a lamp, then cooling them first by holding them over liquid nitrogen and then, when 

at -125 0C, dunking them in the LN2 . 

The 9 adhesive candidates were ranked as shown in Table 3-4 on the basis of pull 

strength data (particularly that after temperature cycling), electrical resistance, 

weight (density), cost of adhesive, and ease of application. Each adhesive was scored 

from 1 to 10 for each criterion, and this number was multiplied by the weighting factor 

to obtain the numbers shown. The ranking resulted in the selection of the following 4 

adhesives for further investigation: 

Epo-Tek H31D silver-filled 

Epo-Tek H44 gold-filled 

DuPont 5504 silver-filled 

Transene GE-10 gold-filled 

A third group of solar cells was used to test 12 different interconnect materials each 

with the 4 best adhesives. Twenty (20) pull tabs were bonded onto each of 24 cells 

giving a total of 480 tabs, or 10 tabs per adhesive/interconnect combination (providing 
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a good statistical sampling). Five (5) tabs of each adhesive/interconnect combination 

were pulled at 450. The cells were then subjected to 50 temperature cycles from -1960C 

to 1500C (note the higher maximum temperature), and the pull strengths of the remaining 

bonds were measured. The 12 interconnect materials and the pull strength data obtained 

are shown in Tables 3-5(a) and3-5(b). The square end of the tab was used in this group 

of cells. The predominant bond failure mode was epoxy/cell interface separation. 

There also were a few failures by silicon divoting. 

Table 3-6 shows the 8 adhesive/interconnect combinations which yielded the highest 

pull strengths and ranks them on the basis of that pull strength, electrical resistance, 

weight of interconnect, ease of application, and cost of adhesive. The gold-plated 
2 mil copper was derated 20 points (in pull strength column) because one bond failed 

by divoting of the silicon. Divoting appears to be a serious problem with the 2-mil 

copper and silver because of the relatively high coefficient of thermal expansion of 

these materials and the higher stress due to material thickness. 

Next, 2 pull tab specimens were made using the 4 adhesive/interconnect combinations 
selected in Table 3-6, and pull-tested at 1200. Ten (10) tabs of each combination were 

prepared. In addition, on a third solar cell, the GE-10 and 5504 adhesives were inter­
changed, providing also the combinations of GE-10/gold-plated copper and 5504/bare 

copper. The 1200 pull strength results are given in Table 3-7. 

To determine the electrical performance of conductive epoxy bonded cells, 20 electrical 
cells each were bonded with 4 pull tabs at the 2 negative (end tabs) and 2 positive loca­

tions. The four selected adhesive/interconnect combinations were included, and 5 
samples of each combination were made to provide a good statistical sample., -The 
test sequence was as follows: 

1. 	 IV data of covered cells before bonding 

2. 	 IV data of cells with pull tabs bonded 
3. 	 Electrical resistance of all P-bonds at room temperature, LN2 temperature 

(-1960C) and 1500C 

4. 	 Temperature cycling from -196°C to 1500C for 50 cycles 

5. 	 Electrical resistance of P-bonds at room temperature 
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TABLE 3-5(a)
 

PULL STRENGTHS AND RANKINGS OF 12 INTERCONNECT MATERIALS WITH
 

4 SELECTED ADHESIVES 

DuPont 	5504 J Transene GE-10
Interconnect Pull Strength in Grams 	 PlStrengt in Grams 
Material (1) 1-(2) - 2 3 4 I 5 Rank(3 )  1 2 3 4 1_ 5 Rank 

1Cu-,1mril B- 210 119 119 0 0 11 414 320 315 295 252 1 
0](_ 	 A 79 71 57 23 6 329 320 275 247 139 (n 

Cu, 	2 mil B 247 238 235 71 40 9 318 241 108 108 28 6 
M 	 A 119 77 23 23 (4) 142 133 1 1 3 (D) 9 4(D) 51 

Cu, I mil B 326 261 252 247. 122 8 193 150 142 128 108*8
 
113 (D )  
0 	 Ag-plated A 122 77 34 .6 159 106 71 54 14(D) 

Cu, 2 mil B 264 213 187 170 134 10 119 99 *5 82 20 12j
LQ 	 Ag-,plated A 1 71 65 28 28 20 28 23 0 0 

Cu, I mil B 369 340 252 204 173. 4 312 221 159 139 125 4 
m Au-plated A 241 204 125 91 91 ® 150 111 108 102 102 
V) Cu, 2 mil B 369 326 323 320 125 1 227 210 51 7 
P 	 Au-plated A 465 249 196 181 1 13(D) r2 142 139 136 74 26 
n N 	Mo, 1 mil B 329 281 232 2.30 130 3 96 88 54 34 34 11 

Ag-plated A 284 210 196 142 136 i 60 43 28 28 0 
o 	 Mo, 1mil B 122 111 65 48 48 6 91 85 74 62 54 10 
M Au-plated A 125 108 105 102 51 99 68 43 37 14 
0 Kovar, 1 mil 1B 196 167 164 159 57 5 207' 204 170 156 147 2 
0 Ag-plated A 232 125 105 82 54 198 193 187 156 102 

Kovar, I mil B 193 181 159 136 113 2 150 136 113 94 .65 3 
Au-plated A 284 215 187 147 142 Q 210 198 187 111 99 
Ag, Imil 184  173 162 147 139 12 266 258 247 227 170 5 

A 139 9 6 0 01 184 108 99 88 79 
g,2mil B 536 519 459 425 405 7 238 235 198 133 71 9 

37(D )
.A 	 221 150(D) 96 7 9(D) 2 0(D) 1 70 (D) 8 5(D) 51 28(D) 

(1) 	 B - Before temperature-cycling (4)Blank spaces represent broken-off tabs 
A - After temperature-cycling' (D) Tab 'brokeoff leaving divot in silicon 

(2) 	 Data listed 1-5 from best to wotst 

(3) 	 Upper number - ranking for 1 adhesive 0 

Lower, circled number - ranking for all 4 adhesives 	 fBonded Area 



TABLE3-5(b) 

PULL STRENGTHS AND RANKINGS OF 12 INTERCONNECT MATERIALS 

WITH 4 SELECTED ADHESIVES 

- Epo-Tek H31D Epo-Tek H44 _________ 

Interconnect ull Strength in Grams Pull Strength in Grans 
Material (1) H--(2) 2 3.Gras4 ! tank( J 1 3 5i 5 2 4 Rank 

Cu, I mil B 170, 142 102 43 31 4 369 252 210 201 170 7 
_ _ _ A 57 57 40 28 11 20 0 

Cu, 2 mil B 111 85 62 31 20 1 258 227 1 184 111 105 8Ml A 99 65 62 51 23 

OCu, lmil B 851 7 54 51 7 71 28 14 9 0 8
A _g-plated34 34 20 ,4)
Sg-plated BA 136 113 77 71 60 12 82 60 31 31 26 8 

A ___ 0 ___ ___________ 0___ 1___FAg-plated 
,, I mUil B 12 99 74 711 51 11 689 686 j516 490 247 2jSAu-plated
A 6 0 343 85 0 

