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Figure 1. 	 Annual wave in (a) horizontal, (b) vertical field intensity.
 
Dots are amplitudes and crosses are phases of stations in -

Table 2, plotted at geomagnetic lafitude. Lines estimatihg the
 
latitudinal variation of amplitude (solid) andphase (dotted)
 
have been fitted by eye.
 

Figure 2. Harmonic dial of the amplitude and phase of the annual wave for
 
each year, 1960-1972, at Sitka and Tucson. The average values
 
,for all years are circled. The small number above each pbint
 
is the year that the point represents (i.e., 3 is for 1963).
 

Figure 3. 	 As in Figure 1 except for the semiannual wave.
 

Figure 4. 	 Twelve-month running mean values of Z (solid line) at Honolulu
 
relative to the parabolic secular trend lifie, and twelve-month
 
running mean values of zonal wind at 56 km at Barking Sands
 
(dotted line). Tick marks on abeissa are for 1 July; every
 
third month is plotted.
 

Figure 5. 	 As in Figure 1 except for the QBO.
 

Figure 6. 	 Height-latitude sections of relative phase lags of MRN and
 
geomagnetic periodic waves in geographic coordinates for station
 
pairs in Table 1. In dotted areas phase lag is within 300 of
 
zero; in shaded regions it is within 300 of 1800. (a) annual
 
wave, U and H (b) semiannual wave, U and H, the dashed line is
 
explained in the text (c) annual wave, U and Z (d) semiannual
 
wave, U and Z (e) annual wave, T and H (f) annual wave,
 
T and Z.
 

Figure 7. 	 As in Figure 6 except geomagnetic latitude. (a) semiannual
 

wave, U and H (b) semiannual wave, U and Z.
 

-
Figure 8. 	 The amplitude (m s 1) of the semiannual wave in zonal wind at
 
the altitude indicated by the dashed line in Figure 6(b) or
 
Table 1. Dots are NRN station locations. (a) geographic
 
coordinates, (b) geomagnetic coordinates.
 

Figure 9. 	 Power spectral density in zonal wind as a function of height
 
for the band centered at 2r/ll days, by season.
 

Figure 10. 	 Power spectrum of zonal wind variations at 40 km at Fort
 
Greely. Solid line is for SW years, dotted line is for MSW
 
years, as defined in the text. Statistical significance
 
level of the difference between the two spectra is indicated
 
for continuum values. (a) autumn (b) winter (c) spring.
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Figure 11. As in Figure 10 except at White Sands. 

Figure 12. As in Figure 10 except for the horizontal field intensity at 
College. 

Figure 13. As in Figure 10 except for the horizontal field intensity at 
Tucson. 

Figure 14. Linear correlation coefficient between layer mean temperature, 
-40-50km, at Fort Churchill and K as a function of the lag of 
temperature. P 

Figure 15. 

Figure A-1. 

Trend of the temperature at 40 km at Fort Churchill between closely 
spaced ascents made near a solar sector boundary crossing. 
End points of each line segment are plotted at the time relative 
to boundary crossing and at the corresponding value of K 

P 
Theoretical frequency response of the numerical filter described 
in the Appendix. 
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I. INTRODUCTION
 

Coupling between the atmospheric circulation and the earth'.s magnetic
 

field is strongly suggested by the evidence presented in the literature.
 

This evidence covers a wide spectrum of space and time scales, is usually
 

in the form of correlations, and has been given for all levels of the
 

atmosphere. For example, Flohn (1952) showed that the meteorological
 

equator (the ITCZ) is more nearly parallel to the geomagnetic than to the
 

geographic equator and that the polar,vortex at 200 mb is more nearly
 

centered on the geomagnetic than on the geographic pole. King (1974) has
 

shown that the isolines of total ozone are similar to the. isolines of
 

magnetic field strength; and Belmont, at al. (1974by, showed that the
 

contours of the amplitude of the semiannual wave in zonal wind at 50 km
 

are more nearly congruent with the geomagnetic, rather than geographic,
 

coordinate system. The mechanisms which give rise to these correlations
 

are not yet fully understood.
 

It should be determined whether the atmosphere or the geomagnetic
 

field, or neither, is the independent variable responsible for correlations
 

such as the above. If the geomagnetic field is the independent variable
 

for a given relationship, then meteorologists ought to include that rela­

tionship in their studies. For example, a high latitude source of NO
 

produced by cosmic rays, which enter the atmosphere at latitudes determined
 

by their interaction with the geomagnetic field, is now being included in
 

studies of the ozone budget (Crutzen, et al., 1975). On the other hand, if
 

the atmosphere is found to be the independent variable for a given relation­

ship, then such knowledge may be useful to space scientists, but meteorolo­

gists need not consider that geomagnetic relationship in studies of the
 

atmospheric circulation.
 

The purpose of the present study is to find relationships between
 

stratospheric parameters, 30-60 km, and geomagnetic field parameters. The
 

mid- and upper-stratosphere may respond dramatically to geophysical events
 

(e.g., Zadvernyuk, 1973), and by studying relationships at high altitudes
 



2
 

it may be possible to more readily identify some coupling mechanisms between
 

the atmosphere and geomagnetic field. Hopefully, this could help explain
 

which are the independent variables for some of the known relationships
 

between geomagnetic and meteorological data. The method used here will be
 

to compare temporal variations of wind and temperature at rocketsonde
 

stations (MRN data) with time variations of the vertical (Z) and horizontal
 

(H) geomagnetic field intensity at a nearby geomagnetic observatory.
 

The frequency range of time variations which can be studied is limited
 

only by the time distribution of MRN data, as the geomagnetic data are
 

taken hourly in a (usually) continuous sample. The MRN data are sufficiently
 

plentiful to define variations longer than a month, so a major portion of
 

the study deals with periodic analysis, the quasi-biennial oscillation, and the
 

first three harmonics of the annual wave. On time scales of a season or
 

less, midwinter sudden stratospheric warmings are the most spectacular
 

events. While the MRN data are too sparse to perform case studies of
 

individual warmings, it is possible to stratify all years according to
 

whether or not a major warming occurred. This procedure has been used to
 

study differences of the variance spectra in MRN and geomagnetic data during
 

years when major warmings occurred compared with the other years. Finally,
 

results are given for a superposed epoch study of the changes in strato­

spheric temperature over a few hours time at Fort Churchill using solar
 

sector boundary crossing dates as the key events.
 

II. DATA
 

Meteorological rocket (MRN) data 1960-72 were obtained from the World
 

Data Center, Asheville. Station locations and the nearest geomagnetic
 

observatories are given in Table 1. Further details concerning the MRN
 

data and results of periodic analysis of wind and temperature have been
 

given in Belmont, et al. (1974a), and Nastrom and Belmont (1975).
 

Daily mean values of the geomagnetic field elements for years corres­

ponding to the MRN data were obtained from the World Data Center, Boulder.
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Observatories used in this study are listed in Table 2. Generally, geomag­

netic data prior to 1960 were not used in order to make the periods of
 

record of the MEN and geomagnetic data as compatible as possible. Also,
 

the analysis was limited to observatories near a MIN station (see Table 1).
 

At most observatories the field elements given are declination (D),
 

horizontal (H), and vertical (Z) field intensity. At the Canadian stations
 

-indicated in Table 2 they were reported as X, Y, and Z; but daily values.
 

were converted to D, H, and Z prior to further processing. The observatory
 

at San Juan was moved at the end of 1964, and it was necessary to adjust
 

the base.lin of 1960-1964 data to be consistent with 1965-1972 data. Also,
 

the observatory at Honolulu was moved during 1960, so data for 1960 were
 

not used there.
 

III. RESULTS
 

A. PERIODIC ANALYSIS OF GEOMAGNETIC FIELD ELEMENTS
 

1. Procedure
 

Significant peaks at 12 and 6 months are present in the H and Z spectra
 

(Currie, 1966), and resolving them as discrete lines provides the possibility
 

of studying their phases as well as amplitudes. However, secular trends are
 

often very large in the H and Z data, and failure to remove them prior to
 

periodic analysis can lead to inconclusive results (Chapman and Bartels,
 

1940, Chapter 16; Currie, 1966). Inspection of plots of our time series for
 

1960-1972 (not shown here; see Chapman and Bartels, 1940, p. 132) indicated
 

that a parabola can be used to effectively remove the secular trend. This
 

technique -is more desirable than other filters because no data are lost at
 

each end of the time series. Although a parabolic trend line does interact
 

with the approximately 11 year cycle found in H and Z, numerical tests
 

made using synthetic time series show that the error in amplitude and phase
 

of the 11 year cycle, and shorter periods, is less than 4% after removing a
 

parabolic trend from a time series 13 years long.
 

Time series of mean daily H and Z values are characterized by a
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relatively steady background which may be dramatically interrupted during
 

a geomagnetic disturbance. The effect of geomagnetic storms, which last
 

for only hours or days, could be thought of as a very large amplitude
 

high-frequency variation which occurs more during some years than during
 

others. As the purpose here is tostudy the month-to-month changes of
 

the background geomagnetic field, it is desirable to remove the aliasing
 

of monthly data caused by the irregular occurrence of geomagnetic storms.
 

One method to achieve this is to use only non-disturbed days when comput­

ing monthly means. This method has the drawback that disturbed days can
 

be identified only on a subjective basis. If the disturbed days form
 

only a small part of total daily values in a month, however, then an
 

objective and nearly as effective method is to use monthly medians rather
 

than monthly means. Periodic analyses were made using both monthly
 

median and monthly mean data. The resulting amplitudes and phases differed
 

significantly between the two analyses with the monthly median amplitudes
 

always smaller (e.g., 5.3 versus 8.8 gammas for the amplitude of the
 

annual wave in H at College). Moreover, the corresponding statistical
 

error estimates were always smaller in the case of monthly median data,
 

indicating less interannual variability of the periodic waves when monthly
 

medians are used. Thus, the following analyses are based on time series
 

of monthly median values of H and Z. (Note that monthly mean MEN data
 

were used here, as previously, because the range of those-fluctuations
 

is relatively much smaller.)
 

Monthly data of both the MEN and geomagnetic parameters were analyzed
 

with the joint periodic regression technique of. Belmont, et al., 1974a.
 

The technique can be used to analyze a time series of irregularly spaced
 

data points, weighting the months by number of observations, even if zero,
 

and to simultaneously determine an estimate of the statistical error of
 

the amplitude and phase of each frequency included. Further, frequencies
 

analyzed need not be integral divisions of the period of record.
 

Frequencies included in the present analyses are the long-term mean, 11
 

year cycle (geomagnetic data only), quasi-biennial oscillation (29 months),
 

and the first four harmonics of the annual wave.
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The statistical errors given in able.2,-which.provide.cqnfidence 

estimates for the results, are not the same as RMS.deviations.,.However, 

they resemble RMS deviations because.the coherence of the data from cycle 

to cycle is the most important consideration-in computing .them;,in-fact, 

regression of the errors in Table 2 (SE) for the annual and semiannual, 

waves with PM deviations determined from harmonic analysis of yearly 

data showed that SE ="0.38 RIMS. "The regression coefficient ist.small for 

several reasons:! because the'frequiendies ihcluded' inthe SE anal#sid:are 

not orthogonal over the data, theyican ifiterfere with each dthetto'give 

a better fit'(smaller residuals) to the complete time serds than cant 

the orthogonal components of harmonic analysis. Also, as SE 

weights each point of the time series by the nufabet of ibsdrtvations, it 

allows occasional erratic points based on few observations to be largely 

disregarded. 

22 Anndal Wave
 

Estimates of the-amplitude and phase, with errors, of. the.,9pO, .. 

annual, and semiannual waves in'H andZ are given.in.Table,. ;J e~suAt,5,.,for 

the annual wave in H and Z are plotted in-Figure I as functions of gpapng­

netic.-latitude. Lines estimating the latitudinal variation in the-figre 

have been fitted by eye. These results are similar to.1the .rresponding 

values given by Currie (1966), but have much less scatter; partidularly 

at mid-latitudes. As noted by Currie, the scatter.of hisresults may. 

arise.from differing periods of.record at the various stations.he .used; 

for example, the interannual vaiations of the annual..waves inA a Tucson 

and Sitka (Figure 2) are so large that averaging a given number of arbi­

trary years will clearly lead to widely varying mean values. In antici­

pation of'he disdusgi6n in Secti6n B; 'a large part of the .interanfiual 

variations in Figure .2 is due to the well-known sblar cydle influence-, 

on E'region ionization. "ote that both stAtions Are attthe-rtght extreme 

in '1963'and'the left extreme in 1969 (1963 was'near sun' sp6t mifrimumvalid 

1969 near sun spot maximum). Returning to Figure l,-the'sharp'inkirease 

of amplitude of the annual waves in H and Z at high latitudes has been 

http:stations.he
http:scatter.of
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noted by Currie (1966) whose data extended to 80°N (geomagnetic latitude).
 

The decrease of amplitude in H and continued rise in Z as the pole is
 

approached does not seem to have been reported previously, although
 

Langel and Brown (1974) have noted that the largest seasonal variations
 

of-LZ are near the pole.
 

The phase of the annual wave in H is fairly uniform at all latitudes,
 

with the annual maximum occurring in June (Figure la). The phase of Z, on
 

the other hand, undergoes an abrupt shift of 180 near 65°N. Equator­

ward of 65°N the average phases of Z and H are quite similar.
 

3. 'Semiannuai Wave
 

Amplitudes and phases of the semiannual variations in H and Z are
 

plotted in Figure 3. The present amplitude results are generally smaller
 

than those given by Currie (1966). In this case, the difference may
 

again be due to differing periods of record, or it may be due to our use
 

of monthly median data which reduces the occasionally severe impact of
 

magnetic storms which occur on a predominantly semiannual'rhythm. It
 

should be borne in mind that the present results are for the mean semi­

annual wave over about one sunspot cycle. [Chapman and Bartels (1940)
 

have shown that the semiannual amplitude varies with the sunspot cyble.]
 

From 700 to 800 magnetic latitude, the decline of amplitude in H and the
 

increase in Z are in accord with Currie's (1966) results which extend to
 

Godhavn (80 N). As the pole is approached from 800N the amplitudes of
 

-both H and Z increase, although the large statistical errors associated
 

with the H values make that analysis less reliable.
 

The phase of the semiannual variation in H is fairly steady up to
 

about 70°N, with a 1800 shift near 75°N indicated by all three stations
 

north of 80N. The phase of Z is less steady, but indicates a systematic
 

shift with latitude such that the phase of the pole 'and the equator are
 

about 1800 different.
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4. Quasi-Biennial Oscillation (QBO)
 

Before discussing the periodic analysis results for the QBO in H
 

and Z, it should be pointed out that there have been several conflicting
 

reports regarding the existence of a quasi-biennial line in the geomag­

ndtid spectrum. Hope (1963) reported that the QBO in K 'had bedn
• p
 

isolated; but Currie (1966) could not find it in the'spectra of H or Z
 

and suggested that these results were based on fTulty'numerical filtering
 

procedures. Fraser-Smith (1972) presented the Spectrum of hheA index
 p
 

and concluded that no QBO exists, but Currie (1973) has analyzed H and
 

Z data from 49 observatories and now concludes that there is a line near
 

2.15 years.
 

Nearly all periodic waves in geophysical data show variations from
 

cycle to cycle, but usually the amplitude and phase converge on mean
 

values if enough cycles are averaged. Statistical tests can be used to
 

determine if enough cycles of a periodic wave have been used to estimate
 

the mean wave with confidence (Chapman and Bartels, 1940). As the quasi­

biennial oscillation is not truly periodic, but has variable amplitude,
 

phase, and period from cycle to cycle (e.g., see Figure 4), there is no
 

assurance that a mean wave can be rigorously defined in a usual statis­

tical sense. Thus? the mean QBO can only be defined for the years of
 

record analyzed by each writer, with the understanding that the QBO for
 

different years of record will probably not have the same amplitude or
 

phase. For this reason, the latitudinal variation of the QBO values in
 

Table 2 is erratic and inconclusive unless stations with the most complete
 

and most nearly identical years of record are considered. Therefore, only
 

those stations with over 110 months of data have been used in order to
 

obtain the most reliable estimates of the latitudinal variation of the
 

QBO. (The average period of the QBO during these years was 29 months.)
 

In Figure 5, the average QBO amplitude is near 2y for both elements,
 

although Resolute (830N) indicates dn increase of H's amplitude as the
 

pole is approached. The individual phase dates, relative to 1 January
 

1960, have fairly uniform latitudinal variation except for Z at College
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and H at Resolute.
 

B: COMPARISON OF GEOMAGNETIC AND METEOROLOGICAL PERIODIC WAVES
 

The present objective is to determine possible relations of geo­

magnetic to meteorological variables by comparing periodic properties of
 

geomagnetic and MEN data. Identifying those periodic frequencies which
 

show a close relationship can allow effort to be focused on them, with
 

the remainder of the variance discarded as beingunrelated and therefore
 

of no immediate interest.
 

I. Procedure
 

Waves of the same period whose relative phase lags show broad
 

patterns of spatial continuity are sometimes found to be related, and
 

charts of the relative phase lags between MRN and geomagnetic periodic
 

variations will be presented below. However, as all periodic components
 

of the two data sets may have large year -to-year variability in ampli­

tude and phase (for example, the annual wave in H in Figure 2), it is
 

desirable to first examine the year-to-year relationship of each frequency
 

to determine if "average" phase lag values are representative. The
 

coherence square (COH2) statistic of cross spectral analysis provides an
 

objective measure of how uniformly the amplitudes and phases within each
 

frequency band vary with time at a given location, and has been used
 

here to decide which frequencies of MRN and geomagnetic data are synchro­

nous.' Cross-spectral analyses of horizontal and vertical components of
 

the geomagnetic field versus the temperature and wind at nearby rocket
 

stations were made using monthly data at five stations with the most
 

complete periods of record (Table 3), yet well distributed in latitude,
 

and with a maximum lag of twelve months. Prior statistical significance
 

of each COH2 value was tested by the method of Julian (1975). No values
 

in the frequency band centered at 24 months (near the QBO frequency), nor
 

more values than expected by chance for frequencies higher than 2rr/6 months,
 

passed the 5% confidence level. COH2 values fof frequency bands centered
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at biennial, annual, semiannual, and terannual periods are given in
 

Table 3; those which exceed the 5%, 1%, and 0.1% confidence levels are
 

marked.
 

There is apparently closest coupling for the annual and semiannual
 

variations of zonal wind with H at mid-latitudes and with Z at lower
 

latitudes. The annual temperature variation, especially at 30 km, also
 

is significantly coupled with geomagnetic-variations. Semiannual varia­

tions of temperature and all terannual variations exceed the 5% confi­

dence limit no more often than expected by chance. These results indicate
 

that only the annual, and some semiannual, variations in MRN and geomag­

netic data exhibit significantly synchronous year to year changes;.
 

therefore, only those waves will be considered further.
 

There are two techniques for determining relative phase lags: first,
 

relative phase lag can be found during cross-spectral analysis. Second,
 

the phases determined by periodic analyses can be subtracted. The latter
 

method has the advantage that a measure of confidence can be derived by
 

combining the statistical phase errors determined during periodic
 

analysis. This was done by the root-sum-square technique. It was found
 

that all phase lags associated with a COH2 in Table 3 which exceeded the
 

1% confidence limit were within the limits of statistical error of the
 

phase lags determined by subtracting periodic analysis results. Therefore,
 

values presented below are based on periodic analysis results.
 

2. Relative Phase Lags
 

Relative phase lags for the annual and semiannual waves between MRN
 

and geomagnetic data are presented in Figure 6 as functions of height and
 

latitude. For each station pair listed in Table la, the relative phase
 

lag of each frequency for each parameter was determined by subtracting
 

the phase of the geomagnetic wave from the meteorological wave, at 4 km
 

height intervals from 28-64 km. The resulting phase lag values were
 

plotted at the geographic latitude of the MRN station. Contours were
 

drawn for phase lags = +30, +150 degrees to indicate areas of nearly in
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or nearly out of phase. The relative uncertainty of each value, esti­

mated by the root-sum-square of the individual phase errors, and the
 

spatial patterns of phase given in Figures 1 and 3, and in Belmont, et al.
 

(1974a), and Nastrom and Belmont (1975), were taken into account while
 

drawing the contours.
 

In Figure 6, U-H are out of phase throughout the mid-latitudes for
 

both the annual and semiannual waves. U-Z are out of phase from about
 

100N - 400N for the annual wave, with small in phase areas at high lati­

tudes. The phase lags of U-Z for the semiannual wave are near 1800 in
 

the upper tropical stratosphere and nearly in phase at high latitudes.
 

The annual waves in T-H are out of phase above 55 km near 200N, and
 

in phase north of a line from 28 km, 10°N to 64 km, 600N. The annual
 

waves in T-Z appear out of phase in the upper low-latitude stratosphere
 

and at highest latitudes, and are in phase near 30-500N. Clearly, the
 

phase lags presented in Figure 6 have broad spatial continuity. Together
 

with the large COH2 values these results suggest that physical coupling
 

between the MRN and geomagnetic periodic variations may exist. Possible
 

mechanisms which could produce coupling will be discussed next.
 

