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I. INTRODUCTION

This report presents the results of a ray-trace analysis of several
glancing-incidence x-ray optical systems. The present study was carried
out under Contract No. NAS8-32115 by personnel of Montevallo Research
Associates, Montevuflo. Alabama during the period June 7, 1976 to
svgust 13, 1976, Participating in the study were Dr. J. William
Foceman, Jr. and Mr. Joseph M, Cardone. Only Mr. Cardone's time was
su)ported by the present contract. Dr. Foreman was supported separately
unc<. che NASA/ASEE Summer Fac?lty Fellowship Program at MSFC. Compu-
ter time on the Univac 1108 at MSFC was also furnished separately to
Dr. Foreman.,

The object of the present study was threefold. First, following
up on earlier workl, the y?gnetting characteristics of the $§-056 x-ray
telescope were calculated using experimental data to determine mirror
reflectivities. Second, a small Wolter Type I x-ray telescope intended
for possible use in the GOES (Geostationary Operational Environmental
Satellite) program was designed and ray traced. Finally, a ray-trace
program was developed for a Wolter-Schwarzschild x-ray telescope2

which was designed‘by members of Dr. A. B. C. Walker's group at

Stanford University.



11. VIGNETTING CHARACTERISTIC
§-056 X-RAY TELESCOPE

The 5-056 solar x-ray telescope, a paraboloicul-hyvperboloidal
Wolter Type 1 instrument designed by Mangus and Underwood>, was
used as part of the Skylab instrument package to ol tzin numerous
photographs of the sun at various soft x-ray wavelenyths. In order to
interpret the resulting photographic data, it is necessary to kuow how
the energy throughput of the system varies as a function of off-axis
viewing angle at various x-ray wavelengths, The reduction iu energy
throughput with off-axis angle (commonly referred to as vignetting)
occurs for two distinct reasons: (1) Rays entering the annular aperture
of the telescope begin to miss either the paraboloidal or the hyper=-
boloidal mirror and are interceptea by the second stop, which is
designed to intercept all rays which do not strike both mirrors. The
second stop is also designed to limit the field of view of th: tclescope
to approximately T 20 arc-minutes; (2) Owing to variation o the glancing
angles of incidence at both mirrcrs with off-axis angle. therc irs usually
a small decrease in the overall rcilcction efficiency of the tolescope
with off-axis angle.

In a previous 3tudy1, the vignetting charactericstice ¢ ¢ §-056
x-ray telescope were calculated using theoretical mirror = [ .cctivity

1

data. However, theoretical reflectivity data invaric.l: pocdict higher
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cnerpy throughout than experimental reflectivity data, It was therefore
decided to repceat the vignetting calculations using experimental reflec-
tivity data., Since the $S-056 mirrors were made from fused silica, it
would be desirable to have experimental reflectivity data over a wide
ranre of wavelengths for fused silica. However, there is no such data
of which we are aware. Consequently, it was decided in consultation
with cognizant NASA-MSFC personnel to use the data for Pyrex glass
given by Stewardson and I.Inclerv..rt:»od4 for wavelengths less than 8, 34 A
and to use the data for F-1 glass of Ershov, Brytov, and Lukirnkii5 for
wavelengths of 8.34 A and larger.

The refiectivity for a ray which strikes an x-ray telescope mirror

at a glancing angle 0 is given by the Fresnel equation,

(3
. [ k= (A=) + A= (42 N
) [(z\"‘ X + (A +x""-\)”"-]z + A=(x=1) |

where
P:L = ('Kt—l) + ‘3:- (2)
"l e _&L (3)
YTe
and

X = ..9_. , (4)



In Eq. (4), 0 is the critical angle for total external reflection.

The critical angle 0, is given by the relation

Vi
gc = (2 8-) L' (5)

where 6= 1-n and n is the real part of the index of refraction of the

mirror material., For soft x-rays, n is slightly less than unity for

all common materials, so that é is a small positive quantity (typically

on the order of 107, In Eq. (3), My is the linear absorption coefficient

of the mirror ma.crial and A is the wavelength of thc‘mcident X-rays.
Ershov, Brytov and Lukirskii giv .alues of My and § for F-1

glass for wavelengths from 8,34 A to 31.36 A, These values can be

substituted directly into Eqs. (!) through (5) to get the reflectivity R

for each given wavelength, Stewardson and Underwood, on the other

hand, give data for Pyrex glass at several wavelengths less than 8. 34 A,

and they state the experimental values of the parameters GC and y rather

than Hy ~nd 6. By use of Eqs. (3) and (¢), one can easily convert the

values of Gc and y into the correspondirg values of Hy and §:

’ = M_ (6)
/ul N



[}

where 6, in Eq. (7) is to be ¢xpressed in radians. A summary of
the values of Hy and 6 used at each wavelength is given in Table I,

The relative energy contribution from each ray which reaches
the focal plane of the telescope is R(Up) . R(UH), where R is the
Fresnel reflectivity function defined in Eq. (1) and op and 0H are the
glancing angles of incidence at the paraboloidal and hyperboloidal
mirrors, respectively, The total relative energy reaching the focal
plane at a given wavelength and at a given off-axis angle is the sum
of the products R(Op) * R(6y) for all rays which reach the focal plane.

The final results of the vignettiig compuier runs are summarized
in Table II and plotted in Fig. 1. It will be observed from Fig. 1 that
vignetting is roughly a lincar function of off-axis angle out to approxi-
mately 20 arc-minutes. Beyond this off-axis angle, the second stop
begins to :ome into play, and vignetting becomes more severe with
increasing off-axis angle.

At each off-axis angle, 36,3%0 rays were entered in the telescope
aperture. For a variety of reasons, not all of these rays actually
reached the focal plane, % The nurnber of rays actually reaching the
focal plane at s;ach off-axis angle is summarized in Table III. Since
each ray entering the aperture is assumed to have an equal relative

energy weight of unity, the data in Table III can be used to calculate

the telescope efficiency for any given case. For example, using



Tables II and III one finds that the telescope efficiency for an

off-axis angle of 5.0 arc-minutes and a wavelength of 31,36 A is
n=17,824.6/24,859 = 0,717 = 71, 7%. All efficiencies estimated in
this way are probably somewhat too high, since the ray-trace results
obtained here do not take account of x-ray scattering and absorption
due to mirror surface roughness, imperfect mirror figuring, possible

surface contamination, etc,



Table I. Values of 4y and é Used at the Various
X-Ray Wavelengths as Parameters
in the Fresnel Reflectivity Equation

A Hi

(A) b (em™})
6.6 9.95 x10~° 2.8 x10
6. 62 1.17 x107* 3.3x10°
6. 86 1.18 X 10~ 1.3 x10°
8. 34 2.60 x10™ 5.4 x 10°
9. 89 3,70 x 107 70 % 10
12,25 5.30 X 10™ 1.20 x 10*
13, 34 6.30 x 10~ 1.40 x 10*
14.56 7.30 x10~* 1.60 x 10*
15.97 8.70 x 10~ 2.20 x 10"
17.59 9.90 x 10~* 2.40 x 10"
19,45 11.50 x 10~ 3.10 x 10*
21.84 13.60 x 10~ 3.80 x10*
23. 6. 11.50 x 10~* 2.70 x 10"
24, 7¢ 14.50 x 10~ 2.50 x 10*
27, 18.70 x 10~ 3.30 x 10*
31. 30 24.20 x 107 3.70 x 10*




Table II,

Results of $S-056 Vignetting

Computer Runs

Cf-Axis Angle Wavelength | Relative Energy
(arc-minutes) (A) in Spot
6.16 379.0
6,62 1434, 9
6. 86 ! 2086.8
8. 34 15535, 1
9. 89 17335, 5
12,25 16404, 2
13, 34 16784, 6
0.0 14,56 16956, 9
15.97 16115.5
17.59 16333,1
19,45 15618.1
21,84 15405.5
23,62 15244.9
24,78 17920, 2
27.42 18142.1
31,36 19101.1
6.16 392.8
6,62 1332.5
6. 86 2089.9
8. 34 14414.3
9.89 16147, 4
12, 25 15293.5
5.0 13,34 15652. 8
14.56 | 15816, 1
15,97 15033,2
17.59 15237.6
19.45 14571.6
21, 84 14374.5
23,62 14223.5




Table II. (Continued)

Off-Axis Angle Wavelienygth Relative Energy |
(arc-minutes) (A) in Spot I
a
24,78 16721, 1 i

5,0 27.42 16929, 1

31. 36 17824.6

6,16 h 428, 9

6,62 1121,7

6,86 1663, 3

8. 34 13263,0

9. 89 15051, 2

12,25 14294, 6

13, 34 14644, 2

10. 0 14,56 14804, 8

15,97 14076.5

17.59 14272, 1

19,45 136051, 1

21,84 13469.5

23,62 13324.6

24,78 15671.2

27.42 15869, 2

31, 30 16711.1

6.16 383.5

6.62 867, 1

6. 86 1225, 1

8. 34 11649,5

9.89 13674, 1

16.0 12,25 13067.5

13,34 13413.5

14.56 13575.7

15,97 12916.4

17,59 13005, 7

19.45 12538, 4




Table II. (Continued)

