
DESIGNA-D PRELIMINARYSPECIFICATION 

OF AN ARRAY PROCESSOR
 

"Final Technical Report" 

by 

D. L. Slotnick and Marvin L. Graham
 

October, 1975
 
NASA Grant No. NAS5-23334 


ci 

ATE T NCANDNATO 

INOATION TEHNICL 

U.S DEPARTMENT OF COMMERCE
 
SPRINGHRLD, VA. 22161
 



SPECIFICATION A JD PRELIMINARY 
DESIGN



OF AN ARRAY PROCESSOR



"Final Technical Report" 

by 

D. L. Slotnck and Marvin L. 
Graham



October, 1975


NASA Grant No. NAS5-23334 
 

=C 

76 33 7 

- tnal 

NATl) IO CATON AND 

INk Y D SIGN A NENAOFOMCE 

vLSCLReport (IlniUiv)26Po 

mi 

Cin 14B G3/ 3 5 uncas06910 

-'si-R-1,48 SPE'O RATIO PERCESSO 



UNIVERSITY OF ILLINOIS AT U1BANA-CHAMPAIGN



OFFICE OF BUSINESS AFFAIRS
 


URBANA, ILLINOIS 618oi



TITLE



Specification and Preliminary Design



of an Array Processor
 


"Final Technical Report"



NASA Grant #. NAS5-23334



D. L. Slotnick


Principal Investigator



Mvl, t raa t. 
 

Marvin L. Graham





TABLE OF CONTENTS



Page



1. Introduction................. .................... .. 1



2. The Problem .................. .................. .. 3



2.1 General Circulation Models ........... .............. 3



2.1.1 	 Vertical Levels ............. .............. 7



2.1.2 	 Time................. ............... .. 7



2.1.3 	 Horizontal Reoslution and Various



Dlifferencing Schemes............... ..... 9



2.2 GISS Modifications to the Model.................. 12



2.3 The Effects of the Oceans on the Atmosphere. ......... 13



2.4 Input and Output Requirement of the Model. .......... 15



3. The Array Computer.... ....................... 18



4. The System Design ..... ..... ................. 23



4.1 System Parameters......................... 23



4.1.1 	 Word Size ... ..... ................. 23



4.1.2 	 Word Format ................... ..... 24



4.1.3 	 Memory Requirements . ................. 	 26



4.1.4 	 Measurements-of the GISS Model. ............ 27



4.1.5 	 Processor Speed Requirements. ............. 29



4.1.6 	 The Choice of TTL Technology for the Processor..... 30



4.2 The Processor Design ...... ..................... 34



4.2.1 	 Convention Used in the Figures Which Describe Logic 36



4.2.2 	 Signal Name Notation Used in the Design Description 38



4.2.3 	 Inversion in the Logic Figures................. 39



ii




Page 

4.2.4 	 Detailed Description of Two Packages ... ..... .... 39



4.2.5 	 The Processor Design........ ............. 42



4.3 Processor Intercommunication - The Routing Network . . .... 155



4.3.1 	 Routing Network Control ........ ...... ...... 158



4.3.2 	 ECL Logic ......... ............ ....... 162



4.3.3 	 Routing Network Time and Component Count Estimates. 164



4.3.4 	 Table Look Up ........ .................. 177



4.3.5 	 Communication with the Control Unit and the



Input-Output Channel........ ........ ...... 179



4.4 The Control Unit ......... ........... ....... 181



4.4.1 	 Control of the Processor Array......... ....... 181



4.4.2 	 Control of the Routing Network......... ...... 183



5. Design Testing .......... ............... ........ 185



5.1 The Logic Simulation System.... ....... ......... 185



5.1.1 	 The Logic Simulator Language and the Preprocessor . 188



5.1.2 	 Timing by the Simulator ... ............... 191



5.1.3 	 Debugging Aides in the Simulation System. ....... 193



5.1.4 	 Simulated Packages with No Exact Hardware Analog. . 195



5.1.5 	 Loops .............. ............. .. 196



5.1.6 	 Wiring Lists............ ............ .. 209



5.2 The Multiplier Prototype ........... ......... .. .. .210
 


6. System Performance ........ ...................... 219



6.1 Processor and Routing Unit Cycle Times ... ..... ....... 219



6.2 Performance of the System on the General Circulation Model 221


ill' 



Page



6.2.1 	 The Rectangular Model ..... ..... .. . 227



6.2.2 	 The Split Grid Model......... .......... ..... 228



6.2.3 	 The Polar Circle Sum........ ........... ...... 231



6.2.4 	 A Hardware and Time Comparison of the Clos, Omega and



Nearest Neighbor Routing Schemes. ........... 231



6.3 Image Data Processing........................ 234



6.3.1 	 Image Data Clustering .............. ..... 235



6.3.2 	 Image Data Classification . . ............. 	 237



6.3.3 	 Byte Packing and Unpacking................ 239



6.4 File Processing and Information Retrieval.......... . 243



6.4.1 	 File Statistics ................ ......243



6.4.2 	 Information Retrieval .............. .... 244



6.5 Matrix Inversion by Gaussian Elimination. ........... 245



6.5.1 	 Solution of Inhomogeneous Systems. ........... 	 245



6.5.2 	 Inversion of a Matrix . . ............... 253



7. Operating Parameters of the System.................. 254



8. Conclusion....... .......... ............... 263



References....................... ............. 264



Appendix....... ......... ..................... 269



V





1. Introduction



The goal of the research described by this paper was the design of 

a computer suited to the class of problems typified by the general circula­

tion model of the atmosphere. The research was supported in large part by 

the Goddard Institute for Space Studies (GISS) of the National Aeronautics



and Space Administration (NASA). The needs that prompted GISS to support



the research imposed several practical constraints on the design which was



sought. A fundamental goal was that the machine which resulted from the



design was to have roughly 100 times the computing capability of the GISS



IBM 360/95 which is now used for research with a general circulation model.



Their desire to increase the spatial resolution of that model by refining



the grid implied the need for a 100 fold increase in computing capability to



stay even in terms of the real time. 

A second requirement was that the resulting machine be programmable 

in a higher levellanguage similar to FORTRAN. The current model is written 

almost entirely in FORTRAN, and the GISS staff planned to modify an existing 

compiler for CFD - a FORTRAN-like language - for ILLIAC IV for use with their 

new machine. Moreover, the new machine was to cooperate in the general



circulation experiments on the expanded models with the IBM 360/95; the IBM 

machine would continue to be used for the pre-processing and post-processing 

of model data which it now performs for the smaller model which it also now 

executes. The implication of the FORTRAN and IBM machine constraints is that 

the machine possess floating point arithmetic capability, and that the float­

ing point format of the machine be close to that of the IBM 360 series. 

A third constraint on the design was that the cost of the machine 

resulting from the design effort was to be significantly less than that of 



2



other extant machines of similar computing capability. Among these are the 

ILLIAC IV, the Texas Instruments Corporation Advanced Scientific Computer,



and the Control Data Corporation STAR.



A final constraint on the design was that it be feasible to 

fabricate a complete system and put it in operation by early 1978. A clear 

implication of this and the preceding constraint is that there is neither 

time nor money for the development of new hardware families, let alone new 

chips. The design will have to be made in terms of an existing hardware 

family with components readily available off-the-shelf. 

REPRODUCIBILITy OF THEORIGINAL PAGE IS POOR 



3



2. The Problem



Several groups in the United States are working on global general



circulation models. The three largest efforts are those of Mintz and 

Arakawa at UCLA (Arakawa, 1972, Mintz, 1974), Smagorinsky and Manabe at 

the Geophysical Fluid Dynamics Laboratory (GFDL) (Smagorinsky, 1963) and 

Kasahara and Washington at the National Center for Atmospheric Research 

(Kasahara, 1967). The UCLA model is of primary interest to this research 

because the model run by GIS (Tsang, 1973) is a modified form of that 

model. 

2.1 General Circulation Models



A general circulation model simulates the behavior of a three 

dimensional spherical atmosphere on a digital computer. The bulk of the



computing load necessary in the simulation is the time integration of the 

equations of fluid dynamics of the atmosphere. In the UCLA model, sub­

routines called COMP1 and COMP2 perform this time integration of the 

equations of motion. Every six cycles through COMPl-COMP2, the effects of



solar radiation in heating the atmosphere and the effects of evaporation,



condensation and precipitation are introduced through the execution of the



COMP3 and COMP4 subroutines. The process is shown in Figure 2.1.2-1. Every



four cycles through the process illustrated by Figure 2.1.2-1, a table look­


up process is used to introduce the effects of long-wave infra-red energy



absorbtion.in the GISS model.



Table 2.1-1 lists the parameters which define the conditions under



which the model operates. Table 2.1-2 lists the variables of the model and



gives their spatial dimensions. Figure 2.1-1, which is taken from a GISS



http:absorbtion.in


4



Prescribed parameters.



To use the atmospheric general circulation model, for this or any



other planet, the following parameters must be prescribed:



Radius, surface gravity and rotation speed of the planet.
 


Solar constant, and orbital parameters of the plant.



Total atmospheric mass.



Thermodynamical and radiation constants.



Geographical distributions of open ocean, ice covered ocean,



bare land and land covered by glacial ice.



Elevation of the bare land and glacial ice.



Surface roughness.



Thickness of the sea ice.



Ocean surface temperature.



Table 2.1-1. The Parameters of the General Circulation Model





Variables of the Atmospheric Model



Horizontal Velocity 

West to East component U(X,Y,Z) 

South to North component V(X,Y,Z) 

Temperature T(X,Y,Z) 

Water Vapor (specific humidity) q(X,Y,Z) 

Surface Atmospheric Pressure P0(X,Y) 

Parameters of the Planetary Boundary Layer (PBL) 

Boundary Layer Depth (X,Y) 

Temperature Discontinuity at the PBL (X,Y) 

Moisture Discontinuity at the PBL (X,Y) 

Parameters of the Earth's Surface 

Ground Temperature MY) 

Ground Water Storage (MY) 

Mass of Snow on the Ground (X,Y) 

A Future Variable of the Atmospheric Model



Ozone Concentration (X,Y,Z)



Table 2.1-2 The Variables of the General Circulation


Model and their Dimensionalities





6



dV- + fk x V + V $+ aaV,r = F 

It + v * (Wt) + 2- CV ) =0 

pa = RT 

p1o 14 6



S= -a 

c- -C-rE 

=
dt



Here the notation is



V horizontal velocity



t time



f Coriolis parameter



k vertical unit vector



V two-dimensional gradient operator



a the vertical coordinate [ = t)/(Ps-Pt)]



p pressure 

Pt pressure at top of model atmosphere, constant



Ps pressure at bottom of model atmosphere


a specific volume



7T PS - Pt



F horizontal frictional force
 


* gas constant



* temperature



o potential temperature



c specific heat at constant pressure
p 
Q heating rate per unit mass
 


4 geopotential



q water vapor mixing ratio



C rate of condensation



E rate of evaporation.



and the VariablesFigure 2.1-1 The Primitive Equations 
of the GISS General Circulation Model.





7



report on the model (Somerville, 1974), shows the basic equations of the



model. The remainder of this section will describe the UCLA and GISS models.



The emphasis will be on describing the differences between the first UCLA



model (Arakawa, 1972), the GISS model which evolved from it (Somerville, 1974;



Tsang, 1973) and the second UCLA model (Mintz, 1974) to illustrate the range



over which variations of the current GISS model may run in future models.



2.1.1 Vertical Levels 

The first UCLA model had only three vertical levels. The current



GISS model has nine, and the second UCLA model has twelve. GISS hopes to



expand to a fifteen level model. The new UCLA model incorporates a special 

"sponge layer" as its highest level to damp out spurious numerical wave 

reflections (Mintz, 1974).



2.1.2 Time 

The first UCLA model and the GISS models use the explicit matsuno 

predictor-corrector method for advancing time. For a variable Q, the 

scheme uses a forward and a backward step to advance time by one interval 

in the following way:



Forward Q(tn+l) - Q(tn)



ttn+ 1l -t tnn f'(Q(tn))



Backward Q(tn+l) - Q(tn)



f(Q(tn+l)*)
t n+l n 

The forward step uses the current values of the variable and the function f', 

which approximates the derivative, to produce an estimate, Q(tn+l), for the



value of the variable at the next time. The backward step uses the estimated
 


value to compute Q(tn+l), the value of the variable at the next time. The 

process is illustrated by Figure 2.1.2-1. OITY OF 

ORIGhINAL PAGE IS POOR 



2 3 4 5 6 7 

T T+1 T+2 T+3 T+4 T+5 T+6 TIME STEPS 

T 0 T+1 Q T+Z QT+3 0 T+4 Q TQ + 

FORWARD 	 M=1 m=1 m=1 m=l M=1



~­

6T+5 
 

AT+2 
 
T+I 


BACKWARD M=3 M 2 Mz2 	 M 2 

IN TIMEAND FORWARDIN SPACEM=1, CENTERED 
M CENTEREDg2, IN SPACE 	 AND BACKWARD IN TIME


M=3, UP-RIGHT UNCENTERED IN SPACE AND BACKWARD IN TIME



M=4, DOWN-LEFT UNCENTERED IN SPACE AND BACKWARD IN TIME COMP4 

* z COMPI - COMP2 

Figure 2.1.2-1 	 The Sequence of Time Steps and Spatial



Differencing in the Time Integration Procedure





9 

The GISS version of the model for the IBM 370/165 takes advantage



of the fact that only one complete copy of the variables is needed for this



method to reduce the storage requirements of the model by roughly half.



The new UCLA model uses the leapfrog scheme to advance time. This



scheme computes a value for the variable A at time t n+ as follows:



A(tn+l) - A(tn-i) 

- tn= f(A(tn ) ) .2Ctn) 
 

This scheme takes half the computer tame, but requires twice the space of



the Matsuno scheme, since two complete sets of the variables are required to



compute a new value. The leapfrog scheme is numerically superior to the
 


Matsuno scheme in that it does not amplify or damp the solution, but it is



inferior in that it tends to produce two separate and divergent solutions.



The new UCLA model wll couple these two solutions by introducing one



Matsuno step for every six leapfrog steps.



Figure 2.1.2-1, taken from Tsang (1973), shows the sequence of



computation in the current UCLA and GISS models. Each normal time step 

conisists of a COMPl-COMP2 call for a forward (estimator) time step and 

another COMPl-COMP2 call for a backward (corrector) step. Every six normal 

steps, the effects of solar radiation and evaporation are computed by a call 

on COMP3 and COMPh. The value of the variable M determines which form of 

the difference algorithm will be used in the COMP1-COMP2 routines. The



following section discusses the need for the spatial difference variations.



2.1.3 	 Horizontal Resolution and Various Dlifferencng Schemes



Both UCLA models and the most frequently used version of the GISS



model have 72 points around circles of latitude, and 46 circles of latitude





10



from pole to pole (including the poles). For the next decade GISS is inter­


ested in models of two different sizes for the proposed computer (Halem, 1974).



Both models will have 15 vertical levels (i.e., 15 spherical shells) and



differ only in the number of points around the equator of the model. The



two sizes of interest are:



1. 	 A model with 128 points around the equator and with 96,



circles of latitude. We will call this the 96 x 128 grid.



2. 	 A model with 256 points around the equator and with 192



circles of latitude. We will call this 192 x 256 grid.



All of the models use a stagered grid system, which stores the



values of the primary meteorological variables at different points in space.



Figure 2.1.3-1, which is taken from (Mintz, 1974), shows five grid schemes



which have been considered. The first UCLA model and the current GISS model



use scheme B. Arakawa has decided to use scheme C in the new UCLA model.



The basis for this decision, which follows in the next paragraph, illustrates



the intricacy of the model.



Convection of moisture from the earth's surface to high altitudes,



called cumulus convection, is an important atmospheric phenomenon,



especially in the tropics. The scale of this motion is tens of kilometers;



the distance between grid points at the equator is 156 kilometers even for



the 256 point model. Arakawa found a means to parameterize cumulus cloud



convection so that its effects could be felt by the model in spite of the



fact that direct simulation - as the model does for winds, temperature and



specific humidity - is not possible. The parameterized cumulus convection



produces rising and subsiding air motion which frequently occurs in a





u,v,h 
(A) 

u,v,h uv,h 

11


h 
 
(B) 

h h 

u,v,h J u,v,h
 u,vh 
 J h
 

U,V 
o 

h 

UV 

e 

U,v
* 

Uv 
0 

Ju,v,h 
t-1-d-­

u,v,h 
 
i 

----

uv,h 
 
L+l 

j-1 h 
 
t-1 

jh 
Id---­

h 

L+1 

-h -
(C) 

-h -u -h 
 j-h 
 -v 
(D) 

h -v h 

V V V U U U 

j h _u h _u h 
 j h v h v h 

V V VU U U 

-1 h 
L-1 
--­

u 

d--­

h 
i 

u 
L+1 

J­ h 
L-1 

-

v 

d -­
h 

L 
v h 

i+1 

+ aV 

(E) 
h uIv 

h 
 

d 
U,V 

•d 

U,V 

h 
* 

h


U,v 

u: 
v: 
h: 

the west to east component of the horizontal flow 
the south to north component of the horizontal flow 
the distance from the surface to the top of the atmosphere 
in the model 

Figure 2.1.3-1 Staggered Grid Schemes 



12



checkerboard pattern. To use scheme B for the grid layout, one must average
 


the values of pressure at the corners of each grid square to compute the 

effect of pressure on the flow fields. Rising motion at one corner is 

cancelled by subsidence at another, and the net effect is that the cumulus 

convection goes unnoticed by the model. Arakawa devised the intricate time 

and space difference scheme shown in Figure 2.1.2-1 (taken from Tsang, 1973) 

to counteract this insensitivity. The differencing scheme uses a cycle of 

space centered and uncentered differences to permit the checkerboard pattern
 


produced by cumulus convection to influence the model. When grid scheme C



is used, these elaborate gyrations are unnecessary. Primarily for this



reason, Arakawa has decided that scheme C will be used in the next UCLA



model. The current model, which is the basis for the GISS work, uses



scheme B.



2.2 GISS Modifications to the Model



Several modifications of the UCLA model were made by GISS. Only



one of these has a major impact on this research. This is the distinctly



different approach to the treatment of high latitude regions which GISS has



adopted, and which they call the split grid model.



The meridian lines on a sphere get progressively closer as they 

approach the poles. The Courant stability criterion (Fox, 1961), c At < Ax, 

where c is the highest velocity in the model, requires that a very small 

time step be used to avoid numerical instability in these regions. The UCLA



approach to this problem is to smooth across progressivbly wider bands of



meridional lines as the meridians get closer together. The GIS approach is



to progressively reduce the number of meridians by a factor of two as one



moves from the equator to the poles. This divides the sphere into several





13



regions as illustrated in Figure 2.2-1. Within each region, the number of



meridians is constant. The region boundaries are chosen to keep the inter­


meridian distance roughly constant for all regions. In the split grid



model, the need for zonal smoothing is much reduced but not completely 


eliminated. Table 2.2-1 shows the number of split grid regions for grids 

with different numbers of points on the equator. 

Meridians at Number of split 

the equator gnid regions 

72 5 
128 	 7


256 	 11 
512 	 15



Table 2.2-1. 	 The Number of Split Grid
 


Regions for Various Model Sizes



The split grid model offers two advantages over the UCLA smoothing



approach. The first is that a larger time step can be used throughout the 

model, since the smallest increment in the "x" direction is larger in a split 

grid model. Also, there is a potential storage saving for the split grid 

model. The split grid scheme does have the liability that it is more 

difficult to program. 

Whether a rectangular UCLA-style model or a GISS split grid model 

is used, some averaging of polar values must be done. Thus, there is a



clear inherent parallelism in the processing which strongly suggests parallel



computation on circles of constant latitude.



2.3 The Effects of the Oceans on the Atmosphere



Until recently, meteorologists have assumed that the effects of the



oceans on heat transfer from the equator to the high latitude regions was



negligible. Lately, however, this view has changed, as evidenced by the





Figure 2.2-1 The GISS Split Grid Model 



15



relatively large emphasis on ocean modelling at the UCLA workshop (Mantz, 

1974), and by the decision of the UCLA group to couple an ocean model and 

an atmospheric model in a future model. Whereas the atmospheric equations 

are integrated in time by explicit numerical methods, Semptner of the UCLA 

staff indicated that all known ocean models advance time by successive 

over-relaxation - an implicit method (Semptner, 1974). He also feels 

that IBM 360 single precision arithmetic is sufficient for solving the 

system of equations for a 46 x 72 grid. 

Semptner also cited work at GFDL (Manabe, 19691) which indicates 

that integration of the atmospheric equations consumes 40 times the amount 

of computer time as does integration of the ocean equations for the same 

simulated time. This dramatic difference results from the differences in



the two fluids, and the fact that the implicit solution scheme permits



the use of significantly larger time step than an explicit scheme would. 

While it is clear that an ocean model will be required to improve 

current results, it is not clear what the details of the ocean model must 

be. Recent observations and numerical work (Mintz, 1974) have shown the 

existence of small scale (40-50 kilometer) ocean phenomena. Whether these



are important, and if so, whether their effects can be parameterized (as 

was cumulus convection in the atmospheric model) is yet to be shown. The 

potential need for an ocean model coupled to the atmospheric model will be



most explicitly reflected in the size of memory that we recommend.



2.4 Input and Output Requirement of the Model



The proposed mode of operation for the new machine is that it 

receive its program and initial data from the GISS IBM 360/95 by using an 

IBM channel with a data handling capacity of 6(10)6 bits per second. 



16



A problem thus received would be run in stand-alone fashion by the 

machine with periodic dumps of model status. The current GISS model writes 

an output record every two hours of simulated model time for a 46 x 72 x 9 

grid. Table 2.4-1 shows the variables which constitute these records, the 

sizes of the records for a 46 x 72 x 9, 96 x 128 x 15, and a 192 x 25 x 15 

grid, the lower bound on the elapsed time to write the record using the 

channel at its maximum rate, and an estimate of the computing time required 

for the new machine to compute two hours of model simulation. 

BYTES 

DATA 46 x 72 x 9 96 x 128 x 15 192 x 256 x 15 

TAU 4 4 4



C(300) 1,200 1,200 1,200



Q(NS,EW,V,4) 476,928 2,949,120 11,796,480



p (ws, w) 

TS (NS,EW) 

SHS(NS,EW) 13,248 49,152 196,608 each



GT (NS,EW)



CW (NS,EW) 

Total 	 544,372 3,196,084 12,780,724



Transmission


Time 0.726 4.26 17.04 Seconds



Estimated


Computation


Time 0.031 0.39 3.15 Seconds



Table 2.4-1 	 Record Sizes and Transmission


times for Various Grid Sizes





17



As Table 2.4-1 makes clear, data output from the model will have 

to come at less than two hour simulated time intervals if the machine is not 

to become heavily output bound. It is doubtful that channel transmission 

capacity can be increased nearly enough to reduce to output time signifi­


cantly with respect to the computation time.





3. The Array Computer



A computing capability improvement by a factor of 100 over the



capability of the 360/95 is a big order. In the time span specified for the



development of this design, there is no hope of achieving this improvement



purely by increased raw hardware speed. Indeed, physical realities such as



the bound imposed by the speed of propagation of electromagnetic waves



may make this path forever impossible. Clearly, if the capability increase



can be achieved, it must be achieved by using a machine organization



different from that of the 360/95.



The approach we shall take is to organize the machine as an array



processor. Applications research (Carroll, 1967) for an early array



processor, the SOLOMON (Slotnick, 1962), has shown that the array processor



organization is ideally suited to the class of problems that the general



circulation model typifies: solution of partial differential equations on 

a large grid. Indeed, the GISS general circulation model has been success­

fully converted for execution on the ILLIAC IV (Slotnick, 1968), the only 

operational large scale array processor. 

Figure 3-1 contrasts the organization of an array processor with 

that of a conventional computer. In a conventional machine, control hard­

ware (shown in the figure collected into one functional block and labelled 

the Control Unit) interprets the instruction stream and provides signals 

which control the operation of the rest of the hardware, collected into



the block called the Arithmetic Unit. In most conventional machines, both 

the instructions and the data are stored in one memory. In most conventional 

computers, as suggested above, the control and arithmetic - or execution ­




19



ARITHMETICCONTROL CONTROL 
UNITS UNIT 

I DATA
INSTRUCTIONS f 

MEMORY 

CONTROLINSTRUCTIONS -HUNITI


CONTROL



ARITHMETIC ARITHMETIC DATA ARITHMETIC 

IT___ UNIT IT____



LIne
_ _$DATA 

MEMORY J MEMORY * * * MEMORY 

of a Classical
3-1 The Basic StructuresFigure 
Computer and an Array Computer



REPRoDUcBILITY OP TU 
OiiIGUOL PAGE IS PO06t 



20



functions are seldom as clearly separated as the figure suggests. In the 

array computer, however, the control and execution functions are clearly



separated. The arithmetic unit is replicated many times (1024 in the



SOLOMON (Slotnick, 1962) and 64 in the ILLIAC IV (Slotnick, 1968)), and



the data memory is divided so that each of the arithmetic units operates 

on its own data stream under the control of one common program. In,a con­

ventional computer, conditional tests on data values in the single data 

stream alter the flow of the single instruction stream. In the array pro­


cessor, residual local control in the processors of the array permits



conditional tests on data to allow individual processors to skip executing



instructions. In a standard technique for controlling iterations, the



control unit samples the activity status of the processors in the array, and 

stops the iteration when all of them become inactive.



Application studies reported by Kuck (Kuck, 1968) have shown that



another local control feature is a vital element in an array processor. The 

ability of each processor to index a control unit supplied data address
 


permits much more flexible use of the processors in the array. In the



general circulation model, processor level indexing is necessary to support



the table look up process used in the radiation calculation phase of the



model.



Virtually all problems for which array processors are suited re­

quire that the processors in the array exchange data values. In the 

SOLOMON computer, the 1024 processors were arranged in a square thirty-two



processors on a side, and each processor could access the memories of its



four nearest neighbors in addition to its own. The sixty-four processors





21



of the ILLIAC IV are also arranged in a square, and each processor can re­


ceive values from its nearest four neighbor processors. In the design



described in this paper, we use a separate routing network model after the



suggestions of Lawrie (Lawrie, 1973) which permits much more flexible inter­


processor communication. Figure 3-2 shows the design described in the re­


mainder of this paper in block form. The machine includes a control unit,



256 array processors and their memories, and a sixteen unit three stage
 


routing network.





22



CONTROL 
UNIT 

PROCESSORS ROUTING UNITS 

MEMORIESDA: 

CONTROL.-------

Figure 3-2 Block Diagram of'the System 



23



4. The System Design



The following sections will describe the system design. The initial



sections will establish the important parameters of the design. Subsequent



sections will discuss the arithmetic processor, routing network, and control



unit of the system.



4.1 System Parameters



In this group of sections, the basis for the word length, memory



size, and other basic system parameters choices are given.



4.1.1 	 Word Size



The UCLA and GISS models run in single precision of the IBM System/



360 (Arakawa, 1972; Tsang, 1973). Williamson and Washington of the National



Center for Atmospheric Research (NCAR) performed precision experiments with



the NCAR model (Williamson, 1973). Normally, the CDC machines on which that



model runs operate on a forty-eight bit fraction. Through software means,



they ran 	 twenty-four and twenty-one bit test cases, and compared the result



with a forty-eight bit control runs. They concluded that "the lower-precision



arithmetic planned for the next generation of computers [that is, twenty-four



bit fractions] does not seriously affect the results from the current NCAR



[five degree, six layer] global circulation model." Dr. Larry Gates of the



Rand Corporation has recently rescinded his decision to run the Rand modifica­


tion of the UCLA model in double precision (Gates, 1975). He said that



difference between single and double precision test runs are well within the



so-called 	 "predictability error" for hydrodynamics calculations discussed by 

Lorentz (Lorentz, 1963).



On the basis of the above information, we have decided that single



precision arithmetic is sufficient for the execution of the model.



gBPIODUCIBILITY OF THE 

OWKINAL PAGE IS POOR 



241



4.1.2 Word Format



The system was designed to operate in conjunction with IBM series 

360 computers at GISS. Data preprocessing steps to prepare input for the 

system and data post processing steps to analyze the results of experiments 

will be done on the IBM equipment. Programming for the system is to be in 

a FORTRAN-like higher level language, so that floating point operation is 

required. Because of the cooperation required between the system and the 

360, it was decided to make the floating point format of the mcahine the same 

as that of the 360 (IBM, 1970). The floating point format for the design is 

shown in Figure 4.1.2-1. A floating point word is represented in sign magni­

tude form by a one bit sign, a seven bit exponent, and a twenty-four bit 

fraction. A zero sign bit is used for non-negative numbers. The seven bit



exponent field contains a biased representation for exponent vlaues between
 


minus sixty-four and plus sixty-three inclusive. The proper representation 

for an exponent value is found by adding the value to the bias, sixty-four. 

Thus, for example, an exponent field value of 41 base sixteen represents an 

exponent value of plus one. The magnitude part ot the number is a proper 

fraction; that is, the exponent is an implicit binary point at the left 

of the most significant fraction bit. The exponent fieldrepresents the power of 

sixteen which must multiply the fraction to correctly express the value of 

the floating point number as a whole. Because the exponent radix is sixteen, 

a change of one in the exponent value requires a shift of four bit positions 

in the fraction to represent the same numerical value. Thus, the twenty-four 

bit fraction can be regarded as a six hexidecnmal digit fraction; each



hexidecimal digit is represented by four continguous bits of the fraction,
 


and shifts of the fraction are made in multiples of four bit positions. 



25



S 
II EXPONENT FRACTIONG 

N 

1 2 89 32 

Figure 4.1.2-i The Floating Point Word Format





26



4.1.3 Memory Requirements



Based on experience with the cost of development of special high



data rate disk systems which we obtained with ILLIAC IV, we decided that



the memory of the machine should be large enough to contain all of the



data. The memory requirement was estimated by running the COMON for the 

360/95 model through the IBM FORTRAN/H compiler. Space for four three



dimensional variables (two velocity components, salinity and temperature) 

and one two dimensional variable (the vertically averaged stream function) 

of an eventual ocean model was added for the 96 x 128 and 192 x 256 models.
 


Because that machine would have a program memory separate from its 

data memory for the processor array, space for the program is not included 

in the following estimates. Table 4.1.3-1 displays the amount of memory 

required for several sizes of the model, including the 96 x 128 and 192 x 

256 models with oceans. 

words of memory



NS x EW x Z no ocean 7 level ocean 

82 x 128 x 15 1,378,411 -­

96 x 128 x 15 1,613,289 1,969,641 

128 x 200 x 15 3,358,6o -­

256 x 401 x 15 13,457,305 -­

164 x 256 x 15 5,506,125 -­

192 x 256 x 15 6,445,385 7,870,793 

Table 4.i.3-1 

The machine should be built with 223 words of memory to accommodate 

the 192 x 256 grid. Each of the 256 processor memories would have 215 (or 

32768) words. Each of these words will contain thirty-two information bits 



27



and six Hamming code bits (Hamming, 1950) for detection and correction of



single bit errors. The decision to include error detection and correction



hardware was taken on the advice of the staff of the University of Illinois



Physics department. They have constructed semi-conductor memory for their 

computer, and found that the error detection and correction bits which they 

included were well worth while, both in terms of improved system operation



and increased maintainability (Downing, 1974). 

4.1.4 Measurements of the GISS Model



To discover the relative importance of multiplication and the 

frequency of double precision operations in the execution of the model, the 

GISS model was run for one time step on the University of Illinois' 370/158 

under the control and observation of a program which computes the frequencies 

of all instructions executed by the program it observes. A series of runs 

was made to permit instruction counts for the important parts of the model 

to be determined. Execution times for these parts of the model were deter­

mined by the GISS staff (Karn, 1974) during a one man year effort which 

produced an ILLIAC IV version of the GISS model. Table 4.1.4-1 shows the 

number of instructions executed in each of three parts of the model, the 

360/95 time for execution of those parts, and the instruction processing 

rate of the 360/95. Table 4.1.4-2 gives the frequencies for single and 

double precision floating point multiplications and divisions in the parts



of the model.



Approximately half of the instructions executed were floating



point instructions. These were nearly equally divided between addition and



subtraction on one hand and multiplication and division on the other. The





28



Part of the Model Instructions 360/95 Time 360/95 Rate 

Initialization 11,891,631



COMP1-COMP2 69,480,878 10.3 sec. 6.75 MIPS



6.54 sec. 6.65 MIPS
COMP3 43,505,137 


Table 4.1.4-1 Measurement Values



COMP3
360 Instruction Initialization COMP1-COMP2 
 

1 423,936 132,480
MDR 
 

MD 330 16 103,765



756 
 2,221,358 823,153
MER 


ME 2,134 4,022,947 2,056,291



DDR 3 105,984 33,120



DD 1 
 0 


77 359,584 615,025
DEER 
 

DE 1,773 44o,950 929,372



Table 4.1.4-2 Instruction Counts 

RIPRODUOWILTY OF THE



MXGINAL PAGE IS POORh



0
 



29



ratio of multiplications to divisions (weighting COMPl-COMP2 by six to



account for the more frequent use of these routines in normal model execution)



is 6.15 multiplications to one division. The vast majority of the double



precision floating point operation are performed by one assembly language 

subroutine which raises a number to a constant power. This routine uses 

double precision because the speed of single and double precision operations 

on the IBM 360/95 is the same. An approximation formula with a few more 

terms can be used without requiring any double precision. 

On the basis of the above information, we decided to design a



single precision processor whose floating point addition and multiplication 

times are comparable. Double precision operations will be performed on the 

single precision hardware of the design relatively slowly since they occur 

with such low frequency.



4.1.5 Processor Speed Requirements



The system is to have roughly one-hundred times the processing 

capability of the IBM 360/95 for the weather model. As we saw in section 

4.1.4, the 360/95 executes approximately 6.7 (10)6 operations per second 

on the GISS general circulation model. We have already decided that the 

machine we design will be an array processor with an architecture similar 

to that of ILLIAC IV. How many processors should the machine have? To 

achieve 6.7(10)8 operations per second, a 256 processor machine must 

perform one operation in 382 nano-seconds, a 512 processor machine need 

only perform one operation in 764 nano-seconds. On the other hand, as 

we will see in section 4.3 - which discusses the routing network - it is



importaut to have the number of processors be a perfect square: 256 is the





30



square of sixteen, but 512 is not a perfect square. Moreover, a 256 pro­


cessor machine will be more reliable and have a higher availability than a



similar 512 processor machine. Therefore, we will design a machine with



256 processors. We would, therefore, like the operation time for a processor



to be on the order of 400 nano-seconds.



4.1.6 The Choice of TTL Technology for the Processor



It was clear from the outset that the time and budget constraints



on the design necessitated using an existing integrated circuit technology,



and in fact a family which is currently commercially available "off the



shelf". The choice must be either TTL, MOS, or ECL (Hnatek, 1973). A



higher level of integration (that is, more powerful individual packages is



avalable in the TTL family than is available in the ECL family. Moreover, 

the new Schottky variant of TTL logic is nearly as fast as ECL. The speed 

of MOS logic is far slower than that of even standard TTL. A floating 

point processor with a fast multiplier will surely require using several 

hundred integrated circuits in its design. Fewer high level packages are 

required than low level packages to achieve the same functions, and package



savings pay off in both board and interconnection savings. Therefore, we 

chose to design the processor in terms of TTL integrated circuits.



Package savings in the processor design result from the use of



two different package interconnection properties of two different special



forms of TTL logic. These are discussed in the following two sections.



4.1.6.1 Open Collector Logic and the Wire AND



A standard TTL output stage is shown in Figure 4.1.6.1-1. The 

active pull-up provided by transistor Ql is that it permits faster operation 



-- 

31



+5 VOLTS 

01 

o OUTPUT



Figure 4.1.6.1-1 The Standard TTL Totem Pole Active Pull-up Output Stage 



32



than that of the resistor-transistor (RTL) or diode-transistor (DTL) 

families from which the TTL family evolved. The passive output stage of 

Figure 4.1.6.1-2 of the DTL family is used in some of the slower of the 

TTL integrated circuits. Deletion of the pull-up resistor of the passive 

output stage results in the so-called output collector output. Open collector



outputs of several packages can be wired together through a common external



pull-up resistor. If all of the output signals so wired together are logic



ones, each circuit will source less than one milliamp so the resulting current
 


flow for the entire collection of wire ANDed circuits results in a logic



one. However, if one or more of the wire ANDed output signals is a logic



zero, the corresponding circuits will sink on the order of forty mnlliamps,



so that the resulting voltage level of the ensemble falls to that of a logic



zero.



Within the processor, the open collector outputs of the Signetics



8243 eight position scalers used in the right operand alignment shift logic



and the normalization left shift logic are wire ANDed together. An enable



signal for the device permits forcing all eight output signals to logic
 


ones regardless of the state of the eight input signals. One of the two



shift networks is enabled at a time, so that its output bits, ANDed with ones



of the disabled device, determine the net output of the ensemble.