3. Discussion
 

a. Annual Wave
 

It must be noted here that the annual variation in geomagnetic
 

data is not yet fully understood, although several writers have discussed
 

it. Vestine (1954) suggested it could be a seasonal effect induced by
 

air motions in the ionosphere. Currie (1966) concurred with Vestine and
 

offered qualitative arguments from the scanty data then available, and
 

later (Currie, 1974). strengthened the theory by arguing the annual wave
 

could not arise from modulation'of the S q current system but must be a
 

DC effect.
 

(1) Suggested Mechanism: Due to the differing ion and electron
 

Hall conductivities, zonal wind in the lower ionosphere produces a ring
 

current along the wind which induces a magnetic field in the meridional
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plane. This induced magnetic field affects the geomagnetic field in
 

proportion to the wind speed, and the effect decreases with distance.
 

The maximum effect on the N-S component of the geomagnetic field will be
 

directly below and above the wind jet where the, induced field is
 

coincident with the geomagnetic H field. Similarly, there is a maximum
 

effect on the Z component to the north and south of the zonal wind jet
 

with a minimum directly below and above it.
 

At high latitudes (Fig. 1), the maximum amplitude of the annual
 

wave in both H and Z occurs. It apparently has not yet been explained
 

in the literature. The cause of the high latitude maximum could be the
 

annual variation in ionization density, which is a function of solar
 

elevation angle, and winds in the lower ionosphere or of magnetospheric
 

origin; but there is insufficient data to verify either hypothesis at
 

this time.
 

At mid- and low-latitudes, however, sufficient data are now
 

available to crudely estimate the magnitude of the annual effect of iono­

spheric winds on geomagnetism and thereby perhaps bring future research
 

efforts on this issue into focus. Here the annual variation in wind is
 

the major factor as there is only a small seasonal change in electron
 

density. The annual-variation in zonal winds in the lower ionosphere
 

° 
has maximum amplitudes of about 30 m/s from 20-50 ,latitudenear 110 km
 

with phase dates near mid-May (Groves, 1972). Ionized gas is dragged
 

eastward during the half year centered about May, and westward during
 

the half year centered about November, producing an annual variation in
 

the geomagnetic field intensity. To estimate the magnitude of this
 

effect, the current sheet approximation is applied using a width of
 

500 km (after Bates, 1975), depth of 15 km, uniform charge density of
 
4 -3
 

5 x 104cm , at an altitude of 110 km. A wihd variation of (30 m/s) cos 

(wt+0) yields a field variation of (3.28 gammas) cos (wt+0)-. Of course 

this estimate could easily be changed by a factor of -two or more, but '. 

the amplitude is certainly of the proper order of magnitude for the mid­

latitude annual wave in geomagnetism (Fig. 1). Also, the charge density 
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varies, particularly with solar zenith angle; this could account
 

winds (mid'May) and the geomagnetic variation (mid-June). Since the
 

annual amplitude in the zonal wind above 100 km has a maximum near 50%
 

it should create a maximum in the annual amplitude of H near 50N and a
 

minimum in Z near 50%, as found in Figure 1.
 

Conventional heat sources (e.g., radiative heating)-are adequate
 

to account for the annual wind waves in the stratosphere (Leovy, 1964)
 

and lower thermosphere (Volland and Mayr, 1972). The MRN individual
 

data'has high coherence with the geomagnetic data at the annual frequency
 

because the variations in annual wave 'between the thermospheric and
 

stratospheric wind are apparently also coherent. (The fact that the
 

annual wave in the stratosphere is out of phase with that in the thermo­

sphere has no bearing on their coherence.) The point here is that a
 

seemingly intriguing relation between two parameters may arise from a
 

mutual association with a third parameter through normally accepted
 

processes; in this case the third parameter is the annual wave in thermo­

spheric circulation. Hence, the present results do not suggest any
 

geomagnetic influence on the atmospheric circulation.
 

These results should be useful to those trying to understand
 

apparent correlations between atmospheric and geomagnetic processes, and
 

to those concerned with the description of the earth's magnetic field
 

and its variations. The annual dynamo concept presented above could be
 

incorporated into models of-the geomagnetic field and thereby help
 

overcome the Problems of interpretation discussed by Alldredge and
 

Stearns (1974).
 

As the above calculation, based on constant ion density, does
 

not pertain to the large, high latitude annual waves in geomagnetism, it
 

is not inconsistent-that relatively low COH2 values for the -annual
 

frequency are found in Table 3 at.Greely and Churchill. Values of COH2
 

.in Table 3 at mid- and low-latitude stations are less than 1.0 for reasons
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besides instrument error and incomplete sampling. Solar cycle
 

influence on charge density in the ionosphere, causing a solar cycle in
 

the annual wave in geomagnetism but not in that in stratospheric wind,
 

may be the most important additional reason. However, upward propagating
 

planetary and gravity waves, which may affect the stratosphere and iono­

sphere much differently, could also be important. Although recent
 

theories suggest that planetary waves will be absorbed, reflected,
 

refracted and radiatively damped in the stratosphere and mesosphere,
 

there is a large body of evidence which suggests they do exist in the
 

lower thermosphere (e.g., Lysenko, et al., 1974; Deland and Friedman,
 

1972; Graznik, et al., 1975). The possible role of gravity waves in the
 

upper atmosphere is also poorly understood (Muller and Kingsley, 1974).
 

It seems unlikely that these uncertainties will be cleared up until
 

detailed wind measurements from the surface to the lower thermosphere
 

are studied. A preliminary effort has been made by Manson, et al.
 

(1975 ), but conclusive results are not yet available.
 

(2) Applicability to Correlation Studies: During an early
 

phase of the present study the linear correlation coefficients between
 

the monthly means of MRN and geomagnetic data were computed. Those
 

results, given in Table 4a, have a high level of statistical significance.
 

It is now realized that the correlation coefficients are large because
 

the annual waves in MRN and geomagnetic data are coupled and, except at
 

low latitudes, the annual wave is generally larger than any other periodic
 

component in the MRN data. Thus, one would expect the linear correlation
 

between zonal winds and geomagnetic data to decrease significantly if
 

the annual waves were removed from both data sets. To test this hypo­

thesis, the linear correlation coefficients were recomputed between the
 

monthly residuals after the annual waves had been subtracted. The results
 

of this test, given in Table 4b, show that in nearly all cases the
 

correlation ceases to be significant when the annual wave is removed.
 

The correlation remains significant at Hawaii because the semiannual
 

wave in zonal wind is nearly as large as the annual.
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Application of this point to other reported correlations may
 

help explain them. For example, King (1975) has reported that the
 

longitudinal variations at 600N of the average 500 mb height for
 

January and the geomagnetic intensity shifted 25 in longitude have a
 

correlation coefficient of -0.963. Longitudinal variations in the­

circulation of the mid-stratosphere reveal a standing wave up to at
 

least 10 mb; in the meridional component the predominant standing
 

wavenumber is two (van Loon, et al., 1972; Figure 72). Lysenko, et.al.
 

(1972), and Glass, et al. (1975), have offered evidence that standing
 

waves also exist in the circulation of the lower thermosphere. If the
 

predominant wavenumber of wind speed, ion density, or a combination of
 

them in the lower thermosphere in January is two, then the resulting
 

current will induce a wavenumber two pattern in the longitudinal varia­

tions of the geomagnetic field intensity. The high correlation found
 

by King may therefore reflect a very mundane relationship, as long
 

proposed by Wulf (1945), rather than any solar-terrestrial effect. A
 

similar principle could apply regarding the relationship between spatial
 

variations of tropospheric temperature, humidity, and surface pressure
 

and the geomagnetic field intensity reported by King (1974).
 

b. Semiannual Wave
 

The results in Table 3 and Figure 6 suggest that the semi­

annual waves in MRN zonal wind and geomagnetism are also closely coupled.
 

For the zonal wind in Table 3, significant C0H2 values are found for
 

the semiannual variation at nearly the same station-levels as for the
 

annual variation. A dynamo mechanism might be suggested, as Groves
 

(1972) shows that there are large semiannual wind variations near 115 km.
 

However, Volland and Mayr (1972) found that most of the latitudinally
 

varying part of the semiannual wind wave in the lower thermosphere is
 

due to corpuscular heating. They suggest (Mayr and Volland, 1971) that
 

this heating is related to the semiannual occurrence of magnetic storms,
 

which Chapman and Bartels (1940) have argued is due to earth-sun
 

geometry and thus is independent of meteorological influence. There­
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fore, the close coupling of the semiannual waves seen in Table 3 and
 

Figure 6 may be explained independently of the dynamo mechanism of
 

the annual wave.
 

More insight regarding the cause for this coupling of the
 

semiannual waves in geomagnetic and MRN data might be possible if the
 

cause of the semiannual wave in zonal wind were known. Possible causes
 

for the tropical semiannual wind wave have been discussed by Dickinson
 

(1975), but the extra tropical semiannual wave has not yet been explained.
 

As processes which show more symmetry in one coordinate system than
 

another may be driven by mechanisms peculiar to that coordinate system,
 

tests of the relative symmetry of the semiannual wind wave in geomagnetic
 

and geographic coordinates were made. These tests, described below,
 

were generally inconclusive. Finally, three possible causes of the
 

extratropical semiannual wind wave are discussed. -None can yet be
 

accepted, and it is suggested that more research is needed before a
 

conclusion can be reached.
 

(1) Further Tests for Coupling with the Geomagnetic Field: In
 

order to test the relative symmetry of the semiannual wind wave in
 

geomagnetic compared with geographic coordinates the relative phase
 

lags of Figure 6b and 6d have been plotted in geomagnetic coordinates
 

in Figure 7. In either case, the change of coordinates makes little
 

difference, although for U-Z the contours become smoother in geomagnetic
 

coordinates.
 

Belmont, et al. (1974b), compared the symmetry of the ampli­

tude of the semiannual wind wave at 50 km on maps in the geographic and
 

geomagnetic coordinate systems and found the symmetry slightly greater
 

in geomagnetic coordinates. Even greater symmetry may be found by plotting
 

the amplitude at each station at that level where the closest relationship
 

is found. The height of the level at each station was selected as that
 

height where the magnitude of the product of the two semiannual waves'
 

amplitudes and the cosine of their phase lag (a2 .b2.cosA) is maximum.
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Note that this parameter, which is an approximation of the co-spectrum
 

in the case of large COH2, will be relatively-small if either amplitude
 

is small or if the phases are near quadrature. The height of this
 

surface is shown by the dotted line in Figure 6b. Contours of the ampli­

tude of the semiannual wind wave at the heights thus selected are shown
 

in Figure 8, and appear to show little, if any, enhanced symmetry in
 

either coordinate system compared with the results-of Belmont, et al.
 

(1974b). Clearly, these tests for increased symmetry do not suggest
 

preference for either coordinate system.
 

(2) Possible Mechanisms: Three hypotheses can be advanced to
 

account for the extratropical stratospheric semiannual wave in zonal
 

wind. Before discussing them,however, it should be pointed out that
 

Gregory, et al. (1975b), have noted that the phases of the annual wind
 

waves in the stratosphere and upper mesosphere are reversed. Cole and
 

Kantor (1974) have noted a similar relationship with regard to the
 

annual waves in temperature at stratospheric and mesospheric levels.
 

Both papers suggest that the semiannual waves in the lower mesosphere
 

at extratropical latitudes result from the overlapping of the annual
 

waves. This descriptive account of the lower mesospheric semiannual
 

wave-is useful, but does not by itself explain the semiannual wave. For
 

examile, early descriptions of the tropical semiannual wind wave in the
 

upper stratosphere viewed it as the result of alternating intrusions
 

of winter hemisphere westerlies into the summer hemisphere (Webb, 1966)".
 

While that does occur, it does not explain the tropical semiannual wave,
 

and efforts to do so have invoked a wide variety of mechanisms, e.g.,
 

ozone heating, the diurnal tide, planetary waves, Kelvin waves, and
 

semidiurnal tides. Hopefully, the discussion below will help stimulate
 

other research efforts to explain the extratropical semiannual wind
 

wave.
 

The first forcing mechanism'for the extratropica semiannual wind
 

wave to be considered here is upward prdpagating planetary waves. If
 

these waves interact with the background flow oh a semianntial basis
 

they could induce a semiannual component in the background wind speed.
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In an effort to determine if the amount of absorption of planetary
 

waves varies with season, the variance spectrum of filtered time series
 

of zonal and meridional winds have been determined at eight MRN stations
 

on a seasonal basis. Details of procedure and complete results are
 

given in the Appendix. As noted in the Appendix, maximum power usually
 

occurs between 2n/l0 and 27/20 days, so for brevity only the results at
 

2n/11 days will be presented below. However, the graphs for the total
 

variance and for the results at 2r/6.3 days (not shown) are similar.
 

Planetary waves propagating vertically in a hydrostatic
 

atmosphere with no dissipation increase their spectral density (i.e.,
 

power) exponentially with height. Further,if attenuation of the waves
 

occurs, the slope of the power will be proportional to the amount of
 

attenuation. Spectral density for the frequency band centered at 2T1/11
 

days is presented as a function of height in Figure 9 for six MRN stations.
 

Although the power at a given level changes with season, sometimes dramat­

ically, the slope of the curves does not change much with season except
 

at Kennedy. There is a large difference at Kennedy between the slope
 

during spring and autumn from that during the solstitial seasons. During
 

winter unexplained absorption occurs above 45 km at both Kennedy and
 

Pt. Mugu. These results support the hypothesis of Belmont, et al. (1974b)
 

that planetary wave absorption is responsible for the secondary amplitude
 

maximum of the semiannual wave found near 300N. They do not, however,
 

suggest that the semiannual wave at other latitudes arises directly from
 

seasonal absorption of planetary waves.
 

The second proposed mechanism is influence on the ozone field
 

by particle precipitation. This mechanism was proposed by Belmont, et al.
 

(1974b), but cannot yet be directly tested due to a dearth of high level
 

ozone data. However, it should be noted that Heath (1974) has found
 

evidence for a non-photochemical source of high latitude ozone creation
 

which he attributes to incident charged particles; and recent modeling
 

efforts by Crutzen, et al. (1975), have shown that incident charged
 

particles can dramatically influence the ozone field. Also, Golyshev,
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et al. (1974),, found that the amplitude of the semiannual wind wave near
 

the stratopause exhibits a solar cycle modulation. To illustrate this,
 

yearly values of several solar and geophysical parameters are presented
 

in Table 5. A'station-year is not included in the table unless data
 

for all twelve months are available, and temperature data were thus too
 

irregular to include in the table. Note that the values of the sunspot
 

number and of the semiannual amplitudes have relative maxima in 1969 in
 

all cases. Further, note that the annual wave in zonal wind is a rela­

tive minimum in 1969 at all stations except at Barking Sands. While
 

this table suffers from the short period of record available, it does
 

support and extend the results of Golyshev, et al. (1974).
 

Solar cycle modulation of the periodic variations in strato­

spheric zonal wind, as seen in Table 5, is consistent with the hypothesis
 

that particle precipitation during magnetic storms influences the ozone
 

and hence thermal and wind fields. If stratospheric semiannual wind
 

variations are related to the occurrence of magnetic storms through the
 

ozone field, then their amplitude should be largest during active sun
 

years (as found in Table 5) as the semiannual component in magnetic
 

storm frequency is largest during active sun years. Solar cycle modula­

tion of the annual wind wave is not easily conjectured, but the well­

known solar cycles in total yearly magnetic storms and yearly solar flare
 

occurrence may prove responsible, especially in view of the results of
 

Crutzen, et al. (1975), regarding particle precipitation and ozone
 

concentration.
 

The third possible mechanism is IR radiation generated in the
 

lower thermosphere during magnetic storms and absorbed by CO2 at 30-40 km.
 

During magnetic storms the amount of IR radiated by the lower thermosphere
 

is increased by several orders of magnitude, and Gordiyets, et al. (1972),
 

have suggested that it causes heating of CO2 at 30-40 km and H20 at 7-12
 

km. This mechanism has appeal because 30-40 km is the region where
 

maximum amplitudes of the semiannual wave in observed temperatures occur
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(Nastrom and Belmont, 1975), and the semiannual component in the occur­

rence of magnetic storms would produce the proper phase and periodicity.
 

Large amounts of radiative energy are possible for brief periods during
 

severe geomagnetic disturbances, but following Volland and Mayr (1972),
 

the long 'period form of this heat input (averaged over space and time)
 

should take the same form as the variation in magnetic energy, which is
 

given by
 

2 -2

Usa
U1 U [1-0.2 cos(Wsat)] ,
 

where U is a yearly mean magnetic energy, dependent on solar activity,
 

W is the semiannual frequency, and t is time. This implies that the
 
sa 

amount of energy deposited by IR radiation is EIR- EIR[-0.2 cos(W sat)], 

where EIR is a yearly mean value. Alternatively, because layer mean 

temperature and energy are directly related, T.- T [1-0.2 cos(Wsa 

This latter relation says that the IR should contribute five times as 

much to the mean temperature as it does to the semiannual component of 

temperature. However, in order to produce a zonal wind oscillation of 

20 m/s the latitudinal variation of the corresponding temperature 

oscillation must be near 50K (Groves, 1972) which implies a contribu­

tion to the average temperature of 25 0K. As dynamic models of the 

stratosphere have encountered no evidence of such a large unconventional 

heat source (Leovy, 1964), it seems highly unlikely that IR radiation 

from the lower thermosphere is an important forcing mechanism for the 

stratospheric semiannual zonal wind wave. 

c. QBO
 

Coupling between the QBO's in MRN and geomagnetic data may exist
 

despite the lack of statistical significance of the COH2 values in Table 3.
 

Even in the tropical stratosphere, where the QBO is the dominant oscillation,
 

the QBO is not regular in amplitude or period from cycle to cycle nor
 

between levels during the same cycle (Wallace, 1973). Thus, the small
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COH2 values may be misleading in this case. Moreover, the-QBO in thermo­

spheric zonal winds found by Sprenger, et al. (1975), suggests that the
 

geomagnetic QBO may result from a dynamo mechanism, parallel to the
 

annual wave. Although the present theory explainiiig the well-known
 

tropical stratospheric QBO appears successful (Dickinson, 1975) it is
 

dependent on waves and processes unique to the tropics and thus- cannot
 

be invoked to explain an extra tropical thermospheric QBO. Similarily,
 

any explanation for the thermospheric QBO cannot be based on processes
 

unique to the thermosphere because the large negative correlation between
 

the multi-year variations in Z at Honolulu with the 56 km zonal wind at
 

Barking Sands (Fig. 4) suggests the oscillation is not unique to thermo­

spheric (dynamo) altitudes. Until the altitude and latitude progression
 

of the QBO throughout the upper atmosphere is better known, no conclusion
 

regarding the present results seems warranted.
 

C. SPECTRAL CHANGES DURING SUDDEN WARMINGS
 

In the stratosphere, rapid changes in the number, amplitude and
 

phase of planetary waves are the major events during winter. These
 

changes are sometimes associated with "sudden warmings" and it seems of
 

interest to study the changes in MRN and geomagnetic parameters during
 

these disturbances. For this purpose , all years have been catagorized 

as either major sudden warming years (SW) or as other years (MSW). A 

sudden warming is defined to occur when there is a "reversal of the 

polar circulation at 10 mb. (30 km) or below. During 1961-72, SW were 

in 1962-63, 1965-66, 1967-68, 1969-70, and 1970-71, according to a list 

by Finger. 

Several different methods could be used to study the changes of
 

parameters during SW. For example, as planetary wave activity and
 

other events associated with a SW are global in nature (Quiroz, et al.,
 

1975), spatial wavenumber analysis of global data may be used to detect
 

changes in the planetary wave patterns. However, the MRN and geomagnetic
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data are not sufficiently distributed geographically to permit detailed
 

spatial analysis. Superposed epoch studies are often useful for single
 

station analysis, but in the case of sudden-warmings it is difficult to
 

meaningfully define a key-date. Indeed, the criteria used for defining
 

the occurrence of a SW are admittedly arbitrary. Thus, the approach
 

used here is to perform-power spectrum analysis of single station data
 

and to compare the spectra of SW years with those of I4SW years.
 

The available wind observations (Hook, 1972; Gregory and Manson,
 

1976) indicate that the circulation of the lower thermosphere is disturbed
 

during a SW. Winds in the ionosphere can act as electric currents and
 

can thereby produce variations in the geomagnetic field. Of course,
 

processes unique to the magnetosphere can also produce variations in the
 

geomagnetic field; but if a geomagnetic spectral feature can be asso­

iated with a meteorological process, it may be reasonable to assume that
 

it arises from that meteorological process. Thus, studying spectral­

changes in the geomagnetic field between SW and 1SW years may help
 

better understand the thermosphere. Spectral analysis results for the
 

zonal winds and for the horizontal field- intensity are presented first,
 

with a brief discussion of.noteworthy features. A comparison of the two
 

sets of results follows and a possible interpretation is suggested.
 

I. Stratospheric Zonal Winds.
 

Spectra for the zonal winds at 40 km at Fort Greely and White Sands
 

are given in Figures 10-11 for autumn through spring. These stations
 

were chosen because they have the most complete data at high- and mid­

latitudes, respectively. In Figures 10-13, K is wavenumber, solid lines
 

are 'for SW spectra, and dashed lines are for MSW spectra. In autumn and
 

winter there is more energy at Fort Greely (Fig. 10) during SW years if
 

the peaks near K = 8 are momentarily disregarded. The high frequency
 

peaks will be discussed later. At White Sands (Fig. 11), however,
 

largest energy occurs during MSW years at K '6 to 9 in autumn and K = 

2 to 6 in winter. In spring the high frequency energy is significantly
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larger at both stations during MSW years. Chi-squared confidence
 

limits have been entered at noteworthly wavenumbers in the figures to
 

indicate the probability that the differences arise from chance.
 

