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PREFACE 

The work described in this report was  performed by '-he Propds icn  

Division of the Jet Propulsion Laboratory. 
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ABSTRACT 

Economical unmanned Earth-orbit transportation for large payloads i s  

evaluated. The high exhaust velocity achievable with electric propulsion i s  

attractive because it will minimize the propellanr that must be carried to low 

Earth orbit. Propellant transport is  a principal cost item. Electric propul- 

sion subsystems utilizing advanced ion thrusters a r e  compared to MPD 

. thrust subsystems. For very large payloads, a Large Lift Vehicle is  needed 

to low Eartl: orbit. and argon propellant i s  required for electric propulsion- 

Under these circumstances. this study shows the MPD thruster to be desir-  

able over the ion thruster for Earth-orbit transportation. Both solar- 

electric and nuclear-electric power supplies were considered. 
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I. INTRODUCTION 

Studies (Refs. 1 and 2) indicate a growing need for large payloads in 

Earth orbit during the next 25 years. However. transportation that i s  eco- 

nomically attractive to deliver these payloads must yet be developed. This 

report considers the desirability of electric propulsion a s  well a s  chemical 

propulsion to meet EarL&-orbit t r ansp r t a t+n  requirements. Of basic 

concern i s  the d ~ l i v e r y  of payload and propellant to low Earth orbit (LEO) 

and subsequent transport to geosynchronous Earth orbit (CEO). 

The main advantage of electric propulsion is that i t s  high exhaust 

velocity minimizes the amount of propellant in LEO. This reflects into a 

major saving in launch cost. In addition, i f  the payload can be assembled 

in LEO and has large onboard power, the electric propulsion can utilize the 

onboard power to ca r ry  the system to GEO. Subsequent to arr ival  in CEO, 

the electric thrust subsystems can be utilized for attitude control and s ta-  

tion keeping (at a much-reduced power level). 

Assembly of the large payload in GEO would require separately pow- 

ered electric propulsion for low-thrust cargo transport. Personnel 

transport to CEG for the assembly job requires high-thrust chemicai ;:a- 

pulsion for rapid transport. The low-thrust electric vehicles must be 

capable of multiple round trips through the Van Allen radiation belts (and 

particularly the proton belts). Such a vehicle may also be able to serve a s  

a teleoperator a t  GEO to aid in deployment of payloads. In all probability, 

assembly in CEO will require larger transportation cost for crew and 

special equipment than will assembly in LEO. 

Transport cost for large payloads may also be reduced by developing 

larger,  unmanned launch vehicles. The anticipated minimum Shuttle cost 

to LEO i s  of the order of $300/kg. This can be further reduced to about 

$50/kg by a n  appropriate 1-rge lift vehlcle (LLV) .  This c a n  have a major 

impact on future economic desirabilitv of large orbital payloads. A number 

of different concepts of LLV have been proposed (Ref. 2). For the studies 

below, v.e \sill simply assume the availability of LL,V a s  well a s  adequate 

payioad mass capability and cargo bay volume to handle all requir2ments 

to LEO at $50/kg. 
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The cargo orbit transfer vehicle (COTV) will be optimized on the basks  

of total transportation system cost. Because of this, i t  is  more important 

to define scaling factors over a range of system m a s s  than to establish point 

designs. A certain amount of arbi t rar iness  i s  therefore allowable in the 

selection of hardware size. 

The hardware chosen i s  considered only a s  an  order  -of-magnitude 

estimate of future needs and serves  only to establish the parameters  of 

performance and cost. We shall, for instance, assume an orbital payload 

power level of 4 GWe, assembled either in LEO o r  CEO. Mass of this 

module will be considered a t  5, 10, and 15 k g / k ~ e .  Several of these may 

be assembled in space annually. F i r s t -order  comparisons of COTV options 

a r e  to be made and a baseline candidate considered for more-detailed 

optimization, both for LEO and GEO assembly. 

11. ELECTRIC THRUST SUBSYSTEM TECHNOLOGY 

There a r e  four types of electric thrusters  available for COTV ~ r o p u l -  

sion operation: the resistojet, a r c  jet, magnetoplasmadynamic (MPD) 

accelerator,  and ion accelerator. Of these, the a r c  jet and MPD thruster 

a r e  considered a s  variations of the same plasma device and will both be 

categorized under the broad heading of MPD thruster. The resistojet has  

a relatively low exhaust velocity (<8 k m / s ) ,  and will not be considered in 

this report. Its potential availability will continue to be studied, but it does 

not a t  this time indicate a clear advantage over other alternatives. 

In this section, the MPD thruster i s  estimated to have a constant 50% 

efficiency of converting electrical power to thrust, over a range of exhaust 

velocity between 10 and 50 k m / s  (Refs. 2, 3). The ion thruster operating 

on argon i s  constrained to an exhaust velocity above 50 km/s .  According 

to  a preliminary evaluation by LeRC, this lover  limit i s  imposed by grid 

spacing, and exhalrst velocities below 50 km/s  require a heavier propellant, 

such a s  cesium o r  mercury. 

A ION THRUSTERS AND POWER PIIOCESSING 

Ilevelopment of ion thrusters with mercury propellant has been 

strongly supported by NASA/L~RC for the past 1 5  years .  As a result,  these 
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thrusters a r e  now approaching flight -ready status. The 30 -cm (grid 

diameter) thruster i s  being readied for primary electric propulsion applica - 
tions, and smaller devices a r e  expected soon for auxiliary electric propul- 

sion. Figure 1 i s  a sketch of the 30-cm thruster that has a present n,ass 

of 7. 3 kg. 

The power processing associated with each mercury ion thruster is 

presently being developed for solar electric propulsion for planetary applica - 

tions. At a thruster exhaust velocity of 30 km/s ,  the power processor mass 

{including structure) is  presently 12 kglkwe. The block diaglam for an 

individual power processor assembly i s  shown in Fig. 2 (Ref. 4). There a r e  

12 power supplies feeding the thruster in addition to the command, control, 

switching, and instrumentation functions. Approximately 55% of the mass 

of this assembly is associated with the accelerator, screen, and discharge 

supplies that provide 90% of the power to the thruster. The renlainder of 

the supplies (heaters, vaporizers, keepers, and other units) have a mass 

that tends to be more nearly constant for a given thruster. At very high 

power levels, these particular power processor components may show a 

specific mass  of less than 1 kg/kwe. 