4.1.6.2 Tri-state Logic and the Wire OR



The National Semiconductor Corporation holds the patents for



another output control technique which they refer to by the registered



trademark "tri-state" logic. Standard TTL circuits augmented by the



National technique have an enabling input which can be used to force the





33



- OUTPUT 0 OUTPUT 

PASSIVE OPEN 
PULL-UP COLLECTOR



Figure 1..6.1-2 TTL Passive Pull-up and Open Collector Output Stage





34



outputs of the device to a high impedance state (Hnatek, 1973). The output 

impedance of a standard TTL output is nominally fifty ohms. The output 

impedance of a disabled tr-state output is nominally 50,000 ohms. Thus, 

if several tri-state outputs are wired together and all but one of them are 

disabled, the current into or out of the disabled outputs is negligible com­

pared to that for the one enabled output. Up to one hundred or more tri­

state outputs can be wired together on a single bus. The resulting wired 

connection is usually referred to as a wired OR, and its logic state is 

determined by the logic state cC the enabled output. 

The processor design makes extensive use of tri-state devices 

to reduce the need for selectors between otherwise competing signals. 

4.2 	 The Processor Design



A simplified block diagram of the processor is shown in Figure 4.2-1.



The names in the blocks of this figure (with the exception of the 2/1



Selector blocks) are the names of the Figure or Figures which present the



logic of 	 that block in more detail. Each of these blocks is described in 

detail in 	 the following sections.



Multiplication is performed by logic external to that shown in 

Figure 4.2-1. The two twenty-four bit operands to be multiplied are sent to 

the multiplier as shown, and both the most and least significant halves of 

the product are returned. See section 4.2.5.2.4 and (Stenzel, 1975) for a 

detailed description of the multiplier. 

The processor as a whole is a large combinatorial circuit which is



conditioned by control signals from the control unit. It operates in steps
 


governed by one clock pulse. A typical cycle begins with operand selection.





ILEFT EXPONENT
SELECTOR 2/SET1 

MULTIPLIER ZERO DETECT ADDER ZERO DETECT LEADINMULTIPLIER 

LNENTERO 
SHIFT 

PRE-ALIGN 
CONTROL j 

BZER___OALGNEN 
SHIFT 

NORMLIZ 
SHIFT 

FROM 
MULTIPLIER 

LEFT 

EXPONENT 

LEFT OPERANDSELECTORS I EXPONENTSELECO 

RIGHT 
EXPONENT 

r 1 
WIRE AND 

2/1 SELECT 

FROM 

MULTIPLIER 

'J 

CU ADDRESS 

ADDRESS TO TO MEMORY 

MEMORY 

Figure 4.2-1 Block Diagram of the Processor 



36



Two operands, one of which may come from memory, flow through the paths in the



logic selected by the set of control signals. At the completion of a cycle,



result values are clocked into the registers specified by the set of control



signals.



In any logic design, options are available at many stages. The



rules governing the choice among options in this design can be qualitively
 


stated as 	 follows: minimize cost and package count, but not at the expense 

of time in the critical path. Cost is reflected not only in the direct cost



of the packages, but also by the amount of board area (and hence the number 

of boards) which the packages occupy. Minimizing the number of boards can



lower overall cost by reducing the need for backplane wiring or mother boards



and eliminate the need for inter-board connections. The board area for a 

package was assumed to be proportional to the number of pins which the package 

has. Although this assumption is not strictly true, it serves well as an 

operation rule of thumb when making design choices. 

4.2.1 	 Conventions Used in the Figures Which Describe Logic



Designing computer hardware in terms of existing integrated circuit



packages differs from computer design in terms of discrete components. In



many cases, the designer working with integrated circuits finds that no



existing package exactly suits the need of the moment. What he must then do is



make the best compromise he can with the packages which are available, accord­


ing to the 	 general guidelines which he has adopted.



The simplest example of the above general comment is that it often



happens that an N-input gate of some type is needed. A concrete example in



this design is that a four input OR gate is needed by the logical demands of



the function to be implemented. What are available are two input OR gates





37



and two, four, and five input NOR gates. Among these gates, only - the fLive 

input NOR gate - is available in Schottky form. When the desired logic 

function is in a tame-critical path, the highest speed element should be used. 

Hence, one finds himself using a five input gate for a four input function. 

Many instances of such use occur in this design. When they occur in the 

figures, only the number of iaputs which are required for the logic unction 

being implemented are shown. The extra leads which may exist are assumed to 

be connected to sources of logic ones or zeros as necessary. For example, 

the extra input of the above five input NOR gate would have to be connected 

to a constant logic zero source to guarantee the correct operation of the 

logic in which it is 	 used.



Detailed documentation for the integrated circuits used in this 

design can be found in four industry data books. In the description which 

follows, the following notation given in Table 4.2.1-1 was used for naming 

components.



Form of the Name Source for Detailed Information



SN74xxxx The TTL Data Book for Design Engineers, First Edition,


Document Number CC-411, Texas Instruments Incorporated,


1973.



Supplement to the TTL Data Book for Design Engineers,


First Edition, Document Number CC-416. Texas Instru­
ments Incorporated, 1974. 

SIGxxxx 	 Signetics Digital, Linear, MOS Data Book, Signetics 
Corporation, 1974.



AMxxxx 	 Advanced Micro Devices Data Book, Advanced Micro


Devices Incorporated, 1974.



NATxxxx 	 Digtal Integrated Circuits, National Semiconductor
 

Corporation, 1974.



Table 4.2.1-1 	 The Notation for Package Names


in the Logic Design Figures
 


REPRODUCBILITY OF THE 

ORIGINAL PAGE IS POOR 



38



4.2.2 Signal Name Notation Used in the Design Description



In the description of the design in the folloing sections, signals 

will be named by an identifier of eight or less capital letters and digits. 

The first character of a signal name will be a letter. Multi-bit signals are 

named by a single identifier to which bit specifications are appended. A 

bit specification is a list of up to three integers separated by commas and 

enclosed in parentheses. The bits of multi-bit signals are numbered from one 

for the most significant to N for the least significant bit of an N bit 

signal. A bit specification which consists of a single integer specifies the 

single bit of the multi-bit signal with that integer as its bit number. In a 

bit specification with two integers, the first specifies the bit number of 

the most significant bit of the signal and the second specifies the number of



contiguous bits in the signal. The third integer of a three integer bit 

specification is the difference between successive bit numbers in the speci­

fied signal. Table 4.2.2-1 gives several examples of signal names. 

Signal Name Meaning 

A the one bit signal A



B(3) bit three 6f the multi-bit signal B 

B(1,32) bits one through thirty-two of the multi-bit signal B 

B(5,4) bits five through eight of the multi-bit signal B 

C(1,2,4) bits one and five of the multi-bit signal C 

Table 4.2.2-1 Several Examples of Signal Names 



39



This notation for signal names is used consistantly throughout the text and



figures which describe the design. It is also used for signal names in the



input language for the logic simulation package described in section 5.1. In 

the truth tables which follow, a lower case "x" signifies that the package 

described by the truth table operate correctly for any value of the signal 

represented by the "x". 

4.2.3 Inversion in the Logic Figures 

When the function of an integrated circuit includes the logical



complement of the inputs, this is shown by a small circle external to the



rectangle which represents the integrated circuit. The alignment shift blocks 

of Figure 4.2-1 are an example of an inverting block. 

4.2.4 	 Detailed Description of Two Packages



Two packages, the Texas Instruments SN74S157 and the Signetics 8263,



are described in detail in this section. Two reasons motivate these detailed 

descriptions. First, these packages are typical of most of the integrated 

circuits which are used in this design. Second, and perhaps more important, 

these particular packages perform critical functions in the design. All of



their features are exercised, so that a full understanding of the design is 

impossible 	 without a full understanding of these two packages.



4.2.4.1 	 The Texas Instruments SN74S157 

The Texas Instruments SN74S157 is a quadruple two-to-one selector.



It accepts two four bit input operands and a one bit selection signal and



produces a four bit output. The output is the four bit input designated by



the selection signal. There is one more input, however. A one bit strobe



signal can be used to force the outputs to zeros without regard to the input





4o



signals. There are several occasions in the design where the strobe signal is



used to good advantage. The truth table for the SN74S157 is given in



Table 4.2.4.l-1.



Inputs


Output



Data Selection Strobe



x x x 1 	 0 

A(1,4) 0 0 A(1,4)



x BUM 1 0 1(1,4)



Table 4.2.4.1-l 	 The Truth Table for the


Texas Instruments SN74SI57



4.2.4.2. The Signetics 8263



The Signetics 8263 is a quadruple three-to-one selector. It accepts 

three four bit input operands, a two bit selection signal, and a one bit com­

plement signal, and produces a four bit output. The output is the four bit 

input designated by the selection signal. The two bit selection signal can 

specify one of four input signals, the fourth state is used to set the output 

to zero without regard to any of the input signals. The complement signal. 

can be used to specify that the output is to be the logical complement of the 

selected input. The truth table for the Signetics 8263 is given in 

Table 4.2.4.2-1. 



Inputs



Output
Complement
Selection
Data 
 

X X X 00 0 0000



A(1,4) X X 01 0 A(1,4)



x B( ,) x 10 )



x x CUMh 11 0 CUM,4



x x x 00 1 1111



A(1,4) X X 01 1 A(l),)



x B(1,4) x 10 1(,4)



x x c(1,4) 11 1 c(1,4)



Table 4.2.4.2-1 The Truth Table for the Signetics 8263





42



4.2.5 The Processor Design



In the two sections which follow, the design of the processor is



completely described. The first of these sections describes functional logic



blocks in their own right without regard to the contributions which those



blocks make in the operation of the processor. The second section describes



how the processor performs normalization, rounding, floating point addition/
 


subtraction, floating point double precision addition/subtraction, floating



point multiplication, and finally floating point division. This section



relies on an understandingof the former sections describing the various logic



blocks. It describes the control logic which is necessary to integrate the



operation of those logic blocks to perform the desired operations.
 


4.2.5.1 Logic Blocks



The following sections describe several logic elements which per­


form definite functions in support of larger operations in the processor.



4.2.5.1.1 The Zero Detect Logic
 


A zero detect logic block produces the logical OR of thirty-two bits.



Three instances of the zero detect block occur. In all three cases, the



thirty-two input bits constitute a thirty-two bit operand fraction. Figure



4.2.5.1.1-1 depicts the zero detect logic. The packages used are four SN74S260



dual five-input positive NOR gates and one SN7hSI3S thirteen-input positive



NAND gate. Each of the NOR gates is used to produce the NOR of four input



fraction bits. The eight results are combined by the NAND gate to yield the



desired OR of the thirty-two input bits.



In Figure 4.2.5.1.1-1, the four bit groups shown as inputs to the



NOR gates represent four bit digits of a fraction. In only one of the three





43



X(29,4)DO 

X(25,4) D 

SN74S260



X(21,4) 

X(17,4) 

SN74S260



X(13,4) -­

~SN74S133 

X(9,4) 

X(5,4) 

X(1,4) 

SN74S260 

The Zero Detect LogicFigure 4.2.5.1.1-1 

R1 PRODUCIILITY OF THE 
ORIIGINAL PAGE IS POOP 



44



instances of the zero detect logic is this rigid connection scheme necessary.



(See section 4.2.5.2.1 Normalization,) In the other two cases, the total of



forty NOR gate inputs can be connected in whatever manner is convenient for



circuit board routing purposes.



4.2.5.1.2 The Fraction Comparator 

This logic block is built entirely with the SN74S85 four bit 

comparator. This integrated circuit accepts a paLr of four bit operands and 

three signals which permit fabrication of multi-bit comparators and produces 

three one bit output signals. Figure 4.2.5.1.2-1 shows one SN74S85, and 

illustrates how it is used in this design. Table 4.2.5.1.2-1 is the truth 

table for the SN74S85. Figure 4.2.5.1.2-2 shows how eight SN74S85's are 


used to compare two thirty-two bit fraction values. The output signal AGTR is 


a logic one if and only if the A(1,32) input signal exceeds the B(1,32) input 


signal, The ABEQ signal is a logic one if and only if the input signal values 

are identically equal. 

4.2.5.1.3 The Exponent Adder
 


The exponent adder, shown in Figure 4.2.5.1.3-1, accepts two eight



bit exponent quantities, AEXP(1,8) and BEXP(1,8), one three bit function



specification, ABFUNC(1,3), and a one bit input carry signal, EXCARRY. The



two eight bit exponent inputs consist of a zero bit as most significant bit,



followed by the seven bits of the biased exponent for the two operands.



The exponent adder produces the eight bit combination of the two



input exponents, EXCI(1,8), as specified by the function, ABFUNC(1,3), the 

absolute value of the difference of the two input exponents, ABS(1,7), and 

two one bit control signals, EXC2 and EXC2BAR. 



45



A<B 

A=B 

A>B 

B4 

A4 A<B 

INPUTS B3 C A=B - OUTPUTS 

A3 ' "I-,, A>B 

B2 Z 

A2 

81 

Al 

MOST LEAST


SIGNIFICANT SIGNIFICANT 

IAl I.A2 I-A3 I A4 I 

Figure 4.2.1a 2-1 The SN7hS85 Four Bit Comparator 



46



Relation of the 
4 bit data inputs 

Cascading Inputs 

A=B A<B A>B A=B 

Outputs 

A<B A>B 

A>B 

A<B 

X 

X 

X 

X 

X 

X 

0 

0 

0 

1 

1 

0 

A=B 1 

0 

0 

0 

0 

X 

0 

0 

1 

1 

X 

0 

1 

0 

1 

0 

0 

0 

0 

0 

1 

1 

0 

1 

0 

0 

1 

1 

0 

0 

Table 4.2.5.1.2-1 The Truth Table of the SN74S85 Four Bit Comparator 



147



0- A<B


1- A=B



0- A>B 
(D A<B


V A
8(29,4) 	 It A=B AA

I,.-
Z A>B 

A(29,4) 

B(28)- A<B 

0 A= 


A(28)-
 A>B 	 U)

CD A<B
cn 
1t A=B
B(24.) 
 
Z A>B 

A24,4) 

4 
A=B



B(25)- 0 - A=BA<8 	 D4_AB>

A(23)- A>B LD 	 A4 A<B


aA<B 	 B5 t" A=B 
U) 	 A 3 r' A> B 

B(1.9, 4 ) rt A =BB 2 o 

Z A>B ------ AZ 

U) 	 Bl 

A(19,4) AA 

BUS8) -A<B 
O0- A=B



A (18) - A>B


CD A<B



T1.
B(14,4) A=B 
z 	 >BA<B 

03 	 A=B 
A>B i 

A(14,4) B4 aDO < 
A4 (n <BBW )- B83 't A=B -ABEQ 

--AA< Z A>B - AGTRBA{1)-- ABB(2)-	 B2 U) 

0RPOUCO-	A=B AM )- A2


A(1I A>B 	 P­­ AAG(I)
 

co A<BA(1 

8(9,4) t A=B ­
t- A>B 

A(9,4) 

8()- A<B 

0()O- A=B 

B

BM8-B7 _ 
 B4UL



CD A<BAM ­ A4 (nBA4,4B(,)B(6)- B 3 t A=B ­
A16)-
 A3 r-" A>B 

B(5) -
 B2 z 


A2 u)A(, 	 AM5)-
A 	 8,4(4)- BI 

A (4)-A 

Figure 4.251.2-2 The Fractlon Compaxator



REPRODUCIBILITY OF THE

-)IIINAL PAGE IS POOR




48 

1 (CARRY) 

BE XP(5,4) -O 

BE X P((1,4 
CDi 

EXCARCZ 
EaCI(5A A(,4) 

In 

0~L0 

EEXCA(I4
I­

EXA',4 

AEXP(1,4)- N 
FEXponent dd 

CO) 
KFABCI4 )EC154 

AEXP(14)-
U) 

ABFUNS(1,3) 

I 

-T 

EXC2BARU 
EX(1,4) 

ABFUNC(1,3 

Figre.2..13-1TheExonet Ade 



49 

The main functional component of the exponent adder is the SN74S381 

arithmetic-logic unit. The functions performed by the SN74S381, together with 

the function codes which specify them, are shown in Table 4.2.5.1.3-1 (Texas 

Instruments Corporation, 1974). The SN74S381 does not produce an output carry 

signal. Instead, it produces the standard pair of carry look ahead singals 

for the two four bit operands. One of these signals indicates whether the 

two input operands will generate a carry; the other signal indicates whether 

an input carry of one will be propagated (Ledley, 1960). The generate and 

propagate signals must be used in conjunction with a carry generator such as 

SN74S182 (Texas Instruments Corporation, 1973).



The exponent adder actually consists of two eight bit adders



working in parallel. The one shown at the top of Figure 4.2.5.1.3-1 always



computes the difference A(1,8) - B(1,8). The lower adder computes the



function specified by the control unit signals ABFUNC(1,3) and EXCARRY. When 

ABFUNC(1,3)=010, and EXCARRY=l, ABS(1,7) is the absolute value of the exponent 

difference and EXC2 and EXC2BAR have the meanings given in Table 4.2.5.1.3-2. 

The absolute value is computed by computing both A(1,8) - B(1,8) and B(1,8) ­

A(1,8), and selecting the positive result with the pair of SN74S157 two-to­

one selectors by using EXC2BAR as the selection signal. 

4.2.5.1.4 Shifting 

Fraction alignment shifting and the normalization shifting are both



accomplished by using the Signetics 8243 eight bit position scaler (Signetics



Corporation, 1974, pp. 3.28 through 3.32). This device has open collector



outputs so that several can be wire ANDed together. The shifted output bits
 


are the logic complements of their corresponding input bits. When disabled,





Inputs



Output



A(1,4) B(I,4) Function Carry



x x 000 X 0000



A(1,4) B(1,4) 001 0 B(1,4) - A(1,4) - 1



A(1,4) B(1,4) 001 1 B(1,4) - A(1,4)



A(1,4) B(1,4) 010 0 A(1,4) - B(1,4) - 1
 


A(1,4) B(1,4) 010 1 A(1,4) - B(1,4)



A(1,4) B(1,4) 01l 0 A(1,4) + B(1,4)



A(1,4) B{1,4) 011 1 A(1,4) + B(1,4) + 1



A(1,4) B(1,4) 100 X A(1,4)® B(1,4)



A(1,4) B(1,4) 101 X A(1,4) OR B(1,4)



A(1,4) B(1,4) 110 X A(1,4) AND B(1,4)



X X ill X 	 lll



Table 4.2.5.1.3-1 	 Functions of the SN74S381 with


Active High Carry and Data





51



Signal Value Meaning



EXC2 0 A(1,8) > B(1,8) 

1 A(1,8) < B(1,8) 

EXC2BAR 0 A(1,8) < B(1,8) 

1 A(1,8) > B(1,8) 

Table 4.2.5.1.3-2 The Meanings of EXC2 and EXC2BAR





52



the device emits logic ones. Output bits which, because of the specified



shift, have no corresponding input bits are also logic ones.



Because the exponent base of the floating point system used in this 

design is sixteen, alignment and normalization shifting always require a shift 

by a multiple of four bit positions. The alignment shift logic, Figure 

4.2.5.1.4-1, and the normalization shift logic, Figure 4.2.5.1.4-2, can there­

fore be implemented by using only four SIG8243's each. Each of the scalers



accepts one bit from the same position within each of the eight digits of the



thirty-two bit fraction to be shifted. The shift amount for each is the



number of digit positions to shift.



Although the SIG8243 has both an enable and an inhibit input to 

control the output state, this design uses only the inhibit signal. When 

the inhibit signal is a logic one, the output bits are all logic ones. Dis­

abled outputs are used to provide zero operands when the shift amount ex­

ceeds seven, and also for several other cases in the design where zero 

operands are needed. The details of alignment shift control are given in 

section 4.2-5.2.3 which discusses floating point addition and subtraction 

Normalization shift control is discussed in section 4.2.5.2.7on double 

precision addition and subtraction. When the inhibit signal is a logic 

zero, shifting of the input bits takes place as specified by the three bit 

shift select signal. 

The device performs shifts in only one direction. Both left and 

right shifts can be implemented by proper use of the scaler as shown in 

Figure 4.2.5.1.4-1 and Figure 4.2.5.1.4-2 by altering the orientation of the 

device with respect to the most significant bit of the input signal. 



53



A(4,8,4) wLEFT(4,8,4) 

A(3,8,4) c LEFT(3,8,4) 

A (2, 8,4) O LEFT(2,8,4) 

II
A(29) 10 00 LEFT (29) 
A(25) 11 01 LEFT(25) 
A(21) 12 02 -LEFT(21) 
A(i7) 13 N 03 LEFT(17) 

A(1,8,4) A(13) 14 o. 04 D LEFT(14) 
A(9) 15 u) 05 0-- LEFT(9) 
A(5) - 16 06 LEFT(5) 
IA() 1 L EFT (1)07 
 

ASHIFT(1,3) 

Figure 142.5.1.4-1 The Algnment Shifter 



54



B(4,8,4) co NORM (4,8,4) 

B(3,8,4) co NORM(3,8,4) 

to 

B(2,8,4) co NORM(2,8,4) 

B(29) -­ 17 07 D--- NORM (29)1 

B(25) - -16 06 D NORM (25) 

B(21) -­ 15 ' 05 D NORM (21) 

(1,8,4) B(7) 4 04 ,-- NORM (17) NORM (1,8,4) 

B(9) 1­2 " 02 -NORM (9) 
B(5) - 11 Olf)-- NORM (5) 
B(1) 1 -. NORM (1) 

NSHIFT(1,3) 

4.2.5.1.4-2 The Normalization ShifterFigure 



55



4.2.5.1.5 The Left Operand Selection Logic



The 	 left operand selector logic block supplies the left operand to



the 	 adder. Two different integrated circuits are used in the left operand 

selector: the SN74S157 quadruple two-to-one data selector and the SN74S153 

dual four-to-one data selector. For clarity of description, the blocks in 

Figure 4.2.5.1.5-1 do not correspond to the above integrated circuit packages, 

but rather to the selection functions they perform. They are labelled S157 

for the two-to-one function, and S153 for the four-to-one function. Whereas 

the SN74S153 operates on pairs of four bits, the S153 at the bottom of the 

figure is shown operating on a single four bit group; the S153 next to the 

bottom operates on ten four bit groups.



The left operand selector supplies six different operands. They are



1. 	 the fraction output of the left alignment shift logic 

2. 	 the twelve high order bits of the first approximation to the 

reciprocal for division. The other twenty bits of the fraction



are forced to one by disabling the left alignment shift logic.



As noted above, the alignment shift logic produces complemented



outputs, so that the adder operates on active low data. Thus,



the ROM which supplies the initial reciprocal approximation
 


must be programmed to supply active low data also.



3. 	 the constant fraction one-half (in active low data form) for



use in the division algorithm. The high order bit, LEFT(l), is



forced to zero by the bottom S153 of Figure 4.2.5.1.5-1, and



the other thirty-one bits are forced to one by a disabled 

alignment shift network. 



56



LEFT(26,81
RIGHT(25) 

LEFT(24) 

04 

LEFT(13,11) 

ALIGNMENT,-

SHIFT 

in 

.fLEFT(21) 

DIVISION 

xo D----'--! LEFT(2,10) 
ROMS :u 

LEFT(1) 
- EOLEAST SIGNIFICANT 
 

24 PRODUCT BIS



Figure 4.2.5.1.5-1 The Left Operand Selecton Logic





57



12 
 4. 	 the constant fraction 2- for use in the division algorithm. 

The bit LEFT(12) is forced to zero by the corresponding S153, 

and the other thirty-one bits are forced to one by a disabled 

alignment shift network. 

5. 	 a value for rounding data values to memory length (twenty-four 

fraction bits). All bits of this constant are ones from a 

disabled alignment shift network, except for LEFT(24), which 

is equal to bit twenty-five of the fraction being rounded. 

6. 	 the twenty-four least significant bits of a product. The 

adder normally operates on active low data, and a logic comple­

ment follows the adder. A product return in active high data 

form. If the least significant part of the product is sought, 

it is complemented by the adder by using the exclusive OR func­

tion 	 with ones forming the disabled right alighnnent shift 

logic.



Since the logic for the left operand selector requires the S153



function on a total of thirteen bits and the S157 function on nineteen bits,



seven SN74S153 and five SN74S157 integrated circuits are required to imple­


ment it. No control local to the processor is necessary for its operation.



4.2.5.1.6 	 The Adder 

The adder, shown in Figure 4.2.5.1.6-1, accepts two thirty-two bit 

fractions, LEFT(1,32) and RIGHT(l,32), a function specification, AFUNC(1,24), 

and an input carry AC. It produces a thirty-two bit output, SUM(1,32), which 

depends on the input operands, the carry, and the function specification. The 

SN74S381 arithmetic-logic unit and the SN74S182 look-ahead carry generator. 

REPRODUCIBILITY OP TH 
ORIGINAL PAGE IS POOR 



58



RIGHT(29,4) 
RIGH(29,) 

LEFT(29,4) 

RIGHT(25,4) 

LEFT(25,4) 

RIGHT (21,4) 

LEFT (21,4) 

RIGHT(17,4) 

LEFT(17,4) 

RIGHT(13,4) 

LEFT (13,4) 

RIGHT (5,4) 

LEFT (9,4) 

P 
t 

AGL(4) 

2 SUM(29,4) 
AC4L 

-

-­

c 

D ' 

enu 

SUM (25,4)o 
AC8L 

_)0)4 

c 

in(.. 

z SUM (21,4) 

AC12LP 

AGI 

AL 
APL() 

2 SUM(17,4) 

eno 

AC16 

-I­

co--1) 

U)APH(4 

2 SUM (13,4) 

AC4H 

G 

AP2 

n 

z 

F,4i 
cen 

14.Te AdeAGH(3) 

ODGH2 

.n ACPH3 

zL 

Fne 

-SUM(9,4) 

....-

C 

ThAde 



59



CUAFUNCt,3) AFUNC (22,3) H 
AFUNCI(1,3)- , 

U-' 

IFUNC(2)AFN1,) 

OFUNC(1,3) 
igure 4.2.5,1,6-2 The Logic 'or the Signal AFDUNO(,24) 



6o 

CUAFUNC(3) 

AFUNC1(3) AFUNC(3) 

DFUNC(3) 

CUAFUNC(2) 

AFUNC1 (2) AFUNC(2) 

DFUNC(2) 

CUAFUNC(1) 

AFUNC(1)-
AFUNC (1) 

DFUNC(1) 

IFUNC(1) 

Figure 4.2.5.1.6-3 The Logic for the Signal AFUNC(1,3)
 




61



Except in the case of the integerize function, which is described 

in section 4.2.5.2.6, each SN74S381 performs the same function, so that 

AFUNC(1,3)=AFUNC(4,3)=. . .=AFUNC(22,3). The functions which can be speci­

fied are 	listed in Table 4.2.5.1.3-1.



The output of the adder is the thirty-two bit result, SUM(1,32), and 

the carry out, ACOUT. The function input to the SN74S381's is the result of a 

wire-OR of four separate tr-state sources. Figures 4.2.5.1.6-2 and 

4.2.5.1.6-3 show successively more detail about these wire-ORed signals. 

Figure 4.2.5.1.6-2 shows eight ware-OR's, each of which produces a three 

bit function specification. Each of these three bit wire-0R's actually con­

sists of three separate wire-OR's like the three showm in Figure 4.2.5.1.6-3. 

The details of the signals AFUNCI(1,3), IFUNC(1,8), and CUAFUNC(1,3) will be 

given in sections 4.2.5.2.1 through 4.2.5.2.6. 

4.2.5.1.7 	Fraction Selection Logic



The adder operates on active low data primarily because the Signetics



8243 eight position scaler, which is used to perform alignment and normaliza­


tion shifting, has complemented outputs. Therefore, besides selecting one of



five possible fraction sources, the fraction selection logic also performs a



logical complement. The logic is shown in Figure 4.2.5.1.7-1, and consists



of Signetics 8263 quadruple three-to-one selectors and Advanced Micro Devices



AM9309 dual four-to-one selectors. The SIG8263's were used where possible to



reduce the package count, and the AM9309's were used because no other four-to­


one selector which provides complemented outputs is available.





62 

FROUTE(25,8) 

SUM(25,8)- FRACT(25,8) 

SUM(21,8) 

FROUTE(17,8) 

SUM(17,8) ­
FRACT(17,8)

SUM(13,8) 

STATUS(I,8) 

F ROUTE(9,4)



SUM(9,4) 0


a ) FRACT(9,8) 

SUM(5,4) 

(11,MODEC,Z,SIGN,O,U) 

FROUTE(5,4) 

SUM(5,4) D FRACT(5,4) 
SUM(1,4)-

FROUTE(1,4) 
SUM(1,4) - 0, 

Na 0 0 FRACT(1,4) 
1110 - 2 

0111. TF i e o g 

Figure 4.2-5-1.7-1 The Fraction Selection Logic





63



The five signals which the fraction selection logic accepts as



input are:



1. 	 the unmodified output of the Adder, (SUM(l,32).



2. 	 The output of the adder shifted right one digit position (four



bit positions) by appropriate selection. The control for de­


ciding between this input and input (1) above depends on



whether fraction overflow occurs during fraction addition. The



details of this control are given in section 4.2.5.2.3. If the
 


shifted input is selected, the high order digit is forced to
 


1110, complemented to 0001.



3. 	 The fraction output from the routing logic reassembly register,



FROUTE(1,32). The routing logic is the subject of section



4.3.



4. 	 The outputs of the mode flip-flop of section 4.2.5.1.9 and



five condition flip-flops (MODE C, Z, SIGN, 0, U) which are



described in section 4.2.5.1.12, and the output of the status



register of the mode logic, STATUS(l,8), which is described in



section 4.2.5.1.9. These thirteen bits are supplemented by



nineteen bits of ones (complemented to zeros) forced from the



SN74S381 arithmetic-logic units (see Table 4.2.5.1.3-1).



5. 	 The special fraction overflow shift of one bit position which



uses the high order digit value of 0111, complemented to 1000.



This case is fully discussed in section 4.2.5.2.5.



As shown in Figure 4.2.5.1.7-2, the fraction selection logic is in



every path which leads to the operand registers. Therefore, one would like it



http:4.2.5.1.12


SUM(1,32) RE-ASSEMB FROM THE 
LOGIC ROUTING UNI 

CONDITION I I ,STATUS(1,8) MODE A(17,8) 
FLIP-FLOPS LOGIC 

OPERAND



REGISTERS 	 DIS-ASSEMBLY 

TO 	 THE ROUTING 
NETWORK 

Figure 4.2.5.1.7-2 The Relationship of the Fraction Selector to the Rest of the Processor





65 


26 nsec FROM 
DATA TO OUTPUT 


SIG8243 

36 nsec FROM 

SLECT TO OUTPUT 

24 nsec FROM 
DATA TO OUTPUT 

AM 9309 
32 nsec FROM 

SELECT TO OUTPUT 


14ne SN74S153RMSN74SI53 

DATA TO OUTPUTL 

20 nsec FROM 
SELECT TO OUTPUT 

SN74S04 

Figure 4.2.5.1.7-3 A Faster Alternative to the Fraction Selection Logic



ORIGINAL PAGE IS eOOt 



66



it to be as fast as possible. Unfortunately, neither the SIG8263 nor the



AM9309 is available in Schottky form. Figure 4.2.5.1.7-3 shows how the
 


thirteen package logic of Figure 4.2.5.1.7-1 could be replaced by twenty-two



packages: sixteen SN74S153 dual non-complementing four-to-one selectors and



six SN74SO4 inverters. The gain in time is twelve nano-seconds per operation



when the timing depends on the data arrival time at the selectors, and sixteen



nano-seconds when the timing depends on the arrival time of the selection



signals.



4.2.5.1.8 Exponent Correction Adder 

The exponent produced by the exponent adder is not correct in all



cases. When fraction overflow occurs, the fraction is shifted right one
 


digit position and the exponent must be increased by one. This case and



several others discussed in section 4.2.5.2.5 are handled by the exponent



correction adder.



The logic for the exponent correction adder is shown in Figure 

4.2.5.1.8-1. It includes two SIG8263 three-to-one selectors which are used 

to select either the exponent of the left operand, AEXP(1,7), the exponent of 

the right operand, BEXP(1,7), or the result exponent from the exponent adder, 

EXl(2,7). Bit EXC(2) is complemented because it is the bias bit in the 

biased exponent. When an exponent sum or difference is computed by the ex­

ponent adder, the bias bit must be complemented in order for the resulting 

exponent value to be correctly represented. (See section 4.2.5.1.12.4 or 

section 4.2.5.1.12.5 for more details.) The logic which produces the selec­

tion signal for this selection is shown in Figure 4.2.5.1.8-2. The SN4S151 

eight-to-one selector is controlled according to the truth table in 



EX1(2)t'SN74304 
(0, ,EX1(3,2) EX1(5,4)



(0,AEXP(1,3)) AEXP(4,4)



(O,BEXP(1,3)) BEXP(4,4)



SIG8263 I SIG826 3 EX TOI(1,2 ) 

0000 0000



CORROVFL SN74S181 CORCARRY 

CORRFUNC(1,4) 
0110EXROUTE(1,3)



100 -- _ ___EXROUTE (4,4) 

SN74S153 SN743153 

4 k -SELECT 

EXP(1,4) EXP(5,4) 

Figure 4.2.5.1.8-1 The Exponent Correction Adder 



68



8 INPUT SIGNALS AZERO 

EXC2BARSN74S151
S 
 

BZERO 

EXP1 

EXP 

S NT7451 

EX3TO1(1) EX3TO1(2) 

Figure 4.2.5.1.8-2 The Control Signal for Input Selection


for the Exponent Correction Adder





69



Table 4.2.5.1.8-2; its inputs are wired to the logic constants indicated by 

Table 4.2.5.1.8-1. EXP1, EXP2, and EX3TOl(l) are control signals from the 

control unit. 

BZERO
AZERO
EXC2BAR OUPTUT 

0 0 0 1



0 0 1 0



0 1 0 1



0 1 1 1



1 0 0 0



1 0 1 0



1 1 0 1



1 1 1 0 


Table 4.2.5.1.8-1 The Low-order Bit of Exponent, 
Selection Control



An EXC2BAR value of one means that the left operand has been shifted, so 

that the correct exponent for a sum or difference is the exponent of the right 

operand. An AZERO value of zero means that the left operand fraction was 

zero, a BZERO value of zero means that the right operand fraction was zero. 

Control signals from the control unit determine the control signal for the 

exponent selection process according to the truth table in Table 4.2.5.1.8-2. 



70



Input Signals Output Selection Signal Exponent


EXSEL EX3TO1(1,2) Selected



x 01 	 exponent


adder


value



1 10 	 left


operand


exponent



0 11 	 right


operand


exponent



Table 4.2.5.1.8-2 Exponent Selection Control



The SN74S181 arithmetic-logic units are used to either add or subtract one



from the selected exponent. The values of CORCARRY and CORRFUNC(1,4)



necessary to accomplish this are given in Table 4.2.5.1.8-3 which is based



on the operating details of the SN74S181 (Texas Instruments Corporation, 1973,



p. 383).



Inputs


SN74S181 Output



CORRFUNC(1,4) CORCARRY



0000 	 0 exponent + 1 

1111 	 1 exponent - 1 

Table 4.2.5.1.8-3 Control of Exponent Correction Add 

The control logic shown in Figure 4.2.5.1.8-3 supplies the CORCARRY and 

COIRFUNC(1,h) signals. The signal from the division control ROM is explained



in section 4.2.5.2.5. The final stage of the exponent correction adder





71



FROM THE DIVISION 
CONTROL ROM



CONTROL -CONTROLCONTROLL 

Y SN74 S51 

CORCARRY


AND ALL 
CORRFUNC



BITS 

Figure 4.2.5.1.8-3 The CORCARRY and CORRFUNC(l,4) Bits for


Exponent Correction Adder Control





72



performs a selection function for the result exponent similar to that per­

formed for the result fraction by the fraction selection logic described in



section 4.2.5.1.7. The selection is performed by four SN74S153 four-to-one



selectors according to the logic shown in Figure 4.2.5.1.8-4 and the truth 

table given in Table 4.2.5.1.8-4. The four final exponent values which can 

be selected are. 

1. 	The constant 4616 , 
 which is the correct biased exponent
 

value for the status register value.



2. 	 The exponent of the value received from the routing unit.



3. 	 The exponent selected by the input selection logic of the



exponent correction adder.



4. 	 The above exponent modified by the SN74S181's of the



exponent correction adder. This last choice is governed



by the OVFLSEL bit whose derivation is explained in detail



in section 4.2.5.2.3.



Inputs Selection Exponent



OVFLSEL Signal Selected
control 1 control 2 control 3 
 

0 1 x x 00 4616 

0 0 0 x 01 routing 

exponent 

1 0 1 1 10 selected 
exponent 

1 0 1 0 11 modified 
exponent



Table 4.2.5.1.8-4 Final Exponent Selection Control Signal





73



CONTROL 3
-
CONTROL 2 
 

SOVFLSEL 

- SN74S51 

CONTROL 1 

EX4TOIL 

Figure 4.2.5.1.8-4 Control Signal Logic for Final Exponent Selection 



74+



4.2.5.1.9 The Mode Logic
 


The mode logic is showm in Figure 4.2.5.1.9-1. It includes the mode



flip-flop register (the SN74S175) and an eight bit status register (the



AM9334). The contents of the mode register provides the most important local



control function in the processor. When the mode bit is zero, modification



of operand register and condition flip-flops (see section 4.2.5.1.12) is not



permitted. The status register can be used to store mode register states.



