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SECTION 1.0

SUMMARY

This study was directed toward the evaluation of domestic data dissemination networks for
earth-resources data in the 1985-1995 time frame. To accomplish this task, the following
topics were addressed;

1) earth-resources data sources and expected data volumes,

2) future user demand in terms of data volume and timeliness,

3) space-to-earth and earth point-to-point transmission link requirements and

implementation,
4) preprocessing requirements and implementation,
5) network costs, and

6) technological development to support this implementation

This study was parametric in that the data input (supply) was varied by a factor of about
fifteen while the user request (demand) was varied by a factor of about nineteen. Corre-
spondingly, the time from observation -to delivery to the user was varied., This parametric
evaluation was performed by a computer simulation that was based on network alternatives

and resulted in preliminary transmission and preprocessing requirements.

The earth-resource data sources considered were: shuttle sorties, synchronous satellites
(e.g., SE0S), aircraft, and satellites in polar orbits. As the average daily data
volume from polar orbiters was found to exceed that from the other sources by nearly an

order of magnitude, only polar orbiters were finally included in the data input model.

User requirements were assessed from careful reviews of prior earth resources user require-
ment studies and from extensive interviews within' the current LANDSAT data user community.
A lack of consensus among those interviewed, particularly on resolution and timeliness
needs, led to the parametric user data demand model mentioned above in which important
variables (including resolutipn and timeliness) may be modified. Timeliness requirements
throughout the model were selected specifically with a view toward determining network
capacity and structure for fast (less than nine-day) user-request.response time. This

ruled out the distribution of user data by mail or special courier.

Evaluation of transmission requirements resulted in the definition of link capacities and
the corrarison of alternate services to satisfy these requirements.  Space-to-earth trans-
mission included consideration of direct and relay links. Landline and satellite relay

were considered for trurnking and user dissemination.

The network simulation indicated required preprocessing speeds for the functionally

identical network configurations. Though functionally identical,



WDL-TR7187 1-2

the network configurations differ in the use of regional vs central raw data reception and
regional vs central preprocessing and distribution. TFoi a given configuration, the
location(s) of these reception, preprocessing, and distribution facilities were selected
from among Fairbanks, AK, White Sands, NM, Goldstone, CA, Sioux Falls, SD, and Greenbelt,MD.
One configuration resembled the current LANDSAT network in that raw-data reception (or
polar-orbiter readout) stations were located at Fairbanks, Goldstone, and Greenbelt, a
central preprocessor was located at Greenbelt, and a central distributor was located at
Sioux Falls. Another configuration postulated the use of NASA's Tracking and Data Relay
Satellite (TDRS) so that all data was received at the White Sands TDRS terminal.

Given the transmission and preprocessing alternatives, costs were developed to compare
these alternatives. The results of cost comparisons among the economically feasible
electronic transmission alternatives showed satellite transmission (either a leased trans-
ponder or an add-on, user-owned transponder) with user-owned earth terminals to be the

minimum-cost alternative.

The main criterion in the network comparisons was’ network cost for equivalent network per-
formance. Network performance was based on the maximum data load (e.g., clear-weather
operation, -peak seasonal demand) and evaluated according to thi number of user requests
that were unsatisfied (i.e., not delivered to the user within the user-specified time-
liness requirement) and the average age (from reception at the polar-orbiter readout

stations to delivery to the user) of delivered data., Network performance was determined

with the help of a discrete-event computer simulation program. This program modeled the
complete network from source data volume through user data distribution and incorporated

the parametric user demand model.

Network cost included the cost of raw-data readout terminals,-data trunking, data pre-
processing (that is, record and playback, reformatting, address insertion, channel redun-
dancy removal, quick-look data extraction, cloud-cover extraction, radiometric and geo-

metric correction, archiving, and data routing), and user data distribution. The cost of

H
)
i
i
i
i
i
3
I
i

the polar orbiters and of the TDRS were not included. All costs were expressed as an
equivalent annual cost based on a uniform equipment lifetime of 7 years and an 8% annual
interest rate. In all networks, operation, administration, and maintenance costs combined

comprised approximately 35% of the total equivalent annual network cost.

The total annual cost of networks for lower-48-state coverage, not including the user-owned
terminals, ranged from $2.3M to $4.8M. Networks covering the lower-48 states plus Alaska '
ranged in cost from $2.9M/year when use of the TDRS was assumed to $4.4M/year for the
network similar to the current LANDSAT network. . In both coﬁefage caseé, the lowest cost
network used central data reception, preprocessing, and distribution to the extent possible.

This result is independent of likely uncertainties in the cost of preprocessing equipment
and operating personnel. ‘
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The least-cost network configuration for coverage of both the lower-48 states and Alaska
with the exception of the network in which the use of TDRS is assumed, receives polar
orbiter data at Fairbanks and Sioux Falls. The Fairbanks data is then trunked to Sioux
Falls for preprocessing together with the Sioux Falls data. A preprocessor throughput rate
of 6 scenes/hour (10 min/scene), where a scene includes all the spectral bands, is suffi-
cient to satisfy all user requests. The preprocessed data is then distributed from

Sioux Falls vié a network-owned domestic satellite earth terminal and a 6-Mbps satellite
broadcast link, The associated average age of the delivered data is 9.9 hours. The total

annual cost of this network is approximately $3.0M, only about $160K/year more than the
TDRS~related network.

The single-unit installed cost of a user-owned terminal was calculated to be $109K for a
G/T of 30 dB/°K at 12 GHz. (Operation with a satellite EIRP of 40 dBW per 40-MHz trans-
ponder is assuﬁed.) Or, the equivalent annual cost of the terminal, including maintenance,
would be $31K. Given cost reductions in key earth-terminal components, these costs could
be reduced to $58K and $21K, respectively, where half of %the annual cost would then be
allocated for maintenance. Assuming a 100-user network, an accompanying volume discount
for the per-unit user~owned terminal cost, and equal sharing among users of the total cost
of the network just described, the annual cost per user would be $51K. Assuming 2 user
requests 500 scenes a year, the cost to him per scene would be about $100. Actual user
cost per scene could vary significantly from this figure depending upon the degree to which
the earth-resources program is subsidized by the government, the number of users sharing
the costs, and the number of scenes required. Furthermore, user processing (classification,

analysis, display) costs must be added to obtain the total cost.

Technology considerations indicated that 30m/7-band data could be disseminated, with
current technology, to all users within 24 hours after observation, = On the other hand,
10m/12-band data would require significant development, primarily in recording and pro-

cessing technology.

The level of technology required is, in generai, a function of either the transmission
rate or the preprocessing time required per pixel to keep up with the data flow. At a
raw data rate of 120 Mbps or less, the 14-GHz band will suffice, and present-day
digital-component technology can be used. At higher rates, the ERS data transmission

links must move to higher frequencies where technology is less developed. - This is
especially true at 40 GHz. .

Existing technology is adequate to record the 30m/7-band data at 102 Mpbs. Furthermore,
current development projects such as the RCA High-Density Multitrack recorder will extend
the recording capability to 240 Mbps. At higher rates, research is required. The most

promising technique appears to be optical recording.
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Required developments in preprocessing technology include software development of auto-
matic ground-control-point (GCP) matching necessary to perform accurate geometric correction,
More accurate modeling of 3-axis satellite attitude variations (caused by solar pressure,

i for example) is necessaryto improve geometric correction accuracy. In addition,

. the development of distributed processing techniques is necessary to achieve higher through-

put rates., Alternatively, improved satellite jitter performance may reduce the number of GCP's

required per scene during correction,

* Issues that remain and to which the methodology develéped during this study could be applied
directly include the following:

e the effect of cloud cover on user demand and network sizing

® the preferred network structure(s) for expanded coverage (Hawaii, international)

e the effect of expanded mission responsibility (e.g., oceanic, meteorological)
on network structure and sizing

o definition and economic evaluation of area center capability (user-unique
processing, archiving, user interaction, etc.)

o design optimization (e.g., function of timeliness)
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SECTION 2.0
- INTRODUCTTION

The launch of the Earth-Resources Technology Satellite (ERIS) in July, 1972, marked the
beginning of a new era of data collection, processing, and dissemination for a broad
spectrum of users involving numerous institutions (public and private), missions, and
technical disciplines. 1Indeed, data requirements, as now imposed, are diverse in quantity,

accuracy and application,

The technical capability of earth-resources data sensors (both satellite and airborne)
will increase significantly over the next 10 years. As these capabilities increase, user
requirements should also increase in complexity and accuracy demands. New methods for
transferring and processing the data should, therefore, be required to meet this future

demand.

The existing domestic data processing and dissemination system for earth-resources data
consists of three earth terminals located at GSFC (Greenbelt, Maryland), Fairbanks, Alaska,
and Goldstone, California. Preprocessing is performed at GSFC, and the data is disseminated
to the user via a distribution facility at Sioux Falls, South Dakota. The collection, pre-
processing, and dissemination functions include numerous steps which result in a system

time response in the order of 30 days. Factors which contribute to this response time

include the following: (a) administrative handling of data requests, (b) mailing of raw
data tapes from Fairbanks and Goldstone to GSFC, (c) manual checking and editing of pre-
processed data prior to release to Sioux Falls, (d) mailing of data to Sioux Falls, (e) time
required to handle and process user reduests at Sioux Falls, (f) time to mail data to the

user,

Stéps are underway to reduce this response time. A new, high-speed processor is being
developed by IBM for GSFC which will preprocess a scene (90m resolution/4-spectral-band
LANDSAT-A image) in only 2 minutes. Plans are underway to lease a domestic satellite
transponder to provide a 20-Mbps data transmission link between Goldstone and GSFC, and
between GSFC and Sioux Falls, With these improvements, the network response time is
expected to be reduced from 30 days to 2 or 4 days plus the time required to transfer

the data. from Sioux Falls to the user [1].

It is clear that if substantially faster response times to the user are required, data
transmission links from fhe preprocessor;directly to the user must be implemented.
Furthermore, administrative delays must be eliminated by schéduling user requests in
advance, ' Finally, geometric and radiometeric Corrections, data editing, and quality control

techniques must be improved and maintained without adding significant delay to the system.
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On July 14, 1975, NASA/Ames Research Center awarded a contract to Aeronutronic Ford to study
user data dissemination concepts for domestic earth-resources data. The purpose of this study
is to predict the requirements for earth-resources data in the 1985-1995 time frame, to eval-
uate competing networks for data processing and dissemination, and to indicate technological
development required to support implementation of this data flow. Figure 2-1 shows the plan
followed in conducting this study. The study was divided into three basic tasks:

1. Predict user requirements and construct a user model for the 1985-1995 time frame.
Predict capability and cost of data processing and communication techniques.
3. Configure, analyze, and evaluate a number of networks for processing and dissemi-

nating the earth-resources data to the user.

NETWORK
CONFIGURATIONS

1

USER USER
REQUREMENTS MODEL
NETWORK
IMULATION
PERFORMANCE
EARTH
RESOURCE SAT
PERFORMANCE
PARAMETERS ™ EVALUATION |- COST
TRADES
TECHNOLOGY DATA LINK coST
CONSTRAINTS CHARACTERISTICS ESTIMATES
PROCESSING cosT SELECTION
CHARACTERISTICS ESTIMATES CRITERIA

Figure 2-1, Study Plan

To assist in the analysis and evaluation process, the data dissemination network was simu-
lated on a computer, using a discrete event simulation language (GESIM). The principle
criteria used in evaluating the networks were the time required to process and transfer the

data to the user and the cost to implement and operate the network.

As seen in Tshle 2-1, the rates and quantities of data to be generated by future ERS satel-
lites are much larger than those currently generated by LANDSAT A, Two levels of future
satellite sensor capability were assumed, one with a 30-meter resolution, 7-spectral-band

scanner, and the other with a 10-meter resolution, l12-spectral-band scanner.

The functions of the data processing system considered in this study are those associated
with preprocessing ouly. . These include reformatting, quick-look data extraction, radicometric
and geometric correction, among other functions. Data interpretation, classification, and

other user-peculiar processing were outside the scope of this study.
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Table 2-1

Parameters of Polar Orbiters

(Multispectral Scanner Only)

LANDSAT LANDSAT FUTURE
A (TENTATIVE) | DANDSAT
Resolution (m) 90 30 10
Number Spectral Bands 4 1 12
Raw Data Rate* (Mbps) 15 102.4 1579.2
Number Bits per Pixel 6 8 8
Number Bits per 8-min Pass** 7.2 x 10° 4.92x10% | 7.58x 101!

Finally, key technology development requirements were identified and described. These re-
quirements lie principally in the area of preprocessing; particularly, high throughput speeds
in the order of ]l microsecond per pixel. Data transmission technology appears basically ade-

quate to support earth-resource network requirements.

A data dissemination network can be considered in terms of its primary functions. These are:
data transmission from space to ground, reception and storage at regional terminals, trunking
from regional terminals to a central facility, quick-look data extraction and dissemination
to users, preprocessing, archiving and, finally, dissemination of preprocessed data to the

user.

To support these functions, a network topology can take many forms. For example, the space-
to~earth link may be implemented directly, as now, or through a synchronous-satellite relay.
For domestic data, the number of regiomal terminals can vary from none (satellite relay) to

four (required coverage for 40-GHz carrier). The regional location and timeliness require-

ments principally determine the trunking capacities. Quick-look extraction, preprocessing,

and dissemination may be performed regionally or centrally. As stated previously, one of

the purposes of this study was to evaluate these competing alternatives.

A previous study was performed by National Scientific Laboratories, Inc., [2] in 1974 for

NASA/GSFC.  Four networks were considered in this s tudy:

1. Raw data collected at Goldstone, Greenbelt, and Fairbanks transferred to -and pre-

processed at Greenbelt, and transferred to Sioux Falls.
2. Raw data collected at Fairbanks and Sioux Falls and prepfocessed at Sioux Falls.

3. Raw data collected via TDRS at White Sands, transferred to and preprocessed at

Greenbelt, and transferred to Sioux Falls.

4. Same as network (3), except a second preprocessing facility at Sioux Falls was added
for operational data processing. The Greenbelt processing facility was retained for

experimental data.
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Though considering only the trunking requirements by excluding user data dissemination and
based on a 15-Mbps raw-data rate transferred to Sioux Falls within 4 hours after observation,
this NSL study concluded that alternative 2 was least expensive. This conclusion is similar

to conclusions appearing in Section 11 of this report.

Certain assumptions were made at the beginning of the study. These are listed in Table 2-2.
While these assumptions may affect the choice of an optimum system, they will not affect the
basic methodology developed to attack the problem.  For example, in a future study, areas
other than continental USA could be added to the network simulation. The earth terminal
locations could be changed. Data processing (including data compression) in the satellite

could be simulated.