Additional work has been done at  LeRC to operate the ion thruster 

accelerator,  screen, and a r c  discharge directly from sclar power inputs. 

This appears 7ractical for a system that operates at  a constant power ievel, 

except for a fairly simple control circuitry. However, for stable operation 

each thruster must be independently coupled to its own power sources. 

There has  been some disproportionate concern about mercury cot- 

tamination of the atmosphere with ion thrusters.  Actually. s iore  th.an 90% 

of the mercury (dependent on utilization efficiency j i s  expelled by the 

thruster a t  Earth escape velocity and * ;~ i i l  not reenter the biosphere. How- 

ever, mercury cannot be mads available in large annual quantities required 

for l ~ r g e  payload transportation. Argon propellant is available in large 

quantities and a t  much lower cost than mercury. Liquid argon can be 

handled like liquid oxygen a s  a deep cryogen. Present cost i s  less than 

$0.40 per kg, and in large quantity production may be much lower. Of 

the materials available in larger quaatity, argon has the highest atomic 

mass a s  well a s  many other characteristics most desirable for an electric 

thruster propellant. 
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Operation of the ion thruste: with argon allows a higher current density 

than with mercury, but the exhaust velocity (specific impulse) is also higher. 

At present, maximum propellant utilization is about 0.85, and ionization 

losses are  about LOO eV/ion. This leads to the efficiency curve showr. in 

Fig. 3, compared to the MPD thruster. At an exhaust velocity of 80 kmls,  
2 thrust density may be increased to approximately 8 ~ / m  , assuming that a 

thruster operating temperature of 950 K can be achieved. 

Figure 4 is  a plot of thrust density over a range of exhaust velocities. 

A major development program will be needed to make flight hardware 

available, and one of the important considerations in such development is 

the required heat transfer for high power operation. 

Surface emissivity F. of most metals at temperature of 950 K 1s of the 

order of 0. 5. If the thruster operates at ve between 60 and 80 kmls. with 

0.85 propellant utilization, electrical efficiency is  between 0. 75 and 0.88. 

For the thrust levels of Fig. 4, a 50-cm ion thruster would operate at a 

power level between 45.3 and 83.8 kWe and at a temperature between 900 

and 950 K. The area required to dissipate the waste heat (10-11 kWt) is  
2 therefore 0.45 - 0.6 m . Since the grid area 3f the ion thruster is approxi- 

2 
mately 0.2 m , additional high-temperature heat rejection area is required. 

For the purposes of the study reported here, the 50-cm ion thruster 

has been selected a s  the baseline ion thruster. System differences intro- 

ducsd by, say, a 100-cm thruster a r e  negligible. Dished grids with very 

close spacing have only been developed for the 30-cm thruster. Extrapola- 

tion to grid sizes larger than 50-cm diameter i s  still questionable. Multiple 

cat\odes would also be utilized with the 50-cm thruster. 

Operation of the 50-cm thruster with argon rather than mercury is 

much simpler. Even with the use of multiple cathodes, mars of the 50-cm 

thruster is now estimated at 6. 5 kg. Cost i s  also reduced by approximately 

a factor of 3 below the mercury thruster. Although the thruster i s  very 

labor-intensive, high production can reduce cost significantly. The final 

cost of a 50-cm thruster i s  therefore estimated at  $15,000, including cabling 

and mounting into the thrust subsystem. 

Power processors for the ion thruster operating with argon under the 

above cocditions also require new development. For Earth-orbit o?eration, 
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the accelerator, screen, and a r c  discharge operate directly from dc sources 

(either solar a r r ays  o r  from transformer/rectifiers). The remainder of 

the ion thruster requirements will be assumed to be met by processors 

having a mass of 0. 3 - 0.4 kg/kWe, o r  approximately a factor of 2 better 

than can be achieved now. In high-quantity mass  production, unmanned 

flight electronics cost could conceivably drop to aR low a s  $800/kg. 

B. MPD THRUSTERS AND POWER PROCESSlNG 

An alternative to the ion thruster is  the MPD a r c  thruster, such a s  
5 2 

shown in Fig. 5. This thruster has a high thrust density (10 ~ / m  ) at an 

exhaust velocity of 10-50 km/s  with argon. Its efficiency, however, i s  

presently estimated at 0. 50. Electrical losses a r e  estimated a t  approxi- 

mately 5-7% at the cathode and 10% a t  the anode, and the remainder of the 

losses a r e  attributed to frozen flow losses. The MPD thruster shown in 

Fig. 5 operates a t  a nominal 7. 5 MWe, although it may actually be capable 

of operation up to 10 MWe. There i:: no experience for thruster operation 

above 10 MWe, so this i s  only arbitrarily imposed. Thruster voltage 1s 

approximately 200 V, and current i s  37, 500 to 50,000 A. The tungsten 

cathode may operate a t  a s  high a temperature a s  2500-2700 K. The anode 

and i ts  associated cooling structure i s  fabricated of molybdenum, operating 

a t  a temperature of 1700-1800 K. Several thrusters may apparently be con- 

nected in ser ies  without control problems, a feature not possible with isn 

thrusters. 

Except for startup and propellant metering, the MPD thrusters need 

nc 7ower processing. Startup requires a low -power, 4000-V pulse to accom- 

plish a rc  breakdown through the propellant. Stopping may be accomplished 

by a combination of turning off the propellant feed and switching. 

As with the ion thruster, the MPD thruster also requires a large 

development program before a flight system can be made available. Thermal 

design for steady-state o ~ z r a t i o n  at  very high power requires a large effort. 

A 10-to 20-year lifetime is also needed. The fluid dynamic8 and iiie inter- 

actions with the magnetic self-field of the a rc  must be more closely defined 

for  performance optimization. Initial development work might be done with 

condensable fluids because of the limited gas pumping capacity of existing 

facilities. 
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The MPD thruster with its cooli~g fins and associated hrg'n-ernissivity 
2 

heat rejection surfaces (3-5 m ) is txpected to have a mass nf 350 Icg. 