Its use is illustrated in sections 6.4 and 6.5.



The mode logic permits combining the current mode state with any



one of fifteen bit values local to the processor or with one bit from the
 


control unit MODEIN. The selected bit can be combined with the mode bit 

using any of the sixteen possible Boolean functions of two variables; the



SN74S181 can compute all of these Boolean functions. The resulting bit



value can be stored in the mode flip-flop and/or any one of the eight bit 

positions of the status register. The status bits, STATUS(l,8), the mode



flip-flip state, and the condition flip-flop states can all be saved or re­


stored from a processor register (see section 4.2.5.1.7).



The fifteen possible local operand bits for Boolean combination



with the mode bit include



1. 	 the eight processor status register bits, STATUS(l)



through STATUS(8)



2. 	 the five condition flip-flop contents, C, Z, SIGN, 0, and U,



3. 	 two combinations of conditions flip-flop contents, namely 

a. 	 ZBAR NANA SIGNBAR



B. 	 OBAR NAND UBAR



REPRODUCMIThf oV TRI 
ORIGINAL PAGE IS POOR 

http:4.2.5.1.12


75 

B(17,8) 

CLOCK 299


FUNC299 SN74S299



S SN74SI58 t MODESEL 

CLOCK299



SN74S175 J---CLOCK



AM9334 ADDRM34(1,3) 

SIGN 

C z ou 

T SN'4 SOO 

MODEIN--
I 

I II1
SN74SI50 11 SEL15O(1,4) 

SN74S181 MODEFUNC(1,4) 

IMODEOUT 

MODE 

Figure 4.2.5.1.9-1 The Mode Logic





The bits of parts (2) and (3) above permit testing for any of the six possible 

relations between two numerical values as shown in Table .2.5.1.9-1. 

Relation of Two Values Bit 	 Comments 

Equal Z A result fraction was


zero



Not equal ZBAR 	 A result fraction was


not zero 

Greater than or equal SIGNBAR A result sign was 
positive 

Less than or equal SIGNBAR NAND ZBAR A result was positive 
= SIGN OR Z or zero



Greater than SIGNBAR AND ZBAR 	 Complement of the above


by appropriate SNT7S181


Boolean function selec­

tion 

Less than SIGN 	 A result sign was 
negative 

Table 4.2.5.1.9-1 	 Testing for Any Possible Relation 
Between Arithmetic Values 

The SN7 1 S299 is an eight bit parallel-in parallel-out shift register 

which can operate at rates up to 50 MHz. It can shift left and right and has 

a serial bit output. A subset of its facilities is used. Signal FUNC299 is 

used to select either the parallel load or shift function. It receives 

eight bits from the processor registers for restoration to the AM9334 status 

register. 



77



The mode logic can accomplish its operations is significantly less



time than can the full processor. If it is desired, this fact can be used to 

advantage by permitting the control unit to use several different inter-clock 

pulse intervals for array control. Mode operations, and in particular 

the serial shift of the eight bits from the SN74S299 to the AM9334, are among 

the best candidates for this approach. 

The status bits, STATUS(l, 8), can be saved in a processor register 

with an assigned exponent value of 4616 (a biased exponent of plus six) by 

appropriate use of the fraction selector, section 4.2.5.1.7, and the final 

exponent selection part of the exponent correction adder, section 4.2.5.1.8. 

The fraction selection logic complements its input; there, an inverting two­

to-one selector (the SN74S158) is used to reinvert the data. 

The AM9334 is an eight bit latch which accepts one input bit and a



three bit latch address, ADDI43(1,3). It stores the input bit in the



addressed latch when an input enable signal goes to a logic zero. (See Ad­


vanced Micro Devices Incorporated, 1974, pp. 2-149 through 2-154.)



The SN74S150 is an inverting sixteen-to-one selector, controlled by



SEL150(1,4). It provides one input to an SN74S181 arithmetic-logic unit



which operates in logic mode. The other input to the SN74S181 is the current



Mode value. Any of the sixteen possible Boolean combinations of two variables



can be specified by MODEFUNC(1,4). (See Texas Instruments Incorporated, 1973, 

pp. 382-391,) 

The SN74S175 is a quadruple flip-flop package which has both MODE 

and MODEBAR outputs available. 



78



4.2.5.1.10 The Operand Registers



Although memory values have only thirty-two bits, intermediate
 


results within the processor have forty bits. The extra eight bits extended
 


the fraction to thirty-two bits within the rpjocessor. Each processor has



sixteen operand registers. They are implemented by using SN74S172 register



files. The SN74S172 stores sixteen bits organized as eight two bit words.
 


Figure 4.2.5.1.10-1 illustrates how two SN74S172 packages are used in this
 


design x to form a sixteen word file of two bit words Twenty such combina­


tions, or a total of forty SN74S172 packages, are required to implement the



sixteen forty bit registers of the processor. The top SN74S172 package of



each pair is used to store zero through seven, and the bottom packages store



words eight through sixteen.



The SN74S172 permits two data words to be read and two data words



to be written simultaneously. However, only three addresses are permitted.



One address specifies a word to be read, another specifies a word to be



written, and the third specifies a word to be read and/or written. The outputs



are tr-state, two enabling signals control the two read ports. Two more



enabling signals control the two write ports. When a given enabling signal



is a logic zero, the port to which it corresponds is permitted to function.



A four bit address is required to select one of sixteen words.



Three four bit addresses and four control signals are used to control the



registers. The three low order bits of each address are sent to the proper
 


port of each of the forty SN74S172 packages. The high order bits of AADDRESS



and BADDRESS are combined with two of the control signals to form the selec­


tion inputs of a pair of SN74S153 four-to-one selectors for each enable signal.



http:4.2.5.1.10


79



INPUT


DATA



C WRITE NT B S 

ENABLES B OPERAND

o3 (TWO BITS) 

B READ 

ENABLES 

A READ 

ENABLES 

A WRITE A OPERAND 
ENABLES ____(TWO BITS) 

AADDRESS(1,3) 
CADDRESS (1,3) 

BADDRESS (1,3) 

Figure 4.2.5.1.10-1 Sixteen Two Bit Words Implemented with SN74S172


Register Files



REPRODUCIBILITY OF THE


ORIGINAL PAGE IS POOR





80 

One enable signal of each pair controls registers zero through seven, the



other registers eight through sixteen. The truth tables for the read enable 

signals are given in Table 4.2.5.1.10-1. 

SELECTION BITS 	 ENABLE SIGNALS



Registers Registers
High Order 

Zero through Eight through
Address Bit Control Bit 
 

Seven Sixteen



0 0 1 1 

0 1 1 0 

1 0 1 1 

1 1 0 1 

Table 4.2.5.1.10-1 Truth Table for the Read Enable Signals



The high order bits of AADRESS and CADRESS are combined with the



other two control signals to yield the selection signals for two more pairs



of SN74S153 four-to-one selectors. These two pairs of selectors supply the



A and C write enable signals The truth table for these selectors is also



given by Table 4.2.5.1.10-1, except that the zero logic input is supplied by



the MODEBAB output of the MODE flip-flop in each processor. This prohibits



any writing into registers of disabled processors A clock pulse is required



to clock input signals into the SN74S172 through an enabled write port.



4.2.5.1.11 	 The Index Adder



We saw in section 3 that address indexing capability within the



processors is an important capability in an array yrocessor. Figure 4.2.5.1.11-1



shows the logic of the index adder which computes a sixteen bit effective ad­


dress, EADDRE(1,16), within each processor. The adder is implemented with



http:4.2.5.1.11


-IXCARRY 

lrXG(4)
CUADDR(13,4) IG4 

A(1,4) PEADDR(13,4) 
r-XC 

00 

UAO (21,4) 

T O 

lxc4



A1(,4) z EADDR(1,4) 

CUADDR (9,4) -- IG3 M ~ CUADDR(5,4) 
~IXP(Z) 

A(13,4 -EADDR[9,4) 

O 

IXG(2)CUADDR(5,4) --
QD

A IXFUNC(1 o4) 

IXC8 
AZ (94)-EADDR(5,4) 

A(13,411,-­

Figre4..51.1- Th Ide Ade Lgi



http:Figre4..51


82



SN74S181 arithmetic-logic units augmented with an SN74S182 look-ahead carry 

generator. It is controlled by a function input, IXFUNC(1,4), and a carry in­

put, IXCARRY, from the control unit. The address from the control unit, 

CUADDR(1,16), is combined with A(9,16) by the adder. The "A" bits, which come



from the operand registers, are the low order sixteen bits of a twenty-four 

bit memory-length fraction. A twos-complement integer can be produced for use 

in indexing from a floating point value by performing an unnormalized addition 

with the value with fraction 8000000016 and biased exponent 4616. Two examples 

of this operation are given in Table 4.2.5.1.11-1. 

Initial Operands Aligned Operands Sum



46 80000000 46 80000000 46 80000100 

41 10000000 46 00000100 

46 8ooooooo 46 80000000 46 7FFFFFOO 

-41 10000000 -46 00000100 

Table 4.2.5.1.11-1 Two Examples of Processor Index Value



Computation



The hexidecimal digits which are underlined in the Sum column of



Table 4.2.5.1.11-1 are the part of the "A" operand which is one of the inpts



to the index adder.



Indexing of centrally supplied addresses might also be performed by



the main adder of the processor. To accomplish this, the control unit supplied



address value must be gated to the adder. The least costly way to provide this



gating is to replace four of the quadruple two-to-one selectors in the right



operand selection logic of Figure 4.2-1 with eight dual four-to-one selectors.





83



This results in a net package count increase of four packages The logic



described here requires four packages if ripple carry operation is used with



the SN74S181 arithmetic-logic units, and five packages - as shown in



Figure 2.4.5.1.11-1 if carry look ahead operation is used. Even the ripple
 


carry scheme is faster than requiring the operands and the result to pass
 


through the alignment shifters and fraction selector which use of the main
 


adder requires.
 


4.2.5.1.12 The Condition Flip-flops
 


This set of sections describes the five flip-flop which hold infor­


mation about the results of operations in the processor. The state of each of



these flip-flops is protected from being changed when the processor is disabled



by having its mode value equal to zero. This control is provided by using the



lower of the two CLOCK gating methods of Figure 4.2.5.1.12-1. These gates are



not shown in the subsequent figures which illustrate the individual flip-flops.



A control signal unique to each and the MODE value are used to produce a mode



controlled clock pulse for each of the condition flip-flops.



All of the condition flip-flops are implemented with one-half of an



SN74S74 dual flip-flop package. Both the true and complemented states are
 


supplied for use by this package.



4.2.5.1.12.1 The Carry Flip-flop
 


Figure 4.2.5.1 12.1-1 shows the carry flip-flop and its associated



control logic. Its state can be stored in a processor register (see section



4.2.5.1.7), and can be restored from a processor register by selecting the



path which includes B(12). The carry out of the adder, ACOUT, can be used to



set the state of the carry flip-flop, or it can be ORed with the previous



http:4.2.5.1.12


84



CLOCK 
CONTROL LINE SELECTED 

KSN74S1 CLOCK PULSE 

CLOCK 

CLOCK 

CONTROL LINE 

MODE 
MODE 

: D- hMODE CONTROLLED 
CLOCK PULSE 

CLOCK 

Figure 4.2 5.1.12-1 CLOCK Selection Logic





85



CONTROL



-ACOUT



CONTROL



CONTROL



B (12)



SN7452 

CLOCK


SN74S74


I


C CBAR



Figure 4.2.5.1.12.1-1 The Cary Flip-flop Logic





86 

state by using the appropriate'control signal values.



4.2.5.1.12.2 The Zero Flip-flop



Figure 4.2.5.1.12.2-1 shows the zero flip-flop and its associated



control logic. Its state can be stored in a processor register (see section



4.2.5.1.7), and can be restored from a processor register by selecting the



path which includes B(13). The primary input to the zero flip-flop is the



output of a zero detect block (see section 4.2.5.1.1) which operates on the



output of the fraction selection logic (of section 4.2.5.1.7). Previous



states can be ORed or ANDed with a current state by using the appropriate



signal values.
 


4.2.5 1.12.3 The Sign Flip-flop



Figure 4.2.5.1.12.3-1 shows the flip-flop and its associated control



logic. Its state can be stored in a processor register (see section 4.2.5.1.7),
 


and can be restored from a processor register by using the proper selection



signals for the SN74S151 eight-to-one selector and the SN74S153 four-to-one



selector shown in the figure. The control logic permits the sign flip-flop
 


to be set to any of the values listed in Table 4.2.5.1.12.3-1.'



SIGNAL 	 MEANING



B(14) 	 A state presumably previously stored in a processor


registex



* & + The exclusive OR of the operand signs


s670(4) wire-OR AFUNC(4) The sign of a sum of difference (see section


EXPA(l) The sign of the left operand


EXPB(l) The sign of the right operand


RTESIGN The sign of an operand from the routing unit


0 A forced positive sign, absolute value


1 A forced negative sign, minus the absolute value



Table 4.2.5.1.12.3-1 Possible Signs for a Result





87


FRACT (1,32) 

SZERO DETECT 

LOGIC 

ZFFINBAR 

-7SN74S04



TROLR-O 
CONTROL-- B (13) 

CONTROL



CONTROL



SN74H52-

CLOCK 

SN74S74 

Z ZBAR



Figure 4.2.5.1.12.2-1 The Zero Flip-flop Logic





88 

S670 (4)AFUNC1(4) 

SIGN OF THE ± RESULT) 

SIGN EXPA(1) (SIGN OF A) 

EXPB(1) (SIGN OF B) 
B(14)--

RTESIGN (SIGN FROM 
ROUTING UNITS)

SELECTION--S G A SN74S151 RUIGUIS 

SIGNAL 

SSN74So4



0 1 

SELECTION SN74S 

ZFFINBAR 
SIGNAL 

N74S 02 

SN74S74 CLOCK 

= 
SIGN SIGNBAR SIGN 

The Sign Logic and the Sign Flip-flop
Figure 4.2.5.1.12.3-1 
 

OF THEREPRODUCIBILIT 
ORIGINAL PAGE IS POOR 



89



The complement of any of the first six signs show in Table 4.2.5.1.12.3-1.



The NOR gate between the SN74S153 and the flip-flop uses signal ZFFINBAR of



the zero flip-flop logic (see section 4.2.5.1.12.3) to insure that the sign



of a zero result is always a logic zero, or a positive sign. The NOR gate



is used together with appropriate selection by the SN74S153 since no Schottky
 


AND gate is available.



4.2.5 1.12.4 The Overflow Flip-flop



Figure 4.2.5.1.12.4-1 shows the overflow flip-flop and its associated



control logic. Its state can be stored in a processor register (see section



4 2.5.1.7), and can be restored from a processor register by selecting the



path which includes B(15).



In this design, an overflow condition exists when.



1. 	 an exponent value which exceeds sixty-three is computed. This can occur



in the Exponent Adder during the computation of the result exponent for



multiplication or division, the signal EXO, described by the truth table



in Table 4.2.5.1.12.4-1, is a logic one for this case. Fraction overflow



necessitates increasing the exponent by one in the exponent correction 

adder, signals CORROVFL and EXP(7) cover this case. 

2. 	 a division by a zero fraction is attempted. The AZERO signal form the



zero detect logic for the left operand fraction covers this case.



3. 	 an attempt is made to integerize a floating point value whose integer



part requires more than six hexidecimal digits. Signal INTRUNC, derived



by the logic of Figure 4.2.5.1.12.4-2 covers this case.
 


A biased exponent with value V is represented by an exponent field
 


value of 64+V. The sum of two exponents is*





9o



EXO



CONTROL EXP(1)



AZERO _SN7432



1 SN74So4 CONTROL



CONTROL- INTRUNC 

F CONTROL 

CONTROL 

B(15) 

SN74H52N74H



CLOCK 
SN74S74



0 OBAR 

Figure 4.2.5.1.12.4-1 The Overflow Flip-flop Logic 



91



64 + vi



64 + V2



128 	 + VI + V2 = 128 + V = S 

An overflow occurs when 64 < V < 63 + 63 = 126, or when



192 < S < 254 (i) 

A correct exponent results when -64 < V < 63, or when 

64 < s < 191. (2) 

Expressed in binary form, the above conditions are 

(i) llxxxxxx 

(2) olxxxxxx(-64) or lOxxxxxx(63). 

The difference of t-wo exponents is 

64 + vj 
-(64 	 + V2) 

VI - V2 = V 

An overflow occurs when 64 < V < 63 - (-64) = 127. (3)



A correct exponent results when -64 < V < 63. (4)



Expressed in binary form, the above conditions are



(3) Olxxxxxx



(4) llxxxxxx(-64) or 00xxxxxx(63).
 


Conditions (i) through (4)can be implemented using an SN74S151



eight-to-one selector with the two high order bits of the result exponent and



the 	 exclusive OR of ABFUNC(2) and ABFUNC(3) bit selection code. Table



.2.5.1.12.4-1 gives the truth table for this function.



http:2.5.1.12


92



ABFUNC(2) COR CBFtNO(3) 

0 implies subtraction Ecl(l) EXol(2) EXO 

0 0 0 0 
0 0 1 1 

0 1 0 x 

0 1 1 0 

1 0 0 x 

1 0 1 0 

1 1 0 0 

1 1 1 1 

Table 4.2.5.1.12 4-1 	 The Truth Table for Exponent Overflow
 

Signal EXO



For both exponent addition and substraction, the straightforward



arithmetic steps uniformly result in a bias bit which is incorrect. A cor­


rect biased result is produced when the bit in the bias position of the re­


sult is complemented after the arithmetic result has been computed.



During exponent correction, either one or zero is added to the
 


component. The only way overflow can occur is that one is added to the biased



exponent representation for an exponent of 63.



(64 + 63) + 1 = 128.



This has the binary form 10000000, in no other case does the result exponent
 


have q high order one. Hence, the correct signal for overflow detection during



exponent correction is EXP(l), the high order bit of the eight bit sum



4.2.5.1.12 5 The Underflow Flip-flop



Figure 4.2 5.1.12.5-1 shows the underflow flip-flop and its associated



control logic. Its state can be stored in a processor register (see section



4.2.5.1.7), and can be restored from a processor register by selecting the



http:4.2.5.1.12
http:4.2.5.1.12


93



EXU- EXP(1) 

CONTROL CONTROL 

CONTROL- (16) 

--CONTROL 

SN74H52 

-kSN74S74 CLOCK 

U UBAR 

Figure 4.2.5.1 12.5-1 The Underflow Flip-flop Logic





2 

94



path which includes B(16).



In this design, operand underflow occurs only when a result



exponent which is less than -64 is computed. This can occur:
 


1. 	 in the exponent adder during the computation of the result exponent



for a multiplication or division, the signal EXU, described by the truth



table in Table 4.2.5.1.12.5-1, is a logic one for this case.
 


when the value one is subtracted from an exponent value of -64 in the



exponent correction adder. This occurs only during some division steps



(see section 4.2.5.2.5). For this case, the initial biased exponent



value is 00000000, and the result, 11111111, is the only case for which



the high order result exponent bit, EXP(l), is a logic one.



A biased exponent with the value V is represented by an exponent 

field value of 64+V. The sum of two such exponents is 

64 + Vl 

64 + V2 

128 + Vi + V2 = 128 + V = S 

A underflow occurs when -128 < V < -65, or when 

0 < S < 63. (1) 

A correct exponent results when -64 < V < 63, or when 

64 < S < 127 (2) 

Expressed in binary form, the above conditions are 

(1) 	 oOxxxxxxx



(2) Olxxxxxxx or lOxxxxxxx.





95



The difference of two exponents is



64 + vi



-(64 + v2)



VI - V2 = V



An underflow occurs when V - -65. (3)



A correct exponent result when -64 - V - 63.



Expressed in binary form, the above conditions are



(3) lOxxxxxx 

(4) llxxxxxx(-64) or Oxxxxxxx(63).



Conditions (1) through (4) can be implemented using an SN74S151 eight-to-one



selector with the two high order bits of the result exponent and the exclusive



OR of ABFUNC(2) and ABFUNC(3) (see section 4.2.5.1.3) as the three bit selec­


tion code. Table 4.2.5.1.12.5-1 gives the truth table for this function.
 


ABFUNC(2) XOR ABFUNC(3)


ExCl EXC2 EXU 

0 implies subtraction 

0 0 0 0 

0 0 1 x 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 x 

Table 4.2.5t1.12.5-1 	 The Truth Table for the Exponent Under­


flow Bit



For both exponent addition and subtraction, the straightforward 

arithmetic steps uniformly result in a bias bit which is incorrect. A cor­

rect biased result is produced when the bit in the bias position is complemented 

after the arithmetic result is computed.





96



During exponent correction, either one or zero is added to the



exponent. The only way overflow can occur is for one to be added to the
 


biased exponent representation for an exponent of 63:



(64 + 63) + 1 = 128. 

This has the binary form 10000000, in no other case does the result exponent 

have a high order one. Hence, the correct signal for overflow detection 

during exponent correction is EXP(l), the high order bit of the eight bit sum. 

4.2.5.2 	Processor Function



The previous group of sections described several logic blocks in



their own right without too much regard for their functions in support of



processor operations. This set of sections describes how the logic blocks



are integrated together to perform the high level operations. The details of



the control signals and gating is given in these sections.



4.2.5.2.1 	Normalization



A normalized floating point number in this design has a non-zero



hexidecimal (four bit) digit as the leftmost digit of its fraction, unless



the entire fraction is zero. The normalization process accepts an arbitrary



floating point number and produces a normalized number with the same arithmetic



value. A floating point zero is unchanged; a number whose fraction has a non­


zero leftmost hexidecimal digit is unchanged. The fractions of all other



floating point numbers are normalized by a left shift which makes the left­


most fraction digit non-zero and introduces zero digits on the right for the



zero digits shifted off the left. The exponent of the numbers so adjusted



is reduced by one for each zero digit shifted off.



Figure 4.2.5.2.1-1 shows the control logic which computes the shift





97 

FROM 
DIVISION 

ROM 

DSHIFT(1,4) BTEST(1,8) 

S 0 0SN74148 

NSH (1,3) 

0 

SN74S257 
TRI-STATE 

ENABLE 

NSHIFT(1,4) 

Figure 4.2.5 2.1-1 The Leading Zero Detection Logic





ZFFINBAR- CONTROL 

CONTROL 

NSHIFT(1,4) 

CSHIFT(1,4) 

'00 

AEXPO(1,4) 0100 AEXPO(5,4) 

!i SN74S157 ] SN74S157 

AEXP(1,4) AEXP(5,4) 

Figure 4.2.5.2.1-2 The Selection Logic for the "A" Exponent 



99



amount for the normalize shift logic. The signal BTEST(1,8) comes from the



SN74S260 gates of the zero detect logic for the right operand (see Figure 4.2-1



and Figure 4.2.5.1 1-1). BTEST(1) is a logic one if digit "i" of the left



operand fraction is zero, numbering the digits from left to right. The



SN74148 eight-line-to-three-line priority encoder accepts an eight bit input



signal and produces a three bit output signal which is a count of the number



of high order ones which occur in the input signal. The value seven is re­


turned for input signals of all ones, which is the case for numbers with zero



fractions.



During ordinary normalization, the output of the SN74148 is the left
 


shift amount and also the number that must be subtracted from the exponent.
 


It is selected by appropriate control by the SN74S157 two-to-one selector.



NSHIFT(2,3) is sent to the normalize shift logic, and NSHIFT(1,4) goes to the



selection logic for the exponent adder shown in Figure 4.2.5.2.1-2. This



logic selects the "A" exponent for the exponent adder. Normally, it selects



the exponent of "A" from the operand registers. For normalization, the,



operand (0100, NSHIFT(1,4)) is selected. Control signals enable the path



for ZFFINBAR, the output of the zero detect logic for the result fraction, to



the strobe input of the SN74S157 of Figure 4.2.5.2.1-2. When the fraction in



question is zero, the output of the SN74S64 is one, so that the SN4S157 selec­


tor is disabled and supplies zeros rather than NSHIFT(1,4).



Although a shift of seven places is the largest that occurs during
 


normalization, there are cases during double precision addition/subtraction



when a value of up to twelve must be subtracted from the exponent. For these



cases afour bit NSHIFT value is provided. See section 4.2.5.2.7 for details.





100



The CSHIFT(,4) signal is supplied by the control unit during
 


multiplication and division by a power of two operations. See section



4.2.5.2.10 for the details of this operation.



4.2.5.2.2 Rounding



The fraction size of memory words and multiplier operands is



twenty-four bits, and that of processor words is thirty-two bits. A rounding



operation is included in the design to permit rounding a thirty-two bit



processor fraction to a twenty-four bit memory and multiplier length fraction.



The rounding is accomplished by adding one in bit position twenty-four of the



fraction when position twenty-five is a one The fraction passes through 

the logic as the right operand. Bit twenty-five of that fraction is selected 

by the left operand selector as bit twenty-four of a fraction that is zero 

in every other bit position (see section 4.2.5.1.5). The other bit positions 

are forced to zeros by disabling the left alignment shift network. The 

exponent of the result is that of the right operand, selected by control sig­

nals to the exponent selection part of the exponent correction adder (see 

section 4.2.5.1.8). The two fractions are added by the adder under control 

unit control, using CUAFUNC(1,3) for function specification (see section 4.2 5 1 6) 

Fraction overflow and the corresponding exponent adjustment by the exponent



correction adder can occur. The sign of the result is the sign of the right



operand.



4.2.5.2.3 Floating Point Addition



A floating point value in this design is represented by a sign bit,



a non-negative proper fraction and an integer power of sixteen. The fraction



parts cannot be correctly added until they are adjusted for the difference in



http:4.2.5.2.10


101



their exponents. In this design, this adjustment is made by shifting the



fraction whose exponent is smaller right by the number of digit positions by



which the exponents differ. The process, described in terms of Figure 4 2-1,



proceeds as follows



The exponent difference is computed by the exponent adder. The



difference, together with a pair of one bit signals which each indicate



whether one of the operand fractions is zero, is used by the pre-align control



logic to specify which of the operands is to be shifted right. At least one



of the alignment shift logic blocks performs a shift of zero places during



each floating point addition. The other alignment shift logic is disabled



when the shift amount exceeds seven The pre-align control logic also selects



the exponent of the result.
 


The correctly aligned fractions proceed through the operand selectors, 


adder, and fraction selector to the operand registers. The result of this 


processing cycle is an un-normalized floating point sum or difference with a 


correct exponent. If a normalized result is sought, another cycle is used. 


The fraction passes through the leading zero detection logic of Figure 


4.2.5.2.1-1, which determines the left shift amount required for normalization. 


This shift amount is used by normalization shift logic to perform the fraction 

shift, and by the exponent adder to compute the correct exponent for the 


normalized result. 


The addition process is complicated by the fact that sign-magnitude



representation is used for floating point values in this design. The actual



operation which the adder must perform depends not only on the instruction



being executed, but also on the signs and the relative magnitudes of the





102



operands being processed If one of the operands is zero, the result is the



other operand. If two operands with equal exponents are to be added, the



actual operation performed by the adder depends on their signs When the



signs are the same, the adder must add the two magnitudes, the result sign is



that shared by the two operands. However, when the signs differ, the smaller



magnitude must be subtracted from the larger, and the sign of the result is



that of the larger operand. The SN74S381 arithmetic-logic unit is ideally



suited to these circumstances, because it can perform the A+B, A-B, and B-A



operations (see Table 4 2.5.1.3-1).



When the argument exponents differ, the operand with the larger



exponent is the larger in absolute value without regard to the fraction values



involved. Hence, an exponent comparison is also required to determine what



SN74S381 operation to perform. Table 4.2.5.2.3-1 summerizes the ten input



signals which are required to determine the operation which is performed by



the SN74S381 arithmetic-logic units of the adder. Figure 4 2 5.2.3-1 shows



the logic which implements Table 4.2.5 2.3-1. During floating point addition



and subtraction, the wire OR network of Figures 4.2.5.1.6-2 and 4.2.5.1 6-3



makes AFUNC the same as AFUNCl by appropriate enabling of the tri-state signals.



The ABEXEQ signal is derived by the logic of Figure 4.2.5.2.3-2. When the



absolute value of the exponent difference is zero, the exponents are equal,



and ABEXEQ is a logic zero.



A fraction overflow can occur only when the function performed by



the SN74S381 arithmetic-logic units of the adder is A+B. The signal OVFLSEL



is implemented by an SK74S151 eight-to-one selector which uses AFUNC(I,3),



the SN74$381 function specification, as its selection signal. The input to
REPRODUCBILITY OF THE 
9RIGINAL PAGE IS P0OOT 



103



00 
" 

NN 
cm 

)X m 
WOO 

mc 
z 

fl 

zZ 
'-4 
CC< 

o. 

O 

< 

SIG 8205 512 x 8 

ROM 

ABEXEQ- SN74S257 

I I 
AFUNCl1u,3) 

I 
RESULT 

SIGN 

TRI-STATE 
ENABLE 

The Logic which Selects the Adder Function
Figure 4.2.5 2.3-1 
 
During Addition and Subtraction





io4



ABS(7) 

ABS(6) 

ABS(5) 

ABS (4) 

ABS(3) 

ABS (2) 

ABS(1) - _[_W )SN74S20 

ABEXEQ 

SN74Si2 

Figure 4.2-5.23-2 The Logic for the ABEXEQ Signal





105



the SN74S151 is a logic one in every position except that which corresponds



to AFUNC(1,3)0ll, for the latter case, the selector input is ACOUT, the high



order carry out of the adder. A logic zero value for OVFLSEL thus indicates



a fraction overflow. The OVFLSEL signal is used by both the fraction selec­


tion and the exponent correction logic.



Signal Value Meaning



ABEQEQ 0 The two operand exponents have the same value



AZERO 0 The left operand (A) fraction is zero.



BZERO 0 The right operand (B) fraction is zero.



EXC2 0 The exponent of the right operand exceed that of


the left operand



CUADD 1 The operation specified is addition



CUSUB 0 When CUADD is zero, subtract the right operand


from the left; that is B-A.



1 When CUADD is zero, subtract the left operand


from the right; that is A-B



SIGNA 0 The left operand is greater than or equal to zero.



SIGNB 0 The right operand is greater than or equal to zero.
 


AGTR 1 The unshifted left fraction exceeds the unshifted


right fraction
 


ABEQ 1 The unshifted fractions are equal.



Table 	 4 2.5.2.3-1 The Input Signals for the Adder Function Logic



Table 4.2.5.1.3-1 which lists the functions and function codes for



the SN74S381 arithmetic-logic unit of the adder indicates that the carry into



the adder depends on the function code. The logic of Figure 4.2.5 2.3-3 shows



how the carry into the adder is determined Since the adder operates with
 




_o6



C 

CONTROL AFUNC (2) 

CUAC AFUNC (3) 

CONTROL



~SN74H52 

AC 

The Logic for the Carry into the Adder
Figure 4.2.5.2 3-3 


REPRODUCIBILITY OF TIh


ORIGINAL PAGE IS POOR





107 

ABS(1,41 

S 
SSN74SS60 

14-SHIFT<<8 

ISN74SO4 6 

CONTROL 

CONTROL 

EASH 

CONTROLCOTL 

DLLTB 

CONTROL 

EBSH 

DR LTS 

CONTROL 

T N74864 T SN74S64 

ELAS ERAS



EXC2 EXC2BAR



SHZERO



AZERO



BZERO



SN74S0- SN74S20 

000 ABS(5,3) ZR 

ASHIFT(UA) BSHIFT 11,3) 

TRI-STATE 
ENABLE



Figure 4.2.5.2.3-4 The Alignment Shift Conrtol Logic





1o8



active low data, a one carry in is required for addition and a zero for sub­


traction. The control unit can specify the carry by using control signal CUAC.



When the adder function is determined in the processor by the logic of Figure



4 2.5 2.3-1, the path which uses added function bits produces the correct



carry in. The carry flip-flop output, C, is used as the carry in to the adder



during double precision operations.



The logic which controls alignment shifting during floating point 

addition and subtraction is shown in Figure 4.2.5 2 3-4. The signal ELAS is 

the enabling signal for the left alignment shift logic, and ERAS is that for 

the right alignment shift logic. The signals BASH and EBSH permit control 

unit specification of the shift enables without regard to local conditions. 

The two signals DLLT8 and DRLT8 come from the double precision control ROM, 

and the signal S is derived from the logic of Figure 4 2 5 2.7-3. Bits one 

through four of the absolute exponent difference, ABS(1,4), are combined by 

an SN74S260 NOR gate to yield a signal which is a logic one when the alignment 

shift amount is less than eight The actual shift amount is either ABS(5,3) 

or zero under the control of a pair of shift selection signals which uses AZERO, 

BZERO and EXC2 of Table 4.2.5.2 3-1 along with a control unit signal SHZERO. 

When any of the preceeding signals is a logic zero, the shift selections sig­

nal one, and a zero shift amount is selected. 

4.2.5 2.4 Multiplication



Measurements of the current model's execution on the IBM/360 revealed



that approximately one-half of the floating point instruction executed are



multiplications. Therefore, we have designed a high speed fully parallel multi­


plier. The details of this work are given in a Masters thesis by Mr. William





109



Stenzel (1975). Because the amount of hardware necessary for this multiplier



varies as the square of the operand lengths, we chose to implement a twenty­


four by twenty-four bit multiplier. The rounding operation described in



section 4.2.5.2.1 rounds floating point values to this fraction precision



The integrated circuits used in the multiplier are­


1. 	 the SN74S274 read only memory which accepts an eight bit address and



returns an eight bit result. It is pre-progranmed to accept two four



bit digits and return their eight bit product (Texas Instrument Corpora­


tion, 1974, pp. 262-270),



2. 	 the Signetics N8228 read only memory which accepts a ten bit address and



returns a four bit operand. This device, available as Signetics part



number N8228-CBll05, is programmed to add five two bit numbers and pro­


duce 	 a four bit sum,
 


3. 	 the SN74283 four bit binary full adder, which accepts two four bit inputs



and a carry input, and produces a four bit sum and a carry output, and



4. 	 the SN748381 arithmetic-logic unit which is used together with SN74S182



look-ahead carry generators to a final addition step in the mulitplication



process.



Figure 4 2.5.2.4-1 illustrates how to compute the product of two eight bit



values using four 8N74S274 read only memories Each subscripted symbol in



the figure represents a four bit digit. The four eight bit products are dis­


played in the familiar trapaziodal form and have also been rearranged in a



triangular form. Four bit adders can be used to sum the partial products to



yield the required product. Figure 4.2.5.2.4-2 shows the triangular rearrange­


ment for all of the bits in the product of two twenty-four bit operands. A





110



a, 
 a0



b!1 
 b0



alb0 a 0b0 

alb, a0 I => alb, alb0 a0b 0 

abbl



Figure 4.2.5.2.4­
1 The Product of Two E aght Values 



0000o5 	 o] [,,o ooooooo ooo oooo ooo ooo ooo ooho oo ooo
opoooooooooooooooooooooooooooooooojlgg 
o o oo ooo o oo 00o o 

[ooo oo [0ooo ]0oo 
00 0 00000000O 0 0o0oo 0 0o 0 

0 0000 00 00 0 0 

00 0 	 0 0 0 

.0.0 0 

0 0 0 

00000000 

00 00 00000000000010000 	 

00 00 0 0 	 000 

0 0 0 0 0 0 	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

00 0 0 0 00 0 0 

0 0 0 0 

00 	oo ooo oo 
0 0 0 0 0 0 00 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 00 0 

01 0 C 0 a 

0 0 0 0 0 

0 000 	 

oo 
0 0 0 00 
0I


0 O 

oo 
.0
 

00 0 

0 0 0
 
00 

0 

0 

0 

00 

0 0 

0 

0000000 

0 00 00 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 00 

0 0 0 

0, 

0 0 0 0 0 0 0 0 0 

Figure 4.2.5.2.4-2 The Twenty-four by Twenty-four Bit Multiplier 



112



three stage reduction processes results in the required product.



The vertical rectangles in the figure represent Signetacs 8228-CB1105



read only memories. The five high order bits of the address, pins three through



seven,accept the left column of bits - the high order bits of the five two bit



input operands. The five low order bits of the address, pins one, two and



thirteen through fifteen, accept the right column of bits - the low order bits 

of the five two bit input operands. The low order bit of the four bit sum 

appears on the output pin twelve, the low order bit of the output word. 

The horizontal rectangles represent SN74283 four bit adders.



In the first reduction state, the eleven rows of partial product



bits are reduced to five rows by using twenty Signetics 8228's and six SN74283's.



In the second stage, ten 8228's and six SN74283's reduce the five rows to two.



Nine SN74S381's and three SN74SI82's produce the forty-eight bit product in



the last stage.



4.2.5.2.5 	 Division



Three different division algorithms were examined as candidates



for use in this design. They are all similar in two respects.
 


1. Each algorithm uses the multiplier.



2. 	 Each algorithm uses read only memories to store values which it needs



The first scheme used a quadratic Chebyshev fit to the reciprocal,



stored the coefficients in read only memories, and used the multiplier to



evaluate the quadratic polynomial. The scheme is not workable because the
 


polynomial coefficients are relatively large and oscillate in sign, so that



a reciprocal accurate to twenty-four bits could not be computed with the
 


twenty-four bit multiplier.