Table 2-2

Basic Assumptions

e 1985-1995 TIME FRAME
e CONTINENTAL U.S.A. (INCLUDING ALASKA) COVERAGE ONLY
e TWO SATELLITE ORBITS
- LOW ORBIT (700-920 km), CIRCULAR, SUN-SYNCHRONOUS
- SYNCHRONOUS, GEOSTATIONARY
e FIVE POSSIBLE EARTH TERMINALS FOR ERS DATA RECEPTION
- GREENBELT, MD
- SIOUX FALLS, SD
- GOLDSTONE, CA
- FAIRBANKS, AK
- WHITE SANDS, NM
e PREPROCESSING PRIOR TO DISSEMINATION
e DIGITAL DATA TRANSMISSION
- ONE WORD PER PIXEL
- 8 BITS PER WORD.
e COMMON FORMAT AND COORDINATE SYSTEM TO USER
e SYSTEM SIZED FOR MAXIMUM INPUT DATA RATE
- CLEAR WEATHER OPERATION
- PEAK SEASONAL DEMAND
e IR SENSOR RESOLUTION SAME AS VISUAL

e RADIO FREQUENCY ALLOCATIONS AND FLUX DENSITIES CONFORM
TO EXISTING ITU/CCIR AGREEMENTS

e 16-HOUR SHIFT, 7-DAY WEEK
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The criteria used for network evaluation were; network performance, cost, and technology
risk. The measure used for network performance was the percentage of users that received
the data requested within the time required (i.e., acceptable network response time). Cost

and technology risk were determined for each network,

This final report is organized as follocws: Section 3 describes the parameters of earth-
resources data which may be available to the user community by 1985, Section 4 summarizes
the results of the work performed to determine a basis for predicting a user model valid for
the 1985-1995 time frame. This user model 1is described in Section 5. 1In Section 6, network

alternatives are described.

Section 7 presents performance-cost trades for data transmission systems, and Section 9 pre-
sents performance-cost trades for data processing systems. These results are referred to in
Sections 8 and 11, which describe and evaluate the various data dissemination networks con-
sidered.  Section 9 describes a preliminary selection process based largely on cost consider-
ations. From this process, several configurations were selected for further investigation
by computer simulation, described in Section 10. These results are presented in Section 11.
Finally, future anticipated technology requirements are outlined in Section 12, and the

study conclusions and recommendations for future study. are presented in Section 13,
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SECTION 3.0
EARTH RESOURCES PLATFORM PARAMETERS - DATA SUPPLY

3.1 Introduction.

An effective user model must project both the supply and demand of and for remotely sensed
data. As the model is parametric, so must be the data supply. The supply side will be
constrained by the availability of platforms and sensors and the data flow will be
structured by the orbital parameters, number of satellites and their relative timing. Thus,
the purpose of this section is to develop reasonable bounds on the parameters that affect

the data input to the model.
The types of platforms investigated were:

a) polar orbiter
b) synchronous earth-resources satellite
c¢) shuttle scanner experiments

d) aircraft imagery required to support satellite data

For each of the above platforms, a variation in data output was assumed. Typically, the
lower bound of data load was based on current planning and the upper bound was
established by a significant extrapolation of current planning. - The structure of these

estimates is discussed in the following sections.

3.2 Polar Orbiters.

Assuming a standard swath width, the principal parameters that influence the data rate
from each polar orbiting satellite are spatial resolution and number of spectral bands.
The satellite orbital parameters have marginal impact on data rate but do affect the

coverage at regional terminals and trunking requirements to a central preprocessor.

3.2.1 Spectral Bands: The initial effort in estimating the number of spectral bands

(and spatial resolution) was to review existing recommendations. The results of six sets
of speétral band recommendations for different disciplines appear in Appendix A. The

studies or reports referred to are:
1. General Electric, TERSSE Study - November, 1974

2. Operations Research, Data Origination and Flow for Advanced Earth-

~ _Sensing Satellites in 1985 and Beyond - June 1975
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3. NASA, Advanced Scanners and Imaging Systems for Earth Observations -
December 1972

4, ERIM, Multispectral Seanners Data Applications - December 1974

5. NASA, Earth Observation Satellite Payload Discussion Group

6. NASA, Synchronous Earth Observation Satellite

A review of Appendix A indicates an obvious lack of consensus within a given discipline and
.a lack of commonality between disciplines. Thus, a precise prediction of the number of
simultaneous bands in use by 1985 is not likely., Also implied are cost trade-off decisions
between discipline-dedicated satellites and single-satellite service with time-shared bands.
In the latter event, the number of simultaneous bands will be limited by technology; i.e.,
the space limitation on filter wheels, multiple apertures, and/or fiber optics bundles.

In considering shuttle era earth-resources satellites, the larger payloads imply the
possibility of larger sensor apertures and thus narrower spectral bands with equivalent
signal-to-noise performance. Thus, future sensors may be capable of inserting a wide

range of bands of which some number would be selected by command on any given pass. Such

capability would imply user interaction through an operational control center.

Recommendations for the LANDSAT-D thematic mapper were also considered. Current
recommendations resulting from the LANDSAT-D Thematic Mapper Technical Working Group
(June 1975) are for seven bands [1]. These are:

0.45 - 0.54 0.80 - 0.91

0.52 - 0.60 1.55 - 1.75 i
0.63 - 0.69 10.4 - 12.5

0.74 - 0.80

This recommendation was based primarily on the objective of detection and classification -

of vegetation.

An important factor to be considered in projecting spectral bands is the relationship
between the number of spectral bands and classification accuracy. An interesting
~empirical study on this subject was reported by ERIM in the 'MSS Data Applications
Evaluation Study" (Dec. 1974). Using actual data derived from aircraft overflights, ERIM
analyzed classification accuracy by discipline as.a function of number of bands, spaﬁiél
resolution, and noise equivalent-radiance difference. Among conclusions of this study
were:

1) Vegetation classification can be accomplished as well with four or five

optimized bands as with twelve.
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2) Little improvement in classification of land use (Anderson Levels I

through III) was achieved by increasing the number of bands from four to

twelve,

3) Increasing the number of bands for rock and soil classification did

improve the classification accuracy.

Figures 3-1 and 3-2, taken from the ERIM Study, depict the classification accuracy as a
function of number of bands for agriculture and geology, respectively. It should be noted
that the geology application has a minimum likelihood of rapid data transmission require-
ments so that, while a demand for increased bands by this discipline may influence the
supply or band availability, this demand will not necessarily appear in the user model.
That is, the quantity of data, as determined by the number of bands, will likely exceed the

quantity of data demanded on direct communication links.
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Figure 3~1, (Classification Accuracy

In summary, the minimum number of bands assumed for this study was seven (equivalent to

current LANDSAT-D planning) and the maximum was twelve,

3.2.2 Spatial Resolution: - The resolution requirements specified by the various studies

previously cited and by earth-resources data users vary considerably for any given
application. There is, however, a prevailing attitude that-increased resolution to 30m or
10m will increase the utility of remotely sensed data. Numerous potential applications

were so stated; examples: 1) seepage and grdund water detection [21, 2) county level
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mapping at 1:100,000 scales [3], 3) sediment mapping{4], 4) land management surveys{5],
5) aquatic plant mapping [6], and 6) oil spill monitoring to predict drift patterns[7].

However, countervailing factors also exist. To begin with, increased resolution implies
increaseé transmission and processing costs. Furthermore, Department of Defense regulations
may prevent NASA from operating sensors with spatial resolution less than 30m. This was
apparently one reason for delaying the High-Resolution Pointable Imager (10 meter)
development. In addition, as will be indicated in subsequent sections of this report,
implementation of 10m resolution will require significant technological development.
Finally, there is some empirical evidence that resolution less than 30m to 40m does not

improve classification accuracies in the disciplines of agriculture and land use [8],

For the purpose of supporting the user model, the spatial-resolution range assumed for

polar orbiters is 30m (current LANDSAT D recommendation)-to 10m.

3.2.3 Satellite Parameters: Total network data loading and data handling cost is.
proportional to the number of polar orbiters in simultaneous operation. One frequently
cited shortcoming of ERTS/LANDSAT data is the poor coverage cycle. This 18-day cycle
limits the potential of satellite data for several applications. For example, agriculture
applications are hampered by the combination of repeat cycle and cloudiness. For the
single ERTS, only one total cloud-free coverage of the corn belt area was available over
the entire 1975 growing season[97. - Satellite data appears highly useful as a support for

snow melt and river flow models. A one- to two-day timeliness (from observation to user

data delivery) is required for this application. In the Pacific Northwest, approximately

-

-
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15 LANDSAT scenes are required for this application. During the period of interest (March
: 3; to June), only about 4 or 5 cloud-free scenes occurred. This type of application implies a
¥ need for multiple, simultaneous polar orbiters and, thus, a cost/benefit trade. For the

purposes of data input modeling, one and two satellites were assumed.

Given any number of satellites, the orbital parameters will influence the downlink data rate

and the timing of data dumps at any regional terminal. In order to investigate these

effects, two orbits were selected representing extremes in likely sun synchronous orbits.
These were the current ERTS/LANDSAT orbit and the recommended LANDSAT-D orbit. The

characteristics of these orbils 4dre:

oy

e ERTS/LANDSAT  LANDSAT-D
s Altitude (km) 920 702.4
f - Ground track velocity (km/sec) 6.46 6.76
o
The real-time bulk data rate at the satellite can be derived from the following
o expression:
. R = bn Sw NV m
b 2
er
res g
b Where: R, = real-time bulk data rate, bits/sec
b = overhead factor
: n = number of spectral bands
= m . = samples per IFOV
Lomn S. = swathwidth, meters

¥
2
[

number of bits per pixel

(- e = scanner efficiency, %

i , rg = 'gpatial resolution, meters

oo

; \ = ground track velocity, meters per second

- ’ g

. omw

Variation in most of these parameters can be eliminated by assumptibns associated with

standard design practices and the orbit. The overhead-factor,.b, will typically change

R inversely to data rate being as high as 20% at 10 Mbps.or lower. A constant 10% overhead

was assumed. ' Swathwidth, Sw’ is currently standardized at 185,2 km, a value presumed to

ey be maintained. Some consideration has beern given to a dual scaanner configuration for
LANDSAT D, This configuration would have a 370~km swathwidth. However, the final

Eﬁ”, recommendation of the technical working group was for a single scanner, 185.2-km swath-

LWk width[10]. Scanner efficiency is dependent on scanner design, varying from 40% for single-
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direction scanners to 85% for bi-directional scanners. A value of 80% was assumed. Eight
bits per pixel and one sample per IFOV were also assumed. Data rate dependency on resolu-
tion and number of spectral bands then can be expressed for both orbits. These expressions
are:

10

1.377 x 10 n/rg2

=
u

(LANDSAT D)

2

=
L}

1.316 x 10%° n/x, (ERTS /LANDSAT)

Given the assumptions on number of spectral bands and spatial resolution, the range in

bulk data rate results immediately. This range is:

LANDSAT D ERTS/LANDSAT
rg(m) 30 10 30 10
n 7 12 7 12
Ry (Mbps) 107.1  1652.4 102.3 1579.2

It should be noted that the foregoing calculations assume that the infrared spatial

resolution will be equal to the visible spatial resolution. This is not the case and the

data rate estimates, as derived, tend to overstate the actual data rate. On the other hand,
one sample per IFOV understates the current practice of oversampling in the scan direction and,
thus, understates actual data rates. As a final comment, the 10% overhead factor may

be considered a low estimate, particularly for precision mirror position data. In this
regard, it should be noted that the 80% seén efficiency allows 20% time for either overhead
insertion (increasing overhead factor) or on-board stretching of the time base (reducing

data rate).

Daily data loads can: then be estimated using current ERTS orbits, The maximum daily data
load for a single satellite (CONUS and Alaska) is for passage over swaths 11, 29, 47

(CONUS) ‘and 65, 83 (Alaska). TFor continental=shelf coverage, total time over CONUS is 14.7
minutes and over Alaska 6.1 minutes or 20.8 minutes total. For‘30m resolution in a 920-
n.mi, altitude orbit, this results in 1.28 x lOll‘bits. For 10m resolution in the same
orbit, the maximum daily data load would be 1.97 x 1012 bits. - The average time over CONUS
and Alaska for a singlebsatellite at 920-n.mi. altitude in the 18-day coverage cyclé is - 17.8

11 12

minuteg which corresponds to 1.09 x 107" and 1.68 x 10°° bits average daily data loads for

30m and 10m spatial resolution. Two satellites would double the above average - loads to
11 , 12
and 3.4 x 10

approximately 2 x 10 bits. These estimates ignore the effect of cloud

cover which would tend to reduce the average daily loads.
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3.3 Synchronous Earth Observation Satellite (SEOS).

The SEOS program is in the Phase-A study period; consequently, current projections of
SEOS data impact in 1985-1995 will be speculative., The models presented in this section

attempt to bound current design information.

Currently, SEOS planning involves a common telescope system with two instrument packages
(meteorology and edrth resources) that are time-gshared. The projected earth resources
instrumentation will contain from 8 to 13 bands with a visible resolution of 100m and an
infrared resolution of 800m. The instrument field-of -view or sector size will be 100 km

to a side with a scan rate of 1 scene/min. Current planning indicates a single reception
center that performs radiometric and geometric corrections, reformatting then retransmitting
in standard map format, possibly through SEOS? to users., Approximately 20 earth-resources
applications have been identified with emphasis on vegetation and water disciplines and

emergencies,

An estimate of the number of earth-resources scenes scanned per unit time (say one day)

would be soft., First, the earth-resources instruments must share time with the meteorolo-
. . . : 6

gical instruments. However, at a scan rate of 1 scene per minute, 100m resolution, 10

pixels/scene, 50% duty cycle and 8 bits per pixel, the real-time data rate would be

2.66 x 105 bits/sec. per visible band. For 10 bands, this would give 2.66 Mbps plus over-

head, or, for a 10% overhead, 2.92 Mbps.: A maximum daily data load (for 12 hours direct

earth -resources observation) would bé about 1,27 and 1011 bits.

A more reasonable data load expectation would be based on potential data demard. - This was
investigated by estimating the data content of some natural disasters and the monitoring of

coastal waters.

The April 1974 tornado superoutbreak was used as an example of a maximum short-term data
demand for SEOS earth-resources-data. Figure 3-3, taken from a map produced by Dr. Fujita

of the University of Chicago [11], depicts the extent of this tornado outbreak. Bearing in
mind that the SEOS: would be assessing damage and thus covering areas in excess of actual sight-

ings, the potential area coverage could be estimated as follows:

Entire state surveillance
Indiana — ; ' 36,291 sq.  miles
Kentucky , , 40,395 sq. miles

One-half state surveillance

Tennessee ' ' 21,122 sq. miies
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One-third state surveillance
Alabama 17,203 sq. miles
Illinois 18,800 sq. miles
Ohio 19,740 sq. miles
Miscellaneous
Virginia, West Virginia, Georgia 20,000 sq. miles

TOTAL 173,661 sq. miles

This area is equivalent to 4.67 x 101l square wmeters or 4.67 x 107 SEOS visible pixels. At
8 bits/pixel, 13 bands and 10% overhead, this is equivalent to above 5.34 x 109 bits of data.

If converted directly to SEOS scenes, this data would represent about 47 scenes.

By comparison, approximate areas involving other natural disasters and coastal waters are:

Equivalent No. of Bits
Area No. of @ 13 bands
Event ’ (8q. Meters) SEOS- Scenes 10% Overhead
s . ‘ 8 , 6
Mississippi flood (1975) 2.43'x 10 1 2.78 x 10
Hurricane Camille (Miss. Gulf Coast) 4.76 x 106 1 5.45 x 104
Tornado Superoutbreak (April 1974) 4,67 x 107 47 5.34 x 107
Coastal Area (Main through Georgia) - 25 2.86 x lO9
Coastal Area (Florida through Texas) . 35 4.0 x 10°
Coastal Area (Calif. through Wash.) - 23 2.63 x 10°
Coastal Area (Alaska) ' - 125 - L43 x 1010

The foregoing information indicates that the maximum data load from a SEQS-type satellite
could be approximated at 1.27 x 1011 bits and, with 50% time-éharing with the meteorology
payload, 6.35 x 1010 bits.  The demaﬁd for a large area natural disaster could be
approximated at 5.5 x 109 bits. ~Though not likely to be a requirement, the coastal waters,
excluding Alaska, if mapped in a single day, would generate about 9.5 x 109 bits,

Thus, the estimate of the average daily data load from SEOS ranges between 7 x,109 and

7 % 1010 bits. ‘The conclusion is that SEOS data loads would be an order of magnitude less

than the data loads from two polar orbiters.
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3.4 Earth-Resources Shuttle Sortie Mission.