Because of the unknown problems of high-temperature operation. however. 

this figure is increased by a factor of 2, to 700 kg. Cost of the thruste. ( a d  

its interconnect cabling). also including a safety factor of 2. i s  approximatelv 

$100.000. Power processing. if any. is  I~c1udc.d. but azay iransCormt . ; 
rectifier requirements fcr operatiolr from an ac power source a r e  separate. 

111- CA RGO ORBIT TRANSFER \-EHIC LE (COT V) MISSION DESIGN 

b o k ~ n g  specificrlly at the mission to placs large payloads into CEO. 

there a r e  two possible approaches. The first i s  to ascemble +he pe) l ca3  in 

LEO and utilize the onbaard power for the electric Cirusters to raise its 

orbit to GEO. The second ap~roach i s  to use a separately powered COTV 

and assembl: the payload in CEO. For the latter. a nuclear electric prop!- 

sion !XEP) tug is proposed in this study. although sular arrays capable of 

operating in the Van Allen belts .nay also be developed. A further alterna - 
tive =aw under study. is to utilize microwave beaming from an orbiting 

space p w e r  platform to the COTV. 

A- SELF -POWERED COTV MISSIONS 

The lowest-cost OTV mission. NASA s'udies ahow (Ref. S),is obtained 

by assembling the payload in LEO and utilizing onboard power for prcpulsion. 

Low thrust will be necessary because of the lightweight structures. Limira- 
2 

tions of thrust acceleration a r e  estimated to lie between I O - ~  and m/s  . 
T ow-thrust spiral trajectories from LEO at 28. S deg (ETR launch) to GE3 

have an equivalent Av of approximateiy 6200 mis. An additional 10% i s  added 

for gravity-gradient forces and solar pressure, for a total of 6820 mle. 

From an iaitial 500-km altitude up to 5,100 km, a tangential-thrust 

spiral is provided ~t a constant inclination of 28.5 deg. There~fter .  the 

thrust vectol ;ilso performs a cross-plane rotation at one ret*o.ution per 

orbit, accomplishing a combined spiral and plane chznge trajectory. The 

maneuver is  described in detail in Appendix A. 

0;UGINlrl PAGE IS 
OF Pooh Q U ~  
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A n  add'tioual problern of the 28. 5 deg initial low-altitude orbit is  that 

a portion of each orbit lies in the Earth's shadow. Studies by the Boeing 

Aerospace Co. f ~ r  NASA (Ref. 5) have shown this occultaticrr. period is a 

minimum at s~ l s t i ce  (32 mh at 500 k m  altitude. or 34% of oroit). For about 

the first 25% of the orbit transfer time each spacecraft orbit is parYa?1:; 

occu!ted. During t4e cccultati?n periods, chemical propulsion must be used, 

at at least 1 6  of fall thrarrt, for attitude control. Since chen.lca1 propulsion 

has an order-of-w~pitude lower exhaust velocity than the electric thrusters. 

it i.o most optimum to minimize the chemical propulsion operation. On the 

other bed, fl~-;ht time wil: be increased by approximately 5% becauore of the 

loss af electric power duAng occultation in low orbit. Tht value lost 

because of thie longer flight time !s yet to be considered. Occulta*ion occurs 

well into the proton belts, a d  degradation of the system is increased. 

Thermal shock and on-off cycl;ug can have significant lifetime implications. 

Howwer, untii further system definition indicates a more desirable oyAimi- 

zation 1 chemical propulsion total L ; contribution of 25 m/s  is assumed. 

The remaining 6795 mfs is provided by the electric propu:sion system. 

There are several differenf rypes of chemical propulsion available, as  

shown in Table :. Cost tradeoff* have yet to be m a ~ e .  so any coiiclusions 

at this time are  definitely premature. However, the higher exhaust velocity 

of the o ~ / H ~  aystemsi (vc = 4.61 kmls) will probably miniraize tbc launch 

cost becausr of less qropelhnt needed in LEO. High-pressure, pump-fed 

system are  a;sumed, based on technology being developed by LeRC. Fig- 

ure b is k block dlagram oc a typical system Atnps may be pnered  either 

by p-opellant boiloff or by auxiliary electrical battery power. Such systems 

will have a mass par unit thrwt of approximately 250 kg + 0.15 t i g / ~  and 

*vill cost apprwirnate:y $1000 per kg. CSe.mical propellant miss fraction 

(mpe 
/mo) for r C-- = 25 rnfc i s  0.0054. 

The argon propellant needed for t ! ~  clectric propulsion AV oi 

6735 m/s  is a function c~f  the bust velocity. Mass fractim is shoma in 

Fig. 7. A3 exhaust velocitv increases, propellant mass decreases exponen - 
tially. Ho~ever ,  mission optir.~ization has additional dimensions At a 

fmed power level, flight time inrreases linearly with exhaust velocity. 

Power per ,wit mars may ~ l s o  be varied. I?.,csc additic la1 dimensions are  

raramete.ized in Fig. 8. "Specific power" Po* i~ defined as the pow r pe- 
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unit -8s of the initial spacecraft. p/mg Since electric thluster efficiency 

is a variable function of exhaust velocity. jet power P. ( q = 1.0) i s  shown 
1 

here. These curves do not take into account w e  problem of accultation time 

delay and assume that the gravity-gradient contribution i s  a constant 10%. 
2 

Acceleration levels of 1. 2. 5. and 10 x m/s  a re  also ploded on 

Fig. 8. 

System degradation throw% the proton belts is  a first-order mission 

perturbation. Approximately 70% of the low-thrust transfer time is spent 

in the proton belts. a s  may bc seen in Fig. 9, up to approximately 1 5.000 km 

altituc'e. Occuitation time and gravity gradient variations a r e  not included 

in the curve. Solar array damage occurs primarily from the rluen-e of high- 

energy particles and only secondarily frcm the total integrated doss. Mas- 

sive protection would be required to elr.ninate this damage, even for a flight 

time af only ale  clay. Since low-thrust trajectories a r e  expected to require 

a t  least 9even days, the only viable approach i s  to use radiation-hardened 

solar arrays. 

Standard 12-mil, 10 $1-cm solar cells will degrade with flight time 

apprcximately a s  shown in Fig. 10. For comparison, a 5-mil "violet" cell 

i s  also shown in the figure. The alternative to providing radiation-hardened 

mystems is  to takc at  least a 20-30% power degradation. 