113



The second scheme multiplies both numerator and denominator by 

cleverly chosen constants (Garcia, 1974). Two multiplications of both 

numerator and denominator reduce the denominator to one and the numerator 

to the required quotient. The denominator must be normalized so that there 

is a one in the high order bit. Call the high order eleven bits of this 

normalized denominator "A", and the low order thirteen bits "B" We can 

compute a twenty-four bit reciprocal of "A" with six Signetics N8228 read only 

memories which accept a ten bit address and report a four bit result. We 

can use only ten bits of "A" since the high order bit is known to be a one



The following sequence of equations illustrates the technique*



N N N(1/A) N(1/A) N(1/A)(1-B/A+(B/A)2) = 
= 	D A+B (A+B)(l/A) l+B/A (l+B/A)(l-B/A+(B/A)
2 )
 

N(l/A)(l-B/A + (B/A)
2



3


1+(B/A)



By construction, B is less than 2-11 , and A is greater than or equal to



10 	 -3 0 ,

one-half. Therefore, B/A is less than 2- , so that (B/A)3 is less than 2
 

and is therefore negligible in computing a twenty-four bit quotient. Four



multiplications are necessary to compute the quotient using this scheme­


1. N(1/A)



2. B/A from B and 1/A



3. 	 (B/A)



2


4. N(I/A)(B/A+(B/A)



The third scheme uses Newton's iterative methods. The function



f(x) = Dx-l



REPRODUGIBLTY 6F 11 
ORIGINAL PAGE 18 P001 



114



will converge to the reciprocal of "D". The derivative f'(x) = D, so that



the equation for the iteration are



Xn = xn DXn - 1 = x + 1 (-Dxn)



which is identically equal to 1/D. The term l/D is the sought and unknown



reciprocal. However, xn is approximately equal to the reciprocal, so that the



iteration becomes
 


Xn+i = xn + xn (1-Dx).



The analytically equivalent 	 form



- Dx 2

xn+l = 2x 

n! n n



can not be computed with as much accuracy as can the preceeding form with



the given processor.



The denominator "D" whose reciprocal is sought must be normalized



in the usual binary sense, that is, its high order bit must be a one. An



initial twelve bit approximation, x0 , is obtained from three Signetics N8228



read only memories by using A(2,10) (see Figure 4.2.5.2.5-1) as address bits,



A(l) is known to be a one. In this scheme, however, the high order part of D



should be rounded by adding 2- 1 2 
 after the left shift which guarantees that



the high order bit of D is a one.



Programs were written to simulate all three schemes. In the



iterative case, two iterations were always performed, no convergence test was



done. Therefore, the scheme requires a total of five multiplications to com­


pute a quotient, two multiplications are needed for each iteration, and a



final multiplication is required to compute the quotient from the reciprocal.
 




4 

115



The simulation programs for the second and third schemes accepted four param­


eters



1. the desired numerator,



2. the initial denominator,



3. the increment between uccessive denominators, and 

the final denominator.



The programs computed all quotients for the indicated range of denominators.



Two pairs of simulation programs were written. One pair computed quotients



correct to twenty-eight bits and compared the approximate values to them



The second pair of programs computed a quotient rounded to twenty-four bits



for each denominator, and compared similarly rounded approximate quotients



to them. The results of tests using these programs are given in Table



4.2.5.2.5-1. These results led to the choice to implement the third scheme.



The implementation of the third division scheme uses four proces­


sor registers, registers zero to three are used. The first step in the pro­


cess is to move the original denominator to register zero. This is necessary



because one of two tri-state sources supplies the operand to the normaliza­


tion shifters. The normal source is the two-to-one selectors in the upper
 


right corner of Figure 4.2-1. The operand from memory enters the processor



through these selectors. The other source is the zero-to-three bit shift



logic discussed below. A denominator from memory would enter the normaliza­


tion shift logic from two sources when a zero to three bit shift is performed



if B(1,32) of Figure 4.2.5.2.5-1 were to come from the memory operand selec­


tors of Figure 4.2-1 Hence, the B(1,32) operand unit must come from the



registers. Another implication of this is that the two-to-one selectors





TO A(I,24) 
MULTIPLIER A(1,3) 

A(2,101 
00000 

DIVISION T ION 
XCORRECTI O N SN74148 

MULTIPLY RESULT 

SITS (25,243 0 ROUND FORe 

D FROM 0 


CONSTANT 0 COMPUTATION 

03B(1,32)SELECTORS 


~NORMAL LEFT 
OPERAND 

SHIFT DIRECTION SOURCE B(,24)p. 

ZERO {TO MULTIPLER 

NORMALIZEH 
SHIFTERS 

MULTIPLY RESULT 

Figue .FRACTION 

FLIPFLOPSELECTOR 


A1,32) 
fPEAN 


Figure 4.2.5.2.5-1 The Subset of the Processor Logc hich Performs Dvson





117



Numerator 	 10000016 (i.c. 1/16)



Initial denominator 10000016



Final denominator 20000016 (i.e. 2/16)



Increment 1 (i.e. 2-24)



28-bit Quotient 28-bit Rounded Quotients 


Item Multiplicative Newton's Multiplicative Newton's

Method Method Method Method 


Sum of Absolute 

Values of Errors 7CDAl1.E6 850B2.316 7CE84.016 800C9 016 


Average Absolute 
Error (rounded) 0.7fl16  0.8516 0.7D1 6  0.8 ±6 

Maximum Absolute


Error 1.216 1.816 2.0 1.0



Sum of Signed


Errors EDD8.616 546D.116 -ED2A.016 -2AF1.016



Average Signed


Error (rounded) 0.OEEl6 0.054 l( -O.0ED16 -0.02BI1



Table 4.2.5.2.5-1 	 Results of Tests of the Two Division



Algorithms



which select between the register and the memory operand in Figure 4.2-1 must



be the tri-state SN74S257 for the fraction part of the operand.



The second step of the algorithm uses the zero to three bit shift



logic of Figure 4.2.5.2.5-2 to shift the original denominator left by zero to



three bit positions so that the high order bit is a one. Since the logic



assumes that a three bit or smaller shift will suffice for this operation,



http:7CDAl1.E6


118 

SHIFT DIRECTION


FROM DIVISION



ROM 

CONTROL-- CONTRO



SN74 S51 I"SN,74 !S51 
LEFT SHIFT RIGHT SHIFT 

ENABLE ENABLE 

I(8| -­ OR(B) 

DOWS 

__ 
I(5)(6'­_ 

,, , _ __ 
_ -­ OR(7) 

r -- OR(B, 

0 -­

1(8) -­

(7)OL(6) 

1(6) 
1(5) -­

- 0-i 
) 

x 

OL() 

OL(5) 

1(4)-
I( )- ---- I 0 

- O R ( 4 | 

DW0(5) 

o - OR(3) 

1(6)-­

1(5)­
1(4)­

-­

I(3)-­ -

-­ OL(4) 0-­
0--­

OL{5} 

OL(2) 

OL)DOW(1) 

< OR(Q) 

DSHIFT(1,2) 

Figure 4.2.5.2.5-2 The Zero to Three Position 
Shift Logic 



119



the original denominator must be a normalized value. The logic of Figure 

4.2.5.2.5-2 relies on the AM25S10 tr-state four bit shifter. The figure 

illustrates both a left and a right shifting capability. Each AM25S10 

accepts seven input bits, a two bit shift amount, and a tri-state enable 

signal The two bit shift amount determines which of four sets of four 

contiguous input bits are output by the device. By using correct overlapping 

bit assignments to multiple AM25S10's, operands with more than four bits can 

be shifted. Figure 4.2.5.2 5-2 illustrates shift logic for eight bit input 

operands, shift logic for thirty-two bit values requires sixteen rather than 

four AM25SlO's. Whether the ensamble of Figure 4 2.5.2.5-2 shifts left, as 

required by the second division step, or right, as required by a later step, 

is determined by the logic at the top of the figure. For this step, control 

signals from the control unit force a left shift, and cause the division ROM 

output to be ignored. The SN74148 of Figure 4.2 5.2.5-1 computes the shift 

amount for the zero to three bit shift logic by examining the three high 

order bits of the original denominator as stored in processor register zero. 

The shifted denominator is stored in processor register one.
 


The third step of the algorithm rounds the shifted denominator value 

by adding 2- 1 2 to it. The constant for this rounding operation comes from 

the left operand selector described in section 4.2.5.1.5. Let us call the 

original denominator D and the shifted and rounded denominator D in the fol­

lowing discussion. The rounding step which produces D can result in an over­

flow, the carry out of the adder, ACOUT, is recorded in'the C flip-flop of 

Figure 4.2.5.1.12.1-1 for the later use in the division process. If overflow 

occurs during denominator rounding, the special shift of one bit position in 

the fraction selector (section 4.2.5.1.7) is used to force the rounded result 



120



8OOOOO16 , or exactly one-half.



The fourth step of the algorithm uses the division x0 ROM's of 

Figure 4.2.5.2.5-1 and D to compute x0, the first approximation to the de­

sired reciprocal. This value varies from FFFOOO16 for a D value of one­

half, to 80000016 for the D value FFOOO16 The value actually stored by 

the ROM's must be a logic complement of the correct, rounded binary value, 

since the adder operates on active low data values and the fraction selector 

complements to account for this. The value from the ROM's is thus between 

-
one-half and 1-2 1 3 inclusive; since it represents the reciprocal of D, which



-
is between one-half and 1-2 1 3 inclusive, it can be represented for the 

analysis below as x0 . The resulting value is stored in register two 

In step five, we compute - x 0 D in one step by using the multi­

plier to supply the product term and using the left operand selector to 

supply the constant . The result of this step is (l - x0D), which is a 

small value even for the first of the two iterations. Thus, step six adds 

the result of step five to itself to scale it up to the value 1 - x0D. 

Register three is used to store both of these results. 

Step six computes x0 (1 - x D) by using the multiplier with 

x0 from register two and (1 - x0D) from register three 

Step seven adds x0 from register two to the result of step six 

(from register three), and produces (x 0 + x0 (1 - x0D)) or x1 . 

Steps nine through twelve repeat steps five through eight, except 

that they use x instead of x0 throughout. The result is x2 , or, in 

other words, of the reciprocal of D. 

Step thirteen uses the multiplier to compute the exponent adder to 


ORIGINAL PAGE IS13 



121



compute the result exponent and Q = (N/D). But we seek Q = N/D. The 

form of Q is x.xxx..., where each "x" represents a bit Since D was produced 

by shifting D left, that is by multiplying the original denominator, the 

correct Q is the result of a similar shit of Q. This shift, conceptualized 

by a right shift of the binary point, results in a Q with one of the four 

following forms 

x.xxxn...x (I) 

xx.xxxx... x (2) 

xxx.xx...x (3) 

xxxx.xx... x (4) 

Since N, the original numerator, is also a floating point fraction, it has 

from zero to three leading zero bits. Hence, each of the four forms above 

can have from zero to four leading zero bits. Moreover, an overflow in step 

three of the division algorithm means that the original denominator, TT, was 

actually shifted left one less position than an examination of D would 

imply, this fact is recorded in the D flip-flop. Table 4.2.5.2.5-2 sumnar­

izes these conditions. The upper left part of each table entry indicates 

the amount and direction of a zero to three bit shift which is required to 

bring the binary point to one of the following positions 

.xxx ....X, or (5) 

xxxx.xx...x (6)



A left shift can occur when the number of high order zero bits in Q is 

greater than or equal to the number of bits to the left of the binary point 

in the form which Q takes among the forms (1) through (4) above. The lower 

right part of each table indicates the exponent alteration which is necessary 



122



to convert Q to the proper quotient Q. The exponent correction is effected



by the exponent correction adder Then form (5)results from the zero to



three bit shift, no exponent correction is required. When form (6)results,



the exponent must be reduced by one. When Table 4.2.5.2.5-2 indicates that



a shift of four places is required, this is achieved by a shift of zero



places in the zero to three position shift logic and a shift of one place in



the normalization shift logic. In all other cases, the normalization shift



logic shifts by zero places.



Leading Zeros Leading Zeros in D 

inQ _ 

1 
0 

_ 

0 
R3 

_ _ 

1 
R2 

_ 

2 
El 

_j 3 
0 

0 0 -­ -1 +1 

1 ~ 0,'X1 ~ 2EX­
El
0 Ll :21 

o/Z 0 01 l ­

0 Li L L


0 0 0Z 01 -1



Li 0l L2 L,3 0



Table 4.2.5.2.5-2 0 to 4 Leading Zeros



Although the original denominator must be normalized, the numerator



N need not be. A product with four (or more) leading zeros will result when
 


the numerator is not normalized. The quotient is not normalized when the



original numerator is not normalized. The quantity Q will also have four



leading zero bits when the reciprocal is nearly and N has its high order





123



to be truncated to an integer goes into the processor logic as the right



operand. Its exponent is used as the address for a Signetics 8204 read only



memory whose output, IFUNC(l,7) of Figure 4.2.5.1 6-2 controls the high order



six SN74S381 arithmetic-logic units of the adder separately, and always forces



ones in the seventh and eighth units. The logic assumes that the operand is



normalized, and forces the correct number of fraction digits to ones (complimented 

to zeros by the fraction selection logic). The SN74S381's in the adder



either add the operand fraction to a forced zero operand from the left



operand selector, or they force ones as output The function for addition



is 011 and that for forcing ones is 111 (see Table 4.2.5.1.3-1). The high



order bit is supplied by the SIG8205, and the two low order bits are



supplied as CUAFUNC(2,3). The eighth ouput bit of the SIG8025 goes to the



overflow flip-flop logic as INTRUNC, and is a logic one when the operand 

value cannot be represented in the six hexidecimal integer digits permitted



one bit followed by several zero bits The product of N with the reciprocal



willthen produce a non-normalized result, or one with four zeros. 

A shift amount value of Rx in Table 4 2.5.2.4-1 means that a shift 

right of x bit positions is required. A shift amount of Lx means that a left 

shift of x bit positions is required. 

4.2.5.2.6 Integers



The integers are represented and manipulated as floating point



numbers in this design. The fractional part of an integer is zero. Logic



is included to truncate the fraction part of an arbitrary floating point



number. The largest integer that can be represented is 224-1. A larger 

integer value can be represented by the thirty-two bit fraction of the pro­


cessors, but memory can retain only twenty-four bit fractions. The value





124



in the design.



An exponent value of zero or less will produce an integer value



of zero. An exponent value between one and six inclusive produces an integer



with the corresponding number of potential non-zero hexidecimal digits. An



exponent value of seven or more results in an integer truncation overflow



condition.



4.2.5.2.7 Double Precision Addition and Subtraction
 


Measurements of the current model's execution on the IBM/360



reveals little required double precision operation Therefore, we have



designed a single precision processor which is augmented with the minimum



additional hardware needed to permit double precision calculations. Twenty



processor cycles are required to perform a normalized precision addition or



subtraction. A double precision value consists of two single precision



values, each with its own correct exponent and fraction. The high order



part must always be normalized, the low order part contains the least



significant six of the twelve fraction digits, whatever they may be, and



therefore, has a normalized form only by coincidence However, if the high



order fraction is zero, the low order fraction must also be zero. The signs



of both parts must agree.



Implementation of double precision addition and subtraction uses



six processor registers. The normalized result is left with the high order



part in register zero and the low order part in register one. Intermediate



double precision operands in the processor have fourteen fraction digits,



six in the high order part and eight in the low order part. The two low



order digits of the high order parts are always zero at the completion of





AEXP(1,8) BEXP(1,8) B(1,32) 

r ~ XC ADDER I-

ALIGNENT| 
T NABLE

SHIFT--LOGI 
EXCI(1,7) 

DOUBLE D L ENABLE 
DSIT1,4 NORMAL.IZE 

SHIFTI 

ARACT32)24 
LEFTI32OIHTPE2RANTD,4 

FRACTONEET O 

FRACT(25,8) 

FRAELONCELCTO 

Precsio Additio and53SubNMETrato 

J 

6 

IGT258 

2 

FRCT1,241 FRACT(25,8) 

Figure 4.25.27-1 The Subset of the Processor for Double 
Precision Addition and Subtraction 



126



an operation. The subset of the processor logic which performs double pre­


cision addition and subtraction is shown in Figure 4.2.5.2.7-1. The logic



relies on the double precision read only memory of this figure for much of



the specialized control which is required.



Several of the steps in the double precision addition and subtrac­


tion process are really fixed point addition of two fractions without regard



to their signs or exponents. The exponent correction adder permits control



from the control unit of which exponent is assigned to a result. The selec­


tion of the sign is also subject to complete control by the control unit.
 


Hence, a fixed point addition of two fractions can be assigned to the



exponent of either fraction and the sign of either fraction.



The complete double precision addition and subtraction process is



illustrated by Figure 4.2 5.2.7-2, Figure 4 2.5.2.7-5, Figure 4.2 5.2.7.-9,



and Figure 4.2.5.2.7-10. In these figures, the exponents and individual



digits of all operands are shown. The digits of the two original operands,



X and Y, are denoted by Xl through X14 and Yl through Y14 respectively. The



process determines which of the two operands is the larger and which is the



smaller. The digits of the larger are denoted by Ll through L14, the digits



of the smaller are denoted by S1 through S14. Finally, the digits of the sum 

or difference are denoted by Tl through T14. The operation portrayed by the 

figures is: 

T = X + Y. 

The original operands are shown in Figure 4.2.5.2.7-2(a). In the first step



of the process, the high order part of X is written into registers zero and



one, the operand registers permit writing a value to two different registers
 




127



: i Ex X1 X2 X3 x4 X5 x6 0 0 Ex+6 X7 x8 x9 X10 Xll X12jX13 Xi4 

(a)



- jEY Y2 Y3 Y4 Y5 Y610 0 Ex+6 X7 X8 X9 X10 XI X2 XI3 X14 

0 Ex X2 X3 X4 X5 x6lo 0 (b

1 xX2 X3 X4 X5 0 (b) 

0 E1L1L2 L3 L4 L5 L610 0 (
(c)
S3 S4 S5 S6 0 01 Es S1 2 

0 I]E1 !L2 L3 L4 L5 L610 0 
1 Es S1 S2 S3 S4 S5 S610 0 

___________ (a) 
o IJSi S2 S3 S4 S5 S6 0 
1 Es I S2 S S4 S5 S6 0 0 

Figure 4.2.5.2 7-2 Preparatory Double Precision Addition


and Subtraction Steps





128



in one operation (see section 4.2.5.1.10).



In the second step, the two high order parts of the operands are



passed through the processor logic. The X operand is the left operand and



the Y operand is the right operand since it may come from memory. The Y



operand is always passed through the adder and fraction selector. The S



logic, shown in Figure 4.2.5.2.7-3 determines whether the Y operand is 

larger or smaller than the X operand. A zero operand is always regarded as 

the smaller regardless of its exponent value If the Y operand is larger, 

the S signal is zero; if the Y is smaller, the S signal is one. The result 

of the comparison, the S signal, is stored in the S flip-flop of Figure 

4.2.5.2.7-3 for use in routing the low order halves of the operands in a 

later step Table 4.2.5.2.7-1 explains the input signals for the S logic, 

and Table 4.2.5.2.7-2 gives the truth table for the S logic. 

The logic which varies the operand register address bits to accom­


plish the local control needed by this and other steps in the double preci­


sion addition and subtraction process is shown in Figure 4.2.5.2.7-4. The



signal is used, together with three zero address bits from the control unit,



to select either register zero or register one during this step. The net



result of step two is shown in part (c) of Figure 4.2.5.2.7-2; the larger
 


operand is stored in register zero and the smaller in register one.



Step three duplicates the smaller operand in registers four and 

five. The Z flip-flop is set to indicate whether the smaller operand is zero. 

The rest of this step is shown in part (d) of Figure 4 2.5.2.7-2 

The next five steps align the fraction of the operands in prepar­

ation for the addition or subtraction steps. These five steps are shown in



http:4.2.5.1.10


129



Signal Value 	 Significance



AZERO 0 	 The left operand fraction is zero. 

BZERO 0 	 The right operand fraction is zero.



ABEXEQ 0 The operand exponents are equal. 

EXC2 0 The left exponent is greater than or 
equal to the right exponent.



AGTR 1 	 The left fraction is greater than the


right fraction.



Table 4.2.5.2.6-1 The Significance of the S Logic Input Signals



Signals SN74S150 Comments



AZERO or BZERO ABEXEQ RXC2 AGTR Input



0 0 x 0 1 Y greater than or equal to


0 0 x 1 x X equals Y


0 1 0 x 0 X greater than or equal to


0 1 1 x 1 Y greater than X


1 x x x BZERO Exactly one operand is zero.
 


Table 4.2.5.2.7-2 The Truth Table for the SN74S150 of the S Logic 



130 

0 0 W(t c x N cc 
WW lad U0 -
NN m X CD 

16.INPUTS 

SN 74 S15oS 

IS16 
-2 CLOCK 

SN74S74 

SFFBAR
SF 
 FB


_ SFF 

CTROLOCUSUBINNSELECT SN74SI57 

gSN74S86 

sCONTROL - --- CONTROL 

SN74 H12 

CUSUB



Figure 4.2.5.2.7-3 The Logic for the S Signal 



131



Figure 4.2.5.2.7-5 The figure covers two cases. In the left column are



successive register states for the case when the exponent difference is less



than six, the right column covers the case where the exponent difference is



greater than or equal to six. The exponent difference illustrated by the



left column is three, that for the right is seven. The double precision ROM,



which is crucial to many of the following steps, is shown in detail in 

Figure 4.2.5.2.7-6. It can be implemented with a Signetics 8204 read only 

memory This R0M stores 256 eight bit words. The eight bit address is used 

as shown in the figure. One control signal from the control unit determines 

whether an alignment or normalization shift control result is desired, 

another control signal specifies whether a left shift or right shift is 

required. The other bits contribute to determining the shift amount. The 

operand which is to be shifted is always known beforehand, and is sent through 

the logic as the right operand Table 4.2 5.2.7-3 summarizes the functions 

performed by the double precision control ROM during the operand alignment 

phase. The symbol "d" in the table represents the exponent difference 

Step four performs a left shift of the smaller operand by the amount 

given in Table 4.2.5.2.7-3. The control ROM uses signals DCADDR(l) and



DCADDR(3) as shown in Figure 4.2.5.2.7-4 to store the result in register four 

when the exponent difference is less than six and in register one when that



difference is greater than or equal to six. The results of step four are



shown in Figure 4.2.5.2.7-5(a).



Step five performs a right shift of the smaller operand, taken 

from register five, by the amount given in Table 4.2.5.2.7-3. The control 

ROM again uses DCADDR(l) and DCADDR(3) as shown in Figure 4.2.5.2.7-4 to



PnO DUCIBIhM] O'tH" 

pftiDNjaV t PAGE is Qonm 



132



-S 

CONTROL 
CONTROL -CUCADDR(i) CONTROL CUCADDR(3) 

DCADDR(1) r CONTROL DCADDR(3) F CONTROL 

SN74 852 SN74 H52 

CADDRESS(1) CADDRESS (3) 

CONTROL- CUBADDR(3) 

ZF CONTROL 

SN74VH52 

BADDRESS (3) 

Figure 4.2.5.2.7-4 Logic for Local Control of Operand Register Addresses 



133



Exponent Difference 6 	 Exponent Difference 6



0.0& 01j 	 LL34L510
 01110h..Is381353L6 	 JOOO 	1 31*3 4 	 S5 s6 o 0 s io1oo o oE 	 (a) 

SIEs S1$23 3 	 5 36 0 0 4 s S1 2 S3 34 S5 S6 0 ( 

1jesj000o3ol32 33 oiEs J0000 0 s0S3s 05 
j s S3 0IS 0 of IE1 031323 856o1k 

12L3$5 8 4 5 16 0 0 i L L2 314 L5
T.o! 	 L60I
 
l~ 0 318S23S3 
 0 0 Es 0 0 00 0 0 10 0(b 

1iEs 0 0 0 S1 	 S2 S3 0 0 1 IEs 0 0 0 0 0 0 0 


21Ex-61Xl X2 X3 X4 X5 X6 o 0 2 Ex-6E1 X2 X3 X4X5 x60 0 (c) 
31Ex-6Ex1X2X3X4 x5 x6 o o 3 Ex-61xX2X3X4 X5 x6 0 0 
4hEl s4 S5s6 0 0 0 0 o 4 El 0 S1 2 S3 s4 S5 IS6 0 

0 ElL 121314*L5 L6 0 0 OEl IlL2 L3L4 L5 L60 0


lEs 0 0 0 S1 S2 S3 0 0 1 000 0 0 0 0 0


2 E1-6 7 L8 L9 11o L11L12 L13 U4 2 E1-61L7 L8 L9 10 L11 L12 113 11 (d)


3Es-6 S7 S8 S9 S10 Sll S12 313 s14 3 Es-6 37 s8 39 S10 S11 S12 13 Slb 

o41El s4 S5 s6 o o o ko4El 1S23s4S5s6 	 0



0El IL2 L3L4 	 L5 16 0o 0 Ol E12 3k4 L5 16



2 Es 
 07 08
L9 0 L 
 I I2 
I30 I 0 
 s- L7 L8
 090
3 Es-6 o0 0 S7 	 s8 S9 S10 S11 3 
E 
Es-60000 0I 0I 0ILe
0 0 0 0



4 El s4 S5s6 0 0 0 0 o 4 El 0 S132 3 4 S5 s6 0



0 1 L2L314*L51L6oo0 OEl JL1L2 L31L4 L5161 0 
lies 0 00S1 s2 S3 0 0 lEs 000 00 0 0 0 0 
2 E1-6 L7 L8 L9 LIO LI L12 :L13 114 2 Ei-61L7 L8 L9 L10 Lii Ll2 L13 Li (f) 
3 Es-61s4 S5 s6 S7 S8 S9, lo Sll 3 El-6 0 313233SkA 5,s6 S7 

Figure 4.2.5.2.7-5 	 Alignment Steps in Double Precision Addition and


Subtraction



PlEPRODUTCIBLhW Or THE 
ORIGINAL PAGE I POO 



z 
ABS(1,3) ABS(4,4) ALIGN/ LEFT/ 

NORMALIZE RIGHT 

/SN 74 S260 - DSHIFT(1,4) 

SIG 8204 
DRLT8 

DLLT8 

DCADDR(1) DCADDR(3) 


Figure 4.2.5.2 7-6 The Details of the Double Precision Control Read-Only Memory 



135 

Shift Shift Amount 
a
Direction d < 6 d > 6



Left 6-d d 
Right d d-6 

Table 4.2.5.2.6-3 Signetics 8205 Control ROM Shift Amount 

During the Operand Alignment Phase 

store the result in register one when the exponent difference is less than 

six and in register four when that difference is greater than or equal to 

six. This shifted result must have its two low order digits both zero. This



is necessary for step eleven to compute a correct high order part. The two



low order digits, FRACT(25,8), are forced to zero by causing the two 8IG8263



selectors of the fraction selection logic (Figure 4 2.5.1.7-1) which produce



these bits to emit zeros during this step. This is accomplished by setting



both bits of their selection signal to zero and their complement signal also



to zero (see Table 4.2.4.2-1). The results of this step are shown in Figure



4.2.5.2.7-5(b).



Step six loads registers two and three with the low order part of



X. Step seven is similar to step two. The contents of the S flip-flop, as 

shown in Figure 4.2.5.2.7-4, are used to direct the low part of Y to register 

two when Y was the larger operand in step two, and to register three when Y 

was the smaller operand in step two. The state of the registers after step 

seven is shown in Figure 4.2.5.2.7-5(d). 

In step eight, a normal floating point alignment operation results



in a shift right of the smaller lower order part, taken from and returned to



register three, by the amount of the exponent difference. The result of this 



136



step is shown in Figure 4.2.5.2.7-5(e). Of course, when the exponent dif­


ference exceeds seven, the contents of register three after this step is



zero. Step eight combines the contents of register three and four by addi­


tion with forced alignment shifts of zero places to produce the correct low



operand for the addition or subtraction step. The result of this step is



shown in Figure 4.2.5.2 7-5(f). At this point, the two high order operands



are in registers zero and one, and the two low order operands are in



registers two and three.
 


The actual addition or subtraction process is complicated by the



fact that sign-magnitude representation is used for floating point values in



this design. The actual operation which must be performed depends not only



on the instruction being executed but also on the signs and relative mag­


nitudes of the operands being processed. If one of the operands is zero,



the result is the other operand, possibly with its sign reversed. If two



operands with equal exponents are to be added, the actual operation performed



depends on their signs. When the signs are the same, the magnitudes are



simply added, and the sign of the result is that shared by the two operands. 

However, when the signs differ, the smaller magnitude must be subtracted



from the larger, and the sign of the result is that of the larger operand. 

During double precision addition and subtraction, the function which the
 


adder must perform is usually determined by the high order parts of the 

operands. But, for example, when the signs are unlike during an addition, 

the relative magnitudes of the low order parts of the operands will deter­

mine the operation when the high order parts are equal. In step nine, the 

D flip-flop of Figure 4 2.5.2.7-7 is set according to the truth table in 



137



ABEXEQ



WS5N74S04



ABEQ



SN74SIl 

-/SN74S74 CONTROL 

'SN7SIICLOCK

II-


D DBAR



Figure 4.2.5.2.7-7 The D Flip-flop Logic 



138



Table 4.2.5.2.7-3. For this step, the two high order parts are passed 

through the logic, and the adder function which they require is determined 

by the Signetics 8205 read only memory of Figure 4.2.5.2.7-8. The adder 

function is stored in the NAT8551 tri-state register, but the result of the 

operation is not stored in the operand registers. The D flip-flop is set 

to a logic zero when the high order parts of the operands determines the func­

tion; the D flip-flop is set to one only when both the high order exponents 

and fractions are equal, so that the low order parts must determine the 

function. The operand registers at the end of step nine are the same as they 

were previous to this step. However, the D flip-flop and the NAT8551 are set



by the step for use in step ten.



Input Signals D Flip-flop 

ABEXEQ ABEQ Setting Comments 

0 0 0 Operands not equal 
0 1 1 The operands are equal 
1 0 0 Operands not equal 
1 1 0 Operands not equal 

Table 4 .2.5.2.7-3 Truth Table for the D Flip-flop 

In step ten, the low order parts of the operands from registers 

three and four are added or subtracted using the contents of the NAT8551 

when the D flip-flop setting from step nine is zero and using the output of the 

SIG8205 control ROM when the D flip-flop setting from step nine is one. 

When the relation of the low order operands should determine the adder func­

tion (that is, when the D flip-flop is one), the SIG8205 function output is 

clocked into the NAT8551 during step ten processing. The high order carry 

out of the adder during step ten is saved in the carry flip-flop, C. This





D 

CONTROL DBARCONTROL DA 

CLOCK


CONTROL
9-BIT ADDRESS CONTROL CONTROL 

SIG8205 
ROM 

SSN74S51 

SN74 H52 fSN74551
ABEXEQ 

CLOCKSELECT SN74S257 ENABLE 

_READ



___NAT8551 ENABLE 

AFUNCI(1,4) DFUNC(1,4) 

Figure 4.2.5.2.7-8 The Logic for the AFUNC(1,4) and DFUNC(1,4) Control Signals





14o 

carry must be propagated to the high order operation, which occurs in step



eleven. The results of step ten are shown in Figure 4 2.5.2.7-9(a). The



low order result is stored in register three. The normal operation of the



fraction selection logic is aborted for this step, no right shift is per­


formed if a fraction overflow occurs. Instead, the carry flip-flop contents



propagate the overflow condition to the high order operation.



Step eleven uses the function stored in the SN74S670 and the carry



stored in the carry flip-flop, C, to compute the high order part of the re­


sults. So that the carry can propagate across the eight low order bits



which are ones in both operands (active low zeros), the two low order SN74S157



quadruple two-to-one selectors which select the output of the wire AND shown



in Figure 4.2.5.2.7-1 are made to supply zeros (active low ones) by setting



their strobe inputs to one for this step only. The result of this operation
 


is shown in Figure 4.2 5.2.7-9(b). The left part of the figure shows the



case for which no fraction overflow occurs, the right part shows the result



when fraction overflow does occur The high order part of the result is



left in register zero and the low order part in register two by this step.



The one bits introduced to propagate the carry must be removed by



the fraction selection logic. The two SIG8243 three-to-one selectors which



forced the two low order digits to zero in step five are used. They operate



under processor control to force two digits to zero when no fraction over­


flow occurs, and they force one digit to zero when a fraction overflow does



occur



Step twelve shifts the high order part of the result left six





141 

Set Function from (0) and (1)



O02" 1 UL2 L3 L L5L 0 0 O Es LlL2L3 L4L5L6 	0 0


1 Es 0 0 0 SI S2 S3 0 0 lES 0 0 0 0 0 0 0 0 (a) 
2 Es-6 T7 T8 T9 T! II T12 4 2 El-6 T7 T8 T9 T10 TII T12 TI3 T14 

o 	 1 3 6l 1 0 0 0 K i lT2 T3 T4 15 1T6 0 
1 14( ) 

2 [k -6 [Tu y8 10 T l 12 13 
 1 j1-61T 'T8 T9 1 
 Tl 112 


0 ITi T2 13 T4 15 T6 0 0 0 Ei+1' i1 T2 3 14 15 I6 
1 1E1-61 0 0 0 0 0 0 0 0 1 EI-9 1T6 0 0 0 0 0 (c) 

[E1-6 17 T8 19 IO T11 1 T13T14 2 El-6 T7 T8 19 T10 111 12 T13 TI 

0~ 1 11 T 51 	 0 I+1 11 23 114 15 0 (a 

4 T T6 
oE16-_i T2 T39 100 T7 T8 	 12.12Tl2 	 13 

O El 111T21T31T4 T5 16 f0 0 0 El+1 i 11121T3 T4 T511T6 02

1 E1-6 I1T7 T8 T9 T10 	 Tll T12 T13 T14 1 1E1+3 1T6 T718 T9 110 Tll1 	 T13 (e) 

Figure 4.2.5.2.7-9 	 The Addition Steps in Double Precision


Addition and Subtraction





places and stores the shifted value in register one. The control ROM will
 


output the value six required to control the shift if the register zero



operand is sent through the logic as both the left and right operands. One



of the operands is forced to zero by its alignment shift logic, and the



other shifted six left passes through to register one. The results of step



twelve are shown in Figure 4.2.5.2.7-9(c).



Step thirteen is an ordinary unnormaljzed addition of the contents



of registers one and two. The result is stored in register one, and it is



the correct low order part for the double precision operation. Steps twelve



and thirteen served to transfer a possible T7 digit from the high to the low



order part of the double precision fraction. The results of step thirteen



are shown in Figure 4.2 5.2.7-9(d). The zero flip-flop is set to indicate



whether the high order fraction result of this step is zero.



In step fourteen, the high order part is passed through the logic



and two low order zero digits are forced by the fraction selection logic to



clear a possible T7 digit from the high order part of the result The



results of step fourteen, a correct but unnormalized double precision float­


ing point addition or subtraction result, are shown in Figure 4.2.5.2.7-9(e).



The result must be normalized. If the high order fraction is zero 

but the low order one is not, the logic which controls the adder function 

selection for double precision operations will not work correctly. The five 

steps which are required to normalize the result are shown in Figure 

4.2.5.2.7-10. The left column of the figure details with the case in which 

the high order fraction is zero, the right column treats the case in which 

the high order fraction is not zero. 

hV&0DUCI&iL1T OF 

t*IGINAL -PAGE IS 06O0t 



143



01 E 10 000 0 0 0 01 E0 0 1T3T4 6 10 0(a) 
T8 T9 T10 TII 112 TE-61 0 T8 T9 T10 TI T12 IT13 T14 1 

0 E-7 T8 T9T10 T111T12 T13 0 0 0 E- 3h1 6 0 T o o (b) 
1 E-6 0 18 19 110 111 T12 113 1 1 E-6 P7 T8 TI9 T1 1 TI4o 

2 E-7 0 089T10 0TO121T130 0 E-6 T7 T8 T9 T10 Tl0T20



0 000 0 0 1 ! 2 -6 00 049 T10 1T13
 T14
1 E-7E-6 0 T9TT8 T9T10 
T1 1201 T0 1 1 T7 T 0 	 0T006


0 E-7 TS T9 T10 T11 T12 T13 0 0 0 E-2 T3 T4 T5 T6 T7 T8 0 0() 

140
1 1E-131T4 0 0 0 0 0 0 1 E-8 T9 T10 T11 T12 T13 0 

Figure 4.2.5.2.7-10 	 The Normalization Steps in Double Precision 
Addition and Subtraction 



144



The first step of the normalization process uses the Z flip-flop



state and the logic of Figure 4.2.5.2.7-4 to select the register zero operand



when the high order fraction is non-zero and the register one operand when



the high order fraction is zero. The initial operands for normalization,



assumed results of the addition or subtraction, are shown in Figure



4.2.5.2.7-10(a). The results of this step, an ordinary normalization step,



are shown in Figure 4.2.5.2.7-10(b).



The second normalization step uses the values from register zero



and register one. The exponent difference is used by the control ROM in the



normalization mode to compute a right shift amount. Table 4.2.5.2.7-4



summarizes the function of the SIG8205 control ROM for the normalization phase



of double precision operations. The symbol "d" in the table represents the



exponent difference between the register zero and register one operands.