The Earth Viewing Applications Laboratory (EVAL) is a sortie payload designed to contain
general -purpose equipment that can be modified easily or adapted easily to accept new
sensors in order to optimize a particular observation or to alternate between different
kinds of measurement, ' The EVAL provides an unpressurized instrument environment on its open
pallets and a pressurized space inside its optional Spacelab closed module. A variety of
orbit inclinations will be available for mission durations from 7 to 30 days. The EVAL

will supplement free-flyer operational earth-resources systems by providing for self-
sufficient scientific measurements which require only a short period of observation, It
will allow calibration of instruments already deployed on free-flying spacecraft, will

carry out signature studies, and will test instrumentation or techniques as precursors to
later free-flyers.

Multispectral sensor missions from the shuttle will tend toward research and development,
thus, in general, negating the requirement (and cost) for rapid data dissemination. However,
some research requires timely data delivery. Furthermore, the potentially higher resolution
and varied spectral bands imply that an operational demand could develop. One implication

of timely data delivery from the shuttle is real-time data transmission via the TDRSS.

Typical of the earth-resources experiments that may be flown on sortie missions is the
Advance Technology Experiment number EO-3 being planned by Langley Research Center. This

experiment is a multispectral scanner with the following patrameters:

Number of simultaneously scanned lines: 50
Number of pixels per line: N 1000
Number of bands: a 8
Word size: 8 bits

The data acquisition rates are 22.8 Mbps- without overhead and 23,3 Mbps with overhead.
The data acquisition time for a 7-day mission is a total of 1,66 hours (100 minutes),
comprised of 2 ten~minute passes for each of 5 days, The daily traffic for 5 days thus
generated is 2.74 x 1010 bits or the equivalent of eightly-eight 1600-bits-per-inch
computer~compatible tapes (CCT's). This data load, even if fully used on an operational

network, is relatively minor compared to the daily polar orbiter data load (1011 bitgday).



h?ﬁ.-@‘wméﬁﬁﬁnmmgﬁﬁﬁ. %ﬁﬁé- ,gagg

i R p—

LB~
e

i

W

mw

3~11
WDL -TR7187

3.5 Aircraft.

Aircraft data loading on a rapid data dissemination network is difficult to predict. There
are factors that both favor and de-emphasize the potential use of aircraft data om such a

network.

To begin w{th, the aircraft program is research oriented with increasing emphasis on radio
frequency sensors. A new mission out of NASA JSC now requires, at least, a two-week
scheduling period[12] which would preélude much timely operational support. In addition,
several agencies such as the Corps of Engineers and the Coast Guard use support aircraft
directly on a district basis obviating the need for a data dissemination network. On the
other hand, multi-stage sampling associated with timely data would require network

dissemination.

Two approaches were used to estimate potential aircraft data loads on a dissemination net-
work. First, current NASA JSC aircraft activity was used to develop an estimate. During

the period from July 1972 to February 1974, approximately 71%[13] of all NASA aircraft

photographic activity was associated with JSC. The current yearly estimate of original
feet of film generated by JSC -aircraft is 35,457 feet. Thus, one estimate of total daily
activity would be 50,000 feet divided by 260 working days or about 200 feet per average day.
Only a fraction of this total would be time dependent; that is, require network dissemina-

tion.

Another approach was to take the two-year ERTS-and EREP-related aircraft activity, estimate
the percentage of this data that is related to time-dependent disciplines, then derive an
average daily footage as above. Figures 3-4 and 3-5, taken from the referenced Ferandin
Report, indicate total data miles by discipline over a two-year period. Time-dependent
satellite data will tend to be associated with the disciplines of agriculture, range and
forest; water resources, environment and, to a lesser extent, coastal zones and marine and
ocean. These categories constituted about 71% of the total ERTS-data miles and 49% of total
EREP-data miies. Total photographic data products associated with ERTS-1 from three NASA
centers and a contractual effort by ERIM is 655,000 feet and for Skylab/EREP 175,400 feet [14.1.
Thus, 465,000 and 85,946 feet of photographic'products would be associated with the ’

potentially time-dependent disciplines, This converts to an average daily footage of about

1057 feet over 520 working days. Again, only a fraction of this data is time dependent.
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The two foregoing daily estimates, 200 feet and 1057 feet, represent average daily products
in disciplines that have time-dependent applications. Assuming 10% of this data is used on
a dissemination network, an estimate of average digital data loads can be derived. This

estimate was based on the following assumptions:

1) The photographic images are 9.5-inch square formats equivalent to 14 n.mi.
to a side
2) Three-meter resolution

3) Eights bits per resolution element

One foot of film would, therefore, represent 14 by 17.64 n.mi. or about 8.47 x 108 sq.
meters. At three-meters resolution and 8 bits per resolution element, each foot would
represent approximately 7.5 x 108 bits, The upper bounds, previously estimated (20 feet and
10 and 7.92 x 1010 bits. The

central question relative to a data load projection is the relative role of aircraft-to-

106 feet), give potential average daily data loads of 1.5 x 10

satellite data use.

Another approach to developing a daily estimate of potential data loading by aircraft is to
estimate the coverage requirements for a natural disaster such as the 1975 Mississippi

flood used for the SEOS calculations in Section 3-3. In this instance, 2.78 x 106 bits were
estimated for 100m resolution. At a 3m resolution, this load increases to about 3 x 109

bits.

Another factor to consider is peak data loading. Figure 3-6 depicts . a relative scale of
aircraft activity with photographic data delivery history. This data indicates that the
monthly-peak-to-average-activity ratio should not substantially exceed a factor of two.
The previous estimates indicate a potential aircraft data load of the same order of
magnitude as projected satellite data loads. Furthermore, EROS product sales shown in
Table 4-1 indicate that aircraft product sales ére roughly equivalent to LANDSAI‘Product

sales over a three-year period.
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Figure 3-6. Photographic Data Delivery History
3.6 Conclusions.

0f the four platforms considered, polar orbiters represent the largest potential average data
load on a data dissemination network for the United States. Deployment of two satellites
(each with 30m resolution and 7 spectral bands) under cloud-free conditions, would generate
roughly 2 x 1011 bits daily, on the average. By comparison, the SEOS estimate ranged from

7 x 107 to 7 x 10'°, Shuttle, 3 x 10*0 and aircrafe, 1.5 x 10°° to 8 x 10'0 bits daily. It
was thus concluded that further consideration in this study be directed toward polar orbiters
only. However, current and future cost/benefit studies could reverse this conclusion if the

aircraft prove cost effective relative to satellites and their roles were similarly emphasized,
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SECTION 4.0
USER_REQUIREMENTS

The need to reduce the time between observation and data availability to the user as from

the current period of weeks to, in some cases, days has been frequently stated [1].

Numerous prior studies have been directed toward determining user requirements for earth-

resources data, These include:

a) General Electric, Definition of the Total Earth Resources System for the
Shuttle Era; November, 1974,

b) Operations Research, Data Origination and Flow for Advanced Earth-Sensing

Satellites in 1985 and Beyond; June, 1975,

c¢) ERIM, Multispectral Scanners Data Applications; December, 1972

3 d) ©NASA, Advanced Scanners and Tmaging Systems for Earth Observations;
December, 1972

e) NASA, Earth Observation Satellite Payload Discussion Group,

£) Washington University, Remote Sensing Data User by State Agencies and

Related QOrganizations; December, 1974.

?ﬁ While these studies were generally conclusive and detailed, they did not result in a firm
! consensus on specific spatial and spectral resolutions, timeliness, or'frequencies of
: 1 demand by either discipline or user institution. Important to the thrust of this study
j o was the need to identify potential users that would require data within a few days of
; observation. Such users would provide the basic demand for maintaining a digital pro-
% fﬂ cessing and transmission network that would substantially reduce the data delivery time,
;
P o= Acecordingly, numerous current users of LANDSAT data were interviewed for their options on
§ gy data timeliness and resolution requirements as well as the efficacy of interaction with
quick-look and archival data. Again, a consensus was lacking, particularly on timeliness
:r and resolution needs, though a general dissatisfaction with current data delivery times
= was prevalent,  In addition, freqﬁent support was stressed for user interaction with data
w involving quick-~look, classification processing, and archives.
4.1 Introduction.
o The user model derived in this study is parametric. ‘The important variables (data volume,
= timeliness and probability of demand) can be modified as ‘inputs ‘to the network simulation,

The development of-this model proceeded in two phases, First, as a result of reviewing

previous Studies and interviewing numerous current users, a series of demands were projected

for specific agencies. These demands were predicated for each LANDSAT pass over the
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continental U,S, and Alaska based on the coverage coincident with institutional areas of
responsibility. This set of requirements is presented in this section. Second, two specific
models, representing a nominal demand and an expanded demand, were derived from these

potential requirements. These demands are presented in Section 5.0,

4,1,1 Current User Demand: LANDSAT data products are currently distributed by three

federal government agencies: Department of Interior Earth-Resources Observation Systems
(EROS) Data Center (Sioux Falls, SD), Department of Commerce, Environmental Data Service
(Camp Springs, MD), and the Department of Agriculture, Aerial Photographic Field

Office (Salt Lake City, UT), Of these, the EROS Data Center distributes the far larger
portion of total data sales. Table 4=-1, taken from an address by Al Watkins {2), birector
of the EROS Data Center, indicates the sales of earth resources products by type, year and
dollar value. The percentages of purchases by institution, also taken from that address,

appear in Table 4-2.

Table 4-1
EROS Product Sales

FY 73 FY 74 FY 75
Average Average Average
Dollars Dollars Dollars
per per per

Frames | Dollars Frame Frames | Dollars Frame Frames | Dollars Frame
—— e e e

LANDSAT Imagery|{81,071 | 228,042 2,81 {157,178 | 528,514 3.36 [[185,000 | 792,000 4,28
LANDSAT CCT's 10 1,600 { 160,00 228 36,480 { 160,00 820 | 164,000 | 200,00
Aircraft 83,942 | 144,676 1.71 ||109,490 § 237,332 2,16 |{193,000 | 520,000 2,69
Ratio Aircraft ‘
to LANDSAT 1.04 0.70 1.04
Products

Table 4-2

EROS Customer Profile - April 1974-March 1975

All Products Landsat Products
By Item By Item
Private Industry 34% . L 24%
Foreign 12% iR " 247,
Federal Government 27% : . 15%
Academic 14% - : 14%
Individuals R - 10%
State & Local Govt. 1% 1%
Unknowri - 5% ‘ 12%
100% = 413,776 frames 100% = 176,000 frames

CCT's 1.2% of total frames
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It should be noted that the dollar value of EROS products covers the cost of reproduction
only, not including the total EROS Center costs, NASA operating costs associated with data
reception, satellite operational costs, data transfer from reception sites to the central
data center, National Data Processing Facility (NDPF), and correctional processing costs
including NDPF operations., In addition, the amortized costs of the satellites are not

included in the cost of reproduction,

Considering EROS costs alone, in FY 1973 as indicated in Table 4-1, this facility received
approximately $374K in reimburseable funds from product sales, According to the 1974
Annual Budget of the U.S. Government, about 7,69 million dollars were authorized for EROS
during FY 1973 leaving a deficit of approximately 7.32 million dollars, When spread evenly
over the number’of frames sold that year, this amounts to a subsidy of $44,36 per frame
compared to an average price of each LANDSAT frame of $2,8Ll, Using actual sales for FY 1975
($1,476,000) taken from the Watkins paper and estimated allocation for FY 1975 ($7,500,000),
reported in the budget, the average subsidy per frame is $15,90 compared to an average cost
per LANDSAT frame of $4.28. This approximately 4-to-1 subsidy may reflect the high cost of
handling photographic products which could possibly be reduced by a digital data system,
When all subsidized costs are considered, the presence of the large private demand (Table 4-1)
is understandable. Any projections of future demand are made uncertain unless cost allo-
cation to the users is specified., If cost per product should rise, future demand, partic-

ularly in the private sector, should diminish,

Current LANDSAT-2 investigations may result in increased demand as various institutions,
domestic and foreign, determine positive results, At this writing, there are 109 individual
LANDSAT~-2 investigations of which 57 are domestic and 52 involve foreign nations, Forty-
three U.S. state governments and 35 foreign countries are participating in these investiga~-

tions, The number of investigations by discipline are given in Table 4-3.

Table 4=3
Current LANDSAT-~2 Investigations

Agriculture/Forestry/Range Resources 22
Land Use : 26
Geology ahd Mineral Resources 20
Water Resources ' 13

Marine Resources
Meteorology
Environment

Data Interpretation

TOTAL

= -
O P 2R w0




g e

WDL~TR7187 b=t

4,1,2 Future User Demand: A purpose of this study was to evaluate the network options

for rapid data dissemination of domestic eartheresources data., The implication is a demand
for timely data that cannot be serviced by the mails, Thus, an important phase of the user
interviews was to isolate applications that would require delivery of preprocessed data in

periods of 5 to 9 days, or less, after the observation,

Several rapid-data turn-around applications were cited, predominant examples beings

poey
.

Emergency assessment

Data that may result in enforcement action

Snow-melt predictions

Ice monitoring

Insect or disease detection in crops or forests

Water management as, for example, irrigation

Large area range management

TLocation of commercial fish

W oo Ny W N
.

Intra-agency dissemination

In effect, the above applications, and perhaps others, would serve to justify a data

dissemination network.

In view of the potential importance of these applications, it is of interest to review the

jurisdictional responsibility and timeliness requirements for each,

4,1.2.1 Emergency Assessment: Emergencies include hurricanes, tornadoes, forest fires,

insect outbreaks, earthquakes and floods. Each of these involve common and different
agencies. Satellite-derived data has proved useful in assessing resulting damage for each

of these events [3] except infestation of crops, a subject requiring continued research,

Widespread agency involvement implies overlapping jurisdiction; federal, state and private,
However, the one political unit common to all emergencies is the state govermment. It would
thus seem reasonable to assume that the state Civil Defense Agencies or the equivalent would

most likely be the central user of remotely-sensed data,

Naturally, it is desirable to obtain this data as soon as possible. If a priority structure
were established throughout the network, 1985 technology could provide this data within a
matter of hours after observation. SEOS (100m resolution) data would be delayed only by
cloud cover. In the event that agricultural damage resulted, a second assessment seems
desirable. Immediate damage assessment of crops tends to overstate damage [4]. A second
survey approximately one week. after damage would allow the crop to stabilize and thus serve
more properly as a source of mensuration data. In this case; timeliness would be less criti-

cal.
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4,1,2.2 Enforcement: Satellite data has proved useful in detecting and monitoring various Com
forms of water pollution as well as damage resulting from and reclamation efforts related to

strip-mining. Both circumstances require corroborative field investigation and, thus, requirc

timely data delivery,

Water surveillance involves much agency overlap., For example, if pollution resnlts from a
structure or an operation such as dredging, the Corps of Engineers is involved. If resulting
from coastal or off-shore mineral extraction, the Bureau of Land Management is involved. If
an oil spill, the Coast Guard is responsible, The Environment Protection Agency is responsiblec
for all forms of pollutiom. Finally, if in coastal or inland waters, State Environmental

Protection agencies are involved. This overlap of responsibility may create multiple demands
for the same data,.