B. SEPARATELY POWERED COTV MISSIONS 

Assembly in CEO is an altern~tave missim possibility. Utilization of 

hign thrust, low thrust, or  a combination of the L N O  is possible in this case. 

Multiple round trips are  nrade in order to amortize the cost of the COTV 

aver a much larger payload. For 2urposes of comparisoc, a two-stage 

chemical COTV is first ana1yzw.d. Thereafter, WI will consider the all- 

el-ctric and then the ccmbined systems. 

I .  - All-ChernicalCOTV - 
The high-thrust Av required lrom LEO to CEO is i3OO m/s,  or only 

about 70% of the low-thrust requirement. Optimum staging for t\vo-stage 

vehicles occurs at approximately equal Av's, or 2150 m / s  per stage. The 

first-stage system eeparates and returns to LEO (2150 m/s )  for its next 
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missiom load. The second s b g e  provides the remaining Av (2150 m/s)  to 

place the payload into GEO. and then i t  also returns to LEO (4300 m/s)  for 

its next mimion load. The chemical stayes a r e  assumed to cis? 0 /H pro- 2 2 
p e l b t s  at ve = 4160 m/s  and a re  assumed to have a strurtural factor 

of 0. 32. okr this basis, the Lum-etage chemical propulsion mission is  surn- 

m a r i z d  in Tab!- 2. The payload fraction of the initial rnasa in LEO is 

0.29'. However. 0. OCS of the initial mass is in reusable stages, so that, 

of the remainder, hunch vehicle propellant load is 0.688, tankage (at 5% of 

propellant mass) is 0. C34, and payload to LM) is  0.278. Quite probably, a 

logisticr depot in LEO i s  needed, but i s  not considered in this analysis. 

Cost of actual payload to LFO is $180/kg. based on LLV deiiveries a t  

$50/kg T w  tug stages a r e  required, and at a service life of 20 round 

trips cost estitnates vary widely among currenC studies. A median number 

of $15~!kg of GEO payload i s  assumed here to cover the taut of both tugs, 

including :ost of delivery to LEC. Thus, total transportation cost is  esti- 

mated at $330/kg for high-thrust chemical propulsion. 

No es-;mate is  made of the speci4 manpower and equipment needed 

for GEO. We aosume this to be part of the fabrication and assembly rather 

than tranepo-tstion. However, there is undoubtedly a significant additional 

cost associated with assembly in CEO above that of LEO assembly, and this 

cost must ultimately be accounted. 

2. All-Electric COTV 

Low-thrust electric propulsioa i s  the primary competitor to the chemi- 

cal high-U-rust propulsion. Its primary sciling point is the higher s;>ecific 

impulse avai1;ble. However, the spiral trajectory requires 44% higher 

energy and a mvch longer flight time. It is because of these drawbacks that 

many people hdve taken a careful look a t  the direct-heating truclear ro-ket. 

But the nuclear rucket also has drawbacks with hydrogen tankage and nuclear 

safety problems. A two-stage nucltrr COTV may also be necessalj  to 

compete with the chemical system performance, and the economice df  such 

a system a re  questiotlable. 

The electric propulsion vehicle i s  now being corceptually designed for 

a full-power lifetime of at least 72, 000 hours, or 5000 days. Such r systrm 
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Tatle 1. Chemical systems alternatives 

TY w Specific impulse 

Earth storable 

Pentaborane / N ~ H ~  

Space storable 

Cl yogenic 

LO2 / LH, 

Table 2. Two-stage chemical COTV detail to GEO 

(OZ!H2, one-way Av = 4300 m l s )  

Assumed hs = 0.92 

v = 4610 m/s e 
Staging at  AV = 2150 m/s  

Stage 1 

Propellant mass fraction, mp/mO = 0.40 

Inert mass fraction, m. /mo = 0.034 
1 

Stage 2 

Propellant mass fraction, m /mo = 0.25 
P 

Inert mass fraction, mi/mO = 0.021 

Launch mass fractions 

Payload, 0.278 

Propellant, 0.688 

Tankage, 0.034 

Cost to LEO, $180/kg of payload 
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Fig. 6. Block diagram, chemical 
propulsion subsystem 
(one of two) 
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Fig. 9. Spiral trajectory profile to GEO 
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Fig. 10. Silicon solar cell degradation 
for spiral trajectories to GEO 
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must be capable of spending relatively long periods within the proton 

radiation belts. This appears to limit us initially to a nuclear electric 

system. However, solar power sources may soon evolve for the COTV 

mission. Since it i s  still too early for good cost comparisons, we shall 

consider NEP a s  our present baseline. 

A nuclear power subsystem capable of 1 -MWe o-rtput is currently being 

studied for a specific mass estimated at about 18 k g l k ~ e .  Thrust subsystem 

(exclusive of tankage) and other subsystems for Earth-orbit operation should 

be no more than $50 million, including a possibly sophisticated teleoperator 

capability. This vehicle, together with the LLV constitute the transportation 

system. Performance and cost data a r e  included in Appendix B. 

Following the efficiency curves of Fig. 3, cost optimization now 

appears to be in the exhaust velocity range of 20 to 25 kmls a s  shown in 

Fig. 11. This is,  however, affected by launch vehicle cost. If the Shuttle 

were used, a t  a launch cost of $300-500 per kg, added propellant delivery 

cost would drive the optimum up to a higher velocity. 

For the low-thrust cargo OTV, optimum payload increases (and cost 

decreases) monotonically with increased flight time. The orbital maneuver - 
ing is simple so that navigation is  automated and ony ground tracking 

requirements a re  very slight. The major flight-time limitation will probably 

be the payload degradation through the Van Allen belts - particularly proton 

damage. By suitable hardening and packaging techniques, it should be pos- 

sible to allow flight time of at least a year without serious problems. On 

this basis, total transportation cost of about $115/kg is achievable with N E P .  

Payload delivered per trip i s  184 metric tons with a 1 MWe tug. 

3. Hybrid COTV 

The combined high-thrust/low-thrust COTV is a two-stage system 

that fits, costwise, between the all-chemical and the all-electric systems. 

