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1. Intreduction

The goal of the research described by this paper was the design of
a computer suited to the class of problems typified by the general circula-
t1on model of the atmosphere. The research was supported 1n large part by
the Goddard Institute for Space Studies (GIS8) of the Wational Aeronautics
and Space Administration (NASA). The needs that prompted GISS o support
the research imposed several practical constraints on the design which was
sought. A fundamental gosl was that the machine which resulted from the
design was to have roughly 100 times the computing capebility of the GISS
IBM 360/95 which is now used for research with a genersl circulabion model.
Their desire to increase the spatial resolution of that model by refining
the graid implied the need for a 100 fold increase in computing capability to
stay even in terms of the real time.

A second requirement was that the resulting machine be programmeble
1in a higher level language similar to FORTRAW. 'The current model is wraitien
almest entirely in FORTRAN, and the GISS staff planned to modafy an existing
comprler for CFD -~ z FORTRAN-like langusge - for ILLIAC IV for use with their
new machine. Moreover, the new machine was to cooperate in the general
circulation experaments on the expanded models with the IBM 360/95; the IBM
machine would continue to be used for the pre-processing and post-processing
of model data which 1t now performs for the smaller model which 1t also now
executes. The implication of the FORTRAN and IEM machine constraints i1s that
the machaine possess floating point arithmebie capability, and that the float-
ing poant formai of the machine be close to that of the IBM 360 series.

A third constraint on the design was that the cost of the machine

resulting from the design effort was to be significantly less than that of



other extant machines of similar computing caepability. Among these are the
ILLIAC IV, the Texas Instruments Corporation Advanced Scientifie Computer,
and the Control Data Corporation STAR.

A final constraint on the design was that 1t be feasible to
fabricate a complete system and put it in operation by early 1978. A clear
mmplication of this and the Dpreceding constraint is that there is neither
time nor money for the development of new hardware families, let alone new
chips. The design will have to be made in terms of an existing hardware

family with components readily availsble off-the-shelf.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR



2. The Problem

Beveral groups in the United Stabtes are working on global general
circulation models. The three largest efforts are those of Mintz and
Arakewa at UCLA (Arakawa, 1972, Mintz, 19Th), Smagorinsky and Manabe at
the Geophysical Fluid Dynamics Laboratory (GFDL) (Smegorinsky, 1963) and
Kasabara and Washanghbon at the National Center for Atmospheric Research
(Kasahara, 1967). The UCLA model is of primery interest to this research
because the model run by GISS (Tsang, 1973) 1s a modafied form of that
model.

2.1 General Circulation Models

A general carculation model simulates the behavior of a three
dimensional spherical atmosphere on a digital computer. The bulk of the
computing load necessary in the simulabtion 1s the time integration of the
equations of fluid dynamics of the atmosphere. In the UCLA model, sub-
routines called COMP1 and COMPZ2 perform this time integration of the
equations of motion. Every six cycles through COMPl-COMP2, the effects of
solar radiation in heating the atmosphere and the effects of evaporation,
condensation and precipitation are introduced through the execution of the
COMP3 and COMP4 subroutines. The process is shown in Figure 2.1.2-1. Every
four cycles through the process i1llustrated by Figure 2.1.2«1, & table lock-
up process 1s used to introduce the effects of long-wave infra-red energy
absorbtion.in the GISS model.

Table 2.1-1 lists the parameters which define the condations under
which the model operastes. Table 2.1~2 lists the variables of the model and

grves thelr spatisl dimensions. Figure 2.1-1, which 1s taken from a GISS


http:absorbtion.in

Prescribed parameters.

_To use the atmospheric general circulation model, for this or any

other planet, the following parameters must be prescribed:

Radius, surface gravity and rotation speed of the planet.

Solar constant, and orbital parameters of the plent.

Total atmpspheric mass.

Thermodynamical and radistion constants.

Geographical distraibutions of open ocean, ice covered ocean,
bare land and land covered by glacial ice.

Elevation of the bare land and glacial ice.

Surface roughness.

Thickness of the sea ice.

Ocean surface temperature.

Table 2.1~1, The Parameters of the General Circulstion Model



Varigbles of the Atmospheric Model

Horizontal Velocity
West to East component
South to Worth component
Temperature
Water Vapor (specific humidity)

Surface Atmospheric Pressure

Parameters of the Planetary Boundary Layer (PBL)}

Boundary Layer Depth

Temperature Discontinuity at the PBL

Moasbure Discontinuity at the PRL
Parameters of the Earth's Surface

Ground Temperature

Ground Water Storage

Mass of Snow on the Ground

A Future Variable of the Atmospheric Model

Ozone Concentration

U(X,Y,Z)
V{X,Y,%)
T(X,Y,Z)
a(X,¥,2)

py{X,¥)

(X,Y)
(%,Y)

(%,Y)
(x,Y)

(x,¥)

(x,¥)

(X,¥,2)

Table 2.1-2 The Variables of the General Circulation

Model and their Dimensionalitaies
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Here the notetion ais

horizontal velocity

time

~ o <

Coriolis parameter

vertical unit vector

two-dimensional gradient operator

the vertical coordinste { = (p-pt)/(ps—pt)]

pressure

= a <9 =

pressure at _top of model atmosphere, constant
pressure at bottom of model atmosphere
specific volume

ps - pt

horizontal frictional force

gas constant

temperature

potential temperature

specific heat at constant pressure
heating rate per unit mass
geopotential

water vapor mixaing ratio

rate of condensation

W QR g &;Ua o H N " a3 g o

rate of evaporation.

Fléure 0.1-1 The Primtive Equations and the Varaiebles
of the GISS General Cairculation Model.



report on the model {Somerville, 19T4), shows the basic equations of the
model. The remsinder of this section will describe the UCLA and GISS models.
The emphasis will be on describing the differences between the first UCLA
model (Arakawa, 1972), the GISS model which evolved from it (Somerville, 19743
Tsang, 1973) and the second UCLA model (Mintz, 19T4) to i1llustrate the range
over which variations of the current GISS model may run in future models.

2.1.1 Vertiecal Levels

Fd

The farst UCLA model had only three vertical levels. The current
GISS model has nine, and the second UCLA model has twelve. GISS hopes to
expand to a fifteen level model. The new UCLA model incorporates a special
"sponge layer" as its highest level to damp out spurious numerical wave
reflections (Mintz, 197h).
2.1.2 Time

The first UCLA model and the GISS models use the expiieit mabsuno
predictor-corrector method for advancing time. For a variable Q, the
scheme uses a forward and a backward step to advance time by cne interval

in the following way:

Forward é(t Yy - alt)
LB o er(Q(s))
n+l n

Backward Q(tn+l) - Q(tn) . eale )
t - % n+l
n+l n

The forward step uses the current values of the varisble and the function f',

which approximates the deravative, to produce an estimste, Q% ), for the

n+l

value of the variable at the next time. The backward step uses the estimated
value to compute Q(tn+l), the value of the varisble gt the next time. The
process is illustrated by Figure 2.1.2-1.

F THE
EEEPB&H)U(HBILTFY 0
{EEH}BiAI.PAiHSIS‘POOB;



2 3 4 5 6 7
! 1 ! f ) | L .
T T+1 T+2 T+3 T+4 T4+5 T+6 TIME STEPS
al o QTH = QT2 > QTH3 Q™ Qs qt+e
) Y ; ¥ , !
* ¥* L %* #* 3
FORWARD M=1 M=1 M=1 M=1 M=1 M=1
{ ! y ¢ , ¥
6T+1 AT+2 6T+5 6T+4 6T+5 §T+6
* * # * * *
BACKWARD M=3 M=4 — M=2 FH | M=2 M=2 M=2

M=1, CENTERED IN SPACE AND FORWARD IN TIME
M=2, CENTERED IN SPACE AND BACKWARD (N TIME

M=3, UP-RIGHT UNCENTERED IN SPACE AND BACKWARD IN TIME
M=4, DOWN-LEFT UNCENTERED IN SPACE AND BACKWARD IN TIME

#* = COMP1 — COMP2

Figure 2.1.2-1 The Sequence of Time Steps and Spatial

Differencaing in the Time Integration Procedure



The GISS version of the model for the IBM 370/165 takes advantage
of the fact that only one complete copy of the varisbles is needed for this
method to reduce the storage requirements of the model by roughly half.

The new UCLA model uses the leapfrog scheme to advance time. This
scheme computes a value for the wvariable A at time tn+l as follows:

Al ) - Als
2(tn+1) - tn

) .
...l _ .
2 = 1'(als)).

This scheme takes half the computer time, but requires twice the space of
the Matsuno scheme, since two complete sets of the variables are reguired o
compute a new value. The leapfrog scheme is numeraically superior to the
Matsuno scheme in that 1t does not amplify or damp the solution, but it is
inferior in that 1t tends to produce two separate and divergent solubions.
The new UCLA model will couple these two sclutions by introducing one
Matsuno step for every six leapfrog steps.

Figure 2.1.2-1, taken from Tsang (1973), shows the seguence of
computation in the current UCLA and GISS models. Each normal time step
conisists of a COMPL-COMP2 call for a forward (estimator) time step and
another COMP1-COMP2 call for a backward (corrector) step. Every six normal
steps, the effects of solar radiation and evaporabtion are computed by a call
on COMP3 and COMPL. The value of the varisble M determines which form of
the difference algoraithm will be used in the COMP1-COMPZ2 roubines. The
followaing section discusses the need for the spatial difference variations.

2.1.3 Horizontal Resolution and Variocus Differencing Schemes

Both UCLA models and the most freguently used version of the GISS

model have T2 points around circles of latitude, and U6 circles of latitude
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from pole to pole (including the poles). For the next decade GISS 1s inter-
ested in models of two different sizes for the proposed computer (Halem, 19Th).
Both models will have 15 vertical levels {i.e., 15 spherical shells) and
differ cnly in the number of points around the equator of the model. The

two sizes of interest are:

1. A model with 128 points around the equator and with 96,

circles of latitude. We will call this the 96 x 128 grad.

2. A model with 256 poants around the equator and with 192

circles of latitude. We will call this 192 x 256 grid.

All of the models use =z stagered grid system, which stores the
values of the primary meteorological variables at different points in space.
Figure 2.1.3-1, which is taken from (Mantz, 1974%), shows five grid schemes
which have heen considered. The first UCLA model and the current GISS model
use scheme B, Arakawa has decided to use scheme C in the new UCLA model.
The basis for this decision, which follows in the next paragraph, 1llustrates
the intricacy of the model.

Convection of moisture from the earth's surface to high altitudes,
called cummlus convection ., 1s an important atmospherie phenomenon,
especially in the tropics. The scale of this motion 1s tens of kilometers;
the dastance between grid points at the equator is 156 kilometers even for
the 256 point model. Arakawa found a means to parameterize cumulus cloud
convection so that 1ts effects could be felt by the model in spite of the
fact that direct simulabion - as the model does for wands, temperature and
specific humidity - 1s not possible. The parameterized cumulus convection

produces rising and subsiding air motion which frequently occurs in a



11

(A) (B)
| +1.u,\.r,h i‘au,w,i*l 4’u,\:,h )41 th .h ?h
u,v TRV
) e
J‘,’u,v,h s,u,v,h au,v,h j Qh #h ’h
u,v u,v
° °
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1-1 L 1+l 1-1 1 1+1
-~ — - —
(C) (D)
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v v TV ?” du QU
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JT L L]
\d
ey ChU \h _Juy
i-% L i+5

54

the west to east component of the horizontal flow

d*

the south to north component of the horizontal flow

the distance from the surface to the top of the atmosphere
in the model

Figure 2.1.3-1 Staggered Grid Schemeg
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checkerboard pattern. To use scheme B for the grid layout, one must average
the values of pressure at the corners of each grid square to compute the
effect of pressure on the flow fields. Rising motion &b one corner is
cancelled by subsidence at another, and the net effect 1s that the cumulus
convection goes unnoticed by the model. Arskawa devised the intraicate time
and space dafference scheme shown in Figure 2.1.2-1 (taken from Tsang, 1973)
to counteract this insensitivity. The differencing scheme uses a cycle of
space centered and uncentered differences to permit the checkerboard pattern
produced by cumulus convection to influence the model. When grid scheme C
1s used, these elaborate gyrations are unnecessary. Primarily for this
reason, Arskawa has decided that scheme C will be used in the next UCLA
model. The current model, which is the basis for the GISS work, uses

scheme B.

2.2 @ISS Modafircations to the Model

Several modifications of the UCLA model were made by GISS. Only
one of these has a major impact on this research. This 1s the distinetly
different approach to the treatment of high latitude regions which GISS has
adopted, and which they call the split grid model.

The meridian lines on a sphere get progressively closer as they
approach the pales. The Courant stabality criterion (Fox, 1961), ¢ At < Ax,
where c i1s the highest velocity in the model, requires that a very small
time step be used to avoid numerical instability in these regions. The UCLA
approach to this problem 1s to smooth across progressively wider bands of
meridional lines as the meridians get closer together. The GISS approach is
to progressively reduce the number of meridians by a factor of two as one

moves from the equator to the poles. This divides the sphere into several
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regions as illustrated in Figure 2.2-1. Within each region, the number of
meridians is constant. The region boundaries are chosen to keep the inter-
meridian distance roughly constant for all regirons. In the split grid
model, the need for zonal smoothing 1s much reduced but not completely
eliminated. Table 2.2-1 shows the number of split graid regions for grids

with different numbers of points on the equator.

Meridians at Number of split
the equator grid regions
T2 5
128 T
256 ik
512 15

Table 2.2-1. The Number of Splat Grid
Reglons for Various Model Sizes

The splat grid model offers two advantages over the UCLA smoothing
approach. The first i1s that a larger time step can be used throughout the
model, since the smallest increment in the "x" direction 1s larger in a split
grid model. Also, there i1s a potential storage saving for the splat grid
model. The split grid scheme does have the liability that it is more
difficult to program.

Whether a rectangular UCLA-style model or a GISS split grid model
is used, some averaging of polar values must be done. Thus, there 1s a
clear inherent parallelism in the processing which strongly suggests parallel

computation on cireles of constant latitude.

2.3 The Effects of the Oceans on the Atmosphere

Until recently, meteorologists have assumed that the effects of the
oceans on heat transfer from the equator to the high latitude regions was

neglagible. TLately, however, this view has changed, as evidenced by the
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relatively large emphasis on ocean modelling at the UCLA workshop (Mintz,
197k}, and by the decision of the UCLA group tc couple an ocean model and
an atmospheric model in a fubture model. Whereas the ghmospheric equations
are integrated in time by explicait numerical methods, Semptner of the UCLA
staff indiceabed that all known ocean models asdvance time by successive
over-relaxation - an i1mplicit method (Semptner, 1974)., He also feels

that IBM 360 single precision arithmetic is sufficient for solving the
system of equations for a 46 x 72 grad.

Semptuner also cited work at GFDL (Menabe, 1969} which indicates
that integration of the atmospheric equations consumes 40O times the amount
of computer time as does antegration of the ocean equations for the same
simulated time. This dramatic difference results from the differences in
the two fluids, and the fact that the implicit solution scheme permits
the use of significantly larger time step than an explicit scheme would.

While 1t 1s clear that an ocean model will be required to improve
current results, 1t is not clear what the details of the ocean model must
be. Recent observations and numerical work (Mintz, 19Th) have shown the
existence of small scale (L40-50 kilometer) ocean phenomena. Whether these
are important, and 1f so, whether their effecis can be parameterized (as
was cumulus convection in the abtmospheric model) is yet to be shown. The
potential need for an ocean model coupled to the atmospheric model will be
most explicitly reflected in the size of memory that we recommend.

2.4 TInput and Qubtput Requirement of the Model

The proposed mode of operation for the new machine is that it
receive its program and initial data from the GISS TBM 360/95 by using an

IBM channel with a data handlaing capacity of 6(10)6 bats per second.
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A problem thus received would he run 1n stand-alone fashion by the

machine with periodic dumps of model status. The current GISS model writes
an output record every two hours of simulated model time for a 46 x T2 x 9
grid. Table 2,4-1 shows the variables which constitute these records, the
sizes of the records for a 46 x 72 x 9, 96 x 128 x 15, end a 192 x 25 x 15
grid, the lower bound on the elapsed time to write the record using the
channel gt 1ts maximum rate, and an estimate of the computing time required

for +he new machine to compute two hours of model simulation.

! BYTES
DATA e xT2x9 96 x 128 x 15 192 x 256 x 15
PAU i b k
¢(300) 1,200 1,200 1,200
Q(Ns,EW,V, k) 476,928 2,949,120 11,796,480
P (NS,EW)
TS (NS,EW)
SHS (NS ,EW) 13,248 h9,152 196,608 each
GT (NS,EW)
CW (NS,EW)
Tobal 54l 372 3,196,08k 12,780,724
Transmission
T1me 0.726 L,26 17.04 Seconds
Estimated
Computation
Pime 0.031 0.39 3.15 Seconds

Table 2.4-1 Record Sizes and Transmission
times for Various Grid Sizes
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As Table 2.4-1 mekes clear, data output from the model will have
to come at less than two hour simulated time intervals 1f the machine is not
to become heavily output bound. It 1s doubtful that channel fransmisgion

capacity can be increased nearly enough to reduce to oubtput time signifi-

cantly with respect to the computation time.
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3. The Arrsy Compuber

A computing capability improvement by a factor of 100 over the
capability of the 360/95 is a big order. In the time span specifired for the
development of this design, there is no hope of schieving this improvement
purely by increased raw hardware speed. Indeed, physical realities such as
the bound imposed by the speed of propagetion of eleciromagnetic waves
may make this path forever impossible. Clearly, 1f the capability increase
can be achieved, 1t must be achieved by using a machine organization
different from that of the 360/95.

The aﬁproach we shall take is to organize the machine as an array
processor. Applications research (Carroll, 196T7) for an early array
processor, the SOLOMON (Slotnick, 1962), has shown that the array processor
organization is ideally suited to the class of problems that the general
circwlation model typifies: solubtion of partial differential equations on
a large grid. Indeed, the GISS general circulation model has been success-
fully converted for execution on the ILLIAC IV (Slotnick, 1968), the only
operational large scale arrsy processor.

Figure 3-1 contrasts the organization of an array processor with
that of a conventional computer. In a conventionel machine, control hard-
ware (shown in the figure collected into one functional block and labelled
the Control Unit) interprets the instruction stream and provides signals
which control the operation of the rest of the hardware, collected into
the block called the Arithmetic Unit. In most conventional machines, both
the instructions and the dats are stored in one memory. In most conventional

computers, as suggested above, the conbrol and arithmetic - or execubtion -
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funections are seldom as clearly separated as the figure suggests. In the
array computer, however, the control and execution functicns are clearly
separated. The arithmetic unit 1s replicated many times (1024 in the
SOLOMON (Slotnick, 1962) and 64 in the ILLIAC IV (Slotnick, 1968)), and
the data memory i1s divided zo that each of the asrithmefiec units operates
on its own data stream under the control of one common program. In.a con-
ventional computer, conditional tests on data values in the single data
stream alter the flow of the single instruction stream. In the array pro-
cessor, residual loeal control in the processors of the array permits
conditional tests on data to allow individual processors to skip execubing
instructions. In a standard technique for controlling iterations, the
control unit samples the activity status of the processors in the array, and
stops the iteration when all of them become inactive.

Application studies reported by Kuck {Kuck, 1968) have shown that
another local control Tegture is a vital element in an arvay processor. The
ab1lity of each processor to 1ndex a control unit supplied data address
permits much more flexible use of the processors in the array. In the
general circulation medel, processcr level indexaing i1s necegsary to support
the table lock up process used in the radiation calculation phase of the
model. '

Virtually all problems for which array processors are suited re-
quire that the processors in the array exchange data values. In the
SOLOMON computer, the 102k processors were arranged in e squere thirty-two
processors on a side, and each processor could access the memories of its

four nearest neighbors in addition to its own. The sixty-four processors
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of the ILLTAC IV are also arranged in a squsare, and each processor can re-
ceive values from i1ts nesrest four neighbor processors. In the design
described in this paper, we use a separate roubing network model after the
suggestions of Lawrie (Lawrie, 1973) which permits much more flexable inter~
processor communication. Figure 3-2 shows the design described in the re-
mginder of this paper in block form. The machine includes & control unit,

256 array processors and their memories, and a sixteen unit three stage

roubing network.
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k., The System Design

The following sections will describe the gystem design. The 1mitaial
sections will establish the important parameters of the design. Subsequent
gsections will discuss the arithmetic processor, routing network, and control
unit of the system.

4,1 System Parameters

In thas group of sections, the basis for the word length, memory
si1ze, and other basic system parameters choices are given.
L.1.1 Word Size

The UCLA and GISS models run in single precision of the IBM System/
360 (Arakawa, 1972; Tsang, 1973). Williamson and Washington of the National
Center for Atmospheric Research (NCAR) performed precision experiments with
the NCAR model (Williamson, 1973). Normally, the CDC machines on which that
model runs operate on a forty-eight bait fraction. Through software means,
they ran twenty-four and twenty-one bit test cases, and compared the result
with a forty-eight bat control runs. They coneluded that "the lower-precision
arithmetic planned for the next generation of computers [that is, twenty-four
bit fractions] does not seriously affect the results from the current NCAR
[five degree, six layer] global circulation model." Dr. lLarry Gates of the
Rand Corporabion has recently rescinded his decision to run the Rand modifica~
tion of the UCLA model in double precision (Gates, 1975). He saad that
difference between single and double precision test runs are well wathin the
so-called “predictability error" for hydrodynamics calculations discussed by
Lorentz (Lorentz, 1963).

On the basis of the above information, we have decided that single

‘

precision arithmetic is sufficient for the execution of the model.
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4.1.2 Word Format

The system was designed to operate in conjunction with IBM series
360 computers at GISS. Data preprocessing steps to prepare input for the
system and data post processing steps to analyze the results of experiments
w1ll be done on the IBM equipment. Programming for the system 1s to be in
a FORTRAN-like higher level language, so that floating point operstion is
regquired. Because of the cooperation required between the system and the
360, it was decided to make the floating point format of the meshine the same
as that of the 360 (IBM, 1970). The floating point format for the design is
shown in Figure 4.1.2-1. A floating point word 1s represented an sign magni-
tude form by a one hit sign, a seven bit exponent, and a twenty-four bit
fraction. A zeroc sign bit 15 used for non-negative numbers. The seven bit
exponent field contains =z biased representation for exponent vlaues belween
minug sixty-four and plus sixty-three inclusive. The proper representation
for an exponent wvalue 13 found by adding the value to the bias, sixty-four.
Thus, for example, an exponent field value of 41 base sixteen represents an
exponent value of plus one, The magnitude part ot the number is a proper
fraction; that is, the exponent is an implieat binary point at the left
of the most significant fraction bit. Theexponent field represents the power of
saxteen which must multiply the fraction to corrsctly express the value of
the floating point number as a whole. Because the exponent radix is gixteen,
a change of one in the exponent value requires a shift of four bhit positions
in the fraction to represent the same numerical value. Thus, the twenty-four
bit fraction can be regarded as a six hexadecimal digit fraction; each
hexardecimal digit 1s represented by four conmtinguous bits of the fraction,

and shifts of the fraction are made in mulfiples of four bat positicns.
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Figure 4.1.2-1 The Floating Point Word Format
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4.1.3 Memory Requirements

Based on experience with the cost of development of special high
data rate disk systems which we obtained with ILLIAC IV, we decided that
the memory of the machine should be large enough to contain all of the
data, The memory requirement was estimated by running the COMMON for the
360/95 model through the IBM FORTRAN/H compiler. Space for four three
damensional variables {two velocity components, salinity end temperature)
and one two dimensional variable {the vertically averaged stream function)
of an eventual ocean model was added for the 96 x 128 and 192 x 256 models,

Because that machine would have & program memory separate from its
data memory for the processor array, space for the program is not included
in the following estimates. Table 4.1.3-1 displays the amount of memory
required for several sizes of the model, including the 96 x 128 and 192 x
256 models with oceans.

words of memory

NS x EW x % no ocean T level ocean
82 x 128 x 15 1,378,411 -

96 x 128 x 15 1,613,289 1,969,641
128 x 200 x 15 3,358,601 —_
256 x BO1 x 15 13,457,305 -
164 x 256 x 15 5,506,125 -
192 x 256 x 15 6,445,385 7,870,793

Table b4.1.3-1
The machine should be built with 223 words of memory to accommodate
the 192 x 256 grad. Each of the 256 processor memories would have ot (or

32768) words. Each of these words will comtein thirty-two information bits
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and six Hamming code bits (Hamming, 1950) for detection and correction of
single b1t errors. The decision to include error detection and correction
hardware was taken on the advice of the staff of the Universaity of Illinois
Physics department. They have constructed semi-conductor memory for their
computer, and found that the error detection and correction bits whaich they
included were well worth while, both in terms of improved system operation
and 1ncreased maintainabality (Downing, 197k).

L.1.k Measurements of the GISS Model

To discover the relative importance of mulbtiplication and the
frequency of double preeision operations in the execution of the model, the
GISS model was run for one time step on the University of Illinois' 370/158
under the control and observabion of a program which computes the frequencies
of all instructions executed by the program it observes. A series of runs
was made to permit instruction counts for the important parts of the model
to be determined. Execution times for these parts of the model were deter-
mined by the GISS staff (Karn, 19Th) during a one man year effort which
produced an ILLIAC IV version of the GISS model. Table 4.1.Lk-1 shows the
number of instructions executed in each of three parts of the model, the
360/95 time for execution of those parts, and the instruction processing
rate of the 360/95. Table 4.1.h-2 gives the frequencies for single and
double precision floasting point multiplications and divisions in the parts
of the model.

Approximately half of the instructions executed were floating
point instructions. These were nearly equally divided between addition and

subtraction on one hand and multiplication and division on the other. The
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Instructions 360/95 Time 360/95 Rate
11,891,631
69,480,878 10.3 sec. 6.75 MIPS
43,505,137 6.54 sec. 6.65 MIPS
Table %.1.h-1 Measurement Values
Tnitialization COMP1-COMP2 COMP3
1 h23,936 132,480
330 16 103,765
756 2,221,358 823,153
2,134 4,022,947 2,056,291
3 105,984 33,120
1 0 0
7T 359,58k 615,025
1,773 140,950 929,372

Table 4.1.4-2 TInstruction Counts
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ratio of multiplications to divisions (weighting COMP1-COMP2 by six to
account for the more frequent use of these routines in normal model execution)
1s 6.15 multiplications to one division. The vast majoraty of the double
precision flogbting point operation are performed by one assembly language
subroutine which rsises a number to a constant power. This routine uses
double precision because the speed of single and double precision operations
on the IBM 360/95 1s the same. An approximstion formulas with a few more
terms can be used without requiring any double precision.

On the basgis of the above information, we decaded to design a
single precision processor whose fleating point addition and multiplication
times are comparable. Double precision operationswill be performed on the
single precision hardware of the design relatively slowly since they occur
with such low freguency.

4.1.5 Processor Speed Reguirements

The system is to have roughly one-hundred times the processing
capability of the IBM 360/95 for the weabher model. As we saw in section
4.1.k, the 360/95 executes approximately 6.7 (10)6 operations per second
on the GISES general circulation model. We have already decided that the
machine we design will be an grray processor with an architecture similar
to that of ILLIAC IV. How many processors should the machine have? To
achieve 6.7(10)8 operations per second, a 256 processor machine must
perform one operation in 382 nano-seconds, a 512 processor machine need
only perform one operation in 76l nano-seconds. On the other hand, as
we w1ll see in section 4.3 - which discusses the vouting network - it is

amportant to have the number of processors be a perfect square: 256 1s the
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square of sixteen, but 512 15 not a perfect square. Moreover, a 256 pro-
cesgor machine will be more reliable and have a higher avsilsbility than a
gimilar 512 processor machine, Therefore, we will design a machine with

256 processors. We would, therefore, like the operation time for a processor

to be on the order of 400 nano-seconds.

4,1.6 The Choice of MTL Technology for the Processor

It was clear from the outset that the time and budget constraints
on the design necessitated using an existing integrsted circuit technology,
and 1n fact a family which is currently commercially available "off the
shelf". The choice must be eirther TTL, MOS, or ECL (Hnatek, 1973). A
higher level of integration (that 1s, more powerful individual packages is
avalable in the TTL family than 1s available in the ECL family. Moreover,
the new Schottky variant of TTL logic is nearly as fast as ECL. The speed
of MOS logic is far slower than that of even standard TTL., A floating
point processor with a fast multiplier wall surely require using several
hundred integrated carcuits in 1ts design. Fewer high level packages are
required than low level packages to achieve the same functions, and package
savings pay off in both board and interconnection savings. Therefore, we
chose to design the processor in terms of TIL inbegrated circuats.

Package savings in the processor design result from the use of
two different package intercomnecticn properties of two different special
forms of TTL logic. These are discussed #n the following two sections.

4,1.6.1 Open Collector Logic and the Wire AND

A standard TTL output stage is shown in Figure 4.1.6.1-1. The

active pull-up provided by transistor Q1 i1s that 1t permits faster operation
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Figure k.1.6.1-1 The Standard TIL Totem Pole Active Pull-up Output Stage
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than that of the resistor-transistor (RTL) or diode-transistor (DTL)
families from which the TTL family evolved. The passive oulput stage of
Figure 4.1.6.1~2 of the DTL family 18 used in some of the slower of the
TTL integrated caircuits. Deletion of the pull-up resaistor of the passive
output stage results in the so-called output collector cutput. Open collector
outputs of several packages can be wired together through a common external
pull-up resistor. If all of the oubtput signels so wired together are logic
ones, each circuirt will source less than one mlliamp so the resulting current
flow for the entire collection of wire ANDed circuits results in a loglc
one. However, 1f one or more of the wire ANDed oubtpubt signals i1s a logic
zero, the corresponding circuits will sink on the order of forty milliamps,
so that the resulting voltage level of the ensemble falls to that of a logic
Zero.

Within the processor, the open collector outpubs of the Signetics
8243 eight position scalers used in the right operand aligmment shift logic
and the normalization left shift logic are wire ANDed together. An enable
signal for the device permits foreing all eight output signals to logac
ones regardless of the state of the eight input saignais. One of the two
shift networks 1s enabled at a time, so that its output bits, AllDed with ones
of the disabled device, determine the net output of the ensemble.

4,1.6.2 Tri-state Logic and the Wire OR

The National Semiconductor Corporation holds the patents for
another output control technique which they refer to by the registered
trademark "tri-state!" logic. Standard TTL circuits augmented by the

National technique have an enabling input which can be usged to force the
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Figure 4.1.6.1-2 TTL Passive Pull-up and Open Collector Qutput Stage
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outputs of the device to & high i1mpedance state (#natek, 1973). The output
impedance of a standerd TTL output is nominally fifty ohms. The output
impedance of g disabled tri-state output i1s nominally 50,000 chms. Thus,
1f several tri-staite outputs are wired together and all but one of them are
dzsabled, the current into or out of the disabled outputs i1s negligible com-
pared to that for the one enabled output. Up to one hundred or more tri-
state outputs can be wired together on a single bus. The resulting wired
connection 1s usually referred to as a wired OR, and its logic state 1g
determined by the logic state o the enabled ocutput.

The processor design makes extensive use of tri-state devices
to reduce the need for selectors between otherwise competing signals.

h.2 The Processor Design

A simplafied block diagram of the processor 1s shown in Figure 4.2-1.
The names in the blocks of this figure (with the exception of the 2/1
Selector blocks) are the names of the Figure or Figures which present the
logic of that bloek in more detarl. FEach of these blocks 1s deseribed in
detail in the following sechtbions.

Multaplacation is performed by logic external to that shown in
Figure L.2-1. The two twenty-four bat operands to be multiplied are sent to
the multiplier as shown, and both the most and least significant halves of
the product are returned. =See section 4.2.5.2.4 and (Stenzel, 1975) for a
detailed description of the multiplier.

The processor as a whole is a large combinatorial circuit which is
econditioned by control signals from the control unit. It operates in steps

governad by one clock pulse. A typacal cycle begins with operand selection.
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Two operands, one of which may come from memory, flow through the paths in the
logiec selected by the set of control signels. At the completion of a cycle,
result values are clocked intc the registers specafied by the set of control
signals.

In any logic design, options are available at many stages. The
rules governing the choice among opbtions in this design can be quallﬁlvely
stated as follows: minimize cost and package count, but not at the expense
of time 1n the eritical path. Cost 1s reflected not only in the direet cost
of the packages, bubt also by the amount of board area (and hence the number
of boards) which the packages occupy. Minimizing the number of boards can
lower overall cost by reducing the need for backplane wiring or mother boards
and eliminate the need for inter-board connections. The board area for a
package was assumed to be proportional to the number of pins which the package
has. Although this assumption is not strictly true, it serves well as an
operation rule of thumb when making design cholces.