Cu, 845 388 

"-C u-plated A 14 6 6 0 0 179 65 26 
T Mo, 1mil B, 28 6 0 5 57 57 34 28 14 4 

C 2 mil B 139 116 113 77 51 - 9 7201. 675 675 1 

-4 

> Ag-pldted A 48 48 28 28 14 43 34 j 20 

R Mo, 1mil B 54 40 28 25 11 6 51 31 128 20 0 8 
Au-plated A 48 43 28 28 9 1 1 

o Kovar, l mil B 85 85 68 60 57 3 71 34 34 28 20 5 
S g-plated A 85 68 48 34 6 11 6 6 

> ovar, 1 mil B 96 77 62 60 40 2 71 51 37 6 0 3 
Z Au-plated JA 60 48 40 40 28 .128 74 0 0 0 

Ag, Iril B 173 139 130 119 113 8 159 85 85 60 57 6 
z A 28 23 '6 0 0 . 14 9 0 0 

K g, 2 mil B 156 145 99 62 28 10 318 204 196 139 119 8 
__A 68 1 1 

(1)B - Before temperature-cycling ( 4)Blank spaces represent broken-off tabs 
A fe eprtr-ccig(D)mA - After temperature-cycling (Tab broke off leaving divot in silicon 

(2) Data listed 1-5 from best to worst 

(3) Upper number - ranking for 1 adhesive Bonded Area 
Lower, circled number - ranking for all 4 adhesives 



TABLE 3-6
 

SELECTION OF BEST ADHESIVE/INTERCONNECT COMBINATIONS
 

0 

TmI 
mO 
K(A 
V) 
r­m 

S 
0C 

T 

oKovar, 

0
K 

Interconnect 

Material Adhesive 

Cu, 1 mil GEl0I 
Cu, 2 mil, Au-plated 5504
i 
kovar, 1 mil, Au-plated 5504 

Mo, 1 mil, Ag-plated 5504 
Kovar, 1 mil, Ag-plated GEl0 

1 mil, Au-plated GEl0 
Cu, 1 mil, Au-plated GEl0 

Cu, 1 mil, Au-plated 5504 

Pull 

Strength10" 
100 

70 

90 

90 
85 

80 
75 

70 

Electrical 

Resistance 
7r,31 

49 

63 

63 

63 
49 

49 
49 

663 

Weight of 

Interconnect 
_ 

30 

9 

24 
24 

24 

24 

24 

24 

Ease bf 

Application
3 

21 

15 

15 
15 

21 

21 

21 

15 

Cost of 

Adhesive 
3 

6 

24 

24 
24 

6 

6 

6 

24 

Total 

Score 

206 

181 

216 
216 

185 

180 

175 

196 

Rank 

3 

6 

1 ** 

1* 

5 

7 

8 

4 ** 

> 
z 

p Pull strength used is 

*Weighting factor 

that after temperature cycling 

**Preliminary selections 

01 
]) 



TABLE 3-7 

1200 PULL STRENGTHS OF SELECTED ADHESIVE/INTERCONNECT COMBINATIONS 

AHI 	 120 o PULL STRENGTHS IN GRAMS 
,__ADHESIVE INTERCONNECT_ 	 (1). 1(2) 2 3 4 1 5 Avg 

m GE-1 Copper, 1 oz. B 96 60 57 48 I 0 52 
oUnplated A 85 791 65 51 :23 61 

Copper, 1 oz. B 105 99 96 60 51 82 
Gold-plated A 65 62 54 51 28 52 

U­

5504Molybdenum, 1 rmil B 1224843474 
Silver-plated A 204 91 57 48 37 87 

U) 	 Kovar, 1 mil B 130 '105 85 74 74 94 
"a Gold-plated 136 65 37 34 34 61 

GE- Copper, 1 oz. IB 60 60 57 57 37 54 

n , Gold-plated . A 57 48 43 43 17 42 

T Copper, 1 oz. B 28 0 11 6 0 12S5504 	 Unplated A 14 0 0 0 0 3 

P 	 B - Before temperature cycling 

A - After temperature cycling Bonded Area 

(2)Data listed 1-5 from best to worst .	 ' 
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6. IV data 
7. 450 pull test on all bonds 

The electrical output was measured using an OCLI Model 31 solar simulator. The 

test results are presented in Tables 3-8(a), 3-8(b), and 3-9. 

In Table 3-8(a) it is seen that the GE-10/unplated-copper combination had poor 

electrical resistance after temperature cycling. Consequently, additional tests were 

run replacing unplated copper with gold-plated copper tabs. At the'same time, it 

was decided to include unplated copper again for a more direct comparison, and to 

look at another gold-filled epoxy, Epotech H44, which had exhibited some high bond 

strengths in earlier testing. The pull strengths and electrical resistance data obtained 

are shown in Tables 3-10 and 3-11. It is clear that GE-10/gold-plated copper is the 

best choice among these four (4) combinations. Therefore, it was chosen to replace 

GE-10/unplated copper as one of the final 4 selections. 

On the basis of these comprehensive screening tests, the following 4 adhesive/interconnect 

material combinations were selected. 

INTERCONNECT MATERIAL ADHESIVE 

Kovar, 1 mil, gold-plated DuPont 5504
 

Molybdenum, 1 mil, silver-plated DuPont 5504
 

Cu, I mil, gold-plated Transene GE 10
 

Cu, I mil, gold-plated DuPont 5504
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TABLE 3-8 (a) 

ELECTRICAL RESISTANCE OF CONDUCTIVE ADHESIVE BONDS 

BONDED
 
COPPER, 1 MIL, UNPLATED; GEl0 AREA -­

o 	 TEMP ELECTRICAL RESISTANCE IN MILLIOHMS 
CYCLING TEMP CELLNO.C2 C3 C4 C5 

I EXPOSURE (°C) PI P2 PI P2 PI P2 P1i P2 


0i 25 250 340 150 210 150 150 


( 	 BEFORE -196 2300 230 118 165 113 118 

cnF 	 150 52 600 132 460 330 255 


r
 
:7 AFTER 5
 

50CYCLES 25 21,000 6,500 >105 76,000 60,000 >105 1050 2700 


T 

m
 
0 COPPER, 1 MIL, GOLD-PLATED; 5504
 
0K
 

> TEMP ELECTRICAL RESISTANCE IN MILLIOHMS 
Z CYCLING TEMP C7 C8 C9 Cll 

EXPOSURE (°C) P1 P2 PI P2 P1 P2 PI P2 

z 	 25 Broke 1.0 1.5 1.5 Broke Broke 1.0 1.0P
 

BEFORE -196 0.3 Broke 0.0 .. 	 0.0 0.4 

150 2.0 	 Broke .... 2.9 1.85 

AFTER 25 1.6 .... 2.1 1.9 
50 CYCLES --

NOTE: P1 and P2 refer to the &-o tabc on P contact of solar cli. 

C6 
PI P2
 

47 36
 

39 31
 
640 80
 

20,000 >105 

C12
 
PI P2
 

2.9 2.6 

Broke 0.0
 

Broke
 
I 	 U 

http:CELLNO.C2


{7o
 

TABLE3-8 (b) 

ELECTRICAL RESISTANCE OF CONDUCTIVE ADHESIVE BONDS 

KOVAR, I1IIL. GOLD-PLATED: 5504 
BONDED. 

