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NOMENCLATURE

r

t

i

r,

c rotor blade chord

CT rotor thrust coefficient

O^ Rotor lag damping coefficient

I rotor blade Mapping moment of inertia

I 
rotor blade pitch moment of inertia

R rotor radius

ti time to half ampl',tude of mode (seconds)
t2 time to double amrlitude of mode (seconds)

T period of mode (seconds)

V forward speed

xA/c distance blade section aerodynamic center is aft of the
pitch axis ( fraction of chord)

xI/c	 distance blade section center of gravity is aft of the
pitch axis (fraction of chord)

blade Lock number

S	
damping ratio of a root

eigenvalue or root of a mode (dimensionless, based on the
rotor rotational speed)

/4	rotor advance ratio, forward speed divided by tip speed

90	flap natural frequency in rotating frame (per rev)

aS	blade lag rotating natural frequency (per rev)

9-	 rotor solidity ratio

w0	 natural frequency of blade pitch motion (per rev)

SI	 rotor rotational speed



ELEMENTARY APPLICATIONS OF A ROTORCRAFT

DYNAMIC STABILITY ANALYSIS

Wayne Johnson*

Ames Research Center
and

Ames Directorate
U.S. Army Air Mobility t•.&D Laboratory

SUMMARY

A number of applications of a rotorcraft aeroelastic analysis are

presented., intended to verify that the analysis encompasses the classical

sol.iitjnna of rotor dynamics, and to examine the influence of certain
features of the model. Results are given for the following topics: flapping

frequency response to pitch control; forward flight flapping stability;

pitch flap flutter and divergence; ground resonance instability; and the

flight dynamics of several representative helicopters.

INTRODUCTION

I	 I

An aeroelastic analysis has been developed for rotorcraft, applicable

to isolated rotor, rotor with wind tunnel support, and complete helicopter

dynamics. The analysis is described in reference 1. This report presents

a number of examples of the dynamic behavior calculated using this aeroelastic

model. The first purpose of these applications is to check out the

sophisticated analysis by demonstrating that it encompasses several elementary,

classical solutions in rotor dynamics. The second purpose is to examine

4	 the influence on the dynamics of some features available in the model.

RESULTS AND DISCUSSION

Flapping Frequency Response

Figures 1 to 3 present the frequency response of a three-bladed rotor

in hover to pitch control inputs. Figure l shows the coning response to

*Research Scientist, Large Scale Aerodynamics Branch.`
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collective inputn for an articulated rotor () - 1 and I- P) Figures 2. ane

3 ;how respectively the lateral anti longitudinal tip-path-plane tilt response

to lateral cyclic input for a hingeless rotor P - 1.15 and W - A) . 'Three
cases are shown; with no inflow iyna.mics, with a quaoistatic inflow dynamics

model, and with the complete inflow dynamics model. The difference between the

quasistatic and complete inflow ayna.mics mod.ele is simply that the latter includes
a first order time lae in the inflow response to rotor force perturbations (see

reference 1) The influence of the rotor inflow on both the stea ,ly and. high
frequency response can be significant, but the quasi:stati.c riodel gives nearly the 	 1q

same results as the complete inflow dynamics model (c.f. references 2 and 3).	
a

17'orwar6 Fli.rtht Fl.anDin g atabilit	
k

'11gure 4 presents a root Locus of the flapping stability of an
	

i

art .oulated rotor blade in forward flight (v 1 and X - W. The blade
motion consists of the rigid flan degree of freedom, with no shaft motion. The

analysis is for a single blade in the rotating system, including the influence

of the periodic coefficients on the dynamic stability. This result, including

the advance ratio at the stability boundary, compares well with simpler solution;

(c.f. reference, 4 and 5). The roots were calculated, using a step size of

&W - 120 in the integration of the equations of motion (over one period, for
use in the F'loquet theory analysis). This azimuth increment is really more

appropriate for a three- or four-bladed rotor; for a single blad.e at high

advance ratio a step size of & kp - 1 or 20 gives more accurate results.

PitcbZ''lap Flutter

Next consider the pitch flap flutter of an articulated rotor blade
(r7 - 1 and t- 9). The degrees of freedom involved are rigid flap and
rigid pitch motion, with the pitch bearing outboard of the flap hinge.