Monitoring strip-mining operations, typically, is within the jurisdiction of the State
Enviromnmental Agency. However, the federal EPA could also become involved, depending on the

specific federal/state relationship.

4.,1.2.3 Snow Melt: River flow rates and heights are now being predicted by computer models.

One term in some models is the snow depletion factor.

Satellite ‘data has proved useful as a check on this factor [53.‘ Data consisting of three
or four bands at relatively course resolution (80m) is required no later than 72 hours after

observation [6]. Delivery within 24 hours is preferable.

River estimates involve jurisdictional overlap between NOAA National Weather Service, River
Forecast Centers, Soil Conservation Service, Corps of Engineers, Bureau of Reclamation, Power
Administrations and State Departments of Water Resources, Currently, these responsibilities

have been assumed on a geographical basis. Data dissemination, if implemented, would likely

involve several agencies.,

4.1.2.4 Tce Monitoring: Ice hazards to ship traffic in coastal waters and the Great Lakes
have traditionally been the responsibility of the Coast Guard. The development of the oil

fields in the Arctic have significantly emphasized the importance of this data. Arcas of
particulaf importénce are the Arctic Ocean, Bering Sea off western Alaska, and the Davis
Strait off Greenland. There are potentially hundreds of private uscrs due to the commercial
activity in the Arctic. Some form of common use involving either federal agencies or. a
private consortium is most likely., Of particular importance is the extent of allowable oper-

ations, Figure 4-1 depicts maximum and minimum sea ice advance and retreat off Alaska.



i

WDL-TR7187 4o

Retreat

Max.

Min. Retreat

Min. Advance

Max, Advance

Figure 4-1 Seasonal Alaskan Sea Ice Movement

Sea ice data is required daily on a near-real-time wasis. It is anticipated that this data
would involve transmission to ships at sea, Currently, a ship traffic monitoring and weather
advisory facility is being considered by NOAA in the Seattle region. Such a facility could
provide the additional service of sea ice status, Thus, jurisdictional involvement in this

application could include NOAA, Coast Guard and/or a private consortium.

4,1,2,5 Insect or Disease Detection: Detection of large-area infestation of forest lands

with satellite data has been demonstrated [7]. The potential of detection of insect: infes-

tation in crops is uncertain and yet requires much basic research. Either application requires

data delivery within one or two days of the observation.

Likely users of forest data include the USDA Forest Service, state Forestry Departments and
perhaps private users in the paper and wood industry. 1If infestation detection in crops
should eventually prove successful, then the USDA and state agricultural departments could

be users.

4.1.2.6 Water Management: Irrigation is one of the largest water uses in the United States.

As mineral extraction increases in the western states, competition for water resources with
agricultural interests will become acute. There is some controversy relative to the value

of satellite data as a means to estimate the area of standing water. While this measurement
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has been technically demonstrated on LANDSAT experiments and, in fact, implemented on the
7W Pacific Northwest Regional Commission program at Ames Research Center, the applicability,

i particularly on a timely basis, would likely be limited to remote (hence, relatively small)
S bodics of water. TFor example, the Bureau of Reclamation maintains the primary responsibility
I in 17 western states for delivery for irrigation. However, their water levels are now

accurately monitored, Satellite data would be useful for measuring the area of irrigated
Ii landg rather than the area of impounded water. Thus, the primary user relative to irrigation

would be the Burcau of Reclamation. Possible user institutions include the Corps of Engineers,

T’ roglonal water districts and State Departments of Water Resources.

4.1.2,7 Range Management: Currently, the Bureau of Land Management prepares a forage

1 estimate of certain grazing lands e¢very two weeks during the appropriate seasons. The
Bureay of Land Management is responsible for approximately 570 million acres, mostly in the

western states. They, typically, have only one resources manager for approximately one

million acres; thus, remotely-sensed data is their only means of obtaining up=-to-date
information on large range areas. As the forage estimates may affect cattle density allot-
: v : ‘s R ; . L .

i L wments, data delivery within two or three days is desirable. Other agencies to which this

application may apply include the Buvreau of Indian Affairs and State Agricultural agencies,

A

4.1.2.8 QCommercial Fish Location: Sea surface temperature has been correlated with the

&

location of certain commercial fish species such as the tuna [8}, In addition, research

in the Gulf Goastal areas has indicated correlation between water turbidity and menhaden

0. erons il

schools £9). High spatial resolution data is not essential for this application as 1/2-
=z ta l-km vesolution data asppears sufficient, However, timeliness measured in one to two hours
¢ ossential. Again, the eyelic periods of polar orbiters severely hamper this application

gosting the potential use of SEDS data or perhaps the addition of @ higher spectrzl reso-

o

i
suR
lution visible load on GOES-type satellites. In the event that this application would become
aperational, NOAA would likely provide this function at two to three centers ssparately

servicing the Atlantic, Gulf, and Pacific coasts.

G.1.2.9  Intra-dgency Data Disseminstion:  Certain agencies will disseminate data over

internal networks to looal and regional facilities, As this function, which may inclede data
processing, will veguire time, eariy receipt of data becomes & regquirement. An sxample, is
?% the Department of Agriculturs which may introduce & ceatralized dats bapk from which dara

5, can be dissominated to the county ilevel, Waen this raquirsment is coupled o the potential

3
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meteorological satellites, such as the GOES or advanced versions (SE0S), can support snow-melt
predictions, mid-latitude ice monitoring, and location of commercial fish, Similarly, polar
orbiting meteorological satellites or SeaSat satellites can support snow-melt predictions,

ice monitoring, water management, and location of commercial fish. 1In addition, aircraft, if
cost effective, could support any of the foregoing applications., The implication is that a
data dissemination network would prove most cost effective if selected data from different
sources could be passed on to the network. Accordingly, the user models which follow were
based on relatively large earth-resources data demand. The conclusions of this study,
relative to network selection, apply even though portions of the earth-resources data are

replaced by othew data.

4.2 Model Variables.

The variables that impact the data dissemination network are: data volume, timeliness
requirements, and frequency of demand, These are discussed in this section. Certain assump-
tions are implicit in structuring these variables, With one exception, it was assumed that
all users would receive data consisting of a full swathwidth with variable along-track length.
This assumption represents a compromise between the current practice of providing products in
increments of full scenes (100 n.mi, by 100 n.mi.) and the likely practice, easily obtainable
with a digital system, of providing sectors of any size as requested. Sector dissemination
would substantially reduce the data volume at least at the user facility. This reduction is
demonstrated in Appendix B in which the total data volumes, in pixels, associated with Corps
of Engineers Districts is given for dissemination of full LANDSAT sceénes and dissemination of
fractions of scenes (with full swath). 1In both cases, this data is given for coverage by Corps
Districts over a four-day period., The data required for fractional scenes (full-swath width)
typically varies between 44% and 50% of data volume for full-scene dissemiuation. Sector
dissemination would represent a greater measure of volume reduction. In addition, it was

assumed that all users would demand the best resolution available,

4,2,1 Data Volume: The data volume to each user is determined by the spatial resolution,

number  of spectral bands; and area requested.

The-assumption that each user will demand the best available resolution bounds this parameter
at either 30m or l0m, depending on the data input selected (see Section 3.2). There is a
general belief that improved resolution, as from 30m to 10m, will result in increased demand
for products; however, the increased cost of data processing associated with data volume
alone should dampen this demand. - Nevertheless, an increaée in number of users can be
expected. For example, 10m data might prove adequate for location and cyclic monitoring of
site-specific pollution and/or nutrient sources entering water. If so, state environmental

agencies ‘would more aptly justify the need for remotely-sensed data. Thué, the number of
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users (or, rather, extent of demand) should be inversely proportional to spatial resolution.

The number of available spectral bands is either seven or twelve depending on the data input
selected, However, it would be unrealistic to assume that all users will demand all avail-
able bands. Thus, a number of spectral bands was associated with each user. Although the
number of spectral bands demanded by a given user was constant, variation in data volume was

achieved by varying the area of coverage demanded.

Projections of area demands were based on institutional jurisdiction. For a g.ven orbit pass,
the area associated with an institutional responsibility was calculated as a length in the
along=-track direction. Either that area or a fraction thereof was represented as a demand.
For example, demands from the Army Corps of Engineers District in Boston were modeled for
those orbits passing over that district. For the ERTS/LANDSAT orbits, this user represented
a potential demand for four consecutive days and, hence, no demand for the following 14 days.
In some cases, however, jurisdictional responsibility is segmented, or is generalized over
large areas, examples being the Environmental Protection Agency, Coast Guard, and Regional
Commissions. In these cases, either a standard percentage of the total path was assumed or

multiples of the standard ERTS scene (100 n.mi. by 100 n.mi.) were assumed.

The question of transmission format has significant impact on the area estimates. Currently,
data products are delivered in scene formats 100 n,mi. by 100 n.mi.. A single scene can be
delivered on one; two or four computer-compatible tapes. One means of area estimate could

be based on scene transmission where each fraction of area requires a full-scene transmission.
Given a digital dissemination network, sector data could be selected for only those sectors
required by the user. This approach would substantially reduce the user data load. The
scene estimate represents the maximum data load, whereas a sector estimate would represent
the minimum data loads. The approach in this study is a compromise of these extremes. In
this approach, it was assumed that the transmission format would consist of the full-swath

width east/west and any 5-n.mi. segment north/south with a minimum of 25 n.mi. per transmission.

4.2,2 Time Requirements: The essential requirement for a data dissemination network will

resuit from a justifiable demand for data products at about nine days or less. For periods in
excess of that amount, distribution by mail will suffice, This model, therefore, only gen-

erates demands for data that is requiréd within nine days.

Choices of timeliness requirements used in this model were based on the individual user inter-
views. These were, however, varied for most users to allow investigation of the impact of
the user timeliness demand on transmission link capacities and processing throughputs. TIn

all cases, timeliness was entered in multiples of 24 hours; either as 9, 5, 2, or 1 day(s).
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4,2.3 Probability of Demand: A demand projection for remotely-sensed data is dependent

on overriding factors such as the state of the economy, relative social priorities, and
advances in specific supporting technology. In order to accommodate this uncertainty, the
demand model was constructed so that individual users or classes of users could be incorpor-
ated or removed from the demand. 1In addition, their demand is stated in terms of probability.
The probability of demand is defined as the probability, on a giver orbit pass, that a specific
user will generate a demand. This does not include the probability that a user will actually
enter a direct transmission service., A user demand may be scheduled or unscheduled, I£
scheduled, it could be stated as a requested coverage over a specified period of time.
Alternatively, the request could be stated for a particular time period; i.e., the second
week in June. - If unscheduled, the request could be random or, alternatively, dependent on an
outside event that could be statistically predicted, such as a natural disaster, These alter-

natives are described by examples below:

Demand Type Example
Scheduled repeat cycle ‘ Once every 30 days
Scheduled time window June 1 to June 20, July 5 to July 16, etc.
Unscheduled outside event Hurricane damage assessment
Unscheduled random Verification of suspected pollution source

as soon as possible

For scheduled time windows, the probability of demand equals the probability that any orbit
will traverse the selected path., However, given the deterministic nature of orbits, rational
users will select windows coincident with orbit paths. Thus, for this case, the probability

of demand will be either one or zero.

In this study, the probability of demand was modeled for scheduled.repeat cycles only. The
The probability of demand for this case is a function of the number of satellites, the

coverage cycle, and the frequency of update. This is calculated in the following paragfaphs.

Let the observation repeat cycle be signified by x and the satellité orbit repeat éycle by m.
For equally weighted orbits, the probability of demand for any orbit would be the reciprocal
of the number of orbits during the observation repeat cycle. However, for any period in
excess of the orbital repeat cycle, there are two possible numbers of orbits depending on
the satellite phasing. For example, for an 18-day-orbit cycle and a 30-day-coverage cycle,
the satellite will orbit any particular path either once or twice in 30 days. Similarly,'for
a 176-day coverage cycle, a single satellitebwill orbit a particular path either five or six

times.

Introducing the notation (X/Y)tf to mean -truncation of the term x/y to the integer, the number
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of possible orbits is (x/_m)tr or (x/mDCr + 1. Given a repeat coverage cycle, the proba- of

‘3% bility of demand for any orbit path can be expressed as the linear combination
P o= ¢ b

;:.h D (X/m)tr (x/m) tr + 1

where:

= probability of the minimum number of passes

[ b = probability of the maximum number of passes
'[‘ Clearly, if x< m, PD = 1 as the satellite will cross the path, at most, one time,

If m < X € 2m, then the number of days in the period, m, for which the maximum number of orbits
[ occur is x-m, The number of days in the period m for which the minimum number of orbits occur
K is m-(x-m) = 2m-x. Thus, the probabilities a and b can be expressed:
L‘ - 2m - X p = X—m
i m m
rh [ 2m - x 1 X = m 1
1. Hence: By ( m )(x/m)tr *( m ) /my,, + 1
E If X' > 2m, the coefficients a and b are inappropriate; i.e., negative probability. This can

be corrected by introducing the variable, y, such that:

y - {(y/m)tr - l}m

x=
' where y = requested repeat cycle > 2m,
e This adjustment maintains the condition m < x < 2m,

The probability of demand for a scheduled repeat cycle is, thus:

2m-y+[(y/m)tr-1]m N y - [(y/m)tr-i]m-m 1
P =

D o om (x/m)tr * mo (X/m)tr + 17

The following table gives the probabilities of demand for several repeat cycles for a single

.satellite with an 18-day coverage cycle:

PD Repeat Cycle (days)
T ' 7
1 14
0.722 : 28
0.666 . . 30
0.305 ' 60
0.123 , ©o120
0.049 L 365

The above values, adjusted for multiple satellites, were used in the demand model.
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4.3 Potential Network Users.

This section presents a discussion of potential direct network users by institution., As
stated in the introduction of this section, the derivation of user models for simulation
involved a two-step process. First, a set of potential users with associated demands was
postulated, The results of this step are given in this section. Next, specific demand models
are organized from the potential sets. These models, of which two were used in the subsequent

simulations, are presented in Section 5.0.

In order to simulate the timing constraints introduced by the periodicity of polar orbiters,
each institutional demand was estimated on a per-orbit basis. That is, for each orbit pass,
the required coverage for the area of responsibility was estimated for each institution., 1In
some cases, such as the Environmental Protection Agency, the responsibility extended over the
entire United States, In these cases, either a percentage of the total swath or some number

of scenes per orbit was assumed,

Both the current LANDSAT orbit and a lower altitude LANDSAT-D orbit were investigated. The
LANDSAT-D orbit represented slightly greater than 7% increase in potential data load. However,
due to the familiarity of the current orbit, these orbits were used to develop demand by

orbit pass. Figures ‘4-2 and 4-3 illustrate the current LANDSAT orbits over continental

United States and Alaska, respectively. Appendix B of the report presents the potential
demands by orbit,

The following passages indicate the reasoning used to develop the potential institutional

demands given iu Appendix C.