4.2.1 Conventions Used in the Figures Which Describe Logic

Designaing computer hardware in terms of existing integrated circuit
packages differs from computer design in terms of discrete components. In
many cases, the designer working with integrated circuits finds that no
existing package exactly suits the need of the moment. What he must then do is
make the best compromise he can with the packages which are available, accord-
ing to the general guidelines which he has adopted.

The simplest exemple of the gbove general comment 18 that it often
happens that an N-input gate of some type 1s needed. A concrete example in
this design a1g that & four input OR gate is needed by the logical demands of

the function to be implemented. What are available are two input OR gates
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and two, four, and five input NOR gates. Among these gates, only - the five
input NOR gate - 1s aveilable in Schottky form. When the desired logie
function i1s 1n a time-critical path, the highest speed element should be used.
Hence, one finds himself using a five input gate for a four input function.
Many instances of such use ocecur in this design. When they occur in the
Tigures, only the number of inputs which are required for the logic function
being implemented are shown. The extra leads which may exist are assumed to
be connected to sources of logic ones or zeros as necessary. For exsmple,
the extra input of the gbove five input NOR gate would have to be comnected
to a constant logic zero source to guarantee the correct operation of the
logic in which 1t 1s used.

Detalrled documentation for the integrated cireuits used in this
design can be found in four industry data books. In the description which

follows, the following notation given in Table 4.2.1-1 was used for naming

components.
Form of the Name Source for Detailed Information
SNT 4o The TTL Data Book for Design Engineers, First Edition,
Document Number CC—hll, Texas Instruments Incorporated,
1973.
Supplement to the TTL Data Book for Design Engineers,
First Edition, Document Number CC-416. Texas Instru-
ments Incorporated, 19Th.
SI1Gxxxx Signetics Digatal, Lanear, MOS Data Book, Signetics
Corporation, 19Th.
AMxxexex Advanced Micro Devices Data Book, Advanced Micro
Devices Incorporated, 19Th.
NATxxxx Digatel Integrated Circuits, Natronal Semiconductor

Corporation, 19Th.

Table 4.2.1-1 The Notation for Package Names
in the Logic Design Figures

B
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4.2.2 Signal Name Notation Used in the Design Description

In the description of the design in the follwoing sections, signals
will be named by an identifier of eight or less capital letters and digits.
The first character of a sighal name will be a letter. Multi-bit signals are
named by a single identifier to which bit specifications are sppended. A
bat specification is a 1list of up to three integers separated by comﬁas and
enclosed in parentheses. The bits of multi-bit signals are numbered from one
for the most significant to ¥ for the least significant bit of an N bat
signal. A bat specification which consists of a single integer specifies the
single bit of the multi-bit signal with that integer as its bit number. In a
bit specification with two i1ntegers, the first specifies the bit number of
the most significant bat of the signal and the second specifies the number of
contiguous bits in the signal. The third integer of a three integer bat
specificabion is the dafference between successive bit numbers in the speci-

fied signal. Table 4.2.2-1 gives several examples of signal names.

Signal Name Meaning

A the one bit signal A

B(3) bat three &f the multi~bit signal B

B(1,32) bits one through thirty-two of the multi~bit signal B
B(5,4) bits five through eight of the multi~-bit signal B
c(1,2,4) bits one and five of the multi~-bit signal C

Teble 4.2.2-1 Several Examples of Signal Names
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This notation for signal names is used consistantly throughout the text and
figures which describe the design. It i1is also used for signal names in the
input language for the logic simulation package descraibed in section 5.1. In
the truth tebles which follow, & lower case "x" signifies that the package
deseribed by the truth table operate correctly for asny value of the signal
represented by the "x". :

4,2.3 Inversion in the Logic Figures

When the function of an integrated circuit includes the logical
complement of the inputs, this is shown by a smell circle external to the
rectangle which represents the integrated circuit. The alignwment shift blocks
of Fagure 4.2-1 are an example of an inverbting block.

4.2, Detailed Descripbion of Two Packages

Two packages, the Texas Instruments SNThS157 and the Signetics 8263,
are described in deteil in this section. Two reascns motivate these detailed
descriptions. First, these packages are typical of most of the integrated
circuits which are used in this design. ©OSecond, and perhaps more important,
these particular packages perform critical functions in the design. All of
their features are exercised, so that a full understanding of the design is
impossible without a full understending of these two packages.

h,2,h.1 The Texas Instruments SNTLS157

The Texas Instruments SNTLS15T 1s a quadruple two-to-one selector.
It accepts two four bit input operands and a one bit selection signal and
produces a four bit output. The output is the four bit input designated by
the selection signal. There 1s one more input, however. A one bit strobe

signal can be used to foree the outputs to zeros without regard to the input
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signals. There are several occasions in the design where the strobe signal is
used to good advantage. The truth table for the SNTUS15T is given in

T&ble l"o2-"|'-l-'1r

Inputs
Qutput
Data Selection Strobe
X X X 1 0
A(1,) 0 0 A(1,h)
x B{1,%) 1 o B(1,k)

Table 4,2.4.1-1 The Truth Table for the
Texas Instruments SNTLS15T

4.2.4.2. The Signetics 8263

The Signetics 8263 1s a quadruple three-to-one selector. It accepts
three four bat input operands, a two bit selection signal, and & one bit com-
plement signal, snd produces a four bit output. The oubput 1s the fowr bat
input designated by the selection signal. The two bit seleetion signal can
specily one of four input signels, the fourth state 1s used to set the outpub
to zero without regard to any of the input signals. The complement signal.
can be used %o specify that the output 13 to be the logical complement of the
selected input. The truth table for the Signetics 8263 1s given in

Table L4.2.4%,2-1.
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Inputs
. Output
Data Selection Compiement

X X X 00 0 0000
A{1,L) X X 0L 0 A(1,h)
X B(1,h) X 10 0 B(1,4)

X X c(1,4) 11 0 c{1,4)

X X X 00 1 1111
A(1,h4) X b 01 1 a(1,Ly
X B(1,4) X 10 1 B(1,k)
X X c(1,4) 11 1 ey

Table 4.2.4.2-1 The Truth Table for the Signetics 8263
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4,2.5 The Processor Design

In the two seetions which follow, the design of the processor 1s
completely described. The first of these sections describes functional logie
blocks in their own right without regard to the contributions which those
blocks make in the operation of the processor. The second section describes
how the processor performs normaelizetion, roundang, floating point addition/
subtraction, floating point double precision addition/subtraction, floating
point multiplication, and finally floating point division. Thas section
relies on an understandingof the former sections describing the various logic
blocks. It descraibes the combrol logic which 1s necessary to integrate the
operation of those logic blocks to perform the desired operstions.

4,2,5.1 Logic Blocks

The following sections describe several logic elements which per-
form definite functions in support of lerger operabions in the processor.

k,2,5.1.1 The Zero Detect Logic

A zero detect logic block produces the logical OR of thirty-two bits.
Three instances of the zero detect block cceur. In all three cases, the
thirty-two input bits constitute a thirty-two bit operand frsction. Figure
4.2,5,1.1-1 depicts the zero detect logic. The packages used are four SNTES260
dual five-input positive NOR gates and one SNTUS133 thirteen-input positive
NAND gate. BEach of the NOR gates is used to produce the NOR of four input
fraction bits. The eight results are combined by the NAND gate to yield the
desired OR of the thirty-two input bits.

In Figure 4.2.5.1.1-1, the four bit groups shown as inputs to the

WOR gates represent four bit digits of a fraction. In conly one of the three
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instances of the zerc detect logic is thais rigird connection scheme necegsary.
{Bee section k.2,5.2.1 Normalization,) In the other two cases, the total of
forty NOR gate inputs can be connected in whatever manner is convenient for
circult board routing purposes.

4.2.5.1.2 The Fraction Comparator

This logic block is burlt entirely with the SNTES85 four bat
comparator. This aintegrated circuit accepts a pair of four bit operands and
three signals which perm:lt fabrication of multi-bit comparators and produces
three one bit output signals. Figure 4.2.5.1.2-1 shows one SNTLSB5, and
1llustrates how 1t 15 used in this design. Table k.2.5,1.2-1 15 the truth
table for the SNTES85. Figure 4.2.5.1.2-2 shows how eight SNTLS85's are
used to compare two thirty-two bait fraction values. The output saignal AGTR is
a logic one if and only 1f the A(1,32) input signal exceeds the B{1,32) input
signal, The ABEQ signal 1s & logic one if and only 1f the input signal values
are ldentically equal.

h.2.5.1.3 The Exponent Adder

The exponent adder, shown in Figure 4.2.5.1.3-1, accepts two exght
bit exponent quantities, AEXP(1,8) and BEXP(1,8), one three bit function
specification, ABFUNC(1,3), and a one bit input carry signal, EXCARRY. The
two erght bt exponent inputs consist of a zero bit as most significant bit,
followed by the seven bits of the biased exponent for the two operands.

The exponent adder produces the eight bit combinabion of the two
input exponents, EXC1(1,8), as specified by the function, ABFUNC(1,3), the
absolute value of the difference of the two input exponents, ABS(1,T), and

two one bit control signals, EXC2 and EXC2BAR.
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Figure k.2.5.1 2-1 The SNT585 Four Bit Comparator
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Relation of the Cascading Inpubs OQutputs
4 bat data ainputs
=B A<B A>3 A=B A<B A>B
A>B X X X 0 0 1
A< B X X X 0 1 0
A=3 1 X X 0 1 0
0 0 0 0 1 1
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 0 0

Table 4.2.5.1.2-1 The Truth Table of the SNTUSE5 Four Bat Comparator




8l4,4)

A{4,4)

b7

SNT4585

A<B
A=B
A>B

——— ABEQ
—— AGTR

o—¥A<
1-—j A=B
o —]a> 2
A<8
wn
B(29,4) $ ase
T a8
w
A(29,4)
B(28) A<B
—Ja:=8B
alzs) A>B |,
gg A<B
Bl24,4) ¥ A=B
=z A>B
oy
Al24,4)
A<B
A=B
B{23) A:g SE
B4 @
Al23) ASB o hd 2 a<B
© A< gg ¥ A=B
Bl19,4} <t AsB ____J_———— AS 2 a8 i
=z A>8 a2 @
w Bl
A{19,4} Al
B(18) <B
— a=8
A(18) >B 0.
© a<B
B(14,4) T AzB
I A=B
Al14,4) A>B
B4
A4
B(3) B3
A{3) A3
BI13) <B B(2) B2
—— AzB Ai2) Az
AlL3) *B 4 B(1) B1
?f; A<B Al1) Al
8(9,4) ¥ A=B
T aB
w
A{9,4)
8(8) A<B
—1A=B
sl
7 B
Al7) AG o A<B
prt—
6
B{S) B2 Z A>B
A(S) A2
B(4) B1
Al4) Al '

Figure 4.2.5.1.2-2 The Fraction Comparator

REPRODUCIBILITY OF THE
NRIGINAL: PAGE IS POOR

v



L8

1 (CARRY)
=y
BEXP(5,4) e EXBA (5,4}
(72}
d-
M~
=
w
o
1 o
FBAC4 w
<
[
=
BEXP{1,4) D ?
@
NS EXC2
z EXBA(1,4)
. 5
(0,NSHIFT{1,3) 0 001 2 |——aBs(4,4)
@ {FUNCTION) s
M~ n
AEXP(5,4) o EXCARRY ]
M~
o 3 -—— ABS
m | EXC1{5,4) < (1,3)
[} R g
N \a »
0100 = % ABG(2)
— ABP(2}
(/7] o
N 1 3
=
AEXP(1,4) = Faac4 s EXC1(5,4)
aseul | T »
g ABP(1) w :‘::,
g L
@ o
S EXC2BAR
7 EXCL{1,4)
ABFUNC(I,3)

Figure 4.2.5.1.3-1 The Exponent Adder



L9

The main functional component of the exponent adder is the SNTLS381
arithmetic-logic unit. The functions performed by the SNTLS381, together wath
the function codes which specify them, are shown in Table 4.2.5,1.3~1 (Texas
Tnstruments Corporation, 19T4). The SNTUS381 does not produce an output carry
élgnal. Instead, 1t produces the standard pair of carry look shead singels
for the two four bit operands. One of these signels i1ndicates whetherlthe
two input operands will generate a carry; the other signal indic;tes whether
an input carry of one will be propagated (Ledley, 1960). The generate and
propagate signals must be used in conjunction with a carry generator such as
SNTL8182 (Texas Instruments Corporation, 1973).

The exponent adder actually consists of two eight bit adders
working in parallel, The one shown at the top of Figure 4.2.5.1.3-1 always
computes +the difference A(1,8) - B(1,8). The lower adder computes the
function specified by the control unit signals ABFUNC(1,3) and EXCARRY. When
ABFUNC(1,3)=010, and EXCARRY=1, ABS(1,7) 1s the sbsolute value of the exponent
da1fference snd EXC2 and EXC2BAR have the meanings given in Table 4.2.5.1.3-2.
The absolute value 1s computed by computing both A(1,8) - B(1,8) and B(1,8) -
A{1,8), and selecting the positive result with the pair of SNTLUSIST two-to-~
one selectors by using EXC2BAR as the selection signal.
k.2.5.1.4 Shifting

Fraction alignment shifting and the normalization shifting are both
accomplished by using the Signetics 8243 eight bit position scaler (Signetics
Corporation, 1974, pp. 3.28 through 3.32). This device has open collector
outputs so that seversl can be wire ANDed together. The shifted output bats

are the logic complements of their corresponding input bits. When disabled,
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Inputs
Output

A(L, ) B(1,4) Function Carry

X X 000 X 0000
Al1,l) B(1,k) 001 0 B(1,4) - A(L,b) -1
A(1,L) B(1,k) 001 1 B(1,4) - A(1,b)
A1,b) B(1.,4) 010 0 A(1,4) - B(1,L4) -1
A(1,h) B(1,4) 010 i A1) - B(1,k4)
A(1,4) B{1,4) 011 0 A(1,k) + B(1,4)
A(L,4) B{1,k) 011 1 A(1,4) + B(1L,b4) + 1
A01,4) B(1,k) 100 X A(1,4) ®B(1,L4)
A(1,h) B(1,k) 101 X A(1,4) OR B(1,4)
A(1,W) B(1,k) 110 X A(1,b4) awp B(1,4)

X X 111 X 1111

Table 4.2.5,1.3-1 Functions of the SNT4S38L waith
Active High Carry and Dats
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Signal Value Meaning

EXC2 0 A(1,8) > B{1,8)
1 A(1,8) < B{1,8)

EXC2BAR 0 A(1,8) < B{1,8)
1 A(1,8) > B{1,8)

Table 4.2.5.1.3-2 The Meanings of EXCZ2 and EXCZBAR
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the device emits logie ones., Output bits which, because of the specified
shift, have no corresponding input bits are alsoc logic ones.

Because the exponent base of the floating point system used in this
design is sixteen, alignment and normalization shifting always require a shaft
by a multiple of four bit positions. The aligoment shift logic, Figure
h.2.5.1.4-1, and the normalization shift logic, Figure 4.2.5.1.4-2, can there-
fore be implemented by using only four 8IG8243's each. Each of the scalers
accepts one bit from the same position within each of the eaght digits of the
thirty-two bit fraction to be shifted. The shift amount for each 1s the
nuwber of diglt positions to shift.

Although the SIG8243 has both an enable and an inhaibat anput to
control the output state, this design uses only the inhabat signal. When
the 1nhibit signal 1s a logic one, the output bits are all logic ones. Das-
abled outputs are used to provide zero operands when the shift amount ex-~
ceeds seven, and also for several other cases in the design where zero
operands are needed. The detalls of alignment shift control are given in
section 4.2.5,2.3 which discusses floating point addition and subtraction
Normalization shift control is discussed in section 4.2.5.2.T7on double
precision addition and subtraction. When the inhibat signal is a logic
zero, shifiing of the input bits takes place as specified by the three b1t
shaift select signal.

The device performs shifts in only one direction. Both left and
right shifts can be 1mplemented by proper use of the scaler as shown in
Figure %.2.5.1.4-1 and Figure 4.2.5.1.4-2 by altering the orientation of the

device with regpect to the most significant bit of the input signal.
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k.2.5.1.5 The Left Operand Selection Logic

The left operand selector logic block supplies the left operand to
the adder. Two different integrated circuits are used in the left operand
selector: +the SNTLS1ST quadruple two—to—one data selector and the SNTUS1S3
dual four-to-one data selectog. For clarity of description, the blocks n
Figure 4.2.5.1.5-1 do not correspond to the sbove integrated circuit packages,
but rather to the selection functions they perform. They are labelled 5157
for the two-to-one function, and 8153 for the four-to-one function. Whereas
the SNT4S153 operates on pairs of four bits, the S153 at the bottom of the
figure 1s shown operating on a single four bit group; the 5153 next to the
bottom operates on ten four bit groups.

The left operand selector supplies six different operands. They are

1. the fraection output of the left alignment shift logic

2. the twelve high order bits of the first approximation to the
reciprocal for davision. The other twenty bits of the fraection
are Torced to one by disabling the left alignment shift logic.
As noted sbove, the alignment shift logic produces complemented
outputs, so that the adder operstes on active low data. Thus,
the ROM which supplies the 1nitial reciprocal approximation
must be programmed to supply active low data also.

3. the constant fraction one-half (in active low data form) for
use 1n the division algorithm. The high order bit, LEFT(1), is
forced to zero by the bottom S153 of Figure h.2.5.1.5-1, and
the other thirty-one bits are forced to one by a disabled

alignment shift network.
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4, the constant fraction 2ﬂ12 for use in the division algorithm.
The bit LEFT(12) is forced to zero by the corresponding S153,
and the other thirty-one bits are forced to one by a dasabled
alignment shift network.

5. & value for rounding data values to memory length (twenty-four

fraction bits). All bats of this constant are ones from s
dissbled alignment shift network, except for LEFT(2Lk), whach
1s egual to bit twenty-five of the fraction being rounded.

6. the twenty-four least significant bits of a product. The
adder normally operates on actave low data, and a logic comple~
ment follows the adder. A product return in active high data
Porm. If the least significant part of the product is sought,
it is complemented by the adder by using the exclusive OR funce—
tion with ones forming the disabled right slighnment shifi
logie.

Since the logic for the left operand selector requires the 5153
function on a total of thirteen bits and the S157 function on nineteen bats,
seven SNTUS153 and five SNTLS1ST integrated circults are required to imple-
ment 1t. No control local 4o the processor is necessary for 1ts operation.
4.2.5.1.6 The Adder

The adder, shown in Figure 4.2.5.1.6-1, accepts two thirty-two bit
fractions, LEFTP(1,32) and RIGHT(1,32), a function specification, AFUNCG(1,2k),
and an input ecarry AC. It produces a thirty-two bit output, SUM(1,32), which
depends on the input operands, the carry, and tﬁe function specification. The

SNT4S381 arithmetic-logic unit and the SNTLS182 look-ahead carry generator.

REPRODUCIBILITY OF THFR
ORIGINAL PAGE IS POOR
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Except in the case of the integerize function, which is described
1n section 4.2.5,2.6, each SNTLS381 performs the same function, so that
AFUNC(1,3)=AFUNC(4,3)=. . .=AFUNC(22,3). The functions which can be speci-
fied are listed in Table L.2.5.1.3-1.

The output of the adder is the thirty-two bit result, SUM(1,32), and
the carry out, ACOUT. The function input to the SNTLS381's 1s the result of a
wire-OR of four separate tri-state sources. Figures 4.2.5.1.6-2 and
b,2.5.1.6-3 show successively more detail abouyt these wire-0ORed signals.
Figure 4.2.5,1.6-2 shows eight wire-OR's, each of which produces a three
b1t funetion specification. Each of these three bit wire-OR's actually con-
s1sts of three separate wire-OR's like the three shown in Figure 4.2.5.1.6-3.
The details of the signals AFUNC1(1,3), IFUNC(1,8), and CUAFUNC{1,3) will be
given in sections 4.2.5.2.1 through 4.2.5.2.6.

4.2.5.1.7 Fraction Selection Logic

The adder operates on active low data pramarily because the Signetics
8243 eight position scaler, which 1s used to perform alignment and normaliza-
tion shifting, has complemented ocutputs. Therefore, besides selecting one of
faive possible fraction sources, the fraction selection logic also performs a
logaical complement. The logic 1s shown in Figure %.2.5.1.7-1, and consists
of Signetiecs 8263 quadruple three-to-one selectors and Advanced Micro Devices
AMO309 dual four-to-one selectors. The SIG8263's were used where possible to
reduce the package count, and the AM9309's were used because no other four-to-

one selector which provides complemented outputs 13 available.
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The five signals which the fraction selection logic accepts as

l.

2.

As

the unmodified output of the Adder, {SUM(1,32).

The output of the adder shifted right one digat position {four
bit positions) by appropriate selection. The conmtrol for de-
ciding between this input and input (1) above depends on
whether fraction overflow coccurs during fraction addition. The
details of this control are given in section 4.2.5.2.3. If the
shifted input 1s selected, the high order digit 1s forced to
1116, complemented to 000L.

The fraction output from the routing loglc reassembly register,
FROUTE(1,32). The routing logic is the subject of section

4. 3.

The outputs of the mode flip-flop of section %.2.5.1.9 and
five condition flip-flops (MODE C, %, SIGN, 0, U) which are
deseribed in section %.2.5.1.12, and the output of the status
register of the mode logic, STATUS(1,8), which 1s described in
section 4.2.5.1.9. 'These thirteen bits are supplemented by
nineteen bits of ones (complemented to zeros) forced from the
SNTUS381 arrthuetic-logic umtbs (see Table 1.2.5.1.3-1).

The specisl fraction overflow shaft of one bat position which
uses the high order digit value of (0111, complemented to 1000.
This case 18 fully discussed in section k.2.5.2.5.

shown in Figure 4.2.5.1.7-2, the fraction selection logic 1s 1in

every path which leads to the operand registers. Therefore, one would like 1t
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1t to be as fast as possible. Unfortunately, neither the SIG8263 nor the
AM9309 1s available in Schottky form. Figure 4.2.5.1.7-3 shows how the
thirteen package logic of Figure 4.2.5.1.7-1 could be replaced by twenty-two
packages: sixteen SNTLS153 dual non-complementing four-to-one selectors and
s1x SNTUSOL inverters. The gain in time 1s twelve nano-seconds per operation
when the timing depends on the data arrival time at the selectors. and sixteen
nano~-seconds when the timing depends on the srrival time of the selection
signals.

4.,2.5,1.8 Exponent Correction Adder

The exponent produced by the exponent adder is not correct in all
cases. When fraction overflow occurs, the fraction is shifted right one
digit position and the exponent must be increased by one. This case and
several others discussed in section %.2.5.2.5 ere handled by the exponent
correction adder.

The logic for the exponent correction adder i1s shown in Figure
h.2.5.1.8-1. Tt includes two SIG8263 three-to-one selectors which are used
to select either the exponent of the left operand, AEXP(1,7), the exponent of
the right operand, BEXP(1,7), or the result exponent from the exponent adder,
EXL(2,7). Bit EXCL(2) 1s complemented because 1t 1s the bias bait an the
brased exponent. When an exponent sum or difference i1s computed by the ex-
ponent adder, the bias b1t must be complemented in order for the resulting
exponent value to be correctly represented. (See section 4.2.5.1.12.% or
section 4.2.5.1.12.5 for more details.) The logic which produces the selec-
tion signal for this selection i1s shown in Figure 4.2,5.1.8-2, The SNTLS151

eight-to-one selector i1s controlled according to the truth table an
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Figure 4.2.5.1.8-1 The Exponent Correction Adder
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Table 4.2.5.1.8-2; 1ts inputs are wired to the logic constants andicated by
Table 4.2,5.1.8-1. EXP1l, EXP2, and EX3TQL{l) are control signals from the

control unat.

EXCZBAR AZERO BZERO ggigﬁT
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Table 4.2.5.1.8-1 The Low-order Bit of Exponent .
Selection Control
An EXCZBAR value of one means thet the left operand has been shifted, so
that the correct exponent for a sum or difference 1s the exponent of the right
cperand. An AZERO velue of zero meens that the left operand fraction was
zero, a BZERC value of zero means that the right operand fraction was zero.
Control signals from the control unit determine the control signal for the

exponent selection process eccording to the truth table in Table 4.2.5.1.8-2,
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Input Signals Output Selection Signal Exponent
FXSEL EX3701(1,2) Selected
x ol exponent
adder
value
1 10 left
operand
exponent
0 11 right
operand
exponent

Table 4.2.5.1.8-2 Exponent Selection Control

The SNThWS181 arithmetic-logic units are used to either add or subtract one

from the selected exponent.

The values of CORCARRY and CORRFUNC(1,4)

necessary to accomplish this are given in Table 4.2.5.1.8-3 which is based

on the operating details of the SNTUS181 (Texas Instruments Corporation, 1973,

p. 383).
Inputs
SNTLS181 Output
CORRFUNC{1,k) CORCARRY
0000 0 exponent + 1
1111 1 exponent - 1

Table 4.2.5.1,8~3 Control of Exponent Correction Add

The control logic shown in Figure 4.2.5.1.8-3 supplies the CORCARRY and

CORRFUNC(1,4) signels.

The signael from the divaision control ROM 1s explained

in section 4.2.5.2.5. The final stage of the exponent correction adder
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‘ FROM THE DIVISION
CONTROL ROM

CONTROL
! r— CONTROL

1 SN74|s51

CORCARRY
AND ALL

CORRFUNC
BITS

Figure 4.2.5.1.8-3 The CORCARRY and CORRFUNC(1,k) Bits for
Exponent Correction Adder Control
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performs e selection function for the result exponent similer to that per-

formed for the regult fraction by the fraction selection logic described in

section 4.2.5.1.7. The selection 1s performed by four SNTLS153 four-to-one

selectors according to the logic shown in Figure 4.2.5.1.8-4 and the truth

table given in Table 4.2.5.1.8-k., The four final exponent values which can

be selected are.

1. The constant h616’ which 1s the correct biased exponent
value for the status register wvalue.
2. The exponent of the value received from the routing unit.
3. The exponent selected by the input selection logic of the
exponent correction adder.
L. The gbove exponent modified by the SNTLS1B1l's of the
exponent correction adder. This last choice 15 governed
by the OVFLSEL bit whose deravation i1s explained in detail
in section L4.2.5.2.3.
Inputs Selection Exponent
control 1 control 2 control 3 OVFLSEL Signal Selected
0 1 X X
00 1*616
0 0 0 x 01 routing
exponent
1 0 1 1 10 selected
exponent
1 0 1 0 11 modified
' exponent

Table k,2.5.1.8-4 Final Exponent Selection Control Signal
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CONTROL 2 — — CONTROL. 3

— OVFLSEL

+ SN74{s51

CONTROL 1

EX4TOlLL

Figure 4.2.5.1.8-4 Control Signal Logic for Final Exponent Selection
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4.2.5.1.9 The Mode Logic

The mode logic 15 shown in Figure 4.2.5.1.9-1. Tt includes the mode
flip-flop register (the SNTLS1T5) and an eight bat status register (the
AM9334). The contents of the mode register provides the most important local
contrel function an the processor. When the mode bit is zero, modificstion
of operand register and condition flip-flops (see section L4.2.5.1.12) 15 not
permitted. The status register can be used to store mode register states.
Tts use 1s 1llustrated in sections 6.4 and 6.5.

The mode logre permits combining %he current mode state with any
cne of fifteen bit values local to the processor or with one bit from the
control unit MODEIN. The selected bait can be combined with the mode b1t
using any of the sixteen possible Boclean functions of two variables; the
SNTUS181 can compute 2ll of these Boolean functions. The resulting bit
value can be stored i1n the mode flip-flop and/or any one of the eight bit
positions of the status register. The status bits, STATUS(1,8), the mode
flip~-flip state, and the condition flip-flop states can all be saved or re-
stored from a processor register (see section 4.2.5.1.7).

The fifteen possible local operand baits for Boolean cowbination
with the mode bit include

1. the eight processor stabtus register bats, sraTUS(1)

through STATUS{8)
2. +the five condation Plip-flop contents, C, %, B8IGN, O, and U,
3. +two combinations of conditions flip-flop contents, namely

&, ZBAR NANR SIGNBAR

B. OBAR NAND UBAR

REPRODUCIBILITY OF THE
QRIGINAL PAGE I5 POOR
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B(17,8)
CLOCK 229
FUNC299 ———— SNT745299
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T T CLOCK238
SN748175 |——CLOCK
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3] SN74[s00
SN745150 —— SEL150(1,4)
SN745181 MODEFUNC(1,4)
MODECQUT
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Figure 4.2.5.1.9-1 The Mode Logic
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The bats of parts {2) and (3) above permit testing for any of the six possible

relations between two numerical values as shown in Table b4.2.5.1.9-1.

Relation of Two Values Bit Comments

Equal Z A result fraction was
zZerc

Not equal ZBAR A result fraction was
not zero

Greater than or equal SIGNBAR A result sign was
posttive

Less than or egual SIGNBAR NAWD ZBAR A result was positive

= SIGN OR Z or zero

Grester than STIGNBAR AND ZBAR Complement of the above
by appropriabte SNThS181
Boolean function selec-
tion

Less than SIGH A result sign was
neggtive

Table 4.2.5.1.9~1 Testing for Any Possible Relation
Between Arithmetic Values
The SNTLS299 iz an erght bat parallel-in parallel~cut shift register
which can operate at rates up to 50 MHz. It can shaift left and right and has
a serial bat outpub. A subset of 1ts facilities i1s used. Signal FUNC299 is
used to select either the parallel load or shift function. It receives
eight bits from the processor registers for restoration to the AMO33L status

reglster.




T

The mode logic can accomplish 1ts operations is significantly less
time than can the full processor. If 1% 15 desired, this fact can be used to
advantage by permitting the control umit to use several different inter-clock
pulse intervals for array conirol. Mode operations, and in particular
the serial shift of the eight bits from the SNTES299 to the AM933k, are among
the best candidates for this approach.

The status bits, STATUS(1,8), can be saved 1n a processor register
with an assigned exponent value of h616 (a Elased exponent of plus six) by
appropriate use of the fraction selector, section 4.2.5.1.7, and the final
exponent selection part of the exp;nent correction adder, section L4.2.5.1.8.
The fraction selection logic complements its input; there, an inverting two-
to-one selector (the SNT4S158) 1s used to reinvert the data.

The AM933% 1s an eight bat latch which accepts one input bit and a
three bit latch address, ADDRM34(1,3). It stores the input bit in the
addressed latch when en input enable signal goes to a logic zero. (BSee Ad-
vanced Miero Devices Incorporated, 1974, pp. 2-149 through 2-15k.)

The SNTLS150 1s an inverting sixteen-—to-one selector, controlled by
SEL150(1,%). It provides one input to an SNT4S181 arithmetic-logic unit
which operates in logic mode. The other input to the SNT4S181 is the current
Mode value. Any of the sixteen possible Boolean combinagtions of two varigbles
can be specified by MODEFUNC(1,4). (See Texas Instruments Incorporated, 1973,
pp. 382-391,)

The SNT4USLTS 1s a quadruple flip-flop package which has both MODE

and MODEBAR ocutputs available.
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k,2.5.1.10 The Operand Registers

Although memory values have only thirity-two bits, intermediate
results~W1th1n the processor have forty bits. The extra eight bits extended
the fraction to thirty-two bits within the r processor. Each processor has
sixteen operand registers. They are implemented by using SNT4S1T72 register
files. The SNTLS1TZ2 stores sixteen bits organized as eight two bat words.
Figure 4.2.5.1.10-1 1llustrates how two SNTLS1T2 packages are used in this
design X to form a sixteen word file of two bit words  Twenty such combina-
tions, or a total of Tforty SNT4S1T72 packages, are required to implement the
sixteen forty bit registers of the processor. The top SNTLS172 package of
each pair 1s used to store zero through seven, and the bottom packages store
words eight through sixteen.

The SNT4S172 permits two data words to be read and two data words
to be wraitten simultaneously. However, only three addresses are permitted.
One address specifies a word to be read, another specifies a word to be
writbten, and the third specifies a word to be read and/or wratten. The outputs
are tri-state, two enabling signals control the two read ports. Two more
enabling signals control the two write ports. When a given enabling signal
1s a logre zero, the port to which 1t corresponds i1s permitted to function.

A four bit address 1s required to select one of sixteen words.
Three four bit addresses and four control signals are used to control the
registers. The three low order baits of each address are sent to the proper
port of each of the forty SNTLS1T2 packeges. The high order bits of AADDRESS

and BADDRESS are combined with two of the control signals to form the selec-

tion inputs of a pair of SNTLSL53 four-to-one selectors for each enable signal.
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INPUT
DATA
C WRITE
o
b ~
ENABLES — - B OPERAND
3 {TWO BITS)
[
=
/)]
B READ
ENABLES
A READ
ENABLES
[
o
~
e
<
A WRITE £ “‘@7.& OPERAND
TWO BITS
ENABLES n ( !
f—- AADDRESS(1,3)
—— CADDRESS({1,3)

—— BADDRESS (1,3)

Figure 4.2.5.1.10-1 Sixteen Two Bit Words Implemented with SNTLS1T2
Register Files

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
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One enable signal of each pair controls registers zero through seven, the

other registers eight through sixteen.