The following values are used for the rotor chord. (fraction of rotor radius),

pitch inertia (fraction of flapping inertia), and rotor thrust coefficient
to solidity ratio: c/'^i = 0.1, 1pP

b = 0.001 1 and CT/cr = 0.07. The
	

k'

flutter and divergence boundaries are plotted, In figures 5 to 7, as the
control system stiffness (i.e. the pitch natural frequency we, ) required.

for stability as a functLon of the ebordwise center of gravity/aerodynamic

-2-
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center offsot. .A Large enough control system stiffness or forward center
of gravity position stabi'lizen both the divergence and flutter modes.

Figure 5 presentn -the pitch/flap flutter boundaries for the hovering

articulated rotor with aerodynamic center offsets xA . 0 and .05c. This

result compares well with the classical. solutions (see reference 6).

Figure 6 shows the effe,^.t of a.ddIng the first flapwise bending mode
(with natural frequency ?.h/rev) to the analysis, for the hovering rotor

with x  w 0. Finally figure 7 shows the .influence of forward flight on

the flutter boundaries, for advance ratios ^A - 0 and ,m - 0.3 The

/y - .3 results are based on a constant coefficient approximation, using
the average of the coefficients in the rotating frame; it is better to make

this approximation in the nonrotati.ng frame however, for a rotor with

several blades

Ground Resonance

Now we shall consider some results from ground resonance investigations.

Ground resonance is a mechanical instability involving the inplane motion

of the rotor hub due to flexibility of the helicopter or wind tunnel support,

coupled with the rotor cyclic lag degrees of freedom (see reference 7).

For a specific rotor support system, the around resonance stability boundary

may be expressed in terms of the lag damping required to stabilize the motion.

Deutsch (reference 8) developed a simple criterion for the lag damping

required for stability, based on the assumption that the blade mass is

small compared with the support mass (which is almost always true).

Figure 8 presents a comparison of the ground resonance stability boundary

calculated using the dynamics analysis of reference 1, with the results of

the Deutsch criterion. The points are for two full-scale rotors on a

number of wind tunnel support configurations; the line represents exact

agreement of the two calculations. The correlation is very good.

Figure 9 presents the ground resonance stability calculated for a

hovering, four-bladed articulated. rotor in a wind tunnel. The rotor and

the support properties for this case are given in table 1. The analysis

,3-
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used the rigid flan and lag degrees of freedom for each blade, and two

longitudinal anti two lateral degrees of freedom for the hub support. The

figure shows the damping ratio of the four support modes as a function

of rotor speed, for three levels of blade lag damping (C; ). Each support

mode is stabilized at the resonance with the high frequency lag mode --

su 
port W (1 t ^s )U; and. at a higher rotor speed a degradation in stability

p
occurs due to the resonance with the low frequency lag mode -- wsupport

(i -7S ).t"X„. With low enough lag damping it is the latter resonance which

produces the ground resonance instability. In general the mode which goes

unstable in this resonance (i.e. the support mode or the lag mode) depends

on which has the least uncoupled damping. In the root locus it is the

mode nearest the imaginary axis which actually makes the excursion into

the right-half-plane as the rotor speed Is varied. In the example of figure

9, the lateral balance mode has a low level of damping (table ), so at

resonance the support mode damping decreases while there is a corresponding

Increase in the damping of the low frequency lag mode. For well damped

support modes, the ground resonance instability will occur at such low

lag damping that it is the lag mode which actually goes into the right-

half-plane (a mode involving both rotor and support motion of course).

Hel.icoFter Flight Pjnamics

The rotorcraft aeroelastic analysis of reference 1 has also been

applied to the calculation of helicopter flight dynamics. Tables 1 to 5

present typical results. Four aircraft are considered.i a small articulated

rotor helicopter (gross weight 1160 kg, rotor radius 4.0 m), a large

articulated rotor helicopter (gross weight 15200 kg, rotor radius 11.0 m).