These results for autumn and winter support Matsuno's (1971) suggestions
 

that there is enhanced upward flux of wave energy at high latitudes
 

(e.g., Greely) during SW years, but during MSW years the waves are
 

refracted toward lower latitudes (e.g., WSMR) resulting in'more energy
 

there during NSW years.
 

2. Horizontal Field Intensity
 

Time spectra of the variations in H at College and Tucson are given
 

in Figures 12 and 13. Spectra for several observatories were computed..
 

As College and Tucson demonstrate the salient features noted and are
 

near the ERN stations used above, only they are presented here. The
 

spectral differences between SW and MW years noted below are probably
 

due to meteorological influences, and not to solar induced effects.
 

Hauska, et al. (1973), found that over all years 1932-1969 the magnitude
 

of geomagnetic variations in the time range 4 to 40 days varies primarily
 

with the approximately 11-year cycle. During the period 1961-1972,
 

SW years defined above are well distributed over a solar cycle.
 

In general, at both stations, there is either little difference
 

between SW and MSW years or the spectral values are greater during 14SW
 

years. During autumn, the largest differences are at low wavenumbers
 

(K=1-3 at CO and K=l-6 at TU), while in spring differences are found at
 

intermediate and high wavenumbers (K=4-5 at CO and K=3-11 at TU). During
 

MSW autumn at College, a significant (1% level) peak is found at K=9;
 

less significant peaks at K=10 are found there during winter and spring.
 

3. Discussion
 

The following chart summarizes which years have the signifi­

cantly greater spectral values and the wavenumbers at which they occur:
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AUT WIN SPR
 

Greely SW(3-5) SW(5) NW(3-11)
 

CO NSW(1-3) bSW(l,5-6) None
 

WSMR NSW(6-1l) None MSW(6-9)
 

TU MSW(I-6) None MSW(3-11)
 

From the above chart and Figures 10-13 two points should be noted.
 

First, the only time the spectral values are significantly higher during
 

SW years is at Greely during autumn and winter. The first point was
 

noted to be consistent with the theory.of wave propagation and refraction.
 

Second, significant spectral peaks near K=9 are found only at Greely and
 

College during autumn and winter of MSW years-and at Greely during autumn
 

of SW years. The second point may also be explained by planetary waves
 

as will be suggested next.
 

Planetary waves occur in the troposphere every year. As they propa­

gate upward, they may be refracted toward lower latitudes or they may
 

continue propagating upward, depending on the vertical and horizontal
 

curvature of the flow profile (Simmons, 1974). As waves travel upward
 

they decay; the rate of decay depends on the prevailing circulation.
 

It is now hypothesized that waves of period near 4 to 5 days (K=8-11) are
 

upward propagating at high latitudes during all years. If during MSW years*
 

they do not suffer severe attenuation then they may continue all the
 

way to the lower ionosphere resulting in spectral peaks near K=9 at
 

Greely (40 kmwinds)'and College (lower ionospheric winds). During SW
 

years the prevailing circulation may cause large attenuation or total
 

absorption; thus, during SW years the peak near K=9 at Greely in autumn
 

is smaller than during 11SW years," and a corresponding peak 'is not found
 

in winter at Greely nor in autumn or winter at College.
 

The above arguments, although sketchy and heuristic, are consistent
 

with present knowledge. Lacking from present knowledge, however, is an
 

adequate climatology of circulation differences during SW and 14SW years,
 

especially in the upper stratosphere.
 

http:theory.of
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D. 	 CORRELATION OF MRN TEMPERATURES WITH K AND THE SOLAR SECTOR STRUCTURE
 
P
 

Numerous authors have suggested that the middle atmosphere may be
 

heated following geomagnetic disturbances (e.g., Gordiyets, et al., 1973).
 

A desirable method of testing this hypothesis would be a superposed
 

epoch study using a magnetic storm parameter as the keydate. However,
 

as the MRN data are too scanty to permit that study, the alternative
 

procedure of finding lagged correlations of K with respect to the MRN
P
 
temperature observations was used. The linear correlation coefficients
 

between K and the layer mean temperature, 	40 - 50 km, at Fort Churchill
 
p
 

are given in Figure 14. All temperature soundings, 1960-1972, which
 

had data through the entire layer were used in this study. Values of Kp
 

obtained from the World Data Center, Boulder, are reported for three-hourly
 

periods; thus, the correlation coefficient was determined at three-hourly
 

intervals as the temperatures were lagged with respect to the K values.

P 

In Figure 14, negative lag means that the KP value was measured before
 

the temperature value. The relative maximum correlations are found at
 

lag zero and at lag -15 hours; although both peaks are statistically
 

significant at only the 5% level (if all data are assumed independent),
 

these results are complementary to those found by others,
 

Ramakrishna and Seshamani (1973) report a statistically significant
 

correlation between the layer mean temperature (from 'grenade data) at
 

Churchill, 60-89 km, and K
P
. The peak correlation occurs when tempera­

ture is lagged 15 hours, and the largest correlation doefficients are
 

found when the mean temperature is for the entire layer rather than
 

just the upper portion of the layer. They report this correlation is
 

significant at the 0.1% level. The largest regression coefficients, a
 

measure of the relative magnitude of the effect, are found when only
 

the upper portion of the altitude layer is used; and they suggest this
 

may indicate a larger heating effect at highest altitudes. However,
 

it also may be due to cancellation resulting from opposite effects in
 

different portions of the entire layer. Results given by Zadvernyuk
 

(1973) indicate that the critical layers of the atmosphere may respond
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differently to magnetic disturbances; e.g., following a magnetic storm
 

there may be heating at the mesopause but cooling at the stratopause.
 

Several possible mechanisms could be suggested to account for the
 

correlations discussed above: e.g., corpuscular heating, enhanced IR
 

radiative exchange, etc. However, the correlation could also arise
 

from a meteorological influence on K in a manner similar to that suggested
p
 
by Hines (1973). Therefore, if correlation studies such as the above
 

are to be taken as indicators of a geophysical process important to the
 

lower atmosphere, they must be based on unambiguous parameters so that
 

cause and effect can be clearly discerned.
 

The previous studies are inconclusive with respect to solar-terres­

trial effects. Wilcox (1975) has already related K to solar sectors.
 
p


The real question is whether temperature can be related to solar sector
 

structure. To examine this, a superposed epoch study of the 40 - 50 km
 

layer mean temperatures with solar sector boundary crossings used as
 

key dates is desirable.
 

However, well defined solar sector boundaries sweep past the Earth
 

at irregular intervals, about every week on the average, and the joint
 

distribution of them with the intermittent MRN observations is not
 

adequate for a superposed epoch study. Thus, it is possible to present
 

in Figure 15 the sign of the temperature change at 40 km between
 

closely spaced consecutive MRN observations at Churchill as a function of
 

time, relative to a solar sector boundary crossing and K . The magnitudes
 
p


of the temperature changes are not shown, but they are random. Solar
 

sector boundary crossing dates were taken from the list in Shapley, et al.
 

(1975). There are 21 temperature rises and 28 temperature falls on the
 

chart, and they seem to be evenly distributed on both sides of the
 

boundary. From this small sample it appears that the temperature trend
 

shows no preference relative to the passage of a solar sector boundary.
 

In summary, either the purported T-K relationship is due to some factor
P
 
other than mutual coupling with solar sector structure, or a much larger
 

sample would be required to establish reliably such a relationship.
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IV. SUMMARY
 

Periodic analysis results of the horizontal and vertical field
 

intensity show that maximum amplitudes of semiannual and annual waves
 

are at high latitudes. It is suggested the high latitude maxima of the
 

annual waves arise from annual waves in ionization density and thermo­

spheric zonal wind speed. At mid- and low-latitudes the annual wave in
 

zonal wind speed in the lower thermosphere (the dynamo region), which
 

is driven by solar heating, accounts for most of the geomagnetic annual
 

wave.
 

Annual variations in geomagnetic and MRN data are closely coupled.
 

In view of the above cause of the geomagnetic annual wave, coupling
 

between the circulations of the stratosphere and lower thermosphere can
 

explain the geomagnetic-ARN coupling; thus, the present results for the
 

annual wave are not evidence of any geomagnetic influence on the lower
 

atmosphere. Other apparent correlations of the lower atmosphere and
 

geomagnetic field may arise from a similar dynamo action in the thermo­

sphere caused by coupling of the thermosphere with the lower atmosphere.
 

Semiannual variations in geomagnetic and stratospheric zonal wind
 

data are also closely coupled. As the semiannual wave in thermospheric
 

zonal wind is driven primarily by auroral heating, the cause of this
 

coupling is not clear. It would be helpful if the cause of the strato­

sphereic semiannual wind wave were known, so three possible causes were
 

discussed. Planetary wave absorption seems to be a direct cause only
 

near 30 0N, and heating by IR from the lower thermosphere during magnetic 

storms is energetically unlikely. Possible modulation of the ozone (and 

hence thermal and wind fields) by particle precipitation during geomag­

netic storms has not yet been verified by observations. Amplitudes of the
 

annual and semiannual waves in stratospheric zonal wind may be modulated
 

with the solar cycle as they generally have extreme values concurrent
 

with extreme values of the sunspot number. This result for the annual
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wave is believed reasonable as the yearly number of proton solar flares
 

varies with the solar cycle and solar flares can dramatically affect the
 

ozone field. If particle precipitation during geomagnetic storms also
 

influences the ozone field, then this result for the semiannual wave could
 

also be explained as the semiannual variation in geomagnetic activity
 

varies with the solar cycle.
 

Power spectrum analysis of zonal wind variations shows that at
 

high latitudes there is significantly more wave energy in the upper
 

stratosphere during years when major sudden warmings (SW) occur, but at
 

mid-latitudes largest wave energy is found during years when major sudden
 

warmings do not occur (14SW). This could be explained by wave refraction
 

which occurs in varying degree each year depending on the profile of the
 

background flow; however, a climatblogy of background flows during SW
 

and 1,SW years is apparently not available. If geomagnetic variations
 

reflect wind activity in the lower thermosphere then the noted differences
 

between SW and 14SW years at mid- and high-latitudes seem consistent with
 

recent theories of planetary wave propagation. The present results
 

suggest that the planetary wave absorption peculiar to SW years occurs
 

in the upper stratosphere, far below the region where direct geomagnetic
 

effects are significant, and thus any direct geomagnetic "trigger" for
 

sudden warmings seems unlikely.
 

Although the correlation between stratospheric temperature and K
 p
 
appears statistically significant and is complimentary to the results of
 

others, cause and effect cannot be discerned. If correlation studies are
 

to be used as evidence of a solar-terrestrial effect, they must be based
 

on parameters of strictly solar origin such as the solar sector structure.
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APPENDIX
 

Organized wave activity in the upper stratosphere has been studied
 

with MRN data by several writers, most recently by Hirota (1975). The
 

latter used only those MEN stations which had at least 30 observations
 

during a given season, subjectively interpolated the data to daily values
 

by analyzing height-time sections for each station, and computed the frequency
 

content of the interpolated data by power spectral analysis. Hirota's method
 

is very effective for analyzing a single season's data; however, the present
 

objective is to, prepare a climatology of the power spectra of MERN data, and
 

a less restrictive, objective approach is desirable. Rocket data have
 

historically been taken on an irregular often sporadic basis, and there
 

are instances of many observations at a given station over a time span of
 

a few weeks with relatively sparse data before and after that period. A
 

climatological analysis method should take advantage of those intermittent
 

periods of dense data. The lag-weighted autovariance function method
 

described below is suited for this purpose, and has been used to estimate
 

seasonal power spectra of MRN wind components, 30-60 km. This method was
 

also used to analyze the power spectra of geomagnetic variations reported in
 

Section III-C of the text. Although a complete description of this method
 

can be found in Dartt and Hovland (1974), a basic outline of it and the
 

variations used here will begiven.
 

A. BASIC DATA HANDLING AND TECHNIQUE
 

At each 2 km level, 30 - 62 km, multiple rocket ascents over -atwo-day
 

period were averaged together and counted as one datum in the time series.
 

Due to the poor distribution of MRN observations, many data points represent
 

only one observation and many are missing; but a surprisingly large number
 

(for example, 20% at Churchill) of data points do represent multiple obser­

vations. Interpolation was not used for missing data. The time series thus
 

obtained at each station and level were then high-pass filtered by convolution
 

with a discrete, symmetric series of Gaussian.weights. To account for missing
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observations, the weights under the filter were normalized at each data
 

point such that their sum was always equal to 1.0. The ideal frequency
 

response of this filter is shown in Figure A-i; .however, due to missing
 

observations, the actual frequency response is slightly less sharp than
 

shown inthe figure.
 

If an observation is far removed in time from other elements of the
 

time series the filtering process will be ineffective as the datum is then
 

filtered, essentially, with only itself. To preclude this, it was required
 

that there be at least five other data points under the filter (out of a
 

possible 30) and that the sum of the weights before normalization be at
 

least 0.25. These latter conditions resulted in discarding about 10% of
 

the data.
 

Autovariances up to lag 11 were computed for each individual season,
 

1961-1972. Three-month seasons were used at all stations-with winter
 

defined as December through February. The autovariances and the number of
 

data pairs at each lag and each season were then stored for future use.
 

Seasonal autovariances for all years of record were computed by combining
 

individual seasonal values according to:
 

S R (r)NU(r)
 
R(T) Z N(T)
 

where R(T) is the autovariance and N(T) is the number of data pairs avail­

able at lag T for a given season. With this procedure seasonal autovari­

ances can be computed for the entire period of record, or for just selected
 

years (e.g., years of major sudden warmings). Autovariances thus obtained
 

were Hanned; estimates of the power spectra were obtained by taking the
 

cosine transform of the Hanned autovariances. Finally, the computed values,
 

V, were normalized:
 

S = V [2 MAX AT/27] 
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where, in this case, MAX is 11 and AT is 2 days; and S is the normalized
 

value.
 

The percentage relative error of each spectral estimate was
 

computed by determining the variance of Hanned spectral estimates accord­

ing to the formulation of Eddy (1968). The effective number of degrees
 

of freedom required for that calculation were determined with the method
 

of Mitchell (1963). It must be noted that these errors reflect how well
 

each spectrum conforms to a particular statistical model and are
 

only as realistic as that model. Further, they do not account for
 

suspected error sources such as aliasing. Aliasing, or spectral folding,
 

results from sampling at a frequency lower than twice that of the natural
 

variability; this problem is discussed in detail by Lumley and Panofsky
 

(1964). If the true spectrum is a "red-noise" spectrum, as frequency
 

decreases energy increases, then aliasing will tend to make the
 

estimated spectrum flat, i.e., with equal energy at all frequencies. As
 

discussed below,.this problem may be more serious for the meridional wind
 

than for the zonal wind.
 

B. 'TABLES OF SPECTRAL ESTIMATES
 

Eight MRN stations have adequate data to provide meaningful estimates
 

of the variance spectrum for the wind components. Temperature observa­

tions are less plentiful than wind observations and did not provide use­

ful results. Tables associated with this appendix give climatological
 

spectral estimates for the wind components for each season. The values
 

in the tables have been smoothed with height by a three point binomial
 

filter. As the effect of missing observations on the frequency response
 

of the high pass filter is difficult to estimate, no attempt to restore
 

the spectra has been made; but it appears that the energy in the first
 

frequency (centered at 2n/44 days) is reduced more than the 55% predicted
 

by the theoretical frequency response of the filter.
 

The relative reliability of the spectrum at each height is indicated
 

by the number of lagged data pairs and the percentage relative error
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estimates. The distribution of MRN observations is such that N(1)
 

N(ll) 1/2 N(O), so only N(l) is given in the interest of brevity. Also,
 

the percentage relative errors are nearly linear with wavenumber; thus,
 

errors at intermediate frequencies can be estimated by linear interpola­

tion of the values given for K=l and K=ll.
 

In-spectral analysis there is always a trade-off between reaolution
 

and reliability of the spectrum. By averaging adjacent bands a more
 

reliable spectrum may be obtained, but a corresponding loss of resolution
 

results. The most reliable parameter is thus the total variance of the
 

filtered data, which is included in the tables. From experience, the
 

best indicator of the reliability of the total variance is the number of
 

lagged data pairs, ana when N(l) is less than about 60 the variance
 

should be disregarded.
 

In the tables, "VAR' is the total variance of the filtered data,
 

"N" is the number of data pairs at lag one, and "P.R.E." is the percent
 

relative error for bands one and eleven.
 

C. DISCUSSION
 

During the Northern Hemisphere summer, the power of zonal wind
 

spectra at a given level generally decreases with increasing K at mid­

latitude stations (Kennedy through Wallops) and at Ascension. Zonal
 

wind spectra at Greely, Churchill, and Barking Sands, and meridional
 

wind spectra at all stations, are generally very flat at a given height
 

but have large gradients with height. Although this strongly suggests
 

that aliasing may be a serious problem at the latter stations, Dartt
 

and Hovland (1974) report that sumer spectra in the lower stratosphere
 

(30 mb), determined from relatively complete time series of twice daily
 

radiosonde dataare also very flat, especially for the meridional wind.
 

It is therefore likely that aliasing by periods longer than diurnal is
 

not serious in the present results. Note that it is impossible to
 

comment on possible aliasing by periods shorter than diurnal.
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Table 1. List of meteorological rocket-stations.
 

STATION IAT. LONG. IAT. LONG. NUMBER OF OBS. AT 50 KM NEAREST GEOMAGNETIC SYMBOL 
(GEOGRAPHIC) (GEOMAGNETIC) (WIND) (TEMP.) OBSERVATORY 

a. Stations used in Figures 6-8. 

THULE 77 69 88 10 335 296 RESOLUTE RB 

FORT GREELY 64 146 64 261 1011 563 COLLEGE CO 

CHURCHILL 59 94 68 324 991 884 CHURCHILL FC 

PRIMROSE TAKE 55 110 62 305 316 312 SITKA SI 

WALLOPS 38 75 48 351 1351 674 FREDRICKSBURG FR 

POINT MUGU 34 119 41 302 1971 1226 BOULDER BD
 

WHITE SANDS 32 106 42 317 2481 988 TUCSON TU
 

KENNEDY 28 81 38 347 1916 1142 DALIAS DS
 

BARKING SANDS 22 160 21 265 1372 898 HONOLULU HO
 

ANTIGUA - 17 62. 28 10 466 371 SAN JUAN SJ 

SHERMAN 9 80 20 350 631 422 FUQUENE FQ
 

KWAJALEIN 9 -168 1 238 318 305 GUAM 0U10 

ASCENSION -8 14 A1 55 1196 937 HUANCAYO HU 

b. Stations used'oAly i Figure 8.
 

WEISS ISLAND 81 -58 72 156 156 (56 KM)
 

WEST GEIRNISH 57 ,7 60 . -,84 124 (56 KM).. 

VOLG0GRAD- 49' -44 43 125 87 (52 104) 

RYORI 39 -142 29 207 32 (48 K)
 

ARENOSILLO 37 7 41 176 80 '54 KM)
 

SONIIANI 25 -67 16 137 54 (o I(M) 

GRAND TURK 21 71 32 357 170 (50 KM)
 

THUMBA 9 -7Z,' 0 146 145 (50 KM) 

NATAL. -6. .. 35 '5 ;34 131 (46 KM) 

Minus is south or east.
 



TABLE 2. Periodic analysis results of the geomagnetic field elements. Amplitudes are in tenths of gammas and
 
phases are in degrees. Statistical errors are in parentheses. 