AREA " 
,-----------­

-

r 

71 
P1 

TEMP 
CYCLING 
EXPOSURE 

" 
TEMP 

__()C 
25 

. 

P1 

1.,2 

'P 

1.7 

ELECTRICAL RESISTANCE IN MILLIOHMS 
C14 C 15 __6

_I P2 PI P2 Pi P2 

3.0 3.1 2.0 2.5 1.8 --

Pi 

3.7 

C17 
P2 

3.6 

BEFORE -196 0.51 0.67 2.31 1.13 0.86 0.45 0.57 -- 0.97 1.11 

150 3.3 3.8 Broke 8.0 6.9 5.3 4.2 -- 7.5 7.9 

c AFTER 
50, CYCLES 

25 
2 

2.8 2.9 5.4 4.8 3.4 2.8 6.1 4.9 

"0 

MOLYBDENUM, 

TEMP ' 

1 VIL, SILVER-PLATED; 5504 
ELECTRICAL RESISTANCE IN MILLIOHMS 

Z 
CYCLING 
EXPOSURE 

TEMP 
(°), 

25 

C I 
L 

1.2 

P2 

1.5 

C19 
P-1 

2.,3 

P2 

2.5 

C20 
P-l 

1.0' 

P2 

1.3, 

P1 

1.1 

C21 
P2 

1.6 

Pl. 

1.6 

C22 
P2 

1.9 

BEFORE -198, 0.52 0.54 1.78 1.15 0.40, 0.41 0.61 0.83 1.55 1.69 

AFTER 

150 

25 

4.4 

34. 

3.1 12.4 5.21 2'.8 4.7 4.5 Broke 3.5 

6.8 

18.5, 

NOTE: P1 and P2 refer to the two tabs on P-contact of solait colt,. 
Nt' 



TABLE 3-9
 
450 PULL STRENGTHS AFTER TEMPERATURE CYCLING CONDUCTIVE
 

ADHESIVE BONDS, IN GRAMS 

I­
0 o 
3: 
m 
m 

COPPER, 1 OZ., 

CELL' 
NO. N1 

Bonded Area 

UNPLATED: GE10 

TAB NO. 
N2 P1I P2 

KOVAR, IMIL, GOLD-PLATED; 

CELL TAB NO. 
NO. NI N2 P1 

5504 

P2 

C2 17 6 71 62 C13 60 54 187 99 

__ 
r 

C3 

04 

65 

14 

0 

9 

45 

51 

23 

57 

C14 

C15 

119 

51 

122 

232 

26 

54 

-­

3 

Ct 05 43 34 74 82 C16 48 85 -- 196 

>C6 
m 

8 31 40 37 C17 184 173 54 88 

0 
K
"0 

COPPER, I10Z., GOLD-PLATED; 5504 MOLYBDENUM, I MIL, SILVER-PLATED; 5504 

Z 

zp 
CELL 
NO. 

C7 

C8 

Ni 

96 

65 

TAB NO. 
N2 P1 

85 --

0 -. 

P2 

0 

.. 

CELL 
NO. 

C18 

C19 

Ni 

79 

301 

TAB NO. 
N2 P1 

201 0 

133 122 

P2 

6 

0 

C9 57 17 . -- C20 34 -- 0 6 

Cll 20 0 34 0 621 0 85 -- 14e 

C12 23 .. .. 00C22 156 91 0 0 

NOTE: Ni, N2, P1 and P2 refer to location on N-contact and P-contact of solar cell. 



450 PULL STRENGTHS 
TABLE 3-10 

OF ADDITIONAL SELECTED ADHESIVE/INTERCONNECT 

COMBINATIONS 

BondedArea 

Il , -', " / . . . . .. 

i1Lrr1iv 

{, '!45 
INECNNC [ 

° PULL STRENGTHt IN GRAMS 

2 3 4 5 AVG. 

U) 

> 

M 

£o 

( 

( GE1 

SCOPPER, I oz.
IU P LATEDI 
,i 

!COPPER, oz.7GOLD-PLATED 

B 

A 

iB 

1 312 

360 

P437 

32 

286 

2,32 

278 

7 

232 227 
-9 

1"0 133 

227 1215 

-77 

119 

26 

190 

235 

189 

269 

9 

0 

> 
Z 

. 

1 COPPER, 1 oz. 
NLTDA 

H44 I 
COPER 1 z 

~GOLD-PLATED 

rnn 
CC 

U)AHESVE! NTECONNCT 

!iB
I 
1 

B 

A 

337 

94 

448 

14 

264 

" 0 

380 

8 

450PUL 

225 207 150 

R TC-13 TC-10 

326 318 303 

34 23 0 

STRNGT IN RAM 

243 

19 

355 

54 

(1) B 
A 

- Before temperature cycling 
- After temperature cycling 

R - Tab brke loose during elec. 
meas. after temp.. cycling 

resist.t4 

(2) Data listed 1-5 from best to 
Sworst 

TC-XX< - Tab broke loose during temp. 
at Cycle XX 

cycling 



TABLE 3-11 

ELECTRICAL RESISTANCE OF ADDITIONAL SELECTED ADHESIVE/ 

r INTERCONNE CT COMBINATIONS 

"r 
%Q0NDED
/AREA 

ELECTRICAL RESISTANCE IN.MILLIOUMS 
ADHESIVE INTERCONNECT (1) I 2 .4 7 8 9 10 AVG 

U) 2 3_ 4 9 1 V 

1 

0O 

U) 
o) 

1 GE-10 

COPPER, 1 oz. 
UNPLATED 

COPPER, lBoz. 
GOLD-PLATED 

B 

.A 

17.8; 25.2 30.5 30.0 

f15,650 
1.60! 2.25 1.76 1.91 

16.5 

2.26 

36.3 

I 
-. 42 

121 18.0 

10,000 1,320 

1.56 1.48 

94.0 

>105 

2.18 

13.7 

570 

0.74 
-

40.3 

>10 4 

1.72 

M GL-LTD2.30 A 2.95 2.75 4.10 0.85 2.59 

0CB 
'U 0 I COPPER, I oz.UNP LATED• 

B 3.50 2.95 2.82 3.00 3.21 1.75 2.15 2.45 3.20 1.90 2.69 

> Wz H4H44 A TC 2,200 70 TC 44 -

z 
COPPER, I oz.
GOLD-PLA TED 

B 1.67 2.40 1.92 1.54 1.62 1.85 1.92 1.42 1.84 1.56 1.77 

GOAL 5.15 1.40 7.00 6.75 2.40 4.54 

*Tab broke loose during temperature cycling 

CC , ! 
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3.3 12-Cell Module Fabrication 

Four 12-cell test modules, one of which is shown in Figures 3-5 and 3-6, were fabricated 

using the 4 selected epoxy/interconnect combinations. The flexible printed interconnect 

circuits were fabricated in the same way as for the thermocompression bonded 12-cell 

modules, as described in Section 2.3. The interconnect circuit design is identical (see 

Figure 2-9), except that. 050 in. holes have been added in the bond areas so that epoxy 

can be applied after the circuit and cells are assembled into place. 