I Off-Axis Angle Wavelength Relative Eneryy l
(arc-minutes) (A) in Spot !
21,84 12377.3
23,62 12237.9
16,0 24,78 14406, 5
27.42 14594, 4
31.36 }15373.,5
6.16 329.2
6.62 720.3
6.86 1002, 6
8. 34 10126.9
9.89 12332,0
12.25 11851.1
13,34 12184, 8
20.0 14,56 12343,2
15,97 11749.8
17.59 11925,9
19.45 11414, 9
21,84 11272,2
23,62 11140. 8
24,78 13125.0
27.42 13300.2
31.36 14013, 8
6.16 218.3
6.62 500, 7
6. 86 708.3
25.0 8. 34 6784.7
9. 89 8112.0
12,25 TIT2:0
13, 34 7981, 6
14,56 8084, 6 i

10



Table II. {(Coacluded)

|

Off-Axis Angle Wavclength Relative Encergy |

(arc=minutes) (A) in HSpot
15.97 7693, 5

17.59 7806, ¢

15,45 7470, 9

28 0 21.84 7376,0

23, 62 7291.5

24.7 8587, 6

27,42 8700. 8

31,36 9166, 7
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Table III. Number of Rays Actually Reaching the
Focal Plane at Each Off-Axis Angle

Off-Axis Angle No. of Rays Reaching
(arc-minutes) Focal Plane

0.0 26, 640

5.0 24, K55
10,0 23,311
16,0 21,457
20,0 19,569
25,0 | 12, 800

i3
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III, DESIGN'OF A WOLTER TYPE I X-RAY TELESCOPE
FOR Tl GOLS PROGRAM

It is tentatively planned to place an x-ray imaging system
aboard a sateliite in the GOES program to observe x-ray activity
on the sur and correlate such activity with global weather patterns
and communications disturbances. The following data were furnished
as basic design inputs for the proposed GOES x-ray imaging system:

(1) The imaging system will be a Wolter Type I
paraboloidal -hyperboloidal x-ray telescope.

(2) The maximum glancing angle of incidence on the
paraboloidal mirror will be 83 arc-minutes (this
corresponds to a short wavelength cutoff of approxi-
mately 6,15 A for a gold-coated mirror).

(3) The entire telescope assr mbly must fit in a
package approximately 30 inches long.

Using these inputs, wel chose the maximum glancing angle of incidence

on the parabpoloid, Gma to be 83 arc-minutes and the baseline

xl

focal length of the system, to be 25,0 inches. We also

fbaaeline’
chose to make the length of the paraboloidal mirror, Lp, equal to
2.0 inches, aiming toward a naraboloidal collecting area of roughly
4,0 cm®,

The basic design equations for a Wolter Type I x-ray teles~ope,

rewritten slightly from the forms given in Reference 3, are:



3
Equation of pasaboloidal mirror: f = F (22 + f’)

T T
Equation of hyperboloidal mirror: _(_'E:ﬂ - _.t_ = ] .
ot L*
™ L
f ™ x"'?'-
T+ (S
a+b = ¢
erN = ‘LBASELINE Fan (q'emsx)

P = Somn Ton (0max)
Zomn = Cf?"“" - Pz)/"P

Zomax = Tomn t+ Lr

Souns = [F(Z*ym+ F)]VL

€ = ‘cGMELINE /z. cos (“.-am.x)

x ® € [z.cos (20max) - \]

v
b o= (c=a)°

L5

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)



. L
Collecting area of paraboloid = A = T ( ==
— p ’ fm)

A ( . I8
Collecting area of hyperboloid = A = T meu - fnmu)

"?"FocM. PLANE = 2¢Cc = %PMN — ‘FEASGMNG

The geometrical meanings of the various terms are summarized
in Fig. 2. Use ot the input parameters Omax = 83 arc-minutes,
Ibaseline = 25,0 inches, and LP = 2,0 inches in Eqs. (10) through

(20) produces the following results:

P = 0,0584851950 in.
a - 12.5292425975 in.
b = 0,8570224335 in,
c = 12.5585193203 in.,
8. = 2,4219062894 in.
pmin
) = 50,1170386406 in.
pmin
= 52,1170386406 in.
pmax
p = 2.4697309276 in.
pmax
= 25,1170386406 in.
focus
AP - 0,735 in® = 4,74 cm?
A =1.99 in® = 12,84 cm®.