NUBER H Z 
GEO- OF 

MAGNETIC . MONTHS QBO ANNUAL SEMIANNUAL QBO ANNUAL SEMIANNUAL 

LAT LON H Z AMP PHASE AMP PHASE AMP PHASE AMP PHASE AMP PHASE AMP PHASE 

THULE 89 358 34 34 46(25) -78(44) 47(17).177(23) 53(17)-175(20) 190(69)-102(36) 126(42)-151(20) 138(40) 151(18) 
ALERT 86 168 77 77 46(16) 106(22) 36(15) 21(27) 39(15)-154(25) 15(24) 84(9) 156(23) 4(8) 89(22)-173(15) 
RESOLUTE 83 168 115 115 40(5) 159(7) 29(5) -62(10) 13(5) 153(23) 29(13)-118(30) 192(14) 1(4) 87(13)-125(9) 
BAKER LAKE 74 315 101. 101 89(13) -15(9) 169(14 174(5) 32(13) 55(g7) 109(20) 134(11) 112(20) 2(11) 79(20) -94(15) 
LIERVOGUR 70 71 87 81 1(13)-122(95) 12(14 27(23) 50(4) 20(15) 18(14) -7(14) 21(14) 23(11) 17(4) -80(14) 
CHURCHILL 69 323 69 69 86(14) 79(8) 102(12 -151(6) 47(11) -8(14) 28(12) 81(26) 97(11) 54(7) 9(8) 141(73) 
BARROW 69 241 95 94 29(9) -107(17) 94(8) -167(5) 64(8) 21(7) 16(6) 150(25) 36(6) 142(10) 46(6) -141(8) 
GREAT WHALE RV 67 347 64 64 139(16) 30(7) 51(5) -74(19) 39(15) -33(25) 40(9> -43(13) 41(8) -135(12) 73(9) -66(7) 
COLLEGE 65 257 156 156 22(5) -43(15) 53(6) 164(6) 58(6) 38(5) 15(3) 112(13) 19(3) 119(10) 14(3) -40(14) 
LERWICK 63 89 20 20 24(10) 81(17) 21(16;-164(26) 31(5) 10(10) 13(16) 87(20) 17(4) 7(12) 15(3) -68(12) 
HEANOOK 62 301 68 68 7(4) 30(39) 44(4) -168(5) 37(4) 25(6) 14(4) -35(15) 15(4) 6(14) 9(3) -115(25) 
SITKA 60 275 156 156 15(4) -49(15) 48(4) 168(4) 41(4) 30(5) 25(4) -137(5) 7(2) 21(21) 9(2) -49(16) 
FREDRICKSBURG 50 350 156 156 22(5) -70(15) 64(5) 163(5) 34(5) 37(9) 26(5) -148(13) 3(4) -115(86) 13(5) -69(25) 
BOULDER 49 317 72 72 19(5) -11(17) 54(5) -174(6) 33(5) 27(9) 17(3) -140(12) 12(3) 172(16) 4(3) -80(61) 
STEPANORKA 44 Ill 32 32 9(8) 143(70) 40(9) -175(14) 32(9) -2(16) 47(6) 104(9) 8(5) 78(55) 2(4) 93(87) 
CASTLE ROCK 43 299 33 33 -19(6) -88(19) 34(6) -170(11) 36(6) 718(10) 9(3) 101(19) 6(3) -141(33) 15(3) 108(11) 
DALLAS 43 328 99 99 15(5)' -94(20) 51(5) -168(5) 23(5) 29(12) 28(3) -96(6) 17(3) 167(10) 10(3) -62(18) 
TUCSON 40 312 156 153 15(4) -39(18) 53(4) 152(5) 32(4) 44(8) 21(3) -158(8) 13(3) -114(4) 5(3) -43(44) 
SAN JUAN 30 3 156. 156 9(6) -7(69) 38(4) 175(7) 18(4) 43(14) 26(4) -108(9) 40(7) -138(10) 28(7) -37(15) 
HONOLULU 21 266 144 144 15(4) 49(15) 35(4) 143(6) 19(4) 37(12) 12(2) -116(9) 25(2) -169(4) 14(2) -7(8) 
FUQUENE 17 355 49 38 8(5) 126(42) 5(4) 167(66) 26(6) 85(12) 81(18) 52(13) 57(16) -83(37) 53(26) -14(28) 
GUAM 4 213 154. 147 15(4) -45(18) 29(4) 138(9) 27(4) 84(10) 10(3) -75(16) 46(3) -174(4) 11(3) -9(15) 
MUNTINLUPA 3 190 60 60 84(7) 50(5) 18(7) -172(23) 20(7) -31(21) 19(4) -48(13) 32(4) -162(7) 22(4) -88(11) 

HUANCAYO 
TOOLANGI 

-1 
-47 

354 
221 

51 
57 

44 
0 

38(6). 
3(5) 

69(10) 
136(90) 

24(6) -138(16) 
46(7) 24(8) 

4(4) 
34(7) 

149(77) 
50(11) 

4(3) 
-

-13(58) 
-

33(3) 
-

176(6) 
-

7(3) 
-

13(38) 
-

ARGENTINE IS, -54 3 96 96 10(3) 52(22) 36(3) 32(5) 33(3) 50(6) 10(3) 13(18) 26(3) 20(7) 21(3) 65(8) 
KERGUELEN -57 128 55 0 24(6) -19(16) 26(6) 2(14) 34(6) 17(11) - - - - - -
BYRD -71 336 91 90 38(37) 62(5) 115(35) 95(19) 15(25)-100(89) 21(21) 61(5) 73(19) 72(16) 64(19) 2(19) 



Table 3. 	Coherence-squared statistics between MRN and geomagnetic monthly data, and number of data pairs at
 
lag one month. Station symbols as in Table 1,
 

30 DI 48 KM 56 KM
 
STATION CO FC FR TU HO (O FL FR TU 110 GO FC 'FR TU HO
 

N(T) 95' 65 100 134 87 86 65 89 , 130 . 85 77 65 74 114 77
 
N(U) 114 66 144 148 115- 110 66 144 147 117 102 61 131 146 110
 

a. 	H-T .12 .50 .23 .50* .12 .21 .54 .15 .19 ,02 .16 .56 .16 .20 .08
 
Z-T .05 .51 .06 .18 .46 .14 .55 .12 .05 .08 .09 .55 .09 .10 .31
 

H-U .16 .32 .48* .52* .27 .20 .59 .51* *49* .27 .15 .53 .48* .51* .28
 
Z-U .03 .37 .00 .13 .53 .02. .5-3 .00 .15 .57* .02 .55 .00 .16 .56*
 

b. 	H-T .39 .28 .05 .11 .13 .19 .18 .12 .05 .18 .11 .10 .16 .11 .14
 
Z-T .18 .05 .19 .17 .34 .32 .18 .17 .03 .08 .05 .05 .36 .13 .02
 

H-U .05 .42 .42 .40L.09 .20 .29 .,9, .50* .22 .21 .23 .40 .57* .27 
Z-U .15 .25 .17 .07 .48 .16 .03 .07 .04 .53 .20 .10 , .03 .66* U1 

c., 	H-T .19 .38 .20 .00 .02 .27 .22 .05 .17 .08 .07 .14 .07 .13 .02
 
Z-T .01 .03 .03 .00 .17 .04 .03 .03 .17 .02 .03 .05 .15 .08 .06
 

H-U .01 .04 .03 .12 .31 .01 .09 .03 .07 .05 .02 .03 .02 .07 .09
 
Z-U .20, .23 .02 .01 .02 .02 .13 .03 .04 .11 .01 .04 .06 .10 .24
 

d. 	H-T .02 .28 , .11 .20 .06 .06 .36 .02 .18 .01 .14 .24 .01 .13 .20 
Z-T .22 .36 .03 .07 .07 .13 .45 .05 .10 .08 .01 .38 .08 .10 .14 

H-U .05 .12 .08 .13 .16 .08 .32 .09 .11 .03 .06 .37 .09 .10 .04
 
Z-U .05 .38 .02 .03 .07 .02 .35 .00 .03 .27 .01 .41 .01 .03 .15
 

CODE: a. Annual Wave STATISTICAL SIGNIFICANCE INDICATORS: * Value exceeds 0.1% confidence level. 
b. 	Semiannual Wave Value exceeds % confidence level.
 

'
 ,c.-.TerannualWave 	 Value exceeds 5% confidence level. ­
d. 	Quasibiennikl Wave
 

Station codes are given in Table 1.
 

= Comparison of horizontal component of the geomagnetic field strength with temperature at
 
I..specified level from,nearest rocketobservation.
 



Table 4a. Linear correlation coefficients of monthly values of MRN and geo­
magnetic data. Those which meet the 1% significance level are
 
asterisked, 	5% level are underlined.
 

PARANETERS 	 (LEVEL) CO FC FR TU HO 

T-H 30 .083 ;491* .223 .280* -. 138 
48 	 .121 .485* .014 .247* -.070
 
56 	 .145 .363* -.127 .161 .071
 

U-H 	 30 -.188 -.354* -.313* -.218" -.211
 
48 -.277* -.488* -.350* ..320* -.265*
 
56 -.338* -.466* -.343* -.351* ..222
 

T-Z 	 30 .230 -.280 .117 -.026 -.293*
 
48 	 .253 -. 301 .089 -.181 -.143 
56 	 .118 -.30-9 -.164 -.246 -.303*
 

U-Z 	 30 -.020 .286 .064 -. 110 -.282*
 
48 -.026 .284 .047 -.103 -.490*
 
56 	 .010 .303 .051 -.094 -.504* 

Table 4b. 	Same as above except the annual waves were first subtracted from the
 
data. Note the lack of significant correlation here compared
 
with above.
 

T-H 	 30 -.114 .174 .111 .099 -.227
 
48 -.195 .136 .034 .165 -.044
 
56 -.024 .006 -.090 .195 .173
 

U-H 	 30 .013 -.033 -.077 -.038- -.077
 
48 -.149 -.226 -.083 -.105 -.051
 
56 -.190 -.200 -.020 -.109, .053
 

T-Z 	 30 .169 -.002 .132 -.024 .008
 
48 .154 -.048 .111 -.167 -.102
 
56 -.027 -.151 -.015 -.184 -.172
 

U-Z 	 30 .095 .101 .116 -.026. -.189
 
48 	 .083 .086 .020 -.063 -.203
 
56 	 .113 .157 -.014 -.082 -.196
 



TABLE 5. 	Yearly values of solar and geophysical parameters. Some relative maxima are underlined; for annual
 
wave relative minima are underlined.
 

YEARS 	 61 62 63 64 65 66 67 68 69 70 71
 

SUN SPOT NO. 	 '54. 38 28 10 15 47 '94 106 106 105 67 

10.7 cm FLUX 	 104 84 go 72 76 103 143 149 151 156 113
 

SEMIANNUAL AMPLITUDES 

SITKA (H) 4.7' 4.'3 4,.0 3.2 2.3 4.1 2.7 3,7 6'.9 5.5 4.1 

FREDRICKSBURG (H) 2.9 3.9 5.0 4.1 1.6 4.5 2.8 1..9 6.9 5;5 3.4 

TUCSON (H) 3.3 3.1 4.4 4.0 2.3 4.5 4.8 2.6 6.1 4.5 2.6 

GREELY (U - 48KM) 9.2 9.2 12.8 19.5 21.5 11.9 Ln 

WALLOPS (U - 48KM) 23.7 24.0- 9,9 16,8 8.5 8.7 18.4 16.4 8,0 

MUGU (U - 48KM) 16'4 14.8 10.0 4.4 11.5 13.,5 20.0 17.4' 10.5 

WSMR (U - 48KM) 11.0 19.5 15.5 15.1 8.0 8.8 11.6 13,4 24.6 18.8 11.3 

BARKING SANDS (U - 48KM) 19.3 23.9 26.5 25.0 23.5 

ANNUAL AMPLITUDES.. 

GREELY (U 48KH) 21,3 25.5 32.9 27,1 i3,2 28,6 

WALLOPS (U - 48KM) 49.8 43.0 '74.5 60.0 57.6 61.5 59.1 65,8 61.9 

MUGU (U - 48KM) 53.9 46.0 2 63.6 60.4 49.1 51.8 46.8 55.6 53.4 

WHITE SANDS (U - 48KM) 54.4 50,3 46.0 58.,. 63.8 56.7 48,0 49,0 43.5 48.4 52,4 
BARKING SANDS (U - 48KM.) 42.4 36,1 37.6 2:27.9 38.2 
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hO * H 303 $34 4bb e3b 283 377 391 ~ 311 } II 401 1 159330 .11 2b 51 SO 55 42 8 71 74 90 5b 61 11 13b1i,

*60 301 49 33 e43 32V 401l37 dl eO3 10 4 4J 11 1351J5 4 41 66 OR 68 55 53 74 83 96 59 91 34 90
 
*59 341 411 2A] 231 314 3bz! 336 234 I1! 81 361 30 10e102 l.I ?0 99 97 88 69 66 85 9212 50 111 73 51 
* 11 43 500 Jl O20 . e4l zb eOb 13V 11 39 1bl 64 ' Z4 84 118 116 92 69 73 87 84 14 38 132 111 21 z I 

16S 485 516 319 185 149 IbS 1YJ 159 119 61 350 102 24 24 34 81 102 100 82 56 6b 71 67 60 30 105 139 21 I 
10 184 420 102 2T5 18e 122 13f 15 110 8 10 116 119 23 23 38 70 15 16 75 .7 59 59 57 46 21 91 163 20 eO 

16P 326 287 22b 164 92 109 1eb h7 be e2 ?e, lei e, 43 3b 55 b8 AT 72 A5 S7 59 " 42 20 82 164 20 eO 
l4 28n 259 212 15, 81 85 9. 69 43 IS 193 130 42 42 35 48 SU A8 Ad 60 55 59 52 44 e3 81 172 20 20 
130 272 28S 227 1It9 11 74 81 . 46 24 e19 131 22 22 41 54 49 S558b 50 46 51 43 39 21 7b 182 19 19 
114 24 273 214 1.. 49 be 69 55 46 24 18 138 e4 1 49 b1 49 48 47 36 3b 31 31 30 16 be 188 19 19 

AS 90 19T 226 17h NO 6 61 51 4Z Jl 15 140 144 e 22 a 59 44 42 40 30 26 eb 25 Z3 I1 S7 189 19 19 
92 182 194 140 IS 6O 66 52 37 2. 9 137 ]4S e2 2e 4 S3 J7 45 33 24 22 Z6 46 40 9 48 192 19 1V 
SA 176 177 119 77 70 70 4V 34 33 12 129 145 21 21 46 S1 33 28 e5 17 16 25 2 40 8 45 192 19 19 
Bq 16A 164 116 83 72 67 4n 34 3J 14 13e 143 22 de 45 52 J4 d6 22 16 17 21 23 20 a 11 194 14 19 
9A 166 153 106 79 6 S2 35 27 e? IZ 116 145 21 21 43 51 33 45 41 16 15 1 IS 17 8a? 3 e01 19 19 

30 9? Ih9 147 9S 73 S qj JV 25 43 10 10S 146 22 22 4e 50 3e 23 e0 16 13 13 16 15 7 30 e04 19 19 

PER. 44 2P 14.1 11 h.H 7.3 6.j 5oS 4.9 4.4 4 (DAYS) P1ERIOD 44 22 14.7 11 S.8 1.3 6.J 5.5 4.9 4.4 4 (DAYS) 

= 

SEASON= SUMMER SEASON AU7UHN
 

K.
 
10 30 3? JI J 313 50 61 66 b4 2 60 23 10510S i 0 105 1 4 177 119 91 5S 14 34 b1 21 137 1 162lb2
 

62A 34 J5 34 41) 44 53 54 4J 19 OR 75 49 49 . 8 98 157 135 98 83 63 32 52 BO 44 97 13 12e2e
 
22 32 35 37 35 32 J, 3e e. 12 4 115 23 23 . 1 1 106 d2 79 83 81 70 75 101 61 126 47 82 U2
 

26 24 67 9S 105
317 26 b e, 4 43?1el 12 21 134 22 2? 4 94 d5 103 109 q4 81 103 71 77 47126
 
I I 23 21 IV 21 21 1, 20 ee 12 29 142 2d e2 . A5 107 111 120 IT7 105 94 AV 98 75 174 97 28130
 

50 1 12 0 17 14 16 11 17 IR lb 9 el 145 2e 2 .17 61 LOO 108 94 86 93 77 47 58 41 91 113 21 6b
 
2R14 12 11 11 14 11 13 It 6 16 147 22 e2 28 SO 76 dO 62 53 63 56 39 35 18 88 120 23 23
 

I0 10 10 11 11 1-) 10 ID 5 1I 151 2Z 2? 2 56 6. 69 50 37 40 41 35 34 19 S8 123 23 23
 
I S 9 9 10 11 11 1" 9 8 4 14 152 22 22 '. 50 64 69 49 33 35 35 27 26 15 68 129 2R 22
 
1 1 7 e . a 9 7 6 4 V 155 22 2? 2, .7 5d 52 38 27 29 30 25 24 14 48 133 2e 22
 

.0 1 5 5 5 5 5 1 4 b 3 6 158 21 Vq 31 49 .3 37 25 15 16 23 21 21 11 43 135 22 22
 
1 1 4 4 . J 1 4 e 4 158 ?2 22 33 AD 39 J? 21 9 9 16 18 16 8 36 137 22 22
 
13 5 5 b 4 4 1 3 1 ? - 156 2d 2? 29 r Je Z6 IS 9 It 15 15 I1 5 e9 140 22 22
 
1 3 4 4 1 3 1 3 J 2 J 154 22 ee 271 6 It e3 17 11 12 15 13 9 3 29 144 21 el
 
I e 3 3 3 1 1 1 3 1 2 4 154 22 22 25 33 ZA el17I 11 I1 13 11 a 3 26 145 22 22
 

30 1 7 3 3 1 2 1 3 3 1 z 3 154 22 22 24 30 d1 ZO 16 11 10 11 10 7 3 21 145 21 21
 

PEP. 44 2P 14.7It 81.87.3 6.j 5.5 4.4 4.4 4 (DAYS) PtkIU4421.7188736.554944 4 (DAYS)
 

(b ) SEASON= WINTER SEASON= SPRING 
POWER (MU/SEC2) VAR N P.RoE. POWER (H2/5ECZ) VAR N P.R.E.
 

OR ­
60 - 111 358 291 167 176 192 147 131 140 69 & 310 3 170453 . 7 31 36 40 43 44 37 31 43 52 27 54 11 135135
 
A52 272 265 170 154 189 186 174 187 140 50 185 10 138138 . 7 32 47 53 46 40 38 37 45 63 38 55 34 96 96
 
. 25 225 264 211 186 226 236 217 229 209 97 335 26 107107 .10 41 73 85 64 46 50 52 62 96 62 Is7 73 51 51
 
- 90 291 304 259 253 251 206 18, 202 19e 95 325 5S 71 71 .12 48 86 100 80 69 TO 66 85 124 75 133 110 21 21
 
•127 333 352 277 253 233 173 155 183 165 75 326 94 30 30 A13 49 76 81 76 83 77 64 83 114 67 107 139 21 21
 

50 - 129 345 385 283 213 196 163 151 182 147 54 3.3 106 24 24 IS 9 60 6? 75 66 52 65 84 48 20 20
18 56 95 IS3 

- 147 364 408 288 172 140 127 128 153 118 39 267 109 23 23 .21 42 45 45 49 ST 52 43 48 63 37 63 164 20 20
 
-194 414 430 289 153 114 110 107 117 IN! 22 315 117 23 23 -25 40 39 40 43 46 48 41 38 51 33 64 172 20 20
 
- 2DR 424 410 260 140 119 118 106 113 81 24 273 124 23 23 .31 51 46 38 3B 42 47 39 3D 37 24 62 283 19 19
 
- 287 384 354 228 150 140 130 108 115 92 34 293 129 22 22 -35 61 52 35 31 38 45 35 24 24 11 56 189 19 19
 

40 - 167 338 309 216 158 139 124 92 84 62 2 215 137 22 22 36 64 54 34 29 34 38 29 20 20 ,11 5. 289 19 19
 
- 141 292 274 200 L41 113 10? 72 50 24 3 2a0 13B 22 22 .37 63 51 34 32 30 25 20 10 19 12 .9 192 19 19
 
-112 239 230 176 128 96 85 62 37 15 1 167 137 22 22 .36 57 43 29 32 27 19 17 16 18 11 43 192 19 19
 

87 182 17, 139 110 86 74 52 31 19 7 141 139 22 22 .33 49 35 24 26 24 20 20 16 16 10 41 194 19 19
 
-70 136 127 105 85 69 60 41 25 19 8 101 144 22 22 .28 40 28 20 20 22 22 19 L3 13 8 32 201 19 19
 

30 - 63 119 110 93 74 59 50 33 21 16 7 84 146 22 22 .25 35 24 18 18 21 22 IS 12 12 7 29 203 19 19
 

PER, 44 22 14.7 11 B+a 7.3 6. 5.5 4.9 4.4 4 (DAYS) PERIO4421.7188 36355494* 4 (DAYS)
 

SEASON= SUMMER SEASON= AUTUMN
 
POWER (M2/5ECZI VAR N P.RoE. POWER (M2/SEC2) VAR N P.R.eg
 

KH 
60 - 422 3A 36 32 34 46 57 49 39 20 A5 23 103191 .11 60 53 46 88 136 100 28 49 118 77 72 1 156344 

.318 30 28 27 J2 43 51 45 38 19 57 75 49 49 . 4 70 79 94 122 125 90 54 83 143 89 141 13 121121 

.015 21 19 21 27 31 32 30 27 13 23 115 23 23 . 7 95 126 160 158 Ill 66 81 95 131 82 113 48 81 81 

.013 21 19 2D 21 19 17 16 15 7 27 134 22 22 .16 99 144 177 156 115 99 78 76 93 53 139 77 49 49 

.010 17 18 16 16 17 15 13 1Z & 17 142 22 22 . 0 91 134 172 153 127 112 76 80 98 52 IRA 96 29 29 
so50 13 15 14 14 14 11 10 11 6 17 145 22 22 -35 98 130 169 145 115 103 68 63 87 53 153 112 25130 

. 0510 13 12 12 11 8 8 9 5 13 147 22 22 -55 101 126 159 115 71 65 47 43 63 40 128 120 23 23 
0 3 6 9 9 9 9 7 6 7 4 8 151 22 22 .70 100 10b 126 80 35 32 34 41 46 25 96 122 23 23 
2 7 7 84 26 34 15 1280 4 a 7 8 6 6 3 9 152 22 22 78 102 85 54 25 37 30 83 22 22
 