The chemical stage delivers 2ayload and propellant to an intermediate orbit, 

where it is  transferred to an electric stage. The electric stage operates 

between the intermediate orbit and GEO. At the point where chemical AV 

exceeds about 3000 m/s,  cost of the hybrid COTV becomes larger than the 

all-chemical system. 
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The hybrid system has very little to recommend it. It is more costly 

than the all-electric and more complex than either the all-electric or 

all -chemical. 

I r . FASEIJNE SYSTEM DEFINITION 

In the case of large payload assembly in GEO, it is quite evident from the 

previous section that the all-electric COTV is  desired. Cost is lower than 

chemical COTV by a factor of 3, 400/, less than just the launchcost of the all- 

chemical system. However, its advantage lies in its ability to ope1 ate for long 

periods of time in the protonbelts. Optimumexhaust velocity lies in the oper- 

ating range of the MPD thruster and below the range of the ion thruster. Flight 

time appears reasonable at  an exhaustvelocity of 20 km/s (51 year). 

The main question about assembly in GEO is that of economic tradeoffs 

with other alternatives. Larger crews and special equipment must be 

transported in addition to higher transportation costs of payload. Whether 

this provides adeq3ate incentive for high -cost and high - risk development 

programs for large payloads must be evaluated on a program-by-program 

basis. 

Cost of space operations i s  cut approximately in half by assembly in 

LEO and subsequent low-thrust transport to GEO. Transportation cost may 

be significantly reduced by using onboard power for propulsion, by elimi- 

nating return trips, and by using the thrusters after transport for attitude 

control and station keeping. In addition, every effort must be made to 

minimize launch vehicle cost to LEO. 

Both the ion thruster and MPD thruster are  analyzed in this section of 

the report. Cost comparisons a r e  made, and recommendations a r e  listed 

concerning the technology requirements for a viable program. Low cost 

(including low maintenance) and long lifetime a r e  the drivers. 

Roth the photovoltaic solar arrays and the solar collector  r ray ton 
systems a re  potentially available as  power sources. A nuclear power system 

i s  also being studied, but it nuffers from the disadvantage of nuclear fuel 

processing requirements. The propulsion studies will encompass the con - 
straints of all of these systems and assume that they a re  all equally 
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available, with equal performance. For conservatism, a transformer/ 

rectifier input to the thrust subsystem is assumed at  a mass of 7.310.04 kg 

and a cost of $10.713.7 per kWe. 

A. THRUST SUBSYSTEM ANALYSIS 

Thrust subdystems for the self-powered vehicle include electric and 

chemical propulsion, propellant feed, processing, controls, structure, and 

heat rejection systems. Several thrust subsystem modules a r e  permanently 

attached to the spacecraft through two-axis gimbals. Full  power is  used to 

propel the system to CEO. Thereafter, low power is  used for attitude 

control and station keeping. Guidance and navigation and other spacecraft 

functions a r e  associated with the spacecraft. 

Materials and structures for large solar arrays in space a r e  not yet 

developed to the point where proton degradation and array mass and cost 

can be evi-luated. Present technology rollout arrays with 4-mil silicon 

solar cells (with degradation somewhat lower than that of the 12-mil cells 

in Fig. 10) have a specific mass of 15 kg/kwe and cost $400/watt. By 1985 

it i s  hoped that spacecraft solar arrays can be developed for 5 kg/kWe and 

a cost of under $100/W. The A. D. Little concept (Ref. 6) fcr an array mass 

under 2 kg/kWe and a cost of $ 0 . 3 0 1 ~  requires additional technology break- 

through. Totally new materials for ultra -lightweight, radiation-hardened 

solar concentrators need to be developed, operating with high -temperature 

solar cells, probably of the gallium arsenide family. They would see very 

little degradation in the Van Allen belts. Additional structure, probably of 

the carbon composite type, would be needed in order to take the thrust loads 

of the electric propulsion. 

For lightweight, lcw-cost, radiation-hardened arrays, power level 

would probably want to be a maximum in order to minimize the revenue loss 

from flight time to GEO. This would, of course, be limited by the structure 

capability to support the thrust loads, as indicated in Fig. 8. 

If the array mass and support structure get heavier, the propulsion 

exhaust velocity v.411 optimize at a lower level. For thrust-limited struc- 

tures, power i s  reduced approximately proportional to the exhaust velocity. 
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Proton degradation through the Van Allen belts, if silicon cells were 

necessary, introduces further complications along with maas and cost 

arguments. Every effort should therefore be made to obtain the ! ightweight, 

high-temperature arrayn a t  a very early date. This is a primary factor in 

reduction of transportation costs. 

The ion thrust subsystem module is sketched in Fig. 12. For  this 

configuration we have arbitrarily, for comparison purposes, assumed an 

electric thrust of 3000 N a t  an  exhaust velocity of 80  km/s. There a r e  2300 

individual ion thrusters (20% redundancy) having the characteristics shown 

in Table 3. The thrusters, operating at  950 K, a r e  mounted on a 40-meter - 
diameter structure having a mass of 25,000 kg. Cost of this structure i s  

estimated a t  $50,000. At the center of this structure a r e  motlnted two 

(redundant) chemical thrusters and appropriate thermal bafiles. The 

structure includes thermal isolation and is cooled at  400 K to allow monnting 

of power processing equipment on top (the side opposite the thrusters).  

Power to the thrust module is 160 MWe. Transformer and rectifier assem-  

blies, operating at  respect~ve efficiencies of 0.39 and 0. 995, have respec- 

tive masses  of 120,000 and 6500 kg. Additional power processing i s  

approximately 49,000 kg. Cruciforn~ heat-rejection heat pipe radiators 

operate at 400 K for rectifier and power processor cooling and at  600 K for 
2 

transformer cooling. Total radiating surface a rea  of 213C m i s  needed. 
2 Cost i s  estimated a t  $1950/m , or  $4. 16 million. The majority of the 

central structure of the module is provided by the transformer,  approxi- 

mately 6 m high by 2 m diameter. The end-to-end radiator wingspan i s  

90 m. Heat rejection assemblies have a total mass of 33,000 kg. 