Shift High Order Fraction


Direction Zero Not Zero



Left 6+d 6-d



Right 6-d d



Table 4.2.5.2.7-4 Signetics 8205 Control ROM
 

Shift Amount During the 
Normalization Phase



The second normalization step shifts the low order fraction right



by the amount specified by the SIG8205 control ROM. The two low order digits



of the shifted result are forced to zero by the FRACT(25,8) selectors of the



fraction selection logic. The results of this step are shown in Figure



4.2.5.2.7-10(c). The shifted result is stored in register three.





145



The third normalization step adds the contents of registers three 

and zero and stores the result in register zero. The result of this step is



showm in Figure 4.2.5.2.7-10(d). The net effect of steps two and three is



the transfer of fraction digits from the low to the high order part of the



double precision fraction.



The fourth normalization step shifts the low order fraction left



by the amount specified by the SIG8205 control ROM. The shift amount computed
 


by the ROM is subtracted from the exponent of the low order operand so that



the final exponent result is correct. The amount subtracted from the exponent



is thirteen for the case when only one non-zero fraction digit is produced as



digit T14 of the addition or subtraction result. Thus, although the normali­


zation shifter is disabled so that it outputs a zero when the shift amount



exceeds seven, an amount of up to thirteen must be able to go from the SIG8205
 


to the exponent adder. The result of this step is a correct normalized



double precision addition or subtraction result. The zero flip-flop is set
 


on this step to indicate whether the low order fraction is zero.



The last normalization steptests the high order fraction for zero,



and ANDs the result of the test into the zero flip-flop (see Figure 4.2.5.2.12-1).



Hence, the flip-flop will be zero after a floating point double precision



addition or subtraction only if both fraction parts are zero.
 


4.2.5 2.8 Double Precision Multiplication



Figure 4.2.5.2.8-1 shows the partial products which contribute to



a double precision multiplication result. In this design, two double preci­


sion operands are multiplied to yield a double precision result The low



order part of that result is not produced. The figure displays the product





146



A (Al, AO) 

B = (BI, BD) 

AO'BO 

Al*BO 

AO*Bl 

AlBl 

Figure 4.2.5.2.8-1 The Partial Products in Double Precision Multiplication 



1 

147



of A=(Al, AO) by B=(Bl, Ba); Al and AO are the most and least significant 

part of the double precision number A, respectively. The products A!*Bl 

and AO*Bl are computed first; four registers store the product results. They 

are combined into two values by addition of the low order parts and propaga­

tion of the carry to the addition of the high order parts. The carry from 

the high order addition is saved for later addition to the high order part 

of the product Al*B1. The product Al*B1 is computed and the saved carry is 

added to the high order part. The high order part of the sum of the middle 

partial products is then added to the product Al*Bl. The carry is propagated 

across. Finally, the product AO*BO is computed. It is added to the low 

order part of the sum of the middle partial products, and the cary - if any ­

is propagated by two additions. 

Twentysteps are needed to complete the process.- They are-


Multiply: Compute Al*BO and store the high order part in register one.


The low order exponent of the final product is computed in


this step.
 


2. Store-	 Store the low order part of the product in register two.



3. Multiply: 	 Compute AO*Bl and store the high order part in register zero.



4. 	 Store Store the low order part in register three. The addition


with the low order part of A14BO which follows cannot be


done on the fly because the operands for the multiplication


must continue to be supplied by the operand registers.



5. Add Add the low order parts of the above products and save the


carry. Store the result in register two.



6. Add with 	 Add the high order parts of the above products together
 

carry: 	 with the saved carry from the low order parts. Store the



result in register one. Save the carry from this addition.



7. Multiply. 	 Compute Al*B1 and store the high order part in register 
zero. The high order exponent of the final product is


computed in this step.





148



8. Store: Store the low order part of the AI*B1 product in register


three.



9. 	 Add carry Add the carry saved from the previous addition to the high


order part to the A1*B1 product
 


10. 	 Add" Add the contents of register one to the low order part of


the Al*Bl product from register three. Save the carry out



of this addition.



11. 	 Add carry Add the saved carry from step (10) to the high order part



of the product in register zero.



12. 	 Multiply- Compute AO*BO and store the high order part in register


three.



13. Add 	 Add the high order part of AO*BO to the low order part of


the sum of the middle partial producrs. Save the carry



from this addition.



14. 	 Add carry Add the saved carry to the low order part of the final
 

result in register one Save the carry from this addition.



15 Add carry: Add the saved carry to the high order part of the final
 


result ,nregister zero.



The result of the above fifteen steps is the unnormalized double



precision product of the initial double precision operands. Five normaliza­


tion steps exactly like those which were used to normalize the double preci­


sion addition or subtraction result complete the operation.



4.2.5.2.9 	Double 	 Precision Division



Double precision division can be implemented by a process which



parallels that for single precision division described in section 4.2.5.2.5.



The initial approximation to the reciprocal is computed by a single precision



division. 	 An iterative procedure based on the equation 

I + X + X(l - Dx)
nl n ni n 

is carried out. We did not determine the number of iterations which would be 

required, but it would be two - perhaps three. The term "D" above is the
I 

REpRODUCIBILITY 	 OF THE 
ORIGINAL PAGE IS 	 POOR 



149



original double precision denominator, and the successive x terms are approxi­


mations to the reciprocal. Double precision multiplications are used to per­


form the iterations, and fixed point double length additions combine the terms



as they did in the single precision division case. A final floating point



multiplication by the original numerator computes the computation of the re­


quired quotient.



4.2.5.2.10 Multiplication and Division by a Power of Two



In many of the multiplications and divisions which the model exe­


cutes, one of the operands is a power of two. The logic described in this



section performs a multiplication or division by a power of two in one processor



cycle. The power of two in the operation is specified by a six bit value,



CSHIFT(1,6) of Figure 4.2.5.2.10-1. In a machine with an exponent radix of



two, all of these bits would be added to the exponent for multiplication by



a power of two and subtracted from it for division by a power of two. In



this design, however, the exponent radix is sixteen. Thus, the two low order



bits of the power of two determine a shift of the fraction, and the four high



order bits of the power of two are added to or subtracted from the exponent.
 


The control aspects of the logic are shown in Figure 4.2 5.2.10-1. The heart



of the process is the Signetics 8204 read only memory. It accepts CSHIFT



(5,2), the two low order bits of the power of two, the three high order bits



of the fraction, and a signal which specifies whether multiplication or divi­


sion by a power of two is desired. The output from the read only memory



controls the zero-to-three position shifter with a two bit amount and a one



bit shift direction signal, and it controls the exponent correction adder with



http:4.2.5.2.10


CSHIFT(1,6) 

CSHIFT(5,2)

HIGH ORDER



FRACTION BITS



SHIFT DIRECTION 

TRI-STATE SIG8204 ZERO TO THREH 
ENABLE READ ONLY POSITIONMEMORY SHIFT LOGIC 

EXPNEN SHIFT AMOUNT 

EXPONENT 1 
SELECT



EXPONENT CORRECTION 1 FROM THE DIVISION


ADDER FUNCTION 
 CONTROL ROM 

Figure h.2 5.2.10-1 The Control Logic for Multiplication and Division by a Power of Two





High Order
Fraction


Zero Bits 
 

Table 4.2.5.2.10-1 

2 
 

High Order


3
Fraction 
 

Zero Bits 
 

30 
 

1



Table 4.2 5.2 10-2 
 

151



Shift



0 1 2 3


R3 /l



/41 /,1 +1 

Control Details for Multiplication by a 
Power of Two 

0
01
01 0 

0 0 
 -
 -


0 3 L2 L31x


X0 /0 -0 X0 __________________ Shift _____________ 


0 i_ 2 3_



l R3 R2



Control Details for ltbilsion by a Power



of two





152



a one bit function signal and a one bit selection signal.



Table 4.2.5.2.10-1 gives the details of the control signals for



multiplication by a power of two, and Table 4.2.5.2.10-2 gives the details



for division by a power of two. The upper left part of each table entry



gives the shift amount and direction, the lower left part gives the exponent



adjustment.



4.2.6 The Instruction Set for the Processors



The instruction set for the processors is given in Table 4.2.6-1.
 


Separate classes of instructions with three, two, one and zero addresses are



included. An address usually designates a processor register or memory



location, but no more than one memory address is permitted in an instruction.



In some special cases noted in Table 4.2.6-1, an address designates and



operand other than a processor register or a memory location.



The first four operations in the table - addition and subtraction,



multiplication and division - were covered in detail in sections 4.2.5.2.3,



4.2.5.2 4, and 4.2.5.2.5 respectively. The AND, OR and XOR (exclusive or)



logical operation are implemented by using the corresponding logical opera­


tion of the SN74S381 arithmetic-logic unit of the adder (see Table 4.2.5.1.3-1).



Logical NOT is implemented by using an exclusive OR with a forced one operand



from a disabled alignment shift network. The MOVE operations are simple



transmissions of operands from one place to another. Normalization is dis­


cussed in section 4.2.5.2.1, the integerize operation is discusued in section



4.2.5.2.6. Comparison operation are simply subtractions which set the condi­


tion flip-flops, but not the operand registers. The mode setting instructions



use the mode logic of section 4.2.5.1.9 Combinations of sequences of





153



Address Operation Options Comments 

3 Add Round, Normalize, Sign Single & double precision 
3 Subtract Round, Normalize, Sign Single & double precision 
3 Multiply Round, Normalize, Sign Single & double precision 
3 Divide Sign Single & double precision 

3 Shift Normalize Multiply by a power of 
two 

3 Logical AND Exponent source 
3 Logical OR Exponent source 
3 Logical XOR Exponent source 
2 Move Register Memory Single & double precision, 

Sign 
Memory - Register Single & double precision 
Routing pattern - Register 

Register Register Single & double precision, 
Sign 

2 Compare Set the condition register 
Single & double precision 

2 Normalize Sign Single & double precision 
2 Integerize Normalize, sign 
2 Logical NOT 
2 Round Sign 
2 Set Status(i) + Mode @ Status(j) The "@" sign represents 

Mode, Status(i) Mode @ any one of the sixteen 
Status(j) possible Boolean opera­

tions on two variables. 

The two addresses desig­
nate the bit numbers "i" 
and "j" which select 
amoung the eight status 
register bits. 

1 Move Register -+-Routingdata -
Routing data Register 
Routing data + Memory 
Register e Status 
Status Register 
Register 0 Single & double precision 

1 Set Mode Mode - Mode @ Status(i) 
1 Route Addresses pattern 
0 Set Mode Mode e 1 
0 CU + Modes Mode 0 
0 Table-look-up 

Table 4.2.6-1 The Instruction Set for the Processors


in the Array





154



condition states can be stored in the status register of the mode logic, and



provide a simple way to implement complex testing procedures. Several instruc­


tions include the option to require a particular sign for the result. With a



sign-magnitude representation, absolute value and complementation operations



reduce to simple sign manipulations The sign logic of section 4.2.5 2.12.3



permits the normal result sign, its complement, a positive sign, a negative
 


sign, or the exclusive OR of the operand signs to be assigned as the sign of



the result.



The route instruction supplies a routing pattern address to the



routing network. The network stores sixteen pre-loaded routing patterns.



A routing instruction calls for the use of one of these pre-loaded patterns.



A built-in operand broadcast is also included. It causes an operand in one



of the 256 routing dis-assembly registers to be sent to every routing re­


assembly register. The control unit can load values into the original



dis-assembly register and retrieve value from the corresponding re-assembly



register. See section 4.3 for the details of the routing network.



The shift operation permits multiplication or division by a power 

of two as discussed in section 4.2 5.2.10 The power of two is a control 

unit operand of six bits in length. 

The exponent selection feature of the logical operations permits a



mask to be used for both selecting bits from a fraction and assigning an



exponent value from the mask word to the result. The final binary point



alignment can be achieved by a shift operation.





155



4.3 Processor Intercommunication - The Routing Network
 


In virtually every problem for which an array processor is suited,



the processors in the array need to exchange data values from time to time.
 


Indeed, the scope of the problems for which a particular array processor is



suited can depend on the flexibility of its data interchange network. The



data interchange network of this design -hereafter called the routing net­


work - is a three stage Clos network (Clos, 1953, Benes, 1965) Although



Clos proved that such a network can perform any permutation of the input



signals to the output ports, his proof did not provide a guide to a general



algorithm for controlling the network. This author is among a growing group



of people who would like to have such an algorithm.



The general form for a Clos network is shown in Figure 4.3-1, and



the specific form used in this design is shown in Figure 4.3-2. The author



is indebted to William Stenzel for many of the ideas which lead to the form­


ulation of the routing network in this form.



The last two stages of a Clos network form what Lawrie (1973) has 

called an omega network. In his thesis, Lawrie shows that an omega network, 

among other operations, can perform uniform circular shifts of arbitrary 

distance and direction. In later work, Lawrie and Wen (1975) have discovered 

sample control algorithms for the omega network which permit its use in 

partitioned form to perform several simultaneous circular shifts of indepen­

dent amount and direction within the separate partitions. For an omega net­

work such as we have in this design, the saze of all partitions must be an 

integer power of two, although the partitions may have various sizes. What 

must hold for each partition, however, is that with the input ports numbered 



n r . m m r n 

n xm rxr mxn 
CROSSBARS CROSSBARS CROSSBARS



Figure 4.3-1 The General Clos Three-Stage Network





16: 16 16 1 

16 x16 16 x 16 16 x 16 
CROSSBARS CROSSBARS CROSSBARS 

Figure 4.3-2 A Clos Three-Stage Network for the Design 



158



from zero to N-1, the index number of the lowest numbered input port of a



partition must be congruent to zero modulo the size of the partition. The



Clos network, of course, permits arbitrary partitions, but we have only been



able to find an algorithm for uniform shifts of one in either direction



within arbitrary partitions. Where other shift amounts are necessary, one



must either conform to the partition restrictions of the omega network and



use the Clos network as an omega network by sending the input operands



straight through the first stage of crossbars without interchange, or make



multiple passes through the general Clos network if non-omega suited parti­


tions must be used.
 


The details of'the interconnections between the crossbars in the



Clos network are given in Figure 4.3-3 for a two stage network of four by



four crossbars. The figure shows the sixteen input ports of the network



divided into four groups of four. The destination number, d, of a lead



from an ouput port source of the first stage, s, is given by



d = (s*N + g) modulo 

where all port numbers begin at zero, g is a crossbar number (beginning with 

zero), N is the number of input and output ports for an individual crossbar, 

and Nk is the total number of input and output ports of the network as a



whole. Every transmitting switch sends exactly one value to every receiving



switch in the next stage.



4.3.1 	 Routing Network Control



The following two sections describe the techniques needed to con­


trol the two stage omega network and the three stage Clos network. No hard­


ware is in the design to support run time execution of these algorithms.





159



OUTPUT INPUT 

GROUP PORT PORT 

NUMBER NUMBER NUMBER 


0 0 

0 2 ;] d= s* 4 mod 16 

V­
d=(s*4+1) mod 16 

d=(s*4+2) mod 16910 --- 10 

__ 11\/ 

313 d(s*4+3) mod 16 
14 14 
15 _15 

Figure 4.3-3 The Details of Inter-Stage Connections within the 
Routing Network 



16o



The crossbar implementation includes a memory to store sixteen four bit



routing control words for each data path (the 10145 of Figure 4.3.3 1-1).



A path from the data register to the memory input permits the control memories



to be loaded with values computed by the compiler or other software external



to the machine As we will see in section 6.2, this capability is sufficient



to support the general circulation model and several other algorithms of prac­


tical interest.



4.3.1.1 Control of the Omega Network



The omega network in this design is composed of two stages of six­

teen by sixteen crossbars. Sixteen is the square root of 256, the total 

number of input ports. The destination address for any data value which 

enters the omega network from the first Clos network stage is an eight bit 

number, the four high order bits are the number of the third Clos stage to 

which the value must be sent. The low order four bits of that address give 

the number of the output port of that crossbar to which the data value should 

be sent. Lawrie (1973) and Wen (1975) have shown that the omega network can 

perform all of the following useful data routings within suitable partitions: 

1 Circular shifts in either direction of any amount. 

2. 	 Uniform separation of a group of contiguous values (unless p, the ultimate 

separation distance, is relatively prime to the partition size, P, only 

P divided by the greatest common divisor of p and P elements can be 

"expanded"), 

3. 	 Elements originally separated by uniform separations p can be brought to­

gether. Again, unless p and the partition size P are relatively prime, 

elements separated by p units distance fail to wrap around, and only P 



1 10145 1 

3 SELECTION 1 ENABLE 
BITS BIT 

10101 

SELECTED BITS 
FROM 3 OTHER


16/1 SELECTORS



1 
Figure 4.3.3.1-1 The Logic for a One Bit Path Through a Sixteen by Sixteen Crossbar Switch





162



divided by 	 the greatest common divisor of p and P elements can be



processed.



4.3.1.2 Shifts of One Position in a Clos Network



The argument of this section presents a description of the cases



illustrated in Figure 4.3.1 2-1. Three types of interactions of partitions



with the crossbar switches of the routing network are shown.



As the diagram shows, no more than one value needs to move up from



one switch in the first stage to another in the third stage, and no more than



one value needs to move down from one first stage switch to another third
 


stage switch. If we send all values which must move up to the top switch in



the second stage and all values which must move down to the last switch of



that stage, we are guaranteed that there will be no more than sixteen such



values, and moreover, that no two such values need to go to the same third



stage switch. Values in partitions like "A", "D" or "E" can be routed 

straight through to the third stage, which can interchange them as required. 

Only if there are partitions such as "D" or "E" will there be less than six­

teen values which must move up and down. One value from such partitions can 

arbitrarily be sent to the top and bottom second stage switches to fill other­

wise unused positions 

This argument is difficult to extend to the case where shifts of



more than one position are involved, for then it is difficult to account



rigorously for all switch positions, and to insure that no second stage



switch recieves two or more values destined for the same third stage switch.



4.3.2 	 ECL Logic



The choice of ECL current mode non-saturating logic for the ample-


REPRODUCIBILITY OF THR 
ORIGINAL PAGE IS POOR 



163 

END-AROUND



E



Figure 4.3 1 2-1 The Possible Interactions of Partitions with 
Crossbar Switches 



164



mentation of the routing network was dictated by two factors first, we



want to be able to route a set of operands through the network in a time



comparable to that of a processor operation, and second, we want to minimize



problems with noise and signal cross-talk in the many cables of the routing



network. The differential pairs of the ECL family, while necessitating



rigorous balancing of line impedances, give - in return - effective isolation
 


of the ground and signal levels of the davang and receiving logic. These two ad­

vantages of ECL logic over TTL prompted the decision to design the routing 

network with ECL logic. 

The ECL logic packages used in this design are those in the series 

developed by the Motorola Corporation and usually referred to as MECL 10000. 

Many other manufacturers provide a second source for these circuits, and the 

reference used for the data on 10000 series circuits used in this paper is 

Signetics Corporation (1974A). In logic diagrams, ECL packages are labelled 

with their part number, which is uniformly five digits beginning with one and 

zero. 

4.3.3 Routing Network Time and Component Count Estimates



The routing network can be built either as a pure switching system



through which values flow in one step, or it may be built with registers in



each stage so that successive values may flow through it in pipeline fashion



A third option, not considered further here, is to build one stage of cross­


bars and cycle values through it twice for omega network operations and three



times for Clos network operations. In any case, crossbar switches for less



than the full forty bit width can be built and used in byte serial fashion.



Table 4.3.3-1 gives the details of a component count analysis for the pipe­




165



Component Counts



Components Plpelined Unit Non-Pipelined Unit



Per Bit Per Crossbar Per Bit Per Crossbar
 


10101 41 4 

10133 - ­

10145 -16 16 

10158 - 16 - 16 

1o164 2 2 -

Totals 16 * 2k* B + 36 16 * 2 * B + 36
 


Table 4.3.3-1 Crossbar Component Counts



C1os Network Omega Network



Pipelined Pipelined


Last Non-
Total Last 
 Non- Total 


Pipelined Time Stage Pipelined

Time Stage 


286 72 244 227 72 189



Table 4.3 3-2 Routing Network Propagation Times





166



lined and non-pipelined designs for a sixteen by sixteen crossbar in terms of


the parameter B, the width in bits of the data path through the crossbar


Table 4.3.3-2 presents the propagation time in nanoseconds through various


networks. Its values are derived by consideration of Figure 4.3.3-1 which


illustrates the hardware components through which a signal must flow in a


Clos network. (Also see section 4.3.3 1.) The total network switching time 

and the component count for one crossbar given in Table 4.3.3-3 for crossbars 

of all reasonable byte sizes. The expected cycle time of memory for the sys­

tem is nominally 500 nanoseconds. Table 4.3.3-3 shows that to keep the time 

for one routing step commensurate with this tame, either a twenty bit non­

pipelined network, a pipelaned Clos network for ten bit bytes, or a pipelined 

omega network for eight bit bytes should be built. The component count aspect 

of the issue makes it clear that the pipelned design is to be preferred. 

The 	 essential steps in the piplined implementation are



1. 	 Transformation of the data from the parallel form of the processors to



the byte serial form for the routing network,



2. 	 Transmission of the byte serial data through the routing network, and



3. 	 Transformation of the byte serial data back to fully parallel form.



The following two sections discuss the tranformation and transmission aspects



of the routing network hardware.
 


4.3.3.1 Data Transmission and Broadcasting



The data transmission logic is two or three stages of byte serial



sixteen input by sixteen output crossbar switches. The essential elements of



this network, the crossbar switches, are implemented by the logic of Figure



4.3.3.1-1, which shows the logic necessary to implement a one bit path.





167



SN74S195 (17) CLOCK 1 SN74S195 (17) CLOCK 1 

10125 7 10125 7 

50 50 

10164 5 10164 5 

10133 4 - CLOCK 4 

500 

50 NANOSECONDS 

1016 
10164 5 11 5 

10133 4 - CLOCK 3 
50 

50 

10164 5 

, 
10 NANOSECONDS1 101641 5 

5 50 

10135 4 .- CLOCK 2 

50 f 
10 NANOSECONDS 

10124 5 1012 5 

ISN74S195 17 - CLOCK 1 SN74S195 17 - CLOCK 1 

286 NANOSECONDS 244 NANOSECONDS 

PIPELINED NON-PIPELINED 

Figure 4.3.3-1 Clos Routing Network Timing Estimates 



168



Pipelined Non-Pipelined



Crossbar Namoseconds Crossbar Namoseconds


Byte Size Components Clos Omega Components Clos Omega



4o 1476 286 227 1316 244 189 

20 756 358 299 676 488 378



10 396 502 443 356 976 756



8 324 574 515 292 1220 940



5 216 790i 731 196 196 1512



Table 4.3.3-3 Component Counts and Network
 




10145 

3 SELECTION 1 ENABLE 
BITS BIT 

SELECTED BITS 
FROM 3 OTHER 
16/1 SELECTORS



. i 10133



Figure 4.3.3.1-1 The Logic for a One Bit Path Through a Sixteen by Sixteen Crossbar Switch





170



00 00T 10


01 10 1


10


10 
 

11 10 /10


Figure 4.3.1-2 Broadcasting with a Routing Network





171



The 10145 storage register shown in the figure stores the control bits for



all eight paths for one of the sixteen bytes through the crossbar. Three of



the four bits in a control signal select one of eight inputs as the output



of two 10164 eight-to-one selectors whose outputs are wire O~ed together.



The fourth control bit, complemented by the 10101 inverter, serves to decide



which of the two selectors is enabled and which is disabled. The 10158 quad­


ruple two-to-one selector permits either local or global control of the



switching path to be selected. The 10133 four bit latch holds the selected



result for the stage, these latches are the registers which permit pipelining
 


of the byte signals through the three stage network. Thus, each bit switched



through the crossbar requires two 10164 selectors, one quarter of a 10133



latch and a 1010 quadruple inverter, and one eighth of a 10158 selector and a



10145 register file.



A value from any of the 256 input-ports of the routing network can



be broadcast to all 256 output ports using only two stages of crossbars. The



process is illustrated in Figure 4.3.3 1-2 for a two stage network of two by



two crossbars. The low order part of the address of the desired broadcast



inpub determines the setting for all first stage crossbars, and the high



order part of that address determines the setting of all second stage cross­


bars.



4.3.3.2 Data Parallel-to-Serial and Serial-to-Parallel Conversion



The hardware which performs parallel-to-serial and serial-to-parallel
 


conversions resides in the processors as the dis-assembly and re-assembly



logic of Figure 4.5.2 3,7-2 This hardware is shown in successively more detail



in Figure 4.3.3.2-1 and Figure 4.3.3.2-2. Figure 4.3.3.2-1 shows a complete





172



FROUTE (36,5) 

TROUTE (36,5) 

TROUE (5,5}FROUTE( 21, 5) 

TROUTEE (26.5) 

TROUTE(21,5) 

TROUTE (16,5) 

FROUTE (6,5)



Figure 4.3. 3.2-1 The Parallel-ta-Serial and Serial-to-Parallel 
Conversion Logic 



173



FROM A 10125 

CLOCK 2 I



LOFROUTE (5)W 

FROUTE(4) 
F.-FROUTE( to 

"TRO UTE (5)
I) 

w-
FROUTE(2)L,,, 

LOCLOCK 1 L_ 

Ii 
- TROUTE (4)u FROUTE(1) 

0 
0- TROUTE(3) ' 

TROUTE(2) 

TROUT E(1) (n 

TO A 10124 

Figure 4.3.3.2-2 The Details of a Block of the Parallel-to-
Serial and Serial-to-Parallel Conversion Logic 

REpRODUCIBILTY OF TH 
ntIG-UNAL PAGE IS POOR 



174



forty bit dis-assembly and re-assembly register together with its associated



drivers and receivers. The SN74S195 four bit parallel in and pa rallel out



shift registers are TTL circuits which receive values from the operand



registers of the processor and transmit values to the fraction selector of



the processor. The 10124 differential drivers receive TTL signals from the



SN74S195 shift registers, convert them to standard ECL levels, and transmit



them in differential pair form to the ECL logic of the routing network. The



10125 differential receivers accept ECL differential signal pairs from the



routing logic and convert them to TTL levels.
 


The assembly-disassembly register hardware can be implemented with



fewer components for eight bit byte operation than for ten bit byte opera­


tion. The discussion of the next paragraph discusses an eight bit byte
 


design. The eight bit design requires sixteen SN74S195 register whereas the



ten bit design requires twenty. Furthermore, the eight bit design uses only



four ECL 10000 series components, the ten bit design uses six.



Figure 4 3.3.2-2 shows the details of one of the SN74S195 blocks



of Figure 4.3.3.2-1. Table 4.3.3.2-1 lists the eight steps which are used to



transmit a forty bit value through a Clos routing network in five eight bit



bytes. In step one, five consecutive bits from the operand registers of the



processor are loaded in parallel into the SN74S195's shown using CLOCKl and
 


CLOCK2 in synchrony. The results of step one, taken from the serial output



pins of the eight SN74S195's (pin twelve), are available to the routing net­


work as byte one of the input.
 


Step two uses CLOCK1 and CLOCK2 in synchrony again to perform a



serial shift which makes the eight bits of byte two available to the routing
 




175



Cycle CLOCK1 	 CLOCK2 Input Output 	 Comments



1 1 	 1 forty bits byte one Parallel load from operand


registers



2 1 1 none byte two Serial shift



3 1 0 none byte three Serial shift


4 1 1 byte one byte four Serial shift
 

5 1 1 byte two byte five Serial shift


6 0 1 byte three none Serial shift


7 0 1 byte four none Serial shift
 


8 1 1 byte five none Serial shift
 


Table 4.3.3.2-1 	 The Steps in Data Transmission Through a Clos


Routing Network



Cycle CLOCK1 	 CLOCK2 Input Output 	 Comments



1 1 1 forty bits byte one Parallel load from operand 
registers 

2 1 1 none byte two Serial shift 
3 1 1 byte one byte three Serial shift 

4 1 1 byte two I byte four Serial shift 
5 1 1 byte three I byte five Serial shift 
6 0 1 byte four none Serial shift 
7 1 1 byte five none Serial shift 

Table 4.3.3.2-2 	 The Steps in Data Transmission Through an Omega


Network





176



network; at the end of this step, no data remains in the upper SN740195 of



each pair. Step three uses CLOCK1 alone to shift the third byte into output 

position. At the end of step three, the first three data bytes are in the 

register of the routing network pipeline. On step four, CLOCK1 is used to 

supply byte four to the network and CLOCK2 is used to receive the first byte



of the routed result from the network. Steps five through eight complete the



routing process. On step eight, CLOCK1 and CLOCK2 are used in synchrony to



accept fifth and last byte of the routed result. Although the design presented



is used with forty bit parallel inputs, it is clear that the technique



described by Table 4.3.3.2-1, with the addition of one more step which uses



both clocks in synchrony, could be used to transmit data words of up to forty­


eight bits in six bytes of eight bits each Because latches and not master­


slave flip-flop are suggested for use in the crossbar switches, clock signals



controlling the flow of data through the network and logic of this section



would probably have to be applied in time starting with CLOCK2 (and for step



eight, CLOCK1 and CLOCK2) of Figure 4.3.3.2-2 and proceeding in succession



from right to left through the three stages of the routing network of



Figure 4.3-2. In particular, CLOCK2 could never be used to both shift a bit



out for output use and in for input use at the same time.



The seven steps in the data transmission process for a two stage
 


omega network are given in Table 4.3.3.2-2. Because the two stages only hold



two data bytes in the pipeline, there is no spare step, similar to that in



the Clos process, so that the capacity of the network is limited to forty



bits in five eight bit bytes if the logic of Figure 4.3.3.2-1 is used for the



parallel-to-serial and serial-to-parallel conversion process.





177



4.3.4 Table Look Up 

A table look up facility is provided within the routing hardware



to support the table look up needs of the model, primarily those of the long



wave radiation calculations. The table look up unit is shown in Figure 4.3.4-1.



One table look up unit is included for each of the sixteen routing units. The



hardware includes one processor memory module, an assembly dis-assembly



register like that of Figure 4.3.3.2-1, four SN74LS193 low power Schottky four



bit counters which form an address register, and four SNy457 quadruple two­


to-one selectors to determine the source of the memory address. The assembly



register receives data from port one of its corresponding first stage cross­


bar. The dis-assembly register delivers data to input port one of its



corresponding last stage crossbar.



The unit operates in two different modes. In the first mode, each



processor computes the address of the table value which it wants, using integer



arithmetic and the index adder discussed in section 4.2.5.1.11. The address



for the table entry for processor zero of each first stage routing crossbar



is clocked into the assembly register in two cycles. The data is read from



memory, dis-assembled and sent via the last stage crossbar back to processor



zero. The two address bytes from processor one could be clocked into the



assembly register as the last two bytes of data are clocked out to register



zero. This process continues until all sixteen words requested by the pro­


cessors have been delivered.
 


The second mode of table look up operation is table loading in



this mode, as initial table address is sent from an appropriate source. In



some cases, the address may be broadcast from the control unit, in other cases,



http:4.2.5.1.11


ASSEMBLY/ DISASSEMBLY 
REGISTER 

cO 

0- 0 

FROM THE 1 1 TO THE 
PROCESSORS ° PROCESSORS 

15 -­ 15 

FIRST STAGE LAST STAGE 
CROSSBAR CROSSBAR 

Figure 4.3.)4-i One of the Sixteen Table Look Up Sites 



179



an address unique to each table look up memory may be used: it is not neces­


sary that all look up tables have the same contents. The set of processors



can be partitioned by using the routing network to execute several programs



with different table contents simultaneously. The initial block address is



clocked into the register composed of the four SN74LS193 up-down counters. A



succession of table words from an appropriate source are sent; between words



the storage address is incremented or decremented by one as appropriate.



At this point, a further remark about the logic of Figure 4.3.3.2-1



is in order. If the bit assignments shown in the figure were strictly adhered



to, the eight bit bytes transmitted by the routing network would not correspond



to contiguous eight bit segments of processor operands. In particular, if the



processor is to be able to compute a table address and transmit it in two byte



transmissions to the table look up unit, an input bit order from that shown



in Figure 4.3.3.2-1 is required. Of course, the arrangement of the output bit



assignments can be reordered so that values are transmitted correctly by the



routing network. Suffuce it to say that the input arrangement is arbitrary,



and that an arrangement which supports the needs of efficient use of the table



look up unit can be used without harming the other operational needs of the



routing system.



4.3.5 Communication with the Control Unit and the Input-Output Channel



The routing unit forms the basis for intercommunication among the



elements of the machine as well as with the input-output channel and any pos­


sible future secondary storage. The main function of the routing unit, that



of providing communication paths between the processors, has been discussed



in previous sections. The following two sections discuss the use of the





180



routing unit in support of data flow between the control unit and the proces­


sors, and also in support of data flow between the machine and the perpheral



world envisioned for this design.



4.3.5 1 Communication Between the Array and the Control Unit



As we saw in section 4.3.3.1, two stages of the routing network



permit a value to be broadcast from any one input port to all output ports.



The control unit can, therefore, send a value to all processors if it can



transmit that value to any one of the input ports of the first routing unit



stage. It can receive a value from any of the processors by accepting a



value from any of the second stage output ports if that value has been broad­


cast to all of those ports by the first two stages of the routing network.



4.3.5.2 The Routing Unit in Support of Input and Output



Data transmission to and from a sequential external device on the



input-output channel can be supported by using the 256 eight bit registers of



stage one of the routing network as a large circular shift register. Informa­


tion to the control unit would enter any stage one input port and be broadcast
 


to the output port for the control unit in stage two. Information from the



control unit to the channel would flow through the control unit's input port 

and be broadcast to an output port which is connected to the channel



For volume data input from a sequential device, successive bytes



can be sent in through any stage two input port, broadcast to the third stage,



and clocked into the appropriate processor assembly register for subsequent



storage in array memory. Volume data output to a sequential device can be



broadcast from the first stage input ports in any desired order to all second



stage output ports. Any one of these can be connected to the channel.





181



Paths from a parallel access secondary storage device - not proposed



for the general circulation model - could be attached to consecutive input



ports of one stage shifted uniformly to the desired position in the next stage.



Although 256 parallel paths are conceptually simpler to deal with, any number



less than that can be accomodated by the joint use of mode and routing control.



Paths to a parallel access secondary storage device could be attached to the
 


second or third stage output ports, and blocks of data could be shifted to



those ports from either processor or control unit memory.



4.4 The Control Unit



The control unit must-provide control signals to operate the three



other main components of the design* the processors in the array, the rout­


ing unit, and the input-output channel interface. As we have seen in section



4.3.4, the bulk of the load for input-output control is the task of the



routing unit control logic.



4.4 1 Control of the Processor Array



By design, the processors are simple to control. For each step, a



set of control signals and one clock pulse are all that is required. The ob­


vious control mechanism is a read only memory in which the proper control sig­


nal sequence are stored together with simple hardware to interpret the instruc­


tion stream and send the appropriate sequence of control signals to the array.



The control unit can sample the status of any processor by examining



its mode, condition and status register contents by way of the routing network.



Figure 4.4.1-1 illustrates the three ways in which the control unit can access



the 256 MODEOUT signals from the mode logic of the 256 processors in the array.



An array of sixteen processors is shown in the figure, arranged in four groups





182



o0 i 0 010 0 0 011 0 1 0 0 00 0 (a) 

7 7 

101 

0 100010100110110001010 (b) 

0 1000 001 10100000Cc 

Figure 4.4.1-i Reception by the Control Unit of the MODEOUT


Signass





183



of four. In the design, the 256 processors would be arranged in sixteen groups



of sixteen, each four bit group of Figure 4.4 1-1 thus corresponds to a six­


teen bit group in the system. The control unit can access the logical OR of



all 256 MODEOUT bits as shown in Figure 4.4.1-1(a). It can access a sixteen



bit value whose bits represent the logical OR of the MODEOUT bits of the



processors in a sixteen bit group either of ways. In part (b), sixteen



contiguous MODEOUT logic bits are ORed to form one bit. In part (c), the



sixteen bits from corresponding positions in each of the sixteen groups of



contiguous processors are ORed.



Figure 4.4.1-2 illustrates the three ways the control unit can



supply the MODEIN bit to the mode logic of the 256 processors. All 256 MODEIN



signals can be the same, as shown in Figure 4.4.1(a). Sets of sixteen pro­


cessors can be supplied with a common MODEIN bit value in the two way il­


lustrated by parts (b) and (c) of Figure 4 4.1-2. In all cases, of course,



the MODEIN value can be combined with local control information stored in the



mode register and status register of each processor.
 


4.4.2 Control of the Routing Network



Control of the routing network - as section 4.3 makes clear - re­


quired sequences of synchronized and phased clock pulse interspersed with



shift control and selection signals. Although the precise nature of the con­


trol signals differs in kind from those for the array of processors, the same



technique can be used for the routing network as was used for the processor
 


array. The question as to whether two asynchronous control devices, one for



the processors, the other for the routing network, would prove cost effective



was not answered before work on the design ceased.





184



111 

Iiiioooo1iiii oo o ol b) 

Figure 4..1-2 Transmsson to the Processor Array of the MODEiN



Signal





5. Design 	 Testing 

The multiplier design was tested by constructing a hardware proto­


type, and the floating point addition logic was tested by simulation. The



following two sections discuss these two efforts.