The truth tables for the read ensble

signals are glven 1n Teble 4.2.5.1.10-1.

SELECTION BITS ENABLE SIGNALS
Registers Registers
High Order Control Bit Zero through Baight through
Address Bat s
- Seven Sixteen
0 0 1 1
0 1 1 0
1 0 1 1
1 1 0 1

Table 4.2.5.1.10-1 Truth Table for the Read Enable Signals

The high order bits of AADRESS and CADRESS are combined with the
other two contrcl signsls to yreld the selection signals for two more pairs
of SNT4S153 four-to-one selectors. These two pairs of selectors supply the
A and C write enable signals  The truth table for these selectors is also
given by Table h.2.5.1.10-1, except that the zero logic input 1s supplied by
the MODEBAR output of the MODE flip-flop in each processor. This prohibits
any writing into registers of disabled processors A clock pulse i1s required
to clock input signals into the SNTUS1IT2 through an enabled write port.
4,2.5,1.11 The Index Adder

We saw in section 3 that address indexing capability within the
processors 1s an imporbant capability in an array processor. Figure 4.2.5.1.11-1

shows the logic of the index adder whach computes a sixteen bit effective ad-

dress, EADDRE(1,16), within each processor. The adder is implemented with
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|——IXCARRY
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IXMODE —e

IXFUNC(1,4)

Figure %.2.5.1.11-1 The Index Adder Logic

SN745182
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SNTkS181 arithmetic-logic units augmented with #n SNTLS182 look-ahead carry
generator. It i1s controlled by a function ipput, IXFUNC(1l,4), and a carry in-
put, IXCARRY, from the contrel unit. The address from the control unit,
CUADDR(1,16), 15 combined wath A(9,16) by the adder. The "A" bits, which come
from the operand registers, are the low order sixteen bits of a twenty-four
b1t memory-length fraction. A twos-complement integer can be produéed for use
in indexing from & floating point value by performing an unnormslized addition
with the value with fraction 8000000016 and biased exponent h616. Two examples

of this operation are gaven in Table 4.2.5.1.11-1.

Inatial Operands Aligned Operands Sum
L6 80000000 L6 80000000 k& 80000100
k1 10000000 L6 00000100
46 80000000 L6 80000000 k6 TFFFFFOO
431 10000000 -46 00000100

Table k.2.5.1.11-1 Two Examples of Processor Index Value
Computation

The hexidecimal digits which are underlined in the Sum column of
Table 4.2.5.1.11-1 are the part of the "A" operand which is one of the inputs
to the index adder. ;

Indexing of centrally supplied addresses might also be performed by
the main adder of the processor. To accomplish this, the control unit supplied
address value must be gated to the adder. The least costly way to provide this

gating 15 to replace four of the quadruple two-to-cne selectors in the right

operand selection logic of Figure 4.2-1 wath eight dual four-to-one selectors.
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This results in a net package count increase of four packages The logic
described here requires four packages 1f ripple carry operation is used waith
the SNT7LS181 arithmetic-logic units, and five packages - as shown 1n

Figure 2.4.5.1.11-1 if carry look ahead operation 1s used. Even the ripple
carry scheme is faster than reguiring the operands and the result to pass
through the alignment shifters and fraction selector which use of the main
adder requires.

4.2.5.1.12 The Condition Flip-~flops

This set of sections describes the five flip-flop which hold infor-
mation about the results of operations in the processor. The state of each of
these flip-flops 1is protected from being changed when the processor 1s disabled
by having 1ts mode value egqual to zero. This control is provided by using the
lower of the two CLOCK gating methods of Figure 4.2.5.1.12-1. These gates are
not shown in the subsequent figures which illustrate the individual flip-flops.
A control signal unique to each and the MODE value are used to produce a mode
controlled clock pulse for each of the condition flip-Tflops.

All of the condition flip-flops are implemented with one-half of an
SNT4USTL dual flip-flop package. Both the true and complemented states are
supplied for use by this package.

4.2.5.1.12.1 The Carry Flip-flop

Figure 4.2.5.1 12.1-1 shows the carry flip-flop and its associated
control logic. Its state can be stored in a processor register (see section
h.2.5.1.7), and can be restored from a processor register by selecting the
path which includes B(12). The carry out of the adder, ACOUT, can be used to

set the state of the carry flip-flop, or it can be ORed with the previous
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Figure 4.2 5.1.12-1 CLOCK Selection Logic
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~— CONTROL
— ACOUT
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SN74|H52
% ——— CLOCK
SN74S74
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Figure bk.2.5.1.12.1-1

The Cary Flip-flop Logic



86

state by using the appropriate-control signal values.

4.,2.5.1.12.2 The Zero Flip-flop

Figure k.2.5.1.12.2-1 shows the zero flip-flop and 1ts associated
control logic. Its state can be stored in a processor register (see section
4.2,5.1.7), and can be restored from a processor register by selecting the
path which aincludes B(13). The primary input to the zero flip-flop 1s the
output of a zero detect block (see section L4.2.5.1.1) which operates on the
output of the fraction selection logic (of section 4.2.5.1.7). Previous
states can be ORed or AWDed with a current state by using the appropriate
signal values.

h,2.5 1,12.3 The Sign Flip-flop

Figure 4.2.5.1.12.3-1 shows the flip-flop and its associated control
logic. Its state can be stored i1n a processor register (see section 4.2.5.1.7),
and can be restored from a processor register by using the proper selection
signals for the SNT48151 eight-to-one selector and the SNT43153 four-to-cne
selector shown in the figure. The control logic permits the sign flip-flop

to be set to any of the values listed in Table 4.2.5.1.12.3-1.>

SIGNAL MEANING
B{1k) A state presumably previously stored in a processor
register
* % s The exclusive OR of the operand signs
S6T70(Lk) wire-OR AFUNC(4) The sign of a sum of difference (see section
EXPA(L) The sign of the left operand
EXPBR(1) The sign of the right operand
RTESIGN The sign of an operand from the routing unit
0 A Fforced positaive sign, absclute value
1 I A forced negative sign, minus the absolute value

Pable 4.2.5.1.12.3-1 Possible Signs for a Result
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Figure 4.2.5.1.12.2-1 The
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$670(4) AFUNC1(4)
{SIGN OF THE ¥ RESULT)
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Figure 4.2.5.1.12.3~-1 The Sign Logic and the Sign Flip-flop
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The complement of any of the first six signs show in Table 4.2.5.1.12.3-1.
The NOR gate between the SNTLS153 and the flip-flop uses signal ZFFINBAR of
the zero flip-flop logic (see section 4,2,5,1.12.3) to insure that the sign
of a zero result is always a logic zero, or a positaive sign. The NOR gate

is used together with appropriate selection by the SNTLS153 since no Schobtky
AND gate 1s available.

4.,2.,5 1.12.4 The Overflow Flip-flop

Figure 4.2.5.1.12.4-1 shows the overflow flip-flop and 1ts associated
control logic. Tts state can be stored in a processor register (see section
4 2.5.1.7), and can be restored from a processor register by selecting the
path which includes B{15).

In this design, an overflow condition exists when.

1. an exponent value which exceeds sixty-three 1s computed. This can occur
in the Exponent Adder during the computation of the result exponent for
multiplication cr davision, the signal EX0, described by the truth table
in Table 4.2.5.1.12.4-1, 15 a logic one for this case. Fraction overflow
necessitates increasing the exponent by one in the exponent correction
adder, signals CORROVFL and EXP(7) cover this case.

2. a division by a zero fraction is attempted, The AZERO signal form the
zero detect logic for the left operand fraction covers this case.

3. an attempt 1s made to integerize a floating point value whose integer
part requires more than six hexidecimal digits. BSignal INTRUNC, derived
by the logic of Figure 4.2.5.1.12.4-2 covers this case.

A biased exponent with value V 1s represented by an exponent field

value of 64+V, The sum of two exponents is-
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Fagure 4.2.5.1.12.4=1 The Overflow Flip-flop Logic
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64 + V1
64 + V2
128 + V1 + V2 =128 + V= 8

An overflow occurs when 64 < V < 63 + 63 = 126, or when
192 < 8 < 25k (1)
A correct exponent results when -64 < V < 63, or when
64k < 8 < 191. (2)
Expressed in bainary form, the above conditions are
(1) Lizexxxx
(2)  Olxsoexxx(-64) or 10xxxxxx{63).

The difference of two exponents 18

6L + V1
-(6L + V2)
Vi-v2=¥V
An overflow occurs when 64 < ¥V < 63 - (-6L4) = 127, (3)
A correct exponent results when -64 < V < 63. (k)

Expressed in banary form, the above conditions are
(3) Oloxxxxx
(4) Ilxxxxzx(-6L4) or 00xxxxxx(63).

Condations (1) through (4) can be implemented using an SNTLSL51
e1ght-to-one selector with the two hagh order bits of the result exponent and
the exclusive OR of ABFUNC(2) and ABFUNC(3) bit selection code. Table

.2.5.1.12.4-1 gives the truth table for this function.
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ABFUNC(2) COR ABFUNC(3)

0 1mplies subtraction ExC1(1) EXC1(2) EXO
0 0 0 0
0 0 1 1
0 1 0 X
0 1 1 0
1 0 0 X
1 0 1 0
1 1 0 0
i 1 1 1

Table 4.2.5.1.12 k-1 The Truth Table for Exponent Overflow
Signal EXO

For both exponent addition and substraction, the straighiforward
arithmetic steps uwmaformly result in a bias bit which i1s incorrect. A cor-
rect brased result i1s produced when the bit in the bias position of the re-
gsult 1s complemented after the arithmetic result has been computed.

During exponent correction, either one or zero is added to the
component. The only way overflow can occur 1s that one 1s added to the biased
exponent representation for an exponent of 63.

(64 + 63) + 1 = 128.
This has the binary form 10000000, in no other case does the result exponent
have g high order one. Hence, the correct signal for overflow detection during
exponent correction 1s EXP(1), the high order bit of the eight bit sum

4,2,5,1.12 5 The Underflow Flip-flop

Figure L.2 5,1.12.5-1 shows the underflow flip-flop and i1ts associated
control logic. Its state can be stored in a processor register (see section

4.2.5.1.7), and can be restored from a processor register by selecting the
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path which includes B(16).

In this design, operand underflow cccurs only when a result
exponent which 1s less than -64 1s computed. This can occur:

1. in the exponent adder during the computation of the result exponent
for a multiplication or divasion, the signal EXU, described by the truth
table in Table h.2.5.l.12.5~l, 1s a logic one for this case.

2 when the value one 1s subtracted from an exponent value of ~64 in the
exponent correction adder. This occurs only during some division steps
(see section L4.2.5.2.5). For this case, the initial biased exponent
value is 00000000, and the result, 11111111, is the only case for which
the high order result exponent bat, EXP(1l), is a logic one.

A biased exponent with the value V is represented by an exponent
field value of 64+V. The sum of two such exponents is

6 + V1.
6 + Y2
128 + V1L + V2 = 128 + V = S

A wnderflow occurs when -128 < V < -65, or when
0 < 8 < 63. (1)
A correct exponent results when ~64 < V < 63, or when
64 < 8 < 127 (2)
Expressed in binary form, the above conditions are
(1) 0O0xxxwxxx :

(2) Olxxxxxxx or LOXXXXXXX.
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The difference of two exponents is

64 + V1
{64 + V2)

Vi-VvVe =¥V
An underflow occurs when V _ -65. {3)
A correct exponent result when -64 _V _ 63.
Expressed in binary form, the above conditions are
(3)  1oxmmxxx
(4} 1lxoooxx(~64) or 0O0xxxxxxx(63).
Conditions (1) through (L) can be implemented using an SNT4S151 eight-to-one
selector with the two high order bits of the result exponent and the exclusive
OR of ABFUNC(2) and ABFUNC(3) (see section 4.2.5.1.3) as the three brt selec-

tion code. Table 4.2.5.1.12.5-1 gives the truth table for this function.

ABFUNC(2] XOR ABFUNC(3)
EXC1 EXC2 EXU
0 implies subtraction
0 0 0 0
0 0 1 X
0 1 0 1
0 1 1 0
1 0] 0 1
1 0 1 0
1 1 0 0
1 1 1 X

Table 4.2.5.1.12.5-1 The Truth Table for the Exponent Under-
flow Bat

For both exponent addition and subtraction, the straightforward
arithmetic gteps wniformly result in a bias bit which 1s incorrect. A cor-
rect biased result 1s produced when the bit in the bias position 1s complemented

after the arithmetic result 1s computed.
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During exponent correction, either one or zero is added to the
exponent. The only way overflow can occur is for one to be added to the
biased exponent representation for an exponent of 63:

(64 + 63) + 1 = 128,
This has the binary form 10000000, in no other case does the result exponent
have a high order one. Hence, the correct signal for overflow detection
during exponent correction 1s EXP(1), the high order bit of the eight bit sum.

4.2.5.2 Processor Function

The previous group of sections described several logic blocks in
their own right without too much regard for their functions in support of
processor operations. This set of sections describes how the logic blocks
are integrated together to perform the high level operations. The details of
the control signals and gating 1s given in these sgecitions.

h.2,5.2.1 HNormalization

A normalized floating point number in this design has a non-zero
hexidecimal (four bit) digit as the leftmost digit of its fraction, unless
the entire fraction 1s zero. The normalization process accepts an arbitrary
floating point number and produces a normalized number with the same arithmetic
value. A floating point zero 1s unchanged; a number whose fractaon has a non-
zero leftmost hexidecimal digit 1s unchanged. The fractionsof all other
floating point numbers are normalized by a left shift which makes the left-
most fraction digit non-zero and introduces zero digits on the right for the
zero digits shifted off the left. The exponent of the numbers so adjusted
1s reduced by one for each zero digit shifted off.

Figure 4.2.5.2.1-1 shows the control logic which computes the shaft
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amount for the normalize .shift logic. The signal BTEST(1,8) comes from the
SNT4S260 gates of the zero detect logic for the right operand (see Figure 4.2-1
and Figure %.2.5.1 1-1). BTEST(1} 1s a logie one 1f digat "1" of the left
operand fraction is zero, numbering the digits from left to right. The
BNT4WIU8 erght-line-to-three-line priority encoder accepts an eight bit input
signal and produces z three hit output signal which i1s a count of the number
of high order ones which occur in the input signal. The value seven is re-
turned for input signals of all ones, which is the case for numbers with zero
fractions.

During ordinary normalization, the output of the SNTUL1L8 1s the left
shift amount and also the number that must be subtracted from the exponent.
It 1s selected by appropriate control by the SNTLS157 two-to-one selector.
NSHIFT(2,3) 1s sent to the normalize shift logic, and NSHIFT(1,Lk) goes to the
selection logic for the exponent adder shown in Figure 4.2.5.2.1-2. Thas
logic selects the "A" exponent for the exponent adder. Normally, it selects
the exponent of "A" from the operand registers. For normalization, the -
operand {0100, NSHIFT(1,4)) 1s selected. Control signals enable the path
for ZFFINBAR, the oubtput of the zero detect logic for the result fraction, to
the strobe input of the SNTLS157 of Figure 4.2.5.2.1-2. When the fraction in
question 1s zero, the output of the SNTLS6L 1s one, so that the SNLSL57 selec-
tor 1s disabled and supplies gzeros rather than NSHIFT(1l,h).

Although a shift of seven places 1s the largest that occurs during
normelization, there are cases during double precision addition/subtraction
when a value of uwp to twelve must be subtracted from the exponent. For these

cases, a four bit NSHIFT value 1is provided. See section h.2.5.2.7 for detairls.
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The CSHIFT(1l,4) signal 1s supplied by the control unit during
multiplication and division by a power of two operations. See section
4.2.5,2,10 for the details of this operatiom.
4.,2,5,2.2 Rounding

The fraction size of memory words and multiplier operands 1s
twenty-four bits, and that of processor words is thirty-two bats. A rounding
operation 1s included in the design to permit rounding a thirty-two bit
processor fraction to a twenty-four bit memory and multiplier length fraction.
The rounding 1s accomplished by adding one in bit position twenty-four of the
fraction when position twenty-five 1s a one The fraction passes through
the logirc as the right operand. Bit twenty-five of that fraction is selected
by the left operand selector as bit twenty-four of a fraction that is zero
in every other bit position (see section 4.2.5.1.5). The other bit positions
are forced to zeros by disabling the left alignment shift network. The
exponent of the result 1s that of the right operand, selected by control sig-
nals to the exponent selection part of the exponent correction adder (see
sectaion 4.2.5.1.8). The two fractions are added by the adder under control
unit control, using CUAFUNC(L,3) for function specification (see sectionl.2 51 6)
Praction overflow and the corresponding exponent adjustment by the exponent
correction adder can occur. The sign of the result is the sign of the right

operand.

h,2,5.2.3 Floating Point Addition

A floating point value in this design 1s represented by a sign bit,
a non-negative proper fraction and an integer power of sixteen. The fraction

parts cannot be correctly added until they are adjusted for the difference in
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their exponents. In this design, this adjustment is made by shifting the
fraction whose exponent 1s smaller right by the nuwmber of digit positions by
which the exponents differ. The process, described in terms of Figure - N
proceeds as Tollows

The exponent difference 1s computed by the exponent adder. The
difference, together with a pair of one bit signals which each indicate
whether one of the operand fractions 1s zZero, 1s used by the pre-align control
logic to specify which of the coperands is to be shifted right. A% least one
of the alignment shift logic blocks performs a shift of zerc places during
each floating point addition. The other alignment shift logie is disabled
when the shift amount exceeds seven The pre-align control logie alsoc selects
the exponent of the result.

The correctly aligned fractions proceed through the operand selectors,
adder, and fraction selector to the operand registers. The result of this
processing cycle is an un-normalized floating point sum or difference with a
correct exponent. If a normalized result is sought, another cycle i1s used.
The fraction passes through the leading zero detection logic of Figure
h.2.5.2.1-1, which determines the left shift amount required for normalization.
This shift amount 1s used by normalization shift logic to perform the fraction
shift, and by the exponent adder to compute the correct exponent for the
normalized result.

The addition process 1s complicated by the fact that sign-magnitude
representation 1s used for floating point values in this desagn. The actual
operation which the adder must perform depends not only on the instruction

being executed, but also on the signs and the relative magnitudes of the
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operands being processed If one of the operands is zero, the result is the
other operand. If two operands with equal exponents are to be added, the
actual operation performed by the adder depends on their signs When the
s1gns are the same, the adder must add the two magnitudes, the result sign is
that shared by the two operands. However, when the signs differ, the smaller
magnitude must be subtracted from the larger, and the sign of the result is
that of the larger operand. The SNTES381 arithmetic-logic unit i1s ideally
suited to these circumstances, because it can perform the A+B, A-B, and B-A
operations (see Table 4 2.5.1.3-1).

When the argument exponents drffer, the operand with the larger
exponent 1s the larger in absolute value without regard to the fraction values
anvolved. Hence, an exponent comparison is also requared to determine what
SNTLS381 operation to perform. Table Lk.2.5.2.3-1 summerizes the ten input
signals which are required to determine the operation which 1s performed by
the SNTLS381 arathmetic-logic units of the adder. TFigure 4 2 5.2.3-1 shows
the logic whaich implements Table 4.2.5 2.3-1. During floating point addition
and subtraction, the wire OR network of Figures 4.2.5.1.6-2 and 4.2.5.1 6-3
makes AFUNC the same as AFURCl by appropriate enabling of the tri-state signals.
The ABEXEQ signal 1s derived by the logic of Figure 4.2.5.2.3-2, When the
absolute value of the exponent d1fference is zero, the exponents are equal,
and ABEYEQ is & logic zero.

A fraction overflow can occur only when the function performed by
the SNTLS381 arithmetic-logic umits of the adder 1s A+B. The signal OVFLSEL
1s implemented by an SHTES151 eisht-to-one selector which uses AFUNC(1,3),

the SNTL4S381 function specification, as i1ts selection signal. The input to

REPRODUCIBILITY OF THE
OGRIGINAL PAGE IS POOR
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Figure 4.2.5 2.3-1 The Logac which Selects the Adder Fumction
During Addition and Subtraction
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Figure %.2.5.2.3~2 The Logic for the ABEXEQ Signal
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the SNTLS151 18 a logic one in every position except that which corresponds

to AFUNC(1,3)=011, for the latter case, the selector input 1s ACOUT, the high
order carry out of the adder. A logic zero value for OVFLBEL thus indicates
a fraction overflow. The OVFLSEL signal is used by both the fraction selec-

tion and the exponent correction logie.

Signal Value Meaning

ABEQEQ 0 The two operand exponents have the same value

AZERO 0 The left operand (&) fraction is zero.

BZERO 0 The right operand (B) fraction is zero.

EXC2 0 The exponent of the right operand exceed that of
the left operand

CUADD 1 The operation specified 1s addation

CUSUB 0 When CUADD is zero, subtract the right operand
from the left; that is B-A.

1 When CUADD is zero, subtract the left operand

from the raight; that i1s A-B

SIGNA 0 The left operand is greater than or equal to zero.

SIGNB 0 The right operand 1s greater than or equal to zero.

AGTR 1 The unshifted left fraction exceeds the unshifted

right fraction

ABEQ 1 The unshifted fractions are equal.

Table & 2.5.2.3-1 The Input Signals for the Adder Function Logice
Table 4.2.5.1.3-1 whach lists the functions and function codes for
the SNTLS381 arithmetic-logic unit of the adder indicates that the carry into
the adder depends on the function code. The logic of Figure 4.2.5 2.3-3 shows

how the carry into the adder i1s determined Since the adder operates with
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Cc
CONTROL —— — AFUNC{2)
CUAC — — AFUNC {3)
1 —— CONTROL
SN74HS5?2
AC

Figure 4.2.5.2 3-3 The Logic for the Carry into the Adder
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Figure L.2.5.2.3-1 The Alignment Shift Conrtol Logic
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active low data, a one carry in is reguired for addition and a zero for sub-
traction. The control unit can specify the carry by using control signal CUAC.
When the adder function 1s determined 1n the processor by the logic of Figure
I 2.5 2,3-1, the path which uses added function bits produces the correct
carry 1n. The carry flip-filcp output, C, 18 used as the carry in to the adder
durang double precision operations.

The logic which controls alignment shifting during floating point
addition and subtraction 1s shown i1n Figure 4.2.5 2 3-h. The sigpnal ELAS 1s
the enabling signal for the left alignment shift logie, and ERAS 1s that for
the raght aligmment shift logic, The signals EASH and EBSH permit control
wnit specificabion of the shift enables without regard to loecal conditions.
The two signals DLLT8 and DRLTE come from the double precision control ROM,
and the signal S 1s derived from the logic of Fagure k 2 5§ 2.7-3. Bits one
through four of the absolube exponent difference, ABS{1,L), are combined by
an SNT4S260 NOR gate to yield a signal which is a logic one when the alignment
shift amount 18 less than eight The actual shift amount 1s either ABS(5,3)
or zerc under the control of a pair of shift selection signals which uses AZERO,
BZERO and EXC2 of Table L4.2.5.2 3-1 along with a control wnit signal SHZERO.
When any of the preceeding signals is a logic zero, the shift selections sig-
nal one, and a zero shift amount is selected.

4.2.5 2.4 Multiplication

Measurements of the current model's execution on the IBM/360 revealed
that approxamately one-half of the floating point instruction executed are
multiplications. Therefore, we have designed a high speed fully parallel multi-

plier. The detairls of thas work are given in a Masters thesas by Mr. William
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Stenzel (1975). Because the amount of hardware necessary for this multiplier
varies as the square of the operand lengths, we chose t¢ implement a twenty-
four by twenty-four bit multiplier. The rounding operation described in
section 4.2.5.2.1 rounds floating point values to this fraction precision
The integrated carcuits used in the multiplier are:

1. the SNTLS2T4 read only memory which accepts an eight bat address and
returns an erght bat result. It is pre-pregrammed to accept two four
bat digits and return therr eight bit product (Texas Instrument Corpora-
tion, 1974, pp. 262-270),

2. the Signetics N8228 read only memory which accepts a ten bit address and
returns a four bit operand. This device, available as Signetics part
number N8228-CB1105, is programmed to add five two bit numbers and pro-
duce a four bit sum,

3. +the SNTh283 four bit binary full adder, which accepts two four bit anputs
and a carry input, and produces a four bit sum and a carry output, and

4., +the SNTES381 arithmetic-logic unit which is used together with SNTLS182
lock-ahead carry generators to a final addition step in the mulitplication
process.

Figure 4 2.5.2.4~1 1llustrates how to compute the product of two eight bat

values using four SNTLS2Th read only memories  Each subscripted symbol in

the figure represents a four bat dagit. The four eight bit products are dis-

played in the familiar trapagiodal form and have also been rearranged in a

triangular form. Four bit adders can be used to sum the partial products to

¥1eld the required product. Figure h,2.5.2.4.2 shows the triangular rearrange-

ment for all of the bits in the product of two twenty-four bit operands. A
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* %0

by Po

3% 2P0
albl aobl => albl albo
0Py

Figure 4.2.5.2.4~1 The Product of Two Eight Bit Values
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three stage reduction processes results in the required product.

The vertical rectangles 1n the figure represent Signetics 8228-CB1105
read only memories. The five high order bits of the address, pins three through
seven, accept the left column of Bits ~ the high order bits of the five two bit
input operands. The faive low order bits of the address, pins one, two and
thirteen through fifteen, accept the right column of bits - the low order bats
of the five %two Dbit input operands . The low order bit of the four bit sum
appears on the output pin twelve, the low order bit of the ocubtput word.

The horizontal rectangles represent SN7L283 four bit adders.

In the first reduction state, the eleven rows of partial product
bits are reduced to five rows by using twenty Signeties 8228's and six SN7L283's.
In the second stage, ten 8228's and six SN7h283's reduce the fave rows to two.
Nine SNTUS381's and three SNT4S182's produce the forty-eight bat product in
the last stage. )
k.2,5.2.5 Division

Three different division algorithms were examined as candidates
for use in this design. They are all similar i1n two respects.

1. Xach slgorithm uses the multiplier.
2. Each algorithm uses read only memories Lo store values which 1t needs

The first scheme used a quadratic Chebyshev fit to the reciprocal,
stored the coefficients in read only memories, and used the multiplier to
evaluate the guadratic polyncmial. The scheme i1s not workable because the
polynomial coefficients are relatively large and oscillate in sign, so that
a reciprocal accurate to twenty-four bits could not be computed with the

twenty-four bit multiplier.
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The second scheme multiplies both numerator and denominator by
cleverly chosen constants (Garcia, 1974). Two multiplications of both
numerator and dencminator reduce the denominator to one and the numerator
to the required quctient. The dencminator must be normalized so that there
1s a one in the high order bat. Call the high order eleven bits of this
normalized denominator "A", and the low order thirteen bits "B" We can
compute a twenty-four bit reeiprocal of "A" with six Signetics 8228 read only
memories which accept a ten bat address and report a four bit result. We
can use only ten bats of "A" since the high order bit 1s known to be a one
The following sequence of equations 1llustrates the fechnique-

N _ NQ/a)  _m{i/a) _ N(l/A)(l—B/A+(B/A)2) _
A+B  (a+B)(1/a) ~ 1+B/A — (1+B/A)(1-B/A+(B/A)E)

o=

N(1/A)(1-B/A + (B/A)E)
l+(B/A)3

By construction, B 1s less than 2_11, and A 1s greater than or equal to

30

one-half. Therefore, B/A is less than 2_10, so that (B/A)3 18 less than 2
and 1s therefore negligible in compubting a twenty-four bit quotient. Four
multiplications are necessary to compute the guotient using this scheme-

1. N(1/a)

2. B/A from B and 1/A

3. (B/a)

4, M1MJBHHQMU%
The third scheme uses Newbon's iterative methods. The function
f(x) = Dx-1

T THE
EPRODUCIBILITY OF T
gRIGINAL PAGE IS PooR
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will converge to the reciprocal of "D". The derivative f£'(x) = D, so that

the equation for the iteration are

X X Dxn-l X

- - 1
e+l r T —p—° n+D(l—Dxn)

which is identically equal to 1/D. The term 1/D is the sought and unknown
recaiproecal. However, Xn 1s approximately equal to the reciprocal, so that the
1teration becomes

= B — .
X =% T X, (1 Dxn)

The analytically equivalent form

_ 2
Xn+l = 2xn Dxn

can not be computed with as much accuracy as can the preceeding form with
the given processor.

The denominator "D" whose reciprocal 1s sought must be normalized
in the usual binary sense, that 1s, 1ts high order bit must be a one. An
initial twelve bit approximation, XO’ 18 obtained from three Signetics 8228
read only memories by using A{2,10) (see Figure 4.2.5.2.5-1) as address bits,
A(1) 15 known to be a one. In this scheme, however, the high order part of D
should be rounded by adding 2_12 after the left shift which guarantees that
the high order bit of D 1s a ocne.

Programs were written to simulate all three schemes. In the
1terative case, two iterations were always performed, no convergence test was
done. Therefore, the scheme requires a total of five multiplications to com-
pute a quotient, two multiplications are needed for each iteration, and a

final multiplacation 1s required to compube the quotient from the reciprocal.
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The samulation programs for the second and third schemes accepted four param-

eters

1. +the desired numerator,

2. the initial denominator,

3. +the increment hetween successive denominators, and

4  the final denominator.

The programs computed all guotients for the indicated range of dencminators,

Two pairs of simulation programs were written. One pair computed gquotients

correct to twenty-eight bits and compared the approximate values to them

The second pair of programs computed a quotient rounded to twenty-four bits

for each denominator, and compared similarly rounded approximate quotients

to them. The results of tests using these programs are given in Table

4,2.5.2.5-1. These results led to the choice to implement the third scheme.
The implementation of the third division scheme uses four proces-—

sor registers, registers zero to three are used. The first step in the pro-

cess 1s to move the original denominator to register zero. This 1s necessary

because one of two tri-stabe sources supplies the operand to the normaliza-

tion shafters. The normal source i1 the two-to-one selectors in the upper

right corner of Figure 4.2-1. The operand from memory enters the processor

through these selectors. The other source i1s the zero-to-three bit shift

logic dizcussed below. A denominator from memory would enter the normaliza-

tron shift logic from two sources when a zero to three bit shift is performed

1f B(1,32) of Figure 4.2.5.2.5-1 were to come from the memory operand selec-

tors of Figure 4.2-1 Hence, the B(1,32) operand unit must come from the

registers. Another implication of this is that the two~to-one selectors
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Numerator 10000016 {1.c. 1/16)
Initial denominator 10000016
Final denominator 20000016 {1.c. 2/16)
Increment 1 (i.c. 2ﬂ2h)
28-b1t Quotient 28-bit Rounded Quotients
Ttem Multiplicabtaive | Newton's Multiplicataive | Newbon's
Method Method Method Method
Sum of Absolute
Values of Errors TCDAl.Els 85032.316 TCEBL.016 800C9 016
Average Absolute
Error (rounded) O.TD16 0.8516 O.TD16 0.8C_1L6
Maximum Absolute
Error 1.216 1'816 2.0 1.0
Sum of Signed
Errors EDD8. 616 546D. L -ED24.0, ¢ -2AF1.0, ¢
Average Signed
Error (rounded) 0.0EE, . 0.054 16 -0. OEDl g -0.02B, .

Table 4.2.5.2.5-1 Results of Tests of the Two Division

Al gorithms

which select between the register and the memory operand in Figure L.2-1 must

be the tri-state

SWTLS25T for the fraction part of the operand.

The second step of the algorithm uses the zero to three bit shift

logic of Figure 4.2.5.2.5-2 to shift the original denominator left by zero to

three bit positi

ons so that the high order bit is a ome.

Since the logac

assumes that a three bit or smaller shift will suffice for this operation,
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the original denominator must be a normalized value. The logic of Figure
k,2.5.2,5-2 relies on the AM25510 tri-state four bit shifter. The figure
1llustrates both a left and a right shifting capablllty: Each AM25510
accepts seven input bats, 2 two bit shift amount, and a tri-state enable
signal The two bit shift amount determines which of four sets of four
contiguous input bits are output by the device. By using correct overlapping
b1t assignments to multiple AM25810's, operands with more than four bits can
be shifted. Figure 4.2.5.2 5-2 1llustrates shift logic for eight bit input
operands, shift logic for thirty-two bit values requires sixteen rather than
four AM25S510's. Whether the ensamble of Figure B 2.5.2.5-2 shifts left, as
required by the second division step, or right, as required by a later step,
1s determined by the logic at the top of the figure. For this step, control
signals from the control uwnit force a left shift, and cause the division RCM
output to be i1gnored. The SNTh1L8 of Figure 4.2 5.2.5-1 computes the shift
amount for the zero to three bat shift logic by examining the three high
order bits of the oraginal denominator as stored in processor register zero.
The shafted denominator is stored in processor register one.