The epoxy was applied to the module assembly as pictured in Figure 3-7, using a Presco 

Model 150 screen printer. A 48-hole bond pattern was photo-developed on a 200-mesh 

stainless steel screen which subsequently was mounted horizontally on the printer. The 

12 solar cells were placed active side down on a vacuum fixture, shown in Figures 3-7 

and 3-8. The flexible printed circuit was laid in place over the cells, the vacuum holding 

it. The fixture with the module components was positioned under the hole pattern and 

1-2 mm from the screen. The printing operation was then performed in which the 

squeegee is forced pneumatically down and over the hole pattern, pressing the screen 

against the module assembly and squeezing epoxy through the holes onto the interconnect 

circuit and solar cells. The assembly, still under vacuum, finally was put in an oven 

to cure at 1500C for 15 hours. 

3.4 12-Cell Module Testing 

The 4 12-cell modules using conductive epoxies were tested according to the following 

procedure: 

(1) 	 Attach thermocouples, 1 on each module 

(2) 	 Measure IV data at 280C, using X-25 solar simulator 

(3) 	 Mount modules in Quick Look Tester, connect thermocouples, set cycle 

counter, etc. 

(4) 	 Start 10-min temperature cycles, +150°C to -196°C 

(5) 	 Inspect modules periodically for bond failures, and record observations 

(6) 	 After cycling, repeat IV measurements 

The 4 modules were put through 380 cycles. Counts of loose bonds were made at 11, 

86, 100, 125, 175, 200, 212, 229, 250 and 380 cycles. 
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PATTERN ON48-HOLE BOND wCONDUCTIVE EPOXY 
SOLID FIELD SUPPLY 

200 MESH SCREEN 

r 
0' m 

FLEXIBLE PRINTED CIRCUIT 
SUBSTRATE (FPC) 

TO VACUUM PUMP 
> ACTIVE SIDE DOWN 
n 

0K VACUUM FIXTURE FOR 
T -SOLAR CELL AND 

. FPC HOLD-DOWN 

USED WITH PRESCO 
MOEL P5012-CELL TEST MODULE 

Figure 3-7 Conductive Epoxy Bonding by Screen Printing 
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0 0 0 0 
0 

A O O O O A 

0 0 0 0 

S0 0 0 0 

o/160 TUBE FOR 
V4DIA HOLES FOR VACUUM TUBING 
VACUUM HOLD-
DOWN 24 REQD 
NYLON STRIPS FOR 1/4 PLATE, FIBER GLASS 
LOCATING CELLS 

3- PLATE, ALUMINUM0.020 X 0.125 

.012 ±.005" 11Y 

SPECIMEN PLATE 
SECTION A-A FROM SCREEN 

PRINTER 

Figure 3-8 12-Cell Module Assembly Fixture 
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Figure 3-9 presents bond failure data on each module, showing each bond that failed 

and the cycle number at which the failure was observed. 

Bond thermal stresses occur two ways. First, the epoxy/solar cell interface aid the 

epoxy/interconnect interface are stressed due to the different thermal expansion 

coefficients of the materials. Second, stresses are caused by contraction during cool­

down of the FPC between bonds. In this second case, the end-tab wraparound cell is 

expected to have higher stress at the N-tabs (outside contacts) than at the P-contacts, 

because with 4 bonds in line there are forces at the inside bonds in both directions, 

counter balancing each other. 

Bond failures on the 5504/gold-plated copper module appear to demonstrate this latter 

phenomenon, as shown in Figure 3-10. The N-bonds tend to fail first, but are followed 

later by P-bond failures. Also, looking again at Figure. 3-9 for this module, it is seen 

that on no cell did a P-bond failure precede failure of the adjacent N-bond. 

Bond failures on the GE-0/gold-plated copper module did not show this effect as much, 

as shown in Figure 3-10. Evidently on this module the bonds were weaker and failed 

rapidly at both N-bonds and P-bonds, making the effect less noticeable. 

A plot of bond failures vs number of temperature cycles is given in Figure 3-11 for the 

4 modules. 

The test module with DuPont 550M epoxy and silver-plated molybdenum interconnect 

circuit was later resubmitted to temperature cycling, and after 1080 cycles had lost 

only one bond. 

The blectrical performance of the 4 modules is given in Table 3-12. A Spectrolab 

X-25 solar simulator was used. The open circuit voltage was low on both sub-modules 

of the 5504/Ag-pl moly module; it is believed this was caused by accidental shorting of 

two cells with epoxy between the end tab and the P-surface metallization. Note that both 

this module and the gold-plated Kovar module show very little electrical degradation due 

to temperature cycling. On the Kovar module, the measurements of Isc and I (at .94 v.) 

between points A and B show a decrease after temperature cycling. However, the overall 

(A to C) module output did not show degradation. This could be due to intermittent 

opening of a loose bond. 
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Figure 3-9 Bond Failure Data, 12-Cell Modules, Conductive Adhesives 
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Figure 3-10 Comparison of N-Bond and P-Bond Failures 
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TABLE 3-12 
ELECTRICAL OUTPUT BEFORE AND AFTER TEMPERATURE CYCLING 

12-CELL TEST MODULESCONDUCTIVE ADHESIVE BONDING 

r A 

0 

En
m :-'L. 

mC 

riP 

- U* 
>B 
m 

-

rAd 
t Adhesive/Interconnect 
C bIiS 

__ ___Combination
G E -' 

u, 1 oz, Au-Plated 

(1) 

A 

A TO B 
IATO B. 

Vo(as)(vots)I
-B- -.7 5 1 . 1 -. ,

75 1.13 
.__ 

I at ..94v: I(9(amps (amps)i 
.30 .78 

BT__ 

BTO 
Voc I at.94v(volts)! (amps) 

i 
1.15 .32 

jI__(2) 

Ise(amps) 
.80 

A__TO___C 

AVoc(volts) 

2.28 

Iat 1.88v(amps) 

.42 

o 5504 .81 1.14 .63 .81 1.14 .62 .82 2.28 .67 
Cu, I oz Au-Plated A ' - -. - .. .... .... 

Z 5504 
Moly, Imil, Ag-Pi 

B 
A 

!.73 
.70 

.66 

.76 
(3) 
(3) 

.72 

.69 
.68 
.69 

(3) 
(3) 

.80 

.79 
1.33 
1.44 

(3) 
(3) 

p 5504 
Kovar, imll, Au-P 

B 
A 

.81 

.76 
1.14 

:.1 13 
.45 
.33 

.75
i.74 

1.14 
1.12 

.27 
1..26 

.79 

.79 
2.28 
2.25 

.39' 

.39 

(1)) 
(1)Before (B) or after (A) 380 temperature cycles
(2) __ =I no outpqt 

(3)S3)Specified voltage was greater than VocI so no data could be obtained. 
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Figure 3-11 	 Bond Failure Histories, 12-Cell Test Modules, 
Conductive Adhesives 

3, 5 72-Cell Module Design Selection 

The excellent performance of the DuPont 5504 bonded, silver-plated molybdenum 

interconnected 12-cell module in temperature cycling made it the clear choice for 

fabrication of a 72-cell module using conductive adhesives. The module with gold­

plated Kovar interconnects also performed well, but not as well. Also, Kovar is a 

magnetic material and thus is less desirable on large area solar arrays because of 

the array torquing that can occur with changes in array current. 

The screen printing method of applying the conductive epoxy was successfully demon­

strated on the 12-cell modules. Because of this and the potential for high efficiency 

production of large area arrays by this method, screen printing was selected for the 

72-cell module design. 