0 6 7 6 6 5 5 4 2 5 155 22 22 80 103 76 57 30 18 26 35 31 26 15 72 133 22 2
 

40 0 2 6 6 5 4 4 4 3 2 6 ISO 22 22 79 100 73 48 IS 7 17 48 29 35 24 bb 135 18 33
 
2 5 dl 28 31 137
0 3 3 4 5 4 4 4 2 4 158 2e 22 17 94 70 50 6 9 21 13 67 IS 34 
0 3 2 3 5 5 4 4 3 2 5 156 22 22 74 89 66 50 27 15 13 18 25 4Z 31 66 139 19 28 
0 3 3 3 4 4 3 3 3 1 4 154 22 22 72 86 61 45 27 21 16 17 Z3 37 ?7 67 143 16 26 
0 2 3 3 3 2 2 2 2 2 1 2 154 22 22 -63 75 53 39 24 21 IS 15 22 31 20 bS IA5 22 22 

3a0 3 J 2 2 2 1 1 1 1 2 154 21103 .57 67 48 36 22 19 15 15 22 27 17 47 144 22 22 

PEP. 44 22 14.7 11 8.8 7.3 6.3 5.5 4.9 4.4 A IOAYS) PERIOD 44 2Z 14.7 11 8.8 7.3 6.3 5.5 4.9 4.4 4 [DAYS)
 

Table A-1. Analysis of the high frequency variability of the wind at
 
Greely; (a) Zonal, (b) Meridional.
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(a) SEASON= -IjtS 	 bEASON= SPRING 

KM 

O0 ? 4b4 324 35b 326 e2 203 259 309 175 b04 29 111111 . 2 25 59 88 78 64 65 62 64 68 37 90 19 118218285 549 
?8P S45 437 345 411 3RO 449 20b 223 24l 142 40J 44 94 94 * 3 31 54 d5 86 70 5U 49 57 62 32 79 34 103103 

o 	 302 585 AS, JS4 448 426 245 2S 109 202 125 11 51 8I $1 . 17 48 56 18 07 71 53 '43 47 45 20 79 44 87 87' 

113 66 53e 330 37b 40b 99 230 19q 230 155 553 66 62 6e - 34 bb 61 74 13 55 47 52 51 34 12 81 61 6r 67 
312 614457e 33, Ji1 3T 301 192 101 2 143 52 90 3J5 4 41 47 D7 81 70 38 32 49 54 J4 1I 75 74 51 51 
103 634 34U 49b 32 	 53 90
5 1 527 e82 I 1I1 161 97 459 107 ZJ 23 41 45 bJ 91 67 27 23 46 30 8 69 34 34 
256 527 4S57.J4 Jh 30" 249 134 69 11J 63 40? 113 23 23 - 43 58 81 97 59 17 22 50 54 29 8 78 97 28 28 
196 411 392 J43 324 ZA6 409 115 17 11 33 155 119 J 23 a 44 68 91 95 51 12 21 49 51 30 11 78 98 26 26 
166 333 334 J22 296 229 061 ll 68 4Q 8 204 122 24 23 a 45 71 86 81 42 11 19 44 47 31 12 71 99 25 25 
143 267 46 h ebb 12J 366330 1 249124 23 3 - 43 64 1l 66 39 16 22 42 44 28 10 67 99 25 25 

40 li? 203 09 243 Z33 152 9 72 7 31 6 19$ 124 23 23 . 40 54 13 52 34 17 25 41 39 26 11 - 57 99 25 25 
H9 162 171 e06 19 12h 78 4 45 J4b 17 166 123 23 23 - 39 47 J8 J6 23 12 27 43 38 29 15 49 99 25 25 
a0 151 1s 17 16.J10Q 72 4N 30 J. 24 150 124 Z3 23 . 37 40 16 28 e1 13 29 41 35 32 18 48 99 25 25 
7 15S 163 lbS 133 94 61 39 20 31 24 134 124 23 23 . 35 34 22 dl 24 16 '24 29 -27 31 18 43 99 25 2h 
77 156 170 148 114 T 51 20 13 26 23 130 124 22 2 36 36 22 27 e4 14 18 19 18 21 12 35 99 25 25 

30 75 154 171 la6 10$ 72 44 2J 9 4 22 114 125 22 22 * 38 39 e4 27 d4 14 16 17 13 14 8 34 99 25 25 

............................................
 
or,. 44 2? 14.? 11 0.8 7..i 6.3 5.b 4.9 4.4 4 lO.YS), PERIOD044 22 14.7 11 8,8 7.3T6.3 5.5 4.9 4.4 4 (DAY5)
 

..................................................... 


SEASON= SUsFr SEASON= AUIUMN
 
POWER (UVA8C) 98N N P.R.E. POwER tM2{/SC2) VAR N P.ReE.
 

KM 
60 14 	 IS 4 27 58 33 12 Jb 47 3. 10 4b 8 134212 a 83 126 108 134 136 69 83 142 187 163 68 162 40 95 95 

17 13 26 4e 18 35 42 g0 12 36 15 I27127 a 68 l 112 160 143 75 90 157 202 189 89 215 57 74 7428
i 20 26 e7 28 23 23 29 30 28 IS 3! 22 1lOL0 52 127 139 164 138 73 87 147 179 187 100 206 68 60 60 
A 9 26 23 24 22 24 2' Z4 27 16 32 37 91 91 57 156 166 162 1J1 72 64 90 IU 12 71 161 80 46 46 
5 12 21 1. 18 2 24 12 ZO 22 12 25 50 77 77 66 171 166 152 131 87 54 42 59 88 56 150 91 34 34 

5O 2 lO 20 21 19 2d 19 16 IN12 6 PO 60 66'bb 75 183 159 120 102 86 52 23 46 89 58 141 99 25114 
0 10 21 10 16 14 02 12 :0It 4 2o 67 $9 59 a7 112 150 87 57 61 42 18 48 84 SI 125 103 24124 

a I 17 M 14 11 111$ II 10 II 6 It 71 54 54 68 155 134 77 39 39 36 27 42 51 27 91 105 24 24 

I q 1I 12 - tO 11 9 7 8 6 12 74 5151 a57 132 117 75 46 36 32 34 36 22 '7 83 106 24 24 
22 2 29 22 9 77 108 24 249 8 9 I! 30 7 6 II 76 45103 53 115 96 62 48 36 


40 1 3 6 7 6 6 8 8 7 5 3 8 77 48 48 50 97 73 46 39 30 IS 11 22 25 12 53 109 24 24 
? 5 5 4 4 5 5 b 4 4 2 5 77 4818 48 86 58 38 39 29 14 11 20 22 9 55 109 24 24 
? A 5 4 4 6 6 4 J 0 77 47139 2 78 be 35 44 36 15 13 21 18 6 50 110 24 24 

9 


* P 6 4 J3 4 1' 5 . 2 7 77 4U 48 39 76 be 31 42 36 12 13 25 21 8 50 111 24 24 
15 5 5 6 5 S S 4 2 5 77 48 4 36 74 5) 25 35 31 9 it 28 28 'it 51 111 24 24 

30 I 4 4 5 5 4. 5 4 2 . 77 4b a 31 70 48 22 30 28 d 10 28 29 13 40 112 23 23 

PER. 44 2 14.*7 11 8.8 7.3 6.3 5.5 4.4 4.4 4 (DAYS) R181*10 44 22 1.? 11 8,.a 7.-3 6.3 5.5'4.9 4.4 4 (DAYS)' 

SEASON= SPRING
(b) SEASON*1M2/5E02)WINTER 	 N POWER ' VAR P.R.E.POWER 	 VAR P.R.E. 4M/SEC2) ' N 

KM 
60 * 2 223 359 340 305 282 ?21 172 220 184 50 280 29 111111 7 '65 70 36 36 41 60 78 '56 33 15 -76 IV 142453 

14 236 373 395 375 319 256 19b 194 156 47 376 44 94 94 10 58 6q 36 33 40 56 63 "46 '33 17 ' 34 103103?6 2
 
14 220 347 430 435 358 292 210 161 126 43 309 51 81 81 10 45 49 39 38 45 '50 149 43 '41 23 52' 44 87 87 
26 204 321 381 370 351 317 211 150 117 40 315 66 62 62 6 40 S3 49 48 46 40 48 54 53 29 74 61 63141 
S38219 327 326 281 306 336 251 149 93 32 375 89 36 36 6 42 59 56 48 '36 34 46 _52 53 29 Ws8a74 51 51 

50 47 204 281 274 231 226 275 256 14$ 69 27 261 104 24 24 10 48 60 ,57 46 34 36 46 47 42 20 65 90 34 34 
a" 201 239 231 205 171 198 211 122 55 30 250 108 23 23 * 20 62 69 59 43 '29 31 41 46 31 9 59 97 28 28 
87 216 23. 201 177 154 161 163 101 56 32 220 113 23 23 * 23 70 84 70 43 "24 25 34 39 23 3 62 98 26 26 
91 219 235 183 159 151 130 111 90 70 34 211 114 23 23 - 16 72 102 86 45 22 24 34 36 18 "2 62 99 25 25 

4 103 237 243 175 147 145 lob 73 78 69 29 199 115 23 23 10 75 116 94 '42 15 20 '33 34 18 44 "69 99 25 25 

40 116 254 243 158 125 120 90 77 $1 58 21 193 117 23 23 6 72 119 95 39 It 14 427 28 17 '6 '56 98 26 26 
* 123 260 248 152 106 99 83 89 89 55 10 185 118 23 23 4 72 121 93 34 8 12 29 33 18 4 -58 98 26 26 

122 269 274 167 97 90 74 73 78 48 14 197 119 23 23 1 73 126 91 31 7 12 37 45 20 1 - 62 99 25 25 
ia 270 275 160 90 87 70 56 61 41 10 170 122 23 23 0 67 119 85 28 7 '11 36 '45 18 0I 60 99 23105 
*OS265 25$ 133 84 83 59 46 60 47 13 166 122 23 23 1 54 100 74 27 '9 '8 26 36 19 '3 47 99 25 25 

30 101 265 248 122 81 77 40 40 65 54 16 149 122 23 23 1 45 87 69 48 12 8 -21 31 21 6 43- 99 25 25 

PE.42 47I 887363 5 4. .4 4(AYSI PEID4'2,. 188 . . . . . DAYS) 

SEASON= SUMMER SEASON= AUTUMN ,
 
P0EP (42/SEC2I VAR N .P.R.E. POWER (M2/SEC2) VAR- N P.R.E.
 

60 - 13 35 46 29 41 53 39 34 37 31 14 54 A 144144 * 20 189 234 139 138 171 149 114 81 77 46 249 40 97256 
* 0 32 41 30 37 37 26 32 36 29 14 39 15 135374 . 14 146 201 128 112 143 123 94 80 71 37 131 57 74 74 

22 33 32 30 21 15 23 27 24 13 31 22 110110 5 101 172 127 91 105 84 73 89 75 30 '134 68 60 60 
7 12 28 31 23 19 18 17 18 21 12 2b 37 91 91 . 8 108 182 144 96 89 75 83 108 89 32 137 79 47 47 

5 6 8 24 27 18 16 20 20 20 21 11 24 50 77 77 * 16 114 174 146 102 84 80 91 110 83 24 162 91 34 34 
a 	 3 9 20 22 16 14 19 20 22 12 25 61 65 65 23 110 143 119 98 87 .76 70 76 56 15 115 99 26 26 

2 817 19 14 12 13 14 15 17 9 17 67 59 59 * 31 108 117 84 70 72 68 48 40 '34 12 97 103 24 2* 
2 6 14 16 14 10 10 12 11 '10 6 13 71 S454 * 36 95 98 70 48 45 51 39 30 26 10 7b 105 2424 
2 5 12 IS 13 9 8 -11 10 8 5 12 74 49128 * 31 '77 79 62 43 33 34 29 26 21 9 62 106 24 24 
a 10 12 1 8 6 8 8 4 11 7649153 27 72 70 50 35 28 27 25 25 24 13 52 108 24127 

40 1 3 a 8 7 6 5 5 5 6 3 6- 77 40 4a 29 76 70 42 28 24 .26 26 26 29 17 56 109 2. 2. 
3 7 8 7 6 5 3 4 4 2. 6' 77 51181 '* 30 77 68 41 '29 25 27 27 27 28 15 56 109 24 24 
* 7 9 8 7 5 3 3 3 1 7 77 484AN - 31 67 59 40 32 31 30 23 22 24 13 54 110 2424 

0 4 6 7 7 6 5 3 2 2 1 6 77 49157 - Z8 "54 48 37 "32 34 30 18 '16 22 13 " 46 Il1 24 24 
* 0 2 4 5 5 5 6 3 2 2 1 4 77 48 48 * 21 45 43 34 30 31 27 16 15 20 11 41 111 24 24 

30 0 1 3 4 4 4 4 3 3 3 1 3 77 4 48 17 '43 44 34 29 30 25 14 14 '19 10 37 112 23 23 

............................................ 

PER. 44 22 14.7 11 8.8 7.3 6.3 5.5 4.9 4.4 4 (DAYS) PERIOD 44 22 141.711 8.8 7.3 6.3 5.5 *.9 4.4 4 (0AY5) 
....................................................... 


Table A-2. Analysis'of thehigh f-requency variab'ility of the
 
wind at Churchill; (a) Zonal, .(b):Meridibnal.
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(a) wN~ 	 bLSASON= 5pPING 

nO 	 4. 117 PSS J27 J05 210 143 271 392 133 61 dhS 5 146146 9 Je da 112 65 38 0 38 89 58 84 3 143143 
6% 202 32? Jill25 IS,' 131 ZJ9 3be 155 e5 34b 14 124IZ4 2 37 76 69 68 31 15 2. 48 75 43 64 ZI 113113 
1. 106 401 Zdz! Ile1 h 111.[P IS. 24b 152 21 29 28 10610n 8 51 AS 64 S6 43 36 47 55 SO 24 66 39 8 88
 
87 31k 373 ej 14h 139 47 Ve 142 12U 46 d3J 42 87 67 16 62 10 8 60 56 Sb 48 44 31 15 83 65 59 5lo
 
101 331 33. 23- Inn lo.R11V 9e 123 11l S d 51 7 76 25 61 57 43 47 44 35 37 33 24 12 S0 87 3S 35
 

lb 140 399 3311ell 1 5!14J ltll134 13 97 x97 60 65 5" 33 63 50 35 36 28 25 31 31 27 14 5 96 26 26
 
170 3HI 117 d23 199 ?O 15b On 130 140 61 2Ao 71 b4 S4 40 69 b2 38 37 27 22 24 25 28 15 S4 103 21 21
 
112 32 3?0 OD ISI 24 161 8J 1[' IeJ SO 3D5 7b .8 ,. 4 Ill 56 46 43 29 21 18 19 25 11 54 107 22 &2
 
14? In' 321131. Z"- 26. 11, 7J AS 1I 32 d 7- 4b l, 47 79 68 D7 48 29 19 19 18 25 17 64 108 21 21
 
119 305 321 e94 ?9n 2 ? 14b 41 4Q 564 4 271 7846 4h .b5 76 12 61 A7 28 17 18 19 25 17 64 108 21 21 

40 101 d9D d9h dh; 281 217 131 to 7 S3 54 lSJ 7A 46 41 40 69 67 A6 ll 25 13 14 18 D 13 5S 107 21 21 
0' ?S' 267 'I'l2, ell, 6 13Ij 0 51 O1 7. 4. .6 34 A4 be 49 35 20 10 10 14 17 9 44 106 21 21 
101 2S1 23 In' 141 120 Se d4 11 55 46 17n 77 47 17 R6 b9 SO 45 31 19 11 9 10 13 a 43 105 22 Z2 
IU 241 Ron II lt 7-' 40 31 42 59 41 147 75 50 5P - 5 5 57 ll Z4 16 12 10 10 11 7 38 105 2e 2 
9- ?In 176 '11 S 0 S4 36 30 34 b3 36 le. 74 51 51 . 22 .6 4 35 18 10 10 11 10 11 7 33 105 22 22
 

34J A I4 199 Atl 44 J? el 3S 4V 13 AS 7? 5 53 . 20 41 Ad 32 16 8 10 11 10 11 6 26 103 22 22
 

RIM. 	 11 21 11.7 11 n.. 7.3 b., S.1 4.0 4.. 4 (DAYS) RtnIUO 44 22 14.7 11 8.8 7.3 6.3 5.5 .9 4.4 4 (DAYS)
 

,,L501= 'U"RR 	 SEASON= AUTUMN
o 

pnw. ?t-	 VAR . P.O.F. 'U.ER (M2/SEC2) VAR " P.R.E.
 

An 2] IS S1 ll M .7 Il bj 47 46 ?. 7U 4 144144 . 4,l 72 101 121 86 79 98 65 38 17. 2 99 1 15#I54 
14 2q 7n 90 Me 74 Ad 611 63 51 29 7V 19 116116 .37 69 97 111 84 82 100 68 30 13 3 1o9 13 1232A2 

6D 106 100 64 40 44 61 d5 Tu 31 103 43 84 84 . 5 b2 89 87 7e 77 83 60 28 21 15 82 27 107253
 
11 A' 11A Ind! OJ J1 13 5l n6 S4 21 85 71 5. h4 21 56 75 70 A0 62 57 45 37 35 20 60 45 83 63
 
27 SS 117 1101 59 J3 31 el 21 1? 1 79 97 36 36 24 50 b9 59 S4 4a 42 41 39 30 14 63 63 62 62
 

SO 14 60 AS d'- 61, J6 en 2l 10 9 6 SO 100 2e Z? 26 $1 59 S4 48 37 29 34 31 d0 9 55 78 46 46
 
I ?' 43 1. 30 ?V7 eO e3 28 17 36 109 21 21 24 57 AS 58 4l4 32 26 26 20 13 6 5 87 36 36
 
6 In 21 e7 27 ell 2b ?n 30 33 18 33 114 21 21 21 56 67 S5 40 31 28 24 IS 9 4 51 91 32 32
 
7 6 l In In 20] 2O en e8 23 11 2 117 21 2] 21 55 62 52 Jg 31 29 41 14 11 4 43 93 30 30
 

'l 1 I k4 15 17 e. 10 15 7 15 114 21 21 25 61 65 S9 46 34 27 18 15 11 2 55 93 29 29
 
4u 1 4 1? 13 11 12 IJ 14 13 It 6 14 120 20 2. 28 64 AM 63 50 33 25 IS 17 10 0 53 91 31 31
 

7 12 d I II 11 i 0 1 5 1. 122 2D 20 31 69 72 65 50 30 2J 19 15 6 2 b3 91 31 31
 
I . . 1 In n d . 7 1 4 9 1Z2 10 20 32 74 74 68 56 35 26 IS 10 2 4 56 91 31 31
 
I . 7 Id 7 6 6 ', 6 4 V 120 20 20 29 75 73 63 *7 36 28 16 7 1 5 56 90 32 32
 
1 4 1 al a I b 4 6 A 7 12U 0 20Z 26 69 65 S3 49 31 2J 12 3 1 4 l7 88 35 35
 

30 1 7 n 5 6 l, 4 b 3 b 1]9 20 20 24 53 "9 47 43 26 IS IU e 2 4 33 88 3b 35
 

.......................................... 	 ..... o.............................
 
PkP. 	44 2P 14.7 11 8.n 7.3 6.3 5. 4.9 4.4 4 (l)Ay$) PkLWD4421.71 .7363954,k4 4 (DAYS)
 

(b) bEASON= WINTER 	 bEASONz SPRING
 

POWER 	1N21SEC2) VAR N P.R.E. POWER (M2/5EC2) VAR N P.R.E.
 

60 - 7q OR S7 105 200 187 73 8 27 7 115 5 230-15 .11 19 44 52 36 33 51 57 48 42 22 50 3 137256 
.15 89 112 80 92 153 141 60 16 13 11 89 14 124272 . 1 17 41 49 39 34 44 51 46 42 23 57 21 113113 
-32 117 158 104 73 214 109 56 4a 68 39 145 2A 104104 . 8 16 38 46 41 33 32 38 37 34 19 41 39 88 88 
-29 139 172 108 87 131 118 60 47 71 44 1.2 42 87 87 . 19 36 40 38 33 29 30 27 24 13 39 65 59 59 
-22 132 151 126 137 150 114 67 5b 59 3D 135 50 77 77 . 0 2 36 31 31 33 28 26 23 20 11 38 87 35 35 

so - 120 140 139 163 164 122 90 83 66 28 167 58 68 AM 2 24 37 31 25 25 23 21 18 17 10 30 96 26 26 
. 9IIS 135 120 129 143 123 92 77 67 34 147 68 57 57 . 2 21 36 35 24 17 17 18 18 IS 10 29 103 21 21 
. 1 107 119 9S 91 122 113 73 48 47 27 lid 73 52 52 . 4 R JO 30 22 14 14 18 21 23 12 30 107 22 2? 
.17 88 95 81 91 121 101 bb 27 26 17 IDS 75 50 50 . 4 19 24 26 25 17 12 18 Z3 25 14 25 108 21 21 
.13 66 68 71 94 98 72 45 23 19 13 79 73 52 52 . 18 26 32 32 21 11 15 20 23 14 34 108 21 21 

40 411 56 52 63 81 68 42 33 23 14 9 58 72 53 S3 . 3 16 26 32 29 18 11 13 17 20 12 26 107 21 21 
. 0 .4 9 52 62 54 33 25 20 1. 8 50 72 53 53 . 1 12 20 24 22 15 10 13 15 15 A 20 lob 21 21 
. 6 30 46 45 45 41 31 25 20 16 9 45 72 53 53 . 0 10 16 20 20 is 10 10 12 I1 5 18 105 22 22 
. S32 40 4U 38 31 22 21 21 17 a 37 68 57 57 . 0 10 15 18 IS 13 8 a 9 a 4 14 105 22 22 
. 6 29 34 28 27 24 14 14 19 18 9 31 68 57 57 . 0 9 13 15 15 12 8 8 8 5 2 13 105 22 22 

30 - 7 28 30 20 19 21 12 11 16 19 11 22 67 59 59 . 1 7 1? 15 15 12 7 8 7 3 0 10 103 2Z 22 

PER. 	44 22 14.7 11 8.8 7.3 6.3 5.5 4.9 4.4 4 fOAYS) PERIO 442 471{. . . . . . DAYS)
 

SEASON= CUMMER SEASON= AUTUMN
 
POWER (m2/SEC2) VAR N P.R.E. POWER (K2/5EC2} VAR N P.A.E.
 