(:8)

(i)
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Usually the coordinates (‘ohmin' ) of the rearmost point on

z'hmin
the hyperboloidal mirror in the XZ-plane are determined by requiring
that the hyperboloid be just long enough to catch all on-axis rays

incident on the paraboloidal mirror. If this is the case, then an

incident ray parallel to the optical axis and striking the paraboloid

at (p ) will, afier rzflection from the paraboloid, strike

pmax’ zpmax

the hyperboloid at (phmin' Z ). A straightforward application of

hmin

analytic gecometry to this situation gives the result

'eHMu; = -;L(- [—6"'(?‘.-%‘0('!)"1'] ' (21)

where
A = bz- o:'-\'mtze | (22)
@ g - zb:;; (23)
"‘ = b* (24)

§ = '\"“\(F/fznkx) . (25)

The value of phmin can then be determined from the relation

= . 26
HMIN Tamin +an 26 SE)
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- found for the GOES telescope from

The values of Z . i.ind phm;

hmin
Eqs. (21) and (26) are

., = 48,2690250035 in.
hmin

Phmin - 2.2873806150 in.

The length of the hyperboloidal mirror, LH' is thus

LH - mein - thin = 1,848 in,

The results of a ray-trace program to compute the rms spot
radius in the focal plane as a function of off-axis angle are summarized
in Table IV and Fig. 3. The effective focal length of the telescope
is 25.18 inches, and the plate scale in the focal plane is 3.10 microns/
arc-second.

As a check on our ray-trace results, we have used the empirical
formula developed by VanSpeybroeck and Chaeiie'7 for the rms spot
radius in the focal plane as a function of off-axis angle. The
empirical results are plotted in Fig. 3 for comparison with our exact
ray=-trace results. There is reasonably good agreement between the
two,

We have also determined the field curvature at the paraboloid-
hyperboloid ft;cuu, using a ray-tracce program which automatically
locates the plane of best focus for any given off-axis angle. The

plane of best focus is defined to be the plane in which the rms spot



Table IV, Root-Mean-Square Spot Radius
in the Focal Plane of the GOES Telescope
as a Function of Off-Axis Angle

Off-Axis Angle RMS Spot Radius
(nrc-minutes) (arc-seconds)
0.0 0.00
2.0 0,32
4.0 0.79
6.0 1. 49
8.0 2.43
10; 0 3.62
12,0 5,05
14,0 6,67
16‘. 0 , 8. 54
18.0 10,73
20,0 13,06
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Figure 3. Root-mean-squarc spot radius in the flat focal
plane of the GOES x-ray telescope as a function
of off-axis angle.
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radius is a minimum, Table V and Fig. 4 sumi.... "ize the field
curvature results. The empirical formulas for zbcst bia z{ncal plane
given by VanSpeybroeck and Chase has also been uscd to calculate
the field curvature as a check on our ray-trace results, The
cempirical results are plotted in Fig., 4 and show good agreement with
the ray-trace results,
The rms spot radius in the surface of best focus as a function
of off-axis angle is given in Table VI, Comparison of the results in
Table VI with those in Table IV shows that the spot size in the surface
of best focus is considerably smaller than the spot size in the flat

focal plane at any fixed off-axis angle, as one would expect. The

two spot sizes are compared graphically in Fig, 5.
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Table V, Field Curvature Results at the
Paraboloid-Hyperboloid Focus of the
GOES Telescope

Off-Axis Angle zBelt Focus- AFocal Plane
(arc-minutes) (millimeters)
0.0 0. 0000
2.0 0.0038
4.0 0.0152
6.0 0,0341
8.0 0,0602
10,0 0.€939
12.0 0.1347
14,0 0.1810
16,0 0,2346
18.0 0.2988
20,0 0.3662

23
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Table VI, Root-Mcan-Square Spot Radius in the
Surface of Best Focus of the GOES Telescope
as a Function of Off-Axis Angle

Off-Axis Angle RMS Spot Radius
(arc-minutes) (arc-seconds)
0.0 0,00
2.0 0.29
4,0 0.63
6.0 1.03
8.0 1: 31
10,0 2,08
12.0 2,73
14,0 3.45
16.0 4,28
18.0 5.15
20,0 6.15
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FIGURE 5. COMPARISON OF THE SPOT SIZES IN THE FLAT FOCAL PLANE AND IN
THE SURFACE OF BEST FOCUS FOR THE GOES TELESCOPE.
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IV. RAY-TRACE ANALYSIS OF A WOLTER-SC/WARLSCHILD
X-RAY TELESCOPE

The Wolter Type I paraboloid-hyperboloid x-ray telescope, which has
found such widespread use in x-ray sstronomy up to the present rime, is
fully corrected for spherical aberration but only approximately corrected
for coma. It is possible to design an aspheric-aspheric x-ray telescope
which is complotely corrected for both spherical aberration and coma.