4,3.1 " Federal Government:

4.,3,1.1  Introduction: There is a mixed reception for satellite-derived remotely sensed
data, both within and between federal agencies. .Certain agencies such as the Bureau of Land
Management and the Army Corps of Engineers are actively considering regional processing
centers, Others such as the Envirommental Protection Agency reflect a more couservative
attitude. A summary of some negative views concerning the utility of satellite data was
given during the testimony of Frank Zarb [10) representing the Offive of Management of

the budget before the Committee on Aeronautical énd'Space Sciences, Séptember 18, 1974,

The following comments are excerpts:

M,...we have found so far is that a majority of present users are
one-shot lookers.- Once overflights have taken place and oil users
or the mineral users can take a look at that part of the geography
with several images at the current resolution, they have had it
until the next generation of information...."
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"without significantly improved resolution....there is no possible way
the ERTS system can achieve any improvements over the existing
crop forecasting system,"

"The Forest Service commented by saying that: 'There is as yet no
demonstrable need in forest inventory, the apparent major area of
benefit in forestry, for frequent acquisition of the relatively low
resolution information produced by ERTS.'"

"The Office of Research and Development of the EPA commented that:
'For the simple reason that the essential elements of information

for environmental monitoring are numerous and often subtle, it is
imperative the EPA acquire imagery, ....at very high resolutions,
While some benefit may be derived from the examination of low reso-
lution imagery, the great bulk of essential elements of information...
lies well below the 30-foot ground resolved distance...''.

The preceding comments apply to current LANDSAT resolution., Improved resolution reflected
by the 30m and 10m models could well result in increased demand by the specific agencies
cited. Any attempt to project federal use of remotely sensed data must contend with current
divergence of opinions concerning utility of this data, An optimistic estimate based on

favorable opinions will defeat the intent of a model that bounds actual use.

The total number of federal users will be largely dependent on the degree of inter-agency
data sharing. Many agencies, both within the federal government and between federal and

state governments, require a common data set for particular applicatioms. For example,
disaster assessment cuts across jurisdictions of many agencies. In the case of flooding,
state agencies state crop planting may be changed and, of course, state civil defense

agencies require data to coordinate evacuation and relief, The Army Corps of Engineers
requires the same data for flood control decisions and the Department of Agriculture might
use similar data to assess damage impact on crops. Behind each of these agencies stand
numerous private institutions including relief agencies, and traﬁsportion, fertilizer,
insurance, and agricultural companies. - 1f each potential user were to initiate independent
processing facilities, a substantial demand could develop. The extent of data sharing will
be-paced largely by the actions of federal agencies. This is difficult to predict; not only
because of likely disputes on organizational charters but also due to differing output product
demands; e.g., the USDA-would require multi-band data sets ‘(or subsets)., ' In effect, the earth-
resources-data demand will be governed by the division of responsibilities within federal
agencies and by resolution of the historically controversial state/federal interface. The
large amounts of data involved with the implied processing costs will seem to support. the

development of regional or district processing operations.

4.3.1,2  Department of Interior: Several Interior agencies appear to be possible users of

satellite~derived data on a timely basis. These include the Geological Survey, Bureau of

Land Management, Bureau of Indian Affairs, and the Bureau of Reclamation. - Other potential
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users within the Department include the U.S. Fish and Wildlife Service; any of the five

Power Adminsitrations and the National Park Service. However, there is no specific require-
ment with these latter agencies for a rapid turn-around time. Possible exceptions include

the Fish and Wildlife Service which may use such data to support annual game/fowl migration
estimates; also, the Power Administrations, particularly Alaska and Bonneville, can use
satellite-derived data to estimate snow depletion rates. However, this data can be made avail-
able from other federal agencies such as the National Weather Service or Corps of Engineers.

Thus, no demand was modeled for these agencies.

Geological Survey: The Earth Resources Observation Systems (EROS) Data Center at

Sioux Falls is currently responsible for distributing earth-resources products to users.
Associated with this activity are Applications Assistance Facilities and Cartographic Infor-
mation Centers; these facilities are located at Reston, Virginia; Rolla, Missouri;

Bay St, Louis, Mississippi; Phoenix, Arizona; Denver, Colorado; Menio Park, California;

and Fairbanks, Alaska.

In order to support potential users that require timely data but do not have reception
facilities, data receipt at EROS would have to be timely., This raises the question as to
whether a model of this demand should reflect reception at a central facility (Sioux Falls)
or additional reception at the aforementioned centers. In view of the existing EROS infor-
mation network, it was decided to model the Sioux Falls facility as the single recipient of
data. Due to the primary responsibility of this agency to distribute data products, it was
estimated that all data over the outer continental shelf and land and all spectral bands
would be provided to Sioux Falls. Thus, the probability of demand for each swath would be
1.0. 1In order to test the impact of this demand, three separate timeliness requirements were
assumed; five, two and one day(s). These are obviously exclusive demands; that is, only
one timeliness would be used in a given simulation., The summary of these potential demands

is shown below:

Probability
Location Length Bands Timeliness of Demand
Sioux Falls  all land and OGS ~ all 1 1.0
Sioux Falls all land and OCS all 2 1.0
Sioux Falls all land and OCS atl 5 1.0

Bureau of Land Management: The Bureau of Land Management is responsible for about

500 x 106 land acres and approximately the same area over the.outer continental shelves, The
substantial portion of land is in twelve western states that are served by eleven state offices.
These, plus four outer-continental-shelf offices, would constitute potential centers for

reception and data processing,
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The potential data demands differ for state offices and outer-continental-shelf (0CS) offices.,
A predominant demand by the state offices will be to evaluate range conditions. Currently, a
nine~-day delivery period is desired for this data, However, one application cited [11] was
to use remotely sensed data to support current two-week forage estimates. These estimates
frequently influence decisions of private ranchers leasing BIM property. In this instance,

data would be required more rapidly than nine days.

A primary responsibility of the four OCS offices is to monitor the impact of mineral production
activities on the continental shelf and wetlands. Substantial production efforts on the

shelf are expected within the next decade; examples being sand and gravel extractionm,
phosphate mining, and oil and gas exploration., Remotely sensed data could be used to monitor
sediment and thermal plumes and, possibly, oil spills, A-priori knowledge of the location

of activity could limit the total area scanned to specific sectors. However, if intensive

mining developments are expected, then surveillance monitoring might be desirable.

Based on the foregoing considerations, the following demand was modeled for the BIM. TFor the
state offices, the total area of BLM responsibility was assumed as a demand for either S-day
or 2-day timeliness. In addition, 107% of BIM area was modeled for 2-day timeliness. These
potential demands allow simulation of full land monitoring and classification with rapid

or relaxed turn-around conditions as well as rapid surveys of limited land areas. Currently,
BIM analysis is using all four LANDSAT bands. The potential advantages of additional bands
are uncertain, Thus, a standard demand of six bands was assumed. It is likely that this

assumption will tend to overstate data volume,

The outer-continental-shelf offices were assumed to require all continental-shelf data within
5 days and 2 days and 20% of the continental shelf in 5 days. The former set represents a
surveillance mode while the latter demand represents specific ‘sector monitoring. Except for
Alaskda and paths 17 and 18, the data per swath delivered to 0CS offices would consist of an
equivalent LANDSAT scene or less. - This suggests a single processing center for CONUS. If
the Anchorage office were to attempt surveillance of the entire Alaskan contimental shelf, a

separate Alaskan facility might be warranted, Nevertheless, four reception centers (New York,

New Orleans, Los Angeles, and Anchorage) were modeled. The OCS office demand for spectral bands

should be less than the state office demand. Thermal plumes can be detected with a single

infrared band while sedimentation could be detected with two, and perhaps one, visible bands.

In addition to‘regional offices, a cumulative demand for all BLM data was assumed for the
Washington area. Thus, on a given swath, the total BIM demand is delivered to the Washington‘

area, A summary of the assumed BIM demand follows:
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Location Length ‘ ' Bands Timeliness
State Offices  ~all BIM land 6 5
State Offices = all BIM land 6 2
State Offices 10% BIM land 6 2
0CS Offices all continental shelf 4 5
0CS Offices all continental shelf 4 2
0CS Offices 20% continental shelf 4 2
Washington state office cumulative 6 5
Washington state office cumulative 6 2
Washington state office cumulative 6 2
Washington 0CS office cumulative 4 5
Washington 0CS office cumulative 4 2
Washington 0CS office cumulative 4 2

Figures 4«4 and 4-5 depict general areas of BIM management responsibility for CONUS and
Alaska, respectively., Orbit path overlays (Figures 4-2 and 4-3) were used to determine

demand for each path.

Bureau of Indian Affairs: OCurrently, the BTA is using remotely sensed data for

land~use classification; in particular, involving the Olympic peninsula in the state of
Washington., Anticipated use of remotely sensed data includes change detection monitoring of
Indian lands, these comprising about 54 x 106 acres. Direct data reception, if implemented,
might be organized through five or six regional centers that are tied to several hundred
remote terminals. For the purposes of this model, reception centers were assumed at
Albuquerque, Billings, Portland, and Minneapolis, with cumulative data on any given pass also

delivered to Washington, D.C.

The primary purpose of remotely sensed data will be to develop land-use maps. Generally,
this function would not require data reception within a few days of observation; however, the
occurrence of natural hazards would accentuate the need for rapid data delivery. For this
reason, data delivery in five or two days was assumed, - It was also assumed that all Indian
lands would be monitored in six bands, Figure 4-6 indicates reservation lands that were used

with orbit overlays. Figure 4-5, shown previously, indicates reservation land in Alaska,

The summary of the assumed BIA demand is:

Location Length Bands Timeliness

Regional center all reservation land 6 5
Regional center -all reservation 1and 6 2
Washington cumulative 6 5
Washington cumulative 6 2
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Figure 4-6, Indian Reservations and Bureau of Indian Affairs Districts

Bureau of Reclamation: The principal responsibility of the Bureau of Reclamation
is to provide water resources development in the 17 western states. This includes construc-
tion of dams and water delivery for irrigation. This responsibility leads to a potential use
of remotely sensed data to estimate current and future agricultural land under irrigation, a
requir ment involving a land-use classification specifically directed toward irrigated land
mensur .:on. Mensuration of surface water, except for a few remote dams, is not a likely

applicaiion as reservoir levels are now accurately gauged.

Data analysis would likely be performed at a single center located in Denver. The presence
of several federal agencies such as the BLM in this city suggests that a combined regional

operation may develop. However, a separate Bureau of Reclamation demand was modeled.

Current data delivery times hamper attempts to classify irrigation lands. A five-day delivery
was suggested [12]. Thus, a five-day and one-day timeliness was assumed. Again, a demand

for six bands was assumed. In summary, the Bureau of Reclamation demand is:

Location Length Bands Timeliness
Denver 5% western lands 6 5

Denver 5% western lands 6 1
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4.3.1.3 Department of Agriculture: Department of Agriculture agencies most likely to use

remotely sensed data include the Agriculture Stabilization and Conservation Service (ASCS),
Forest Service (FS), Soil Comservation Services (SCS), and the Statistical Reporting Service
(SRS).

As may be noted, subsequently, the Department of Agriculture may centralize reception and
distribution of remotely sensed data through a central facility. If so, a multi-user demand
for the Department of Agriculture would overstate the actual load on a data dissemination
network. On the other hand, certain types of transmission, such as by satellite relay, best
serves multi-agency reception. Thus, a multi-agency demand was modeled, of which one demand
involves the transmission of all data to a central facility. The Department of Agriculture

demand can, therefore, be tailored for either multi-agency or single-agency demand or both,

Agriculture Stabilization and Conservation Service: The Department of Agriculture

is currently distributing remotely sensed products through the ACSC Photo Laboratory at

Salt Lake City. Consideration is being given within the Department of Agriculture to full

data reception and distribution to the county level using existing federal networks. 1In this
instance, it is anticipated that total U.S. coverage would be received with a 24-hour timeliness
factor. This demand is essentially identical to the Department of Iaterior EROY Center

demands discussed in Section 4,3,1.,2. The ASCS demand was, therefore, modeled as the recep-

tion of all data, excepting the continental shelf, within one, two or five days.

The potential demands; Interior EROS and Agriculture ASCS, constitute the overriding require-
ment for a data dissemination network. A more thorough analysis would involve data dissem-

ination within each agency. The satisfaction of these two requirements, particularly in one
day, would typically result in satisfaction by most, if not all, other users, The summary of

the ASCS potential demand is:

Location Length Bands Timeliness
Salt Lake City all land Alaska excluded all 5
Salt Lake City all land Alaska excluded all 2

Salt Lake City all land Alaska excluded all 1

Statistical Reporting Service: The current technology of satellite-derived remotely

sensed data does not seem adequate to compete with current techniques of crop estimation at
the national level. However, given improvement in the technology in terms of coverage, reso-
lution and available spectral bands, two factors may evolve a demand for this data. First,
data on international crops involving other agencies such as the Department of State, may
result in a global crop prediction effort., -This application is modeled as the Crop Inventory
Program. ' Second, even though national estimates are quoted at a 2% accuracy le&el, state’
predictions: based on current sampling techﬁiques are apparently considerably less accurate.

Thus, cooperative federal/state efforts might develop at the state level using remotely
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sensed data as the information source. This development would involve state-by-state strati~-
fied sampling and state-located processing facilities. This potential demand was modeled

under the appropriate states as discussed in Section 4,.3.2,

The objective of the Crop Inventory Program is to use imagery from satellites and weather
data to predict crop production., This description of the CIP is based on %he current Large

Area Crop Inventory Experiment (LACIE) which NASA, USDA and NOAA are mutuaily conducting.

In LACIE, the LANDSAT imggery is received fyom GSFC in segments of 117 scan lines with 196
pixels to the line, Data is from 4 spectral bands and represents a ground rectangla about
8.7 km high (north-south dimension) and 11.2 km wide (east-west dimension), The tetAl rumber
of pixels for each band is 22,932, These segments are extracted at GSFC fyem the regular
100-n.mi, (1852-km) wide coverage strips received from LANDSAT 2 and registsred to a reference

segment so that multispectral, nulti~temporal classification can be performed.

Table 4-4,"LACIE Segment Allotment', shows the allocation of LACIE segments for various
countries planned at the beginning of the LACIE program.

Table 4=4

LACIE Segment Allotment
COUNTRY SEGMENTS
Argentina 165
United States 638
India 638
Canada 288
Australia 259
China 813
USSR 1949

‘TOTAL 4750

The CIP demand presented here is the only exception to the full-swath-width area estimate as
sector transmission was assumed, = Approximately 20% of the LACIE segments are used as training
segments. The remaining 3840 segments are to be sampled and classified four times a year.

It was thus assumed for the CIP demand that 128 segments (training sites) plus 10l segments

(167 of all 638 U.S. segments) would represent a potential spring or summer demand on appro-

priate passes. For the 9-km along-track segment dimension, this represents about 890 n.mi.

over wheat land. Thus, 1000 nautical miles (along track) was allocated according to the

wheat acreage as depicted in Figure 4-7.

The CIP segments were standardized at 9-km high by ll-km wide in 7 bands. For a l0-meter
IFOV, each segment will be composed of 900 lines with 1100 pixels per line. This gives
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Figure 4-7. Major Wheat Cropping Areas (used for CIP samples)

990,000 pixels per band. For the 30-meter IFOV, each request w’1ll be composed of 300 lines

with 367 pixels per line for a total of 110,100 pixels per band. Table 4-5 summarizes this data.