5.1 	 The Logic Simulation System



Breuer has edited abook on simulatlion of computer systems, and one



of its chapters (Breuer, 1972) discusses logic simulators. Two classes of



simulation techniques are identified: the compiled code model and the table



driven model. In these terms, the logic simulator described here is a com­


piled code simulator.



In the bibliography for the logic simulation chapter, there are



references to many papers about logic simulation. The larger majority of both



the references and the chapter deals with gate level simulation. The simu­


lator of this paper is a package level simulation. The references uniformly



discuss how their authors constructed simulators, no off-the-shelf simulation



system suitable for package level simulation exists that does not require the



user to write his own package simulation routines. This view was confirmed



by conversation with Dietmeyer (1975). Since the bulk of the work in con­


structing the simulator presented here was exactly that of writing the package



simulation routines, the author feels that no duplication of available material



is represented by the simulator construction effort described here.



Figure 5 1-1 is a diagram of the logic simulation system. The



primary input to the system is a description of logic to be simulated A pre­


processor accepts this description and produces two items





186 

LOGIC 
DESCRIPTION 

INPUTGEIODRIVER 
PREPROCESSOR AND OUTPUT MACRO 

STRUCTURE STEPS LIBRARY 

ASSEMBLERLE 

LOICLOGIC I 360AS N 

ASIMULATOR TIMI N


Figure 5.1-1 Diagram of' the Logic Simulation System 



1. 	 An assembly language program, consisting entirely of macro calls, which



simulates the input logic, and



2. 	 A macro and a macro call which define the structure of a driving module



for the input logic.



Except for a few lines, the macro calls in output (1) above cor­


respond one-to-one with packages in the logic. Each logic function is repre­


sented by a macro which, when assembled, simulates the action of the package.



Some of these macros expand into executable code directly, while others expand
 


into subroutine calls on simulation modules which reside in a package library.
 


The macros, not the preprocessor, determine whether a compiled code or table



driven simulator results from the approach described here. Note also that



the complexity of the packages simulated can vary from simple AND, OR level



gates to single packages which perform a full fraction multiplication Al­


though the set of macros chosen for the particular simulator described here do



not permit it, a package could well be simulation module produced by the



system for a part of the subject logic, so that modular investigation and



debugging of a design can be supported by the technique described here.
 


Output (2) above consists of a macro called STEP, written by the



preprocessor, which is called by the user of the package. A STEP call results



in one execution of the subject logic with the values for the input variables



given in the call. The only other output included in (2) is a call on the



macro BEGIN with all of the input and output signals for the subject logic as



parameters. Execution of this call begins each execution cycle by setting the



time portion for each input signal to the maximum of the times from the out­


put signals of the previous cycle Assembly of output (2) together with a





188



handwritten series of STEP calls produces a module which exercises the,sub-


Ject logic.



By saving the logic object module and the input and output structure



description shown in Figure 5.1-1, the user of the simulation system can



execute the subject logic as many times as desired, having assembled it only



once.



5.1.1 The Logic Simulator Language and the Preprocessor



Tessler (1968) has defined a single assignment language as one with



the following properties:



1. Every statement is an assignment statement.



2. No two statements assign a value to the same variable.



3. No loops occur which cause the value of a variable to depend on itself.



With the relaxations of the third restriction described in later sections,
 


this language form is ideal for describing computer logic. The proper order



for execution of the assignment statements depends on the partial order



implicit in them variables which never are assigned values are input signals



to the logic, variables which are only assigned values and never referenced



are output signals from the logic. All other variables are internal signals.



The first executable statement uses only input signals on its right side,



and defines an internal variable or output signal. The process of selecting



executable statements continues until all statements have been selected or a



loop occurs.



The preprocessor accepts a set of assignment statements which de­


scribe the logic. These statements can be in any order. The topological



sorting algorithm given by Knuth (1968, pp. 258-263) is used to output the





189



lines in a correct order for execution. Loops and multiple definition of



variables are detected.



A line in the input language is an assignment statement which de­


scribes the action of one element (or package) of the logic. An input line



includes the signals which are outputs of the package, the function of the



package, and the signals which are the inputs to the package. Each line be­


gins with a list of the output signals from the package, this list is followed



by a colon. The function name follows the colon and is followed in turn by



a list of the input signals to the package. The line ends with a semicolon.



Signals names must be given to all signals which flow between pack­


ages, each bit of a given named signal maps one-to-one into a wire in the



physical realization of the logic. A signal name is an identifier which be­


gins with a capital letter and is followed by seven or less capital letters



or digits. (The signal name convention of the logic language was also used



in section 4 for the hardware description ) The eight character limit is



imposed by the use of the IBM 360 assembler which puts an eight character



limit on the symbol names which it accepts.) The identifier part of the sig­


nal can optionally be followed by a bit specification. A bit specification



is one, two or three integers enclosed in parentheses and separated by com­


mas, and is required when the named signal consists of more than one bit.



The bits of an N bit signal are numbered from one for the most significant to



N for the least significant bit. A bit specification with a single integer



specifies that bit of the signal which has that integer as its bit number.



In a bit specification with two integers, the first specifies the bit number



of the most significant bit of the signal and the second specifies the number
 




190



of contiguous bits in the signal. The third integer of a three integer bit



specification gives the difference between successive bit numbers for the bits
 


in the signal when that difference is not one. Table 5.1.1-1 summarizes the



signal naming conventions.



Signal Name Meaning 

A The one bit signal "A" 

B(3) Bit three of the multi-bit signal "B" 

B(1,32) Bits one through thirty-two of the multi-bit signal 
11B"1 

B(5,4) Bits five through eight of the multi-bit signal "B" 

C(1,2,4) Bits one and five of the multi-bit signal "C" 

Table 5.1.1-1 Summary of the Signal Name Conventions



The individual bits of the signals are the variables assigned by execution



of the lines. The preprocessor guarantees that no bit is assigned a value



more than once, and that every bit which is referenced has been assigned a



value.



Many packages, such as the SN71IS15T two-to-one selector, have one



output signal. Others, such as the SN74S182 look ahead carry generator,



have as many as fLive output signals. Every line which uses the same package



type should have the same number of input and output signals. The preproces­


sor prints a function usage summary for each package type which lists any



deviations in usage.



Frequently in the logic design described in section 4, there was



a need for constant logic one or zero signals. The logic description langu­


age includes the variables ZERO, ZEROS, ONE and ONES as built in variables



1> 



191



with the constant logic values which their names suggest. It also happens



that some of the output signals from a package with multiple outputs are



not used. Since the preprocessor questions (but does permit) the use of a



package with different numbers of output signals in different instances, the



built in variable UNUSED is permitted, its use is encouraged for the sake of



clarity.



The preprocessor also includes two built in functions. The OUTPUT



function prints the values of the input signals written for it as the first



time that all of those signal values are set in a logic simulation cycle, it



appears in the place assigned to it by the partial ordering process An



OUTPUT statement names no output variables, so that it begins with a colon.



The FORM statement is used to buildmulti-bit signals from shorter signals.



One instance of its use is to build an eight bit signal composed of ZERO and



ONE bits for input to the SN74SI51 eight-to-one selector which supplies the



EXO overflow indication signal described in section 4 2.5.1 12.4.



5.1.2 Timing by the Simulator
 


At run time, each named signal which occurs in the logic specifica­


tion is represented by the structure shown in Figure 5.1.2-1. The signal name



left justified in a blank filled eight byte field. The name is followed by



a half-word integer which is used to store the time at which the signal



received its value. The time for multi-bit signals which are set by the out­


put from several different packages is the maximum of the times for all such



package outputs. When knowledge of such time differences is important, multi­


bit signals can be split into several different parts for more detailed timing



information. The bits of a named signals are each represented by a byte, the





192



TIME S!!NL 


S8 	 9 10 11



SIGNAL NAME SIGNAL I	 EBITS 

Figure 5.1.2-1 	 The Format of the Representation of a Signal During 
Simulation 



193



string of bytes which represents the bits of the signal follows the time half­

word. The execution of an OUTPUT function prints the signal name, the bit 

specification numbers, the signal time, and the values of the specified bits. 

Each package that receives a clock pulse sets the time of that pulse



In this way, the first possible time at which the clock pulse could occur is



determined.



The following discussion describes the calculation for the value



assigned to the time for the output signal of an SN74S157 two-to-one selector.



The discussion will clarify the nature 6f the output signal time calculations.
 


As shown in Figure 5.1 2-2, the SN74S157 has four input signals and one out­


put signal. If the strobe signal is a logic one, the output signal is always



zero regardless of what the selection and A and B input signal values are.



In this case, the time assigned to the output signal is that for the strobe



signal plus the delay tame through the package for this case given by Texas



Instrument Corporation (1973). When the strobe signal is a logic zero, the



value of the selection signal determines whether the package output is "A" or
 


"B". In this case, the time assigned to the output signal is the maximum of



the selection signal tame plus its delay and the time of the selected input



signal plus its delay. The tame of the non-selected input signal is ignored.



5.1.3 Debugging Aides in the Simulation System



The simulation process for each package includes a test of each bit



of the input operand. Because each bit is represented by a byte of 360 memory,



it can assume more than the two states found in conventional digital logic.



Input signals which are ignored by the package are not tested, thus, the sim­


ulation of an 8N74S157 selector does not test the input and selection signals





INPUT A INPUT BI I 
SELECTION SN74SI57 STROBE



SIGNAL SIGNAL



OUTPUT


SIGNAL 

Figure 5.1.2-2 The SN74S157 Two-to-One Selector





195



if the strobe signal value is a logic one. It always tests the strobe bit



value.



During the early debugging of the simulator, this testing process



helped to identify the source of the error. The standard simulator response



to an improper bit value in a tested signal is to print an error message to­


gether with the standard output for the errant signal (that is, its name, bit



specification, time and bit values). Logic ones and zeros print as ones and
 


zeros; improper bits print as dots. The simulator halts and dumps memory when



an error occurs. Although the investigation was not carried to this point, the 

simulator could easily be altered, so that it would continue rather than



halting when an improper bit value is detected This action would help in



designing fault detection programs for the logic, since it would permit easy



determination of the propagation effects of an error Moreover, it would per­


mit identification and verification of those signals whose values, for a par­


ticular cycle, are of no consequence.



5.1.4 Simulated Packages with No Exact Hardware Analog



In the description of the left operand selection logic (section
 


4.2.5.1.5), the block in Figure 4.2.5.1.5-1 represented selection functions
 


rather than hardware packages. In many cases, simulation results are not



effected, but simulation time is reduced by permitting the simulation macros



to perform package functions in this approximate way. Thus, the macro which



simulates the SN74S157 two-to-one selector will accept input operand pairs of



any bit length from one to 256, and will produce an output signal with the



corresponding bit length. This deviation from exact simulation does no



violence to the logic function or the logic execution time of the simulated
 




196



logic.



5.1.5 	Loops



In section 5.1, we referred to relaxations of the restriction on a



single assignment language which prohibits loops. In real hardware designs,



loops do occur. Three different types of loops are present in the simulated



floating point addition hardware, and they are discussed in the three sections



which follow.



5.1.5.1 Loops and Storage Registers



The value of the zero flip-flop from a previous cycle must be used



to determine the action of the normalization process (see section 4.2.5.2.1



and Figure 4.2 5.2.1-2). Another example (which was not simulated) occurs in



the cases of the overflow flip-flop of Figure 4.2.5.1.12.4-1 and the under­


flow flip-flop of Figure 4.2.5.1.12.5-1 In both of these cases, the previous



value of the flip-flop occurs as a possible input to determine its subsequent



value. The loops which these cases give rise to should be broken by delaying



the execution of the line which assigns a new value to the register or flip­


flop until after all lines which reference the old value have been executed.



Preceedng the output signal name with an asterick has precisely this effect:



a line which contains an output symbol preceeded by an asterick is placed in



the output program after all lines which refer to the named output signal.



5.1.5.2 Apparent but not Real Loops
 


The logic of the index adder, shown here again as Figure 5.1.5.2-1,



appears to include a loop. The SN74S182 receives the carry generation and



propagation signals, IXG(1,4) and IXP(1,4), from the four SN74Sl8l arithmetic­


logic units, and returns the three carry signals, IXC4, IXC8, and IXC12, to





197 

IXCARRY



IXG4
CUADDR(13,4) 
O XP(4) 

A(21,4) z EADDR(13,4) 

IXC4 

CUADDR(9,4) () 

A(17,4) zEADDR(9,4) 

Iz
TXC8 

IXG(2)CUADDR(5,4) ~IXP(2) 

z EADDR(5,4)A(13,4) 

IXC12 

CUADDR(1,4) -XGi 
IXP(1) 

EADDR(1,4)A (9,4) 

IXMODE



IXFUNC(1,4) 
Figure 5.1.5.2-1 The Index Adder Logic





198



three of the SN74S181's. On closer examination, however, we find that the 

functions of the SN74S181 can be partitioned into two separate operations 

The generate and propagate signals depend only on the values of the inputs 

A(9,16) and CUADDR(1,16) and are independent of the carry inputs IXCARRY,



IXC8, and IXC12 The sum EADDR(1,16) depends on the input operands and the



carries. The apparent loop is broken in the simulator by implementing the



two separate functions of the SN74S181 (and also the SN74S381) as two separ­


ate pseudo-packages as shown in Figure 5.1.5.2-2. The S181GP package uses



the input operands A(9,15) and CUADDR(1,16) to produce the generate and pro­


pagate signals for the S182. The carries from the S182 package are used by



the S181 package, together with the input operand values, to produce the re­


quired sum.



Figures 5 1.5.2-3 through 5.1.5.2-8 are the computer output for the



simulation of the index adder Figure 5.1 5.2-3 shows the SYSPRINT file



which lists the logic description which was input, and summarizes the func­


tions used in logic and the signals which are inputs to the logic and outputs



from the logic. The first seventy-two characters of each input line are pro­


cessed by the logic simulator. Card input is assumed, and the last eight



columns of each card can be used for card sequence information. The entire
 


eighty columns of each input card are listed, and the function summary lists



the card number of the function card printed. If a function is used with



different numbers of input or output signals, all cards for that function are



printed in the function summary. This situation may or may not represent an



error, and the user can proceed to assemble and execute a simulator with this



sort of input. The response is completely determined by his macros which





199



IXCARRY 

O ( , 

JXE 
CUADDR(13,4)--­

EADDR(53,4 

A(21,4) --

EADOR(9.4 
I~XG(3) IC 

CUADDR(9.4)-- IXPA 

A(17,4) -

IXG(XC) 

CUADDR(5,4) - IxP(2)I 

EADDR(1.4)-EADDR(5,4) 

A(13.4)-

CUADDRUM,4 - XPl)-EORI 

IXFUNC(I,4) IXMODE 
SI81GP S182 Si 

Figure 5.1.5.2-2 The Apparent Loops in the Index Adder Logic


Removed





: OUTPUT CUADDR(1.16) A(t7,163 IXFUNC(1,4) IXMOOE IXCARRY ; 02/00100 

: OUTPUT IXG(I,4) 1XP(1.4) , 02/00200 
: OUTPUT IXC4 IXC8 IXC12 ; 02/00300 
IXG(I) IXPI) : S1BLGP CUADDR(I,4) A(17,4) IXFUNC(1,41 * 02/00400 

fXG(21 IXP(Z) : SIBIGP CUADDR(5,4) A12I,4) IXFUNC(1,4) ; 02/00500 
IXG(3) IXP(3) : S18IGP CUADDR(9,4) A(25,4) IXFUNC(I,4) , 02/00600 
IXG(4) IXP(4) ; SLBIGP CUADDR(13,4) A(29,41 IXFUNCtIl.4) ; 02/00700 

UNUSED UNUSED IXC4 IXC8 IXCI2 : S182 XCARRY IXG(,4) IXP(1,4) ; 02/00800 

EADDR(1,4) CARRY S181 CUADUR(1,4) A(17,4) IXC1Z IXFVNC(1,4) IXMODE ; 02/00900 

EADDR(5,4) UNUSED S181 CUADDRt5.41 A(21,4) IXC8 IXFUNC(1,4) IXMODE ; 02/01000 

EADDR(9,4) UNUSED S181 CUADDR(9,4) A(25,4) IXC4 IXFUNC(1,4) XMODE * 02101100 
EADDR(13.4) UNUSED S181 CUADDR(13,4) A(29,4) IXCARRY IXFUNC(1,4) 02/01200 

IXDDE . 02/01300 
* OUTPUT EADDR(1,163 CARRY , 02/0140O 

UNDEFINED SIGNALS



C

0 
0



OUTPUT SIGNALS 
 

CARRY


EADODR



INPUT SIGNALS



IXCARRY


A


IXFUNC


IXMODE


CUADDR



FUNCTIONS



UNUSED UNUSED IXC4 IXC8 IXCI2 S182 IXCARRY IXGIL,4| IXPII.41



EADDR(13.t) UNUSED : SI8I CUADDR(13,4) A(29,4) XCARRY IXFUNC(I1,4) IXMODE



IXG(4) IXP4 : SL81GP CUADORII3,4 A129,4) IXFUNC(i,4) ;



Figure 5.1.5.2-3 The SYSPRINT Output of the Logic Simulator



http:IXPII.41
http:CUADDRt5.41
http:CUADDR(1.16


DATA


CUADDR INPUT 16


IXC4 SIGNAL 01


IXC8 SIGNAL 01


IXCl2 SIGNAL 01


IXMODE INPUT 01


IXFUNC INPUT 04


EADDR OUT 16


IXG SIGNAL 04


CARRY OUT 01


IXP SIGNAL 04


A INPUT 32


IXCARRY INPUT 01


PROGRAM


S181 (EADDR,13,04)(IUNUSED),(CUADDR 13,O4h)dA,29,04)4(IXCARRY),(IXFUNC*



,O1,04),(IXMODE)


S18IGP (IXG,04),(IXPO4),(CUADDR,13,04),AA,29,04),LIXFUNC,O,04


S18IGP (IXG03b#(IXPO3),(CUADDR,09,04),IA,25.04)h(IXFUNC01,04J


SIBIGP (IXGO2),(IXPO21,(CUADDR,05,04h)(A21,O4),(IXFUNC,0t104


SI8IGP (IXGtO,)IXPOL),(CUADDROltO41,(A,1lO4hIIXFUNC01,04)l


OUTPUT ,(CUADDROll6),A,17,16),{IXFUNC,OO4),(IXMODE)h(IXCARRY)


S182 (UNUSED)d(UNUSED),(IXC4),4IXCB),(IXCI2).(IXCARRY)h(IXG,01,04),(IX*



Pv01,04)


OUTPUT v(IXG,01,04),IIXP,01,04)


S181 (EADDRO1,O4),(CARRY),(CUADDROI,04)h(A,17,O4)4IIXCIZ)v(IXFUNC,0l* 

#04) r IXMODEJ 
S181 (EADDR,05,04)LUNUSED),(CUADDRO5,04),(A.21,04),(IXC8ht(IXFUNC,01* 

v04)9(IXMODE) 
S181 (EADDR,09,04)(UNUSED),CUADDRO9,04h,(A,25,04)v(IXC4)d{IXFUNC,01* 

04 ),CIXMODE)


OUTPUT ,1IXC4),(IXC8),{IXCI2)


OUTPUT ,(EADDR,0116),(CARRY)


FINIS


END PROGRAM



Figure 5.1.5.2-4 	 The Assembler Program Output from the Logic Simulator


which is Written in the File DECK





MACRO


&G STEP CCUADDR=,&IXMODE=,CIXFUNC=,&A=,&IXCARRY=


&G FIELD (IXCARRYLOI),&IXCARRY


&G FIELD 1A,1,32)#&A


&G FIELD (IXFUNC,I,04),&IXFUNC


&G FIELD (IXMOOE,I,OI,&IXMODE


&G FIELD £CUADDR.I,16),&CUADDR 
STEPEND 
MEND 0 

PCEJECT 
 
MICRO BEGIN 02,CARRYEADDRIXCARRY,AIXFUNCIXMODECUADDR



Figure 5.1.5.2-5 The STEP Macro Output of the Logic Simulator which


is Written in the File MICRO
 




I 

= = X 2 34  
DDR XO A	 05/00100
STEP IXCARRY=OIXFUNC=IOIO,IXMODE=ICUA
 
05/00200
STEP IXFUNC=L11,CUADDR=X22 
 
05/00300
STEP IXFUNC=OOOO,IXMODE=O 
 
05/00400
STEP IXCARRY=1 
 

=
 STEP IXFUNC=IOO1,IXCARRY 1 	 05/00500

05/00600


STEP IXCARRY=0 
 
05/00700
STEP IXFUNC=0110 
 

= 1 	 05/00800
STEP IXFUNC=1111,IXCARRY


05/00900
STOP 
 
05/01000
END 
 

Figure 5 1 5.2-6 	 The STEPs Written to Drive the Index



Adder Simulation



0 



Figure 5.1 5.2-7 
 

BEGIN MICRO-STEP eXECUTIUN


CUADDR 01 16 00034 O000000010000I 
A 17 16 00034 000100100011010J 
IXFUNC 01 04 00034 Lilt 
IXMODE Ut 01 00034 1 
IXCARRY 0 01 00034 0 
IXG 01 04 00049 ItIL 
IXP 01 04 00049 0011 

IXC4 01 01 00056 0 
IXC8 U1 01 00056 0 
IXC12 01 u1 00056 0 
LADD 01 lb 00068 0000000000100010 
CARRY 01 01 00067 0 

BEGIN MICRO-STEP EXECUTION



CUADODR 01 16 
 0006d
 O000000000IOOLO


A 07 16 00068 0001001000110100


IXFUNC 01 04 00068 0000


IXMO0b 01 at 00068 0


IXCARRY OL 01 00068 0


IXG 01 04 00083 0000


IXP Ot 04 00083 0000


IkC4 01 01 00090 1


IXC8 01 01 00090 1


IXC12 01 00090
01 1


EAODA 01, 16 00102 0000000000100011


CARRY 01 01 00101 1



BEGIN MICRO-STEP EXECUTIUN


CUADDR 01 16 00102 0000000000100010


A 17 16 00102 0001001000110100


IXFUNC 01 04 00102 OUO0


IXMOOE 01 01 00102 0


IXCARRY 01 01 00102 1


IXG 01 04 00117 0000


IXP 01 04 00117 0000


IXC4 01 O 00124 1


IXC8 01 01 00124 1


IXCI2 01 01 00124 1


EADDR 01 16 00136 0000000000L00010


LARRY UI 01 00135 
 1



BEGIN MCRO-STEP EXECUTION



CUADDR 01 16 00136 0000000000100010


A 17 lo 00L36 000O10100010100


IXFUNC 01 04 00136 1001


IXtOIDE 01 Ot 00136 0


IXCARRY 01 00136
0t 1


IXG 01 04 00151 0000 
IXP 01 04 OL51 0010


IXC4 01 01 U0158 1


IXC8 01 01 00158 1


IXC12 01 01 00156 1


EAODR 01 Lb 00170 O00010U0OLO110


CARRY 01 Ot 00169 1



The First Half of the Output from the Simulation of the Index


Adder





BEGIN MICRO-STEP EXECUTION


CUADDR 01 16 00170 OOOOO00OOtuO010 
A 17 16 00170 0001001000110100 
IXFUNC 01 04 00170 LOI 
IXMODE OL 01 00170 0 
IXCARRY 01 01 00170 0 
IXG 01 04 00185 0000 
IXP 01 04 00185 0010 
IXC4 01 01 00192 1 
IXC8 01 01 00192 1 
IXC12 01 01 00192 1 
EADOR 01 16 00204 0001001001010111 
CARRY 01 01 00203 1 

BEGIN MICRO-STEP EXECUTION


CUADDR OL 16 00204 0000000000100010


A 17 16 00204 0001001000110100



IXFUNC 01 04 00204 0110


IXMODE 01 01 00204 0


IXCARRY 01 01 00204 0


IXG 01 04 00219 0000



IXP 01 04 00219 0001


IXC4 01 01 00226 1


IXC8 01 OL 00226 1


IXCI2 01 01 00226 1 
 
EADDR 01 16 00238 1110110111101110 
 
CARRY 01 O 00237 1



BEGIN MICRO-STEP XECUTION


GUADDR 01 16 00238 0000000000100010


A 17 16 00238 00010010001LO0



IXFUNC 01 04 00238 1111


IXMODE 01 01 00238 0


IXCARRY 01 01 00238 1


IXG O 04 00253 LLI


IXP 01 04 00253 0011



IXC4 01 01 00260 0


IXC8 01 01 00260 0


IXCI2 01 01 00260 0


EADOR OL 16 00272 0000000000100001


CARRY OL 01 00271 0



N)


0



BEGIN MICRO-STEP EXECUTION



END OF SIMULATION



Figure 5.1.5.2-8 The Last Half of the Output from the Simulation of the


Index Adder





206



define the package operations. Macros which accept a variable number of in­


puts can be written and used where desired. Figure 5.1.5 2-4 shows the assem­


bly program written to simulate the index adder in response to the input shown
 


in Figure 5.1.5.2-3. Figure 5 1.5 2-5 shows the STEP macro written to facili­


tate control of the logic. Figure 5.1.5.2-6 shows a list of input STEPS which



produced the simulator output shown in Figure 5.1.5.2-7 and 5 1.5.2-8.



In the appendix, the complete control card and input set up for the



simulation of the floating point addition and subtraction for the processor



is given. As shown in the listing, the OUTPUT built in function will accept



an integer value in the output field. This value can be used together with



an integer PARM to supress output. Only output with an output number less than



the PARM number is printed during simulation.



5.1.5.3 Sequential Logic Real Loops



An alternative design for the exponent adder, shown in Figure 5.1.5.3-1



includes the feedback characteristic of sequential logic. This design was not



used as the eventual exponent adder described in section 4.2.5.1.3 because it



is significantly slower than the adder described in that section, and the ex­


ponent adder stands directly in the center of a time-critical path in the



logic. This slower form performs a one's complement subtraction, feedback of



the high order carry is required to compute a correct result. The absolute



value of the difference is produced by SN74S86 exclusive OR gates which com­


plement the one's complement result when it is negative and pass it through



in true form when the difference is positive or zero. The logic was correctly



simulated, the technique used is shown in Figure 5.1,5.3-2. In this particu­


lar case, even when the so-called end around carry of the one's complement is





207



AEXP(1,4) BEXP(1,4) AEXP(5,4) BEXP(5,4) 

-EXFUNC(1,4) 

SN7'4SI81 SNY74S181 

EXC2 

SN74S 86
SN74S 86 

ABS(1,3) ABS(4,4) 

Figure 5 1.5 3-1 The Sequential Circuit for the Exponent Adder 



2o8 

AEXP(1,4) BEXP(1,4) AEXP(5,4) BEXP(5,4) 

SN4S181EXCARRYi 0 

SN74S181 SN74S181 

ABS(1,3) ABS (4,4) 

Figure 5.1.5.3-2 The Sequential Circuit for the Exponent Adder 
as it was Unwound for Simulation





209



a one, addition of that carry to the difference will not alter the carry. The



ones complement negative zero is complemented by the SN74S86 exclusive OR



gates. Hence, one pass around the loop always produces the correct result.



The simulation unwinds the loop and expresses it as shown in the figure.



5.1.6 	 Wiring Lists



An original goal of the logic simulation system was the production



of wiring lists from the logic description for the debugged logic. Work to­


ward this goal was not performed, and the techniques used to avoid loops de­


scribed in section 5.1.5.2 and 5.1.5.3 make the production of wire lists more



difficult. The use of packages for arbitrary length operands, described in



section 5.1.4, addsto the problem of wire list production. The technique of



section 5.1.4 is a convenience used to reduce the length of the logic descrip­


tion and speed up the simulation execution. The loop avoidance techniques,



on the other hand, are necessary deviations from an exact line to package



one-to-one correspondence. Another obstacle in the way of wire list produc­


tion is the use of implicit input signals, such as constant logic one inputs



to AND gates which, in physical form, have more input than the particular use



requires. In the simulation of the floating point addition and subtraction



hardware which was performed, several packages which have strobe input sig­


nals like that of the SN74S157 were simulated without providing for this in­


put. The assumption implicit in this practice is that the missing strobe sig­


nal is always to be connected, in the actual hardware, to a logic zero.



All of the cases which appear to cause trouble can be treated in a



simple way except the sequential circuit case. Implicit input signals and
 


non-standard signal lengths can be easily accounted for. The correct associ­




210



ation of the S181GP and S181 pseudo-package can easily be made on the basis



of the common signals which both share. In the sequential circuit case, how­


ever, different signals names are required by the very nature of the feedback



situation to break the loop brought on by that feedback situation. The



author sought but was unable to find a technique like that of the asterck 

notation 	 for register values for such signals.



5.2 	 The Multiplier Prototype 

The great bulk of the multiplier design described here was done by 

William Stenzel and wll be described in detail in his master's thesis 

(Stenzel, 1975). 

The facilities of the Computer Science Department shop limited us



to two-sided boards with maximum dimensions of fifteen inches by eighteen



inches. In practice, these are not confining limits, since we had decided to



use two-sided boards throughout the design, and a fifteen by eighteen inch



board is about as large as one can practically use. The multiplier logic con­


tains ninety integrated circuits which require a complicated data intercon­


nection pattern. With the help of the etched power and groundbuss structure 

suggested 	 by Mr. Frank Serio, we were able to design and build a one board



multiplier prototype. Power and ground distribution, often the third and 

fourth layers of a multi-layer board, were provided by etched distribution 

systems. A diagram of the scheme is shown in Figure 5.2-1, and Figures 5.2-2 

and 5.2-3 show the artwork for the power and ground systems, respectively. 

The thin 	 strips of the buss systems run between the rows of pins of the dual­

in-line circuit packages of the logic. Pins at the appropriate points connect



the integrated circuits to the power and ground distribution system. The





211



&-~o 
i 0 o 

o0 

DUAL IN-LINE 

PACKAGE



CONNECTION ETCHED 

BOARDp</ON THE 

PRINTED GROUND Vcc INSULATING TAPE 
CIRCUIT BOARD 

Figure 5.2-1 Details of the Power and Ground Bussing System 



212



Power Distribution 
Artwork



Figure 5.2-2 
 

'a oIrc1U B1g'L Op ON 

oP-tGINAL PANGE IS VOOph 



213



Figure 5.2-3 Ground Distribution System Artwork 



214



etched circuits of the system are insulated and attached to the board by 

insulating tape. 

After several interations, Ms. Stenzel decided on a board layout 

which places the integrated circuit components in a horseshoe arrangement at 

the periphery of the board with the input lines running up the center of 

the component side of the board and the output signals running down its out­

side edges. The component and solder sides of the resulting board are shown 

in Figure 5.2-4 through Figure 5.2-7. 

The sum of the maximum operating times of the integrated circuits in



the multiplier logic is 264 nanoseconds, and the sum of the typical operating 

times is 189 nanoseconds. Several stages of testing and refining the ground 

transmission by the cabling have shown that the multiplier will operate reli­

ably at cycle times as low as 200 nanoseconds. The original cables which pro­


vided the input to the board and received its output were twenty-six conductor



flexible ribbon-type cables. Twenty-four conductors of each of four cables



were used to transmit the twenty-four bits of each of the two input operands



and the forty-eight product bits. To obtain satisfactory time and noise per­


formance from these cables, we found it necessary to shield each of them with



copper tape ground planes. Therefore, we feel that the eventual system should



use nothing less than cabling which will transmit interleaved ground and



signal pairs between boards.





"

215



I 
M 

C E S 
00 COMIKINENT SIDE •• 

@~ ~ 

: 
 

mme,A"
• .



"•13


tI 

3 .f 
•
• @U@EIMww
mm 
 

AEI1001ASGNLIt•



Figure 5.2-4 Multiplier Prototype Board; Component Side



REPRODUCIBILITY OF H 
ORIGINAL PAGE IS Poo 



Figure 5.2-5 Photograph of the Component Side of the Multiplier Board





217



I- * * . . . . • • 0 • • • • 0 0 0 

I 
L 

Figure 5.2-6 Multiplier Prototype Board; Solder Side



REPRODUCIBILITY OF THE 
ORIGINAL PAGE IS POOR 



218



of the Solder Side of the Multiplier Board 
Figure 5.2-7 Photograph 

.-EPRODUCIBILITY OF THE 

ORIGIhAL PAGE IS POOR 



219



6. System Performance



This group of sections will evaluate several aspects of the perform­

ance of the machine In the first section, we will discuss the execution on 

time for operation cycles of the processors with information derived from the 

logic simulation work. The other sections will evaluate the effectiveness of 

the design for the weather model, matrix inversion, image data processing and 

information retrieval. 

6.1 Processor and Routing Unit Cycle Times



The simulator indicated that the time for a floating point addition



or subtraction was 256 nanoseconds. Two selector stages and the operand



registers, all of which are in the operation cycle for the complete processor,



were not included in the simulation. Inclusion of these elements would in­


crease the time measured by the simulator to 336 nanoseconds. This figure
 


represents the sum of the maximum propagation time through the logic elements.



As the experience with the multiplier has shown, it is not unreasonable to



expect this time to be achievable. On this basis, we estimate that a reason­


able operation cycle time for the processor logic is 350 nanoseconds. The



logic description of the processor given in section 4 did not include any



extra logic to reduce the cycle time for frequently occuring special cases.



Replacing the fraction selection logic of Figure 4.2.5.1.7-2 with that shown
 


in Figure 6.1-1 removes the adder and the left and right operand selection



gates from the path taken by normalization and multiplication results. The



simpler but slower design assumes the use of one constant clock frequency to



control the operation cycle of the processor. Adding extra paths implies the



need for different operation cycle times, so that more complicated clocking





2 20



suM(25,8) 
ThOUTE(25,8)

1H


H 

PROT(2S,8) 
 
STJM(25,8) 
SUM(21,8) 
 

0 
ro 

FRACT(25,8)


STATUS(1.8) 
 
FROUTE(17,8) 
 
PROD(,8) 
 
PROD (17,8)

SUM(iy,8) 
 
SUM(13,8) 
 
(C,Z,SIGN,O,U)


HLI 

02 

Co 

-- FRACT(17,8)


FROUTE(12,5) 
 
PROD(36,5 )

PROD(12,5) 
 

SUM(12,5)
STYm(% 5) 

-


H 

, 

FRACT(12,5)


suM(5,7) 
 
FROUTE (5,7)

PROD(2 9 ,7) 
 
PROD(5 ,7)

suM(5,7)

SUJM(1,7) 

, 

mRACT(S,)


IQ 
-, 

sUM(4) 
FIROUTE( 4 ) 
 
PROD(29 )
PROD ()4PRD4)


H 
HFCD- FRACT(4)


SUM(4) 
0


1 
FROUTE(2,2) 
 
PROD(26,2) 
 
PROD (2,2) 
 

SUM (2,2)


11


-
H 
H


-
 FRACT(2,2)


0 
FROUTE(1)

PROD(25)

PROD(1) 
 

s8m(1) 

-
H ­
i 

-_ ,/ 
mC(1


Figure 6.1-1 An Alternative to the Fraction Selection Logic





221



logic would be required. The increased complication occurs only in the con­


trol unit, however, not at the processor level. A complete analysis beyond



that permitted by the information we now have about the system is required to



decide how cost effective such enchancements would be.



Few of the arithmetic operations which the model will actually use



can be performed in only one processing cycle All normalized results require



at least two cycles A normalized multiplication will probably require three



cycles unless a logic enchancement like that mentioned in the previous para­


graph is used. On the other hand, the compare,normalize, integerize and all



of the move operations will take only one cycle.
 


Work which was not completed was to have experimented with proto­


type routing hardware. The results of this work would have provided a basis



for estimating the operation time of the routine network. The principle un­


known factor in this part of the design is the time required to send the sig­


nals through the cables connecting the switches in the routing network. In



section 4.3 3, we estimated the times for the routing unit by assuming cable



transmission times of fifty nanoseconds. The estimate given there for the



operation time of a pipelined unit with eight bit paths was 542 nanoseconds.



This estimate will have to stand, since we have no information about the



actual behavior of a prototype for this logic.
 


6 2 Performance of the System on the General Circulation Model



There is no subroutine of the general circulation model which is



small enough to serve as a reasonable test case for timing estimates. The



only parts of the model for which 360/95 times are available are the large



COMPl-COMP2, COMP3, and the radiation subroutines. The subroutines COMP1 and





222



which form the core of the model, exist as two separate subroutines only be­


cause the logical unit which they form is too large for complication by the



IBM FORTRAN H compliler (Karn, 1974). Evidence for the applicability of the



array computer architecture is found, however, in the results of the effort



by GISS to run their model on the ILLIAC IV, (Karn, 1975) which are presented



in Table 6.2-1. The table shows the ratio of ILLIAC IV to 360/75 processing



times for three parts of the model. During the time these figures were mea­


sured, the extensive facilities of the ILLIAC IV control unit,which are in­


tended to speed instruction decoding and overlap the execution of parts of



array instruction were disabled; this accounts for the relatively low ratio.