60 - It 25 59 53 38 45 35 JO 73 74 24 67 4 142314 . 31 17 6 29 45 41 31 21 30 23 41 1 156398
 
.630 55 A3 32 38 30 Z7 55 60 25 So 19 116116 .10 43 27 13 31 40 33 27 25 30 IS 37 13 127127
 
.127 38 28 27 32 28 24 28 39 24 35 43 88228 .12 57 40 19 30 34 25 30 41 37 16 47 27 106106
 
.316 25 d5 27 1l 36 27 19 25 18 35 71 54 54 . 7 53 46 27 30 32 29 36 46 46 23 54 44 84196
 

. I1 23 28 29 32 35 28 IT 15 10 31 87 36 36 . 4 All 48 41 37 33 31 29 32 40 24 50 62 63 63
 
so - 6 19 25 29 26 24 22 16 13 7 24 100 22 22 . 6 31 44 47 39 34 31 22 24 27 13 45 78 46 46
 

. 17 18 20 20 18 17 16 17 10 22 109 21 21 . 5 26 39 45 3B 33 29 23 22 18 7 37 87 36 36
 

. 13 12 12 16 17 16 14 16 10 16 114 21 21 . 5 26 AS 39 34 28 25 23 20 15 8 39 91 32 32
 
. 9 9 10 14 16 14 11 12 T is 117 21 21 . 7 28 33 32 31 27 21 17 14 10 5 27 93 30 30
 
. 4 7 7 6 11 II 9 8 9 5 9 119 21 21 . 5 27 32 30 31 29 20 12 9 6 2 31 93 29 29
 

40 - a 6 6 7 a 8 7 8 9 5 8 120 20 2D0 3 22 d6 24 27 26 18 10 7 5 2 21 91 31 31
 
. 3 7 8 8 7 6 7 8 8 4 9 122 20 20 . 3 19 Z2 18 20 10 6 19 31 31
2 	 20 15 7 3 91 

? 3 7 7 5 5 6 6 7 4 o 122 20 20 . 3 19 d6 22 17 15 11 a 6 . 2 18 91 31 31
 
1 2 4 5 b S 4 4 b 3 5120 20 20 . 2 19 3Z 29 18 12 9 7 5 1 0 19 90 32 32
 

1 1 3 5 4 3 3 3 3 2 4 120 20 20O 0 IS 28 26 16 11 8 8 6 2 0 17 S8 35 35
 
30 1 1 3 4 4 3 3 3 3 3 1 2 119 20 20 . 1 13 24 22 13 9 8 8 7 3 1 11 Sit 35 35
 

PER. 44 22 14.7 11 8.8 7.3 6.3 5.5 4.9 4.4 4 (DAYS) PERIOD 44 22 14.7 11 8.8 1.3 6.3 5.5 4.9 4.4 4 (DAYS)
 

Table A-3. Analysis of the high frequency variability of the
 

wind at Wallops. (a) Zonal, (b) Meridional.
 

http:PkLWD4421.71
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(a3) SEASON= WINTER 	 bEASON= SPRING R

POWER (?/'EC2) 	 VAn N p.R.E. POWE (H2/SEC2) VAR N P.R.E. 

60 
 163 	393 341,475 331 343 217 127 14 133 41 3B4 9 125125 . 7 40 01 107 96 65 40 41 41 29 13 80 7 133133
 
o151 426 A33 31P 310 291 187 12e I28 104 J5 332 48 78 78 . 11 47 84 101 82 56 41 39 40 40 22 7$ 42 83 83
 
13? 472 554 367 270 235 167 120 91 66 28 369 90 32 32 - 21 60 85 89 66 42 36 34 41 52 29 83 103 21 41 
126 49R 602 382 e54 231 189 029 AS 70 32 344 124 20 O 25 63 77 76 60 36 29 32 40 44 22 . 73 154 18 18 
134 556 663 410 27. 255 217 i44 97 97 48 409 147 20 20 24 55 65 63 55 36 26 27 31 29 12 58 207, 17 17 

80 171 656 152 45A 321 291 230 147 96 10 55 474 160 19 19 24 50 58 b7 52 36 23 22 24 20 8 53 232 17 17 
214 727 801 484 34. 293 211 129 11 70 40 494 170 19 19 27 51 57 55 '7 32 21 19 e1 19 B 51 241 17 17 
? 708 767 460 334 261 179 111 43 25 17 454 174 19 19 31 53 34 30 40 26 19 18 20 19 9 49 245 17 17 237 
236 A16 674 460 309 211 139 94 29 1 2 396 176 19 19 35 56 32 45 35 23 17 16 16 .17 9 45 246 17 17 
221 507 566b 42 266 157 005 84 32 7 5 33 177 19 19 40 61 54 43 33 22 16 14 13 L3 7 46 248 17 17 

a 201 41]455 350 207 107 85 VO 47 1 5 481 077 19 19 43 b2 5 41 	 31 20 15 13 12 11 6 46 450 17 17
 
a 176 329 346 273 1b 71 67 $ 62 19 1 23u 179 19 19 40 	 56 47 38 d9 17 14 14 1 9 5 41 250 17 17
 
A 043 253 262 206 119 S 50 69 8 179 a 47 34 05 9 37 25061 	 30 08 19 1 32 41 25 16 15 10 6 17 17107 191 195 148 89 48 38 4( 40 21 7 139 17B 19 19 A 24 J8 J5 28 20 14 14 12 u 10 7 30250 1 17
 
A 76 137 136 102 6' 40 28 30 30 19 5 89 178 19 09 a 19 32 30 24 17 .11 10 8. 6 9. 6 24 250 17 17

30 a 63 114 110 14 58 36 24 24 23 lb 4 7d 178 19 19 * 18 29 Z3 16 .10 8 7 5 . 6 17 1730 	 22 250 


PER. 44 22 14.1 11 8.8 7.3 b.3 5.5 4.9 4.4 4 (DAYS) PERIUD 44 22 14.7 11 8.8 (.3 6.3 5.5 4.9 4.4 4 (DAYS) 

= 
SEASON= 5UMNER SEASON AUTUMN
 
POWER (M2/SECe) VAR N P.R°.. POWER (M2/SEC2) 
 VAN N P.P.E. 

60 - 0 83 109 69 75 116 124 93 13 63 31 142 24 109109 a 54 100 110 103 67 32 46 66 .79 95 57 136 15 120120 .	 3 59 8 66 75 95 94 0$ 68 63 31 . 90 53 70 70 a 45 99 104 94 65 .37 43 63 74 	81 46 97 45 80 80
 
a 31 513 63 74 66 56 57 57 49 23 6b 1139 19 19 30 	 dO 93 82 64 49 45 61 68 62 33 98 '99 22 22
 
a 2 43 59 67 56 48 51 50 39 17 64 196 18 18 24 72 84 73 62 54 47 .54 55 50 28 84 148 19 19
3 19 33 '7 53 46 44 44 42 39 20 60 232 17 13 28 76 86 68 54 '47 41 42 40 39 24 75 170 19 19

50 2 14 23 32 37 3' 31 Jo 32 JJ 17 37 253 17 17 34 86 93 .8 46 39 36 36 34 34 20 7' 185 18 181 10 17 25 27 d3 19 21 27 2b le 27 263 10 16 42 91 93 68 44 33 32 .33 32 29 16 76 200 18 1$
A 15 22 23 18 16 11 22 	 21 10 25 267 lb 16 45 89 86 63 40 .26 25 28 28 .25 13 67 205 18 18 p
0 14. IA 19 16 16 1) 17 1b 7 20 468 16 16 ' 84 75 57 37 20 18 21 22 21 12 57,207 18 18 
7 13 16 16 14 14 14 13 11 5 18 26. 1616 5 84 74 b8 36 16 14 17 17 20 13 57 208 18 18

40 ao 13 17 11 11 10a 9 13 269 16 a 90 58 33 14 16 17 208 18 1815 11 5 6 5S 78 13 15 11 ,600 	 6 13 17 15 12 11 11 10 9 5 17 2b 16 136 54 89 t4 46 27 14 12 15 14 12 8 55 208 18 181 	 6 16 1 le 132 11 9 3 13 266 1606 48 '7 58 36 23 15 13 15 12 8 6 43 207 18 12 	 6 10 14 13 10 13 1) $ 6 3 12266 1 6 A 40 63 46 	 27 21 18 14 14 9 6 . 39 207 138082 1113 9 	 9 9 7 6 113263 33 53 37 18 15 12 8 5 3 18083 Lb 	 22 11 32 200
30 2 5 30 130 $ 9 $ 6 A 3 9261 1616 29 46 33 19 15 12 10 9 8 2 23 207 18 18 

0. 	 44 2? 14.7 11 8.8 7.3 6.3 5,5 4.9 4.4 4 (DAYS) PERIUD 44 22 14.7 11 8.8 7.3 6.3 5.5 4.9 4.4 4 (DAYS) 

(1S) SEASON=WINTER 	 SEASON= SPRING 
POWER M2/SEC2) 
 VAR N P.R.E. POWER (H2/SEC2] 	 VAR N P.R.E. 

KH a
60 * 16 161 213 211 208 177 140 79 28 41 33 199 9 125261 16 31 63 58 63 62 '48 .40 44 64 41 65 7 139348

* 27 160 193 163 160 152 126 73 31' 47 29 64. 52 3033 	44 163 79 79 * 12 55 54 62 41 40 49 72 42 84194* 44 155 157 103 102 113 99 6 39 	 41 a2 121 86 35 35 . 5 25 44 45 50. 52. 46, 36 29 29 17 47 103 21 21* 49 145 137 95 96 99 88 64 42 31 14 119 119 21 21 * 1 21 38 38 34 32 32 29 22 -23 15 38 154 18 1843 133 133 107 110 103 91 70 45 33 16 123 140 20 - 2 20 34 33 8 24 25 27 23 	 24 1- 35 207 17 17

50 -41 12 133 114 11 98 90 72 46 4e 5 131 152 20 20 5 23 32 29 25 23 22 24 24",23 12 35 232 17 1740 120 132 112 93 	 75 79 69 44 47 119 162 19 19 A 23 31 26 22 19 20 19 9 ­9 	 7 24 21 30 241 17 17
- 38 108 126 111 81 58 65 55 37 46 0 104 164 19 19 8 24 30 25 22 20 16 15 16 16 8 27 245 17 17* 35 89 103 99 75. 51 54 43 30 40 25 98 167 19 19 * 8 23 29 24 20 18 15 .14 14 13 7 27 246 17 17

* 28 66 73 76 62 44 43 34 25 	28 16 64 167 20 20 . 7 20 25 21 18 15 13 14 14 12 6 23 248 17 1740 19 47 55 59 51 39 34 26 21 	 20 10 54 167 19 19 6 17 20 18 16 13 11 11 13' 12 6 19 250 17 1712 	 33 43 47 41 33 28 21 19 19 0 43 168 9 9 6 15 7 16 14 11 10 10' 12 '11 S 19 250 17 17
9 23 31 34 28 24 22 19 8 17 6 32 166 19 19 6- 13 14 13 12 10 9 9 10 8 3 13 250 17 17
6 10 23 24 20 19 18 16 16 ,13 6 25 165 19 19 4 10 11 10 9 8 8' 6. 3* 11 9 12 250 17 174 13 18 17 17 18 15 10 10 10 4 19 164 20 20 2 6 9 9 8 8. a 7 	 7 6 3 10 250 17 17
30 2 11 16 15 16 19 15 8 7 8 4, 14 166 19 19 * 1 5 	 8 8 8 7 7 6 6 6 .4 8 250 17 17 

................... 
 .................................. 
 :...........................................A
 
PER. 44 22 14.7 11 8.8 7.3 6.3 5.5 4.9 4.4 4,(DAYS) PERIOD 44 2 14.7 11 8.8 7.3 683' 5.5 4.944 4 (DAYS)
 

SEASON= SUMMER SEASON. AUTUNPOWER(1025EC2) 	 VAR N P.R.E. POWER (M2/SEC2) VAR 'N P.R.E.
 

KM
60 * 10 55 49 40 55 51 41 41 38 36 20 63 24 109109 * 24 68 83 75 57 5967 63 	 75 75 34 110 15 120120


* 	 8 40 37 37 51 48 40 39 36 33 21 58, 53 70160 A 23 67 78 69' 54 49 50 48 63 .69 32 82 45 80 804 21 26 33 	 40 3$ 33 29 25 30 20 39 119 19 19 A 17 59 -69 60 .50 37 28 30 50 58 27. 66 99 22 22 
2 16 23 27 26 26 26 22 .19 23 30 196 11 63, 53 24 43 22 0915 18 18 49 44' 34 28 47 59 148 192 14 20 21 20 '19 21 21 20 18 9 26 232 17 17 9 42 $4 45 39 32 25 28 35 37 I8 50 170 19 190 130 19 20 18 16 17 137 17 16 8 21 53 17 17 9 37 44 36 36 31 24 27 31 -27 13 45 185 18 181 10 17 18 15 14 14 14 14 15 8 20 263 16 16 *. 8 33 36 31 34 28 21 25 25 18 ' 7 36 199 18 18
1 10 15 14 12 11 11 12 13 12 6 16 267 16 16 7 30 34 29 .29 23 16 '20 20 14 6 31 205 18 18 
1 12 10 8 9 10 11 13 10 s 13 268 16 16 7.1 	 6 9 29 34 7 22 137 12 14 17 15 7 27 207 I8 s7 7 9 10 10 9 $ 11 268 16 16 25 32 26 13 10 12 15 74 	 6 i8 16 25a20 181840 4 6 6 6 9 9.8 6 3 269 16 16 5 20 28 22 15 12 10 12 15 	 Ii 5 22 208'18080 	 3 6 6 0 7 $ $ 7 6 3 9268 1616 4 17- 22 17 13 12 10 12 12 10 5 18 208 18 18

3 5 S 6 6 5 5 6 266 16 16 4 15 17 13 11 11 9 9 9 9 5 15 207 18 18a 	 2 4 4 4 5 4 4 4 4 2 4 265 16 16 3 11 13 "11. 10 9 7 6 7' 7 4 12 207 18 18* o 2 4 4 3 3 3 3 3 3 2 4 263 16 16 .1 6 9 10 9 8 7 6 5. 6 3 9 208 18 18
30* 0 2 4 4 3 3 3 3 3 3 3261 16 * 1 4A 7 	 9 8 8 7 6 5- 5 3 1 207 18 18 

................................................................................................
 
PER. 44 22 14.7 11 8.8 7.3 6.3 5.5 4.9 4.4 4 (DAYS) PERIOD 44 22 14.7,11 8.8 7.3 6.3 5.5 4.9 4.4 4 (DAYS)
 

Table A-4.. 	 Analysis of the high -frequency variabilitybf the 
wind at Pt. Ikugu. !(a) Zonal, (b) Meridional. 
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ISON= 

POWER ($2/5EC21 VAR N P.10.E. POWER (M2iSEC2) VAR N P.R.E.


(a) SEASONm INTE. SPRING
 

60 102 369 464 348 251 289 302 171 99 jib OC 324 90 31 31 - 26 98 17 99 D0 58 57 97 12b 110 51 150 140 19 92 
92 36F 470 366 263 29o 308 053 113 117 57 407 126 20 20 - 29 I8 106 92 69 50 50 72 98 103 54 109 180 1. 18 
97 372 48Z 383 273 283 285 17d 132 131 57 359 154 19 IQ 33 74 $6 18 57 46 45 42 56 8b 53 91 209 18 18 

lIP 384 468 373 267 262 e54 152 120 13d 60 385 171 19 19 35 68 73 70 0l 53 46 35 39 b3 42 83 233 It 17 
127 39Q 465 363 252 246 234 139 99 113 59 335 182 18 IS 34 64 68 69 07 56 41 29 31 49 33 77 251 IT 17 

50 141 423 477 3A5 239 217 192 128 101 107 6 349 190 1$ 18 31 61 b8 67 65 52 36 27 30 49 33 73 260 17 17 
156 431 475 344 235 19b 158 l0 I1O I1 59 340 195 18 18 31 63 08 61 54 39 31 32 47 29 73 26846 17 17 

0 163 40' 428 320 227 17A 142 115 10S 107 61 329 198 10 18 30 64 70 b3 53 47 44 36 44 Jb 18 67 271 17 17 
74 II 76 273 17 17 

O 173 364 356 240 164 141 117 87 67 5b 29 d63 205 08 IA 33 63 68 59 51 42 32 24 22 20 10 58 274 lo lb 
o 170 300 38? 283 401 159 131 103 84 82 4H 283 202 18 18 31 65 69 59 49 41 31 28 26 

40 * 159 339 326 205 134 118 99 81 65 40 16 22. t09 18 18 33 59 58 45 38 32 26 21 20 I8 9 52 276 16 lb 
139 291 29Q 185 117 94 74 68 62 36 11 199 213 18 18 30 57 55 40 33 29 24 19 19 17 Q 46 281 16 06 
320 245 250 106 100 71 51 49 50 3J Ii 167 215 18 18 26 52 SZ 39 31 27 22 IS 18 16 7 46 284 16 16 

O 18 199 135 78 52 34 14 27 130 213 18 I 20 42 36 30 19 17 17 7 38 286 16 lb392 38 10 41 24 lb 
76 142 145 0Q 56 35 2Q 27 25 20 8 94 212 18 18 16 32 34 31 26 19 15 14 13 12 6 31 287 16 16 

30 * 6' 117 119 83 46 26 22 2b 23 17 6 6 214 18 18 35 J 33 29 23 16 13 12 31 10 5 26 287 16 16 

.................................................... ............................................
 
PE0. 44 22 14.7 11 8.8 7.3 6.3 5.5 4.Q 4.4 4 (DOAYS) PERIOD 44 22 14.7 11 8.8 7.3 6.3 5.5 4.9 4.4 4 (DAY$) 

= 


SASON= SUMMER SEASON AUTUMN

8
 

PONE ( 12SECZ] VAM N P.R.E. POR (M2/ EC2) IA. N P.O.E.
 

KM
 
60 2 6S 112 122 IU 95 93 94 107 85 31 150 137 14 09 14 114 155 1b7 171 149 114 006 97 78 45 168 127 19 19
 

. 6 66 102 102 92 09 87 91 Q9 15 20 005 188 17 17 15 106 149 153 16O 138 107 112 100 82 45 070 180 18 IS
 
* 9 57 82 1 70 79 80 $5 8A 68 31 110 229 1 17 - 20 104 152 156 146 117 94 107 108 90 45 14b 213 18 08 
. 7 3P 59 56 5. 66 7 75 69 64 35 81 253 17 17 - 30 117 Ib8 164 140 109 91 107 112 96 47 181 227 17 17 

SS
O q 27 40 4e 42 6b 64 53 50 Z8 65 268 lb 16 - 35 120 172 152 ll 98 93 97 93 85 45 162 238 17 17 
SO . 3 2? 31 3. 39 45 54 b2 41 38 22 51 279 16 16 - 38 110 150 119 75 77 84 75 61 56 32 123 252 17 17 

0 2 19 32 37 37 36 .0 39 32 24 06 43 ?86 16 16 . 43 96 I2 86 58 64 67 57 45 J9 22 92 264 17 17 
. 3 IP 29 33 33 30 31 32 2Q 24 12 37 288 16 16 . 89 91 72 53 5 55 48 42 37 19 87 267 16 16 
. 2 16 25 28 28 25 24 29 29 24 11 35 290 16 16 * 87 85 69 54 51 49 43 37 31 16 81 271 16 16 
* 3 17 25 28 29 24 19 23 26 22 00 28 294 16 16 - 4 82 T 69 58 49 .4 39 31 24 12 75 275 06 16 

A0 3 17 24 28 31 26 04 19 20 18 9 35 300 1616 0 46 84 79 68 52 37 34 33 29 25 13 72 278 16 16 
0 2 12 1 2 24 20 17 15 15 14 7 21 303 16 16 . 48 92 84 63 40 25 22 25 28 27 14 69 277 16 16 

1 7 13 17 15 13 14 13 II II 6 0, 304 16 16 44 76 54 33 20 16 20 26 24 11 59 277 16 16 
. 0 6 03 36 13 II 13 1 11 10 5 17 303 16 16 . 36 bb bb 42 29 20 17 19 21 19 9 47 277 16 16 
* 1 6 12 0- I 10 10 9 9 8 4 12 302 16 16 . 29 51 43 33 25 18 17 17 17 17 10 39 277 16 16
 

30* 1 II 12 00 8 7 1 7 7 3 10 304 13 16 27 46 J8 29 22 16 15 15 15 17 10 33 278 16 6
 

............... ................................. ..........
..................................... 