The interconnect circuit design selected is the same as used on the 12-cell modules, 

including the holes in the bond areas for application of the epoxy. 
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Section 4 

72-CELL TEST MODULE FABRICATION 

Detailed Module Design 

The detailed design of the 72-cell test module is shown in Figure 4-1. The left and 

right sides are independent electrical circuits of 36 cells each. The cells in each 

half-module are connected 3 in parallel by 12 in series. The solar cells are 8 mil, 

wraparound N-tab silicon cells with 6-mil fused silica covers attached with Dow Corning 

63-489 silicone adhesive. The flexible printed circuit (FPC) is similar to the SEP 

array design and consists of the photoetched interconnect circuitry sandwiched between 

2 layers of 1/2-mil Kapton/1/2-mil polyester laminated film. The films are heat­

laminated together, with the polyester acting as the adhesive. There are access holes 

in both layers of the film at the solar cell/interconnect bond locations. 

Three different materials were tested as adhesives for the Kapton film--FEP Teflon, 

polyester, and acrylic. The polyester was selected because the Kapton/adhesive did 

not shrink during laminating as happened with both the FEP and acrylic adhesives. 

The interconnect circuit pattern, shown in Figure 4-2, is similar to the SEP solar 

array 	design and the electrical test modules made during the Flexible Substrate Design 

Optimization Program (NASS-28432). 

The interconnect materials are: 

* 	 1 mil molybdenum with .4-. 7 mil silver plating on both sides 

* 	 1 oz. (approx. 1. 3 mil) copper with .2-. 4 mil gold plating on both 

sides 

These 	materials were selected based on results from the conductive adhesive and 

thermocompression bonding development work and following consultation with the 

NASA/MSFC Technical Monitor. 
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Figure 4-2 Interconnect Circuit of 72-Cell Test Module 
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Modules employing both conductive adhesives and thermocompression bonding were 

chosen. The conductive epoxy bonded module has silver-plated molybdenum inter­

connect bonded with DuPont 5504 silver-filled epoxy. The thermocompression bonded 

modules have one each of the above 2 interconnect materials. 

The thermocompression bonding schedule, as established in the bonding development 

work, is:-

Temperature 

Pressure 

Time 

- 45400 (850°F) 

- 48 MN/m 2 (6960 psi) 

- 2.3 seconds 

In selecting design features, certain guidelines were followed. Departures from the 

baseline design of the Solar Electric Propulsion (SEP) array were avoided whenever 

feasible, because the SEP array is the most immediate potential application of the 

technology developed. All techniques and processes utilized are compatible with 

scaling up to large area arrays. 

Except possibly for the conductive epoxy, all of the solar cell module materials are 

proven for long-term service in the space radiation environment. The problem of 

degradation of adhesives has been carefully assessed, and it is believed that in a 

solar cell assembly the adhesive bond would be effectively shielded by the solar cell/ 

cover assembly on one side and partly by the FPC on the other side. Therefore, 

failure of the epoxy bonds due to space radiation is not expected to occur. 
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4. 2 Fabrication of Modules
 

A total of 6 72-cell test modules were built. These included 2 each of the following:
 

" 	 DuPont 5504 bonded, silver-plated molybdenum interconnects 

* 	 Thermocompression bonded, silver-plated molybdenum interconnects 

* 	 Thermocompression bonded, gold-plated copper interconnects 

One set of 3 modules was temperature-cycled at LMSC; the other set was delivered 

to NASA/MSFC for temperature cycling testing. 

Fabrication and assembly of the modules was performed by experienced individuals in 

the same LMSC organizations that manufacture other solar arrays. 

The process steps used in fabricating the interconnect circuit/substrate assemblies 

for Modules 1 through 4 were as follows: 

1. 	 Cut Kapton/polyester film and punch bond access holes 

2. 	 Plate copper and molybdenum foils 

3. 	 Print interconnect circuit on both sides of foil using KMER resist 

4. Etch foils on both sides to remove silver and gold plating. Remove resist. 

5. Laminate one film to each etched foil, aligning holes with circuit. 

6. 	 Print interconnect circuit again on foil side using KMER. Coat film side 

with resist to protect circuit at bond access holes. 

7. 	 Etch copper and molybdenum foils. Remove resist. 

8. Laminate second film to etched circuits, aligning holes with circuit. 

For the last two circuit/substrate assemblies (Modules #5 and 6), KMER resist was 

not used because it was difficult to remove. Instead the following steps were substituted: 

* 	 For the gold plated copper circuit: 

3. Print non-circuit areas on both sides of copper foil using Riston resist. 
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and 4. Plate circuit with 0.3 mil gold. Remove resist. 

5. 	 Laminate one filth to plated foil. 

6. 	 and 7. Etch copper with ferric chloride. Gold protects circuit from etchant 

on both sides of foil. 

* For the silver-plated molybdenum circuit: 

3. 	 Print circuit both sides with Shipley AZ-1350J resist. 

4. 	 Etch foil to remove silver. Remove resist. 

5. 	 Same 

6. 	 Print circuit with Shipley AZ-1350J resist. 

7. 	 Etch molybdenum with ferric chloride. Remove resist. 

These revised procedures produced better circuit/substrate assemblies with less 

effort. 

A fixture was made for positioning the solar cells during the bonding operation (Figure 

4-3). A vacuum line was installed on the edge of the fixture to evacuate the' spate' 

between the plate and frame. This provided a vacuum hold-down- for the-,oells and 

substrate which was used for the conductive epoxy bonded modules during application 

and cure of the adhesive. -

The equipment and materials used during the bonding operation included: 

* For all modules: 

72 solar cells, covered 

Flexible printed circuit
 

72-cell module- fixture
 

Tweezers
 

Eraser
 

Isopropyl alcohol
 

Cotton swabs
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Figure 4-3 72-Cell Module Fixture 
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* For thermocompression bonded modules: 

Bonder, Unitek Model 1-37-02
 

Shunted tip, Unitek Model 10-128-01
 

Kapton tape (to hold FPC in place)
 

For conductive epoxy bonded modules: 

Screen printer, Forslund Model FCP-1224, with 200 mesh stainless steel 

screen
 

DuPont 5504 silver-filled epoxy 

Vacuum pump and tubing 

Curing oven (1500C) 

Silicone grease 

Extension cord (to permit transfer of fixture from screen printer to 

curing oven while holding vacuum) 

During bonding of cells to the substrate, several difficulties were encountered. The 

fixture provided a very tight fit for the cells, especially when the cell covers were not 

precisely located on the cells. Also, the locating pins in the fixture, being only about 

.012 inches high, did not always keep the cells in position securely. Consequently, 

several cells were damaged during the bonding operation by cracking of the cover or 

chipping the cover edge. 

When bonding with conductive epoxies, the fixture vacuum system, designed to hold 

down the cells and substrate, was inadequate to prevent the cells from sticking to the 

epoxy printer screen when epoxy was applied directly to the cell back. This was due 

partly to the very high viscosity of the DuPont 5504 adhesive. The kroblem was cir­

cumvented by applying silicone grease between the cells and the fixture to help hold 

down the cells. Many of the cells/covers were slightly warped and tended to lift up 

when the wiper blade pressed on one end. 