a soft-inplane hingeless rotor helicopter (gross weight 2100 kg, rotor

radius 4.9 m), and a tandem rotor helicopter (gross weight 8600 kg, rotor

radius 7.6 m). The tables give the period. and damping for the flight

dynamics modes in hover and in forward flight at 100 knots. The basic

model has three rigid body degrees of freedom (uncoupled lateral, or longitudinal

motions) plus the rotor flapping degrees of freedom. The roots for the

basic model are compared with results using a quasistatic approximation

for the rotor flap dynamics; including the rotor lag degrees of freedom

-4-
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:including the rotor inflow perturbation (unsteady aerodynamics)r and with
results including all six rigid body degrees of freedom (coupled longitudinal

and lateral dynamics). For the soft-inplane hingeless rotor (table 4),
the results including both rotor lag and rotor torsion degrees of freedom
are also presented. For the tandem rotor helicopter (table 5), the basic
model includes the rotor inflow perturbation, since rotor-rotor interference

has an important role in the dynamics. See references 9 and 10 for discussions

of the modes represented by the eigenvaluees given in tables 2 to 5.

Generally it is concluded from the data in tables 2 to 5 that the
quasistatic approximation is very good; that the inflow perturbation has

a significant, and sometimes very important influence on the flight dynamics=

and that the assumption of separate longitudinal and lateral motions is

not usually valid, at least in terms of the eigenvalues. Rotor lag motion

and other degrees of freedom may be required in the model= this is particularly

true for the hingeless rotor, where the degrees of freedom have a large
influence on the dynamics.

CQNCLUDZNG REMARKS

A comprehensive analysis of rotorcraft aeroel,astic behavior (reference 1)

has been applied to a number of classical problems in rotor dynamics. The
results presented agree well with the solutions available in the literature.

The satisfactory treatment of the classical problems such as these is a basic
prerequisite for any analysis which is to be applied to the more complex

problems of rotorcraft dynamics. In addition, it has been possible to
examine the influence of a number of features of the analytical mode, including

the effect of inflow perturbations on rotor flap response and helicopter
flight dynamics, the characteristics of the ground %vesonance instability, and

the role of the rotor degrees of freedom in helicopter flight dynamics.

F.
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Table t o Rotor and support parameters for the ground
resonance calculations of figure go

Rotors
Radius
Number of blades
Hinge offset (% radius)
Lag frequency, 0; ( per rev)
Blade mass

Blade first moment of inertia
Blade second moment of inertia

5.3 m
4

5.9
.31
46.; kg
116 kg-m
381 kgwm?.

support.

	

natural
	

modal,	 modal.
fregt:ency	 mass	 damping

mode	 H2
	 kg
	

N/m/sec

long. balance
	

1.76
	

27000
	

36500
lat. balance	 2.16
	

11000
	

6900
long. strut
	

3.04
	

24500
	

38000
lat. strut
	

3.68
	

18000
	

36,500

I
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T t2 $i ti T t2 ti, tl

1. Basic mo(iel 12.90 3.97 -,769 11.32 9.93 .3P 1.137
2. Quasistatic rotor 12.90 4.00 .777 .913 11.35 10.00 .399 1.114

model

3. Including rotor lag 12.90 3.95 .769 •900 11.36 10.14 .3P6 1.166
motion

11.17o4. Including inflow 12.90 3.96 .893 11.12 '9.30 .403 1.238
perturbation

5. Coupled longitudinal 15.49 1.957 .7D0 .816 7.84 t1 = 1,5.34 T s
19.33
.booand lateral dynamics 2 t,.

z

z B.	 V = 100 knots

Longitudinal Wes Lateral modes
T t2 T t.,r

T tL T t1
1. Basic model 31.41 15.65 2.32 .60F1 20.30 2.46 1.552 .4

2. Qnasistatic rotor 31.42 15.;5 2.34 .619 20.31 2.07 1.558 .484
model

3. Including rotor lag 31,41 15.71 2.32 .6+10 24.01 1.92 1.563 .494
motion

4. Including inflow 32.70 14.71 2.37 . ,645 20.3' 2.03 1.-SA2 .501
c perturbation

5. Coupled longitudinal 30.6 34.39 2.26 .614 20.21 3.'91 1.562 .487
and lateral dynamics

c

0
Y.
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Table 3. Large Articulated Rotor Helicopter Flight Dynamics

T

11-30 10-r

11-27 1C - -X)

11.51 10.72

11.07 1-9.32

9.34 7.83 
^	 i

-3F'1 2-2'?

.379 2.13

*436 2.67

.371 2.35

sf

Lateral roves

T	 t.,

3-57 1. 