The third step of the algorithm rounds the shifted denominator value
by adding 2"12 to 1t. The constant for this rounding operation comes from
the left operand selector described in section h.2.5.1.5. Let us call the
original denominator D and the shifted and rounded denominator D in the fol-
lowing discussion., The rounding step which produces D ?an result 1n an over-
flow, the carry out of the adder, ACOUT, 1s recorded in*the C flip-fiop of
Fagure 4.2.5.1.12.1-1 for the later use in the division process. 1If overflow

oceurs during denominstor rounding, the special shift of one bit posaition in

the fraction selector (section 4.2.5.1.7) 1s used to force the rounded result
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80000016’ or exactly one-half.

The fourth step of the algorithm uses the division Xy ROM's of

Figure 4.2.5.2.5-1 and D to cocmpute x., the first approximstion to the de-

o

sired reciprocal. This value varies from FFF00016 for a D value of one-
half, to 80000016 for the D wvalue FFF00016 The value actually stored by
the ROM's must be a logic complement of the correct, rounded binary value,
since the adder operates on active low data values and the fraction selector

complements to account for this. The value from the ROM's i1s thus between

one-half and 1—2_13 1neclusive; since 1t represents the reciprocal of D, whach

13

18 between one-half and 1-2 ~~ inclusive, it can be represented for the
analysis below as %xo. The resulting value 13 stored in register two

In step five, we compute % - % x D in one step by using the multi-

0
plier to supply the product term and using the left operand selector to

D), which 1s a

supply the constant %. The result of this step 1s %(1 - ER

small value even for the first of the two iterations. Thus, step six adds

the resuli of step five to 1tself {to scale 1t up to the value 1 - x.D,

0

Register three is used to store both of these resulis.
Step six computes %xo (1 - XOD) by using the multiplier with

3x  from register two and (1 - xOD) from register three

0

Step seven adds kx. from register two to the result of step six

0

(from register three), and produces %(XO + xo(l - xOD)) or %xl.

Steps nine through twelve repeat steps five through eight, except

throughout. The result 1s %x

instead of %x >

that they use kx o

3 , Or, 1n

other words, % of the reciprocal of D.

Step thirteen uses the multiplier to compute the exponent adder to

REPRODUCIBLLAYY OF f1i8
ORIGINAT: PAGE I3 POOR
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compute the result exponent and Q = (N/D). But we seek Q = N/D. The

form of Q 18 X.XXX..., where sach "x" represents a b1t Since D was produced
by shafting D left, that is by multiplying the original denominator, the
correct @ is the result of a similar shit of a: This shift, conceptualized
by a right shift of the binary point, results in a a.w1th one of the four

following forms

X.XXXKK. . . X (1)
XX XHXK. .« . X (2)
XXK XXX .+ . X (3)
XXX KK, . X (&)

Since N, the original numerator, is alsc a floating point fraction, 1t has
from zero to three leading zero bits. Hence, each of the four forms above
can have from zZero to four leading zero bits. Moreover, an overflow in step
three of the division algorithm means that the original denominakor, 5; was
actually shifted left one less position than an examination of D would
wnply, this fact is recorded in the D flip-flop. Table %.2.5.2.5-2 summar-
1zes these condations. The upper left part of each table entry indicates
the amount and direction of a zero to three bit shift which i1s reguired to
bring the binary point to one of the following positions

XXX 0 X, O (5)

XXX XK o o X (6)
A left shift can occur when the number of high order zero bits in a'is
greater than or egual to the number of bits to the left of the binary point
1n the form which Q takes among the forms (1) through (%) above. The lower

right part of each table i1ndicates the exponent alteration which is necessary
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to convert'a to the proper quotient Q. The exponent correction i1s effected

by the exponent correction adder When form (5) results from the zero to
three bit shift, no exponent correction is required. When form (6) results,
the exponent must be reduced by one. When Table 4.2.5.2.5-2 indicates that
a shift of four places 1s required, this is achieved by a shift of zero
places in the zerc to three position shift logic and a shift of one place in
the normalization shift logic. In all other cases, the normalization shift

logre shifts by zero places.

Leadang Zeros Leading Zeros in D
m Q
1 0 1 2 3
0 R3 R2 R1 0
0 0 -1 -1 -1 +1
1 o | 1 R2 R1 0
0 o -1 -1 +1
P
o 0 L1 L2 Rl 0
0 0 0 -1 -1
3 0 L1 L2 L3 0
0 0 0 0 -1
) LY Il L2 13 L
-1 0] 0 } 0 0

Table £.2.5.2.5-2 0 to 4 Leading Zeros

Although the original denominator must be normalized., the numerator
¥ need not be. A product with four {or more) leading zeros will result when
the mumerstor i1s not normalized. The guotient is not normalized when the
original numersgbtor i1s not normalized. The guantity §-w111 also have four

leading zero bits when the reciprocal 1s nearly % and N has i1ts hagh order
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to be truncated to an integer goes into the processor logic as the right
operand. Its exponent 1s used as the address for a Signetics 8204 read only
memory whose output, IFUNC(1,7) of Figure 4.2.5.1 6-2 comtrols the high order
six SNTLS381 arithmetic-logic units of the adder separately, and always forces
ones in the seventh and eighth units. The logic assumes that the operand is
normalized, and forces the correctmmber of fraction digits to ones ( complimented
to zeros by the fraction selection logic). The SNTLS381's in the adder

either add the operand fraction to a forced zero operand from the left

operand selector, or they force ones as output The function for addition

1s 011 and that for forcing ones 1s 111l (see Table 4.2.5.1.3-1). The high
order bit 1s supplied by the SIGB205, and the two low order bits are

supplied as CUAFUNC(2,3). The eighth ouput bit of the SIGB025 goes to the
overflow flip-flop logic as INTRUNC, andlis a logic one when the operand
value cannot be represented i1n the six hexidecimal integer digits permitted
one bit followed by several zero bits  The product of N waith the reciproeal
willthen produce a non-normalized result, or one with four zeros. '

A shift amount value of Rx in Table b 2.5,2.h-1 means that a shift
right of x bit positions 1s required. A shift amount of Ix means that a left
shift of x bat positions 1s requared.
h.2.5.2.6 Integers

The integers are represented and manipulated as floating point
numbers in this design. The fractional part of an integer i1s zero. Logic
1s i1neluded to truncate the fraction part of an arbitrary floating point
number, The largest integer that can be represented is 22h-l. A larger

integer value can be represented by the thirty-two bit fraction of the pro-

cessors, but memory can retain only twenty-four bit fractions. The value
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in the design.

An exponent value of zerc or less will produce an integer value
of zero. An exponent value between one and six inclusive produces an inbteger
with the corresponding number of potential non-zZero hexidecimal dagits., An
exponent value of seven or more results in an nteger truncation overflow
condition.

h.2.5.2.7 Double Precision Addition and Subtraction

Measurements of the current model's execution on the IBM/360
reveals little required double precision operation  Therefore, we have
designed a single preclsion processor which 1s augmented with the minimum
additional hardware needed to permit double precision calculations. Twenty
processor cycles are required to perform a normalized precision addition or
subtraction. A double precision value consists of two single precision
values, each with 1ts own correct exponent and fraction. The hagh order
part must always be normalized, the low order part contains the least
significant six of the tvelve fraction digits, whatever they may be, and
therefore, has a normalized form only by coincidence  However, if the hagh
order fraction is zero, the low order fraction must also be zero. The signs
of both parts must agree.

Implementation of double precision addition and subtraction uses
81X processor registers. The normalized result i1s left with the high order
part in register zero and the low order part i1n register one. Intermediate
double precision operands 1in the processor have fourteen fraction digats,
s1x 1n the high order part and eight in the low order part. The two low

order digits of the high order parts are always zero at the completion of
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an operation. The subset of the processor logic which performs double pre-
cision addition and subtraction is shown in Fagure 4,2.5.2.7-1. The logic
relies on the double precision read only memory of this figure for much of
the specialized control which iIs requared.

Several of the steps in the double precision addition and subtrac-
tion process are really faxed point addition of two fractions without regard
to their signs or exponents. The exponent correction adder permits control
from the control unit of which exponent is assigned to a result. The selec-
t1on of the sign 1s also subject to complete control by the control unit:
Hence, a fixed point addition of two fractions can be assigned to the
exponent of either fraction and the sign of either fraction.

The complete double precision addition and subtraction process as
1llustrated by Figure 4.2 5.2.7-2, Figure k 2.5.2.7-5, Figure k.2 5.2.7.-9,
and Figure 4.2.5.2.7-10. In these figures, the exponents and individusl
digits of all operands are shown. The digaits of the two original operands,
X and Y, are denoted by X1 through X1t and Y1 through Y1h respectively. The
process determines which of the two operands 1is the larger and which is the
smaller. The digits of the larger are denoted by Ll through Lik, the digits
of the smaller are denoted by S1 throusgh S1k. Finally, the digits of the sum
or difference are denoted by T1 through TlL. The operation portrayed by the
figures 1s:

T=X+1Y.
The original operands are shown in Figure 4.2.5.2.7-2(a). In the first step

of the process, the high order part of X is written into registers zero and

one, the operand registers permit writing a value to two different registers
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Ex|X1 X2 X3 Xk X5 X6|l0 © Ex+61 X7 X8 X9 X10 X11 X12{X13 X1k
Ey| Y1l Y2 ¥3 Y& Y5 Y6{0 O Ex+6} X7 X8 X9 ¥10 X1l X12|X13 X14

0 Ex|X1 X2 X3 Xh X5 X6i0 O

1 Ex X1 X2 X3 X4 X5 X6|0 O

4) Fl]Ll L2 L3 1k 5 1L6|C 0O

1 Es|S1 82 83 sk 85 s6|0 0O

0 1|1l I2 13 Ik L5 LA0 O

i Es|S1 82 S3 84 85 S6{0 0O

0 BEsiS1l 82 83 sk 85 56|10 ©

1 Esl81 82 83 8k 85 86j0 O

Figure 4.2.5.2 7-2 Preparatory Double Precision Addition

and Subtraction Steps

(a)

{e)
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in one operation (see section 4.2.5.1.10).

In the second step, the two high order parts of the operands are
passed through the processor logic. The X operand is the left operand and
the Y operand 1s the right operand since 1t may come from memory. The Y
operand is always passed through the adder and fraction selector. The S
logic, shown in Figure 4.2.5.2.7-3 determines whether the Y operand is
larger or smaller than the ¥ operand. A zero operand 1s always regarded as
the smaller regardiless of its exponent value If the Y operand is larger,
the S8 signal is zero; 1f the Y is smaller, the S signal 1is one. The result
of the comparison, the B signal, 1s stored in the 8 flip-flop of Figure
h.,2,5.2,7-3 for use in roubting the low order halves of the operands in &
later step Table h.2.5.2.7-1 explains the input signals for the § logie,
and Table 4.,2.5.2.7-2 gives the truth table for the S logic.

The logic which varies the operand register address bits to accom-
plish the local control needed by this and other steps in the double preci-~
sion addition and subtraction process i1s shown in Figure 4.2.5.2.7-4. The
signal 1s used, together with three zerc address bits from the control unit,
to select either register zZero or register one during this step. The net
result of step two is shown 1n part (c) of Figure h.2.5.2.7-2; the larger
operand 1s stored 1n register zerc and the smaller an register one.

Step thres duplicates the smaller operand in registers four and
five. The Z flip~flop 15 set to indicate whether the smaller operand 1s zero.
The rest of this step 1s shown in part (d) of Figure k 2.5.2.7-2

The next five steps align the fraction of the operands in prepar-

ation for the addition or subtraction steps., These five steps are shown in


http:4.2.5.1.10

129

Signal Value Signifiecance

AZERO 0 The left operand fraction 1s zero.

BZERO 0 The right operand fraction is zero.

ABEXEQ 0 The operand exponents are equal.

EXC2 0 The left exponent is greater than or

equal to the right exponent.

AGTR 1 The left fraction is greater than the

E right fraction.

Table 4.2.5.2.6-1 The Significance of the S Logic Input Signals

Signals SNTUS150
AZFRO or BZERO | ABEXEQ | EXC2 | AGIR Input Comments
0 0 X 0 1 Y greater than or equal to ﬂ
0 0 X 1 X X equals Y
0 1 0 X 0 X greater than or equal to Y
O 1 1 x 1 Y greater than X
1 X x X BZERO Exactly one operand is zero.

Tgble 4.2.5.2.7-2 The Truth Table for the SNTLS150 of the 8 Logic
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Figure 4.2.5.2.7-5 The figure covers two cases. In the left column are
successive register states for the case when the exponent difference i1s less
than six, the right column covers the case where the exponent difference 1s
greater than or equal to six. The exponent difference illustrated by the
left column is three, that for the right is seven. The double precision ROM,
which 1s crucial +to many of the following steps, is shown in detail an
Figure 4.2.5.2.7-6. It can be implemented with a Signetics 8204 read only
MeEmory This ROM stores 256 eight bit words. The eiaght bat address 1s used
as shown in the figure. One control signal from the control unit determines
whether an alignment or normalization shift conbrol result is desired,
ancther control signal specifies whether a left shift or raight shaft is
required. The other bits contribute to determining the shift amount. The
operand which 1s to be shifted 1s always known beforehand, and is sent through
the logic as the right operand Table L.2 5.2.7-3 summarizes the functions
performed by the double precision control ROM during the operand alignment
phase. The symbol "d" in the table represents the exponent difference

Step four performs a left shift of the smaller operand by the amount
given 1n Table 4.2.5.2.7-3. The control ROM uses signals DCADDR(1) and
DCADDR(3) as shown in Figure 4.2.5.2.7-4 to store the result in register four
when the exponent difference is less than six and in register one when that
dafference 1s greater than or egqual to six. The results of step four are
shown in Figure 4.2.5.2.7-5(a).

Step five performs a right shift of the smaller operand, taken
from register five, by the amount given in Table h.2.5.2.7-3. The control

ROM again uses DCADDR(1) and DCADDR(3) as shown in Figure 4.2.5.2.7-k to

FPRODUCIBILITY of THE
PRIGRVAL PAGF 18 POOR
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Figure h.2.5.2.7-4 ILogic for Local Control of Operand Register Addresses
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Shift Shift Amount
Dairection 4<6 a>6
Left 6-4a d
Raght a d-6

Table k.2.5.2.6-3 Signetics 8205 Control ROM Shift Amount
Duraing the Operand Alignment Phase

store the result in register one when the exponent difference i1s less than
s1x and in register four when that difference is greater than or equal to
s1x. This shifted result must have its twoe low order digits both zero. This
18 necessary for step eleven to compulte a correet high order part. The two
low order digits, FRACT(25,8), are forced to zero by causing the two SIGB8263
selectors of the fraction selection logic (Flgure b 2.5.1.7-1) which produce
these bits to emit zeros during this step. This 1s accomplished by setting
both bits of their selection signal to zero and their complement signal also
to zero (see Table 4.2.4.2-1). The results of this step are shown in Figure
L.2.5.2.7-5(b).

Step six loads registers two and three with the low order part of
X. BStep seven is similar to step two, The contents of the 8 flip-flop, as
shown in Figure %.2.5.2.7-4, are used to direct the low part of Y to register
two when Y was the larger coperand in step two, and to register three when Y
was the smaller operand in step two. The state of the registers after step
seven is shown in Figure 4.2.5.2.7-5(d}.

In step eight, a normal floating point alignment operation results
in a shift right of the smaller lower order part, taken from and returned to

register three, by the amount of the exponent difference. The result of this
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step is shown in Figure L4.2.5.2.7-5{(e). Of course, when the exponent dif-
ference exceeds seven, the contents of register three after this step is
zero. Step eight combines the contents of register three and four by addi-
tion with forced aligmment shifts of zero places to produce the correct low
operand for the addition or subtraction step. The result of this step is
shown in Figure 4.2.5.2 T-5(f). At this point, the two high order operands
are 1n registers zero and one, and the two low order operands are in
registers two and three.

The actual addition or subtraction process is complicated by the
fact that sign-magnitude representation is used for floating point values in
this design. The actual operation which must be performed depends not only
on the instruction being executed but also on the signs and relative mag-
nitudes of the operands being processed. If one of the operands i1s zero,
the result 1s the other operand, possibly wath 1ts sign reversed. If two
operands with equal exponents are to be added, the actual operation performed
depends on their signs. When the signs are the same, the magnitudes are
simply added, and the sign of the result i1s that shared by the two operands.
However, when the signs differ, the smaller magnitude must be subbracted
from the larger, and the sign of the result i1s that of the larger operand.
During double precision addition and subtraction, the function which the
adder must perform is usually determined by the high order parts of the
operands. But, for example, when the signs are unlike during an addition,
the relative magnitudes of the low order parts of the operands will deter-
mine the operation when the high order parts are egual. In step nine, the

D flip-flop of Faigure b 2,5.2.7-T 1s set according to the truth table in
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Table 4.2.5.2.7-3. For this step, the two high order parts are passed
through the logic, and the adder function which they require 1s determined

by the Signetics 8205 read only memory of Fagure 4.2.5.2.7-8. The adder
function 1s stored in the NAT8551 tri-state register, but the result of the
operation is not stored in the operand registers. The D fiip-fiop 1s set

to a logic zero when the high order parts of the operands determines the func-
tion; the D flip-flop is set to one only when both the high order exponents
and fractions are equal, so that the low order parts must determine the
funetion. The operand registers at the end of step nine are the same as they
were previous to this step. However, the D flip-flop and the NAT8551 are set

by the step for use 1n step ten.

Input Signals D Flip-flop
ABEXEQ ABEQ Setting Comments
0] 0 0 Operands not egqual
0 1 1 The operands are equal
1 0 0 Operands not equal
1 1 0 Operands not equal

Table 4.2.5.2.7-3 Truth Table for the D Flip-flop

In step ten, the low order parts of the operands from regirsters
three and four are added or subtracted using the contents of the NATS551
when the D flip-flop setting from step nine is zero and using the output of the
8168205 control ROM when the D filip-flop setting from step nine is one.
When the relation of the low order operands should determine the adder func-
tion (that is, when the D flip-flop is one), the SIG8205 function output is
clocked into the NAT8551 during step ten processing. The high order carry

out of the adder during step ten is saved in the carry flip-flop, C. This
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carry must be propageted to the high order operation, which occurs in step
eleven. The results of step ten are shown in Figure 4 2.5.2.7-9(a). The
low order result is stored in register three. The normal operation of the
fraction selection logic i1s aborted for this step, no right shift i1s per-
formed 1f a fraction overflow occurs. Instead, the carry flip-flop contents
propagate the overflow condition to the high order operation.

Step eleven uses the function stored in the SNT4S6T0 and the carry
stored in the carry flip-flop, C, to compute the high order part of the re-
sults. BSo that the carry can propagate across the eight low order bats
which are ones in both operands (active low zeros), the two low order SNTLS157
quadruple two-to-one selectors which select the output of the wire AND shown
in Figure 4.2.5.2.7-1 are made to supply zeros (active low ones) by setting
their strobe inputs 4o one for this step only. The result of this operation
1s shown in Fagure 4.2 5.2.7-9(b). The left part of the figure shows the
case for which no fractioa overflow occurs, the raight part shows the result
when fraction overflow does occur  The high order part of the result is
left in register zero and the low order part in register two by this step.

The one bits introduced teo propagate the carry must be removed by
the fraction selection logic. The two SIG8243 three-to-one selectors which
forced the two low order digits to zero in step five are used. They operate
under processor control to forece twe digats to zero when no fraction over-
flow occurs, and they force one digit to zero when a fraction overflow does
ocecur

Step twelve shifts the high order part of the result left six
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places and stores the shifted value in register cone. The control ROM will
output the value six required to control the shift if the register zero
cperand 15 sent through the logic as both the left and right operands. One
of the operands is forced to zero by i1ts alignment shift logic, and the
other shifted six left passes through to regigster one. The results of step
twelve are shown in Figure 4.2.5.2.7-9(e).

Step thirteen 1s an ordinary unnormalized addition of the contents
of registers one and two. The result is stored in register one, and i1t is
the correct low order part for the double precision operation. Steps twelve
and tharteen served to transfer a possible TT digit from the high to the low
order part of the double precision fraction. The results of step thirteen
are shown in Figure 4.2 5.2.7-9(d). The zero flip-flop is set to indicate
whether the high order fraciion result of this step is zero.

In step fourteen, the bhigh order part 1s passed through the logic
and two low order zero digits are forced by the fraction selection logic to
clear a possible TT digit from the high order part of the result The
results of step fourteen, a correct but vnnormalized double precision float-
ing point addition or subtraction result, are shown in Figure 4.2.5,2.7-9(e).

The result must be normalized. If the high order fraction is zero
but the low order one i1s not, the logic which controls the adder function
selection for double precision operations will not work correctly. The five
steps which are required to normalize the resuli are shown in Figure
4.2.5.2.7-10. The left column of the figure details with the case in which
the high order fraction is zero, the right column treats the case in which
the high order fracticn is not zero.

REPRODUCISILITY OF THB
ORIGINAL PAGE 15 POOK
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Figure 4.2.5.2.7-10 The Normalization Steps in Double Precision
Addrtion and Subbraction
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The first step of the normalization process uses the Z flap-flop
state and the logic of Figure 4.2.5.2.7-4 to select the register zero operand
when the high order fraction ;s non-zerc and the regilster one operand when
the high order fraction 1s zero. The initial operands for normalzization,
assumed results of the additron or subtraction, are shown in Figure
k.,2.5.2,7-10{a). The results of this step, an ordinary normalization step,
are shown in Figure 4.2.5.2.7-10(b).

The second normalization step uses the values from register zero
and register one. The exponent difference 1s used by the control ROM in the
normalization mode to compute & right shift amount. Table L4.2.5.2.7-4
summarizes the function of the SIG8205 control ROM for the normalization phase

of double precaision operations. The symbol "d" in the table represents the

exponent difference between the register zero and register one operands.

1
X Shaift High Order Fraction
Direction Zero Tot Zero
Left 6+d 6-d
Right 6-d d

;
Table 4.2.5.2.7-4 Signetics 8205 Control ROM
Shift Amount During the
Normalization Phase
The second normalization step shifts the low order fraction right
by the amount specified by the SIG8205 control ROM. The two low order digits
of the shifted result are forced to zero by the FRACT(25,8) selectors of the

fraction selection logic. The results of this step are shown in Figure

4.2.5.2.7-10{e). The shifted result 1s stored in register three.
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The third normalization step adds the contents of registers three
and zero and stores the result in register zero. The result of this step ais
shown in Figure L4.2.5.2.7-10(d). The net effect of steps two and three 1s
the transfer of fraction digits from the low to the high order part of the
double precision fraction.

The fourth normalization step shifts the low order fraction left
by the amount specified by the SIG8205 control ROM. The shift amount computed
by the ROM is subbtracted from the exponent of the low order operand so that
the final exponent result is correct. The amount subtracted from the exponent
1s thirteen for the case when only one non-zero fraction digit is produced as
digrt T1h of the addition or subtraction result. Thus, although the normali-
zation shifter is disabled so that 1t outputs a zero when the shift amount
exceeds seven, an amount of up to thirteen must be able to go from the 8168205
to the exponent adder. The result of this step 1s a correct normalized
double precision addition or subtraction result. The zero flip-fiop is set
on this step to indicate whether the low order fraction i1g zero.

The last normalization stepiests the high order fraction for zero,
and ANDs the result of the test into the zero flip-flop (see Figure L.2.5.2.12-1).
Hence, the flip-flop will be zero after a floating point double precision
addition or subbtraction only if both fraction parts are zero.

h.2.5 2.8 Double Precision Multiplication

Figure 4.2.5.2.8-1 shows the partial products which contribute to
a double precision multiplication result. In this design, two double preci-
sion operands are multiplied to yield a double precision result The low

order part of that result is not produced. The figure displays the product
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Figure 4.2.5.2.8-1 The Partial Products in Double Precision Multiplication
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of A=(Al, AO) by B=(Bl, BO); Al and AO are the most and least significant
part of the double precision number A, respectively. The products AI¥B1

and AO¥Bl are computed first; four registers store the product results. They
are combined into two values by addition of the low order parts and propaga-
tion of the carry to the addition of the high order parts. The carvy from
the high order addition is saved for later addition to the high order part

of the product A1¥Bi., The product A1¥Bl a1s computed and the saved carry is
added to the haigh order part. The high order part of the sum of the middle
partial products is then added to the product AL¥Bl. The carry 1s propagated
across. Finally, the product AQO¥BO is computed. It is added to the low
order part of the sum of the middle partial products, and the cary - if any -
is propagaied by two additions.

Twentysteps are needed to complete the process. . They are-

1 Multiply: Compute A1*¥BO and store the high order part in register one.
The low order exponent of the final product 1s computed in
this step.

2. Store- Store the low order part of the product in register two.

3. Multiply: Compute A0%*Bl and store the high order part in register zero.

L. Store Store the low order part in register three. The addition

with the low order part of A1*BO which follows cannot be
done on the f£ily because the operands for the multipliecation
myst continue to be supplied by the operand registers.

5. Add Add the low order parts of the above products and save the
carry. Store the result in register two.
6. Add with Add the high order parts of the ahove products together
carry: with the saved carry from the low order parts. Btore the

result in register one. Save the carry from this addikion.

T. Multiply. Compute Al#Bl and store the high order part in register
zero. The high order exponent of the final product is
computed 1n this step.
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8. Store: Store the low order part of the Al¥Bl product in register
three.
9. Add carry Add the carry saved from the previocus addition to the high

order part to the AL¥Bl product

10. Ad4d- Add the contents of register one to the low order part of
the A1¥Bl product from register three. Bave the carry out
of this addition.

11. Add carry Add the saved carry from step (10) to the high order part
of the product ain register zero.

12. Multiply- Compute AO¥BO and store the high order part in register
three.

13. Add Add the high order part of A0O®RB0O to the low order part of

the sum of the middle partial preducts. ©Save the carry
from this addition.

14,  Add carry Add the saved carry to the low order part of the final
result in register one Save the carry from this addition.

15  Add caryy: Add the saved carry to the high order part of the final
result i1n register zero.

The result of the above fifteen steps 1s the unnormal:ized double
precision product of the i1nitial double precision operands. Five normaliza-—
tion steps exactly like those which were used to normalize the double precir-

sion addition or subtraction result complete the operation.

4.2.5.2.9 Double Precision Division

Double precision division can be i1mplemented by a process which
parallels that for single precision division described in section h.2.5.2.5.
The initial approximation to the reciprocal 1s computed by a single precision
division. An iterative procedure based on the equation

L+1°%* Xn(l - Dxn)

15 carried out. We di1d not determine the number of 1terations which would be

required, but 1t would be two - perhaps three. The term "D" above 1s the

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS PCOR



1k9

origanal double precision denominator, and the successive x terms are approxi-
mations to the reciprocal. Double precision multiplications are used to per—
form the i1terations, and fixed point double length additions combine the terms
as they did in the single precision division case. A final floating point
multiplicatrion by the original numerator computes the computation of the re-
guired quotient.

k,2,5.2.10 Multiplication and Division by a Power of Two

In many of the multiplications and divisions which the model exe-
cubes, one of the operands 1s a power of two. The logic described in this
section performs a multiplication or division by a power of two in one processor
cycle. The power of two in the operation 1s specified by a six bit value,
CSHIFT(1,6) of Figure 4.2.,5.2.10-1. In a machine with an expoment radix of
two, all of these bits would be added to the exponent for multiplication by
a power of two and subtracted from 1t for divasion by a power of two. In
this design, however, the exponent radix 1s sixteen. Thus, the two low order
bits of the power of two determine a shaift of the fraction, and the four high
order bits of the power of two are added to or subtracted from the exponent.
The control aspects of the logic are shown in Figure 4.2 5,2,10-1. The heart
of the process 1s the Signetics 820% read only memory. It accepts CSHIFT
(5,2), the two low order bits of the power of two, the three high order bats
of the fraction, and a signal which specifies whether multaiplication or divi-
sron by a power of two is desired. The output from the read only memory
controls the zero-to-three position shiafter with a two bit amount and a one

b1t shift direction signal, and 1t controls the exponent correction adder with
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High Order Shaft
Fraction
Zero Bits 0 T o] 3
0 R3 .7 |R2 Rl
0 e
0 |~ +1 +1 +1
1 o 1 R3 R2
0 0 41 41
e
5 0 1 L2 R1
0 0 0 1,
! Wa -4 Wy,
3 0 L1l L2 L3
0 0 0 0

Table 4.2.5.2.10-1 Control Details for Multiplication by a

Power of Two
High Order Shifi
Fraction ]
Zero Bits 0 1 ) 3
o i o//// R1 R2 R3
i 0 0 0 0
0 R1 R2 L1
1 0 0 0 =1
0 R1 L2 1
2 0 0 -1 i =1
1 O L3 12 1
3 ! 0 -1 -1 -4
1 |

Table 4.2 5.2 10-2 Control Details for Dibision by a Power
of two
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a one bit function signal and a one bit selection signal.

Table 4.2.5.2.10-1 gives the details of the control signals for
miltiplication by a power of two, and Table 4.2.5.2.10-2 gives the details
for division by a power of two. The upper left part of each table entry
gives the shift amount and direction, the lower left part gives the exponent
adjustment.

h,2,6 The Instruction Set for the Processors

The anstruction set for the processors is given in Table h,2.6-1.
Separate classes of instructions with three, two, one and zero addresses are
included. An address usually designates a processor register or memory
locatzion, but no more than one memory address is permitted in an instruction.
In some special cases noted in Table 4.2.6-1, an address designates and
operand other than a processor register or a memory location.

The farst four operations in the table - addition and subtractaion,
multiplication and division — were covered in detarl in sections h.2.5.2.3,
h.2.5.2 b, and h.2.5.2.5 respectively. The AND, OR and XOR (exclusive or)
logical operation are implemented by using the corresponding logical opera-
tion of the SNTLS381 arathmetic-logic unit of the adder (see Table 4.2.5.1.3-1).
Logical NOT i1s implemented by using an exclusive OR with a forced one operand
from a disabled alignment shift network. The MOVE operations are simple
transmissions of operands from one place to another. Normelization is dis-
cussed in section 4.2.5.2.1, the integerize operation 1s discussed in section
k.2.5.2.6. Comparison operation are simply subtractions which set the condi-
tion flip-flops, but not the operand registers. The mode setting instructions

use the mode logic of section 4.2.5.1.9 Combinations of sequences of
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Ada
Subtract
Multiply
Divide

shaft

Logical AND
Logical OR
Logical XOR
Move

Compare

Normalize
Integerize
Logical NOT
Round

Set

Move

Set Mode
Route

Set Mode
CU < Modes
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Options

Round, Normalize, Sign
Round, Normalize, Sign
Round, Normalize, Sign
Sigzn

Hormalize

Exponent source
Exponent source
Exponent source
Register < Memory

Memory + Register
Routing pattern + Register
Register « Register

Sign .
Normalize, sign

i

Sign

Status{1) « Mode @ Status(y)

Mode, Status(i) <« Mode @
Status(j)

v

Register < Routing data -
Routing data <« Register
Routing data « Memory
Register <« Status
Status « Regaster
Register <« 0

Mode + Mode @ Status(a)

Mode « 1
Mode = 0

Comments

Single & double precision
Single & double precision
Single & double precision
Single & double precision

Multaiply by a power of
two

Single & double precision,
Sign
Single & double precision

Single & double precision,
Sign

Set the condition register
Single & double precision
Single & double precision

The "@" sign represents
any one of the sixteen
possible Boolean opera-
tions on two variables.
The two addresses desig-
nate the bit numbers "i"
and "3" which select
amoung the eight stabus
register bits.

Single & double precision

Addresses pattern

Table 4.2.6-1 The Instruction Set for the Processors

in the Array
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condition staktes ecan be stored in the status register of the mode logic, and
provide a simple way to implement complex testing procedures. Several instruc-
tiong include the option to require a particular sign for the result. With a
sign-magnitude representation, absolute value and complementation operations
reduce to simple sign manipulations The sign logic of seetion 4.2.5 2.12.3
permits the normal result sign, 1ts complement, a positive sign, a negative
sign, or the exclusive OR of the operand signs to be assigned as the sign of
the result.

The roube instruction supplies & routing pattern address to the
routing network. The network stores sixbteen pre-loaded routing patterns.

A routing instruction calls for the use of one of these pre-loaded pabterns.
A builb-in operand broadcast is also included. It causes an operand in one
of the 256 routing dis-assembly registers to be sent to every routing re-
assembly register. The control unit can lcoad values into the original
dis~assembly register and retrieve value from the corresponding re-assembly
register. See section k.3 for the details of the routing network.