An aplanatic x-ray telescope of this type is called a Wolter-Schwarsschild
x-ray celeleopoz. A nested array of three Wolter-Schwarzschild (W-8)
telescopes has been designed by members of Dr. A, B, C. Walker's group at
Stanford University. Our task was to develop a ray-trace program for this
system,

Physically, a WS x-ray telescope resembles a standard Wolter Type I
telescope. However, in the W-§ telescope the two mirror surfaces are
general aspherics, rather than conic sections as in the Wolter Type I
telescope. The equations for the mirror surfaces in the W-5 telescope

A
are expressed parametrically in terms of an angle rl $

MIRROR # 1: (Analog of the parab: oid in the Wolter Type 1 system)
% = + s\'nP @7)

. . 1-&
2 = - Ql i £ sn E + \-F cos*(‘f/z) [h,'."(f/,_)-.ﬂ.] , (28) ‘

¥Q &

where

ORIGINAL PAGE IS & = ‘t‘aﬂt( fg/z) (29)
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e parz

i

H
t

where

For the

Z, = 50.

afd that

Q= § w*(f%) o)

I .. }.__"T (31)

uc'

eters 2, ’ : ' , and f are defined in Fig. 6. It will be

andrvndffto- Fig. 6 that Z, is the baseline focal length of the system,

i g e +.;‘(_"4. (32)

|
is the radius at the intersection of the two mirrors

re X, ' 5
| ; 'fZ: (Analog of thc hyperboloid in the Wolter Type 1 system)

f
' Ky = & sin p . (33)

a.,-.kmf ; (34)

e 2 s\ (f,?-) Ces (F’z.) T 3 . (35
l't{ - el [taet(h)-4] } )

\-usF

ortermost set of W-S mirrors in the Stanford telescope,

0 inches and X, ~ 7.0 inches.
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The length Ly of Mirror # 1 (vee Fig. 6) was sp'oeluod by the Stanford

group to be 10,5 inches, making Z) .- = 60.5 inches. The first job was to

determine the corresponding value of F.“. For this

computer program was set up to find the value of ‘; corresponding to the

value Z - zlm = 60.5 inches The result was i

(]
Pm_' = 8.3753315183°,

Incidentally, the miunimum valu of P is

- =
P = 7.9696103933°,

Putting F = me in Eqs. (27), (33), and (34) gives

| :1-33 = 7. 35388002 inches
X2min = 6.09112390 inches

Zomin = 41.37225999 inches.

The leng h of Mirrcr # 2 is thus

i

L

L2 L zznin = §,.62774001 inches.

! |  In crder to ray trace . e outermost set of W-S mirrors, we attempted

to fit Mirrors # 1 and # 2 with cubic spline funetionnlo in the usual way.

lbhevvr,§1t turns out that Mirror # 1 has a horizontal tangent at the point

flilreréecci:n with Mirror # 2, and this causes a singularity in the

spﬂine ttnction fit at that poirnt. We then had to back up and attempt a

sphtne ftncrion fit which leaves out an infinitesimal region of both

ml*rorr :ear their intersection point., Owing to extremely long turn-

exund tipes on the Univac 1108, we were just able to get a ray-trace

program tased on this lim:ted spline function fit completed before our

t

ime ran jout on the present contract. The results of this ray-trace

frogram sre summarized in Table VII. More work is needed to get a better
spLine EL%ction fit for the mirrors (especially Mirror # 1) and to double
check the results in Table VII. It 14 also necessary, of course, to

complete the ray trace for the other two sets of nested mirrors. Unfor-

tunately, we were not able to complete this work under the present con-
I .
T ] e
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purpose, an iterative



Table VII, Root-Mean-Square Spot Radius

in the Focnl Plane of the
Wolter-Schwarzschild X-Ray

Telescope (Outer Mirror Set)

Off-Axis Angle RMS Spot Radius

(arc-minutes) (arc-seconds)
0.0 0.033
2.0 0.311
4.0 1.075
6.0 2,309
8.0 4,013
10.0 6.221
12.0 8.829
15.0 11.861
16.0 15.421
18,0 19.305 :
20.0 23.852
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