The thrust rnodules a r e  attached to the 'spacecraft throagh gimbals in 

order to provide attitude control. Large masses  a r e  icvolved, but thrust 

levels a r e  relatively small and angle changes a r e  relatively slow. Torque 

demands, therefore, a r e  only of the order of 300 N-m maximum. This i s ,  

however, superimposed on a thrust level of 3000 N. Thus it i s  necessary to 

operate the thrusters such that they produce no average moment about the 

gimbals. Vernier gimballing of thrusters,  variable thrust control, and/or 

preset alignment and switching of thrusters a r e  alternate methods of aiding 

in the process of net torqu ? elimination. 
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Each thrust subsystem module is  expected to require two axes of 

controlled gimbal motion through respective angles of i n 1 2  and in14 radians. 

Redundant pairo of digitally operated steppe.. motors a r e  mounted throug'l a 

gear train on each gimbal axis (Ref. 7). Appropriate mechanical disconnect 

is needed in case of component failure. Direction of motion and torquing 

direction8 with respect to gravity gradient torques, orbit inclination and 

solar alignment must all be studied in detail in future studies. Until 

detailec! dynamic analyses can be completed, maximum versatility i s  to be 

mailtained in the thrust subsystem module design. 

FJropellant tankage is  mounted on the main spcecraf t  rather than on 

the module. Propellants a r e  carried past the thrust subsystem gimbals 

through multiple pressurized flex lines. Flexible (copper) cabling i s  simi- 

larly provided for multiple electric power lines at 200-500 kV. Instrumenta- 

tion and control circuitry is  also provided. Minimum cost switching and 

logic is mounted on the thrust subsystem module as  well as  simple onboard 

engineering data handling. Emphasis should be to reduce complexity across 

the gimbal. 

There a r e  25 thrust subsystem modules mounted at various positions 

about the 4000 -MWe self -powered spacecraft. Mission performance and cost 

a r e  summarized later. 

As an alternative, the MPD thrust subsystem module is  sketched in 

Fig. 13. Again, an electric thrust of 3000 N is  arbitrarily assumed, but at 

an exhaust velocity of 25 km/s. Ten individual MFD thrusters operate with 

the characteristics of Table 3. The thrusters, operating at 1700 K, a re  

mounted on a 6-meter -diameter structure having a mass of 5000 kg, includ- 

ing thermal control, and a cost of $10,000. Two chemical thrusters a re  

mounted in the center, as in the ion thruster concept above. Power to the 

electric thrusters i s  75 MWe. Transformers and rectifiers (including con- 

trol circuitry) a r e  provided a s  before, with masses of 55,000 and 3000 kg, 

respectively, and cost of $800,000 and $280,000, respectively. Heat rejection 
2 surface area is  512 m . For a 6-m height, this requires a radiator wingspan 

of 22 m (including the 1 -m-diameter transformer at the center). Mass of 

the heat rejection system is 8000 kg at a cost of $1 million. A total of 53 of 

the MPD thrust subsystem modules i s  attached to the 4000-MWe spacecralct. 
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Fig. 12. lor tst subsystem (module) 
CO. ,u ration 

Fig. 13. AMPD thrust sul - \  stem (module) 
configuration 
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Table 3. Electric thruster characteristics 
. 

A. SO-cm ion thrwtere 1 

'ESrhaust velocity. km!s CU 80 1 C 0 

Efficiency . 0.63 0.75 0.785 

Fbwer input. kWe 40.5 8 3 146.5 

Thrust. N 0.85 1.55 2. 3 

Msss. kg 6 . 5  6.5 6.5 

Temperature. K 900 950 950 

-4- Sk , lc 15 15 

B. 7. S-MWe MPD thruster 

Exhaust velocity, kw/s 10 25 50 

Efficiency 0.5 0. 5 0.5 

Fbwer input. kWe 7500 7500 7500 

Thrust. N 750 300 : 50 
h h s ~ .  kg 730 700 700 

Temperature, K 1730 1700 1700 

Cost. * 100 100 100 
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hrformance comF risms between the i m  thruster and MPD thruster 

subsgstea: cam be seen in Fig. 14. Since the specific mass cf  the space- 

craft is not yet defied, it is shown pararr.strically. We have assurr.ed that 

all spacecraft power generatez. is used for p r o p i s i n  during or3it transfer. 

The prameter of specific maps in Fig. 14 is  for the spacecraft only in LFX). 

It is exclusive of thrust subsystem mass, tankage. and propellants. This 

allowe direct performaace comp- rison between the ion and MPD thru-t 

subsystems. 

It should be noted in the performance comparisons that me two types 

of electric thrusters complement each other very well over the wide r q e  

of specific inpulse covered. The MPD thruster *!I operate well between 

10 end 50 kmls, but has not been proven a t  higher exhaust velocity. The ion 

thruster with argon propellant does not operate well below 50 k d s .  

Baseiine system selection be-een the io~, and MPD thruster is  to be 

made on the basis el coat. Ths main spacecraft apd the chemical propulsion 

a re  assumed the same for bob el.ectric systems. 

The cost of degradation t h r q h  the Van Allen belts reflezts into a 

requirement fcr a larger array, and thus a heavier array than would other - 
wise be built, It is  therefore i.nportant to eliminate this degradation if at 

all possible. Another cost to be reckoned is that of loss of revenue as a 

function of flight time. Rate to be charged is controversial, but it should at 

least include the return of invested cost- On the low side. $0. OZOfkW -h i s  
6 assumed. Thas, the 4-(;We spacecrait module delivers 2.5 x 10 kW 

through a microwave link at a cost of $1.2 million per day. For a spacecraft 
6 module mass of 40-60 x LO kg, this is  not a major cost item unless flight 

time becomes very large. 

The 4-GWe spacecraft is  assumed to have a specific mass of 5. 10, and 

15 kg/kWe. Costs are  applied and results tabulated in Appendix C. Cost 

summary is plotted in Figs. 15 and 16. Cost of argon was assumed at 

$0.40/kg, and argon tankage at $200/kg. 

There i~ a clear advantage for the MPD thruster shown in this analysis. 

This advant~ge becomes more distinct a s  solar power degradation inc reases. 
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Fag. 14. Electric thrust flight t3me rig. IS. Transport cost, LEO to GEO, 
performance (one =ay with self-powered SEP 
self-powered missions bo 
GFO) 

Fig. 16. Transport specific cost  to GEO 
with self-powered SEP 
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These conclu3ions a re  sabstantiated by recent progress reports in the 

contracted studies by the Boeing Aerospzce Co. previously .-eferenced. 