The screen printer used lacked good control of pressure of the wiper blade. The 

result was that epoxy application was somewhat non-uniform, and' some 18 of the 288 

bonds on one module (on 17 different cells) required touch-up by hand. 
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These problems point out the need for a larger investment in process development and 

tooling before conductive epoxy or thermocompression bonding can be properly con­

sidered for use on a flight solar array. 

4.3 Electrical Output Tests 

The electrical output of the 6 modules was measured in LMSC's Large Area Pulsed 

Solar Simulator facility (Figure 4-4). The LAPSS provides a uniform, spectrally 

balanced pulse of light to a test object and simultaneously electronically loads the 

module and conditions and stores the output data. The data are automatically 

corrected for differences in module temperature and pulse lamp intensity from the 

desired values. The stored data then can be recorded by printing values on tape or 

plotting an IV curve. 

The IV curves are shown in Figures 4-5(a) and (b). There was a major anomaly in 

the right-side half-circuit of the conductive epoxy bonded module (#1), possibly due 

to a short between N and P cell contacts from adhesive. 

Photographs of the 6 72-cell modules are given in Figures 4-6 through 4-11. 
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Figure 4-5(a) Electrical 	Output Data (Before Start of Cycling) 
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Figure 4-6 	 72-Cell Module No. 1, Conductive Epoxy Bonded,
 
Silver-Plated Molybdenum Interconnect, Front Side
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Figure 4-7 	 72-Cell Module No. 2, Thermocompression Bonded, 

Silver-Plated Molybdenum Interconnect, Front Side 
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g Figure 4 -8 72-C ell Module No. 3, Thermocompression Bonded, 

H ,JGold Plated Copper Interconnect, Front Side 
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THERMOCOUPLE LEADS
 

Figure 4-9 	 72-Celi Module No. 4, Conductive Epoxy Bonded, 
Silver-Plated Molybdenum interconnect, Back Side 
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Figure 4-10 	 72-CeUl Module No. 5, Thermcompression Bonded, 
Silver-Plated Molybdenum Interconnect, Back Side 
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THERMOCOUPLE LEADS
 

Figure 4-11 72-Cell Module No. 6, Thermocompression Bonded, 
Gold-Plated Copper Interconnect, Back Side 
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Quality and Reliability Assurance Provisions 

An LMSC Product Assurance Program Representative (PAPR) acted as central point 

of contact for the product assurance activities required by the contract. The PAPR 

performed visual inspections of the deliverable 72-cell modules for proper workman­

ship and damage before shipment to MSFC, and generated detailed inspection records 

which were shipped with the modules. 

There were two inspections of the modules. The first was done just after fabrication 

and before the electrical output tests. Following shipment, MSFC technical personnel 

observed several loose bonds. These evidently failed due to handling between the time 

of the inspection and shipment. The modules were returned to LMSC and the bonds 

repaired. The second inspection then occurred just prior to packing the modules for 

re-shipment to MSFC. 

The electrical output measurements were made on LMSCIs production solar simulator 

by an electronics inspector of the Product Assurance organization. All test instrumenta­

tion used is kept in calibration. 

The plywood shipping container was inspected for design and construction, and the 

packaging of the container for shipment was selected by LMSC's Material Services 

organization to insure safe transit to MSFC. 

Reliability considerations in the module design were based on existing technology and 

failure analyses of similar designs. Redundancy in the interconnections was acquired 

by having 2 N-bonds and 2 P-bonds per cell and by using double traces in the inter­

connect circuit. At one time two joints were made at each bond location on the cell 

for additional redundancy. However, experience showed this reduced reliability due 

to the high stresses between the two joints. 
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Section 5 

TEMPERATURE CYCLING TESTING 

Three 72-cell test modules (Modules No. 1, 2 and 3 pictured in Figures 4-6 through 

4-8) were temperature-cycled for 604 cycles in LMSC's Solar Panel Temperature 

Cycling Facility, Figure 5-1. This test facility has two identical systems, each having a 

vacuum chamber with a test volume 24 inches in diameter by 42 inches high. Two 

9-inch diameter quartz windows on one side of the bell jar permit irradiation of smaller 

solar array modules by a Spectrolab X-25 solar simulator to measure electrical output. 

Tungsten filament lamps are installed inside the chamber to provide uniform radiant 

heating. A liquid nitrogen cooled shroud completely surrounds the test volume and 

includes movable shutters for the quartz windows. At the center of the chamber there 

is a box, or "target", 7.5 inches square by 21 inches high on which the test modules 

were mounted. The box also is cooled with liquid nitrogen to provide the cold space 

environment on the back side of the modules. 

The vacuum system consists of a 400 liter per second differential ion pump and initial 

roughing equipment which includes a carbon vane mechanical pump and a two-stage 

sorption pump. The ion pumping, together with some cryopumping by the liquid nitrogen 

shroud system, yielded a vacuum level of approximately 10 - 8 torr. Temperature cycles 

were obtained by adjusting the radiant lamp intensity and turning the lamps on and off 

automatically. A 40-channel digital recorder gave both test module temperatures and 

electrical output data. Automatic cycle control and data acquisition equipment were 

utilized to provide round-the-clock, unattended facility operation. 

The interconnect materials and bonding methods on the test modules were-

Module No. Bonding Method Interconnect Material 

1 DuPont 5504 epoxy Molybdenum, silver-plated 

2 Thermocompression Molybdenum, silver-plated 

3 Thermocompression Copper, gold-plated 

?1WCU)ING PAGE BLANK NCT : ?Z 
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The test included the following: 

* Visual inspection
 

" IV measurement
 

" Installation of electrical leads and thermocouples
 

* Installation of modules in chamber 

* IV measurement, just before putting on bell jar 

* Cycling 604 times, -160 0 C to +1500C at approx. 1 x 10 - 8 torr 

* Measurement of temperature and I at maximum and minimum temperaturesc 
of every cycle 

* Interruption of test periodically to count bond failures 

* IV measurement and visual inspection after 604 cycles 

Six (6) electrical leads were attached to the 4 contact pads on each module as shown in 

Figure 4-1. The leads were used prior to and after temperature cycling to obtain IV 

data on the left and right halves and on the whole module. The IV curves of the test 

modules before cycling were given in Figure 4 -5(a). During cycling the lower leads 

were connected together, and the upper two pairs of leads were wired to the test con­

sole to permit measurement of open circuit voltage (Voc) and short circuit current 

(Is ) of the full module. 

Six (6) thermocouples were installed on each module at the locations shown in Figure 

5-2. They were 5 mil copper/constantan thermocouples, bonded on the back surface 

of the Kapton substrate between adjacent N and P bonds. These bonds are approximately 

10 mm apart, so the thermocouples were located about 5 mm away from a bond. 

The installation of the modules in the vacuum chamber is diagrammed in Figure 5-2. 

Four lamps with 5-inch tungsten filaments Were mounted in front of-each module. 

The temperature profile experienced during cycling is shown in Figure 5-3. It approxi­

mates the profile predicted for the SEP solar array design. 