The shift operation permits muitiplication or division by a power
of two as discussed in section 4.2 5.2.10 The power of two 1s a control
unat operand of six bits in length.

The exponent selection feature of the logical operations permits a
mask to be used for both selecting baits from a fraction and assigning an
exponent value from the mask word to the result. The fanal binary point

alignment can be achieved by a shift operation.
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4,3 Processor Intercommunication - The Routing Network

In virtually every problem for which an array processor is suited,
the processors in the array need to exchange data values from time to time.
Indeed, the scope of the problems for which a particular array processcr 18
suirted can depend on the flexibility of 1ts data interchange network. The
data interchange network of this design —-hereafter called the routing net-
work — 15 a three stage Clos network (Clos, 1953, Benes, 1965)  Although
Clos proved that such a network can perform any permutation of the input
signals to the output ports, his proof did not provide a guide to a general
algorithm for controlling the network. This aunthor 1s among a growing group
of people who would like to have such an algorithm.

The general form for a Clos network is shown in Fagure Lk.3-1, and
the specific form used in this design is shown in Fagure 4.3-2. The author
15 indebted to William Stenzel for many of the ideas which lead to the form-
ulation of the routing network in this form.

The last two stages of a Clos network form what Lawrie (1973) has
called an omega network. In his thesis, Lawrie shows that an omega network,
among other operations, can perform uniform circular shifts of arbitrary
distance and direction. In later work, Lawrie and Wen (1975) have discovered
simple conbtrol algorithms for the omega network which permit its use in
partitioned form to perform several simultaneous circular shifts of indepen-
dent amount and dairection within the separate partitions. For an omega net-
work such as we have in this design, the size of all partitions must be an
integer power of two, although the partitions may have various sizes. What

must hold for each partition, however, is that with the input ports numbered
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from zero to N-1, the index number of the lowest numbered inpuf port of a
partition must be congruent to zero modulo the size of the partition. The
Clos network, of course, permits arbitrary pertitions, but we have only been
able to find an algorithm for uniform shifts of one 1n either direction
within arbitrary partitions. Where other shift amounts are necessary, one
must either conform to the partition restrictions of the omega network and
use the Clos network as an omega network by sending the input operands
straight through the first stage of crosshars withoubt interchange, or make
multiple passes through the general Clos network :f non-omega suited parti-
t1ons must be used.

The details of 'the interconnections between the crossbars in the
Clog network are given in Faigure 4.3-3 for a two stage network of four by
four crossbars. The figure shows the sixbteen input ports of the network
divided into four groups of four. The destination number, d, of a lead
from an ouput port source of the first stage, s, 15 given by

d = (s*N + g) modulo Nk,

where all port numbers begin at zerc, g 18 a crossbar number (beginning with
zero), N 1s the mumber of input and output ports for an individual crossbar,
and Nk 15 the total number of input and oubtput ports of the network as a
whole. Every transmitiing switch sends exactly one value to every receiving
switeh 1n the next stage.

4,3.1 Routing Network Control

The Tollowing two sections desecribe the technigues needed to con-
%rol the two stage omege network and the three stage Clos network. No hard-

ware 1s 1n the design to support run time execution of these algorithms.
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OUTPUT INPUT
GROUP PORT PORT
NUMBER NUMBER NUMBER
0 0
0 ! :
3 3
4 4
5 5
1 d=(s* 4+1) mod 16
6 6
7 7
8 8
9 ~N—g
2 d=(s®4+2) mod 16
10 : 10
11 11
12 12
13 13
3 =(s%4+3
iy 14 d=(s%4+3) mod 16
15 15

Fagure 4.3-3 The Detarls of Inter-Stage Connections wiathin the
Routing Network
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The crossbar implementation ineludes a memory to sbore sixteen four bit
routing control words for each data path (the 10145 of Figure k.3.3 1-1).

A path from the data register to the memory inpubt permits the control memories
to be loaded with values computed by the compiler or other software external
to the machine As we will see in section 6.2, this capabilibty is sufficient
to support the general circulation model and several other algorithms of prac-—
tical interest.

4.3,1.1 Control of the Omega Network

The omega network in this design 1s composed of two stages of sixe
teen by sixteen crossbars. Sixteen is the square root of 256, the total
number of input ports. The destination address for any dabta value which
enters the omega network from the first Clog network stage is an eight bit
number, the four high order hits are the number of the third Clos stage to
which the walue must be sent., The low orﬁer four baits of that address give
the number of the output pori of that crossbar to which the data value should

s
be sent. Lawrie (1973) and Wen (1975) have shown that the omega network can
perform all of the following useful data routings within suitable partaitions:
1 Circular shifts in either direction of any amount.
2. Uniform separation of a group of contiguous values (unless p, the ultimate
separation distance, 1s relatively prime to the partiticn size, P, only
P divaded by the greatest common divisor of p and P elements can be
"expanded"),
3. Elements originally separated by uniform separations p can be brought to-
gether. Apgain, unless p and the partition size P are relatively prime,

elements separated by p units dastance fail to wrap around, and only P
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daivaded by the greatest common divisor of p and P elements can be
processed.

4,3,1.2 Shifts of One Position in a Clos Network

The argument of this section presents a deseription of the cases
1llustrated in Figure 4.3.1 2-1. Three types of interactions of partitions
with the crossbar switches of the routing network are shown.

As the diragram shows, no more than one value needs to move up from
cne switeh in the fairst stage to another in the third stage, and no more than
one value needsg to move down from one first stage switch to another thard
stage switch. TIf we send all values which must move up to the top switch in
the second stage and all values which must move down to the last switeh of
that stage, we are guaranteed that there will be no more than sixbteen such
values, and moreover, that no two such values need to go to the same third
stage switch. Values in partitions like "A", "D" or "E" can be routed
straight through to the third stage, which can interchange them as required.
Only if there are partitions such as "D" or "E" wall there he less than six-—
teen values which must move up and down. One value from such partitions can
arbitrarily be sent to the top and bottom second stage switches to fill other-
wise unused positions

This argument i1s difficult to extend to the case where shifis of
more than one position are involved, for then it is difficult to account
rigorously for all switeh positionz, and to insure that no second stage
switch recieves two or more values destined for the same third stage switch.

h.3.2 ECL Logic

The choice of ECL current mode non-saturating logic for the imple-
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mentation of the routing nebwork was dictated by two factors first, we
want to be able to route a set of operands through the network in a time
comparable to that of a processor operation, and second, we want to minimize
problems with noise and signal cross-talk in the many cables of the routing
network., The dafferential pairs of the ECL famly, while necessitating
rigorous balancing of line impedances, give - in return - effective i1solation
of the ground and signal levels of the drivang and receiving loglc. These two ad~
vantages of ECL logic over TTL prompted the decision to design the routing
network with ECL logic.

The ECL logic packages used in this design are those in the series
developed by the Motorola Corporation and usually referred to as MECL 10000.
Many other manufacturers provide a second source for these circuits, and the
reference used for the data on 10000 series circuits used in {his paper 1is
Signetics Corporation (19ThA}. In Jogic diagrams, ECL packages are labelled
with their part number, which 1s uwniformly Ffive digits beginning with one and
Zero.

%k.3.3 Routing Network Time and Component Count Estimates

The routing network can be burlt either as a pure switching system
through which values flow 1n one step, or 1t may be buirlt wath registers in
each stage so that successive values may flow through it i1n pipeline fashion
A third option, not considered further here, is to build one stage of cross-
bars and cycle values through i1t twice for omega network operations and three
times for Clos network operations. In any case, crossbar switches for less
than the full forty bit width can be built and used in byte serial fashion.

Table 4.3.3-1 gives the details of a component count analysis for the pipe-
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Component Counts
Components Pipelined Unit Non-Pipelined Unit
Per Bit Per Crossbar Per Bit Per Crossbar
o101 - l - L
10133 % - - -
10145 - 16 - 16
10158 - 16 - 16
10164 2 - 2 -
TPotals 16 * 2% * B + 36 16 ¥ 2 # B + 36
Table 4,3.3-1 Crossbar Component Counts
Clos Network Omega Network
Pipelined Pipelined
Non— Non-
Total Last Total Last
Time Stage Pipelined Time Stage Pipelined
286 T2 2hk 227 T2 189
|
Table 4.3 3-2 Routing Network Propagation Times
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lined and non-pipelined designs for a sixbeen by sixteen crossbar in terms of
the parameter B, the width in bits of the data path through the crossbar
Table k.3,3-2 presents the propagation time in nanoseconds through various
networks. TIts values are derived by consideration of Figure 4.3.3-1 which
11llustrates the hardware components through which a signal must flow in a
C(los network. (Also see section 4.3.3 1.) The total network switehing time
and the component count for one crossbar given in Table k,3.3-3 for crossbars
of all reasonable bybte sizes. The expected cycle time of memory for the sys-
tem 1s nominally 500 nanoseconds. Table L.3.3~3 shows that to keep the time
for one routing step commensurate with this time, either s twenty bit non-
pipelined network, a pipelined Clos network for ten bit bytes, or a pipelined
omega network for eight bit bybes should be built. The component count aspect
of the issue makes 1t clear that the pipelined design 1s to be preferred.
The esgential steps in the piplined implementation are

1. Transformation of the data from the parallel form of the processors to

the byte serial form for the routing network,
2. Transmission of the byte serial data through the routing network, and
3. Transformation of the byte serial data back to fully parallel form.
The following two sections discuss the tranformation and transmission aspects
of the routing network hardware.

4.3.3.1 Data Transmission and Broadcasting

The data transmission logic 1s two or three stages of byte serial
sixteen input by sixteen output crossbar switches. The essential elements of
this network, the crossbar switches, are implemented by the logic of Figure

k,3,3.1-1, which shows the logic necessary to implement a one bit path.
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Pipelined Non-Pipelined

B Crossbar Namoseconds Crogsghar Namoseconds
vte Size Components Clos | Omega Components | (1,8 Omega.

40 1476 286 | 227 1316 okl | 189

20 756 358 | 299 676 488 | 378

10 396 502 § 4i3 356 976 | T56

8 32h 574 515 292 1220 | 9ko

5 216 790 T31 196 196 | 1512

Table 4.3.3-3 Component Counts and Network
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The 10145 storage register shown in the figure stores the control bits for
all eight paths for one of the sixteen bytes through the crossbar. Three of
the four bits in a control signal select one of eight inputs as the oubput

of two 1016k eight-to-one selectors whose outputs are wire ORed together.

The fourth control bit, complemented by the 10101 inverter, serves to decide
which of the two selectors is enabled and which 1s disabled. The 10158 quad-
ruple two-to-one selector permits either local or global control of the
switching path to be selected. The 10133 four bit latch holds the selected
result for the stage, these latches are the registers which permit pipelining
of the byte signals through the three stage network. Thus, each bat switched
through the crossbar requires two 10164 selectors, one quarter of a 10133
latch and a 1010 quadruple inverter, and one eighth of a 10158 selector and a
101k5 register file.

A value from any of the 256 input-ports of the routing network can
be broadcast to all 256 output ports using only two stages of crossbars. The
process 1s illustrated in Figure 4.3.3 1-2 for a two stage network of two by
two crossbars. The low order part of the address of the desired broadecast
input determines the setiing for all first stage crossbars, and the high
order part of that address determines the setting of all second stage cross-—
bars.

4,3.3.2 Data Parallel-to-Serial and Serial-to-Parallel Conversion

The hardware which performs parallel-to-serial and serial-to-parallel
conversions resides in the processors as the dis-assembly and re-assembly
logic of Faguret.5.2 L7-2 This hardware is shown 1n successively more detail

an Figure 4.3.3.2-1 and Figure 4.3.3.2-2. TFigure 4.3.3.2-1 shows a complete
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forty bit dis-assembly and re-assembly register together with i1ts associated
drivers and receivers. The SNT4S195 four bit parallel in and pa}rallel out
shift registers are TTL circuits which receive values from the operand
registers of the processor and transmit values to the fractzon selector of
the processor. The 1012k differential drivers receive TTL signals from the
SNTLS195 shift registers, convert them to standard ECL levels, and transmit
them 1n dafferential pair form to the ECL logie of the routing network. The
10125 differential receivers accept ECL differential signal pairs from the
routing logic and convert them to TTL levels.

The assembly-disassembly register hardware can be implemented wath
fewer components for eight bat byte operation than for ten b1t byte opera-
tion. The discussion of the next paragraph discusses an eight bit byte
design. The eight bat design requires sixbeen SNTLS195 register whereas the
ten bait design requires twenty. Furthermore, the eight bit design uses only
four ECL 10000 series components, the ten bit design uses six.

Figure 4 3.3.2-2 shows the details of one of the SNTLS195 blocks
of Figure 4.3.3.2-1. Table 4.3.3.2-1 lists the eight steps which are used to
transmit a forty bit value through a Clos routing network in five eight bit
bytes. In step one, five consecutive bits from the operand registers of the
processor are loaded in parallel into the SNTLS195's shown using CLOCKL and
CLOCK2 in synchrony. The results of step one, taken from the serial output
pins of the eight SNTLS195's (pin twelve), are avallablé to the routing net-
work as byte one of the input.

Step two uses CLOCKL and CLOCKZ2 in synchrony again to perform a

serial shaft which makes the eaght bits of byte two available to the routing
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Cycle | CLOCKL | CLOCKZ2 Input Output Comments

1 1 1 forty bits | byte one Parallel load from operand
registers

2 i 1 none byte two Serial shift

3 1 0 none byte three | Serazal shift

L 1 1 byte one byte four Serial shift

5 1 i byte two byte fave Serial shift

6 0 1 byte three| none Serial shift

T 0 i byte four none Serial shift

8 1 1 byte five none Serial shift

Table 4,3.3.2-1

Routing Network

The Steps in Dabta Transmission Through a Clos

Cycle | CLOCKlL | CLOCK2 Input Output Comments

1 1 1 forty bits | byte one Parallel load from operand
registers

2 1 1 none byte two Serial shift

3 1 1 byte one byte three| Serial shift

Y 1 1 byte two byte four Serial shift

5 1 1 byte three | byte five Serial shifg

6 0 1 byte four none Serial shift

T 1 1 byte fave none Serial shaft

Tahle 4.3.3.2-2 The Steps in Data Transmission Through an Omega
Network
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network; at the end of this step, no data remains in the upper SNTLS195 of
each pair. Step three uses CLOCKL alone to shift the third byte into output
position. At the end of step three, the first three data bytes are in the
register of the roubing network pipeline. On step four, CLOCKL is used to
supply byte four to the network and CLOCKZ 1is used to receive the first byte
of the routed result from the network. Steps five through eight complete the
routing process. On step erght, CLOCKL and CLOCKZ2 are used in synchrony to
accept fafth and last byte of the routed result. Although the design presented
is used with forty bit parallel inputs, it is clear that the technique
described by Table 4.3.3.2-1, with the addition of one more step which uses
both clocks in synchrony, could be used to transmit data words of up to forty-
eirght bits in six bytes of eight bits each  Because latches and not master-
slave flip-flop are suggested for use 1n the crossbar swibches, clock signals
controlling the flow of data through the network and logic of this section
would probably have to be applied in time startaing with CLOCK2 (and for step
eight, CLOCKL and CLOCK2) of Fagure 4.3.3.2-2 and proceeding in succession
from right to left through the three stages of the routing network of

Figure 4.3-2. In particular, CLOCK2 could never be used to both shift a bat
out: for cutpub use and 1n for input use at the same time.

The seven steps 1n the data transmission process for a two stage
omega network are given in Table 4.3.3.2-2. Because the two stages only hold
two data Dytes in the pipeline, there is no spare step, similar to that in
the Clos process, so that the capacity of the network is limited to forty
bits 1n five eight bit bybes 1f the logic of Figure 4.3.3.2-1 1s used for the

parallel~po—serial and serial-to-parallel conversion process.
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L.3.4 Table Look Up

A table look up faecility i1s provided within the routing hardware
to support the table lock up needs of the model, primarily those of the long
wave radiation calculations. The table look up unit 1s shown in Figure h.3.k-1.
One %able look up unit is included for each of the sixteen routing units. The
hardware includes one processor memory module, an assembly dis-assembly
register like that of Figure 4.3.3.2-1, four SNThLS193 low power Schottky four
b1t counters which form an address register, and four SNTL15T7 quadruple two-
to-one selectors to determine the source of the memory address. The assembly
regaister receaves data from port one of i1ts corresponding first stage cross-—
bar. The dis-assembly register delivers data to input port one of its
corresponding last stage c}ossbar.

The unit operates in two different modes. In the first mode, each
processor computes the address of the table value which it wants, using integer
arithmetic and the index adder discussed 1n section 4.2.5.1.11. The address
for the table enitry for processcor zero of each first stage routing crossbar
18 clocked into the assembly register in two cycles. The data 18 read from
memory, dis-—assembled and sent via the last stage crossbar back to processor
zero. The two address bytes from processor one could be clocked into the
assembly register as the last two bytes of data are clocked out to regaster
zero. This process continues until a2ll sixteen words requested by the pro-
cessors have been delivered.

The second mode of table look up operation is table loading in
this mode, as initial table address 1s sent from an appropriate source. In

some cases, the gddress may be broadcast from the control unat, in other cases,


http:4.2.5.1.11

4 PROCESSOR
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Figure 4.3.4-1 One of the Sixteen Table Look Up Sites
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an address unique to each table look up memory may be used: it is not neces-—
sary that all look up tables hawve the same contents. The set of processors
can be partitioned by using the routing network to execute several programs
with different table contents simultaneocusly. The ainitial block address is
clocked into the register composed of the four SNTULS193 up-down counters. A
succession of table words from an appropriate source are sent; between words
the storage address 1s incremented or decremented by one as appropriate.

At this point, a further remark about the logic of Figure L4.3.3.2-1
1s in order. If the bit assignments shown in the figure were strictly adhered
to, the eight bit bytes transmitted by the routing network would not correspend
to contiguous eight bit segments of processor operands. In particular, if the
processor is to be able to compute a table address and transmit it in two bybe
transmissions to the table look up unit, an input bit order from that showm
1n Figure 4.3.3.2-1 1s required. Of course, thé arrangement of the output bit
assignments can be reordered so that values are jransmitted correctly by the
routing network. Suffuce 1t to say that the input arrangement is arbitrary,
and that an arrangement which supports the needs of efficient use of the table
lock up uwnit can be used without harming the other operational needs of the
routing system.

4.3.5 Communication with the Control Unit and the Input-Qutput Channel

The routing uwnit forms the basis for intercommunication among the
elements of the machine as well as with the input-oubput channe} and any pos-
gible future secondary storage. The main function of the routing unit, that
of providing communication paths between the processors, has been discussed

in previous sections. The following two sections discuss the use of the
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routing unit 1n support of data flow between the control unit and the proces-
sors, and also in support of data flow between the machine and the perpheral
world envisioned for this desagn.

4.3.5 1 Communication Between the Array and the Control Unit

As we saw in section 4.3.3.1, two stages of the routing network
permit a value to be broadcast from any one input port to all output ports.
The control unat can, therefore, send a value to all processors if it can
transmltithat value to any one of the input ports of the first routing unit
stage. It can receive a value from any of the processors by accepting a
value from any of the second stage cutput ports if that value has been broad-
cast ©to all of those ports by the first two stages of the routing network.

4.3.5.2 The Routing Unit in Support of Input and Output

Data transmission to and from a sequential external device on the
input-output chamnel can be supported by using the 256 eight bait registers of
stage one of the routing network as a large circular shift register. Informa-
tion to the control unit would enter any stage one input port and be broadecast
%o the output port for the control unit in stage two. Information from the
control unit to the channel would flow through the control unit's input port
and be broadcast to an output port which is connected to the channel

Tor volume data input from a sequential device, successive bytes
can be sent in through any stage two input port, broadecast to the third stage,
and clocked into the appropriate processor assenbly register for subsequent
storage 1n array memory. Volume data outpubt to a sequential device can be
broadcast from the first stage input ports in any desired order to all second

stage oubput ports. Any one of these can be connected to the channel.
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Paths from a parallel access secondary storage deviece - not proposed
for the general circulation model - could be sattached to consecutive input
ports of one stage shifted uniformly to the desired position in the next stage.
Although 256 parallel paths are conceptually simpler to deal with, any number
less than that can be accomodated by the joint use of mode and routing control.
Paths to a parallel access secondary storage device could be attached to the
second or third stage output ports, and blocks of data could be shifted to
those ports from either processor or control unit memory.

4.4 The Control Unit

The control unit must provide control signals to operate the three
other main components of the design- the processors in the array, the rout-
ing unit, and the input-output channel interface. As we have seen in section
L.3.4, the bulk of the load for input-output control i1s the task of the
routing unit control logic.

L,h 1 Control of the Processor Array

By design, the processors are simple to conbrol. For each step, a
set of control signals and one clock pulse are all that is reguired. The ob-
vious conbtrol mechanism 1s a read only memory in which the proper control sig-
nal sequence are stored together with simple hardware to interpret the instruc-
tion stream and send the appropriate sequence of control signals to the array.

The control unit can sample the stabtus of any processor by examining
1ts mode, condition and status register contents by way of the routing network.
Fagure 4.4.1-~1 1llustrates the three ways in which the control unit can access
the 256 MODEOUT signals from the mode logic of the 256 processors in the array.

An array of sixteen processors 1s shown in the figure, arranged in four groups
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of four. In the design, the 256 processors would be arranged in sixteen groups
of sixteen, each four bit group of Figure 4.4 1-1 thus corresponds to a six-
teen bit group in the system. The control unit can access the logical OR of
all 256 MODEOUT bits as shown in Figure 4.4.1-1(a). It can access a sixteen
b1t value whose bits represent the logical OR of the MODEOUT bits of the
processors 1n a sixteen bit group either of ways. In part (b), sixteen
contiguous MODEQUT logic bits are ORed to form one bit. In part (e), the
sixteen bits from corresponding positions in each of the sixteen groups of
contiguous processors are ORed.

Figure 4.L.1-2 1llustrates the three ways the control unit can
supply the MODEIN bit to the mode logiec of the 256 processors. A1l 256 MODEIN
signals can be the same, as shown in Figure 4.4.1(a). BSets of sixteen pro-
cessors can be supplied with a common MODEIN bit value in the two way il-
lustrated by parts (b) and (¢} of Figure L h.1-2. In all cases, of course,
the MODEIN value can be combined with local control information stored in the
mode register and status register of each processor.

L.h,2 Control of the Routing Network

Control of the routing network - as section 4.3 makes clear - re-
gquired sequences of synchronized and phased clock pulse interspersed with
shift control and selection signals. Although the precise nature of the con-
trol signals differs in kind from those for the array of processors, the same
technique can be used for the routing network as was used for the processor
array. The guestion as to whether two asynchronous control devices, one for
the processors, the other for the routing network, would prove cost effective

was not answered before work on the design ceased.
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5. Design Testing

The multiplier design was tested by constructing a hardware proto-
type, and the floating point addaition logic was tested by simulation. The
following two sections discuss these two efforts.

5.1 The Logic Simulation System

Breuer has edited a,book on simulation of computer systems, and one
of 1ts chapters (Breuer, 1972) daiscusses logic simulators. Two classes of
simulation techniques are 1dentified: the compiled code model and the table
driven model. In these terms, the logic simulator described here i1s a com-
piled code simulator.

In the bibliography for the logic simulation chapter, there are
references to many papers about logic simulation. The larger majority of both
the references and the chapter deals with gate level simulation. The simu-—
lator of this paper is a package level simulatlén. The references uniformly
discuss how their auwbhors constructed simulators, no off-the-gshelf simulation
system suitable for package level simulation exists that does not reguire the
user to write his own package simulation routines. This view was confirmed
by conversation wath Dietmeyer (1975). Sinece the bulk of the work in con-
structing the simulator presented here was exactly that of writing the package
simalation routines, the author feels that no duplication of available material
is represented by the simulator construction effort deseribed here.

Figure 5 1-1 13 a dragram of the logic simulation system. The
praimary input to the system 1s a description of logic to be simulated A pre-

processor accepts this description and produces two items
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1. An assembly language program, consisting entirely of macro calls, whach
simulates the input logic, and

2. A macro and az macro call which define the structure of a driving module
for the input logic.

Except for a few lines, the macro calls in output (1) above cor-
respond one-to-one with packages in the logic. Each logic function 1s repre-
sented by a2 macro which, when assembled, simulates the action of the package.
Some of these macros expand into executable code directly, while others expand
into subroutine calls on simulation modules which reside in a package library.
The macros, not the preprocessor, determine whether a compiled code or table
driven simulator results from the approach descraibed here. Note also that
the complexity of the packages simulated can vary from simpie AND, OR level
gates to single packages which perform a full fraction multiplication  Al-
though the set of macros chosen for the particular simulator described here do
not permit 1t, a package could well be simulation module produced by the
system for a part of the subgect logic, so that modular investigation and
debugeging of a design can be supported by the technique described here.

Output (2) above consists of a macro called STEP, written by the
preprocessor, which is called by the user of the package. A BSTEP call results
in one executiron of the subject logic with the values for the input wvariables
given in the call. The only other output inciuded in (2) is a call on the
macro BEGIN with all of the input and output signals for the subject logic as
parameters. Execution of this call begins each execution cycle by sebbing the
time portion for each input signal to the maximum of the times from the out-

put signals of the previous cycle Assembly of output {2) together with a
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handwritten series of STEP calls produces a module which exercises the.sub-
Jeet logie.

By saving the logic object module and the Input snd output structure
descripticn sthn in Figure 5.1-1, the user of the similation system can
execute the subject logic as many times as desired, having assembled 1t only
once,

5.1.1 The Logic Simulator Language and the Preprocessor

Tessler (1968) has defined a single assignment lenguage as one with
the following properties:
1. BEvery statement 1s an assigoment statement.
2. No two statements assign a value to the same variable,
3. No loops occur which cause the value of a variable to depend on itself.
With the relaxations of the third restriction described in later sections,
this language form is ideal for describing computer logic. The proper order
for execution of the assignment statements depends on the partial order
implicit in them  variables which never are assigned values are input signals
to the logic, variables which are only assigned values and never referenced
are output signals from the logic. All other variables are internal signals.
The fairst executable statement uses only inpub signals on its right side,
and defines an internal variable or output signal. The process of gelecting
execubable statements continues until all statements have been selected or a
loop occurs.

The preprocessor accepts a set of assignment statements which de-
scribe the logie. These statements can be in any order. The topological

sorting algorithm given by Knuth (1968, pp. 258-263) is used to output the

-
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lines in & correct order for execubtion. Loops and multiple definition of

variables are detected.

7
A line 1 the input language 1s an assignment statement which de-

scribes the action of one element (or package) of the logie. An input line
includes the signals which are outputs of the package, the funetion of the
package, and the signals which are the inputs to the package. BEach line be-
gws with a list of the output signals from the package, this list is followed
by a colon. The function name follows the colon and 1s followed in turn by
a last of the input signels to the package. The line ends with a semicclon.
Signals names must be given to all signals which flow between pack-
ages, each bit of a given named signal maps one-to-one into a wire in the
physical realization of the logic. A signal name is an 1dentifier which be-
gins with a capital letter and is followed by seven or less capital letters
or digits. (The signal name convention of the logic language was also used
1n section U for the hardware descripbion ) The eight character limit 1s
imposed by the use of the IBM 360 assembler which puts an eight character
1i1mit on the symbol names which 31t accepits.) The identafier part of the sig-
nal can optionally be followed py a bit specification. A bit specification
is one, two or three integers enclosed in parentheses and separated by com-
mas, and is reguired when the named signal consists of more than one bit.
The bits of an N bat signal are numbered from one for the most significant to
N for the least significant bat. A bat specification with a singite integer
specifies that bit of the signal which hasg that integer as its bit number,
In a bat specafication wath two integers, the first specifies the bit number

of the most significant bit of the signal and the second specifies the number
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of contiguous bits in the signal. The third integer of a three integer bat
specification gives the difference between successive bit numbers for the bits
in the signal when that difference 1s not one. Table 5.1.1~1 summarizes the

signal naming convenblions.

B1gnal Name Meaning

A The one bit signal "A"

B(3) Bit three of the multi-bit signal "B"

B(1,32) Bltﬁ one through thirty-two of the multi-bit signal
B(5,4) Bitstive through eight of the multi-bit signal "B"
c(1,2,4) Bits one and five of the multi-bit signal "C"

Table 5.1.1-1 Summary of the SBignal Name Conventions
The individual bits of the signals are the variables assigned by execution
of the lines. The preprocessor guarantees that no bit 1s sgssigned a value
more than once, and that every bit which 15 referenced has been assigned a
value.

Many packages, such as the SNTLS157 two-to-one selector, have one
output signal. Others, such as the SNT4S182 look ahead carry generator,
have as many as five oubtpubt signals. ZEvery line which uses the same package
type should have the same number of input and output signals. The preproces-
sor prints a function usage summary for each package type which lists any
deviaticns in usage.

Frequently in the logic design described in section 4, there was
a need for constant logic one or zero signals. The logie description langu-

age inecludes the variables ZERO, ZEROS, ONE and ONES as built in variables
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with the constant logic values which their names suggest. It alsc happens
that some of the output signals from a package with multiple outputs are

not used. Since the preprocessor questions (but does permit) the use of a
package with different numbers of output signals in dafferent instances, the
built in variable UNUSED is permitted, 1ts use is encouraged for the sake of
clarity.

The preprocessor also inecludes two burlt in functions. The QUTPUT
function prints the values of the input signals written for 1t as the first
time that all of those signal values are set in a logic simulation cycle, 1%
appears in the place assigned to 1t by the partial ordering process An
CUTPUT statement names no output varigbles, so that 1t begins with a colon.
The FORM statement 1s used to buildmulti-bit signals from shorter signals.
One instance of 1ts use 1is to burld an eight bit signal composed of ZERC and
ONE bits for input to the SN7ES151 eight-to-one selector which supplies the
EX0 overflow indication signal described in section L 2.5.1 12.h4,

5.1.2 Taming by the Simulator

At run time, each neamed signal whaich occurs in the logic specifica-
tion 1s represented by the sitructure shown in Figure 5.1.2-1. The signal name
left jJustified in a blank filled eight byte field. The name is foliowed by
a half-word integer which 1s used to'store the time at which the signal
received its value. The time for muliai-bit signals which are set by the out-
put from several different packages 1; the maximum of the times for all such
package outputs. When knowledge of such time differences 1s important, multi-

bait signals can be split into several different parts for more detairled timng

anformation. The bits of a named signals are each represented by a byte, the
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SIGNAL
SIGNAL NAME TIME SIGNAL/O°'/BITS

1 89 1011

Figure 5.1.2-1 The Format of the Representation of a Signal During
Simulation
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strang of bytes which represents the bats of the signal follows the time half-
word. The execution of an OUTPUT function prints the signal name, the bat
specification numbers, the signal time, and the values of the specified bits.

Each package that receives a clock pulse sets the time of that pulse
In this way, the first possible time at which the clock pulse could occur 1s
determined.

The following discussion describes the calculation for the value
assigned to the time for the output signal of an SNTLS157 two-to-one selector.
The discussion will clarafy the nature of the output signal time calculations.
As shown in Figure 5.1 2-2, the SNTLS15T7 has four input signals and one out-
put signal. If the strobe signal is a logic one, the output signal 1s always
zero regardless of what the selection and A and B inpul signal values are.

Tn this case, the time assigned to the output signal 1s that for the strobe
s1gnal plus the delay time through the package for this case given by Texas
Instrument Corporation (1973). When the strobe signal 1s a logic zero, the
value of the selection signal determines whether the package output 1s "A" or
"B", TIn this case, the time assigned o the output signal is the maximum of
the selection signal time plus 1ts delay and the time of the selected input
signal plus 1ts delay. The time of the non-selected input signal i1s ignored.

5.1.3 Debugging Aldeg in the Simulation System

The simulation process for each package includes a test of each bit
of the input operand. Because each bit 1s represented by a byte of 360 memory,
1t can assume more than the two states found in conventional digital logac.
Input signals which are 1gnored by the package are not tested, thus, the sim-

ulation of an SNTUS157 selector does not test the anput and selection signals
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SN74S157
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Figure 5.1.2-2 The SNT4S157 Two-to-One Selector
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if the strobe signal value is a logic cne. It always tests the strobe bat
value.

During the early debugging of the simulator, this testing process
helped to idenitify the source of the error. iThe standard simulator response
to an improper bit value 1n a tested signal is to print an error message to-
gether with the standard output for the errant signal {that 1s, 1ts name, bit
specification, time and bit values). Logic ones and zeros print as ones and
zeros; improper bits print as dots. The simulator halis and dumps memory when
an error occurs. Although the investigation was not carried to this point, the
simlator could easily be altered, so that 1t would continue rather then
halting when an improper bit value 1s detected  This action wourld help in
designing fault detection programs for the logic, since it would permit easy
determination of the propagation effects of an error Moreover, 1t would per-
mit identification and verification of those signals whose values, for a par-
ticular cycle, are of no conseguence.