Compared to costs shown in Fig. 1 I, the cost of this method of transporta- 

tion is  nearly half the cost of that for assembly in CEO, arrd flight time i s  

very much shortened. 

V. CONCI "5IONS AND RECOMMENDATIONS 

1. A Large Lif; Vehicle (LLV), capable of delivering mass to LEO 

at  a cost of less than $50 per kg i s  essential for large, low-cost payloads in 

Earth orbit. The cost of de1;very to LEO i s  the primary cost of space 

transportation. 

2. Assembly of large payloads in LEO and use of onboard power for 

subsequent delivery to GEO can reduce cost by a factor of 3 compared to 

assembly in CEO. This requires large, lightweight structure capable of 

thrust loads of to 10" m/ s  while maintaining solar orientation. 

3. Radiation-hardened solar arrays a re  vital for achieving a 20- to 

30-year lifetime in the space environment and for low-thrust transfer through 

the Van Allen belts. Presently available technology, even the thin silicon 

cell, appears inadequate. Advanced concepts including special dopants. 

surface treatment, new materials (GaAs), and concentrators need develop- 

ment. Low cost, high production capability is  a major driver. 

4- MPD thrust subsystem technology is  needed by approximately 

1983 -1985, when major programs a re  expected to start. Short flight time, 

low cost, and system simplicity compared to other alternatives a r e  major 

contributions of these thrusters to economical Earth-orbit transportation. 

5. Argon propellant production capability is required near the LLV 
6 launch site. Production capacity should be approximately 10 kg/year by 

8 1985, increasing to 10 kg/year by :990. 
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APPENDIX A 

LOW-THRUST EARTH-ORBIT SPIRAL TRAJECTORIES 

I. EQUATION3 OF MOTION 

Based on Ref. 8, a set of equations have been developed to define 

low-thrust operation in geocentric space. This definition involves apiral 

trajectories between an initial orbit ro and a final orbit r. Plane changes g, 
in radians, may also be ~ccomplished, either separately or in combination 

with orbit raising. 

The low-thrust spiral trajectories can be ,xpreseed by 

where 

r = final radius 

r = initial radius 0 

v = thruster exhaust velocity e 

P = earth gravitational constant 

t = thrust time 

a = initial thrust acceleration 
0 

m = initial mass 
0 

= propulsion efficiency 

P = propulsion power 
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It is also possible to express plane changes by 

ff each of the functions is performed separately, the time for given 

orbit raising and angle change would be 

and 

But it is  also possible, through a very simple programmed rotation of the 

spacecraft, to rotate the thrust vector kt one revolution per orbit and thereby 

perform a simultaneous orbit raising and plane change maneuver. This 

combined maneuver will take less time than performing each maneuver 

separately. The angular change bears a fixed relationship to the radius 

change : 

and the time required to perform this combined maneuver is given by 
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It is desirable to make orbit plane changes at maximum radius. eince 

angular rate i s  proportional to Jr. If required plane change is less than that 

of Eq. (A-S), a direct spiral via Eq. (A-3) should be utilized to raise ro' to 

the proper value. and therefore utilize the combined maneuver via Eq. (A -6). 

For a larger plane change than Eq. (A -5). utilize the combined maneuver, 

Eq. (A-6), up to maximum r, and then utilize Eq. (A -4) for the remainder of 

the plane change. 

11. GEOSYNCHRONOUS EQUATORIAL ORBIT ANALYSIS (CEO) 

Shuttle has been previously designed for maxime-n low earth orbit 

(LEO) altitude of 500 km (270 nm) or an orbital radius of 6880 km. We shall 

also assume the initial orbit of the launch vehicle to be inclined 28. 5" from 

the equator (i. e. . a due east launch from ETR). From Eq. (A -5). therefore, 

we find that the lower radius for the combined maneuver, r ', i s  1 1,886 km. 
0 

Equation (A-3) i s  thus utilized up to this radius and Eq. (A-6) is  utilized 

thereafter. 

It is further possible to normalize the equations with respect to power 

level and initial mass, since both of these are included only in a Thus. 
0' 

the results may be expressed in power time per unit mass. ~ w e - s - k ~ " .  

For any given propellant exhaust velocity. propellant expenditure i s  inde - 
pendent of power level and directly proportional to the initial mass. The 

propellant mass flow rate i s  

The final equations for geosynchronous equatorial orbit 

(r  = 42,184 km) are  therefore 
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and 

If ve i s  expressed in kmls .  and P i s  in MWe. Eqs. (A-8) and (A-9) 

evaluate to: 

and 

where 

X = 1.8206 2.7 17 
y = -  v e e 

Time to synchronous orbit, normalized for power and mass,  i s  thus 

v 2 
P - ts =I [L - e - X  (L - I t + e - Y  

mo 2q 

For values of y < < 1, 
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The propellant expended to  CEO is then 

m -It 

PS -x Z Y - Y  l - e  e m 
0 

and the payload delivered to  GEO is 

where 

m~ 
= payload mass  to GEO 

m = initial mass  in LEO 
0 

m = propulsion inert  mass  
W 

Furthermore, by combining Eqs. (A -10) and (A -12), it is possible to 

express payload a s  a function of time: 

CUP 

51 Y 

where 

m 
W a = - -  
P - specific mass of the propulsion system 

For  this mission the equivalent velocity increment can now be 

calculated: 

JPL Technical Memorandum ? 3 - 7.13 



or, for y << 1, 
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APPENDIX B 

NUCLEAR ELECTRIC TUG PERFORMANCE AND 
T RANSPORTATIOPI COST ANA LY SIS 

One alternative COTV concept for assembly of large systems in GEO is 

to utilize a NEP Tug. Either ion thrusters o r  the hiPD thrusters may be 

used. The NEP will pick up payload and propellant in LEO, carry the payload 

up to CEO, and then return empty to LEO for another load. The propellant 

tankage is assumed to be approximately 5% of the propellant mass. Trans - 
port time i s  dependent on the exhaust velocity ve and the power-to-initial 

mass ratio p/mO = Pa, and i s  given by the expression: 

where 

m /mo = propellant mass fraction (round trip) P 

q = propulsion efficiency 

= specific power, W/kg 

v = propellant exhaust velocity e 

Total lifetime of the NEP Tug is assumed to be 70,000 full power hours, or 

2916.67 days. 