3.60 1.11?

1.143

3.91 1.326

3.63 1.166

.625 5.54

.610 5 .57

-586 6.5P.

T	 4A.43
tj = 3.3F
z

A. Hover

Longitudinal modes	 Lateral. modes

1. Basic model
2. Qum istatic rotor

model

3. Including rotor lag
motion

4. Including inflow
i)erturbation

5- Coupled longitudinal
and lateral dynamics

B. V = 100 knots

1. Basic model
2. Quasistatic -rotor

model
3. Including rotor lag

notion

4. Including inflow
perturbation

5. Coupled longitudinal
and lateral dynamics

T
t2

19-93 5.43 .535 1.544

19.P,6 5.47 .591 1.549

19-90 5.38 .522 1.519

19.92 5.41 1 1.074 1-54?

23.33 4.17 .564 1.372

Longitudinal nodes
T

t2
t
--	 I

t,
Y

33.80 5.37 .373 2.72
33.52 5-40 .4o8 4.75

34-36 5.37 .370 2.7G

34-78 5-23 .471

40.71 5.69 T 19.32
t, .471
T



Table 4. Soft-Inplane Hingeless .Rotor Helicopter Flight Mi ynaxeics

A. Hover

0

1. Basic model
2. Qtistatic rotor

model
3. Including rotor lag

motion
4. Including rotor lag

and torsion motion
5. T_nclu Oing inflow

perturbation
6. Coupled longitudinal

and lateral dynamics

B.	 V = I W knots

1. Basic mod l
2. Quasistatic rotor

model
3. Including rotor lag

motion.
4. Including rotor lag

and torsion motion
5. Including inflow

perturbat3'-)n
6. Coupled longitudinal

and lateral dynamics

Longitudinal modes

T t2 tz ti

17.ok 4.21 .639 1.393
17.o3 4.23 .W 1.398

17.o6 4.20 .63A 1.336

17.07 3.65 .783 2.30

17.95 6.28 1.OP7 1.GR7

23.51 3.65 .661 1.726

Longitudinal modes
T t1 T trF

63.19 19.16 3.313 .777

63.23 19.09 3.40 .79.+

63.49 19.28 3.37 .776

36.30 15.34L 3...02 1.128

70.92 18.60 3.33

254.3 t2 = 13• P-9 13 .x}2 .863

Lateral m gt ees
T	 t	 t	 t2

5. ,99	 3-A .339. 1.2

6.o3	 3.79 .34o 1.233

5.99	 3.(P .339 1.232

S.33	 t2 = 16. .374 •939

7.1`"	 3.44 .233 1 .3 ,6

1.05	 2.F4 .354 1.609

Lateral modes

T tiy t,ifi t2

1 . 359 .785 .611 7.62

1.8561 .781 .6V- 7.65

1.861 .702 .6o 7.50

1.785 .724 T = 21.65
t3. 16.'4

1.910 .322
2

.-s69 Pt.31s

1.P,52 .7?3 .54,q = 9.78
Z

.	 4



f	 +.

J

Lateral modes

T t2

10.49 6.86

10.54 6. PA
•713
	

9.17

.716
	

9.20

F'

e

Table 5• Tandem Rotor Helicopter Flight Dynamics

A.	 Hover

Longitudinal modes Lateral modes

T t2 t, T t2 tl t1

1. Basic model 25.04 27.37 .675 1.155 12.78 4.75 .759 15.01

2. Quasistatic rotor 25.06 27.62 .691 1.172 12.74 4.82 .766 15.02
model

3. Including rotor lag 24.99 27.10 .671 1.152 12.78 4.70 .750 14.F9
motion

4. Without inflow 26.15 51.25 .463 .720 12.78 4.75 .759 14.37
perturbation

5. Coupled longitudinal 25.06 11.97 .640 1.155 12.78 4.72 .776 8.75
and lateral dynamics

rr
1 B. V = 50 knots

Longitudinal modes

T

1. Basic model	 26.40	 4.00	 ,322	 3.15

2. Quasistatic rotor	 26.31	 4.00	 .341	 3.16
model

3.	 Including rotor lag 	 26.17	 4.00 .331 3.13	 10.24	 5.3R .766 10.46
motion

4.	 Without inflow	 27.43	 98_x.., .4 4.7 .711	 10.47	 6.83 .714 9.31
perturbation

5.	 Coupled longitudinal 	 29 .13	 3.83 .322 3.19	 10.62	 5.23 .711 4.23
v^ ►^ and lateral dynamics

ITS
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Table 5. Concluded.