Table 4=5
CIP Segments
9 km High by 11 km Wide
Number of Pixels Total Number of
IFQV Lines Per Line Pixels per Segment
10 900 1100 990,000
30 300 367 110,100

A single analysis facility, located in Washington, D.C., was assumed for the CI" user. Time=-
liness of seven days and two days was assumed, As this study was purposely limiced to the

United States territory, no effort was made to estimate data volumes for foreign territories.
The CIP demand is, thus, understated.

Forest Service: Recent legislation such as the Humphrey/Rarick Bill has established

a Forest Service responsibility to inventory all forest lands over a l0=-year cycle; the next
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inventory will be due in 1979, While the Forest Service will likely use remotely sensed data
for forest inventories, a timeliness requirement may not evolve., A one-month turn-around

time may be sufficient for this application. Infestation detection could be an application
that demands timely data delivery. However, some arguments have been advanced that infesta-
tion detection from satellites is not particularly useful as the areas must be large for
detection, that is, detection is too late, infestation is already known, and the mortality

is irreversible, On the other hand, advocates of this application stress timely data delivery

of a few days.

Typically, three spectral bands is adequate for forest classification as diminishing returns
set in for increased numbers of bands., However, different sets of three bands are required,

depending on the forest type; thus, a general demand of six bands was assumed.

The assumed demands for this agency represent a compromise. Figure 4-8 indicates general
areas of National Forests. These areas, when overlaid by satellite passes, were used to
generate area estimates. This procedure ignores the Forest Service responsibility of inven=-

torying private forest lands. On the other hand, timeliness of 7 days and 2 days was assumed.

Figure 4-8. National Forests
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Reception centers were assumed at Forest Service District offices with a cumulative total

delivered to Washington. This potential demand is summarized as follows:

Location Length Bands Timeliness
District Office all national forest land 6 7
District Office all national forest land 6 2
Washington cunulative 6 7
Washington cumulative 6 2

4.3.1.4 Environmental Protection Agency: The current EPA organization has three environ-

mental research centers located at Las Vegas, Cincinnati, and Research Triangle Park,

North Carolina, = This latter facility is now oriented toward atmospheric pollution while the
Cincinnati facility emphasizes treatment technology for water supplies, development of
analysis methods, and test standardization., The Las Vegas facility is currently best equipped
for remotely sensed data processing. Accordingly, this facility was designated in this model

as the reception center for data.

Data demands by the Environmental Protection Agency are difficult to predict. The current
official position of the Agency is that the resolution of satellite-derived data is inadequate
to support enforcement policies. However, EPA personnel are using satellite data, an example
being lake eutrophication classification [13]. An extension of this application would include
land-use mapping to support assessment of nutrient and pollution sources. This application,
however, would not require timely data delivery. If higher resolution data and improved
coverage cycles prove useful for detecting some site-specific pollution sources, then an

EPA demand for timely data might result. This data set would be similar to USACE inland-water
monitoring, and BIM OCS Office coastal-water monitoring. Another application would be strip-
mining monitoring. = Given the uncertainty in projecting this demand, a relatively large area
(50% of -the land area on a given pass) and relatively small area (10% of the land area on a
given pass) were assumed,. A timeliness of 5 days was associated with these area estimates.

In addition, a 50% land area with a two-day timeliness was assumed. This latter estimate

represents a potentially substantial demand.
As the EPA responsibility extends over coastal waters, two demands were modeled for continen-
tal-shelf areas; full continental shelf and 20%'o£ the continental shelf, both deliverable in

5 days. Four bands were assumed for this water application,

In summary,

Location Length Bands Timeliness
Las Vegas . 50% land area 6 5
Las Vegas 10% land. area 6 2
Las Vegas 50% land area 6 2
Las Vegas continental shelf area 4 5
Las Vegas 20% continental shelf area 4 5
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4.3,1,5 Tennessee Valley Authority: TVA is responsible for approximately 36 x 106 acres

of which 18 x 106 acres are forest lands. Figure 4-9 indicates the area of TVA responsibility,
Personnel with the TVA have used remotely sensed data to develop land-cover maps [14]. Such
studies, to date, have been on a small scale and the use of this data has not become an
accepted tool by TVA management., However, the potential use exists for such applications as
forest inventory and infestation, macroscale water quality, sulphur-dioxide contamination,

and environmental-impact studies for power-line location. Each of the above could require
rapid data delivery. For example, environmental-impact studies are typically performed

within two-week deadlines and, thus, supporting data would be required within a few days.

Figure 4=9 Tennesgee Vallcy Authority

In order to estimate these potential demands, the following was assumed:

Location Length Bands Timeliness
Chattanooga entire TVA land 6 9
Chattanooga entire TVA land 6 5

Chattanooga 25% of TVA land 6 2
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4e3,1.6 U, S, Army Corps of Engineers: The USACE is organized into three Divisions:

Civil Works, Facilities, and Military Construction. Respcnsiblity of the Civil Works Division
extends virtually over all inland waters. The 1899 Act established Corps responsibilities

for all discharges and structures on navigable waters. Section 404 and related court decisions
have extended that responsibility to the headwaters (with flow rates of 5 cubic feet/sec) of
all navigable waters including marshes and estuaries. Since Corps responsibility includes

any structure or operation, such as dredging, change-detection monitoring with satellite-
derived data could become a firm requirement. Coverage frequency would be biased toward

urban areas; typically, once a month to semi-annually for rural areas., Since enforcement

and, thus, field inspection may result from data analysis, a rapid data delivery is desirable,
In addition to data r«quirements associated with inland water surveillance, the Corps could
require data for river flow estimates and emergency assessment. The Civil Works Division is
organized into 38 District Offices as shown in Figure 4-10. Each of these offices is relatively
autonomous; thus, each location was modeled as a reception and processing center. Analysis
requirements at the various districts should differ depending, for example, on whether they
embrace coastal waters, large rivers and estuaries, or inland waters in arid regions. A
standard 6-band demand was assumed. In addition, each entire district area was provided in
either five days or one day. In addition, a small area demand of 107 of each district area

required in one day was modeled.
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In summary,

Location Length Bands Timeliness
District Office all district land 6 5
District Office all distriet land 6 1
District Office 10% of district land 6 1

No demand was modeled for the Military Construction and Facilities Divisions of the Corps.
While personnel in these divisions are actively evaluating the potential of remotely sensed
data, no specific requirement for time-dependent data could be identified. If used, satellite-
derived data will not be time sensitive but rather restricted to land-management applications
involving, at best, an annual update. While increased resolution should increase potential
uses, no application requiring data delivery in less than 30 days has been identified for

these divisions.

4.3.1.6 Department of Transportation: During peacetime, the Coast Guard is within the

Department of Transportation. One functional responsibility of the Coast Guard is to monitor
shipping hazards, such as ice, in coastal waters. - Although visible and infrared imagery will
provide this data in cloud-free areas, the primary interest within the Coast Guard is toward
microwave sensors, such as carried on SeaSat, that will penetrate some cloud cover. However,
a potential demand of one scene and/or one-half scene per swath was estimated for earth-

resources data., A timeliness of one day was assumed for this data.

4.3.2 State Government: The state demand will be varied individually and will collectively

encompass most, if not all, applications for remotely sensed data. In addition, the programs
will involve many cooperative ventures with federal agencies. As an example, state agencies
in California and Oregon are participating with the Corps of Engineers, NASA, Bonneville
Power Administration, and the Geological Survey to evaluate the utility of satellite data

as an input to river-flow prediction.

Furthermore, the state agencies are highly sensitive to cost. As the utility of the data
increases with improved resolution, so will the cost of data processing. Different states
will respond to this tradeoff differently. A point frequently stated is the need for reso-
lution to the proprietary unit. If this resolution were available, then many expenses
associated with property transactions would be offset by availability of such data. However,
resolution to this scale will be difficult to obtain., Ten~meter data might provide this

capability.

In the course of developing this model, numerous interviews were held with individuals
involved in state use of LANDSAT, Skylab, and aircraft data... The response was highly varied,
ranging from skepticism to optimistic acceptance. Given the current status of government

financing, it would be unrealistic to assume that a substantial number of states will accept
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the costs of communication links (receive only) and data processing. Any accurate prediction
of state demand must be based on an intimate evaluation of each state's priorities and a
prediction of the future federal/state relative respomnsibilities. As this model is parametric,

such a prediction is not necessary. Thus a 'standard demand' was modeled for each state.

Interstate cooperation, either as a compact Regional Commission or the simple exchange of
information, is increasing. Thus, cooperative regional reception, processing, and archival
centers can be expected to develop. Typically, these should tend to develop along existing
areas of cooperation as, for instance, the Ohio, Kentucky, and Indiana (OKI) Regional
Commission or the Susquehanna River Basin. However, federal influencé will also pace this
regional orientation, if any. In order to model potential regional locations, the standard
federal regions as shown in Figure 4-11 were used., Thus, the model of state demand allows

for any state or group of states or region to exert a demand. Each and any state or region

can be included or excluded to tailor the potential demand.

Boston
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Figure 4-11. Standard Federal Regions

The one requirement for timely data that was uniformly cited by persons in state agencies
was emergency damage assessment. Numerous applications for this data were specified, For
example, in the case of flood plain analysis, data would be useful for evacuation planning,

preparation of application for disaster designation, and shift in cropping practices at the
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farm level [15] (change in crop types based on expected flood retreat)., Shifts in crop

types then impact the transportation and fertilizer industries in determining the type and

amount of vehicles required. 1In the event of a major disaster, numerous agencies become
invelved such as the National Guard, Corps of Engineers, and Red Cross. Typically, a state
I Civil Defense agency coordinates activities and data dissemination would flow through such

an agency.

The states manage timber land from which one billion board feet of timber are cut annually,
bringing a net income to these states of $72 million [16]. Over 630 million acres are

protected by state forestry agencies. The Forest Service cooperatés with state agencies by

II‘,
E ¥

virtue of the Clarke-McNary Act of 1924 and, thus, cooperative reception and processing is

possible., Timber mensuration, infestation monitoring, and burn assessment are potential uses

for forest data. Mensuration does not require timely data dissemination and, generally, could
be achieved with the land-use data set., Burn assessment data can set into motion various

actions (some depending on the season) such as reforestration or erosion control. Timely

e

receipt of such data is desired., Similarly, effective insect control, if effected by
o satellite~derived data, requires a rapid data availability, a factor which now precludes this

use from operational status.

Water quality assessment and coastal-zone management represent uncertain areas of potential
timely demand. The majority consensus among state users. was that neither application would
e require data delivery in less than two weeks after observation; in most cases, months would
be sufficient., Some instances of water pollution represent a threat to public health; one
example being ingestion of-asbestos fibers by Chicago pumping stations, the source ultimately
traced to industrial activity. 1In this case, the specific pollution was observéd on both
satellite and aircraft imagery. Furthermore, if enforcement decisions associated with water
- pollution are initiated by macroscale observations such as satellite data, then a timely
data delivery is required. However, the use of satellite data to support pollution enforce-
merit is a point of controversy among potential users. = The primary contention rests on the
resolution necessary to identify site-specific pollution sources. It may be assumed that
improved resolution to 30m or even 10m would tend to increase the demand for this type

N of application. Agricultural pollution‘’abatement is a primary concern of many states and

represents a potentially large coverage area.

Coastal-zone management involves dynamic processes, such as shoreline erosion, that may impose
reasonably rapid data dissemination. However, in one case El7] it wés felt that data

we delivery in two weeks or less would be required only ¢fi2r a major storm event which occurs

: on a frequency in the order of one per decade. The consensus was thdt time requirements on

coastal-water data would not be severe.
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Several demwids for timely data delivery associated with agricultural applications could
develop in some states, If crop infestation detection from satellites were Ffeasibly
demonstrated, then a rapid data delivery of large-area coverage could result. Currently,
most state agricultural agencies work in cooperation with USDA agencies depeuding on the
latter for crop mensuration. Some feel that the statistics at the state level can be
improved, The availability of timely data and state or regional processing facilities could
result in more independent state efforts to assess crop types and areas. This application,
which would result in large amounts of timely required data, is difficult to predict. 1In
this instance, the major technological difficulty of signature extension represents an

uncertainty in future utility.

Other applications requiring timely delivery of remotely sensed data were identified. One
example was sulphur-dioxide air pollution in Tllinois that apparently resulted in detectable
crop damage in Kentucky. Though this event occurred in July 1975, data was not available by
October [18]. Another example is frost damage assessment that would be useful to state
agricultural agencies, Range data would support forage estimates and, thus, recommended
grazing densities, During dry months, this data can become urgent. Use of satellite data

to monitor strip-mining and associated reclamation efforts has been successfully demonstrated
(19] and has a relatively rapid timeliness requirement associated with enforcement. The
monitoring of development projects, particularly in erosion-prone areas, also exhibits a

timely demand.

The predominant state use of remotely sensed data is for land-use mapping.. This application
will, no doubt, be accentuated as land-use legislation becomes law in various states. The
need for a uniform data base to initiate planning was frequently cited. However, by the time
that higher resolution satellite data becomes available, many states will have completed the
intital land-use maps, Satellite data will thus evolve into a change-detection role in which
it will be used as a mensuration overview to support field inspection. While this data

involves total state coverage, quick turn-arounds are not required.

There will be substantial variation in data demand from region to region. For example, the
dry southwestern region will tend toward water mensuration, pafticularly in the summer months,
whereas regions of storm-driven coast lines, as in the Gulf or Atlantic, will tend toward
coastal-zone data, particularly after the passage of storms. Frequency of update, timeliness,
and spectral band preference will vary. 1In order to avoid this impressive problem, a rela-
tively standard product demand was assumed for each regional and state center. Specific
applications were deleted for some centers while the others were sized for each state or

region,
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The general data demand assumed was:

Location Length Bands Timeliness
State Capitol all state land 7 5
State Capitol 50% state land 7 5
State Capitol 10% state land 7 5
State Capitol 10% state land 7 2
State Capitol agricultural land 7 2

This set of potential demands allows a range from a relatively large data volume to a small
data volume, both with a modest timeliness of 5 days. In addition, two timely requirements
(10% of all land and agricultural land) was included, The agricultural demand for each swath

was estimated by using the ratio to the total path length over each state (or region).

4.3.3 Regional Commissions: There are several hundred regional commissions in the United

States; some created by federal law and others established by compact agreements between
states., Examples of the former are the six River Basin Commissions and the eight Regional

Action Plamning Commissions both listed below:

River Basins Regional Action Planning Commissions
Upper MIssissippi Appalachian

Pacific Northwest New England

Ohio River Coastal Plains

New England Ozarks

Missouri River Upper Great Lakes

Great Lakes 0ld West

Four Corners

Pacific Northwest

An interstate compact is a legal agreement combining the attributes of state statutes and a

contract. There are over 200 such regional commissions in the United States.

Numerous individuals in regional commissions have used or have evaluated the potential of
remotely sensed data in their endeavors. The current resolution and registration has dampened
the enthusiasm of some. Others, such as the Pacific Northwest Regional Commission and the

OKI regional Council of Governments [20], have successfully used LANDSAT data. Most regional
commissions operate in a long-term planning context with limited, if any, enforcement author-
ity. ‘Thus, a timely data demand is not likely. However, in view of the large number of
potential regional commission users, a one-scene (100 n.mi.) and a two-scene (200 n.mi.)
demand were modeled with five-day timeliness for both demands and a two-day timeliness for the

200-n.mi, demand. §ix bands were assumed for these demands.
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4,3.4 Private Sector: Table 4-2 in Section 4.1.1 indicates that the private sector

represents the largest demand for products from the EROS Data Center. The same paper {21]

from which this table was excerpted listed major U. S. industry users as:

Gulf 0il Co Dames and Moore
Bechtel Inc. Chevron

Atlantic Richfield Co. Continental 0il Co.
Union Carbide AVCO Systems

Mobile 0il Earthsat Co.