Traneport cost includes cost of Tug and launch cost of payload, 

propellant, and Tug to LEO. Costs a r e  amortized over the payload delivered 

to GEO for the entire life of the Tug. 

Table B-1 covers the MPD thruster for exhaust velocities between 

10 and 50 km/s. Table B-2 covers the ion thruster at exhaust velocities 

between 60 and 100 km/s. Specific power levels of 3.33, 5, and 10 a r e  

assumed. Both the LLV launch cost of $50/kg and the Shuttle launch coert of 

$300-500/gk a re  shown. 
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6 Tug cost i s  assumed to be $50 u 10 /MWe,  or  $501 We. This cost 

i s  amortized over the ent i re  payload delivered o r  

where 

m / m o  = payload m a s s  fraction L 

Cost per unit mass  of payload to LEO i s  the cost of transport  of payload 

and propellant, a t  $50/kg, divided by the m a s s  of payload. NEP Tug mass  

i s  subtracted and considered separately in the following: 

& I p::: 
Payload cost  to LEO, $/kg = 50 (I - 

m ~ / m o  

Tug cost  to LEO, $/kg = 5 0 
l - 1) 

No. oi  R.T. ( m L / m o  

where 

cut = specific maFs of N E P  Tug, kg/We 
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73:;'e B - 1 .  M P D  thruster performance and cost 

p :;: v Days No.  of LEO, Tug to 
e ' 

Total, 

W'kg k m / s  m ~ ' m ~  R . T .  R.T. $/kg LEO $/kg 

- - - -- -- - - 

LLV at $50/kg 

Shuttle at $300/::g 



Table B-1 (contd) 

p ::: v Days No. of LEO, lug to e  ' Total, 
w / k g  I , ~ , ~  m ~ ' m ~  X . T .  R.T. $/kg LEO $1 kg 

-- 
Shuttle at  $300/kg (contd) 

10 .0  15 75 .53  807 .84  37.76 916.13  
2 0  71 .60  569.88  25 .92  6 6 7 . 4 0  
2 5  77 .48  484. ?2 24 .78  587.18  
3 0  8 4 . 6 4  440 .70  24 .54  549.88  
40 101.69  395.28 25 .80  522.77  

Shuttle at $500/kg 



Table B-  1 rcontd) 

5 
ii ' P*, v Dayr, No. of LLO, Tug to Total, 

e ' != 
W'kg k m l r  m ~ l m ~  R . T .  R.T.  8 kg LEO $/kg 

z -- 

t 
c Shuttle a t  $500/kg 
i: 
g 5.0 15 39.78 945.50 43.20 1028.48 
5 
3 20 44.94 782.20 40.00 867. 14 

W 
2 5 51.45 704mHO 3'3.40 797.65 

w 30 57.97 658.60 ?8.90 755.47 
I 
4 40 73.25 615.00 42.00 730.25 
2 

10.0 15 75.53 1346.40 54.63 1476.53 
20 71.60 948.8U 43.20 1064.60 
2 5 77.48 808.20 41.30 926.98 
30 84.64 734.50 40.90 860.04 
40 101.69 658.80 43.00 803.49 



Table B-2 .  Isn thrurter performance and coat 

Po, v Dayr No. of Tug, LEO, Tug t? Total, 
8' 

W/kg k m / a  m ~ / m ~  ROT. ROT. $/kg $/kg LEO R / k g  

LLV at $5O/kg 

Shuttle at $300/kp 



Table 8 - 2  (contd) 

p'.: , v r Dayr No. of Tug, LEO, Tug to Total, e m L / m  0 
W/kg  k t n / s  I<.  T .  R . T .  $ / k t  $/kg LEO R/kg 

Shuttle at $500/iu 



APPENDIX C 

SELF-POWERED SPACECRAFT ORBIT TRANSFER COST ANALYSIS 

Based upon a 4-GWe spacecraft power subsystem, having a sprzific 

mass  irf 5, 10, and 15 kgIkWe, transportation costs a r e  modeled for a 

one-way t r i p  to  CEO. Both the MPD thrust subsystem and the ion thrust 

subsystem a r e  analyzed. Cost includes cost of hardware and propellants and 

also the launch cost to LEO (at $50/kg). 

Taken from the main part of this report, hardware cost and mass  per 

MWe are listed in Tables S-1. Total subsystem costs and masses a r e  then 

shown in Tables C-2 and C-3. Flight t imes are listed in Table C-4, based 

on a to t t l  mission Av of 6795 mls :  

where 

v = propellant exhaust velocity e 
p::: = P / m G  = specific power (per unit initial mass! 

to  the propulsion subsystem 

q = propulsion efficiency 

Finally, Table C-5 is a tabul~t ion of transportation cost a s  a function 

of exhaust vclocity/flight time for each value of power subsystem specific 

mass. 

JPL Technical Memorandum 33-793 



Table C - 1. Electric thrust subsystem costs 

item Cost per MWe, $k Mass per MWe, kg 

MPD thrust subsystems (constant efficiency) 

Thrusters and cabling 13.3 

Mounting structure 0.13 

Transformer assemblies 10.7 

Argon feed systems 0.67 

Heat rejection systems 13.3 

Power processing 3.7 

Ion thrust subsystems 

v e =  - 60 - 80 - 100 - 60 - 8 0 - 100 

Thrusters and cabling 444 216 125 192 93.75 54.5 

~vlountiog structure 0.6 0.3 0.2 322 156 85.3 

Transformer assemblies 10.7 10.7 10.7 733 733 733 

Argon feed systems 0.7 0.5 0.4 1.5 1.0 0.75 

Heat rejection systems 13.3 13.3 13.3 206 206 2 06 

Power processing 311 282 241 390 352 302 

JPL Technical Memorandum 33-793 
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Table C-4. LEO-GEO orbit transfer t ime  

'I, days 



Table C -5.  Self-powered 4-GWe spacecraft 
transportation cost  summary 

v e' o p s ~ *  Cost, $M $1 kg 
k m / s  kg/kWe Hardware Prop LEO Time Total P S s 

JPL Technical Memorandum 33-793 
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