A Y S )
 

PER. 44 22 14.7 11 8.8 7.3 6.3 5.5 4.0 4.. 4 (DAYS) PERIOD 44 22 14.7 11 8.8 7.3 6.3 5.5 4.9 4.4 4 (D
 

=
(b) SEASON- WINTER SEASON SPRING 
PO.E0 (M2/SECd) VAR N P.R.E. POWER (M2/SEC2) VAR N P.R.E. 

60 - 1 007 158 162 156 132 I0s 117 115 114 61 168 90 31 31 0 2 31 58 66 63 70 77 78 75 63 30 95 140 19 19 
O 11 118 170 167 152 122 98 101 107 99 49 176 126 20 20 . 1 29 51 57 55 63 70 71 70 66 34 76 180 I8 18 

29 131 167 151 130 100 70 81 100 90 44 146 150 19 19 * 0 26 42 43 44 51 57 57 59 62 33 68 209 10 18 
* 43 138 148 125 107 79 60 76 95 98 53 146 165 19 19 * 2 23 36 36 38 44 45 45 46 44 23 52 233 17 17 
* 44 137 146 129 108 74 65 74 82 85 47 138 177 19 19 * 6 22 29 30 33 40 40 37 37 38 21 41 251 17 17 

50 42 133 151 13$ 110 77 71 76 77 68 32 136 185 18 18 . 6 21 27 29 33 40 38 34 36 42 25 51 260, 17 17 
* 44 129 148 135 106 77 71 73 74 59 24 138 189 18 18 . 6 22 30 33 37 40 35 29 32 39 23 44 268 17 17 
0 37 109 130 022 9b 73 68 64 60 48 20 117 192 18 18 . 6 22 32 36 36 36 32 27 29 33 19 45 271 17 17 
. 28 90 111 99 77 61 60 56 48 41 21 94 193 18 18 . 5 21 32 34 32 30 29 27 27 26 14 39 273 17 17 
* 25 78 90 74 61 50 49 48 42 39 21 84 195 18 18 - .5 20 29 28 26 27 26 24 20 17 8 32 274 16 16 

40 21 58 64 56 53 43 35 33 33 3* 19 62 200 18 18 . 6 19 25 23 22 23 23 19 15 12 6 26 276 16 16 
14 40 50 51 48 36 25 22 26 28 14 46 205 IS18 . 6 16 19 20 40 20 19 15 12 12 6 23 281 16 16 
A 30 44 47 40 32 23 21 23 23 12 45 209 1808 . 6 13 15 16 16 16 16 13 12 13 7 19 284 16 16 
5 22 33 35 30 26 22 20 19 2001 34 208 18 18 5 12 13 13 12 12 14 13 12 12 7 18 286 16 16 
5 16 23 23 21 20 17 13 12 15 10 23 205 18 18 . 3 10 12 11 9 10 12 10 9 10 6 13 287 16 16 

30 6 15 19 18 16 17 15 10 8 12 8 17 208 18 18 . 2 8 11 10 9 10 10 8 6 8 5 11 287 06 16 

.................................................... :............................................
 
PER. 44 22 14.7 11 8.8 7.3 6.3 5.5 4.9 4,4 4 (OAYSl PERIOD 44 22 14.7 11 8.8 7.3 6.3 5.5 4.9 4.4 4 (DAYS)
 

SEASON= SUMMER SEASON= AUTUMN
 
POWER t82/SEC2) VAR N P.R.E. POWER o)4/SEC2) VAR N P.R.E. 

KM 
60 41 65 76 76 69 61 52 61 67 33 88 137 3919 . 3 48 79 92 94 84 78 81 72 77 49 115 127 19 19 

o 039 65 72 66 58 SS bO 56 62 31 79 188 17 17 1 44 71 88 91 80 73 73 69 74 4 94 179 18 18 
S 033 59 oS 55 48 S 48 46 50 26 63 229 17 17 a 45 62 77 83 74 63 57 59 61 33 92 213 18 18 
* 0 26 47 54 53 52 50 44 39 3H 20 64 253 17 17 . 11 51 65 63 66 65 52 44 44 41 21 70 226 17 17 
. I 22 37 39 43 47 42 38 36 32 16 46b268 16 16 * 12 53 65 56 55 b4 43 36 36 30 13 60 234 17 17 

50 2 31 29 30 36 35 33 33 28 13 41 279 16 16 9 49 64 58 56 50 38 33 35 29 11 62 249 17 17 
S319 30 27 25 29 30 28 27 24 It 36 286 16 16 . 74461 57 53 49 37 30 31 26 11 57 261 17 17 
. 2 16 26 26 24 23 22 22 22 20 10 30 288 16 16 0 8 40 52 48 47? 44 34 29 29 25 11 50 264 16 16 
* 2 12 18 22 22 18 17 19 19 17 8 24 290 3616 0 6 34 44 42 43 38 28 26 26 24 13 47 271 16 16 
* 2 8 13 16 17 15 14 16 18 16 7 19 294 16 16 0 4 32 41 37 38 32 21 20 18 17 10 35 275 15 67 

400 0 7 11 13 14 13 12 12 14 14 7 16 299 16 16 * 5 29 36 31 31 25 15 15 14 11 6 31 278 16 16 
S 1 7 10 11 12 12 11 9 10 11 5 13 303 16 16 * 5 23 26 23 23 18 12 1. 15 12 6 23 277 06 16 

* 1 6 9 9 9 10 9 9 9 9 5 12 304 16 6 . 5 18 22 19 18 13 12 15 15 11 5 21 276 16 16 
* 0 4 7 8 8 8 8 8 8 8 4 9 303 06 16 * 3 15 20 18 16 12 11 04 13 9 4 19 277 06 16 
. 0 3 6 7 7 7 7 7 7 6 3 8 302 16 16 * 2 11 15 16 06 12 10 11 10 9 5 06 276 06 16 

30 0 3 6 7 7 7 7 7 6 6 3 8 304 16 16 I l 9 13 14 15 12 9 9 9 9 S 12 277 06 16 

.............................................
 
PER. 44 22 04.7 11 8.8 7.3 6.3 5.5 4.9 4.4 4 (DAYS) PERIOD 44 22 14.7 11 8.8 7.3 6.3 5.5 ..9 404 4 (DAYS)
 

................................................... 


Table A-5. Analysis of the high frequency variability of the
 

wind at White Sands. (a) Zonal, (b) Meridional.
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(a) 	 SEASON= WINTFH PEASON= SPRING 
POWE N IM/SEC 4) VAN N p .RF. PO4ER ($2/StC2) 	 VA R N P.R F . 

K.
 

60 	* 181 354 27a 236 0b 111 100 119 84 7 20 84J 12 120130 . 14 78 111 d9 60 50' 4$ 50 6O 76 4b, .98 8 124184 
171 336 268 210 18. 112 92 104 87 29 3 231 58 6b 66 . 16 77 100 17 61 57 48 45 54 65 37 N3 b2 64 62 

* 	 161 30F 245 175 163 111 87 96 U5 56 20 207 107 21 21 - 20 71 18 57 b5 60 45,.34 44 47 24 74 115 21 1 
155 29P 241 177 165 116 93 104 8$ 6b 31 223 147 19 19 - 46 6$ 66 46 45 48 35 25 33 33, 15 ,S. 165 39 19 
116 286 257 197 173 113 89 102 86 67 32 d2b 179 19 I9 32 71 68 49 41 35 24 22 9, 5. 10. S9 191 19 19 

50 	 139 281 277 24A ISM 130 dl 9 79 3el el. 200 10 18 3b 72 72 S2 48 28 19 40 25 24 11 $6 204 19 19 
12A 265 290 266 207 IO 80 9 73 40 12 231 215 18 IN . 37 71 70 S2 35 23 18 20 22 24. 14 55 214 18 lb 
114 242 281 269 700 96 G0 9, 70 3! 10 1 227 18 18 . 36 AS 4h 52 37, 25 21 21 20 20 12 54 220 18 18 
111 231 256 236 173 8. 71 81 60 29 6 189 231 18 1$ - 30 55 b9 S5 N4 29 22 21 17 16 9 SI 227 18 18 

o 	 124 231 22- 192 341 75 64 59 43 23 2 14 231 18 IA 22 44 h5 D9 47 27 10 18 16 14 7 47 232 18 IS 
40 	 124 224 197 147 105 61 51 41 27 16 4 143 232 38 18 17 40 54 56 42 22 13 15 I 14 7 42 234 38 1 

11o 207 168 107 74 N? 39 26 16 lb 8 120 433 18 * 17 43 5 10 in 20 13 13 14 14 7 3$ 232 38 1N 
97 177 137 77 56 41 31 lq 12 15 9 95 233 18 I 20 42 47 14 35 21 14 13 1 03 $ 40 229 1. 1. 
7A 13% 101 57 45 37 28 Id 14 lb a 79 230 18 IN 20 36 Jb 34 30 21 14 12 31 12 7 35 228 3$ 18 
54 93 60 42 37 33 25 17 14 14 7 56 225 18 1$ 1 ZS 4. 24 23 17 11 9 10 II 6 23 426 34 18 

30 43 74 56 36 34 31 243 6 13 IJ 7 43 221 1S I1 11 20 21 21 19 35 10 " 9 9 S 19 Z24 Il 1. 

......................................................
............................................. 
PER. 44 2P 14.7 11 8.8 7.3 6.3 5.% 4.9 4.4 4 (DAYS) PERIOD 44 22 14.7 11 6.8 t.3 6.3 5.5 4.9 4.4 4 (0Y5) 

SEASON. SUMMER bEASONm AUTUMN
 
POWER (42/SECZ) VAR N P.R.. POWER (M21SEC2) VARN PW.E.
 

60 23 32 86 112 99 9' 122 119 87 76 44 13 18 109204 . 34 115 97 73 67 35 34 102 122 63 17 122 24 109244 
11 4S 89 JOS 94 91 120Il1 79 63 35 120 68 54 54 - 41 120 101 68 b3 42 34 78 92 55 21 H9 58 661Sb 
1 50 93 100 78 77 101 101 76 55 25 10b 136 20 20 a 44 116 102 66 b2 51 41 5b 62 48 24 100 94 2$ 28 
6 51 91 96 67 56 76 84 75 70 37 93 179 0919 - 40 101 96 70 61 48 4$ b8 59 .9 25 92 125 20 20 
13 53 74 74 60 52 59 61 "59 74 45 106 199 19 19 - 41 91 92 68 b3 42 39 46 47 44 24 06 156 20 0 

50 10 33 44 47 44 40 42 4. 43 4$ 28 4b 213 18 18 - 42 85 87 b4 49 41 33 33 31 J4 18, 71 177, 19 19 
4 17 27 33 30 27 30 J5 35 31 15 41 224 18 In 42 76 78 62 6 35 27 27 26 21 11 67 ir4 19 19
3 14 23 2A 24 2 27 48 27 26 14 33 231 18I1 3- "6 70 57 37 27 24 24 24 20 9 55 191 19 19 
3 15 23 25 2b d6 27 Z4 21 20 11 26 235 18 3$ 3 62 69 53 J 24 25 22 20 19 10 52 200 19 19 
4 18 26 27 29 30 30 Zb 21 It B 39 237 1. 18 34 62 72 S4 30 27 26 1$ 14 16 9 5 206 18 18 

40 4 16 23 24 25 Z0 28 24 39 It 9 29 238 18 1 * 33 57 67 16 3Z 25 23 18 14 12 6 44'211 18 18 
2 12 19 20 20 0 2' 14 16 I 10 23 238 18 I 32 tI 59 S5 34 22 17 17 15 10 4 8414 18 18 
2 9 15 19 20 17 15 14 13 I 9 20 238 18 18 28 -' 49 47 31 17 12 14 13 10 5 39 213 19 19 
1 7 32 38 20 16 04 1'. 12 14 7 18 237 3I1S aS 39 3. 40 35 44 13 33 32 12 32 7 33 213 19319 
I I0 1 IS 14 34 13 12 10 5 I 233 18 I 11 2b J2 27 18 13 9 33 11 12 7 4 212 19 19 

30 I 6 q 11 12 13 14 12 11 I0 5 13229 18 i. 9 24 30 4 16 30 '9 00 10 10 6 0 0 19 19 

........................................................ 	 ............................................ 
 .
PER. 44 22 14.7 11 8.8 7.3 6.3 5.5 4.9 4.4 4 (DAYS) PERIOD 44 22 14.7 11 8.8 7.3 6.3 5.5 4.9 4.4 4 (DaYS) ­

(b) 	 SEASON. WINTER SEASON- SPRING 
POWER (M2/SECZ, VAR N P.R.E. POWER (M2/SEC2) VAR N P.R.E. 

KH
 
60 	* 6 82 126 130 125 115 92 71 63 45 17 109 12 120120 2 26 30 37 49 39 26 27 37 45 25 49 8 124124 

1 	75 129 139 129 111 87 77 68 41 14 134 58 66 66 - 0 25 32 35 42 37 30' 34 37 36 19 46 62 60132 
a 	67 124 131 113 89 70 71 67 43 1610b 105 21ZI1 0 5 37 32 29 29 31 34 31 23 11 38 115 21 21
 

a4 63 101 98 80 65 54 58 62 52 23 90 145 19 19 3 27 37 30 23 23 24 24 23 19,- 8 . 32 165 19 19 
15 63 81 74 63 54 49 55 57 47 22 82 177 19 19 4 22 30 7 23 22 21 21 22 18 7 31 191 19 L9 

50 2e 66 74 63 53 51 47 46 46 39 19 70 198 18 18 3 8 52 21 19 20 22 24 2 11 27 204 19 19
 
* 	 22 67 74 56 47 49 47 42 41 35 16 73 193 19 19 3 20 28 24 19 16 18 22 23 26 15, 31 186 19 19 

21 68 76 55 45 47 45 41 36 26 11 61 225 18 18 3 22 33 26 19 19 21 20 18 2 13 29 220 18 18 
* 20 66 71 55 50 46 39 37 33 23 9 69 230 18 18 6 26 34 26 21 22 22 18 14 15, 9 32 227 18 18 

17 54 57 51 49 38 30 32 33 25 10 53 228 S 18 9 26 31 23 19 19 38 17 15 14 8 27 232 18 18 
40 16 45 48 44 41 29 22 24 27 25 11 47 229 18 18 8 22 27 22 19 17 15 15- 15 14 7. 25 234 18 I8 

13 37 40 35 34 28 20 19 20 21 11 39 230 18 18 6 19 26 22 19 18 14 13, 14 13, 6 24 432 18 18 
9 27 30 27 30 27 20 17 16 16 9 32 230 18 18 4 152 3 21 18 16 14 13 4 11 5 23 229 18 18 
8 23 25 21 23 23 18 14 -12 10 5 25 229 1818 * 2 10 15 16 15 13 12 II 11 9 4 16 228 18 18 
8 21 22 18 17 17 14 10 8 7 3 19 222 18 18 1 8 11 11 10 10 10 9 8 7 4 12 226 18 18 

30 9 20 21 17 15 15 12 9 7 6 3 18 218 18 18 1 7 11 9 ? 8 9 7 6 6 3 8 224 18 18 

........................................ . . .............................................."
 
PER. 44 22 14.7 11 8.8 7.3 6.3 5.5 4.9 4.4 4 (DAYS) PERIOD 44 22 14.7 11 8.8 7.3 6.3 5.5 4.9 4.4 4 (DAYS)
 

SEASON= SUMMER 	 SEASON= AUTUMN
 
POWER (M2/SEC ) VAR N P.R.E. POWER tE2/sEC2) 	 VAR _ N P.R.E. 

60 	 3 43 65 75 73 74 81 80 74 66 33 108 18 112112 '16 46 36 47 69 58 36 34 32 33 21 77 24 109109 
1 42 58 63 63 65 70 69 64 60 31 75 68 54 54 1? 38 35 45 55 46 30 35 31" 30 18 42 58 67 67 
5 37 50 51 53 54 50 48 49 50 26 67 136 20 20 . 8 33 38 40 35 32 41 44 36, 30 15 51 94 28 28 
4 20 43 47 49 47 41 41 41 37 17 55 177 19 19 * 8 38 43 36 28 31 43 45 40 33 1& $1 125 20 20 
2 21 34 40 41 39 38 40 39 29 13 45 196 19 19 a 8 37, 43 34 32 37 38 31 30 32 17 46 355 20 20 

50 	 116 31 37 35 33 32 33 35 29 13 4 212 18 18 8 34 43 37 37 40 34 23 23 28 15 47 17 . 919
 
S 18 32 34 29 27 28 29 31 26 12 37 195 19 19 8 32 43 38 33 33 27 22 23 25 13 41 159 20 20
 
2 15 27 28 23 24 27 29 26 20 10 33 231 18 * 8 30 40 34 27 25 22 23 26 25, 13 38 188 19 19
 
2 10 17 22 23 23 2. 24 20 16 8 26 235 1818 7 24 34 31 24 20 20 23 27 24 12 36 199 19 19
 

7 11 16 19 19 17 16 14 14 8 20 236 18 18 . 7 21 29 30 24 17 15 18 22. 21 10 26 205 18 18 
40 1 7 10 12 14 14 13 12 12 13 7 14 237 18 10 . 8 21 27 30 26 18 14 15 18 17 8 30 1I 1818 

1 	 6 10 12 13 14 12 010 11 6 17 237 18,18 * 8 20 24 26 22 17 15 15 17 15 7 27 214 1838 
6 9 10 10 10 9 0 8 9 5 11 237 18 18 - 4 14 19 18 14 12 13 14 16 14 7 19 Z12 19 19 
5 0 8 7 7 6 6 7 8 4 9 236 10 18 * 2 10 14 15 12 10 10 12 12 1 5 15 212 19 19 
4 7 7 6 6 6 5 6 8 4 9 231 18 IS * 2 8 32 12 30 9 30 10 9 9 .4 13 212 19 19 

30 0 3 6 6 6 6 5 5 6 7 4 6 227 1818 1 7 It 10 .9 9 LO 9 9 8 4 10 210. 19 19 

...................................... ............... :............................................ 	 ..
 
A $
 

PER. 44 22 14.7 11 8.8 7.3 6.3 5.5 4.9 4.4 4 (0 Y 1 PERIOD 44 22 14.7 11 88 7.3 6.3 5.5 4.9 4.4 4 (AYS).
 

Table A-6. Analysis of the high frequency variability.of the
 
wind at Kennedy. (a) Zonal, (b) Neridional.
 

http:variability.of
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(a) 	 SEASON= WINTER bEASON= SPRING
 

PO.ER (Mg/SEC2) VAR N P.R.E. PO.ER (W/SEC21 VAR N PoR.E.
 