5.1.4 Simulated Packages with No Ixact Hardware Analog

TIn the description of the left operand selection logic {section
4.2.5.1.5), the block in Figure L4.2.5.1.5-1 represented selection functions
rather than hardware packages. In many cases, simulation results are not
effected, but simulation time i1s reduced by permitting the simulation macros
to perform package functions in this approximate way. Thus, the macro which
simulates the SNTLS15T two~to-one selector will accept input operand pairs of
any bit length from one to 256, and will produce an oubtput signal with the
corresponding bit length. This deviation from exact simulation does no

violence to the logic function or the logic execution time of the simulated
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logic.
2.1.5 Loops

In section 5.1, we referred to relaxations of the restriction on a
single assignment language which prohibits loops. TIn real hardware designs,
Yoops do ocecur. Three different types of loops are present in the simulated
floating point addition hardware, and they are discussed in the three sections
which follow.

5.1.5.1 Loops and Storage Repisters

The value of the zero flip~flop from a previous cycle must be used
to determine the action of the normalization process (see section 4.2.5.2.1
and Fagure 4.2 5.2.1-2). Another example (which was not similated)} occurs in
the cases of the overflow flip-~flop of Figure 4.2.5.1.12.4-1 and the under-
flow flip-flop of Figure L4.2.5.1.12.5~1 In both of these cases, the previous
value of the flip-fiop cccurs as a possible input to determine i1ts subsequent
value. The loops which these cases give rise to should be broken by delaying
the execution of the line which assigns a new value to the register or flip-
flop until after all Iines which reference the old value have heen executed.
Preceeding the output signal name with an asterick has precisely this effect:
& line which contains an ocutput symbol preceeded by an asterick is placed in
the output program aiter all lines which refer to the named output signal.

5.1.5.2 Apparent but not Real Loops

The logic of the index adder, shown here again as Figure 5.1.5.2-1,
appears to include a loop., The SNTUS182 receives the carry generation and
propagation signals, IXG(1l,4%) and IXP(1,4), from the four SNT4SL8L arithmetic-

logic units, and returns the three carry signals, IXCh, IXC8, and IXCl2, to
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rIXCARRY

IXG(4
CUADDR(13,4) - (4)
o IXP(4)
w
NS
A(21,4) = —— EADDR (13,4)
IXC4
CUADDR(9,4) ~ IXG(3)
’ o IXP(3)
wn
N
A(17,4) z [——EADDR(9,4)
T IXCs8
CUADDR(5,4) F 1X6(2)
2 IXP(2)
[{p]
N
A(13,4) g ——EADDR(5,4)
—
T IXC12
X
CUADDR(1,4) o IXG(1)
~ IXP(1)
v
<
=  |——EADDR(,4)
A(9,4) Z :
e}
IXMODE —e

IXFUNC(1,4)
Figure 5.1.5.2-~1 The Index Adder Logic

SN74S5182
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three of the SNTLS181's. On closer examination, however, we find that the
functions of the SNT4S181 can be partitioned into two separate operations
The generate and propagate signals depend only on the values of the inputs
A(9,16) and CUADDR(1,16) and are independent of the carry inputs IXCARRY,
IXC8, and IXC1l2 The sum EADDR(1,16) depends on the input operands and the
carries. The apparent loop 1s broken in the simulator by implementing the
two separate functions of the SNTkS181 (and also the SNTLS38L) as two separ-
ate pseudo-packages as shown in Figure 5.1.5.2-2. The S181GP package uses
the input operands A{9,15) and CUADDR(1,16) to produce the generate and pro-
pagate signals for the 8182. The carries from the 5182 package are used by
the 5181 package, together with the input operand values, to produce the re-
quired sum.

Figures 5 1.5.2-3 through 5.1.5.2-8 are the computer output for the
simulation of the index addgf__ Figure 5.1 5.2-3 shows the SYSPRINT file
which lists the logic description which was input, and summarizes the func-
tions used in logic and the signals which are inputs to the logic and outputs
from the logic. The first seventy-two characters of each input line are pro-
cessed by the logic simmlator. Card input is assumed, and the last eight
columns of each card can be used for card sequence information. The entire
e1ghty columns of each input card are listed, and the function summary lisis
the card number of the function card printed. If a function 1s used with
different numbers of input or cutput signals, all cards Tor that function are
printed in the function summary. This situabtion may or may not represent an
error, and the user can proceed to assemble and execute a simulator with this

gort of input. The response is completely determined by his macros which



CUADDR(13 4)

A(21,4)

CUADDR{%.4)

All74)

CUADDR(5,4)

199

Al13.4)

CUADDR({1 .4}

Figure 5.1.5.2-2 The Apparent Loops

Removed

IXCARRY

1XG(4)

XPI4) vt
% g EADDR{13,4}
n
— mes S —

]

IXG(3)
& IXP{3} -
@ @
‘:’:’: 7 EADDR(2,4)
w
I o [

! 3 1XC8

1XGi2)
o 1XP(2) - -
g 2 EADDR(5,4)
- w
w
I_i..ﬁ XC12 L

IXG(L)
& IXPLL o~
3 -} EADDR(1,4)
-y (1]
[}
L | M|

| I
IXFUNC(1,4) IXMODE
SIBIGP siez s181

in the Index Adder logic



QUTPUT CUADDRILs L6} A(L7,16) IXFUNC(1ls4) IXMOGE IXCARRY 3 02700100

$ QUTPUT IXGU1l,4) I[XPL{Lls4) 02/00200
: QUTPUT IXC4 IXCB IXCl2 3 02700300
IXGC1) IXPL{L) : S181GP CUADDRI{Ly4)} ALLTy4) IXFUNCUEvs4} o 02700400
IXG(2) IXP(2) = SLBLGP CUADDR(S5+4) Al2L.4) I[XFUNC(144} 3 02/00500Q
IXG{3) IXP(3) = S518LGP CUADDR(9+4) ALZ25¢4) IXFUNCLiLls4) » 02/00600
[XG(4) IXP{&) 3 SLBLGP CUADDR(13,%4) Al29+4) IXFUNCILle4) 3 02700700
UNUSED UNUSED IXC4 IXCB IXCL2 3 S182 IXCARRY IXG(ls4) IXP(l,4) 3 g2/00800
EADDR{1+4) CARRY 2 S18L CUADDR(Le4) A{L7,4) IXCLZ IXFUNC(1,4) IXMQDE ; 02/00900
EADDR(S5,4)} UNUSED 2 S181 CUADDR{S,4) A(21l,4) 1XC8 IXFUNC(i.%} IXMODE ; 02/01000
EADDR(94%) UNUSED : S181 CUADDR{9.%4) A({25,4) IXC4 IXFUNC{ls%) IXMODE , 02/01100
EADDR(13,4) UNUSED : SL18L CUADDR{L13,4) Al29,4) IXCARRY IXFUNC(1,4) 02701200

IXMODDE , 02701300
t OUTPUT EADDR{1+16) CARRY , 02701400

UNDEFENED SIGNALS =

OUTPUT SEIGNALS @
CARRY
EADDR
INPUT SIGNALS 2
IXCARRY
A
IXFUNC
IXMODE
CUADDR
FUNCTIONS =
UNUSED UNUSED IXCé& IXCB IXCl2 : 5182 IXCARRY IXGLLe4) IXPiLle4d 3 .
EADDR{13s4) UNUSED : S181 CUADDR(13,4) A{29+4) IXCARRY EXFUNC(l,4} [IXMODE ;

IXG{4) IXP{4) : SL8LGP CUADDRIE3+4) AL29,4) IXFUNCI(ly4) 3

Fagure 5.1.5.2-3 The SYSPRINT Output of the Logic Simulator

00¢e


http:IXPII.41
http:CUADDRt5.41
http:CUADDR(1.16

DATA
CUADDR INPUT 16
IXC4 SIGNAL 01
IXC8 SIGNAL Ol
IXC1l2 SIGNAL 01
IXMODE INPUT Q}
IXFUNC INPUT 04
EADDR OUT 16
IXG SIGNAL 04
CARRY OUT 01
IXP SIGNAL 04
A INPUT 32
IXCARRY INPUT 01
PROGRAM
$181 {EADDR:13+04) s {UNUSED)»{CUADDRy13:04)3{A+29,04) ¢ {IXCARRY) s {IXFUNC*
+»01:04),{ IXMODE)
S181GP (IXG+04) s {IXP,04),{CUADDR,;13,04),{A,29,04),{IXFUNC,01,04)
S1B8LGP (IXGy03)s{IXPs03)+{CUADDRy09,04)9{Ar25+,04),{IXFUNC,01,04)
S18L1GP {IXG402)e{1XP,02),{CUADDRy05704){Ac21204)(IXFUNC,01-04)
SLBLGP {IXGo01) ol IXP20L) e (CUADDR+OL¢04) s {As17:04){IXFUNC+01,04)
OUTPUT {CUADDRsOL,16) ¢{A,17416)4{IXFUNCy0L+04){IXMODE},(IXCARRY)
S182 {UNUSED) s {UNUSED) y{ IXC4 )9 CIXCB) 2 {IXCL2) o {IXCARRY} o { IXG,0L,04), (IX*
P:01,04)
DUTPUT LlIXG01404){1XP+01,04)
S181 (EADDRs01904) (CARRY ) (CUADDROLs04)s({As1T7404),41XCL2){IXFUNC,0OL¥
204) , { 1 XMODE )}
S181 (EADDR05404) {UNUSED}; {CUADDRyD05304)3(Ac21404),{IXC8)+ (IXFUNC,01%
+04) L IXMODE)
5181 (EADDR09+043 o { UNUSED) »{CUADDR 095040 {A325+04) y ({IXC4) s {IXFUNC,01%
v04) 4 { IXMODE)
OUTPUT 2(IXC4),{IXC8),11XC12)
DUTPUT L(EADDR,0L,s16), (CARRY)
FINIS
END PROGRAM

Fagure 5.1.5.2-4 The Assembler Progrem Output from the Logie Simulator
which 1s Wraitten in the File DECK

TS



MACRO

£6 STEP ECUADDR=,EIXMODE=&IXFUNC=¢ &A= 8IXCARRY=
&G FIELD (IXCARRY;1,01),8IXCARRY

EG FIELD {A,1,32),8A

&6 FIELD ({XFUNC,lgP4!9EIXFUNC

&G FIELD {IXMODE,l,01),&IXMODE

&6 FIELD (CUADDRe1l+161},&CUADDR

STEPEND

MEND

EJECT
MICRO BEGIN 02,CARRY,EADDR,IXCARRY A, IXFUNCyIXMODE,CUADDR

]
Fagure 5.1..5.2-5 The STEP Macro Output of the Logic Simulator which
18 Wratten in the File MICRO

A
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STEP
STEP
STEP
STEP
STEP
STEP

STEP
STEP
STOP
END

IXCARRY=0, IXFUNC=1010s IXMODE=1,CUADDR=X0 ,A=X 1234
IXFUNC=1111,CUADDR=X22

IXFUNC=0000, 1 XMODE=0
IXCARRY=1
IXFUNC=1001 4 IXCARRY=1
IXCARRY=0

IXFUNC=0110

IXFUNC=1111,IXCARRY=1

Figure 5 1 5.2-6 The STEPs Written to Drive the Index
Adder Simulation
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05700200
05700300
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05700900
05/01000
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Figure 5.1 5.2-7 The First Half of the Output from the Simulation of the Index

Adder

BEGIN MICKRO-SYEP cXECUTIGN

CUADDR 0ol 16
A 17 lé

{ XFUNL oL ve
1 XMODE ul Ol
IXCARRY Ul Ol
IXG 0L 04
ixe oL 04
| §. (9 ol 0l
1XC8 vl 01

IXGL2 oL vl
EADDR 01 ls
CARRY oL Q1

BEGIN MICRO-STEP
CUADDR 01 1é
A 7 1o
1 XFUNC 0oL 04
IXMODE o1 o1

1ACARRY 0L 01
IXG ol 04
IXP oL U4
1XC4 o1 01
[XC8 oL 0l

{XCl2 o1 01
EADDR 0L 16
CARRY 01 oL

BEGIN MICRO-STEP
CUADDR ¢l Lo
A LT 16
[XFUNC 01 04
IXM00E oL o1

IXCARRY 0L 01
IXG 0L 04
IXp ol 04
IXC4 oL 9l
1XC8 01 Ol

iXcir2 oL oM
EADDR 01 1b6
CARRY oL ol

BEGIN MICRD-STEP
CUADDR oL 16
A L7 Lo

EXFUNC 01 04
[XHO0E o1 ol
IXCARRY 0L 0Ol
IX6 oL 04
ixe 0L 04
IXC4 oL oL
IXC8 oL 0Ol

iXcl2 vl 0l
EADDR ol 1o
CARRY U1 0l

00v34  00000J0000lUL0L0
QoU34  000LC0100011010Y
U034 L1111

00034 1

00034 O

0069 1111

00049 0011

Qoose O

00056 O

000546 O

00068 (0CO0000000100010
00067 O

EXECUTION

o006  000000TO000LQLALC
Jgoses8 000100L000110100
00068 Q000

000468 O

ugoss 0

Q0383 0000

00ca3 0000

00¢90 1

Q0090 1

00090 1

00102 VOQUO0OO00100011
goiol 1

EXECUTIUN

00102 0000000000100010
00102 00CQLOOLQCULLIOLOD
00102 0QuO0

00102 0

voeloz 1

0o0llT 0000

00117 0000

0024 L

uoize 1

0024 1

Q0L36 0000000000100G0L0
aolas 1

EXECUTION

00136 0000000000100010
g0L36 000L00L000110100
U0l3s 1001

001348 0O

00i3s6 L

02151 0000

wls51l 0019

uolss 1

00158 1

001548 1

00LTO W00LOULOOLOLOLIO
00169 1

f0e



BEGIN MICRO-STEP EXECUTION

CUADDR oL 16 00170 0O000O00UD0LUCOLO
A 17 16 O00LT0 0001001000110100
EXFUNC 0l 04 00170 LOO1

I XMODE oL of 00170 @

IXCARRY 01 01 00170 0O

IX6 01 O4 00185 0000
ixe 01 04 00185 00l0
IXC4 . 0l Ol 00192 1
1¥XC8 01 01 00192 1}

IXc12 0l 01 00192 1

EADDR 0L 16 00204 0CO0LO0LO00QLOLOLLL
CARRY 6l 01 00203 1

BEGIN MICRO-STEP EXECUT ION

CUADDR OL 16 00204 00000000G0100010
A 17 16 00204 000100L006110100
IXFUNC 0L 04 00204 0L10

IXMODE 01 01 00204 O

IXCARRY 01 Ol 00204 O

IXG 01l 04 00219 0C00
1XP 01 04 00219 0001
IXC4 01 01 00226 1
1xce 01 0L 00226 1

IXCL2 0L 01 00226 1
EADDR 6l 16 00238 1L1110110111101110
CARRY o1 01 o0237 1

BEGIN MICRO-STEP EXECUTION

CUADDR 0L 16 00238 0000000000100010
A 17 16 00238 0001001000110i00
IXFUNC 0oL 04 00238 1111

1XMODE o1 01 00238 O

IXCARRY 01 Ot 00238 1

IXG 0l 0G4 00253 1tliil
ixe 0L 04 00253 00L1
[XC4 0L 0L 00260 0
IXcs 01l 01 00260 O

IXC12 oL 0OiL 00260 O
E€ADDR 0L i&6 00272 0000000000300001
CARRY o1 01 Qo271 0

BEGIN MICRO-STEP EXECUT ION
END OF SIMULATION

Figure 5.1.5.2-8 The Last Half of the Output from the Simulation of the
Index Adder

602
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define the package operations. Macros which accept a variable number of in-
puts can be written and used where desired. TFigure 5.1.5 2-lU shows the assem-
bly program written to simulate the index adder in response to the input shown
in Figure 5.1.5.2-3. TFagure 5 1.5 2-5 shows the STEP macro written to facili-
tate control of the logic. Figure 5.1.5.2-6 shows a list of input STEPS which
produced the simulator output showm in Figure 5.1.5.2-7 and 5 1.5.2-8.

In the appendix, the complete control card and input set up for the
simulation of the floating point addition and subtraction for the processor
is given. As shown an the listing, the OUTPUT burlt in function wall accept
an integer value in the output field. This value can be used together with
an integer PARM to supress output. Only oubput with an oubput number less than
the PARM number 1s printed during simulation.

5.1.5.3 Bequential Logic Real Loops

An alternative design for the exponent adder, shown ain Figure 5.1.5.3-1
includes the feedback characteristic of sequential logic. This design was not
used as the eventual exponent adder described in section 4.2.5.1.3 because it
is significantly slower than the adder described in that section, and the ex~
ponent adder stands darectly im the center of a time-critical path in the
logic. This slower form performs a cne's complement subtraction, feedback of
the high order carryjls required to compute a correct result. The absclute
value of the difference 1s produced by SNTLS86 exclusive OR gates which com-
plement the one's complement result when it 1s negative and pass 1t through
in true form when the dafference i1s positive or zero, The logic was correctly
samulated, the technique used as shown in Figure 5.1.5.3-2. In this particu-

lar case, even when the so-called end around carry of the one's complement is
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Figure 5 1.5 3-1 The Sequential Circurt for the Exponent Adder
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Figure 5.1.5.3-2 The Sequential Circurt for the Exponent Adder
as 1t was Unwound for Simulation
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a one, addition of that carry to the difference will not alter the carry. The
ones complement negative zero is complemented by the SNTUSB6 exclusive OR
gates. Hence, one pass around the loop always produces the correct result.
The simulation unwinds the loop and expresses it as shown in the figure.

5.1.6 Wiring Lists

An original goal of the logic simulation system was the production
of wiring lists from the leogic description for the debugged logic. Work to-
ward this goal was not performed, and the technigues used to avoid loops de-
scribed 1n section 5.1.5.2 and 5.1.5.3 make the production of wire lists more
difficult. The use of packages for arbitrary length operands, described an
section 5.1.4, addsto the problem of wire list production. The technique of
section 5.1.% 1s a convenience used to reduce the length of the logic deserip—
tion and speed up the simulation execuiion. The loop avoidance techniques,
on the other hand, are necessary deviations from an exact line to package
one~to-one correspondence. Another obstacle in the way of wire list produc-
t1on 1s the use of implicit input signals, such as constant logic one inputs
to AND gates whach, in physical form, have more input than the particular use
requires. In the simulation of the floating point addition and subtraction
hardware which was performed, several packages which have strobe input sig-
nals like that of the SNTLS157 were simulated without providing for this in-
put. The agsumption implicit in thas practice is that the missing strobe sig-
nal is always to be connected, 1n the actual hardware, to a logic zero.

All of the cases which appear to cause trouble can be treated in a
simple way except the sequential ecircuit case. Implicit input signals and

non-standard signal lengths can be easily accounted for. The correct associ-
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ation of the S181GP and S181 pseudo~package can easily be made on the basis
of the common signals which both share. In the seguembtial circuit case, how-
ever, different signals names are reguired by the very nature of the feedback
situation <+o break the loop brought on by that feedback situation. The
author sought but was unable to find a technique like that of the asterick

notation for regaister values for such signals.

5.2 The Multiplier Prototype

The great bulk of the multiplier design described here was done by
William Stenzel and will be described in detail in his master's thesis
(Stenzel, 1975).

The facilities of the Computer Science Deparitment shop limited us
to two~sided boards with maxamum dimensions of fifteen inches by eighteen
inches. In practice, these are not confining limits, since we had decided to
use two-sided boards throughout the design, and a fifteen by eighteen inch
board i1s about as large as one can pracbically use. The multiplier logic con-
tains ninety integrated carcuirts which require a complicated data intercon-
nection pattern. With the help of the etched power and groundbuss structure
suggested by Mr. Frank Serio, we were able to design and build a one board
multiplier prototype. Power and ground distribution, often the thard and
fourth layers of a multi-layer board, were provided by etched diastribution
gsystems. A diagram of the scheme 1s shown in Figure 5.2-1, and Figures 5.2-2
and 5,2-3 show the artwork for the power and ground systems, respectively.
The thin strips of the buss systems run between the rows of pins of the dual-
in-line circuit packages of the logic. Pins at the appropriate points connect

the antegrated circuits to the power and ground distribution system. The
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Faigure 5.2-1 Details of the Power and Ground Bussing System
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Figure 5.2-2 Power Distribution Artwork
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Figure 5.2-3 Ground Distribution System Artwork
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etched circuits of the system are insulated and attached to the board by
insulating tape.

After several interations, Ms. Stenzel decided on a board layout
which places the integrated circuit components in a horseshoe arrangement at
the periphery of the board with the input lines running up the center of
the component side of the board and the output signals rumning down its out-
side edges. The component and solder sides of the resulting board are shown
in Figure 5.2-4 through Figure 5.2-T.

The sum of the maximum operating times of the integrated circwmts in
the multiplier logic 1s 264 nanoseconds, and the sum of the typical operating
times 15 189 nanoseconds. Several stages of testing and refining the ground
transmission by the cablinghave shown that the multiplier will operate reli-
ably at cycle times as low as 200 nanoseconds. The original cables which pro-~
vided the input to the board and received 1ts output were twenty-six conductor
flexable raibbon-type cables. Twenty-four conductors of each of four cables
were used to transmit the twenty-four bats of each of the two input operands
and the forty-eight product bits. To obtain satisfactory time and noise per-
formance from these cables, we found it necessary to shield each of them with
copper tape ground planes. Therefore, we feel that the eventual system should

use nothing less than cabling which will transmt interleaved ground and

signal pairs between boards.
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Figure 5.2-5 Photograph of the Component Side of the Multiplier Board
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Figure 5.2-6 Multiplier Prototype Board; Solder Side
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6. System Performance

This group of sections will evaluate several aspects of the perform-
ance of the machine In the first section, we will discuss the execution on
time for operation cycles of the processors with information derived from the
logic simulation work. The other sections will evaluate the effectiveness of
the design for the weather model, matrix inversion, image dabta procé551ng and

information retrieval.

6.1 Processor and Routing Unit Cycle Times

The simulator indicated that the taime for a floating point addition
or subtraction was 256 nanoseconds. Two selector stages and the operand
registers, all of which are in the operation cycle for the complete processor,
were not included in the simulation. Inclusion of these elements would in-
crease the time measured by the simulator to 336 nanoseconds. This figure

represents the sum of the maximum propagation time through the logic elements.

As the experience with the multiplier has shown, 1% is not unreasonable to
expect this time to be achievable. On this basis, we estimate that a reason-
able operation cycle time for the processor logic is 350 nanosecconds. The
logic descraiption of the processor given i1n section 4 d1d not include any
extra logic to reduce the cycle time for frequently occuring special cases.
Replacing the fraction selection logic of Figure 4,2.5.1.7-2 with that shown
in Figure 6.1-1 removes the adder and the left and right operand selection
gates from the path taken by normalization and multiplication resulis. The
simpler but slower design assumes the use of one constant elock frequency to
control the operation cycle of the processor. Adding extra paths implies the

need for different operation cycle times, so that more complicated clocking
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logac would be required. The increased complication occurs only in the con-
trol unit, however, not at the processor level. A complete analysis beyond
that permitted by the information we now have about the system 1s required to
decide how cost effective such enchancements would be.

Few of the arithmetic operations which the model will actually use
can be performed in only one processing cycle  All normalized results require
at least two cycles A normalized multaiplication will probably require three
cycles unless a logic enchancement like that mentioned in the previous para-
graph 1s used. On the other hand, the compare,normalize, integerize and all
of the move operations will take only one cycle.

Work which was not completed was to have experimented with proto-
type routing hardware. The results of this work would have provided a basis
for estimating the operation time of the routine network. The principle un-

known factor in this part of the design 1s the time required to send the sig—

nals through the cables connecting the switches in the routing network. In
section 4.3 3, we estimated the times for the routing unit by assuming cable
transmission times of fiféy nanoseconds. The estimate given there for the
operation time of a pipelined unit with eight bit paths was 5h2 nanoseconds.
This estimgbte will have to stand, since we have no information about the
actual behavior of a prototype for this logic,

6 2 Performance of the System on the General Circulabion Model

There is no subroutine of the general circulation model which 1s
small enough to serve as a reasonable test case for timing estimates. The
only parts of the model for which 360/95 times are available are the large

COMP1-COMP2, COMP3, and the radiation subroutines. The subroutines COMPl and
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which form the core of the model, exast as twe separate subroutines only be-
cause the logical unit which they form is too large for complication by the
IBM FORTRAN H compliler (Xarn, 197h4). Evidence for the applicability of the
array computer architecture is found, however, in the results of the effort
by GISS to run their model on the ILLIAC IV, (Karn, 1975) which are presented
in Table 6.2-1. The table shows the ratio of ILLIAC IV +to 360/T5 processing
times for three parts of the model. During the time these figures were mea-
sured, the extensive facilities of the ILLIAC IV control unit, which are in-
tended to speed instruction decoding and overlap the execution of parts of
array instructions, were disabled; this accounts for the relatively low ratio.
With all of the features of the control unit operational, these ratios should
all increase by a Tactor of three. The poor performance of ILLIAC IV on the
radiation routine is a direct result of the fact that the 3000 word table

which 1s used by this routine had to be distributed across the memories of

all sixty-four processing unit memories in the array. As a consegquence,
table access by a processor to a particular table value was very time con-
suming. This very result prompted the inciusion of the table look up facili-
tres 1n the current design. The last line of the table gives the performance
figures for a new radistion algorithm designed for use on parallel machines.
Tt uses more compubation and less table gpace, so that - on ILLIAC IV - the
reguired table can be stored waithin the memory of every processor.

Rather than attempting a timing exercise for the model on the de-
sigh, we will present an analysais of the efficacy of the routing network in
supporting the data communication needs of the model. Figure 6.2-1 1s a

schematic representation of the grad of the general circulation model. Bach
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(Parallel algorithm)

ILLTAC IV
Code 360/95 Time

Segment . Tame (seconds of CPU Time Ratio

{seconds) time only)
COMP1 12.78 2.36 S.h2 1
COMP3 6.5h 1.54 L 25 1
Radiation 57.90 187.65 1 : 3.25

(Large Table)

Radiation AR 33.00 196 1

Table 6.2-1 Relative Timing of the ILLIAC IV and 360/95 Models
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sphericalshell is shown as a rectangle. The north and socuth edges of each
rectangle represent the north and south poles at the various vertical levels,
Figure 6.2-2, based on Arakawa (1972), Tsan (1973) and Mintz (197Lk), shows the
types of interactions between points of the grid which occur in the model.
The interaction of the vertical levels is very simple. All of the horizontal
interactions require simple access to one neighboring value (or a sequence of
these operations) except the case which requires that the set of polar values
be averaged to produce one common value

The horizontal averaging shown in the figure is required ¢ over-
come the effect of the convergence of the meridians at the poles. If the
Courrant stability condition - cAt < Ax - (Fox, 1961) which relates the maxi-
mum velocity to the inter-grid point spacing would require a very small time
step over the entire grid for numerical stabilaity  All models violate this
condition, and use a larger time step than the small polar inter-grid distances
permit. The resulting instabilities in the polar regions are removed by
averaging several mericdnal values; the number of averaging iterations increase
as the latitude approaches the polar regions. This zonal smoothing occurs
even in the split grid model, although to a lesser degree. Because of this
zonal smoothing, there is a clear inherent preference for parallel computation
on circles of constant latitude. This approach 1s the best way to maximize
the efficiency of the computation by maximizing the number of processors
actively contributing to the results at any time.

Por the next decade, GISS will be interested in models of two daf-
ferent horizontal resolutions (Halem, 19Th). Both models have fifteen verta-

cal levels The two horizontal resolutions are
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1. & model with 128 points around i1ts equator and ninty-six circles of labi-
tude, which we will call the 96x128 grid, and

2. a model with 256 points around its equator and 192 circles of latitude,
which we will call the 192x256 grad.

In the next two sections, we will discuss the two primary variations of the

model+ the UCLA rectangular model and the Giss split grid model. A third

section will discuss the common problem of computing the average of all polar

values

6.2 1 The Rectangular Model

In this model, all latitude circles have the same number of points.
The 192x256 grid fits the machine very well; the entire array 1s treated as
one circle of size 256. All of the processors are always fully employed. For
the 96x128 model, the array can be treated as two circles of size 128. Four-
teen of the fifteen vertical levels for a gaiven latitude can be processed in
parallel in seven cycles. One level from each of two different latitude lines
can be processed in an eighth cycle, so that two complete latitude circles can
be processed in fifteen computation cycles. In hagh latitude regions, half
of the processors will be inactive during part of one of these cyeles while
the other half complete the extra zonal averaging steps required at the higher
latitude. The machine will be very efficient for these models. Only shifts
of one position left or right are required for east-west communication. An
occasional shaft of 128 posaitions is reguired for north~south communication
1n the 92x128 grad. All of the required shifts can be accomplished by the

omega network in one routing network pass.
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6.2.2 The Split Grid Model

We wall discuss two different techniques for the split grid model.
In the first of these, points deleted from the rectangular grid will be used,
and missing points will amply unused processors. Figure 6 2.2-1 shows one
rectangle of the resulting grid for the 96x128 model. To retain conbiguity
of values on the same meridian, points are stored with increasing separation
between active processors as the latitude increases. Table 6.2.2-1 shows how
the number of split grid regions - regions with the same number of points on
a latitude circle - increases as the horizontal grid i1s refined Table 6.2.2-2
shows a possible distraibution of latitude caircles of the various sizes which

oceur in the 96x128 and 192x256 grads.

Meradians at Number of Splat
the Eguator Grid Regions
12 >

128 T

256 11

512 15

Table 6.2.2-1 The Number of Split Grid Regions for Various
Model Sizes

Just as in the rectangular model, the 192x256 grid uses the processor array
as one circle of size 256, and the 96x128 grid uses two circles of size 128.
In the rectangular model., a uniform shift of one positron was always requived
for east-west commumication. Hence, however, shifts of from one to as much
as thirty-two positions (for the eight point high latitude circles in the
192x256 grid) are required. North-south communication in the 96x128 requires
an occasional shift of 128 positions as before. All of the required shifts

are supported Dy the cmega network included in the routing network in one

routing cycle.

REPRODUCIBILITY OF THE
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16 points/circle; one stores every eight memories

32 points/eirele, one stored every four memories

64 points/circle, one sotred every second memory

128 points/carcle, a point is stored in every memory

ot 128 B

Figure 6.2.2-1 One of the Vertical Level of the Rectangular
Mapping for the 96 x 128 Split Grad Model
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192 x 256 96 x 128
poaints per number of points per number of
latitude circle such carcles latitude caircle such circles
8 L 16 8
16 L 32 8
32 8 6h 16
6h 16 128 32
128 32 6k 16
256 6 32 8
128 32 16 8
64 16
32 3
16 L
8 h
27328 points per 6912 points per
variable per variable per
level level

Table 6.2.2-2 Distribution of the Various Sizes
of Latitude Circles for one Level

In each of the split grid sizes, fifty-six percent of the processors

are occupled by data. This seeming loss of efficiency 1s more than repaid by

the fact that the time step for the split grid model 1s at least twice that
for the corresponding rectangular model.

The second approach to the split grid model uses latitude circles of
s1ze sixteen through 128 for the 96x128 model and eight through 256 for the
192x256 model as indicated by Table 6 2.2-2. All shifts of data to support
east-west commumnication in this approach are shifts of one position  For most
cases, north-south communication requires a shift between different latitude
circles by the size of the circles involved. For example, when the array of
processors 1s treated as a collection of carcles of size eight, an eight posi-
tion shaift which treats the array as one circle of size 256 wi1ll facilitate

north-south communzcation The exception noted above occurs when communication
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between circles of dafferent sizes must occur, as i1t must at split grid region
boundaries. For these cases, an omega network expansion or contraction of
interprocessor distance will suffice. How much of the potential gain whach
this approach stands to provide over that of the rectangular epproach can
actually be realized cannot be predicted at this time. Clearly, this second
approach to the split grid model would be more difficult to program

6.2 3 The Polar Caircle Sum

In all forms of the model, the poles are represented by a full lati-
tude circle of points whose values are computed and then averaged. In hard-
ware terms, values from each processor in a partitiron must be averaged. The
standard technique for this i1s the so-called log sum technique. Progressive
shift and add steps produce the sum of 2N values 1n 2N contiguous processors
in W=l steps. In the first step, all values are circularly shifted one place,
and the routed_value is added to the stationary one. The sum 1s then routed
two places and added to the previous partial sum. Successive routing distances
double, until, in the final step, a shift of 2N_l places occurs. In the rec-
tangular and compressed split grad model, the first shaift 1s by one place, 1n
the rectangular split grid model, the farst shift is by thirty—itwo places for
the 192x256 grad and by eight places for the 92x128 grid since the initial
values are separated by these amounts initislly.