Cycling was interrupted periodically to count the number of failed bonds. This was done 

by applying pressure at appropriate points near every bond on the back of each module 
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Figure 5-2 Module Installation in Vacuum Chamber 
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Figure 5-3 Representative Temperature Profile, 72-Cell Test Module 

and observing whether the cell separated from the interconnect circuit. Originally, 
two such bond inspections were planned. At the request of MVSFC, the number was 
increased from 2 (at 10 and 100 cycles) to 5 (at 20, 100, 200, 300 and 500 cycles), 
and the number of cycles to be performed would be reduced to a number sufficient to 
establish the failure trend. A total of 604 was performed. Bond failures were 
counted also at the start and completion of temperature cycling. 

In the early testing the number of bond failures was greater than expected considering 
results from the 12-cell module testing in the Quick-Look Temperature Cycler; 

therefore, after 84-cycles an investigation was made to determine whether the solar 
cell/interconnect bonds were being heated to a temperature higher than indicated by 
the thermocouples. Two new thermocouples were added on the front surface of solar 
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cells on two panels. The measured front surface temperatures were extremely high 

as shown below from data from one of the panels. 

Back-Surface New Front-Surface 
Thermocouples (C) Thermocouples (°C) 

153.3 157.5 327.7 

151.4 150.3 324.8 

146.2 148.7 

The question then was whether the large temperature difference was across the cell 

to the bond or between the bond and the thermocouple location on the substrate, since 

the objective was to temperature cycle the bonds to +150°C. Another two thermocouples 

were added to the back of each module by soldering them directly to the interconnect 

metal immediately adjacent to a bond. This was not done originally because it was 

felt it would adversely affect bond performance. At this time the heating lamp 

intensity was decreased to .prevent further overheating. The temperatures obtained 

then from the one panel were: 

Front-Surface Bond Area 
Thermocouples (C) Thermocouples (°C) 

157.6, 152.9 157.8, 162.3 

Thus the temperature of the bond is close to the front surface temperature, and the 

large temperature drop was between the bond and the original thermocouple location. 

For the first 84 cycles the modules were being heated up to approximately 3250C. 

Subsequently, the thermocouples adjacdnt to abond were used to monitor temperatures. 

Figures 5-4, 5-5 and 5-6 present detailed data on when individual bonds failed on 

each module. Figure -7 gives curves of bond failures vs number of temperature 

cycles. 

The module which performed best was the conductive epoxy-bonded module with 

silver-plated molybdenum interconnect circuit (Module No. 1). This module lost 

i7% of its bonds after 604 cycles. 
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Figure 5-4 Bond Failure Data, 72-Cell Module No. I 
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Figure 5-5 Bond Failure Data, 72-Cell Module No. 2 
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Figure 5-6 Bond Failure Data, 72-Cell Module No. 3 
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The performance of the thermocompression-bonded modules, both 12-cell and 72-cell, 

was poor compared with the pull tab specimens. At first it was thought this might be 

due to a high stress riser around the periphery of the bond compared with parallel-gap 

welding where material melting results in a smoother contour at the periphery. This 

sharp edge, combined with the. added thermal stress of the substrate film when cold, 

then would cause bond failure. It is now thought more likely the poor performance is 

due to the polyester adhesive on the Kapton substrate, which melts and flows out over 
the bond access area during the bonding operation. It is expected this contamination 

would be avoided by using an epoxy or acrylic (thermoset) adhesive instead of polyester 
or FEP (thermoplastics). 

A comparison of percent bond failures between the 12-cell and 72-cell modules is 
shown in Figure 5-8. For each module type, the 72-cell module bonds failed more 

rapidly than the 12-cell module bonds. On the gold-plated copper, 72-cell module, 
it appears that the over-temperature stress through the 84th cycle resulted in a more 

rapid bond failure rate, since there is a sharp decrease in slope of the curve after the 
84th cycle. On the silver-plated molybdenum, 72-cell modules, there is no sharp knee. 

However, the poorer performance of these 72-cell modules also is believed to be a 
direct result of the higher temperatures encountered in the first 84 cycles. 

The electrical output from the thermocompression-bonded modules after temperature 

cycling was zero due' to the many bond failures (Module 3 had no cells left on the sub­
strate). The output from the conductive epoxy bonded module before and after. cycling 

is shown in Figure 5-9. After temperature cycling, the current of the right half was 
down one-third due to bond failures. The left side of the module performed satisfactorily 

before temperature cycling, but after cycling the current was down by two-thirds. The 
open circuit voltages across the right side and the full module, which were low before 

temperature cycling, were higher afterward. This could be due to deterioration of 
adhesive which had caused a short between N and P contacts on a cell. 
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Section 6 

CONCLUSIONS AND RECOMMENDATIONS 

Several conclusions were drawn from the work done in the Interconnect Bonding Study. 

These are applicable to large, flexible substrate solar arrays and, in particular, to 

solar arrays for Solar Electric Propulsion (SEP) and Shuttle payload applications. 

Both thermocompression bonding and conductive adhesives were shown to be viable 

methods of joining solar cells to the ,interconnect circuit. Each has advantages and 

disadvantages compared with parallel-gap welding, so the best bonding method will 

depend on the application. However, a larger investment must be made in process 

development and tooling before either method can be considered for a flight array. 

The screening testing was successful in demonstrating which of the interconnect metals, 

conductive epoxies and thermocompression bonding parameters are best for the flexible 

substrate solar array application. 

Thermocompression bonding worked very well and better than the conductive epoxies 

on pull tab specimens, but performed poorly on solar array test modules. The cause 

may be the polyester adhesive on the Kapton substrate, which melts and flows onto the 

bond areas during the bonding operation. 

With respect to thermocompression bonding: 

* 	 Variables affecting, bond quality, in addition to the bonding schedule, are 

tip geometry, interconnect material, thickness and adherence of plating, 

cell metalization adherence, cleanliness of parts, oxide formation, and 

handling requirements. 

a 	 Bond quality is less sensitive to the bonding parameters than in parallel­

gap welding, thus reducing the chance of a poor bond caused by changed 

conditions (e.g., oxidized tip). 

* 	 The effect of the substrate adhesive on bond quality should be determined. 
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With respect to conductive epoxy bonding: 

a The DuPont 5504 silver-filled epoxy performed best of the 9 candidates. 

Of the hundreds of conductive adhesives available commercially, probably 

only a few would be acceptable. However, better products could be 

developed readily if the performance requirements were known to the 

manufacturers. Candidate compositions must be tested thoroughly to 

determine bond strength and electrical resistance during and after environ­

ment exposure. 

* 	 Conductive epoxy bonding would be most advantageous in large scale pro­

duction, using screen printing techniques. Its disadvantages are the 

relatively complicated set-up and the time required in the curing operation. 

A significant amount of process development is required to improve the 

ease and control of application of coriductive adhesives, to acquire good 
fixtures to hold the cells and substrate during application and curing, and 

to demonstrate the potential for automated assembly. 

The silver-plated molybdenum interconnect performed best in temperature cycling for 

both conductive epoxy and thermocompression bonding. 

A copper interconnect circuit must be plated to reliably get satisfactory thermocompression 

or conductive epoxy bonds. Otherwise, copper oxide may form at the bond, seriously 

degrading the bond strength and/or electrical conductivity. Similar results can be 
expected from other unplated interconnect metals which form oxides, such as moly­

bdenum 	and Kovar. 

Solar cell electrical output was not degraded by either the conductive epoxy or thermo­

compression bonding process. 