Texaco Inc. General Electric Co.

By inspection, it can be seen that most of these firms are associated with mineral extraction.
As will be noted subsequently, it is doubtful that the mineral industry will require rapid

data delivery.

Two types of private centers are possible. First, commercial firms that derive income from the
the sale of analysis products and, second, f£irms that use the data directly. 1In the former
case, the quantity of products sold must provide sufficient income to offset the expense of a
reception and processing facility. Thus, a high data demand is necessary to support their
existence.  In addition, competition in the market place will accentuate the timeliness

demand. To bound this demand, the following commercial demand was assumed:

. 10% of land area per pass within 5 days

10% of land area per pass within 1 day

25% of land area per pass within 5 days

LN

. 25% of land area per pass within 1 day
Again, this demand can be tailored on a per-pass basis by including any one of the above
demands. ~ Five commercial centers were assumed located in Boston, Washington, Lafayette,

Houston, and Berkeley. Seven-band demand was assumed.

Tndustries that are candidates for reception and processing of satellite-derived data for

internal use are mineral, paper and wood, and agriculture.

Potential private agricultural users fall into two categories: firms associated with inter-
national trade and firms with large land holdings directly involved in farm production. -

! While large agricultural concerns in international trade are potential 'on-line' users,

1

their demand, ‘if any, will be determined largely by the availability of govermment data

particularly relative to international crops. Current USDA SRS crop estimates are probably

!

sufficiently accurate for the U.S. crop. Thus, there would be little incentive for private

concerns to assume the expense of reception and processing for U.S. data alone. As the
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availability of international data such as the CIP applications is unlikely, there appears

that no demand will develop in this sector for this data.

Similarly, it is doubtful that corporate or large-area farms would assume the cost of direct
reception, Potential use by large agricultural firms include an early inventory of acres
planted [22] and, if proven successful, detection of insect infestation. Nevertheless, it

is unlikely that the farm owner or manager would gain significant information to substantiate

the cost of direct reception, Therefore, no demand was modeled for this application.

The interest of mineral extraction companies is indicated by the EROS product sales cited
previously. Typically, this data requirement which is primarily directed toward geological
interpretation does not require rapid delivery nor frequent update., Thus, again, no demand

was modeled for this sector.

Paper and wood industry concerns with large timber holdings are also candidates for 'on-line’
reception. A necessary pre-requisite for use of this data is an existing forest inventory
developed in a digital-data base. The demand in this industrial sector will be determined
largely by the proven utility of 30m or 10m data in reducing field inspection costs. This
tradeoff is difficult to predict. In order to estimate this demand, a one-scene (100 n.mi.)

and two-scene (200 n.mi.) requirement was hypothesized for each pass. .

4.3.5 Unspecified Users: Obviously, any attempt to predict user demand a decade hence will

fail to recognize all potential users. In view of this difficulty, a set of unspecified users
was modeled., This potential demand allows for one to fifteen scenes at either five-day or

one-day timeliness to be incorporated on any satellite pass. Unspecified users were, thus,

designated:
Location M Length (n.mi.) Bands Timeliness (days)
Denver 100 7 ' 4
Los Angeles 200 7 5
Atlanta 400 7 5
Washington © 800 7 5
Washington 100 7 1
Atlanta 200 7 1
Los Angeles 400 7 1
’Denver ©. 800 7 1
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SECTION 5.0

USER MODEL
5.1 Introduction.,

The potential data demands appearing in the previous section and in Appendix C specify a
probable demand based on potential users, Not all agencies and institutions would be
likely to justify the expense of on-line operation, and, even so, the build-up would be
gradual, paced by a growth in data dissemination capabilities, Thus, a simulation of all
potential users would represent an overstatement of demand (particularly early demand)
and, therefore, would be an unrealistic evaluation of technology requirements, Thus, two
sets of user demands representing what might be considered a near-term demand and a more
developed demand were selected. The use of both sets provides a means to evaluate the

effect of demand on the network.

5.2 Nominal User Demand .

This demand is intended as a moderate estimate of cumulative demand. Therefore, both the

number of users and the timeliness requirements are relaxed.

Federal demana is represented by 58 reception terminals, It is assumed that the Department
of Agriculture receives all data over land on every pass within two days of observation

for distribution within its own network, One reception center at Salt Lake City handles

this data, Likewise, the Department of Interior recelves all data within two days, including
the continental-shelf water, for internal distribution from Sioux Falls, The BLM demand

is represented by both state offices and outer-continental-shelf offices, = In the case of

the former, it was assumed that the total BLM areas were monitored every 30 days with a
timeliness of delivery within 9 days, This would satisfy most BLM requirements as now
projected, A sector monitoring mode was assumed for the OCS offices consisting of 20% of

the continental shelf every 7 days delivered within 5 days of observation, In addition,

the same data for both offices is provided to a central site in Washington,:D, C.

Each Corps of Engineers receives data for each-entire district area every 30 days within

5 days.

State-government demand was represented by four independent states (California, New York,
Ohio and Téxas) and by two regions of combined states; region IV (Atlanta), and region X
(Seattle), For each of these, it was assumed that 50% of the total land area Was"surveyed
twice a year with a timeliness of 5 days. In addition, 10% of the land area was monitored

every two weeks, again with a 5-day delivery requirement., These two demands reflect a



WDL-TR7187 5m2

general land-use classification and a more specific application such as strip-mining monitor-

ing, pollution monitoring, or infestation detection,

Finally, regional commission demand, consisting of one scene every 60 days, was assumed for

the 24th -and 38th pass. No private or unspecified demand was assumed.

Table 5-1 1lists these agencies and the specific demands related to the assumed coverage

cycle and timeliness. Examples of swath-by~swath data for this demand are given in Appendix D.

Table 5-1

Nominal User Demand

f

Coverage o
: Timeliness Cycle Probability”
Designation User (days) (days) of Demand
101 USDA, Salt Lake City 2 Every Pass 1.0
180 USDA, (CIP), Washington 7 Every Pass 1.0
104 USDI, Sioux Falls 2 Every Pass 1.0
108 & 111 ~ BLM, GO0S, 20% contintental shelf 5 7 0.5
112-129 BLM, State Offices, total area 9 30 0.333
132 BLM, Headqtrs., OCS cumulative 5 7 0.5
133 BIM, Headqtrs.,, State cumulative 9 30 0.333
144-171 USACE District Offices, total 5 30 0,333
district
300-344 State Government (50% land) 5 180 0.05
State Government (10% land) 5 14 0.5
345-364 State regions (50% land) 5 180 0,05
State regions (10% land) 5 14 0.5
365 Regional Commission (100 n.m.) 5 60 0,153

7fFor 2 satellites, 18~day repeat cycle.

As noted in the foregoing discussion, user demand was developed from institutional juris-
diction. That is, the area of each demand is determined by institutional boundaries. The
data volume is then determined by this area, the spatial resolution, and the number of
requested bands., Figures 5~ and 5-2 are histograms indicating the data velume in terms of
number of requests for 30m and 10m data. These histograms represent the maximum network
loading that would result if every assumed user requested data in a given 9-day cycle. In
this model, the average volume per request is 7.65 gigabits for 30m data and 97.73 gigabits

for 10m data. These represent 2.6 scenes and 2,2 scenes, respectively.
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5.3 Expanded Demand

The purpose of this demand estimate is to stress the dissemination network and investigate
required technologies to support a growing demand. Accordingly, the minimum timeliness was

assumed for each selected user.

Federal demand is represented by 73 reception centers. This demand is dominated by the
USDA Salt Lake City and USDI Sioux Falls centers that require virtually all data within 24
hours. Additional federal agencies over the nominal demand are: Bureau of Indian Affairs,

Forest Service, Environmental Protection Agency, and the Tennessee Valley Authority.

The timeliness for some nominal federal users was decreased; for the CIP demand from 7 days
to 2 days, and for the OCS office from 5 days to 2 days. BLM state office demand of 10% of
the area every 14 days“delivered within 2 days was added. This represents the application
of supporting forage estimates. Likewise, a 10%-of-district area monitored every 7 days
with one-day timeliness was added to the USACE nominal demand while the coverage cycle for

the total-district area demand was increased from 30 days to 120 days.

The added federal demands consisted of the Forest Service monitoring National Forests
every 30 days with a 2-day timeliness, the Bureau of Indian Affairs monitoring reservation
lands every 60 days with a 2-day timeliness, and the monitoring of all TVA land every 180
days with a 5-day timeliness., In addition, the EPA demand reflects 50% of all land area
monitored every 60 days with 2-day timeliness, 10% of all land area monitored every 7 days
but with 5-day timeliness, and 20% of continental shelf monitored every 14 days. The EPA

demand indicates a substantial use of satellite-derived data by that agency.

State demand was estimated but assumed that all CONUS states would participate through ten
regional centers. In this case, 50% of all land area is monitored every 180 days with 5-day
timeliness. In addition, agricultural lands are monitored every 14 days with 2-day timeli-

ness.

Regional commission demand was estimated by two scenes on every third orbit delivered in

2 days. The private sector was estimated by a 'commercial' demand of 10% of all land area
and, in addition, three scenes were assumed for each pass for unspecified users. One-day
timeliness was assumed for both classes of users, Swath-by-swath data indicating these
demands is given in Appendix D, Table 5-2‘presénts the assumptions associated with the

expanded demand,

The volume demands indicated by this model are depicted in Figures 5-3 and 5-4 for 30m/7-band
and 10m/12-band data, respectively. - The average data volume per request was 5.829 gigabits

(30m) and 67.78 gigabits (10m). There are 1142 possible requests over 9 days.
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Table 5-2

Expanded User Demand

Coverage -
Timeliness Cycle Probability
Designation User (days) (days) of Demand
100 USDA, Salt Lake City 1 Every Pass 1.0
181 USDA, (CIP), Washington 2 Every Pass 1.0
103 USDI, Sioux Falls 1 Every Pass 1.0
183-191 USDA, Forest Service District 2 30 0.333
Offices (National Forests)
107 and 110 BILM OCS Offices (all area) 2 30 0.333
112-129 BLM, State Offices (all area) 9 60 0.152
BIM, State Offices (10% area) 2 14 0.5
174-179 BIA, District Offices (all 2 60 0.152
reservation area)
136 EPA, Las Vegas (10% land) 5 7 0.5
138 EPA, Las Vegas (50% land) 2 60 0.152
140 EPA, Las Vegas (20% continental 5 14 0.5
shelf)
193 TVA, Chattanooga, all area 5 180 0.005
144-173 USACE, District Offices, all area 5 120 0.061
USACE, District Offices, 10% area 1 7 0.5
345-364 State regions, 50% land 5 180 0.05
State regions, agriculture lands 2 14 0.5
367 Regional Commissions 2 180 0.05
401 Commercial 1 14 0.5
504 Unspecified 1 14 0.5
505 : Unspecified 1 14 0.5

KFor 2 satellites, 18-day repeat cycle.

The nominal and expanded user model demand can be more properly summarized by determining
the probable number of requests per coverage cycle and the probable volume per request per

coverage cycle, This was done in the following manner,

The probable number of requests per coverage cycle, NR’ is obtained by summing  the prob-
abilities of demand associated with each request, or,

§R=):}; Py
j i

]

where p, = probability of demand for user i of swath j.
]

The probable total volume per coverage cycle, Vc, is given by,
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where

Vij = volume of data requested by user i of swath j.

Finally, the probable volume per request per coverage cycle, V_, is given by

R!

V. = c - b i ij 'ij
® NR 2: 2: pl
j T M

The results for CONUS coverage for both the 30m and 10m cases and for both nominal and

expanded demand is given in Table 5-3,

Table 5-3

Probable Demand Volumes

- CONUS (Lower 48 States) -

Probable No. of Requests/ Probable Volume/Request/
Coverage Cycle Coverage Cycle, Gigabits
30/7 10/12 30/7 10/12
Nominal 225 225 14.3 203.8
Case
Expanded 419 419 9.1 122.5
Case

As stated earlier, rapid timeliness was emphasized in the expanded model. This is
indicated in Figure 5-5 which is a histogram indicating the number of requests by
timeliness for both the nominal and the expanded model, By inspection, the bulk of

the added demand in the expanded case is associated with 1- or 2-day timeliness.
5.4 Alaska ,

Due to the geographical separation and the potentially large data volume, Alaska demand

was treated separately., This allows simulations to be performed with and without the

Alaska impact. = The Alaskan continental shelf covers an area as large as the entire CONUS

continental shelf. If mining activities become generalized over this area, and, if a
surveillance mode is proven desirable, then large data volumes could be generated. In
order to assess the impact of this application, the entire continental shelf was used in

developing this demand.
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- The large data demands associated with the Departments of Agriculture and Interior (EROS)
were deleted from this model for Alaska, This was done as Alaskan agricultural lands
represent less than 0.5% of total area and the BLM responsibility covers‘ovér 807%

of the land area. Direct transmission to both the BLM and EROS seems grossly redundant

as both agencies are within the same department.

As with potential CONUS users, the Alaskan demand was selected for both nominal and

expanded cases. These are described in the following sections.
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5.4.1 Nominal Alaskan Demand: The nominal demand was tailored for three federal
agencies (Corps of Engineers and the BLM state and OCS offices), the State of Alaska, and

two unspecified demands. While this represents & small number of users, the total data
volume is substantial., This situation leads to consideration of a single reception center

in Alaska capable of all data preprocessing. If timely data demands do not develop for
Alaskan data by continental United States users, then data trunking costs could be eliminated

at the expense of an additional preprocessing facility.

For the BLM, it was assumed that all BLM land area would be monitored every 30 days with a
timeliness of 9 days., For the OCS office it was assumed that 20% of the continental shelf

would be monitored every 7 days with a 5-day timeliness.,

The Corps of Engineers demand assumed that the entire district (all land area) would be

monitored every 30 days with a timeliness of 5 days.

The State of Alaska demand is identical to the nominal demand of CONUS states; namely,
50% and 10% of land area monitored in 180 and 14 days, respectively, and delivered in

5 days.

Unspecified user demand was assumed as three scenes per pass monitored every 14 days and

delivered in 5 days.

These demands, taken together, reflect considerable redundancy strongly implying the

efficiency of a single reception center for Alaska.

Examples of swath-by-swath data for this demand appear in Appendix D, Table 5-4 indicates the

assumed demands by agency.

Table 5-4

Nominal Alaska User Demand

I

Coverage

Timeliness Cycle Probability
Designation User (days) (days) of Demand
108 BLM, 0SC, 20% continental shelf 5 7 0.5
112 BLM, Stata Office, all land 9 30 0.333
144 USACE, Total District 5 30 0.333
301 State Government, 50% land 5 180 0.05
302 State Government, 10% land 5 14 .5
500 Unspecified, 1 scene 5 14 0.5
502 Unspecified, 2 scenes 5 14 0.5




WDL-TR7187 5-10

5.4,2 Expanded Alaskan Demand: The expanded demand was developed by reducing the time-

liness and adding additional federal users: specifically, BLM Headquarters, EPA, BIA State

and Headquarters, and the Forest Service.