6 2.4 A Hardware and Time Comparison of the Clos, Omega and Nearest NHeighbor
Routing Schemes

The routing network described in section 4.3 requires an assembly-
daisassembly register in each processor and either two or three crossbar switches

for each sixteen processors. Each assembly-disassembly register requires

REPRODUCIBILITY OF THE
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twenty components, and each crossbar for an eight bat path uses 324 components.
The Clos network scheme uses four cables per processor. One of the cables
goes from the processor to the routing network, one goes from the routing net-
work back to the processor, and the remaining two cables connect the stages in
the three stage Clos network. An omega network uses only three cables per
processor.

The nearest neighhbor scheme of the SOLOMON and ILLIAC IV requires
four cables per processor, assuming - as is true to date - that bi-directional
ECL differential cables are not feasible. In any case, four sets of line
drivers are veguired in each processor. To provide the vital broadecast input,
a fifth cable and five sets of line receivers are regquived in each processor,
The broadcast operation which permits the control unit to access a value from
any of the processors must be included with added hardware 31f this function

1s desired. Moreover, some additional herdware 1s needed to support the input

and output needs of the array of processors.

Ignoring anythaing but the nearest neighbor and broadecast connection,
a fully parallel system would use seven six bit registers, four sets of ten
quadruple line drivers, five sets of ten quadruple line receivers, and forty
erght-to-one data selectors per processor, A byte serial scheme is much more
economical. Each processor would have to have an assembly-disassembly register,
four sets of line drivers, five sets of line receivers, and a byte's width
number of eight-to-one data selectors. Tsble 6.2 k-1 summarizes the component
counts and transmission times for the various options.

The nearest neighbor routing network permits only one and sixteen

position wniform shifts in a 256 processor circle Partitions of that circle
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Components Transmission
Routaing Scheme for each Time 1n
Sixteen Nanoseconds
Processors
Eirght Bit
Clos Network 1292 5Tk
Eight Bat
Omega Network 970 515
Paraliel Nearest
Neaghbor Network 2192 a1
Eight Bat Nearest
Neighbor Network 736 hs5

Table 6.2.4-1 Component Counts and . Times for the Three Possible Routing
Schemes

¥
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are not supported Expansion and contraction for connecting splait grid regions
stored compactly are not supported. The omega network supports all of the
partitions and shifts reqguired by the general circulation models discussed in
this paper. Shifts of any distance and direction within the permitted parti-
tions are all accomplished simultaneously 1n one pass through the routing net-
work. COnly shifts of one and sixteen positions take one pass with the nearest
neighbor scheme.

It 1s clear from the above comments that the nearest neighbor routing
scheme finishes a distant third in the three way race for inclusion as the
routing scheme. Whether the Clos or omega network should be used depends on
the control algorithms available when an implementation 1s undertaken, and the
routing requirements on the machine which 1s being built., The Clos scheme uses
thirty-five more components ier processor than the nearest neighbor scheme,
and the omega network uses only four more components per processor than the
nearest neighbor scheme.

6 3 TImsge Data Processing

Results from the research conducted by a group led by Robert Ray
(197h) has shown that the ILLIAC IV 1s an efficient computer for processing
multispectral i1mage data from the Earth Resources Technology Satellite (ERTS)
experiment (George, 1971). The initial stagesof Ray's work have produced
ILLIAC IV implementations of the data clustering (Thomas, 1974b). These
algorithms were adaptedby the Laboratory farApplication of Remote Sensing (LARS)
of Purdue Unmiversity (Wacker, 1970) from the ISCDATA algorithm of Ball and
Hall {(Ball, 1965). These algorithms, originally developed for use with air-

craft multispectral scanner image data, have been successfully applied to simi-
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lar data collected by the ERTS satellites.

The ERTS satellite measures solar energy reflected Trom the earth's
surface, four different spectral bands of reflected energy are measured for
each point The data 1s processed in terms of frames which contain 7.7(10)6
(3240 times 23L0) points each  Since each point 1s represented by values of
reflected energy in four spectral bands, each frame of ERTS data contains al-
most thirty-one million small integer wvalues.

The LARS technigue has two steps. The first step uses manually
selected areas to compute "spectral signatures" for known terrain features.
The statistical characterizations so determined are then applied to large
areas of interest to estimate the extent and amount of terrian with features
like those in the training areas These two steps, called clusteraing and
classification respectively, are described i1n the following two sections as

potentral applications of the machine design presented 1n this paper.

6 3.1 Image Data Clusterang

The ERTS data for a given point {(an area of approximately 1 1 acres)
consists of a vector of four spectral energy measurements. The objective of
the clustering algorathm as to partition the data in the test region into M or
less spectrally dissimalar classes. Iteration of the steps in the algorithm
continues until Tthe M clusters of the inatial data are delermined. Each
cluster i1s characterized by a mean of ats four dimensional spectral data points
and a four by four symmetric covariance matrix

The algorithm i1s described in detarl in the following text together
with comments on how the machine design of this paper would be used to implement

the algoraithmn.
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The entire set of 256 processors 15 used in concert during the
clustering algorithm The initialization steps in the algorithm determine
initial mean and standard deviation vectors for the set of data points.

A given data poaint 1is represented by a four element vector,

X = (Xl,l’ X2,1’ X3,1’ Xh,l) The initial four means,
N
L1 I s =
md = N a=1 Xl,J’ J =1, 2, 3, hs

are found for the complete set of N data values. The algorathm should dis-
tribute the data points uniformly across all 256 processors of the array. The
summation process begins with a loop which adds all values within each proces-
sor and ends with a log sum step (see section 6.2.3) across all 256 processors.
The initisl value W 1s broadcast The four means, recovered by the control
unit through i1ts port to the routing unit, are broadcast to permit computation
of four initial standard deviation values:
N

b3 (X . -m,
1=1 1,4 d

2 _1
5y T

The cartesian product of the four real line intervals,

23 = [m,j - SJ, mJ + SJ] 1=1, 2, 3, 4,

defines a recitangular parallelapiped which should contain most of the sample
points. The M initilal cluster centers are chosen to be uniformly spaced along
a diagonal of this parallelpiped, and 21l M wvalues are computed and stored by
each processor The algorithm iterates the following twoe steps to determine
M final cluster centers.

Step one determines the eucludran distance between each point and
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each of the M cluster centers. Fach point i1s assigned to the cluster with
the nearest cluster center. Thas caléulatlon takes place without any inter-
processor communicabtions.

Step two computes new cluster centers by using the means of the vec-
tors in each cluster. If no vector changed clusters in step one, the algoraithm
terminates. A change of cluster is determined by using the processor mode
sensing hardware described in secktion 4 4.1. « 7

The result of the clustering process 1s M four element cluster cen-
ters and M symmetric four by four variance-covariance matrices. The elements
of these matrices,

- ml) (X,Q, - m:j) 1:3 = ls 25 39 )'l's

£,1 sd

*2d g=1

and the number of vectors, P, within each cluster are computed by intra-proces-

sor summation followed by log sum steps for the entire processor array.

6.3.2 Image Data Classification

The clusteraing algorithm determines a cluster mean and covariance
matrix for each of M clusters which 1t identifies in the data for a selected
set of ERTS data. The classification algorithm uses these two paramters for
each of the M classes and, for each point of the data being classified, computes
the probability of class membership for each of the M classes, and assigns
each point to the class for which 1ts probability of membership i1s highest.

The probabilaty function, based on the assumption that the distraibubion fune-

tion is multivariaste normal, 1s

1

P -
—_ - 1. _
Pl(X) = bl 2 [(X—M ) Cc (X - Mi)]: i=1,2, ..., M.
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The terms in the probabality function are.

X a four component vector of ERTS data,

Mi: the four component mean vector for e¢lass 1,

Cl. the four by four covariant matraix for class i, and

b.: log| c;l | (Fu, 1968) .
The constants bl and the covariant matrix inverses are computed by a step in-
termediate to the clusteraing and classification steps. These constants may be
used 1in severagl classification steps.

In the following two sections, we discuss two drfferent ways to

organize the execuitiron of the classiflication process.

6 3.2.1 (lassification by Routing Point Values

In this shceme, we partition the array of processors into cireles
of size M, the number of data clusters or classes. One processor in each par-
tit1on 1s loaded with the constants for one data class. Considerable flexi-
bility 1s provided by this approach. For example, several different sets of
data class can be applied to one set of ERTS data by using different input
constants in different partitions. The input ERTS data can be dastributed
across the partitions as desired. If only one set of classification constants
1s used, the input ERTS data can be uniformly distributed across the array of
processor memories. Within each partition, M poiunts at a time (plus a cless
number and probability value) are routed cireularly around the M processors
in the cirecle one step at a taime The probability that a point lies 1n a class
is computed by the processor which stores constants for that class and the

class number, the probability of the most likely class and the four spectral wvalues
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are forwarded around the circle. When the M steps for each M points have been
completed, each of those points has been assigned to 1ts proper class.

This scheme makes full use of the Clos routing network, circular
shifts of one position at a time are all that the scheme requires, and arbitrary
class sizes are facilitated. Unless M, the number of classes, 1s a power of
two, there will be inactive processors. If M is a power of two, the omega net-
work will support the algorithm.

6.3 2 2 (Classification by Broadcasting the Class Constants

In thas scheme, the ERTS data 1s unrformly distributed across the
256 processors and their memories. The sets of constants which describe the
classes of 1nterestare broadecast by the control unit for storage in the pro-
gram memory. Classification with respect to several sets of classification
parameters can be performed by broadcasting the several sets of classification
constants. In this scheme, there need be nc inactive processors. ZXach cycle
in the classification process requires fifteen uses of the routing network to
broadcast the ten values for the symmetric covariance matrix, the four class
mean values, and the constant "b" term for each eclsss. The previous scheme uses
the routing network six times i1n each step The degree of independent (that
15 concurrent) action permitted by the control unit for the processor array and
the routing network will determine which of the two schemes 1s to be preferred

6.3 3 Byte Packing and Unpacking

The ERTS data, measured by prhotosensors and converted to digital data
by the satellite, consists of many small integer values* each spectral measure-
ment 1s converted to a six bit value. Moreover, the classification process

assigns each point to a class which can be represented by a small integer. Thus,
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for efficient use of the input and output facilities of the machine, 1t 15 im-
portant toc be able to unpack several small integer values from one word of data,
and to be able to pack several small computed values into one data work.

Figure 6.3.3-1 11llustrates how four ERTS values for one point can be
packed intc one word for input and unpacked for use by the machine Part (a)
of the figure shows the four bytes packed into the twenty-four bit fraction of
a data cord. Part (b) shows the result of an AND operation with a mask whxch
selects value three and assigns 1t the exponent value plus four.

Because the exponent radix of the machine is sixteen, the binary
point can only lie between four hit digit positions, for vslue three, this
means that the binary point 1s placed within the value, not at its right end
where 1t belongs A multiplication by 22 - that 1s a shift operation - results
in & non-normalilzed integer value with the correct exponent value and with the
binary point in the correct position as shown in Figure 6.3.3-1(c).

Figure 6.3.3-2 illustrates how a small integer value is packed into
the desired position of a data word fractlo?. The initial integer value, a
full word as shown 1n part (a) of the figure, 1s added to the constant shown
ian part (b) with a floating point non-normalized addition. The result of the
addition is shown in part (c) of the figure. The arrows in part (b) and (ec)
of the figure indicate the position of the binary point. The value is alligned
by a "shift" of two places — division by 22 _ which y1elds the result shown in
part (d). The final step ANDs the part (d) result with a mask. A final step
to OR this result, shown in part (e), into a data word with other packed values

is not shown in the figure.
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FPigure 6.3.3-1 Unpacking Data Values
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6.4 Pile Processing and Information Retrieval

In this section, several examples of file processing and information
retrieval will i1llustrate the capabilities of the machine for this class of
problems. The first example concerns file comparisons to determine statistics
about pairs of similar files including how a large file can be efficiently
sorted. A second example shows how information can be retrieved from a file
with the machine.

6.4.1 Tile Statistics

Post processing of weather model data frequently includes comparison
of two files of data taken from two model rums with slightly different starting
conditions. Average differences between various parameters are sought. Two
such files can be read intc the memory of the machine and compared 256 points
at a time. If the average difference between two temperatures i1s sought, for
example, 256 sums of pointwise differences within the 256 processors can be
guickiy computed. A final sum of the 256 partial sums can be computed by an
eight step "log sum" which adds values routed by one, two, four, eight, . . .,
128 positions. Eight such steps, the log to the base two of 256, produce the
sum of all the pointwise differences which was sought. Each one of the 256
processors contains a copy of the same value at the end of the process

If a distribution for the differences 1s scught, each processor can
compute and sort all differences for the points which 1t holds. Then a 256 way
merge of the 256 sorted lists of differences can be performed by an eight step
comparison process which determines the smallest of the 256 locally smallest
values, for example At the end of the process, all 256 processors contain the

same smallest value. The number of occurances of the value can be determined
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by & log sum of the number of occurances of the value in each of the proces-
sors, the log sum result will also be held in each of the 256 processors at

the end of the log sum process. Hence, a sorted list of pointwise differences
together waith a count of their individual frequencies can be easily extracted
by the control unit using 1ts connection to one port of the roubting network.

If an approximate distribution is sought, the interval of interest can be
divaided anto sub-intervals and a log sum of processor computed counts of values
which they hold which lie in the broadcast interval can he performed.

6.4 2 TInformation Retrieval

In this example, we suppose that the files of a compuiter dating
service are stored in the array memory. BSince this example 15 ineluded to
11llustrate machine functions, no indices for the file are assumed. The raw
data records of the file are used. Let us suppose that a young customer
wishes to locate all girls which meet the following characteristics-

EYES: (green or blue) and HAIR (blonde or red) and RELIGION

(agnostic) and AGE (22 through 27 years) and EDUCATION- (col-

lege graduate) and HEIGHT (63 through 68 inches) and WEIGHT

(two pounds or less per inch of heaght).

The mode logic can be used to evaluate 256 records of the file at a time. One
status register bit can accumulate the Boolean result while another is used to
compute each parenthesized term. After all the tests have been made for each
set of records, the 256 MODEOUT values can be ORed together and sampled by the
control unit as shown in Figure 4.L.1-1(b). If the sixteen bit result is zero,
no mateh was found. A one bit in any position indicates that one or more of

the processors in a sixteen processor group contain matches. With proper bat

handling instructions and MODEIN transmissions like those of Faigure 4 L.1-2(b),

REPRODUCIBILITY OF THB
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the control unit can process a sequence of MODEOUT signals of the type shown
in Figure L4.4.1-1(c) and locate each match in the array. A control unit
specified route can shaft the 1dentifying number for the match to the control
wat's routing unit port.

6 5 Matrix Inversion by Gaussian Elimination

In this seclion, we will discuss using the machine to solve systems
of equations or invert matrices using the familiar Gaussian elimination tech-
nigue. The process can be used to solve several systems or invert several
matrices 51multaﬁeously. Two different situations are described in the
first, a collection of inhomogeneous linear systems are to be solved in the
second, the inverses of the given set of matrices are to he found. The algor-
1thms are similar and store the original matrix in skewed form as suggested by
Kuck (1968) as 1llustrated in Frgure 6.5-1. In the figure, the matrix and right

hand vector of the linear system Ax = b are shown. The A mafrix 1s stored

v
*

skewed, but the "b" vector 1s stored all within the memory of one processor,
When skewed storage 1s used, parallel access to all of The elements of any
row or any column of the matrix can be achieved. In the figure, the rows are
stored across the processors with all elements of a given row having the same
word address in the various processor memories. The elements of a column, on
the other hand, all occupy different word addresses, so that processor index-
ang 1s required to feteh a column.

6.5.1 Solution of Inhomogeneous Systems

Up to thirty-two seven-by-seven inhomogeneous systems can be solved
simultanecusly 1f their coefficients are stored as showr in Figure 6.5-1 The

Gaussian eliminabion procedure has two phases. In the first phase, the matrix
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Figure 6 5-1 Storage Map for a Seven by Seven Inhomogeneous
Systen
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of the original system i1s reduced to upper triangular form with ones on the
main diagonal. In the second phase, the solubtion i1s found by back-sgubstitu-
t1on, reducing the matrix to the i1dentity matrix and the right hand side to
the solution. The technique processes the coclumns one by one, beginning with
column one and proceeding through the columns in turn to the rightmost (or
highest numbered) column. The matrix under consideration is gradually reduced
one column (and one row) at a time until an upper triangular system remains.

The steps in the algorithm, described in detail in the following
gsections, are ‘

la) Find the element with the largest absolute value 1n the

lowest numbered column which remains under consideration,

and call 1t column i.

1b) Find the smallest row number of the several rows which
may contain elements with the value identified in step (la).

lc) Exchange the row i1dentified in step (1b) with row 1.
Both rows must be shifted so that they are properly skewed
in their new positions.

1d) Davade all the elements of the new row 1 by element Al 5°

Divide the new b. by A also. ?
1 1,1

le} TFor each of the rows i+l through seven, multiply row 1
by element AJ N and subtract from row J.

s
At the completion of steps (la) through (le), the matrix will be in the upper
traiangular form. The back substitution steps proceed from the last row's right
hand side element, b, back through that of the first row. They operate on the
columns of the upper triangular matrix from the highest numbered back through
to the first. The steps are

2a) Dastribute bJ for use with all rows from 1 to 3-1.

2b) Multiply row J by element Al,J for each row 1 from 1 %o
J-1, and subtract the resulting muitiple of row j from row 1.
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the result of the back substitution steps 1s to reduce A to the identity matrix
and the column of b's to the sought solution vector.

The seven steps outlined sbove are described in detail in the fol-
lowing seven sections.

6.5.1.1 Pind the Pivot Klement in the Lefimost Remaining Column

The matrix was stored in skewed Fform as shown in Figure 6.5-1 so
that all elements of any desired column would be avallable in parallel. The
element in the leftmost remaining column with the largest absolute value 1is
found by a process which resembles the log sum process described in section
6.2.3. In that section, however, the number of cooperating processors was al-
ways a power of two in number, while here, the number of processors varies
from step to step all the way from two up to the size of the system being
solved. In section 6.2.3, the processors which were cooperating were con-
tiguous, here, because the matrix:is stored in skewed form, the elements which
must be considered together may not be stored in contigucus processors. We
will 1gnore the noncontaiguity and describe the algorathm as though the pro-
cessors were contiguous. The Clos rouking network, whlcp can perform every
permutation, can be used to facilitate the desired connections.

For a collection of processors which are a power of two in number,
the steps are the same as in a log sum, except that each processor selects the
larger of the two elements 1t considers at each step rather than producing
their sum The number of comparison steps is the logarithm of the number of
processors to the base two. When the total number of processors 1s nob a
power of two, subsets of the total number which each comiain a power of two

processors form partial results which are then combined pairwise until the
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Figure 6.5 1 1~1 The Log Combination Process for a Collection of
Processors not a Power of Two in Number
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final result 1s produced There 1s one such subset for each one bit in the
binary representation of the number of processors. Figure 6.5.1.1-1 i1llustrates
the process for seven processors. Three comparison steps are required; in
general, the number of comparison steps i1s the logarithm to the base two of

the smallest power of two which is greater than or equal to the number of pro-
cessors.

6.5.1.2 TFind the Smallest Wumbered Row which Contains the Pivot Element

Once the pivot element value as 1dentified, each processor which
stores that element submits 1ts row number for s minimum seeking comparison
process. Processors which do not store the pivot value - by far the msjority -
submit a value which exceeds the number of rows in the matrix. A log minimum
process determines the row number of the row to be exchanged with the lowest
nuwbered currently considered row. At the completion of this step, every
active processor conbtains the number of the row which conkains the pivot ele-
ment.

6.5.1.3 Exchange of the Pivot Row with the Farst Active Row

The number of the pivoet row is avallable to all active processors
as the result of the previous step. The first active row number 1s awvailable
by broadcast from the control unit. The difference of the two values i1s the
amount that the pivot row must be shifted left and the first row shifted left
to retain the correct skewed storage relationships  This shifting process
goes on 1n parallel for each of the systems being solved by the 256 processor

array. The shifting algorithm proceeds as follows
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1. Each processcr puts the shift distance - a binary integer of eight or less
bits - 1n its eight bit status register within the mode logiec. The number of
bits to be considered is the same as the number of steps in the log comparison
process which identified the pivot element.

2. For each bit to be considered, the mode of the processor is set from the
proper status register bat. The pivot row elements are shifted left by the
amount specified by the selected bit; the shified values are stored under
mode control so that the shift takes place only in those processors - that is
only in those equation systems -~ for which a shift by that dastance is re-
gquired. ’

3. The first row still under consideration 1s shifted right by a process simi-
Jar tc that described in step two above. The only difference is that right

gshifts are used instead of left shifis.

6.5.1.% Divide the Pivot Row by the Pivot Element

The pivot element was distributed among all active processors by
the steps described in section 6.5.1.1. This value 1s davided into each
element of the pivot row This step leaves the pivot element exactly one in
value.

6.5.1.5 Reduce the Leftmost Column to Lower Triangular Form

The pivot row 1is the lowest numbered remaining row, and it has been
normalized by the previous step 30 that the pivot element i1s one. For all
rows below the pivot row, we

1. dastribute the element in the paivot column to a2ll active
processors by a log distribution process, and

2. miltiply a temporary copy of the pivot row by the daistributed
element and subtract from the subject row.
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The completion of the above two steps for all rows beyond the pivol row
reduces the lowest numbered remaining column to lower triangular form

6.5.1.6 Back Substitution

At the completion of the previous steps, the matrix is ain upper
triangular form wath ones on the main diagonal. Back substitution reduces
this upper triangular form to the diagonal identity matrix, The last row of
the upper triangular form contains only & one in the last column and all the
rest zero elemenits. The back substitubtion process uses successive main diag-
onal ones from right to left as follows.

1 For each row above the row which contains the current main diagonal one,
dastribute the element in the column which contains that main diagonal one by
a log distribution process.

2. Multiply a temporary copy of the row with the main diagonal one by the
dastributed element and subtract from the row from which the distributed ele-
ment was taken. Ineclude the right hand side vector in the multiplication and
subtraction process.

At the completion of the above two steps for all main diagonal elements from
right to left, the original matrix is reduced to the identity matrix and the
right hand saide veckor becomes the solutron to the given set of equations.

6.5.1 6 Efficiency and Roubting Requirements of the Gaussian Elimination Process

The Gaussian elimanation process described in the preceeding sec-
tions elearly requires roubing operations beyond the capabilities of the omega
network. The Clos network i1s necessary to support this algorrthm, but we do
not currently have algorithms to compute the necessary control patterns.

As we have seen, the technique described in this section begins with
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all processors in productive use, proceeds until only a fraction of the pro-
cessors are contributing, and returns to the condition where all processors
are in productive use. On the average, approximately half of the processors
are productive. When a great many matrices are to be processed, they should
be handled 256 at a time by a conventional program with one matrix (or sys-
tem) stored in each of the 256 processors. No inter-processor communication 1s
required A collection of 128 or more matrices (or systems) can be processed
1n this way with a processor efficiency at least as good as for the parallel
technigue described above.

6.5.2 Inversion of a Matrix

To invert an N by N matrix with the Gaussian elimination technique,
one begins with an N by 2N matrix which includes an identity matrix appended to
the right of the given matrix, extending each row to twice 1ts original size
In a parallel processor, the best approach is to store the given matrix 1n
skewed form and the appended identity in non-skewed form in the same set of
processors with the given matrix. The operations performed on the given mabrix
under the Gaussian technique are also performed on the appended identity matrix
(except for the shifts to reskew the 1dent1ty). At the completion of the pro-
cess, the given matraix has been transformed %o an identity matraix and the ap-

pended 1dentity matrix i1s transformed to the inverse of the given matrix.
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T. Operating Paramcters of the System

This section summarizes the cost, reliability, and power consump-
tion of the system. The calculations are based on the component counts shown
1in Figures T-1 through T-U which give detailed component counts, prices and
power requirements for the processor, memory module, sixteen by sixteen cross-
bar and table look up hardware. Table T-1 summarizes these figures and gives
total parts counts and costs for these units, total costs are calculated in-
cluding the spares indicated, and power and parts counts include only the
unats needed to form a complete operating system. These costis were derived
from data taken from competitive bids, parts orders for parts for the multi-
plier prototype which was built and telephone calls to suppliers. Assuming
thet assembly costs will be approximately equal to integrated carcult costs,
the total cost for a 256 processor system with eight million words of data
memory and 128,000 words of program memory is approximately $3,000,000 1f a
Clos three stage routing network i1s built.

A system with an omega vouting network would be approximatley
$100,000 less expensive. The cost figures do not include the costs of air
conditioning equipment.

The operating life of an integrated circuit component depends on
the operating temperature. The prices quoted for parts in Figures T-1 through
7-4 assume that the lower cost SNTLOO series parts, whose operating tempera-
tures must lie between zero and seventy degrees Celeius, are used. Figure T7-5
1s a graph of the expected component failure rates versus temperature. The
farlure rate data were taken from a Signetics Corporation report supplied to

the author by a supplier (Signetics Corporation, 19T4b), and refer to that
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COMPGNENT NUMBER WATTS PER oSt PER
OF UNITS UNIT UNIT
10124 2 0.468 $ 4,50
10125 2 0.540 $ 4.50
AM25S510 16 0.467 $ 2460
AMS309 10 0.240 $ 65,00
AMS334 1 0.240 $ 520
NATB551 1 0.360 $ 1.00
74502 2 0.050 $ 0.54%
74504 3 0.050 $ 0.47
74511 3 0«050 $ 0.52
74520 2 0.050 $ 0.50
74LS832 1 0.049 $ .34
74551 4 0.110 $ 0.23
74452 10 0.275 $ 0.23
74H61 1 0.080 $ 0.22
74564 2 0.250 $ 0.38
74574 4 0.250 $ 0.75
74585 8 0.250 $ 3,93
74586 1 0.250 $ 0.71
745133 3 0.300 $ 0a42
74148 2 0.190 $ 1.50
74150 2 0.340 $ le4l
7558151 4 0.225 $ 2.25
745153 14 0.225 $ 4450
74S157 22 0.390 $ 3.76
745158 1 0.305 $ 3.76
745172 40 0.500 $ 599
745175 i 0.480 $ 1.68
745181 T 1.100 $ 3.15
745182 6 0.260 $ 4.86
745195 16 0.545 $ l.68
745257 12 0.495 $ 3.76
745260 13 0.300 $ 0.42
745274 36 0.500 $ 12.50
745283 12 0.500 $ 2.76
745299 1 0.500 $ 1.50
745381 21 0.800 $ 3.15
S1G8204 4 0.850 $ 27.20
$1G8205 2 0.850 $ 33.40
siG8228 33 0.512 $ 21.87
SIG8243 12 0.500 $ 4495
5168263 5 0.475 $ 4,50

TOTAL NUMBER OF COMPONENTS: 342
TOTAL POWER DISSIPATION: 154.923 WATTS.

TOTAL COST: § 2236.04

Figure T-1 Component Statistics for the Processor
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COMPONENT

AMS
74504
7415138
74154
745157
745280
SIG82542

256

NUMBER
OF UNITS

304
1

i

2

2
12
10

WATTS PER

UNIT

0.400
0.270
0.055
0.280
0.390
0.525
0.290

TOTAL NUMBER OF COMPONENTS: 332

TOTAL POWER DISSIPATION:

TOTAL COST:

$

1879.84

132.465 WATTS.

L L R

COST PER
UNIT

6.12
0.47
1.43
1.35
1.43
0.40
0.71

Figure T-2 Component Statisties for. One Processor Memory of
32,768 Words with Thirty-eight Bits Each
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COMPUNENT NUMBER WATTS PER COST PER
OF UNITS UNIT UNIT

1010t 36 0.135 5 0+47
10115 32 0.135 $ Oe47
10133 32 0.390 $ 2.95
10145 16 G.754 $ 13.00
10158 16 0.200 $ 1.55
10164 256 0.390 $ 1.65

TOTAL NUMBER OF COMPONENTS: 388

TOTAL POWER DISSIPATION: 136.T64 WATTS.

TOTAL COST: & 781.56

Figure 7-3 Component Statistics for One Sixteen by Sixteen Crossbar
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COMPONENT NUMBER WATTS PER COST PER
OF UNITS UNIT UNIT
10124 2 0.468 $ 4.50
10125 2 0.540 $ 4450
748157 4 0.390 $ 3.76
74L5193 4 0.155 $ 2.12
745195 16 0.545 $ 1.68
TOTAL NUMBER Of COMPONENTS: 28

TOTAL POWER DISSIPATION: 12.916 WATTS.

TOTAL COST: $ 68.40

Figure 7-4 Component Statistics for One Table Look Up Unit
Exclusive of the Memory



ITEM BUILD RUN
Name Parts Number Cost Number Parts Power (watts)
Processor 3h2 300 670,800 256 87,552 L6,500
Memory 332 320 601,600 276 91,632 36,708
Crossbar 388 _— — —_— — ——
Clos - 60 126,480 48 18,642 6,576
Omega. _— 40 84,320 3P 12,416 ) ,38h
Table Look
Up 28 20 | 1,360 16 4148 208
TOTALS
Clos — - $1,400,240 —— 198,256 89,992
Omega. - —— $1,358,080 - 192,048 87,800

Table 7-1 System Component, Component Counts, snd Power Consumption

66 S
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company's SNTLOO line. This report presented the most comprehensive review
of failure rate data which the suthor was able to cobtain. The data in the
report pertain to the low power Shotty devices in the Signetics T400 lines,
not to the regular (non-low power) devices used in this design. Table T-2
gives the failure rate data for a 200,000 integrated circuit component system
using values taken from the graph in Faigure T-5. As the table indicates, we
should expect the system 4o operate for twenty-six to forty-five hours between
failures. BSeveral spare processors, crossbars and memory modules will be
avallable to replace a unit whaich fails. No design for the control unit was
included since work came to end before that was possible  However, because

of 1ts eritiecal role in the system, 1t could well be the best policy to build
two complete control units so that a spare one would be available in the event

of a control unit failure.
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Failures per Mean Time
Temperature Nunmber of 1000 hours Between
Poc Failures for a 200,000 PystemFailures
per 1000 hours |camponent system {hours)
85°¢ 0.00019 38 26
10°¢ 0.00011 20 5
50°¢ 0.0000kY 9 111

Table T-2 System Reliability
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8. Conclusion

The author believes that the forgoing sections - mainly section
Lk, section 6.2, and section 7 - show that a computer with roughly 100 times
the computing capacity of the IBM 360/95 can be built for significantly less
than other computers with similar capability.

Another result of the work described here i1s the 31mulat1$n meth-
odology described in section 5 and illustrated in the appendix.

Considerable work remains Lo be done on the routing system. Although
we believe that an omega network is sufficient to support the intercommuni-
catron needs of the general circulation model, the matrix manipulation
example of section 6.5 shows that the three stage Clos network would provide
support for a wider class of problems at a modest increase in cost. However,

we have no algorithm to produce control patterns for the Clos network.



264

References

Advanced Micro Devices Incorporated, 197k
Advanced Micro Devices Data Book, Advanced Micro Devices Incorporated,
1974,

Arakawa, 1972
Arakawa, A., Design of the UCLA General Cairculation Model, TFechnical
Report Number 7 of the Department of Meteorology., University of California
at Los Angeles, July 1972.

Benes, 1965
Benes, V. B ,_ Mathemstical Theory of Connecting Networks and Telephone
Traffic, Academic Press, 1965

Breuer, 1972
Breuer, Melvan A. (Editor), Design Automation of Digital Systems, Volume
One, Theory and Technigues, Prentice Hall, 1972, pp. 101-172.

Carroll, 1967
Carroll, Arthur B. and Wetherald, Richard T., "Application of Parallel
Processing to Numerical Weather Prediction," Journal of the Association
for Compubing Machinery, Volume 1k, number 3, July 1967, pp. 591-61k.

Clos 3 19 53
Clos, Charles, "A Study of Non-blocking Switching Networks," Bell System
Technical Journal, Volume 32, number 2, March 1953, pp. L06-h2L,

Dietmeyer, 1975
Dietmeyer, Donald L., Chairman of the 1975 workshop on computer hardware
descripbion languages and their applications, verbal communication, 1975.

Downing, 1974
Downing, Robert, Physics Department, University of Illinois at Urbana-
Champaign, verbal communication, 19T7L.

Fox, 1961
Fox, L., Numerical Solution of Ordinary and Parital Differential Equations,
Pergamon Press, 1962, p. 348.

Fu, 1968
Fu, K. 5., Sequential Methods in Pattern Recognition and Machine Learning,
Academic Press, 1968.

Garcia, 197h
Carcia, G., Department of Computer Secience, University of Illinois at
Urbana~Champaign, unpublished communication, 19T7hk.



265

Gates, 1975
Gates, W. L., RAND Corporation, oral communication, 1975.

George, 1971
George, Theodore A., "ERTS A and B - The Engineering Systems," Astronautics

and Aeronsutics, Volume 9, pumber 4, April 1971, pp. 41-51.