The high-efficiency cells did not present any new problems compared with the conventional 

efficiency cells. 

New interconnect designs should be developed to give lower bond stresses during tempera­

ture cycling than the circuit used in this study. 
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APPENDIX A 

MATERIALS PROCUREMENT 

The materials used in this study are listed in FigureA-l. The solar cells were all 

spacecraft quality 8-mil, end-tab-wraparound, 2 x 4 cm cells with Ag-Ti contacts, 

but were of three kinds. For the initial work, electrical reject cells were used. 

These were cells that had been manufactured for the SEP contract but failed to meet 

the output requirement. Consequently they were immediately available at low cost. 

The second kind of cell used was the "conventional" efficiency, SEP cell, per LMSC 

Development Specification 9000300,, dated 31 January 1974. These were provided as 

Government-furnished equipment from extra cells purchased for the SEP contract 

(NAS8-30315). 

The third type of cell was a high efficiency cell, included to evaluate the effect of 

conductive epoxy and thermdcompression bonding on the performance of a shallower 

junction cell. 

The purchase of the high-efficiency solar cells was the most significant procurement 

activity. A visit to OCLI and Heliotek was made to investigate their capabilities to 

produce higher-effibiency cells. -OCLI (then Centralab) had a license to manufacture 

violet cells but at the time were not producing end-tab-wraparound violet cells. Thus 

it became necessary to purchase a so-called improved efficiency cell, which derives 

its greater output fron.a shallower jinction (but not as shallow as in the violet cell), 

P+ field on the back surface, and a tantalum pentoxide antireflective coating. Quotations 

were requested and received from both companies for 208 cells with a minimum output 

of 263 ma at 470 mv (minimum efficiency of 11. 3%). The cells were purchased from 

OCLI because it had proposed a shallower junction (0.2 ttm vs 0.3-0.4 tim by Heliotek). 

The pull tabs used during the conductive adhesive and thermocompressibn bonding 

development were etched from foil and plated at LMSC. Except for the silver foil, 

all materials were taken from existing stock. 
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ITEM DESCRIPTION 	 QTY SOURCE 

1 	 Solar Cells 118 OCLI
 
Hi-eff (263 ma at 470 my) City of Industry, CA
 
8 mil, end tab wraparound
 

2 	 Solar Cells 90 OCLI
 
Same as above except 257 ma
 

3 	 Solar Cells 224 OCLI
 
Electrical Rejects
 

4 	 Solar Cells 489 GFE, from
 
Conventional Eff, NAS8-30315
 
8 mil, end tab wraparound
 

5 	 Solar Cell Covers i 244 GFE, from
 
6 mil fused silica, AR NAS8-30315
 
coating only 725 LMSC-supplied
 

6 Silver Foil, . 001 in. 2 in. x 8 ft. 	 The Wilkinson Company 
Westlake Village, CA 

7 	 Silver Foil, .002 in. 3 in. x 1 ft. The Wilkinson Company 
Comm. pure, annealed 

8 	 Molybdenum Foil As Req'd LMSC stock
 
.001 mil
 

9 	 Copper Foil, 1 and 2 oz. As Req'd LMSC stock 

10 	 Kovar Foil, . 001 in. As Req'd LMSC stock 

11 	 Invar Foil, . 001 in. As Req'd LMSC stock 

12 	 Silver for plating As Req'd LMSC stock 

13 	 Gold salts for plating As Req'd LMSC stock 

14 	 Kapton/polyester laminate, 18 in. x 65 ft. Left over from NAS8-30315 
1/2 mil/1/2 mil Made by Circuit Mat'ls Co. 

Hoosick Falls, N.Y. 12090 

15 	 Conductive epoxy, silver Sample Epoxy Technology, Inc.
 
Epotek H20E Watertown, MA 02172
 

16 Conductive epoxy, silver 1 oz. Epoxy Technology, Inc. 
.. . Epo-tek H21D 

FigureA-i Materials Used 
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ITEM DESCRIPTION QTY SOURCE i 

17 

18 

1 Conductive epoxy, 
Epo-tek H31D 

Conductive epoxy,
Epo-Tek H44. 

silver 

gold 

1 oz. 

1'/2 oz, 

Epoxy Technology, Inc. 

.Epoxy.Technology, Inc. 

19 Conductive epoxy,
Ablebond 36-2 

silver 1 oz. 1 Ablestik Laboratories,
Inc., Gardena, CA 90248 

20 Conductive epoxy, 
Ablebond 58-1 

gold 2 gr. Ablestik Laboratories 

21 

22 

23 

24 

25 

26 

Conductive epoxy, silver 
DuPont 5504 " 

Conductive epoxy, silver 
Ohmex-Ag 

Conductive epoxy, gold 
GE-10 

Thermocompression Bonding 
Tip.Tungsten. Carbide 

Thermocompression Bonding 
Tip.Inconel 

Adhesive, solar cell cover 
Dow Corning 63-489 

350 gr. 

As Reqld 

As Req'd 

2 

2 

As Req'd 

E. 1. DuPont de Nemours: 
Wilmington, DE 19898 

LMSC stock. Made by 
Transene Company, Inc. 
Rowley, MA 01969 

LMSC stock. Made by 
Transene Company, Inc. 

Small Precision Tools 
San Rafael, CA 94903 

Small.Precision Tools 

LMSC stock 

Misc. Materials for Tools, . 

Fixtures, Packaging, Testing 

Liquid Nitrogen, during 
Temp. Cycling Testing 

As Needed 

5400 gal. 

LMSC stock -

From LMSC hulk storage 

Figure A-i (cont'd. y Materials Used 
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Two batches of pull tabs were prepared. A total of about 700 tabs were made in the 

first batch. When these were used up, a second, larger supply was made consisting 

of the following: 

MATERIAL NO. OF TABS 

1 oz. copper 234 

2 oz. copper 208 

Silver-plated 1 oz. copper 312 

Silver-plated 2 oz. copper 208 

Gold-plated 1 oz. copper 312 

Gold-plated 2 oz. copper 208 

Silver-plated 1 mil Kovar 104 

Gold-plated 1 mil Kovar 104 

Silver-plated 1 mil Molybdenum 312 

Gold-plated 1 ail Molybdenum 156 

Silver-plated 1 mil Invar 104 

Gold-plated 1 mil Invar 130 

1 mil silver 156 

2 mil silver 208 

TOTAL 2756 

Gold-plated Kovar and molybdenum were added to the required materials since ,our 

experience indicated that gold is a superior surface material for thermocompression 

bonding. Silver- and gold-plated Invar also were added because Invar has a low thermal 

expansion coefficient. 
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Foils made for the 12-cell module interconnect including extras, were: 

Copper, 1 oz., unplated 6 pCs.
 

Copper, 1 oz., gold-plated 6 pcs.
 

Copper, 1 oz., silver-plated 3 pos.
 

Molybdenum, 1 nail, silver-plated 6 pcs.
 

Kovar, 1 nail, gold-plated 4 pcs.
 

Imvar, 1 ail, silver-plated 4 pcs.
 

The Invar foil was obtained by chem-milling existing 3 mil foil down to 1 nail in ferrous 

chloride. This provided a very uniform thickness foil for the circuit. 
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