With all of the features of the control unit operational, these ratios should



all increase by a factor of three. The poor performance of ILLIAC IV on the



radiation routine is a direct result of the fact that the 3000 word table



which is used by this routine had to be distributed across the memories of



all sixty-four processing unit memories in the array. As a consequence, 

table access by a processor to a particular table value was very time con­

suming. This very result prompted the inclusion of the table look up facili­

ties in the current design. The last line of the table gives the performance 

figures for a new radiation algorithm designed for use on parallel machines. 

It uses more computation and less table space, so that - on ILLIAC IV - the 

required table can be stored within the memory of every processor. 

Rather than attempting a timing exercise for the model on the de­


sign, we will present an analysis of the efficacy of the routing network in



supporting the data communication needs of the model. Figure 6.2-1 is a



schematic representation of the grid of the general circulation model. Each





Code 360/95 
Segment Time 

(seconds) 

COMPI 12.78 

COMP3 6.54 

Radiation 57.90 
(Large Table) 

Radiation 
(Parallel algorithm) 

Table 6.2-1 Relative Timing 


223



ILLIAC IV 
Time 

(seconds of CPU 
time only) 

Time Ratio 

2.36 5.42 1 

1.54 4 25 1 

187.65 1 : 3.25 

33.00 1 76 


of the ILLIAC IV and 360/95 Models



1 



224



TROPOSPHERE 

-77 

S
SURFACE 
 

Figure 6 2-1 A Schematic Representation for the Grid of the


General Circulation Model





225



sphericalshell is shown as a rectangle. The north and south edges of each



rectangle represent the north and south poles at the various vertical levels.



Figure 6.2-2, based on Arakawa (1972), Tsan (1973) and Mintz (1974), shows the



types of interactions between points of the grid which occur in the model.



The interaction of the vertical levels is very simple. All of the horizontal



interactions require simple access to one neighboring value (or a sequence of



these operations) except the case which requires that the set of polar values



be averaged to produce one common value



The horizontal averaging shown in the figure is required to over­


come the effect of the convergence of the meridians at the poles. If the



Courrant stability condition - cAt < Ax - (Fox, 1961) which relates the maxi­


mum velocity to the inter-grid point spacing would require a very small time



step over the entire grid for numerical stability All models violate this



condition, and use a larger time step than the small polar inter-grid distances



permit. The resulting instabilities in the polar regions are removed by



averaging several meriodnal values; the number of averaging iterations increase



as the latitude approaches the polar regions. This zonal smoothing occurs



even in the split grid model, although to a lesser degree. Because of this



zonal smoothing, there is a clear inherent preference for parallel computation



on circles of constant latitude. This approach is the best way to maximize



the efficiency of the computation by maximLzing the number of processors



actively contributing to the results at any time.



For the next decade, GISS will be interested in models of two dif­


ferent horizontal resolutions (Halem, 1974). Both models have fifteen verti­


cal levels The two horizontal resolutions are





226



Horizontally


NS



LEW
1+1, ~J-i


ijj


j-1, 
 J+l



3
11, 
 

lJ !+1, J



l, 1 
A 1-A 1,,j­


j 

AVBX horizontal averaging



Pole Special Case Z of all values on the pole latitude "ceircle"t



Vertically



Figure 6.2-2 The Ranges of Interactions Between Points



in the Finite Difference Grid





227



1. 	 a model with 128 points around its equator and ninty-six circles of lati­


tude, which we will call the 96x128 grid, and



2. 	 a model with 256 points around its equator and 192 circles of latitude,



which we will call the 192x256 grid.



In the next two sections, we will discuss the two primary variations of the



model- the UCLA rectangular model and the Giss split grid model. A third



section will discuss the common problem of computing the average of all polar



values



6.2 	 1 The Rectangular Model



In this model, all latitude circles have the same number of points.



The 192x256 grid fits the machine very well; the entire array is treated as



one circle of size 256. All of the processors are always fully employed. For



the 96x128 model, the array can be treated as two circles of size 128. Four­


teen of the fifteen vertical levels for a given latitude can be processed in



parallel in seven cycles. One level from each of two different latitude lines



can be processed in an eighth cycle, so that two complete latitude circles can



be processed in fifteen computation cycles. In high latitude regions, half



of the processors will be inactive during part of one of these cycles while



the other half complete the extra zonal averaging steps required at the higher



latitude. The machine will be very efficient for these models. Only shifts



of one position left or right are required for east-west communication. An



occasional shift of 128 positions is required for north-south communication



in the 92x128 grid. All of the required shifts can be accomplished by the



omega network in one routing network pass.





228



6.2.2 The Split Grid Model



We will discuss two different techniques for the split grid model. 

In the first of these, points deleted from the rectangular grid will be used, 

and missing points will imply unused processors. Figure 6 2.2-1 shows one 

rectangle of the resulting grid for the 96x128 model. To retain contiguity 

of values on the same meridian, points are stored with increasing separation 

between active processors as the latitude increases. Table 6.2.2-1 shows how 

the number of split grid regions - regions with the same number of points on 

a latitude circle - increases as the horizontal grid is refined Table 6.2.2-2 

shows a possible distribution of latitude circles of the various sizes which 

occur in the 96x128 and 192x256 grids. 

Meridians at Number of Split


the Equator Grid Regions



72 5


128 7


256 11


512 15



Table 6.2.2-1 	 The Number of Split Grid Regions for Various


Model Sizes



Just as in the rectangular model, the 192x256 grid uses the processor array
 


as one circle of size 256, and the 96x128 grid uses two circles of size 128.



In the rectangular model, a uniform shift of one position was always required



for east-west communication. Hence, however, shifts of from one to as much



as thirty-two positions (for the eight point high latitude circles in the



192x256 grid) are required. North-south communication in the 96x128 requires



an occasional shift of 128 positions as before. All of the required shifts



are supported by the omega network included in the routing network in one



routing cycle.



REPRODUCIBILMTY OF THE 
ORIGINAL PAGE IS POOR 



229



8 

8 

16 

{ 16 points/circle; one stores every eight memories 

32 points/circle, one stored every four memories 

64 points/circle, one sotred every second memory 

32 128 points/circle, a point is stored in every memory 96 

16 

8 

81 

128 

Figure 6.2.2-1 One of the Vertical Level of the Rectangular 
Mapping for the 96 x 128 Split Grid Model 



230



192 x 256 96 x 128 
points per number of points per number of 

latitude circle such circles latitude circle such circles 

8 4 16 8 
16 4 32 8 
32 8 64 16 
64 16 128 32 

128 32 64 16 
256 64 32 8 
128 32 16 8 
64 16 
32 8 
16 4 

8 4 

27328 points per 6912 points per 
variable per variable per 
level level 

Table 6.2.2-2 	 Distribution of the Various Sizes


of Latitude Circles for one Level
 


In each of the split grid sizes, fifty-six percent of the processors



are occupied by data. This seeming loss of efficiency is more than repaid by



the fact that the time step for the split grid model is at least twice that



for the corresponding rectangular model.



The second approach to the split grid model uses latitude circles of



size sixteen through 128 for the 96x128 model and eight through 256 for the



192x256 model as indicated by Table 6 2.2-2. All shifts of data to support



east-west communication in this approach are shifts of one position For most



cases, north-south communication requires a shift between different latitude



circles by the size of the circles involved. For example, when the array of



processors is treated as a collection of circles of size eight, an eight posi­


tion shift which treats the array as one circle of size 256 will facilitate



north-south communication The exception noted above occurs when communication





231



between circles of different sizes must occur, as it must at split grid region



boundaries. For these cases, an omega network expansion or contraction of



interprocessor distance will suffice. How much of the potential gain which



this approach stands to provide over that of the rectangular approach can



actually be realized cannot be predicted at this time. Clearly, this second



approach to the split grid model would be more difficult to program
 


6.2 3 The Polar Circle Sum



In all forms of the model, the poles are represented by a full lati­


tude circle of points whose values are computed and then averaged. In hard­


ware terms, values from each processor in a partition must be averaged. The



standard technique for this is the so-called log sum technique. Progressive



shift and add steps produce the sum of 2N values in 2N contiguous processors



in N-1 steps. In the first step, all values are circularly shifted one place,



and the routed value is added to the stationary one. The sum is then routed



two places and added to the previous partial sum. Successive routing distances



-
double, until, in the final step, a shift of 2N 1 places occurs. In the rec­


tangular and compressed split grid model, the first shift is by one place, in



the rectangular split grid model, the first shift is by thirty-two places for



the 192x256 grid and by eight places for the 92x128 grid since the initial



values are separated by these amounts initially.



6 2.4 A Hardware and Time Comparison of the Clos, Omega and Nearest Neighbor


Routing Schemes



The routing network described in section 4.3 requires an assembly­


disassembly register in each processor and either two or three crossbar switches



for each sixteen processors. Each assembly-disassembly register requires



REPRODUCIBILITY OF THE 
ORIGtNAL PAGE IS POOR 



232



twenty components, and each crossbar for an eight bit path uses 324 components.



The Clos network scheme uses four cables per processor. One of the cables
 


goes from the processor to the routing network, one goes from the routing net­


work back to the processor, and the remaining two cables connect the stages in



the three stage Clos network. An omega network uses only three cables per



processor.



The nearest neighbor scheme of the SOLOMON and ILLIAC IV requires



four cables per processor, assuming - as is true to date - that bli-directional



ECL differential cables are not feasible. In any case, four sets of line



drivers are required in each processor. To provide the vital broadcast input,



a fifth cable and five sets of line receivers are required in each processor.



The broadcast operation which permits the control unit to access a value from



any of the processors must be included with added hardware if this function



is desired. Moreover, some additional hardware is needed to support the input



and output needs of the array of processors.



Ignoring anything but the nearest neighbor and broadcast connection,


a fully parallel system would use seven six bit registers, four sets of ten


quadruple line drivers, five sets of ten quadruple line receivers, and forty


eight-to-one data selectors per processor. A byte serial scheme is much more


economical. Each processor would have to have an assembly-disassembly register,


four sets of line drivers, five sets of line receivers, and a byte's width 

number of eight-to-one data selectors. Table 6.2 4-1 summarizes the component 

counts and transmission times for the various options. 

The nearest neighbor routing network permits only one and sixteen
 


position uniform shifts in a 256 processor circle Partitions of that circle





233



Routing Scheme 
 

Eight Bit


Clos Network 
 

Eight Bit


Omega Network 
 

Parallel Nearest
 

Neighbor Network 
 

Eight Bit Nearest


Neighbor Network 
 

Components 
 

for each 
 
Sixteen 
 

Processors



1292 
 

970 
 

2192 
 

736 
 

Transmission



Time in


Nanoseconds



574



515



91



455



Table 6.2.4-1 Component Counts andTimes for the Three Possible Routing


Schemes





23h



are not supported Expansion and contraction for connecting split grid regions
 


stored compactly are not supported. The omega network supports all of the



partitions and shifts required by the general circulation models discussed in



this paper. Shifts of any distance and direction within the permitted parti­


tions are all accomplished simultaneously in one pass through the routing net­


work. Only shifts of one and sixteen positions take one pass with the nearest



neighbor scheme.



It is clear from the above comments that the nearest neighbor routing



scheme finishes a distant third in the three way race for inclusion as the



routing scheme. Whether the Clos or omega network should be used depends on



the control algorithms available when an implementation is undertaken, and the



routing requirements on the machine which is being built. The Clos scheme uses



thirty-five more components per processor than the nearest neighbor scheme,



and the omega network uses only four more components per processor than the



nearest neighbor scheme.



6 3 Image Data Processing



Results from the research conducted by a group led by Robert Ray



(1974) has shown that the ILLIAC IV is an efficient computer for processing



multispectral image data from the Earth Resources Technology Satellite (ERTS)



experiment (George, 1971). The initial stagesof Ray's work have produced 

ILLIAC IV implementations of the data clustering (Thomas, 1974b). These



algorithmswere adaptedby the Laboratory forApplication of Remote Sensing (LARS) 

of Purdue University (Wacker, 1970) from the ISODATA algorithm of Ball and



Hall (Ball, 1965). These algorithms, originally developed for use with air­


craft multispectral scanner image data, have been successfully applied to simi­




235 

lar data collected by the ERTS satellites.



The ERTS satellite measures solar energy reflected from the earth's



surface, four different spectral bands of reflected energy are measured for



each point The data is processed in terms of frames which contain 7.7(10)6



(3240 times 2340) points each Since each point is represented by values of



reflected energy in four spectral bands, each frame of ERTS data contains al­


most thirty-one million small integer values.



The LARS technique has two steps. The first step uses manually



selected areas to compute "spectral signatures" for known terrain features.



The statistical characterizations so determined are then applied to large
 


areas of interest to estimate the extent and amount of terrian with features



like those in the training areas These two steps, called clustering and



classification respectively, are described in the following two sections as



potential applications of the machine design presented in this paper.



6 3.1 Image Data Clustering



The ERTS data for a given point (an area of approximately 1 1 acres)



consists of a vector of four spectral energy measurements. The objective of



the clustering algorithm is to partition the data in the test region into M or
 


less spectrally dissimilar classes. Iteration of the steps in the algorithm



continues until the M clusters of the initial data are determined. Each



cluster is characterized by a mean of its four dimensional spectral data points



and a four by four symmetric covariance matrix



The algorithm is described in detail in the following text together



with comments on how the machine design of this paper would be used to implement



the algorithm.





236 

The entire set of 256 processors is used in concert during the 

clustering algorithm The initialization steps in the algorithm determine 

initial mean and standard deviation vectors for the set of data points. 

A given data point is represented by a four element vector, 

xI = (x,1, X2,1, X3 ,' X4,1) The initial four means, 

N 

mmj - N i X i~j, = 1, 2, 3, 4, 

are found for the complete set of N data values. The algorithm should dis­


tribute the data points uniformly across all 256 processors of the array. The



summation process begins with a loop which adds all values within each proces­


sor and ends with a log sum step (see section 6.2.3) across all 256 processors.



The initial value N is broadcast The four means, recovered by the control 

unit through its port to the routing unit, are broadcast to permit computation 

of fotr initial standard deviation values: 

N 
s 2 1 N 2 
s = - E (xN-1. l (,- j 

The cartesian product of the four real line intervals, 

£3 [mjEm - 3,m +i s 2,z = s + J 1, 3, 4, 

defines a rectangular parallelapiped which should contain most of the sample 

points. The M initial cluster centers are chosen to be uniformly spaced along 

a diagonal of this parallelpiped, and all M values are computed and stored by 

each processor The algorithm iterates the following two steps to determine



M final cluster centers.



Step one determines the eucludian distance between each point and





237



each of the M cluster centers. Each point is assigned to the cluster with



the nearest cluster center. This calculation takes place without any inter­


processor communications.



Step two computes new cluster centers by using the means of the vec­


tors in each cluster. If no vector changed clusters in step one, the algorithm
 


terminates. A change of cluster is determined by using the processor mode



4.1.
sensing hardware described in section 4 
 

The result of the clustering process is M four element cluster cen­


ters and M symmetric four by four variance-covariance matrices. The elements



of these matrices,



P

C 2 = P ~z=i (X9 - m ) (X,P - m ) i,j =
 1, 2, 3, 4,1,j 	
 

and the number of vectors, P, within each cluster are computed by intra-proces­


sor summation followed by log sum steps for the entire processor array.



6.3.2 	 Image Data Classification



The clustering algorithm determines a cluster mean and covariance



matrix for each of M clusters which it identifies in the data for a selected



set of ERTS data. The classification algorithm uses these two paramters for



each of the M classes and for each point of the data being classified, computes



the probability of class membership for each of the M classes, and assigns



each point 	 to the class for which its probability of membership is highest.



The probability function, based on the assumption that the distribution func­


tion is multivariate normal, is
 


P (X) = b- L(X-M )T C-1 (X - Mi, i = 1, 2, ..., M. 



238



The terms in the probability function are.



X 
 a four component vector of ERTS data,
 


M the four component mean vector for class i,
1 

. the four by four covariant matrix for class i, andC1 

b >logi Ci I(FQ, 1968) 

The constants b and the covariant matrix inverses are computed by a step in­1 

termediate to the clustering and classification steps. These constants may be



used in several classification steps.



In the following two sections, we discuss two different ways to



organize the execution of the classification process.



6 3.2.1 Classification by Routing Point Values



In this shceme, we partition the array of processors into circles



of size M, the number of data clusters or classes. One processor in each par­


tition is loaded with the constants for one data class. Considerable flexi­


bility is provided by this approach. For example, several different sets of



data class can be applied to one set of ERTS data by using different input



constants in different partitions. The input ERTS data can be distributed



across the partitions as desired. If only one set of classification constants



is used, the input ERTS data can be uniformly distributed across the array of



processor memories. Within each partition, M points at a time (plus a class



number and probability value) are routed circularly around the M processors



in the circle one step at a time The probability that a point lies in a class



is computed by the processor which stores constants for that class and the



class number, the probability of the most likely class and the four spectral values 



239



are forwarded around the circle. When the M steps for each M points have been



completed, each of those points has been assigned to its proper class.



This scheme makes full use of the Clos routing network, circular
 


shifts of one position at a time are all that the scheme requires, and arbitrary



class sizes are facilitated. Unless M, the number of classes, is a power of



two, there will be inactive processors. If M is a power of two, the omega net­


work will support the algorithm.



6.3 2 2 Classification by Broadcasting the Class Constants



In this scheme, the ERTS data is uniformly distributed across the



256 processors and their memories. The sets of constants which describe the



classes of interestare broadcast by the control unit for storage in the pro­


gram memory. Classification with respect to several sets of classification



parameters can be performed by broadcasting the several sets of classification



constants. In this scheme, there need be no inactive processors. Each cycle



in the classification process requires fifteen uses of the routing network to
 


broadcast the ten values for the symmetric covariance matrix, the four class
 


mean values, and the constant "b" term for each class. The previous scheme uses



the routing network six times in each step The degree of independent (that



is concurrent) action permitted by the control unit for the processor array and



the routing network will determine which of the two schemes is to be preferred
 


6.3 3 Byte Packing and Unpacking



The ERTS data, measured by photosensors and converted to digital data 

by the satellite, consists of many small integer values* each spectral measure­

ment is converted to a six bit value. Moreover, the classification process 

assigns each point to a class which can be represented by a small integer. Thus,





240



for efficient use of the input and output facilities of the,machine, it is im­


portant to be able to unpack several small integer values from one word of data,
 


and to be able to pack several small computed values into one data work.



Figure 6.3.3-1 illustrates how four ERTS values for one point can be



packed into one word for input and unpacked for use by the machine Part (a)



of the figure shows the four bytes packed into the twenty-four bit fraction of



a data cord. Part (b) shows the result of an AND operation with a mask which



selects value three and assigns it the exponent value plus four. 

Because the exponent radix of the machine is sixteen, the binary



point can only lie between four bit digit positions, for value three, this



means that the binary point is placed within the value, not at its right end



2

where it belongs A multiplication by 2 - that is a shift operation - results 

in a non-normalized integer value with the correct exponent value and with the 

binary point in the correct position as shown in Figure' 6.3.3-1(c). 

Figure 6.3.3-2 illustrates how a small integer value is packed into



the desired position of a data word fraction. The initial integer value, a



full word as shown in part (a) of the figure, is added to the constant shown



in part (b) with a floating point non-normalized addition. The result of the
 


addition is shown in part (c) of the figure. The arrows in part (b) and (c)



of the figure indicate the position of the binary point. The value is alligned



by a "shift" of two places - division by 22 - which yields the result shown in 

part (d). The final step ANDs the part (d) result with a mask. A final step 

to OR this result, shown in part (e), into a data word with other packed values 

is not shown in the figure. 



241



,A 1 2 3 4(a 

44 0 o­


44 0 -0 3 00 

Figure 6.3.3-1 Unpacking Data Values





242



41 j7 0 0 00 070Ca 

j 44 1 0 0 0 0 Cb) 

44I 8 0 0 7 0 o (c) 

44 2 0 0 1 C 10 (d) 

44 0 7 07e) C0 

Figure 6 3 3-2 Packing Data Values





243



6.4 File 	Processing and Information Retrieval



In this section, several examples of file processing and information



retrieval will illustrate the capabilities of the machine for this class of



problems. The first example concerns file comparisons to determine statistics



about pairs of similar files including how a large file can be efficiently



sorted. A second example shows how information can be retrieved from a file



with the machine.



6.4.1 	File Statistics



Post processing of weather model data frequently includes comparison



of two files of data taken from two model runs with slightly different starting



conditions. Average differences between various parameters are sought. Two



such files can be read into the memory of the machine and compared 256 points



at a time. If the average difference between two temperatures is sought, for



example, 256 sums of poantwase differences within the 256 processors can be



quickly computed. A final sum of the 256 partial sums can be computed by an



eight step "log sum" which adds values routed by one, two, four, eight, . .,



128 positions. Eight such steps, the log to the base two of 256, produce the



sum of all the pointwise differences which was sought. Each one of the 256



processors contains a copy of the same value at the end of the process



If a distribution for the differences is sought, each processor can



compute and sort all differences for the points which it holds. Then a 256 way



merge of the 256 sorted lists of differences can be performed by an eight step



comparison process which determines the smallest of the 256 locally smallest



values, for example At the end of the process, all 256 processors contain the



same smallest value. The number of occurances of the value can be determined





244



by a log sum of the number of occurances of the value in each of the proces­

sors, the log sum result ill also be held in each of the 256 processors at 

the end of the log sum process. Hence, a sorted list of poantwise differences 

together with a count of their individual frequencies can be easily extracted 

by the control unit using its connection to one port of the routing network. 

If an approximate distribution is sought, the interval of interest can be 

divided into sub-intervals and a log sum of processor computed counts of values 

which they hold which lie in the broadcast interval can be performed. 

6.4 2 Information Retrieval



In this example, we suppose that the files of a computer dating



service are stored in the array memory. Since this example is included to



illustrate machine functions, no indices for the file are assumed. The raw



data records of the file are used. Let us suppose that a young customer



wishes to locate all girls which meet the following characteristics-


EYES: (green or blue) and HAIR (blonde or red) and RELIGION


(agnostic) and AGE (22 through 27 years) and EDUCATION- (col­

lege graduate) and HEIGHT (63 through 68 inches) and WEIGHT


(two pounds or less per inch of height).



The mode logic can be used to evaluate 256 records of the file at a time. One



status register bit can accumulate the Boolean result while another is used to 

compute each parenthesized term. After all the tests have been made for each 

set of records, the 256 MODEOUT values can be 0Red together and sampled by the
 


control unit as shown in Figure 4.4.1-1(b). If the sixteen bit result is zero,



no match was found. A one bit in any position indicates that one or more of



the processors in a sixteen processor group contain matches. With proper bit



handling instructions and MODEIN transmissions like those of Figure 4 4.1-2(b),



REPODUN L rt I oAGM 
ORIGINAL PAGE IS P4Ci 



245



the control unit can process a sequence of MODEOUT signals of the type shown



in Figure 4.4.1-i(c) and locate each match in the array. A control unit



specified route can shift the identifying number for the match to the control
 


unit's routing unit port.



6 5 Matrix Inversion by Gaussian Elimination
 


In this section, we will discuss using the machine to solve systems



of equations or invert matrices using the familiar Gaussian elimination tech­


nique. The process can be used to solve several systems or invert several



matrices simultaneously. Two different situations are described in the



first, a collection of inhomogeneous linear systems are to be solved in the



second, the inverses of the given set of matrices are to be found. The algor­


ithms are similar and store the original matrix in skewed form as suggested by



Kuck (1968) as illustrated in Figure 6.5-1. In the figure, the matrix and right
 


hand vector of the linear system Ax = b are shown. The A matrix is stored



skewed, but the "b" vector is stored all within the memory of one processor.



When skewed storage is used, parallel access to all of the elements of any
 


row or any column of the matrix can be achieved. In the figure, the rows are



stored across the processors with all elements of a given row having the same



word address in the various processor memories. The elements of a column, on



the other hand, all occupy different word addresses, so that processor index­


ing is required to fetch a column.



6.5.1 	 Solution of Inhomogeneous Systems



Up to thirty-two seven-by-seven inhomogeneous systems can be solved



simultaneously if their coefficients are stored as shown in Figure 6.5-1 The



Gaussian elimination procedure has two phases. In the first phase, the matrix
 




246



02,7 0a,2 02,3 01,4 a,4 a2,5 01,7 b2 

a?,7 02,1 oa,,, a,,, a,,4 a,,5 a2,6 bp 
c­

a3,6 a3,7 03,4 3,2 033( 03,4 013,5 	 o 

04,5 04,6 C4,7 04,1 04,2 04,3 04,4 b4 	 h 
0 

05,4 '5,5 05,6 a5,7 05,1 35,2 a5,3 b5 .­
0 

06,3 06,4 06,5 06,6 06,7 06,1 06,2 b6 

a7,2 07,3 07,4 a7,5 07,6 a7,7 a7,1 b7 

PROCESSORS



Figure 6 5-1 	 Storage Map for a Seven by Seven Inhomogeneous 
System 



247



of the original system is reduced to upper triangular form wzth ones on the



main diagonal. In the second phase, the solution is found by back-substitu­


tion, reducing the matrix to the identity matrix and the right hand side to



the solution. The technique processes the columns one by one, beginning with



column one and proceeding through the columns in turn to the rightmost (or



highest numbered) column. The matrix under consideration is gradually reduced



one column (and one row) at a time until an upper triangular system remains.



The steps in the algorithm, described in detail in the following
 


sections, are 

la) Find the element with the largest absolute value in the 
lowest numbered column which remains under consideration, 
and call it column i. 

lb) Find the smallest row number of the several rows which 
may contain elements with the value identified in step (la). 

lc) Exchange the row identified in step (lb) with row i. 
Both rows must be shifted so that they are properly skewed 
in their new positions. 

ld) Divide all the elements of the new row i by element A 
Divide the new b by A also. 

le) For each of the rows i+l through seven, multiply row i 
by element A and subtract from row j. 

At the completion of steps (la) through (le), the matrix will be in the upper



triangular form. The back substitution steps proceed from the last row's right



hand side element, b, back through that of the first row. They operate on the



columns of the upper triangular matrix from the highest numbered back through



to the first. The steps are



2a) 	 Distribute b for use with all rows from 1 to j-1.
3



2b) 	 Multiply row j by element A1 ,3 for each row i from 1 to 
j-l, and subtract the resulting multiple of row j from row i. 



248



the result of the back substitution steps is to reduce A to the identity matrix



and the column of b's to the sought solution vector.



The seven steps outlined above are described in detail in the fol­


lowing seven sections.
 


6.5.1.1 Find the Pivot Element in the Leftmost Remaining Column



The matrix was stored in skewed form as shown in Figure 6.5-1 so



that all elements of any desired column would be available in parallel. The



element in the leftmost remaining column with the largest absolute value is



found by a process which resembles the log sum process described in section



6.2.3. In that section, however, the number of cooperating processors was al­


ways a power of two in number, while here, the number of processors varies



from step to step all the way from two up to the size of the system being



solved. In section 6.2.3, the processors which were cooperating were con­


tiguous, here, because the matrix,is stored in skewed form, the elements which



must be considered together may not be stored in contiguous processors. We



will ignore the noncontiguity aid describe the algorithm as though the pro­


cessors were contiguous. The Clos routing network, which can perform every



permutation, can be used to facilitate the desired connections.



For a collection of processors which are a power of two in number,



the steps are the same as in a log sum, except that each processor selects the



larger of the two elements it considers at each step rather than producing



their sum The number of comparison steps is the logarithm of the number of



processors to the base two. When the total number of processors is not a



power of two, subsets of the total number which each contain a power of two



processors form partial results which are then combined pairwise until the





249



a2 C1 C C3 04 

Figure 6.5 1 1-1 The Log Combination Process for a Collection of



Processors not a Power of Two in Number





250



final result is produced There is one such subset for each one bit in the



binary representation of the number of processors. Figure 6.5.1.1-1 illustrates



the process for seven processors. Three comparison steps are required; in



general, the number of comparison steps is the logarithm to the base two of



the smallest power of two which is greater than or equal to the number of pro­


cessors.



6.5.1.2 Find the Smallest Numbered Row which Contains the Pivot Element



Once the pivot element value is identified, each processor Which 

stores that element submits its row number for a minimum seeking comparison 

process. Processors which do not store the pivot value - by far the majority ­

submit a value which exceeds the number of rows in the matrix. A log minimum 

process determines the row number of the row to be exchanged with the lowest 

numbered currently considered row. At the completion of this step, every 

active processor contains the number of the row which contains the pivot ele­


ment.



6.5.1.3 	 Exchange of the Pivot Row with the First Active Row



The number of the pivot row is available to all active processors



as the result of the previous step. The first active row number is available



by broadcast from the control unit. The difference of the two values is the



amount that the pivot row must be shifted left and the first row shifted left



to retain the correct skewed storage relationships This shifting process



goes on in parallel for each of the systems being solved by the 256 processor



array. The shifting algorithm proceeds as follows





251 

1. Each processor puts the shift distance - a binary integer of eight or less



bits - in its eight bit status register within the mode logic. The number of



bits to be considered is the same as the number of steps in the log comparison



process which identified the pivot element.



2. For each bit to be considered, the mode of the processor is set from the



proper status'register bit. The pivot row elements are shifted left by the



amount specified by the selected bit; the shifted values are stored under



mode control so that the shift takes place only in those processors - that is



only in those equation systems - for which a shift by that distance is re­


quired.



3. 	 The first row still under consideration is shifted right by a process simi­


lar to that described in step two above. The only difference is that right



shifts are used instead of left shifts.



6.5.1.4 	 Divide the Pivot Row by the Pivot Element



The pivot element was distributed among all active processors by



the steps described in section 6.5.1.1. This value is divided into each



element of the pivot row This step leaves the pivot element exactly one in



value.



6.5.1.5 	 Reduce the Leftmost Column to Lower Triangular Form



The pivot row is the lowest numbered remaining row, and it has been



normalized 	 by the previous step so that the pivot element is one. For all



rows below 	 the pivot row, we



1. 	 distribute the element in the pivot column to all active


processors by a log distribution process, and



2. 	 multiply a temporary copy of the pivot row by the distributed
 

element and subtract from the subject row.





1 

252



The completion of the above two steps for all rows beyond the pivot row



reduces the lowest numbered remaining column to lower triangular form



6.5.1.6 Back Substitution



At the completion of the previous steps, the matrix is in upper



triangular form with ones on the main diagonal. Back substitution reduces
 


this upper triangular form to the diagonal identity matrix. The last row of



the upper triangular form contains only a one in the last column and all the



rest zero elements. The back substitution process uses successive main diag­


onal ones from right to left as follows.



For each row above the row which contains the current main diagonal one,



distribute the element in the column which contains that main diagonal one by



a log distribution process.



2. Multiply a temporary copy of the row with the main diagonal one by the



distributed element and subtract from the row from which the distributed ele­


ment was taken. Include the right hand side vector in the multiplication and



subtraction process.



At the completion of the above two steps for all main diagonal elements from



right to left, the original matrix is reduced to the identity matrix and the



right hand side vector becomes the solution to the given set of equations.



6.5.1 6 Efficiency and Routing Requirements of the Gaussian Elimination Process



The Gaussian elimination process described in the preceeding sec­


tions clearly requires routing operations beyond the capabilities of the omega



network. The Clos network is necessary to support this algorithm, but we do



not currently have algorithms to compute the necessary control patterns.
 


As we have seen, the technique described in this section begins with





253



all processors in productive use, proceeds until only a fraction of the pro­


cessors are contributing, and returns to the condition where all processors



are in productive use. On the average, approximately half of the processors



are productive. When a great many matrices are to be processed, they should



be handled 256 at a trme by a conventional program with one matrix (or sys­


tem) stored in each of the 256 processors. No inter-processor communication is



required A collection of 128 or more matrices (or systems) can be processed



in this way with a processor efficiency at least as good as for the parallel



technique described above.



6.5.2 	 Inversion of a Matrix



To invert an N by N matrix with the Gaussian elimination technique,



one begins with an N by 2N matrix which includes an identity matrix appended to



the right of the given matrix, extending each row to twice its original size



In a parallel processor, the best approach is to store the given matrix in



skewed form and the appended identity in non-skewed form in the same set of



processors with the given matrix. The operations performed on the given matrix



under the Gaussian technique are also performed on the appended identity matrix



(except for the shifts to reskew the identity). At the completion of the pro­


cess, the given matrix has been transformed to an identity matrix and the ap­


pended identity matrix is transformed to the inverse of the given matrix.





254



7. Operating Parameters of the System



This section summarizes the cost, reliability, and power consump­


tion of the system. The calculations are based on the component counts shown



in Figures 7-1 through 7-4 which give detailed component counts, prices and



power requirements for the processor, memory module, sixteen by sixteen cross­


bar and table look up hardware. Table 7-1 summarizes these figures and gives



total parts counts and costs for these units, total costs are calculated in­


cluding the spares indicated, and power and parts counts include only the 

units needed to form a complete operating system. These costs were derived 

from data taken from competitive bids, parts orders for parts for the multi­

plier prototype which was built and telephone calls to suppliers. Assuming



that assembly costs will be approximately equal to integrated circuit costs,



the total cost for a 256 processor system with eight million words of data



memory and 128,000 words of program memory is approximately $3,000,000 if a



Clos three stage routing network is built.



A system with an omega routing network would be approximatley



$100,000 less expensive. The cost figures do not include the costs of air



conditioning equipment.



The operating life of an integrated circuit component depends on



the operating temperature. The prices quoted for parts in Figures 7-1 through



7-4 assume that the lower cost SN7400 series parts, whose operating tempera­


tures must lie between zero and seventy degrees Celcius, are used. Figure 7-5



is a graph of the expected component failure rates versus temperature. The



failure rate data were taken from a Signetics Corporation report supplied to



the author by a supplier (Signetics Corporation, 1974b), and refer to that





255



COMPONENT NUMBER WATTS PER COST PER


OF UNITS UNIT UNIT



10124 2 0.468 $ 4.50 
10125 2 0.540 $ 4.50 
AM25SIO 16 0.467 $ 2.60 
AM9309 10 0.240 $ 6.00 
AM9334 1 0.240 $ 5.20 
NATS551 1 0.360 $ 1.00 
74S02 2 0.050 $ 0.54 
74S04 3 0.050 $ 0.47 
74S11 3 0.050 $ 0.52 
74S20 2 0.050 $ 0.50 
74LS32 1 0.049 $ 0.34 
74S51 4 0.110 $ 0.23 
74H52 10 0.275 $ 0.23 
74H61 1 0.080 $ 0.22 
74S64 2 0.250 $ 0.38 
74S74 4 0.250 $ 0.75 
74S85 8 0.250 $ 3.93 
74S86 1 0.250 $ 0.71 
74S133 3 0.300 $ 0.42 
74148 2 0.190 $ 1.50 
74150 2 0.340 $ 1.41 
755151 4 0.225 $ 2.25 
74S153 14 0.225 $ 4.50 
74S157 22 0.390 $ 3.76 
74S158 1 0.305 $ 3.76 
74S172 40 0.500 $ 5.99 
74S175 1 0.480 $ 1.68 
74S181 7 1.100 $ 3.15 
74S182 6 0.260 $ 4.86 
74S195 16 0.545 $ 1.68 
74S257 12 0.495 $ 3.76 
74S260 13 0.300 $ 0.42 
74S274 36 0.500 $ 12.50 
74S283 12 0.500 $ 2.76 
74S299 1 0.500 $ 1.50 
74S381 21 0.800 $ 3.15 
SIG8204 4 0.850 $ 27.20 
SIG8205 2 0.850 $ 33.40 
SI08228 33 0.512 $ 21.87 
SIG8243 12 0.500 $ 4.95 
SIG8263 5 0.475 $ 4.50 

TOTAL NUMBER OF COMPONENTS: 342



TOTAL POWER DISSIPATION: 154.923 WATTS.



TOTAL COST: $ 2236.04



Figure 7-1 Component Statistics for the Processor



fEPRODUGILIY OP THE 
ORIJGAL -RAGE IS POOR 



256



COMPONENT 	 NUMBER WATTS PER COST PER


OF UNITS UNIT UNIT



AMS 304 0.400 $ 6.12


74S04 1 0.270 $ 0.47


74LS138 1 0.055 $ 1.43


74154 2 0.280 $ 1.35


74S157 2 0.390 $ 1.43


74S280 12 0.525 $ 0.40


SIG82S42 10 0.290 $ 0.71



TOTAL NUMBER OF COMPONENTS: 332



TOTAL POWER DISSIPATION: 132.465 WATTS.



TOTAL COST: $ 1879.84



Figure 7-2 Component Statistics for One Processor Memory of


32,768 Words with Thirty-eight Bits Each





257



COMPONENT NUMBER WATTS PER COST PER 
OF UNITS UNIT UNIT 

1OlO 36 0.135 $ 0.47 
10115 32 0.135 $ 0.47 
10133 32 0.390 $ 2.95 
10145 16 0.754 $ 13.00 
10158 16 0.200 $ 1.55 
10164 256 0.390 $ 1.65 

TOTAL NUMBER OF COMPONENTS: 388



TOTAL POWER DISSIPATION: 136.764 WATTS.



TOTAL COST: $ 781.56



Figure 7-3 Component Statistics for One Sixteen by Sixteen Crossbar





258



COMPONENT NUMBER WATTS PER COST PER 
OF UNITS UNIT UNIT 

10124 2 0.468 $ 4.50 
10125 2 0.540 $ 4.50 
74SI57 4 0.390 $ 3.76 
74LS193 4 0.155 $ 2.12 
74S195 16 0.545 $ 1.68 

TOTAL NUMBER OF COMPONENTS: 28



TOTAL POWER DISSIPATION: 12.916 WATTS.