Halem, 19Tk
Halem, M., Goddard Institute for Space Studies., oral communication, 197L.

Hammaing, 1950
Hamming, Richard W., "Error Detecting and Correcting Codes,” Bell System
Technical Journal, Volume 29, April 1950, pp 1L47-160

Hnatek, 1973
Hnatek, Eugene R., A User's Handbook of Integrated Circuits, John Wiley
and Sons, 197k.

IBM, 1970
IBM System/360 Principles of Operation, file number S360-01, order number
GA22-6821, version 8, 1970, pp. h1-k2.

Karn, 197k
Karn, Ronald, Goddard Institute for Space Studies, oral communicabtion,
197k,

Karn, 1975
Karn, Ronald, GISS Model ILLIAC Implementation., Computer Becience Corpora-
tion, 1975.

Kasahara, 1967
Kasaghara, A. and Washington, W. M., "NCAR Global General Circulation
Model of the Atmosphere",Monthly Weather Review, Volume 95, number T,
July 1967, pp. 389-k02.

Knuth, 1968
Knuth, Dopald E., The Art of Computer Programming, Volume 1, Fundamental
Algorithms, Addison-Wesley, 1968.

Kuck, 1968
Kuck, Dgvid J., "ILLIAC IV Software and Application Programming,”" IEEE
Transation on Computers, Volume 17, August 1968, pp. 758-7T70

Lawrie, 1973
Lawrie, D H., "Memory-Processor Connection Network," PhD Thesis, Depart-
ment of Computer Science, University of Tllincis at Urbana-Champaign,
report number UINCDCS-R-73-557, February 1973.



266

Ledley, 1960
Ledley, Robert 5., Digatal Computer and Control Engineerang, MeGraw-Hill,
1960, pp. 519-525.

Lorentz, 1963
Lorentz, E. N., "The Predactability of Hydrodynamic Flow," Transactions
of the New York Academy of Science, 1963, serial 2, pp. 409-k32.

Manabe, 1969
Manabe, 3. and Bryan, K., "Climate Calculations with a Combined Ocean-
Atmospheric Model," Journal of the Atmospheric Sciences, Volume 26,
number 4, July 1969, pp. 786-789.

Mintz, 1974
Mintz, ¥ and Arakawa, A.., Notes distributed at the second workshop on
the UCLS general circulation model, March 25-April 4, 197L4, Department
of Meteorology, Univeristy of California at Los Angeles.

National Semiconductor Corporation, 19Tk
Digatal Integrated Circuits, National Semiconductor Corporation, 19Th.

Ray, 197k
Ray, Robert M., Thomas, John and Donovan, Walter E., Implementation of
ILLTAC IV Algorithms for Multispectral Image Interpretation, Center for
Advanced Computation document number 112, Center for Advanced Computation,
University of Illinois at Urbana-Champaign, June 197Th.

Semptner, 197k
Semptner, A. J., Department of Meteorology, University of Calafornia at
Los Angeles, oral communication, 197h.

Signetics Corporation, 197hA
Signeties Digatal, Iinear, and MOS Data Book, Signetics Corporation, 197k,

Signetics Corporation, 19T4B
Signetics Bipolar Junction Isolated TTL Low Power Shottky Integrated
Circuit Failure Rates, Signetics Corporation, November 1974,

Slotnick, 1962
Slotnick, Daniel L., "The SOLOMON Computer,"” Proceedings of the 1962
Fall Joint Computer Conference, Spartan Books, 1962, pp. 97-10T.

Siotnick, 1968
Slotnick, Daniel L, et al., '"The ILLIAC IV Computer," IEEE Transactions

on Computers, Volume 17, August 1968, pp. T46-757.




267

Smagorinsky, 1963
Smagorinsky, J., "General Circulation Experiments with the Primitive
Equations: I. The Basic Experiment," Monthly Weather Review, Volume 91,
number 3, March 1963, pp. 99-16h.

Somerville, 1974
Somerville, R. J C., et al., "The GISS Model of the Global Atmosphere,”
dournal of the Atmospheric Sciences, Volume 31, number 1, January 197k,
pp. 8L4-117.

r

Stenzel, 1975
Stenzel, William, "A Class of Compact High Speed Parallel Multiplication
Schemes," Masters Thesis, Department of Computer Science, University of
Illinois at Urbana-Champaign, 1975.

Tessler, 1968
Tessler, Larry G. and Enea, H. J., "A Language Design for Concurrent Pro-
cesses,”" Proceedings of the 1968 Spraing Joint Computer Conference,
Thompson Book Company, 1968, pp. 403-408.

Thomas, 19ThA
Thomas, John, An ILLIAC IV Algorathm for Cluster Analysis of ERTS-1 Data,
Center for Advanced Computation Technical Memorandum Number 17, Center

for Advanced Computation, Universgity of Illinocis at Urbana-Champsign,
May 197h.

Thomas, 19T4B
Thomas, John, An TILLTAC IV Algorithm for Statistical Classification of
ERTS-1 Data, Center for Advanced Computation Technical Memorandum Number
18, Center for Advanced Computation, University of Illinois at Urbana-
Champaign, May 197h.

Texas Instrument Corporation, 1973
The TTL Data Book for Design Engineers, first edition, document number
CC-k1l, Texas Instruments Incorporated, 1973.

Texas Instrument Corporation, 19Tk
Supplement to the TTL Data Book for Design Fngineers, first edition,
document number CC-U416, Texas Instruments Incorporated, 19Th.

Tsang, 1973
Psang, L. C. and Karn, R., A Documentation of the GISS Nine-Level Atmos-
pheraic General Circulation Model, Computer Sciences Corporation, October

1973.

Wacker, 1970
Wacker, Arthur G. and Landgrebe, David A., "Boundaries 1n Mulitispectral
Imagery by Clustering," presented at the 1970 IEEE Symposium on Adaptive
Processes, December 1970.




268

Willismson, 1973
Williamson, D. L. and Washington W. M., "On the Importance of Precision
for Short Range Forecasting and Climste Simulation.," Journal of Applied

Meteorology, Volume 12, 1973, pp. 125L-1258,



269

Appendix

The material in this appendix 1s & sequence of computer printout
which gives the complete set of control cards, logic description and control
data (STEPs) whach were used to test the floating point addition subset of the

arrgy processor.
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//COMPEL EXEC PGM=COMPEL,REGION=154K,PARM=1R,ISA{T74K])*
J/7SYSPRINT DD SYSOUT=A

//DECK DD DSN=EDECKFOG,UNIT=DISK,DCB={BLKSIZE=3]120,RECFH=FB),
£/ SPACE={TRK {5,111} +DISP=(NEW,PASS]

//%DECK DO SYSOUT=A,DCB={BLKSIZE=800, RECFM=FB)

//MICRO DD ODSN=EMICFOG,UNIT=DISK,DCB={BLKSIZE=3120,RECFM=F31},
/7 SPACE={TRK,(5,13),DIS8P=(NE"1,PASS)

//*MICRO DD SYSOUT=ADCD={BLKSIZE=800,RECFM=F8]

//PLEIDUMP 0D SYSOQUT=A

01760100
al/00200
01/Q0300
01700400
Q1/00500
01700600
0l/00700
0L/00800
01700900
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$ THIS LOGIC TESTS THE “A" FRACTION FCOR ZERD 02/00100
ATEST(Ll) 3 S260 Al{l,4) 3 w2/00200
ATEST(2) : 5260 Al5+4) ; 02/00300
ATEST(3) = 5260 A{9,4) 3 02700400
ATEST{4) : S260 All3,4) . 02/00500
ATESTIS5) : 5260 A{17,4) 3 02/00600
ATEST(6) * S260 AlZ21:4) 3 22/00700
ATEST(T) : 5260 Al25+4) ; 02/30800
ATEST(8} = 5260 A(29,4) 3 22/900900
AZERD z S133 ATEST(1.+8) 3 02/4G1000
10 : OQUTPUT AZERD BLERO 3 02/01100

20 : OUTPUT ATESTIL,8) ; 02/01200
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$ THIS LDGIC TESTS THE “d" FRACTION FOR ZERQ 03700100
BTESTIL1) : 5260 Bll,4) 3 Q3700200
BTEST{2} : S260 B(5:4] ; 03730300
BTYEST{3} 3 S260 B(9+4) ; 03/00400
BTEST(4) : 5260 B{13,4) ; 03700500
BTESTI5) : 5260 B(17+4) 3 03700500
BTEST{6) : S250 B(2l,4) i 03700700
BTEST(T7) : S260 B{25,4}) , 03/00800
BTEST(8) : S260 Bl29,4) 3 03/00900
BLZERO : 5133 BTEST{1.8) 3 03731000

20 : OUTPUT BTESTI1,8) ; 03/01100



273

$ THIS LOGIC CONTROLS THE ALIGNMENTY SHIFTING 04700100
ASHSEL ¢ 520 EXC2 AZERO BZERD SHZIERD 3 04700200
BSHSEL : 520 EXC2BAR AZERD 8ZERQ SHZEROD 4 04700300
: QUTPUT SHIERD 3 04700400
ASHIFT{Ll,3) ¢ SL57 ABS(5,3} ZERDS{1+3) ASHSEL ZERQ 3 04700500
BYHIFTL1,3) = SL5T7 ABS{5,3) ZERDS{1,3Y BSHSEL IERO 3 04700600

CTRE : 5260 ABS{1,4) 3 04/00700
04700800

ENASH 3 $51 GTRB AINH ZERD ZERO 3
ENGSH ¢ §5L GTR8 BINHW ZEROD ZERD j 04700920
20 ¢ OUTPUT GTRB ENASH ENBSH 3 04/01000

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
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$ THIS LOGIC COMPARES THE "A® AND "8% FRACTIONS 05700100
ALESS1{1) UNUSED AGTRL{1) : 585 Al{4+4) Blas+4) BU8Y ZERD AlBY ; 05700200
ALESSL({2) UNUSED AGTR1(2)} 2 S85 Al9:4) B{9,4) B{13) ZERO A(L3} 3 05/00300

ALESS1(3) UNUSED AGTRL{3) = 585 A{l4s4%) B{l4,4) B{18} ZERO A{18} 3 05/00400
ALESS1{4) UNUSED AGTRLI(4) 3 585 A{19,4} B{19,4} B{23) LERO A{23]} ; 05/00500
ALESSL1({5) UNUSED AGTRI(5} : 585 A{24,4) B{24+4) B{28) ZERC A{28) ; 05/00600
ALESS1(6) ABEQI AGTR1{6) : S85 A129,4) B{29,4) ZERD UNE ZERD j; G5/00700
ALESSZ2 ABEQ2 AGTRZ2 3 S85 AGTR1I(2,4) ALESS1{2+4)} 05700800

ALESS1{6) ABEQL AGTRLI{6) 3 05/00900
AHIGH(1.4)}-: FORM A{1l,3} AGTRL(1} 3 05/01000
BHIGH{1,41 = FORM B8{1,3} ALESS1(1) ; 05/01100
ALESS ABEQ AGTR 3 585 AHIGH(1.4) BHIGH{l,4) ALESS2 ABEQ2 AGTRZ 3 05/01200
3 DUTPUT A{1,32) B{1,32) ; 05/01300
10 : OUTPUT ALESS ABEQ AGTR 3 05/01400
20 ¢ QUTPUT AHIGH{l,4} BHIGH{l,4) 3 05/01500
20 : DUTPUT ALESSL({1l,6) ABEQL AGYR1I(1.8&) 3 G5/01600

20 : OUTPUT ALESS2 ABEQ2 AGTRZ 3 Q5701700
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$ THIS LOGIC PRODUCES THE ADDER FUNCTION FOR ADD AND SUBTRACT 06/00100
3 THE PRIMARY MEANS FGR THIS THE THE SIG8205 RO 06/00200
JUNK{1,5) : FORM AZERDO BZERU EXC2BAR CUADD CUSUB ; 06/00300
JUNK{G,4) ¢ FORM EXPA{1) EXPB{1l) AGTR ABEQ ; 06700400
ADDADDR{L,9) : FDRM JUNK{1:5) JUNK{b6:+4) % 06700500
AXLLy4} 2 S02 ABS{1:4) ABS({4.4) 3 06700600
ABEXEQ . S20 XX{1} XX(2) XAX(3} xXX{4} , 06/00700
ADDCNTL{1l,8) : SIGB205 ADOADDR(1,9) 3 06700800
AFUNCL(Ll+4) 3 S257 ADDCNTL{1,4) ADDCNTLIS5,24) ABEXEQ ENABADD ; 056/00900
AFUNC{1,3} 3 WOR AFUNC1{1,3) CUAFUNC{1,3) 3 056/01000
10 : QUTPUT ADDADDRI1,9}) 3 05/01100
5 : QUTPUT ADDCNTL{L,8) 3 06/01200
20 : OUTPUT ABEXEQ 3 06/01300
13 ¢ OUTPUT AFUNCL{1,43} ; 06/01400
+ OUTPUT CUAFUNC(1,3) CUADD CUSUB 3 06/01500
SIGN : S157 EXPB(L) AFUNCl{4) NINH ZERC , 06/01600

: OUTPUT SIGN 3 66701700
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$ THIS 15 THE %A™ ALIGNMENT SHIFTING LOGIC 07/00100
: OUTPUT AINH 07/60200
LEFTL1,89%) 2 SIG8243 A{lsB8s4) ASHIFT(1s3) 07/00300
ENASH ONE ONE , 07700400
LEFT{2+8+4) ¢ 5168243 Al2:8,4) ASHIFT({1,3) 07/00500
EMASH ONE ONE 3 07700600
LEFT{3+8¢4) 2 SIGB8243 Al3+8+4) ASHIFT(1,3} ' 07/G0700
ENASH ONE ONE 3 07/00800
LEFT{4,8:%) 3 SIGB243 Al4y8+4) ASHIFTI1,3) 07/00900
EMASH ONE ONE 3 07701000

5 3 QUTPUT LEFT{1.+32) ASHIFT(1,3) 3} 07/01100



$ THIS IS THE

ARIGHT(L+8,41 =

ARIGHT(2,8,4)
ARIGHT{348,4)

ARIGHT144+844%4)

5

”"
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nEr ALIGNMENT SHIFTING LOGIC

S51G8243 BilvB,4) BSHIFT(L,3)
ENBSH ONE ONE ,
5168243 B{2.8,4)} BSHIFTI(L1.3)
ENBSH ONE ONE 3
SIG8243 B13,8,4) BSHIFT{1,3)
ENBSH ONE ONE ;
S1G8243 Bl 4+8,4) BSHIFT{1,3}
ENBSH ONE DONE ;3

QUTPUT ARIGHT{1432} DBSHIFT(1,3) »

08700100
08760200
03700300
08/00400
0§/00500
08700600
a8/700700
08700800
08700900
Ga/ol000
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$ THIS 1S THE LEFT SHIFT LOGIC USED IN NORMALIZATION
3 OQUTPUT NSHIFT{1,3} NINH 3
NSHIFT{L,3) * S157 NSH(1,3) ZEROS{l,3) IFF LERO
NSH{1+3) 3 TI14B BTEST{1,8) 3
NORM{Ll+B+4) : SIGB243L Bi{l,8.4) NSHIFT(1,3)
NINH ONE ONE 3
NORM(248,4) 3 SIGB243L 8l248,4) NSHIFT{1,3)
NINH ONE ONE 3
NORM{3,B8,%4) ¢ SIGB243L B{3,8,4%) NSHIFTI1,3)
NINH ONE ONE 3
NORM{4+844} 2 SIG8243L B{4,8,4) NSHIFT{Ll,3)
NINH ONE ONE j;
10 : OUTPUT NORM(1,32} NSHIFT{1,3) 3
10 : OUTPUT NSHI{1l.,3} ;3

09/00100
09700200
09/00300
097004430
09700500
09/00600
09/00700
09/00800
09700900
09701000
09701100
09701200
09/013G0
09/01400
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RIGHT{1,32} : WAND ARIGHT{1.+32} NORM{1,32) ; 10/00100
5 T0UTPUT RIGHT(1,32) 3 10/00200

. REPRODUCIBILITY OF THE
%%GWAL PAGE IS POOR
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$ THIS 15 THE PRIMARY EXPONENT ADOER 11700100
: DUTPUT EXPA(L.8) EXPB{1,8) 3 11790200
AEXPO{1,8) = FORM ZERO EXPA{2.7) i 11700300
AEXSTR : S11 ZFF AEXSTRC ONE 3 11700400
AEXP11+5} 3 S157 AEXPOI1,5) ZERQOS{1,5) EX157 ZERO ; 11/00500
AEAP(6,3) 3 S157 AEXPO16,3) NSHIFT{1,3) EX157 AEXSTR ; 11790600
10 = QUTPUT AEXPQ{1,8) ; 11700700
: DUYPUT EX1S57 3 11/00300
BEXP[1,8) : FORH ZEROQ EXPBI2:7) 3 11700900
XORSIGN z S86 EXPAIL) EXPBIl) 3 11701000
: DUTPUT EXCARRY 3 L1/01100
BAFUNC{1,3) 3 FORM ZEROS{1,2) ONE 11701200
ABG{2) ABP{2) : $3BLGP AEXP!{5,%) BEXPi5+4) ABFUNC{1,3) ; 11/01300
ABG{1) ABP{l) = S$381GP AEXP(1,4) BEXP{l,4) ABFUNC(L1,3) ; 11701400
BAG(2) BAPL2) : 5381GP AEXP{5,4) BEXP{5,4) BAFUNCI(1,3) , 11701500
BAG{l) BAP(1l) = S3BLGP AEXPIl,4) BEXP{1l,4} BAFUNGCI(1,3) , 11761600
EXLIls4) 3 S$381 AEXP{l,4} BEXPl1+%) ABFUNC{1,3) FABC4 3 11/01700
EXL1{554) 1 S381 AEXP{5,4) BEXP{S5,4) ABFUNCI[1,3) EXCARRY 3 11701800
EXBA({1ly4) = 5381 AEXP(l,4) BEXP{Ll,4) BAFUNC(L,3} FBACY 3 11/01900
EXBALS,4) 2 S38lL AEXP{5:4) BEXP{5,4) BAFUNC(1,3) ONE 3 11/02000
ABST{1,7) : S157 EXBA{2,7) EA1{2,7} EXC2BAR ZERD 3 11/02160C
UNUSED UNUSED FBAC4 EXCZ UNUSED : S182 ONE FBAGLLy4) FBAP{l+4) 11/02200
UNUSED UNUSED FABC4 EXC2BAR UNUSED 3 5182 EXCARRY FABG{1l,4} FABPILl,4) ;3 11/02300
FABG{l,4} : FORM ONES{1:2) ABG{L+2) 3 11702400
FABP{1,4) ¢ FGAM ONES(1,2} ABP{l,2} 3 11/02500
FBAG{L,4) = FORM ONESI1,2) BAG{1:2) 3 11702500
FBAP{l,4} = FORM ONES{1,2] BAP{1,2) ; 11702700
5 3 QUTPUT ABS(L,7) EX1{1,8) EABA{1,8) ; 11702800
s DUTPUT ABFUNC(1,3) 3 11702900
5 3 QUTPUT AEXP{1,8) BEXP{L,8) 3 11/03000
10 : OQUTPUT FABC4 EXC2BAR EXC2 3 11/03100
10 : QUTPUT FBACY 3 11/03200
15 : OUTPUT ABGI1,2) ABP{1,Z) % 11/03300
15 = OUTPUT BAG{I,2} BARP{1,2) ; 11703400
: QUTPUT EXCARRY 3 11703500

$ OUTPUT XORSIGN 3§ 11/03600
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¢ THIS IS THE 32-81T FRACTION ADDER 12700100
ENABBAR : S04 ENABADD 3 12/920200
AC 3 HS52 ENABADD CUAC ENABBAR AFUNC1(2) AFUNCL(3) 3 12/00300
: QUTPUT CUAC ; 12/00400
AGHUL1) APH{L) 3 S381GP LEFT(1,+4) RIGHT(Ll.4} AFUNC{1,3) 3 12700500
AGH{2) APH{2} *t S3B1GP LEFT(5+4) RIGHT{S+4} AFUNC{1+3) & 12700600

AGH{3) APH{3) S381GP LEFT(9+4) RIGHTI9,4) AFUNC{1,3) ; 12/00700

AGH{4)} APHI4) * S3B1GP LEFT(13,4) RIGHTI13.4) AFUNC{1,3} ; 12700800
AGLILY APL(1} : S3BLGP LEFT(17,4} RIGHT(17:4) AFUNC{I,3) 3 12/00900
AGL{2) APL{2} = S381GP LEFT{2l,4) RIGHT{21,4)1 AFUNC(1,3) 3 127010600
AGLIL3) APL{3) 1 S381GP LEFT(25,4) RIGHT{25:4) AFUNC{1.3) 12701100
AGL{4} APL{4)} : S3BLGP LEFT(29,4) RIGHT(29,4) AFUNC{1,3) ; 12701200
AG2 AP2 AC4H ACSH ACL12H : S182 AC1ée AGHIL.4) APHIL,4) 12/01300
AGL APl AC4L ACBL ACL2L : S182 AC AGL{1,4) APLiL,4) 3 12/01400
AClé 3 5182X AC AGLl APl 12701500
ACOUT = S182X ACL6 AGZ APZ 3 12/01600
SUM{Ll,4) t S381 LEFT{1s4) RIGHT{1l,4) AFUNC{Ll,3) ACL2H ; 12701700
SUM{5+4) * 5381 LEFTI(5,4) RIGHT(54+4) AFUNCI(1:3) ACSH 3 12701800
SUMI9y4)} 3 538l LEFT(9+4) RIGHT{9+4) AFUNCI{Ll,3) AC4H ; 12/01900
SUM{13,4) : 5381 LEFT{13,4) RIGHT(13,4) AFUNC{L,3) ACl6 ; 12702000
SUM{1Ts4) 3 S38L LEFTI17+4) RIGHT(L17,4) AFUNC(1.,3) ACL2L 3 - 12/02100
SUN{21+4) * S381 LEFT{(21,4) RIGHTI21,+4) AFUNC{1,3) ACBL ; 12702200
SUM{25,4) : 5381 LEFT{25,4) RIGHT{25,4} AFUNC{1,3) AC4L 3 12702300
SUM{29+v4) t 5381 LEFT(29,%) RIGHTI(29,4) AFUNC{1,3) AC 12/02400
- OUTPUT AC 12702500
5 3 DUTPUT LEFT{1,32) RIGHT({1l+32) AFUNCI1l.3) ; 12/02600
15 1 OUTPUT AGH(1l,4) APH{l,4) 3 12/02700
15 = QGUTPUT AGL(Ll,%4) APL{l.4) ; 12732806
5 : OUTPUT SUM{l.32) 3j 12/02300
15 + QUTPUT AC4H ACSH ACLZH 3 12703000
15 @ OUTPUT ACG4L AcBL ACL2L ; 12743100
5 1 OUTPUT ACOQUT ; 12703206
15 2 DUTPUT ACLl6 AGL AG2 APl AP2Z ; 12703300
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$ THIS LOGIC RESPONDS TO FRACTION ADDITION OVERFLOWS 13/00100
$ IT "SHIFTS® THE FRACTION ONE DIGIT TO THE RIGHT ON OVERFLOW 13/00200
OvFL{1+32) : FORY ONES{1,3) ZERO SUMI(1,28) 13/00300
FRACTI(1,32} : $158 QVFL(1,32) SUM(1,32) OVFLSEL ZERO i 13/00400
DVFLCON{1,8) s FORM DNES(l,3) ACOUT ONES(1+4} ; 13/00530
OVFLSEL ¢ S151 OVILCON(1,8) AFUNCL{L,3) ;3 13700600
5 : OUTPUT OVFLSEL 3 13700700
5 3 QUTPUT DOVFLI{1,32) i 13/00800

: OQUTPUT FRACTI(1,32}) ; 13700900
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$ THIS IS THE EXPONENT (ORRECTION ADDER, WHICH INCREMENTS
$ THE EXPONENT 8Y ONE WHEN A FRACTION OVERFLGHW OCCURS

EXSELIN{L,8) : FORM ONE ZERO ONES(1,2} ZEROS{i,2) ONE ZIERO

EXCNTRL{1,3) : FORM EXC2Z AZERO BZEROD

EXSEL : 5151 EXSELIN(1,8) EXCNTRL{1l,3} 3 '

10 = QUTPUT EXSEL ;3

100 . QUTPUT EXCNTRLI(1,3} EXSELIN{L1,8) 3

EX3TOlL : 520 EXSEL EXP1 ONE UONE ;

EX3T01C(1,2) : FORM EX3TOLH EX3TOLL 3

EX37T0L(L,8) : S1GB263 EX1{1,8) AEALPO(1,+8)} BEXP{1l,8)
EX3TO1C{1,2) ZERO ;

20 ¢ QUTPUT EX3TOLl(1s8)} EXPSUMIL,8) ;

3 OUTPUT EX3TOLH EXPL 3

10 : OQUTPUT EX3TO1C{1,2) 3

20 : QUTPUT EX3TOILL ;3

EXPSUMEl,4) UNUSED : S181L EX3TOl{l.,4) ZERQS{l.,4) CORRCRY
ZEROS(144) ZERO 3

EXPSUM(5,4) CORRCRY i S181 EX37T0i{5,4) ZERDS{Ll,4) ZERO
ZEROSIY,4} ZERO ;3

EXP{1+8) 2 S157 EXPSuUMI{1,8) EX3TOL(1,8) OVFLSEL ZERO ;

30 : OUTPUT CORRCRY 3

: DUTPUT EXPLZ+7) 3

14/00100
14700200
14/00300
14700400
14/00500
14700600
14/00700
14/00800
14700900
14701000
14/01100
14/012G0
14701300
14701400
14701500
14701600
14701700
14701800
14701900
14702000
14702100
14/G2200
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$ THIS LOGIC TESTS THE RESULT FRACTION FOR ZERO, AND SETS 15700100
§ THE ZERO FLIP-FLOP ACCORDING TO THE RESULT OF THE TEST 15760200
ZFFBITS{1} : 5260 FRACTIl,4) 3 15700300
LFFBITS{2) : 35260 FRACTIS+4) 3 15700400
ZFFBITS{3} : 5260 FRACT{9,4} ; 15700500
IFFAITS(4) 3 S260 FRACY(I3.4) ; 15/00600
ZFFBITS{5) = $260 FRACT{L7.4} i L5700700
LFFBITSI6) : 5260 FRACTIZ1,4) 3 15/00800
ZFFBITSITY 3 5260 FRACTI(25,4}) 3 15/00900
IFFBITS{8) 3 5260 FRACT(29:4) 3 15701000
IFFINBAR 1 $133 ZFFBITS(1,8) 15/01100
ZFFIN : 504 ZFFINBAR 3 15701200
*IFF *IFFBAR : 574 ZFFIN CLOCK ; 15/01300
10 : OUTPUT ZIFFIN 3 15/01400
10 ¢ QUTPUT IFFINBAR 15701500
20 3 DUTPUT ZFFBITS{1l.8) 3 15701600

: QUTPUT ZFF ZFFBAR CLOCK ZFFIN 3 15701700
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//DECK EXEC ASSEMBLY,PARM='FX,ESD,LSETC=12%,REGION=180K
F/SYSLIB DD DSN=USER.P4293.SUPPORT,DISP=SHR

/7 DD DSN=USER.P4293.PACKAGES,DISP=SHR

// DD DSN=SYS1.MACLIB,DISP=SHR

//5YSIN OD DSN=&DECKFOG,DISP={0LD,DELETE)

16/00100
i6/00200
16/00300
16/00400
16700500
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//LINKDECK EXEC LINKEDIT,PARM=*LIST,MAP;NCAL,LET® REGION=102K,
// LOADSET="USER.P4293.LINKQUT (LOGFOG)?

//7SYSLIB DD DSN=USER.P4293.LINKOUT,01S5P=SHR

F/SYSLHOD DD DISP=0LD,SPACE={TRK,110,3,10)]}

17700100
17700200
17/00300
17700400



Y
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//MICRO EXEC ASSEMBLY,PARM=YNOXREF,NOLREF, ESD',REGION=18B0K
//SYSLIB DD DSN=USER.P4293,.SPECIAL,DISP=SHR

/4 0D DSN=SUSER.P4293.MICRO,DISP=SHR

7/ D0 DSN=USER.P4293.SUPPORT,DISP=SHR

/4 0D DSN=USER.P4293.PACKAGES,DISP=SHR

// DD DSN=SYS1.MACLIB,DISP=SHR

f/7SYSIN DO DSN=EMICFOG,DISP=(OLD,DELETE)
/7 0D *

18700100
iasqoz200
18700300
18700400
18/00500
18/00600
18700700
i8/00800
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PRINT NOGEM 19/00100
STEP AEXSTRC=0,CUAC=0,EX3T0LlH=1CLOCA=]L, AINH=1,BINH=1 19/00200
STEP SHIERO=1,NINH=1,CUATUNC=000,C04DD=] 4CUSUD=0,EX15T=0 19700300
STEP ENABADD=0,EXPI=1,ABFUNC=010,EXCARRY=1] 19/00400
STEP EXPA=01001000,EXP5=01001000 19/90500
STEP A=X0,8=X0 19/00600
RUN 19/00700
STEP AEXSTRC=1,CUAC=1,EX3TOLH=0,CLOCK=04NINH=D 19700300
STEP CUAFUNC=0lL,ENABADD=1B=X0+EXPL=0,ABFUNC=011 19700900
STEP EXPB=4EXP,AINH=0,BINH=0,EX157=1,EXCARARY=0 19/01000
RUN 19701100
STEP AEXSTRC=0,CUAC=0,EX3TOLH=1,CLOCK=L, AINH=1, BINH=1 L9/01i200
STEP SHZERUO=1,NINH=]1 yCUAFUNC=0Q0,CUABD=L,LUSUB=0,EXL57=0 19/01300
STEP ENABADD=0,EXP1l=1,AcFUNC=010,EXCARRY=1 19/01400
STEP CUADRD=0 19701500
RUN 19/01600
STEP CUSUB=1 19/01700
RUN 19/01800
STEP A=XB00QC0000 19701900
RUN 19/02000
STEP 8=X50000000 19702100
RUN 19/02200
STEP EXPA=01000010 19702300
RUN 19/02400
STEP EXPA=01001L000 19702500
STEP CUSUB=0 19702600
RUN 18/02700
STEP B8=X80000058 197032800
RUN 13/02900
STEP AEXSTRC=1,CUAC=1,EX3TO1H=0+CLOCK=0,NINH=0 19703000
STEP CUAFUNC=0L1,ENABADO=1,B=X58,EXP1=0,ABFUNC=011 19703100
STEP EXPB=®EXPsAINH=0.BINH=0,EX157=1, EXCARRY=0 197033200
RUN 197033300
STEP AEXSTRC=0,CUAC=0,EX3TGLH=1,CLOCK=14AINH=1,BINH=1 19/03400
STEP SHZERO=} sNINH=1,CUAFUNC=000,CUADD=1,CUSUB=0,EX157=0 19/03500
STEP ENABADD=0,EXP1l=1,A8FUNC=010,EXCARRY=1 19/03600
STEP EXPB=01000111 19703700
RUN 19703800
STEP CUSUB=] 19/03900
RUN 19704000
STEP CLAUD=1 19704100
RUN 19704200
STEP EXPB=01001000 12/04300
RUN 19/34400
STGP 19704500

END 19/04600
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//LUINKMIC EXEC LINKEDIT,PARW="LIST,MAP,LETY,REGICN=102K,
£7 LOADSET="USER.P4293.LINKOUT{HICFOG}®

//S5YSLIB DD DSN=USER.P4293LINKOUT,DISP=5HR

//75YSLMOD DD DISP=0LD,SPACE={TRK,{10,3,10})

20/00L00
20700200
20/0G300
20/00400
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J/UINKSIM EXEC LINKEDITs PARM='LIST,MAP,LET*,REGION=102K,
/7 LOADSET=VUSFER.P4293.LINKOUTITESTFQG)!
7/5YSLIB DD OSN=USER.P4293.LINKQUT,DISP=SHR
//SYSLIN DD *
ENTRY PROGRAM
INCLUDE SYSLIB{MICFOG,LOGFOG)
//S5YSLMOD DD DISP=0LD,SPACE={TRK,{10,3,L0))

21/00100
21/00200
21700300
21700400
21/00500
21/00600
21700700
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//RUN EXEC PGM=TESTFOG,REGION=32K,TIME=(,10),PARM=*255" ' 22700100
//5YSPRINT DD SYSOUT=A ‘ 22700200
//SYSUDUMP DD SYSOUT=A 22700300
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//RUN EXEC PGM=TESTFOG,REGION=32K,TIME={410),PARM=*0" 23/00100
J/SYSPRINT DD SYSOUT=A 23/00200

//75YSUDUMP 0D SYSUUT=A 23700300