KH
 
60 -11 251 364 280 272 25 167 149 A3 102 84 282 7 139311 .15 66 db 62 49 49 49 65 66 40 13 79 7 139139 

. 8 261 335 266 279 240 155 139 103 119 91 260 21 1142800 18 68 84 bl 52 49 41 53 59 41 15 78 25 103103 
-44 261 295 e71 30. 235 147 123 94 134 103 29Y 60 06 665 22 61 69 64 54 47 34 42 48 37 15 68 80 44 44
 
.64 236 255 268 309 241 150 82 47 110 91 261 85 39 39 21 49 Db 2 b3 42 31 38 l 31 12 59 119 22 22
 
59 197 20S 225 277 235 156 74 39 89 69 218 100 23 23 .18 45 h8 SR 5e 36 23 27 33 30 14 5D 140 22 22
 

60 45 171 183 197 e43 233 180 .6 65 100 62 .217 111 23 23 -20 48 b6 .5 51 31 17 20 26 29 16 54 146 22 22
 
57 190 197 19. 220 a19 18Z 101 74 104,'60 231 115 23 23 23 bO 68 71 11 29 1? 18 21 27 17 58 150 22 22
 
93 23q Z24 196 194 172 145 80 63 89 53 21H 116 23 23 .23 43 62 71 bO 30 23 20 18 Z3 15 54 152 21 21
 
122 272 238 178 146 113 106 83 6? 73 43 211 117 22 22 .19 32 49 62 48 33 26 21 16 17 11 50 156 Z1 el
 
123 266 229 141 93 73 79 76 68 67 35 177 118 22 22 .16 26 37 DO 44 32 24 19 13 11 7 37 160 21 21
 

40 ]11 233 196 102 56 49 58 68 71 61 27 149 119 22 22 .14 24 33 43 40 30 22 16 10 8 5 34 162 21 21
 
94 IRA 152 76 43 36 40 S!, 66 53 21 118 117 23 23 . 1 23 33 41 36 27 21 15 9 8 5 '33 161 ?1 21
 
70 139 113 65 42 29 28 39 51 43 16 dd 116 23 41 11 23 Jd 38 31 21 18 13 8 1 4 29 161 21 21
 
51 107 94 63 43 27 el dt J7 31 11 IV 116 23 23 .11 Z3 29 34 26 16 14 11 7 5 2 4S 161 21 21
 
43 94 84 S6 4Z 28 15 16 26 21 6 6e 116 23 23 .11 22 46 29 43 13 11 9 6 4 2 22 160 21 21
 

30 40 89 7A 51 4U 30 13 10 AS 17 5 49 116 23 23 . 9 21 e5 26 el1]1 9 7 5 4 2 17 160 21 21
 

PER. 	 44 2? 14.7 11 8.8 7.3 6.3 5.b 4.9 4.4 4 (DAYS) PLR]UD 44 22 14.7 11 8.8 7.3 6.3 5.b 4.9 4.4 4 (DAYS)
 

SEASON= SUMMER 	 bEASON= AUTUMN
 

60 -35 40 83 100 1.5 17V 126 93 81 71 36 127 15 1293a4 31 143 157 93 58 64 69 65 73 69 32 117 11 154513
 
.2q 39 7A 86 129 Ib4 119 Ob 76 7J 38 130 35 91 91 29 145 167 101 59, 57 57 60 73 65 27 lei 47 19 79
 
. P 33 62 62 70 90 82 0. 63 63 33 81 96 26 26 18 128 171 116 73 S7 39 44 b. 53 18 108 87 36 36
 
. 23 44 SU 43 39 40 *1 43 44 Z4 9u 136 21 21 12 106 161 126 86 60 27 27 4b 38 IL 97 116 Z2 22
 
. 3 17 33 4Z 3b l 100 50 27
28 28 ZT 15 e9 1q O 199 17 62 ISOI 126 78 21 IS 35 7 90 135 21 21
 

O ' 14 24 AS 29 AV 27 e4 d0 Z 12 3Z 168 19 19 21 97 144 111 60 35 17 14 44 3 10 so ISO 20 20
 
. 413 19 2U 23 25 24 21 18 It 9 27 187 19 19 20 84 11b 82 41 24 16 14 19 24 14 "4 159 20 20
 
. 4 1? 16 IN 19 20 19 It 16 13 7 21 190 19 19 17 65 84 59 29 18 17 Ib 18 22 13 47 161 20 20
 
. 3 10 1 17 18 18 18 19 16, 14 6 21 193 19 19 14 50 61 44 24 17 IS 16 16 20 12 41 163 20 20
 
. 2 10 15 17 17 16 18 19 15 13 7 21 194 19 19 13 37 4d 33 41 16 1b 15 15 19 12 33 166 20 20
 

40 3 1n IS 17 lb 14 15 15 12 11 7 20 195 19 19 11 48 31 26 17 12 12 13 14 17 10 25 165 20 20
 
? P 13 14 14 12 11 9 a 9 5 14 194 19 19 9 24 29 Z4 17 12 11 12 Id 13 7 24 166 Z0 ZU
 
1 10l 11 10 9 8 1 6 7 5 10 189 20 e0 7 23 49 el15l 13 12 11 10 10 5 22 166 20 20
 
0 S 10 i. a 7 . 6 7 10 LU81 20 20 5 21 xT 18 13 13 le 11 . a 5 20 166 20 20
 
0 4 8 10 it U 7 D 5 5 3 9 173 20 20 4 16 21 14 11 11 11 10 8 a 5 16 165 19 87
 

30 0 4 A l0 9 a 8 6 5 b 2 a ITO 20 20 3 13 18 13 10 10 9 9 6 9 5 13 165 Z0 20
 

PEP. 	44 22 14.7 11 8.6 T,3 6.3 5.D 4,9 4.4. 4 (DAYS) Plk[UD 44 22 14.7 11 8.8 1.3 6.3 5.5 4.9 4.4 4 (DAYS)
 

(b) 	SEASONz .INTER SEASON= SPRING
 

POWEP (M2/SEC2) VAR N P*R*E. FO ER (M2/SEC2) VAR N P.R.E°
 

60 - 9 9S 138 67 27 35 41 65 93 8$ 38 84 7 144366 .17 24 40 48 59 57 50 45 49 48 22 64 17 137306 
. 4 87 123 72 39 43 58 8D 99 74 F8 101 21 109109 -12 21 41 48 ,49 43 42 40 42 42 20 SO 25 103103 
. 7 70 94 73 52 S7 BIl IDO 100 60 21 104 59 68179' . 2 21 39 41. 32 29 34 32 29 30 26 41 79 45 45 
.10 52 71 64 49 53 69 59 93 58 27 93 84 40 40 . 3 23 33 30 26 28 28 23 21 23 13 34 119 22 22 
. 5 31 SS 59 48 44 49 63 60 49 27 61 98 26 26 A 4 21 31 31 28 25 19 15 I7 21 12 30 140 .22 22 

.90 - 3 29 51 60 53 45 49 56 45 J5 19 65 108 23 23 . 3 18 31 34 28 21 16 14 14 15 a Z9 146 22 22 
. 7 31 50 69 50 42 47 49 39 31 16 59 111 a3 23 . 4 16 27 30 25 17 15 14 12 11 5 24 150 2Z 22 
11 34 37 37 54 111 16 10I. 52 55 42 38 36 20 23 23 . S 14 20 24 21 14 15 14 5 20 ISE 21 21
 

*13 42 50 47 37 30 29 30 37 43 23 56 113 23 23 . 4 13 17 19 19 16 15 16 15 10 4 22 156 21 21
 
-11 37 39 33 30 30 29 32 37 36 IS 46 116 23 23 . 3 11 16 16 16 14 14 14 13 10 4, 18 160 21 21
 

40 - 7 29 32 27 25 26 28 31 30 22 10 37 117 23 23 . 2 -9 13 15 14 .22 10 11 11 9 4 15 162 21 21
 
6 23 29 27 20 17 20 24 23 16 7 28 116 23 ?3 . 1 7 10 12 13 20 a 9 10 B 3 13 161 21 21
 

. 51I 22 21 16 14 16 19 20 15 7 23 114 23 23 1 6 8 9 10 a a 9 9 a 3 10 160 21 21
 

. 4 13 14 14 15 16 17 11 16 14 7 21 112 23 23 . 1 4 7 9 a 6 7 8 a 7 3 10 161 21 21
 

. 2 10 IZ 11 12 15 14 LI 10 9 5 14 113 23 23 . 1 4 7 8 6 S 6 7 5 5 2 7 160 21 21
 
30 - 1 9 12 10 10 12 11 a 7 6 3 10 113 23 23 . 1 4 7 7 5 5 6 6 4 3 2 6 160 21 21
 

PER. 	 42 471 . . . , . . (DAYS) PERIOD 44 22 14.7 11 8.8 7.3 6.3 5.5 4.9 4.4 4 (DAYS)
 

SEASON= SUMMER SEASON= AUTUMN
 
PO.EP (H2/SEC2' VAR N P.R.E. PO4ER ("Z/SEC2) VAR N pR.E°
 

60 - S 17 53 64 53 36 28 50 66 72 42 61 15 125125 . 7 20 36 33 29 35 36 36 46 59 "35 4B 11 12*124 
- 1 19 47 56 51 39 32 46 60 72 44 67 35 88163 . 5 24 37 31 28 36 35 34 47 65 39 50 47 79 79 
.322 37 44 42 36 34 38 47 59 35 55 96 26 26 •. 0 28 36" 30 28 36 36 33 47 63 36 55 87 36 36 
.222 32 35 31 30 31 28 30 34 29 3d 135 21ZI21 3 27 34 33 .31 31 31 34 42 45 24 44 118 22 2 
.218 26 27 28 28 26 22 19 21 IZ 31 158 20 20 . 27 38 38 31 24 Z4 32 35 31 15 4L 135 21 21 

50 - 012 17 21 25 2S 24 21 17 17 10 26 168 19 19 . 25 36 35 27 20 19 26 29 25 12 38 150 20 Z0 
1 13 16 20 21 22 20 16 15 8 2Z 187 19 19 4 R3 30 2S 20 16 15 19 21- 19 10 26 159 20 20 
8 12 13 14 16 16 15 15 14 7 17 190 19 19 . 3 20 28 22 17 13 12 15 16 15 8 22 161 is 82 

1 12 11 12 12 10 11 12 14 7 16 193 19 19 . 18 26 23 18 12 12 16 16 12 5 24 163 20 20 
0 6 10 10 IL 10 9 9 9 11 6 12 19* 19 19 . 1 15 23 21 "15 20 10 15 17 12 4 20 166 ZO 20 

40 a 5 9 9 9 9 9 8 7 7 4 l0 195 19 19 * 2 12 IS 16 12 8 8 14 17 11 4 17 165 20 20 
0 S a 8 7 7 8 7 7 6 3 9 194 19 19 . 1 9 13 13 11 8 8 12 15 10 1 3 14 166 20 20 
a 3 6 6 6 6 6 6 6 5 2 7 189 20 20 . 0 6 11 IZ 10 8 8 10 11 9 * 12 166 20 20 
0 2 4 5 5 5 5 h 5 4 2 5 181 20 20 '• 1 5 9 10 9 a 7 7 8 8 4 10 166 20 20 
0 2 4 4 4 4 4 4 3 3 2 4 173 20 20 • 1 3 6 7 7 6 6 6 7 7 3 8 16S 20 20 

30 0 4 5 4 3 3 3 3 2 1 3 170 20 20 1 2 5 6 6 5 5 5 6 6 3 5 165 20 20 

:..1...........;:;;.:.:.:............. 	 ..............................................
 
PER. 	442-471 . . . . . . (DAYS) PERIOD 44 22 14.7 11 8.8 7.3 6.3 5.5 4.9 4.4 4 [DAYS)
 

Table A-7. Analysis of the high frequency variability of the
 
wind at Hawaii. (a) Zonal, (b) Meridional.
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(a) 	 SEASON= hjNTfn SEASON=SPROINGVA N 
'OWEM 	1.?1/EZ) VA. N PR.E* PO.FR fM2/StC2) VAR . PR°E.
 

KM -

O * 30 79 9? 84 77 6,bb 13 72 62 33 9b 13 12212? . 24 104 133 63 15 16 15, 15 14 21 16 59 20 116253
 

* 	 31 7A 89 77 71 62 65 91 54 7b 44 10 5 66150 *17 7 134 68 16 17 20 21 15 22 17 63 52 79231 

31 76 19 74 64 AS 83 131 95 8$ 52 L1 14 2U 89 31 92 134 73 21- 20 28 27 16 20 16 64 116 20 89 
3? 73 300 a 5 TO0 01: 90 72 3A 12e 149 22 22 . 16 97 130 71 27 23 28 -26 IS 15 II 64 145 22111 
34 65 80 42 '9 7 107 111 77 5 2P 112 160 21 21 . 22 9$ 121 68 31 23 25 24 17 13 7 63 162 20 89 

50 	 31 5 7H 78 6. 66 86 9. 71 6J 25 lO 166 21 el - 22 89 112 69 33 24 24 22 16 13 18 60 167 21 el 

27 SW T. 70 S6 51 56 61 72 63 29 86 167 21 2) 17 75 105 73 34 23 24 20 14 15 10 58 168 21 21 
2. SA 79 66 46 .1 43 51 66 71 37 8$ 368 21 21 . 15 63 92 68 33 22 24 22 1?- 18 10 54 168 21 23 
33 42 71 61 4e 42 40 3V 48 60 32 74 169 21 23 * 14 52 74 54 27 21 22 22 19 17 9 50 170 21 21 
7 32 50 46 41 47 41 29 32 38 20 46 169 21 23 9 40 57 40 21 18 18 19 18 16 8 33 170 19 85 

40 	 P 31 43 36 31 45 37 26 25 28 16 5 170 21 23 . 6 29 44 36 23 17 27 19 17 16 8 33 169 21 21 
7 27 37 3? 31 34 3u 3 22 2J 13 3b 17121 23 . 3 41 44 29 16 15 16 1635 7 .31 170 21 21 

'? :0 	26 2$ 2 e5 1 343173 . 4 21 40 46 31 1S 12 13 14 13 6 33 170 21 21 
2 33 20 21 2 e3 22 43 3q Ib 8 23 170 el 21 3 18 40 33 24 36 15 14 14 12 6 24 170 212 
0 33 21 23 39 37 37 37 14 32 6 41 170 21 33 13 20 2317 16 17 17' 13 10 6 22 170 23 23 

30 4 0 3) 21 23 3$ It 3 34 13 32 6 19 370 21 23 2 11 1 715 15 16 16 12 10 5 36 171 23 23 

e% 20 2$ ZI I1 21 23 

..................................................................................................
 

PEW. 44 22 34.7 11 k.4 7.3 6.3 5.b 4.9 4.4 4 (nAYS) PERIOD 44 22 14.7 11 8.8 7.3 6.3 5.5 4.9 4.4 4 (DAYS)
 

bEASON= SUMM s SEASON= AUTUMN
 
POWEP (M21SEC21) VA N P..E. POWER (2/SEC2) VAR N P.R.E.
 

KM 
60 - 20 91 111 115 94 6' 35 3 46 51 22 8b i 119119 4 35 60 59 61 60 48 37 41 -67 AT .69 8 129129 

S31 94134312 $0 SS 37 3b 650 53 24 104 60 64 64 8 53 78 68 58 58 49 34 38 66 46 74 48 77 77 
S30 91 I04 98 8' S 40 4Z S4 2 24 100 324 22 22 27 90 116 07 63 61 51 34 38 60 39 97 330 22 22 

A 77 S3 Iso 12 137 2741 77 90 57 42 44 8 22 07 22 22 36 93 67 64 49 33 36 46 333 150 21 21 
S 39 72 92 102 81 54 38 J1 47 49 25 9 159 21 21 36 109 1JO 85 60 55 40 30 32 33 I8 80 173 20 20 

S 3A 77 102 107 81 56 33 2? 37 4$ 28 92 165 21 Z1 34 300 116 79 58 49 37 34 34 31 15 88 184 20 20 
* 37 7$ 98 96 84 03 38 27 33 42 25 89 370 23 Z3 29 87 99 69 57 47 35 33" 35 32 16 80 189 20 20 

34 7 RA 70 7n 63 38 JO 33 39 23 85 72 23 2 21 66 7$ 54 47 41 30 27 28 29 15 59 189 20 20 
31 74 81 67 6? $6 33 26 27 33 20 72 173 21 23 15 49 59 46 41 35 27 23 22 23 13 48 190 20 20 

4 30 6R 72 63 .5 52 29 24 22 d 13 67 176 21 el 13 43 53 46 43 33 25 21 18' 19 ii' 45 190 20 20 
40 	- 25 55 59 56 5 46 31 27 21 11 9 56 177 21 4 11 37 47 44 42 34 27 20 14- 17 11 44 190 '20 20 

22 46 54 56 9 34 26 23 20 19 9 52 178 21 21 8 26 35 38 39 34 28 20 13 37 11 37 190 20 20 
. 19 43 52 54 40 22 14 15 18 19 9 46 180 2121 * 5 17 24 30 32 27 25 22 17 18 11 33 190 20 20 

14 34 46 46 32 35 30 3 3 16 8 31181 2121 3 15 23 25 23 21 24 23 18 16 9 27 190 20 20 
S025 37 0 2. 32 33 3230 1 6 32 181 21 ZI 3 5 24 23 17 16 20 20 3614 8 24 189 20 20 

30 6 20 32 36 24 1 12 32 9 10 6 13 1RI 21 21 3 14 ?4 22 15 14 17 17 15 14 8 20 189 20 20 

............................................
 

PER. 44 2? 14.7 1 8.8 7.3 6.3 6.6 4.9 4.4 4 (DAYS) PE 100 44 22 34.7 11 8.8 ?.3-6.3-5.5 4.9 4.4 4 (DAYS)
 
............................................ 


(b) 	SEASON= VINTER SEASON= SPRING
 
POWER 	(M2SEC21 VAR N P.R.E. POWER (M2/5EC21 VAR N P.R.E. 

3MR
 
60 8 3881 93 83 62 55 66 62 39 
 13 9b 13 12122 . 3 28 33 31 31 3 40 34 29 31 15 49 20 117117
 

* 5 	 38 79 85 72 55 46 49 48 39 18 66 57 69 69 . 3 23 31 30 27 28 '34 30 28 29 '14 37 52 73 73 
* 239 79 72 54 47 37 34 37 42 23 63 114 23 23 416 26 26 20 '20"24 242 5 26 13 32 116 23 23 
* 3 	 35 69 58 45 45 40 42 43 41 21 66 149 20 91 . 4 14 20 19 18 20 20- 18 20 23 12 25 145 22 22 

. 0R 50 41 3 42 45S 45 37 28 13 49 160 21 21 * 3 11 15 17 20- 22 18 15 18 20 11 23 162 21 21 

50 327 4 32 26 35 39 34 24 17 8 41 166 21 21 * 2 8 14 2 2220 16 14 1S 0 11 24 167 21 21 
S425 39 29 20 25 27 21 18 14 7 30 166 21 21 * 2 8 14 20 19 15 12 13 17 19 I1 20 168 21 21 

3 18 29 25 17 19 20 17 17 19 10 26 167 2121 3 10 14" 17 17 13 12 14 17 17 30 20 168 21 21 
1 31 18 20 18 19 18 15 16 22 14 26 167 21 21 3 11 13 14 15 13 12 14 16 14' 7 18 170 21 21 

9 32 	 1 3? 30 36 3 3 17 11 38369 21 * 3 9 12 13 14 14 13 1212 11 6 16 170 21 21 

12 Is 13 2 13 100 I 13 34 12 31 8 169 21 1 7 11 14 14 13 11 10 6 16 169 21 21 
a 7 13 14 12 11 11 1 11 I 7 15 168 I 21 1 6 10 12 11 11 11 9" 9 9 5 13 170 21 21 

a 5 13 13 It 10 10 10 10 9 4 12 169 21 21 1 5 8 9 9 10 9 7 0 8 4 10 170 21 21 
0 4 0 13 12 10 9 9 9 8 3 13 170 2123 l '1 5 $ 8 8 8 7 6 7 7- 4 9 170 21 21 

0 4 7 9 10 9 7 7 8 8 4 10 170 2112 1 b 7 7 7 7 6 6 6 3 9 17 21 21 
30 	 0 4 7 7 7 7 6 6 8 0 4 7 168 21 21 1 4 6 6 7 7 6 6 5 5 3 6171 2121 

............................................. 
PER. 44 22 14.7 1 8.6 7.3 6.3 5.5 4.9 4.4 4 (DAYS) PERIOD 44 22 14.7 11 8.8 7.3 6.3 5.5 4.9 4;4 4 (DAYS) ­...................................................... 


= 
SEASON= SUMMER SEASON AUTUMN 
POWER (M2/SECA) VAR N P.R.E. POWER (M2/SEC2) VAR N P.R.E. 

KM 4 

60 3 61 85 68 65 63 75 48 36 '38 22 92 15 119119 0 31 53 60 53 45' 30 32 53 57 '29 66 833316 
4 48 72 68 61 65 60 43, 33 32 17 70 60 64 64 * 1 24 42 48' 44 40 30 31 47 52 26 56 47 76 78 

* 6 31 47 54 47 38 39 37 29 22 10 47 124 22 22 -0 16 27 30 29 30 28 29 35 36 18, 34 109 22 22 
6 23 30 34 3 26 29 31 25 20 10 36 150 22 22 2 15 23 24 22 22, 22 24 28 26. 12 30 150 21 21 

* 4 17 22 2b 27 Z4 23 26 26- 24 12 30 159 21 21 4 17 24 22 20 19 18 20" 24 .23 11 26173 20 20 

so 2 14 2126 24 25 22 25 28 27 13 32 165 21 21 5 20 25 22 19 18 17 18 21 19 9 26 184 20 20 
2 15 23 27 29 26 23 24 25 23 11 34 170 21 21 * 6 19 24 23. 19" 17 17 19 20' 18 8 28 189 22119 

4 18 24 24 24 21 19 18 18 17 8 27 172 21 21 4 15 20 21 19 16 16 18 19 18 8 24 189 20 20 

4 17 22 20 18 15 15 17' 16 13 6 20 173 2121 1 9 1,1 17 17- 17 17. 18 17 9 20 190 20 20 

3 15 20 17 14 12 15 20 19 14 7 23 175 21 21 0 8 13 14 16 919 16 16 17 9. 20 189 20 20 

40 3 13 16 16 13 11 14 19 17 15 7 20 177 21 21 0 8 13 15 16 19 19 17 17' 16 8 22 189. 20 20 
2 9 13 IS 13 10 13 14 13 13 7 17 178 21 21 0 8 13 14 14 16. 16 16 16 13 6 18 189 20 20 

2 6 10 12 11 10 10 10 9 11 6 13 180 21 21 1 7 11 11 11 13 12 13 13 12 6 14 180 20 20 

1 5 R 9 9 9 9 9 9 9 5 10 101 23 21 1 6 9 10 9 9 10 11 11- 1 6 12 180 20 20 

1 5 7 8 8 8 8 9 9 9 5 11 181 21 21 0 5 10 10 8 8 9 10 9 9. 5. 12 188 20 20 

30 1 4 7 7 7 7 7 8 9 9 5 9 181 21 21 0 5 9 10 8 8 9 9 30 8 4 9 186 20 20 

.............................................
 
.5- 4.9 4.4 4 '(OAYS)
 

...................................................... 


PER. 	 44 22 14.7 1! 8.8 7.3 6.3 5.5 4.9 4.4 4 (DAYS) PERIOD 44 .22 14.7 11 8.8 7.3 6.3 

Table A-8. Analysis df the high frequency vartability-of the
 
wind at Ascension.
 