TOTAL COST: S 68.40



Figure 7-4 Component Statistics for One Table Look Up Unit


Exclusive of the Memory





ITEM BUILD RUN



Name Parts Number Cost Number Parts Power (watts)



Processor 342 300 670,800 256 87,552 46,500



Memory 332 320 6o,6oo 276 91,632 36,708



Crossbar 388 ...............



Clos 60 126,480 48 18,642 6,576 

Omega 4o 84,320 32 12,416 4,384 

Table Look 
Up 28 20 - 1,360 16 448 208 

TOTALS 

Clos --- $1,400,240 --- 198,256 89,992 

Omega .... -- $1,358,080 --- 192,048 87,800



Table 7-1 System Component, Component Counts, and Power Consumption
 




0 

26o



FAILURE RATE (%/1000 HOURS) 
0 
o .o
0 0 

N N cn a) cM CQCi j CD-co N 

850C 

N 700C 

0 00 

500C 

CM 

Fr5 G



Figure 7-5 Graph of Component Failure Bate Versus Temperature 



261



company's SN7400 line. This report presented the most comprehensive review



of failure rate data which the author was able to obtain. The data in the



report pertain to the low power Shotty devices in the Signetics 7400 lines,
 


not to the regular (non-low power) devices used in this design. Table 7-2



gives the failure rate data for a 200,000 integrated circuit component system



using values taken from the graph in Figure 7-5. As the table indicates, we



should expect the system to operate for twenty-six to forty-five hours between



failures. Several spare processors, crossbars and memory modules will be



available to replace a unit which fails. No design for the control unt was



included since work came to end before that was possible However, because



of its critical role in the system, it could well be the best policy to build
 


two complete control units so that a spare one would be available in the event
 


of a control unit failure.





262



Temperature 
c 

85 C 

70°C 

500 

Failures per Mean Time 
Number of 1000 hours Between
Failures for a 200,000 3ystemFailures 

per 1000 hours component systen (hours) 

0.00019 38 26 

0.00011 22 45 

0.000044 9ii 

Table 7-2 System Reliability 



263



8. Conclusion



The author believes that the forgoing sections - mainly section



4, section 6.2, and section 7 - show that a computer with roughly 100 times



the computing capacity of the IBM 360/95 can be built for significantly less



than other computers with similar capability.
 


Another result of the work described here is the simulation meth­


odology described in section 5 and illustrated in the appendix.



Considerable work remains to be done on the routing system. Although



we believe that an omega network is sufficient to support the intercommuni­


cation needs of the general circulation model, the matrix manipulation



example of section 6.5 shows that the three stage Clos network would provide



support for a wider class of problems at a modest increase in cost. However,



we have no algorithm to produce control patterns for the Clos network.





264



References



Advanced Micro Devices Incorporated, 1974


Advanced Micro Devices Data Book, Advanced Micro Devices Incorporated,



1974.



Arakawa, 1972


Arakawa, A., Design of the UCLA General Circulation Model, Technical


Report Number 7 of the Department of Meteorology, University of California


at Los Angeles, July 1972.



Benes, 1965
 

Benes, V. E , Mathematical Theory of Connecting Networks and Telephone


Traffic, Academic Press, 1965



Breuer, 1972


Breuer, Melvin A. (Editor), Design Automation of Digital Systems, Volume


One, Theory and Techniques, Prentice Hall, 1972, pp. 101-172.



Carroll, 1967


Carroll, Arthur B. and Wetherald, Richard T., "Application of Parallel


Processing to Numerical Weather Prediction," Journal of the Association


for Computing Machinery, Volume 14, number 3, July 1967, pp. 591-614.



Clos, 1953


Clos, Charles, "A Study of Non-blocking Switching Networks," Bell System


Technical Journal, Volume 32, number 2, March 1953, pp. 406-424.



Dietmeyer, 1975


Dietmeyer, Donald L., Chairman of the 1975 workshop on computer hardware


description languages and their applications, verbal communication, 1975.



Downing, 1974


Downing, Robert, Physics Department, University of Illinois at Urbana-

Champaign, verbal communication, 1974.



Fox, 1961


Fox, L., Numerical Solution of Ordinary and Parital Differential Equations,


Pergamon Press, 1962, p. 348.



Fu, 1968


Fu, K. S., Sequential Methods in Pattern Recognition and Machine Learning,


Academic Press, 1968.



Garcia, 1974


Carcia, G., Department of Computer Science, University of Illinois at


Urbana-Champaign, unpublished communication, 1974.





265



Gates, 1975


Gates, W. L., RAND Corporation, oral communication, 1975.



George, 1971


George, Theodore A., "ERTS A and B - The Engineering Systems," Astronautics


and Aeronautics, Volume 9, number 4, April 1971, pp. 41-51.



Halem, 1974


Halem, M., Goddard Institute for Space Studies, oral communication, 1974.



Hamming, 1950


Hamming, Richard W., "Error Detecting and Correcting Codes," Bell System


Technical Journal, Volume 29, April 1950, pp 147-160



Hnatek, 1973


Hnatek, Eugene R., A User's Handbook of Integrated Circuits, John Wiley


and Sons, 1974.



IBM, 1970


IBM System/360 Principles of Operation, file number S360-01, order number


GA22-68 1, version 8, 1970, pp. 41-42.



Karn, 1974


Karn, Ronald, Goddard Institute for Space Studies, oral communication,


1974.



Karn, 1975


Karn, Ronald, GISS Model ILLIAC Implementation, Computer Science Corpora­

tion, 1975.



Kasahara, 1967


Kasahara, A. and Washington, W. M., "NCAR Global General Circulation


Model of the Atmosphere",Monthly Weather Review, Volume 95, number 7,


July 1967, pp. 389-402.



Knuth, 1968


Knuth, Donald E., The Art of Computer Programming, Volume 1. Fundamental


Algorithms, Addison-Wesley, 1968.



Kuck, 1968


Kuck, David J., "ILLIAC IV Software and Application Programming," IEEE


Transation on Computers, Volume 17, August 1968, pp. 758-770



Lawrie, 1973


Lawrie, D H., "Memory-Processor Connection Network," PhD Thesis, Depart­

ment of Computer Science, University of Illinois at Urbana-Champaign,


report number UIUCDCS-R-73-557, February 1973.





266



Ledley, 1960


Ledley, Robert S., Digital Computer and Control Engineering, McGraw-Hill,


1960, pp. 519-525.



Lorentz, 1963


Lorentz, E. N., "The Predictability of Hydrodynamic Flow," Transactions


of the New York Academy of Science, 1963, serial 2, pp. 409-432.



Manabe, 1969


Manabe, S. and Bryan, K., "Climate Calculations with a Combined Ocean-

Atmospheric Model," Journal of the Atmospheric Sciences, Volume 26,


number 4, July 1969, pp. 786-789.



Mintz, 1974


Mintz, Y and Arakawa, A., Notes distributed at the second workshop on


the UCLS general circulation model, March 25-April 4,1974, Department


of Meteorology, Univeristy of California at Los Angeles.



National Semiconductor Corporation, 1974


Digital Integrated Circuits, National Semiconductor Corporation, 1974.



Ray, 1974


Ray, Robert M., Thomas, John and Donovan, Walter E., Implementation of


ILLIAC IV Algorithms for Multispectral Image Interpretation, Center for


Advanced Computation document number 112, Center for Advanced Computation,


University of Illinois at Urbana-Champaign, June 1974.



Semptner, 1974


Semptner, A. J., Department of Meteorology, University of California at


Los Angeles, oral communication, 1974.



Signetics Corporation, 1974A


Signetics Digital, Linear, and MOS Data Book, Signetics Corporation, 1974.



Signetacs Corporation, 1974B


Signetics Bipolar Junction Isolated TTL Low Power Shottky Integrated


Circuit Failure Rates, Signetics Corporation, November 1974.



Slotnick, 1962


Slotnick, Daniel L., "The SOLOMON Computer," Proceedings of the 1962


Fall Joint Computer Conference, Spartan Books, 1962, pp. 97-107.



Slotnick, 1968


Slotnick, Daniel L, et al., "The ILLIAC IV Computer," IEEE Transactions


on Computers, Volume 17, August 1968, pp. 746-757.





267



Smagorinsky, 1963


Smagorinsky, J., "General Circulation Experiments with the Primitive


Equations: I. The Basic Experiment," Monthly Weather Review, Volume 91,


number 3, March 1963, pp. 99-164.



Somerville, 1974


Somerville, R. J C., et al., "The GISS Model of the Global Atmosphere,"


Journal of the Atmospheric Sciences, Volume 31, number 1, January 1974,


pp. 84-117.



Stenzel, 1975


Stenzel, William, "A Class of Compact High Speed Parallel Multiplication


Schemes," Masters Thesis, Department of Computer Science, University of


Illinois at Urbana-Champaign, 1975.



Tessler, 1968


Tessler, Larry G. and Enea, H. J., "A Language Design for Concurrent Pro­

cesses," Proceedings of the 1968 Spring Joint Computer Conference,


Thompson Book Company, 1968, pp. 403-408.



Thomas, 1974A


Thomas, John, An ILLIAC IV Algorithm for Cluster Analysis of ERTS-1 Data,


Center for Advanced Computation Technical Memorandum Number 17, Center


for Advanced Computation, University of Illinois at Urbana-Champaign,


May 1974.



Thomas, 1974B


Thomas, John, An ILLIAC IV Algorithm for Statistical Classification of


ERTS-1 Data, Center for Advanced Computation Technical Memorandum Number


18, Center for Advanced Computation, University of Illinois at Urbana-

Champaign, May 1974.



Texas Instrument Corporation, 1973


The TTL Data Book for Design Engineers, first edition, document number


CC-411, Texas Instruments Incorporated, 1973.



Texas Instrument Corporation, 1974


Supplement to the TTL Data Book for Design Engineers, first edition,


document number CC-416, Texas Instruments Incorporated, 1974.



Tsang, 1973


Tsang, L. C. and Karn, R., A Documentation of the GISS Nine-Level Atmos­

pheric General Circulation Model, Computer Sciences Corporation, October


1973.



Wacker, 1970


Wacker, Arthur G. and Landgrebe, David A., "Boundaries in Multispectral


Imagery by Clustering," presented at the 1970 IEEE Symposium on Adaptive


Processes, December 1970.





268



Williamson, 1973


Williamson, D. L. and Washington W. M., "On the Importance of Precision


for Short Range Forecasting and Climate Simulation," Journal of Applied


Meteorology, Volume 12, 1973, pp. 1254-1258.





269



Appendix



The material in this appendix is a sequence of computer printout



which gives the complete set of control cards, logic description and control



data (STEPs) which were used to test the floating point addition subset of the



array processor.





270 

//COMPEL EXEC PGM=COMPEL,REGION=154K,PARM=-RISA(74K)' 01/00100


//SYSPRINT OD SYSOUT=A 01/00200


//DECK 00 OSN=aDECKFOGUNIT=DISK,DC8=(BLKSIZE=3120,RECFMSFBJ, 01/00300


// SPAGE=ITRK,(5,I)jDISP=(NEWPASSI 01/00400


//*DECK DD SYSOIJT=A%,DCB=(I3LKSIZE=800,RECFM=FBJ 01/00500 
//MICRO DO DSN=&MICFOG,UNIT=DISKDCB=(BLKSIZE=3l20,RECFM-FB* 01/00600 
I/ SPACE=(TRK,(5,1)1,IISP=(NE'IPASS) 01/00700 
//"MICRO DD SYSOLT=ADCE3CBLKSIZE=800,RECFM=FB) 01/00800 
I/PLIDUMP O SYSOUT=A 01/00900 



2T



$ THIS LOGIC TESTS THE "A" FRACTION FOR ZERO 02/00100


ATEST(l) : S260 A(1,4) ; 02/00200


ATEST(2) : 260 A(5,4) ; 02/00300


ATEST(3) : 5260 A(9,4) ; 02/00400


ATEST(4) S260 A113,4) 02/00500


ATEST15) : 5260 A(17,4) 02/00600


ATEST(6) : S260 A(21,4) 02/00700


ATESTI:)5260 A25,4) 02/00800


ATEST(8) : 5260 A(29,4) 02/00900


AZERO : S133 ATEST(1,8) 02/01000


10 : OUTPUT AZERO BERO 02/01100


20 : OUTPUT ATEST(1,8) 02/01200





272



$ THIS LOGIC TESTS THE "B" FRACTION FOR ZERO 
 
BTEST) : 5260 B(,4) ; 
 
BTESTIZ) : S260 B(5,4) ; 
 
BTEST(3) : S260 8(9,4) ;

BTEST(4) : S260 8(1314) ; 
 
BTEST(5) : S260 9(17,4) ; 
 
BTEST(6) : S260 8(2L,4) ; 
 
BTEST(7) : 260 B(25,4)

BTEST(8) : S260 8(29,4) ; 
 
BLERO : S133 BTEST(1,8) ; 
 
20 : OUTPUT BTESTtI,8) ; 
 

03/00100


03100200


03/00300


03/00400
 
03/00500


03100600


03/00700


03/00800


03/00900


03/01000


03/01100





273



S THIS LOGIC CONTROLS THE ALIGNMENT SHIFTING 
 

ASHSEL 5
S20 EXC2 AZERO BZERU SHZERO
BSHSEL : S20 EXCZBAR AZERO BZERO SHZERO 11 
 

: OUTPUT SHIERO ;

3

) 5157 ABS(5,3) ZEROStI,3) ASHSEL ZERO ;
ASHIfT(1,



5157 ABS(5.3) ZERDS1,3) BSHSEL ZERO ;
BtIHIFT(1,3) 
 
GTRS S260 ABS(1,4) 
 
ENASH S51 GTRB AINH ZERO ZERO ; 
 

LNBSH 1 S51 GTRO BINH ZERO ZERO ; 
 

20 : OUTPUT GTR8 ENASH ENBSH 
 

04/00100


04/00200


04/00300
04/00400



04/00500



04/00600
04/00700



04/00800
04/00900


04/0000
0



IPHRODU]B I= OF TO 
ORPGMhAL PAGE IS POOR 



274



$ THIS LOGIC COMPARES THE "A'- AND "B" FRACTIONS 05/00100


ALESStI{) UNUSED AGTRI(1) 385 A(4,43 814,4) 8(8) ZERO A(8) ; 05/00200


ALESSI(2) UNUSED AGTR1(2) : S85 A(9,4) B(9,4) 0113) ZERO A(13) 4 05/00300

ALESSI(3) UNUSED AGTR(3) : 585 A(14,4) 8(14,4) B(U8) ZERO A(18) ; 05100400


ALESSI(4) UNUSED AGTR1(4) : S85 A(19,4) B(19,4) 8423) ZERO A(23) ; 05/00500

ALESSI({) UNUSED AGTRI(5) $85 A(24,41 8(24,41 B(281 ZERO A(Z8 ; 05/00600

ALESSI(6) ABEQI AGTRI(6) : S85 A(29,4) B(29,43 ZERO ONE ZERO ; 05/00700


ALESS2 ABEQ2 AGTR2 ;$85 AGTR1(2,4) ALESSI(2,4) 05/00800



ALESSI(6) ABEQl AGTR116) ; 05/00900

AHIGH(1,4)-: FORM A(1,3) AGTRII1) ; 05/01000


BHIGH(I,4) : FORM 8(1,3) ALESSI(1) ; 05/01100

ALESS ABEQ AGTR 5 05/01200
585 AHIGH(1,4) SHIGH(1,4) ALESS2 ABEQ2 AGTR2 4 
 
: OUTPUT A(1,32) B(1,32) ; 05/01300

10 : OUTPUT ALESS ABEQ AGTR ; 05/01400


20 : OUTPUT AIIGHLI,4) BHIGH(1,4) ; 05/01500


20 : OUTPUT ALESSI(1,6) ABEQl AGTRI(1,6) ; 05/01600

20 : OUTPUT ALESS2 ABEQZ AGTRZ ; 05/01700





275 

$ THIS LOGIC PRODUCES THE ADDER FUNCTION FOR ADD AND SUBTRACT 06/00100


$ THE PRIMARY MEANS FOR THIS THE THE SIG8205 RON 06/00200

JUNK(l,5) : FORM AZERO BZERU EXCZBAR CUADO CUSUB ; 06/00300

JUNK(6,4) : FORM EXPA(1) EXPB(I) AGTR ABEQ ; 06/00400
 
ADDADDR(1,93 : FORM JUNK(1,5) JUNK(6,4) ; 06/00500


XXtL,4) S02 ABS(1,4) ABS(4,4) ; 06/00600

ABEXEQ 820 XX(I) XX(2) XX(3) XX(4) , 06/00700

ADOCNTL(I,8) SIG8205 ADOADDR(1,9) ; 06/00800

AFUNCI(1,4 S257 AODCNTL(1,4) ADDCNTL(5,4) ABEXEQ ENABADD ; 06100900


AFUNCtI,3) WOR AFUNCI(1,3) CUAFUNCII,3) ; 06/01000


10 : OUTPUT ADDADDR(1.9) ; 06/01100

5 : OUTPUT ADOCNTL(1,B) 4 06101200


20 : OUTPUT ABEXEQ ; 06/01300


10 : OUTPUT AFUNCI(1,3) ; 06/01400 
: OUTPUT CUAFUNC(1,3) CUAOO CUSUB 06/01500
SIGN : S137 EXPB(I) AFUNCI(4) NINH ZERO , 06/01600 
: OUTPUT SIGN ; 06/01700 



276



$ THIS IS THE "A" ALIGNMENT SHIFTING LOGIC 07/00100 
: OUTPUT AINH , 07/00200 
LEFT1I,8,4) : SIG8243 A(I,,f4| ASHIFT(I,3) 07/00300 

ENASH ONE ONE , 07/00400 
LEFT(28,4) : SIG8243 A12,8,4) ASHIFTCI,3) 07/00500 

ENASH ONE ONE ; 07/00600 
LEFT(3,8,4) S 07/00700SIG8243 A(3,8,4) ASHIFTlI)3) 
 

ENASH ONE ONE ; 07/00800


LEFTI4,8,4) Z SIGB243 A(4,8,4) ASHIFT(1,3) 07/00900



bNASH ONE ONE ; 07/01000


5 : OUTPUT LEFT(1,32) ASHIFT(1,3) ; 07/01100





277 

$ THIS IS THE "8" ALIGNMENT SHIFTING LOGIC 08100100

ARIGHT(I,8,4) : SIG8243 5110,41 BSHIFT(1,3) 08/oozoo 

ENBSH ONE ONE , 08/00300


ARIGHT(2,8,4) : SIG8243 B(2.8,4) BSHIFT(1,3) 08/00400


ENBSH ONE ONE ; 08/00500

ARIGHTI3,8,4) SIG82431 B(3,8,41 BSHIFT(1,3) 08/00600
 

ENOSH ONE ONE ; 08/00700 
ARIGHT(4,8,4) : SIG8243 B(4,8,4) BSHIFTfI,3) 08/00800 

ENBSH ONE ONE ; 08/00900 
5 ; OUTPUT ARIGIIT(1,32) BSHIFT(1,3) * 08/01000 



278



$ THIS IS THE LEFT SHIFT LOGIC USED IN NORMALIZATION 09/00100


: OUTPUT NSHIFT(1,3) NINH ; 09100200


NSHIFT1I,3) : S157 NSH(I,3) ZEROS(1,3) ZFF ZERO ; 09/00300


NSH(1,33 ; T1148 BTEST(1,8) ; 09/00400


NORMI1,8,4) : SIG8243L B(1,8,4) NSHIFTII,3) 09/00500



NINH ONE ONE ; 09/00600


NORM(2,8,4) : SIG8243L BtZ,8,4) NSHIFT41,3) 09/00700



NINH ONE ONE ; 09/00800


NORM(3,8,4) : SIG8243L B(3,8,41 NSHIFTI1,3) 09100900



NINH ONE ONE ; 09/01000


NORM(4,8,41 ! SIG8243L 3(4,8,4) NSHIFTtI,3) O9/0o10



NINH ONE ONE ; 09/01200

10 : OUTPUT NORMII,32) NSHIFT(1,3) ; 09/01300


10 : OUTPUT NSH(1,3) ; 09/01400





279



10/00100


RIGHTI,32) : WAND ARIGHTLI,32) NORM(I,32) ; 
 10/00200 
5 :OUTPUT RIGHT(I,32) ; 
 

OF THESERODUOIBILITY 
f dI~GNAL PAGE IS POOR 



280



$ THIS IS THE PRIMARY EXPONENT ADDER 11/00100


: OUTPUT EXPA(1,81 EXPB(1,8) ; 1 /00200


AEXPOII,8) : FORM ZERO EXPA(2,7) ; 11/00300


AEXSTR : S1 ZFF AEXSTRC ONE ; 11/00400


AEXP(1,5] : S157 AEXPOI,5) ZEROS(1,5] EX157 ZERO ; 11/00500


AEAP(6,33 : S157 AEXPOL6,3) NSHIFT(1,3) EX157 AEXSTR ; 11/00600


10 : OUTPUT AEXPO(t,8) ; 11/00?00 
: OUTPUT EX157 ; 11/00300 
SEXP[1,8) : FORM ZERO EXPBCZ,7) ; 11/00900 
XORSIGN : S86 EXPA(I) EXPA(I) ; 11/01000 
: OUTPUT EXCARRY ; 11/01100 
BAFUNC(1,3) ; FORM ZEROS(1,21 ONE ; 11/01200 
ABG(2) ABPC2) S381GP AEXP(5, ) BEXP15,4) ABFUNC(1,3) ; 11/01300 
ABG(t) ABP(I) S381GP AEXP(1,4) BEXP(1,4) ABFUNC(1,3) ; 11/01400 
BAG(2) RAP(2) S381GP AEXP(5,4) BEXPt5,4) BAFUNC(1,3) , 11/01500 
BAG{l) SAP() SIGP AEXP{I,4) BEXPIl,4) BAFUNC(L,3) . 11/01600 
EXII1,4) : 5381 AEXP(1,4) BEXP(I,4) ABFUNC(I,3) FABC4 ; 11/01700 
EXI(5,4) : S381 AEXP(5,4) BEXP(5,4) ABFUNC11,) EXCARRY ; 11/01800 
EXBA(1,4) : S381 AEXP(I,4) BEXPCI,4) BAFUNC(t,31 FBAC4 ; 11/01900 
EXBA(5,4) 5S381 AEXP(5,4) BEXP(5,4) BAFUNC(1,3) ONE ; 11102000
 
ABS(1,7 : S157 EXBA(2,T) EXAI2,7) EXC2BAR ZERO ; 11/02100 
UNUSED UNUSED FBAC4 EXC2 UNUSED : S182 ONE FBAGt1,41 FSAPLI,4) , 11/02200 
UNUSED UNUSED FABC4 EXC2BAR UNUSED S182 EXCARRY FABGCI,4) FABP(I,4) ; 11/02300 
FABGtI,4) : FORM ONES(1,Z) ABGIL,Z) ; I1/02400 
FABP(1,4) i FORM ONES(I,2) ABP(,2) 11/02500 
FBAG(L,4) : FORM ONESII,2) BAG(,2) ; 11/02600 
FBAP(1,4) : FORM ONES(1,2) BAP(1,2) ; 11/02700 
5 : OUTPUT ABS(1,7) EXI(1,8) EABA(1,8J ; 11/02800


: OUTPUT ABFUNC(1,3) ; 1I/0?900


5 OUTPUT AEXP(1,8) BEXP(1,8) ; 11/03000


10 OUTPUT FABC4 EAC2BAR EXC2 ; 11/03100


10 OUTPUT FBAC4 ; 11/03200


15 OUTPUT ABGtI,2) ABPhI,2) ; 11/03300


15 OUTPUT BAG{I,2) BAP(1,21 ; 11/03400


: OUTPUT EXCARRY ; 11/03500


: OUTPUT XORSIGN ; 11/03600





281



$ THIS IS THE 32-BIT FRACTION ADDER 12100100


ENABBAR : S04 ENABADD ; 12/00200


AC : H52 ENABADU CUAC ENABBAR AFUNCI(2) AFUNCI(3) ; 1?/00300


: OUTPUT CUAC ; 12/00400


AGH(1) APH(I) : S381GP LEFTCI,'u) RIGHT(I,4) AFUNC(1,3) ; 12/00500


AGH{2 APH(2) : S38IGP LEFT(5,4) RIGHT(5,4) AFUNC(1,3) ; 12/00600


AGH(33 APH(3) : S381GP LEFT(9,4) RIGHT(9,4) AFUNC{1,3) ; 12/00700


AGH(4) APH(4) :S38IP LEFT(13,4) RIGHTII3,43 AFUNC(1,3) ; 12/00800


AGL1} APL(1) S3BLGP LEFT(17,4) RIGHT(17,4) AFUNC(1,3) ; 12100900


AGL2) APL(2) S38IGP LEFTC2l,4) RIGHT(21,41 AFUNC(1,33 ; IZ/01000


AGL|3) APLC3) S38IGP LEFT(25,4) RIGHT(25,4) AFUNC(1,3) ; 12/01100


AGL(4) APL(4) S28LGP LEFT(29,4) RIGHT(29,4) AFUNC(1,3) ; 12/01200


AG2 AP2 AC4H AC8H ACI2H : $182 AC16 AGH(I,4) APH[1,4) ; [2/01300


AGI API AC4L AC8L AC1IL : S182 AC AGLI(1,4 APLII,4) ; 12/01400


AC16 : S182X AC AGI API ; 12/01500


ACOUT z S182X AC16 AG2 AP2 ; 12/01600


SUM(1,4) : 5381 LEFT(1,4) RIGHT(1,4) AFUNC(I,3) ACI2H ; I?/01700


SUM(5,4) : S381 LEFT(5,4) RIGHT(5,4} AFUNC(I,3) AC8H ; 12/01800


SUM(9,4) : S381 LEFT(9,4) RIGHT(9,4) AFUNC(1,3) AC4H ; 12/01900


SUMII3,4) : $381 LEFTI13,4) RIGHT(13,4) AFUNC(I,3) AC16 ; 12102000


SUM(17,4) : $381 LEFT[17,4) RIGHT(17,4) AFUNC(I,3) AC12L ; 12/02100


SUML21,4) : S381 LEFT(21,4) RIGHT(21,4) AFUNC(I,3) ACBL ; 12/02200


SUMCZ5,4) : S381 LEFT(25,4 RIGHT(25,4) AFUNCtI,3) AC4L ; 12/02300


SUM(29,4) : 5381 LEFT(29,4) RIGHT(29,4) AFUNCI,3) AC 4 12/02400


- OUTPUT AC ; 1/02500

5 OUTPUT LEFT(1,32) RIGHT(1,32) AFUNC(I?3) ; 12/02600


15 : OUTPUT AGH(1,4) APH(1,4) ; 12/02700


15 : OUTPUT AGL(L,4) APL(1,4) ; 12/02800


5 OUTPUT SUML1,32) ; 12/02900


15 ; OUTPUT AC4H ACBH ACI2H 4 12/03000


15 : OUTPUT AC4L AC8L ACIZL ; 12/03100


5 OUTPUT ACOUT ; 12/03200

15 : OUTPUT ACI6 AGI AG2 API AP2 ; 12/03300





282



$ THIS LOGIC RESPONDS TO FRACTION ADDITION OVLRFLOWS 13/00100


$ IT "SHIFTS" THE FRACTION ONE DIGIT TO THE RIGHT ON OVERFLOW 13100200


UVFLI1,32) FORMI ONESII,3) ZERO SUM(1,28) ; 13100300


FRACT(1,32) S158 OVFLC(,32) SUM(1,32) OVFLSEL ZERO 3 13/00400


OVFLCON(1,8) FORM ONES(,3) ACOUT ONESL1,4) ; 13/00500


OVFLSEL : S151 VrLCON(1,8) AFUNCI(1,3) ; 13/00600


5 : OUTPUT OVFLSEL ; 13100700


5 : OUTPUT OVFLL1,32) 13/00800


: OUTPUT FRACTI1,32) 3 13/00900





283



$ THIS IS THE EXPONENT CORRECTION ADDER, WHICH INCREMENTS 
 
$ THE EXPONENT BY ONE WHEN A FRACTION OVERFLOW OCCURS 
 
EXSELINI1,8) : FORM ONE ZERO ONES(1,2) ZEROS(i,2) ONE ZERO ; 
 
EXCNTRLtI,3) : FORM EXCZ AZERO BZERO ; 
 
EXSEL : S151 EXSELIN(l,8) EXCNTRL{1,3) ; 
 
10 OUTPUT EXSEL ; 
 
100 - OUTPUT EXCNTRL(1,3) EXSELIN(l,8) ; 
 
EX3TOIL : S20 EXSEL EXPI ONE ONE ; 
 
EX3TOIC(I,2) FORM EX3TOIH EX3TOIL 
 
EX3TOI(1,8) SIG8263 EXI(1,3) AEAPO(1,8) BEXP(1,8) 
 

EX3TOIC(1,2) ZERO ; 
 
20 : OUTPUT EX3TOI1(.8) EXPSUH(1,8) ; 
 
: OUTPUT EX3TOH EXPI ; 
 
10 : OUTPUT EX3TO1CC1,2) ; 
 
20 : OUTPUT EX3TO1L ; 
 
EXPSUM(1,4) UNUSED : SIS EX3TOIt,4) ZEROS1I,43 CORRCRY 
 

ZEROS(1,4) ZERO ; 
 
EXPSUM(5,4) CORRCRY : S181 EX3TOIC5,4) ZEROS(1,4) ZERO 
 

ZEROSII,4) ZERO ; 
 
EXP(I,8) : S157 EXPSUMLi,8) EX3TOI(1,8) OVFLSEL ZERO 1 
 
30 : OUTPUT CORRCRY ; 
 
: OUTPUT EXP{2,7) ; 
 

14/00100


14/00200


14/00300


14/004O0


14/00500


14/00600


14100700 
14/00800


1
14/00900


14/01000


14/01100


14/01200


14/01300


14/01400


14/01500


14/01600


14/01700


14101800


14/01900


14/02000


14/02100


14/02200





284



$ THIS LOGIC TESTS THE RESULT FRACTION FOR ZERO, AND SETS 15/00100


$ THE ZERO FLIP-FLOP ACCORDING TO THE RESULT OF THE TEST 15/00200


ZFFBITSIl) : S260 FRACTII,4) ; 15/00300


ZFFBITS(21 : S260 FRACT(5,4) ; 15/00400


ZFFBITS(3) : 260 FRACT{9,4) ; 15/00500


ZFFBITS(4) : 260 FRACT(13,4) ; 15/00600


ZFFBITS(:)S260 FRACT(17,4) ; L5100700


ZFFBITS(6) : 5260 FRACT(21,4) ; 15/00800


ZFFBITS(T) S260 FRACT(25,4) ; 15/00900


ZFFBITS(8) : 260 FRACT(29,4) ; 15/01000


ZFFINBAR : S133 ZFFBITS(1,8) ; 15/01100


ZFFIN : S04 ZFFINBAR ; 15/01200


*ZFF *ZFFBAR : S74 ZFFIN CLOCK ; 15/01300


10 : OUTPUT ZFFIN ; 15/01400


10 : OUTPUT ZFFINBAR ; 15/01500


20 : OUTPUT ZFFBITS(1,8)1 15/01600


: OUTPUT ZFF ZFFBAR CLOCK ZFFIN ; 15/01700





285



//DECK EXEC ASSEMBLY,PARM=IFX,ESD,LSETC=12',REGION=180K 16/00100


//SYSLIB DD DSN=USER.P4293.SUPPORTQISP=SHR L6100200


I/ DD DSN=USER.P4293PACKAGES,DISPSHR 16/00300


I/ DO OSN=SYSI.MACLIBSDISP=SHR 16/00400


//SYSIN DD DSN=&DECKFOGDISP=COLODELETE) 16/00500





286 

//LINKDECK EXEC LINKEDIT,PARM=ILISTMAP,NCALLET'REGION=O2K, 17/00100


II LOADSET=IUSER.P4293.LINKOUT(LQGFOG)' 17/00200


//SYSLIB DD DSN=USER.P4293.LINKOUT,DISP=SR 17/00300


//SYSLMOD DD DISP=OLDSPACE=(TRK,(10,3,10)) 17/00400





287



//MICRO EXEC ASSEMBLY ,PARM=INOXREFNOLREFESD REGION=180B 18/00100


IISYSLI8 DOD DSN=USER.P4293.SPECIALOISP=SHR 
 13/00200


/ 00 DSN=USER.P4293.MICRODISP=SHR 
 18/00300


O
DI DSNUSER.P4293.SUPPORTDISP=SHR 
 8/00400

II DO DSN=USER.P4293.PACKAGESDISP=SHR 
 18/00500


// DO DSN=SYS1.MACLIBOISP=SHR 
 18/00600

//SYSIN DO DSN=&MICFOGDISP=(OLDDELETEI 
 18/00700


D/ *DO 
 18/00800





288



PRINT NOGEN 19/00100


STEP AEXSTRC=O,CUAC=0,EX3TOIH=I,CLOC=1,AINH=,BINII= 19/00200


STEP SlilERO=1,NINH=,CUArUNc=OOO,CU4DD=L,CUSUB=OEX157h0 19/00300


STEP ENABADD=O,EXP1=L,A8FUNC=010,EXCARRY=1 19/00400


STEP EXPA=10LOOEXPd=01001000 19/00500


STEP A=XOB=XO 19/00600


RUN 19/00700


STEP AEXSTRC=I,CUAC=I,EX3TOIH=O,CLOCK=ONINH=0 19/00800


STEP CUAFUNC=011,ENABADI=IB=XOEXPI=OABFUNC=01l 19/00900


STEP EXPB=EXP,AINH=OBINH=O,EX157=1,EXCARRY=O 19/01000


RUN 19/01100


STEP AEXSTRC=O,CUAC=O,EX3TQIH=I,CLOCK=L,AINH=1,BINH= 19/OL0


STEP SHZER=I,NINH=1,CUAFUNC=000,CUAD=L,CUSUB=O,EX157O 19/01300


STEP ENABADD=OEXPI=IA6FUNC=010,EXCARRY=I 19/01400


STEP CUAD O= 19/01500


RUN 19/01600

STEP CUSUB=1 19/01700


RUN 19/01800


STEP A=X80000000 19/01900


RUN 19/02000


STEP B=X50000000 19/0100


RUN 19/02200


STEP EXPA=01000010 19/02300


RUN 19/02400


STEP EXPA=OIOOLO00 19/02500


STEP CUSUB=O 19/02600


RUN 19/02700


STEP B=X80000058 19/02800


RUN 19/02900


STEP AEXSTRC=ICUAC=I,EX3TQIH=O,CLOCK=O,NINH=O 19/03000


STEP CUAFUNC=OLI,ENABADO=1,B=X58,EXPI=OABFUNC=OI 19/03100


STEP EXPB=*EXP,AINH=OBINH=O,EX57=1,EXCARRY=O 19/03200

RUN 19/03300


STEP AEXSTRC=OCUAC=OEX3T01H=1,CLOCK 1,AINH=I,BINH=I 19/03400


STEP SHZERO=1,NINH=I,CUAFUNC=000,CUADD=I,CUSUB=O,EX157=0 19/03500


STEP ENABADD=OEXP1=1,ABFUNC=010,EXCARRY=I 19/03600


STEP EXPB=01000111 19/03700


RUN 19/03800


STEP CUSUB=1 19/03900


RUN 19/04000


STEP CUADD=1 19/04100


RUN 19/04200


STEP EXPB=01001000 19/04300


RUN 19/04400


STOP 19/04500


END 19/04600





289



//LINKMIC EXEC LINKEDIT, PARK=ILISTMAP,LET,REGION=IOZK, 20/00L00


i/ LOADSET=,USER.P4293.LINKOUTMICFOG)P z/O0o200


//SYSLIb DU DSN=USER.P4293.LINKOUTDISP=SHR 20/00300


//SYSLMOD DD DISP=OLDSPACE={TRK,1t0,3,t10) 20/00400





290



//LINKSIM EXEC LINKEDIT, PARM='LIST MAPLET' ,REGION=LO2K, 21/00100



/I LOADSET=IUSER.P4293.LINK
OUTTESTFOG )  21/00200



21/00300
/ISYSLIB DO DSN=USER.P4293-LINKOUTDISP=SHR 
 
21/00400
/ISYSLIN DD * 
 
21/00500
ENTRY PROGRAM 
 
21/00600
INCLUDE SYSLIB(MICFOGLOGFOG) 
 
21/00700
//SYSLOD DO DISP=OLOSPACE=(TRK.I0,3,0)) 
 



291



= 2 55  
//RUN EXEC PGM=TESTFOG,REGION=32,TIE=,i),PARM j 22/00100 

22/00200
//SYSPRINT DO SYSOUT=A 
 
22/00300
//SYSUDUMP DO SYSOUT=A 
 



292



//RUN EXEC PGC=TESTFOG,REGION=32K,TIME=(,10),PARMN'O1 23/00100

//SYSPRINT DD SYSOUT=A 23100200


//SYSUDUMP D SYSOUT=A 23/00300