C.	 V = 100 knots

Longitudinal modes Lateral modes
`

1 Ir2 4'1 41 1 " t1 t^

1. Basic model 34.05 2.35 .267 3.04 15.07 ?.li 1.295 1.295

2. Quas static rotor 33.94 2.84 .284 3.05 15.15 6.36 1.130 1.422
model

3. Including rotor lag 33.75 2.82 .271 3.01 11.12 3.88 .937 4.97
motion

4. Without inflow 25.48 21.73 .346 1.071 15.05 7.15 1.298 1.29'
perturbation

5. Coupled longitudinal 12.91 2.10 .266 3.35 48.62 =:.36 T = 15.94
and lateral dynamics tt = 1.001^ z
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Figure 1. Magnitude and. phase of coning response to collective inputs
((3. /a ) for a hovering, three-bladed articulated rotor
(flap frequency Y = 1.0), showing the influence of the
inflow dynamics.
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1
No inflow dynamics
Ouasistatic inflow
With inflow dynamics

,01

0

de Pis

01C
deg

—180
.01 1	 1.0	 10

^/SZ

Figure 2. Magnitude and phase of lateral tip-path-plane tilt
response to lateral control plane inputs ( {ors /arc.)
for a hovering, three-bladed hingeless rotor (flap
frequency	 J = 1.15), showing the influence of the
inflow dynamics:
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.01

0

QIC
81C

deg

- i an

1.0

s
IC

.f

--- No Inflow dynamics
---- Quasistatic inflow
-=^—^ With inflow dynamics

-.01	 .1	 1.0	 10

Figure 3. Magnitude and phase of longitudinal tip-path-plane
tilt response to lateral control plane inputs ((^^^c^^c.)
for a hovering, three-bladed hingeless rotor (flap
frequency = 1.15), showing the influence of the
inflow dynamics.
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-	 I

I&	 I

;LX2 
.0	 2.5

Figure 4. Root locus of forward-flight flapping stability for a,.
single articulated rotor blade 	 to, flap frequency
S7 1.0, no pitch/flap coupling).
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n

2 1
1

Divergence

xA /C = 0

-- xA/C = .05

4 r- 	
Flutter

0	 .05
XI—xA

C

Figure 5 Pitch/flap flutter stability boundaries of an articulated
rotor in hover, for xA/c = 0 and .05.
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3

Flutter

Rigid flop and rigid pitch

-- --- Rigid flop, rigid pitch, and
first 'flotwise bending mode

R

µ	 2

Divergence

0	 .05	 .10
xi
C

Figure 5. Pitch/flap flutter stability boundaries of a hovering
articulated rotor, with and without the first flatwise
bending mode.
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Divergence
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C

Figure '7. Pitch/flap flutter stability boundaries of an articulated
rotor, for AA = 0 and .3 (constant coefficient. approximation
used for ," = . 3 calculations).
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t^
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a^
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0
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3

a

0	 2000	 4000
Dynamics analysis calculation, CS m- N - sec

Figure 8. Comparison of blade lag damping at the ground resonance
stability boundary, as calculated by the Deutsch criterion
and using the dynamics analysis of :reference 1.
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1

Longitudinal balance
1

	

.05	 Lateral strut

Longitudinal strut

(a) Cc = 2260m-N-sec	 Lateral balance

0 r-	 I	 I	 I

Longitudinal balance

' 05 Latera l strutstrut

Longitudinal strut

Lateral balance
F (b) Cc = 1130m- N-sec

0 L_-	 I

Longitudinal b alance

	.05	 Lateral strut

Longitudinal strut

VV(c) Cc = 565m-N-sec	 /Lateral balance ^/

0	 100	 200	 300	 400
SZ, rpm

igure 9. Ground resonance stability calculations for a four-bladed
articulated rotor on a wine tunnel strut and 'balance
system: Aa,mping ratio of the support modes as a function
of rotor -,,peed, for three levels of blade lag camping.
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