The BLM state office demand remained the same except the coverage cycle was extended from
30 to 60 days while the OCS office demand was increased to provide monitoring of the total
continental shelf with data delivered in 2 days, A cumulative Headquarters demand was also

added, The Corps of Engineers demand was augmented by 10% of land area delivered in 1 day.

Again, the EPA demand, as modeled, represents a substantial data volume. This demand is
identical to the expanded EPA CONUS demand, Similarly, the Forest Service demand was
identical to CONUS.

The State of Alaska demand is 50% of land area monitored every 180 days and 10% of the

land monitored every 14 days with timeliness of 5 and 2 days, respectively.

The three-scene unspecified demand was reduced from 5-day to l-day timeliness., Table 5-5

indicates the specific agency demands.

Table 5-5

Expanded Alaskan Demand

Coverage
User Timeliness Cycle Probability

Designation User (days) (days) of Demand
107 BLM, OCS Office all continental shelf 2 30 0.333
112 BLM, State Office, all land 9 60 0.152
131 BLM, Headquarters cumulative 2 30 . 0.333
133 BLM, Headquarters cumuiative 9 60 0.152
136 EPA, 10% land 5 7 0.5

138 EPA, 50% land 2 60 0.152
140 EPA, 20% continental shelf 5 14 0.5

144 USACE, all district area 5 30 0.333
146 USACE, 10% all district area 1 1 0.5

183 Forest Service, national forests 2 30 0.333
191 Forest Service, national forests 2 30 0.333
301 State Government, 50% land 5 180 0.05

303 State Government, 50% land 2 14 0.5

504 Unspecified, 1 scene 1 14 0.5

505 Unspecified, 2 scenes 1 14 0.5

Using the same equations specified in Section 5.3, the probable demand volumes were derived

for Alaska. These are given in Table 5-6,
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v Table 5-6
¢r’ Probable Demand Volumes

b - Alaska -
1 Probable No. of Requests/ Probable Volume/Request/
Coverage Cycle Coverage Cycle, Gigabits
; | 30/7 10/12 30/7 10/12
Nominal 83 83 4.9 44. 4

g Case
i Expanded 185 185 3.0 27.2
Case

By comparison of Table 5-6 with Table 5-3 it can be seen that the probable Alaska demand,
as modeled, represents approximately one-third of the CONUS demand for 30m data and about
one-fifth for 10m data, It should be noted that the alaska demand, by including the

e continental shelf, may overstate actual demand for this region,
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SECTION 6,0

NETWORK CONFIGURATION

The purpose of this Section is to provide a definition of the network elements, thereby

introducing the alternatives.

The network can be categorized into transmission and processing elements. Processing can
be further reduced to 'correction' and 'analysis' functions. In this study, the term pre-
processing refers to corréction functions., While the line between correction and analysis
is fuzzy, it was assumed that all delivered products would be in a common-coordinate
system registered to accuracies now being proposed for the National Data Processing
Facility. Preprocessing may be perfomed, in whole or in part, at a regional facility

or entirely at a central facility. This study is limited to preprocessing functions

only.

The following terminology has been used to describe network nodes throughout this study.,

Earth-Resource Satellite (ERS) Low altitude-polar orbiter

Data Relay Satellite (DRS) Synchronous Satellite

Regional (reception) Regional terminal receiving ERS
data, either directly or by relay

Central (processing) Central facility that processes
all ERS data

Central (distribution) Central facility that distributes
preprocessed data to all users

Area Single facility that provides
final analyzed products to multiple
users

Given these definitions, the number of possible transmission links in a network are shown

in Figure 6-1.

:

Regional _»—’_d:en_tra_l— ‘ Area

" ERS

Figure 6-1. Possible Network Transmission L:nks
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Given a data relay satellite, each of these links has two alternatives, direct, as shown,
or relayed through a DRS, Thus, there are 20 possible types of links. Furthermore, each
of these types is characterized by differeant link capacities depending on the number of
regional and area centers as well as the number of users and their specific demands.

0f this number of possible links, the ERS-to-user link was not considered in this study.
To adequately analyze this link, a definite identification of specific users associated
with specific areas of coverage is required., Furthermore, the ERS-to-Area link becames
identical to the ERS~to-regional link when the number of Area centers is small., This
study did not address the dissemination problems associated with ERS-to-Area centers for
more than four Area centers; e.g., the regional case. Thus, this study eddressed 16 link

types.

As stated previously, only preprocessing functions were considered. The specific functims

identified (see Section 9.0) are:

Record and Playback
Reformatting

Address Insertion

Channel Redundancy Removal
Quick~Look Data Extraction
Cloud-Cover Extraction
Radiometric Correction
Geometric Correction
Archival Storage

Data Routing

As a consequence of a previous study [l ], it was further assumed that none of the fore-
going functions would be performed in space. Part or all of these functions could be

performed either at a regional or at a central facility.

Quick-look data, as used herein, refers to a sub-set (either by area, band selection, or
resolution reduction) of the primary dara transmitted to the user under high priority

and prior to correction (radiometric and geometric) preprocessing. This data set results
in four additional link types: TNamely, quick-look regional to area, regional to user,
central to area, and central to user. Again, each of these links could be implemented

directly or by satellite relay.

In summary, this study evaluated 24 transmission link types involving 6 nodal types and 10

preprocessing functions that could be performed at either of two types of nodes.
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SECTION 7.0
- INTRODUCTION

In the earth-resources data dissemination network, two basic types of data transmission links
exist: (1) raw data transmission from the ERS to an earth terminal (either direct or via a
data relay satellite) and (2) data transmission (raw or preprocessed) from one earth location
to another. In this section, we will consider these two types of links separately, Key

parameters are derived and cost-performance data is presented.

7.1 ERS-to-Earth Data Link

7.1.1 Direct Link: The ERS generates digital data at rates of 102 Mbps for the 30m/7-

band case, and 1,58 Gbps for the 10m/12-band case (see Section 3.,2). This section inves-
tigates the feasibility of transferring this data in real time from the ERS to an earth
terminal, Real-time tramsmission via a synchronous data relay satellite (TDRS) is discussed
in Section 7.1.2. Techniques for reducing the data transmission rate at the satellite by
means of Jata compression were not considered in this study., The feasibility of performing
data compressiom on board the satellite was investigated by Wintz in a separate study for
NasA [ 1],

7.1.1.1 Choice of Frequency Band: The existing LANDSAT links operate at 2200 to 2300 MHz.

The total bandwidth available is 100 MHz, which might be sufficient to handle the 30m/
7-band case. However, this band is already in heavy use by other space programs, and the
likelihood of the entire band being allocated to an ERS program, even on a time-shared
basis, seems small. Therefore, to achieve wider bandwidths, the use of higher frequencies

will be examined.

A frequency band at 8400 to 8500 MHz is available for space-to-earth links, and is already in
use by the Deep-Space Network. For the same reasons cited above, the use of X-band does not

seem likely

Table 7-1 lists the frequency bands allocated for satellite-ground communications above

10 GHz. From the standpoint of cost, technology risk, and link outages caused by rain atten-
uation, the lower frequency bands are preferred. On the other hand, higher frequency bands
are preferred from the standpoint of bandwidth availability and freedom from restrictions due

to band sharing with other services.

The most power- and bandwidth-efficient digitai modulation technique available today is quadri-
phase modulation (QPSK). Using this technique, digital data can be transmitted over a channel
with bandwidth equal to 0.6 to 1.0 of the data rate (depending upon the channel phase linear-
ity). Theoretically, a channel bandwidth equal to.0.5 the data rate is sufficient. However,



Table 7-1"
Frequency Allocations for Space Utilization (WARC - 1971)

(Earth-to-Space) ;
RADIONAVIGATION-SATELLITE

INTERNATIONATL UNITED STATES
Region 1 Region 2 Region 3 Band Government Non-Government
GHz GHz GHz GHz Allocation Allocation
10.95 -11.2 10.95 - 11.2 10.95 - 11.2 FIXED
FIXED FIXED FIXED-SATELLITE
FIXED-SATEL- FIXED-SATELLITE (Space-to-Earth)
LITE (Bpace-to-Earth) (International
(Space-to-~ MOBILE Operations)
Earth)
(Earth-to-Space)
MOBILE
11.45 - 11.7 11.45 -11.7 FIXED
FIXED FIXED-SATELLITE
" FIXED-SATELLITE (Space-to-Earth)
(Space-to-Earth) (International
MOBILE Opcrations)
12.5-12.75 12.5 - 12.75 12.5 ~12.75 12.5-12.75 FIXED
FIXED-SATEL- FIXED FIXED FIXED-SATELLITE
LITE _ FXED-SATEL- FIXED-SATEL- (Earth-to-Space
(Space~-to-Earth) LITE LITE 12.7-12.75 TIXED
(Earth-to-Space) (Earth-to-Space) (Space-to-Earth) FIXED-SATELLITE
MOBILE except MOBILE except (Earth-to~Space)
aeronautical aeronautical MOBILE
mobile mobile
14 -14.3 14.0 - 14.2 RADIONAVIGATION FIXED-SATELLITE
: Space i{esearch (Earth-to-Space)
FIXED~-SATELLITE (Earth~to-Space) RADIONAVIGATION
(Earth-to~-Space) Space Resecarch
RADIONAVIGATION 408A (Earth-to-Space)
14.2 ~ 14. 3 RADIONAVIGATION FIXED-SATE LLITE
(Earth-to-Space)
RADIONAVIGATION
14.3 - 14.4 14.3 - 14.4 RADIONAVIGATION-- FIXFED-SATELLITE
‘ FIXED-SATELLITE SATELLITE (Earth-to-Space)

RADIONAVIGATION-
SATELLITE

* Data drawn from Office of Telecommunications Policy (OTP) manual.

L8T1LEL-TaM
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Table 7-1 (Continued)

INTERNATIONAL UNITED STATES
Region 1 Region 2 Region 3 Band Government Non-Government
GHz GHz GHz GHz Allocation Allocation
14.4 -~ 14.5 14.4 - 14.5 FIXED FIXED-SATELLITE
FIXED MOBILE (Earth-to-Space)
FIXED-SATELLITE Space Research Space Research
(Earth-to~Space) (Space~to-Earth) (Space-to-Earth)
MOBILE
17.7-19.7 17.7-19.7 FIXED
‘ FIXED FIXED-SATELLITE
FIXED-SATELLITE (Space~to-Earth)
(Space-to-Earth) MOBILE
MOBILE
19.7-21.2 19.7 - 20.2 FIXED-SATELLITE
FIXED-SATELLITE (Space-to-Earth)
(Space-to-Earth) 20.2 - 21.2 FIXED~-SATELLITE
(Space~to-Earth)
27.5 - 29.5 27.5 ~ 29.5 FIXED
FIXED FIXEI#*SATELLITE
FIXED-SATELLITE (Earth-to-Space)
(Earth~to-Space) MOBILE
MOBILE
29.5 - 31 29.5 - 30 FIXED-SATE LLITE
FIXED-SATELLITE (Earth-to-Space)
(Earth-to-Space) 30 - 31 FIAED-SATELLITE
(£arth-to~Space)
40 - 41 40 - 41 FIXED FIXED
FIXED-SATELLITE FIXED-SATELLITE FIXED-SATELLITE
(Space-to-Earth) (Space-to~Earth) (Space-to-Earth)
MOBILE MOBILE
50 - 51 50 - 51 FIXED FIXED

FIXED-SATELLITE
(Earth-to-Space)

FIXED-SATELLITE
(Farth~to-Space)
MOBILE

TIXED-SATE LLITE
{Earth-lo-Space)
AOBILE

L8T L4L~-TAM

e-L




Table 7-1 (Continued)

INTERNATIONAL UNITED STATES
Region 1 Region 2 Region 3 Band Government Non-Government
GHz GHz GHz GHz Allocation Allocation
92 ~ 95 92 -~ 93 FIXED FIXED
FIXED-SATELLITE FIXED-SATELLITE MOBILE
(Earth-to-Space) (Earth-to-Space)
MOBILE
93-95 FIXED FIXED
FIXED-SATELLITE FIXED-SATELLITE
(Earth~to-Space) (Earth-to-Space)
MOBILE MOBILE
102 -~ 105 102 - 103 FIXED FIXED
FIXED-SATELLITE FIXED-SATE LLITE MCBILE
(Space-to-Earth) (Space-to-Earth)
MOBILE
103 - 105 FIXED FIXED
FIXEN-SATELLITE FIXED-SATELLITE
(Spare-to-Earth) (Space-to~-Earth)
MOBILE MOBILE
140 - 142 140 - 141 FIXED FIXED
FIXED-SATELLITE FIXIED-SATELLITE MOBILE
(Earth-to-Space) (Earth-to-Space)
MOBILE
141 - 142 FIXED TFIXED
FIXED-SATELLITE FIXED-SATELLITE
(Earth-to-Space) (Earth-to-Space)
MOBILE MOBILE
150 - 152 150 -151 FIXED FIXED
FIXED-SATELLITE FIXED-SATELLITE MOBILE
(Space-to-Earth) (Space-to-Earth)
MOBILE
151 - 152 FIXED FIXED
FIXED-SATE LLITE FIXED-SATE LLITE
(Space-to~Earth) (Space-to-Earth)
MOBILE MOBILE
265 - 275 265 - 275 FIXED FIXED
FIXED-SATELLITE FIXED-SATELLITE FIXED-SATELLITE
MOBILE MOBILE

[8T.¥L-TAM

-1
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this ratio would be difficult to achieve in practice, especially at high data rates. (Note
that COMSAT Labs and others have successfully demonstrated the transmission of 60 Mbps
through a 40-MHz channel.)

Examination of Table 7-1 shows a 100-MHz bandwidth available at 14.4-14.5 GHz for space-to-
earth transmission. This hand is recommended for the 102-Mbps ERS-to-earth data link required
for the 30m/7-band system, This band is also close to the band used for the TDRS, an
advantage if an ERS were to have the capability of working with TDRS or a direct readout ET,
Table 7-1 shows a 2.5-GHz bandwidth allocation at 20 GHz. Of this, the upper 1.0 GHz is
reserved for U.S. govermment use, which would be adequate for the 1.58-Gbps link. The lower
1.5-GHz portion of the band is assigned to future domestic satellite downlinks. 1Its use by

a future ERS could lead to a significant radio interference problem whenever an ERS passed
through a beam from a synchronous communication satellite, and both satellites' earth termi-

nals were located in the same region.

The next frequency band allocated for satellite-to-earth transmission is 40-41 GHz. This
band is relatively free of potential users in the 1985-1995 time period and could be used for
the 1.58-Gbps data link. It may also be possible to widen this bandwidth allocation at the
next WARC meeting (1979). This would be desirahle to ease the complexity of phase equaliza-
tion required to transmit a 1.58-Gbps data rate through a 1.0-GHz bandwidth channel. On the
other hand, 40 GHz is more susceptible to railn attenuation and requires more advances in rf

component technology.
For purposes of sizing and costing the ERS data reception earth terminals, the use of the
14,45-GHz band for the 30m/7-band ERS and the 20,7-GHz band for the 10m/l2-band ERS

is recommended. An alternative band at 40.5 GHz will also be considered.

Optical links, using lasers, were not considered because of the attenuation effects of clouds.

-7.1.1.2 ERS-to-ET Link Budget: Table 7-2 summarizes the basic link equation used for sizing

the satellite and earth terminals. Table 7-3 derives the received carrier-to-noise power
‘ 6

density (C/kT) required to demodulate a QPSK signal with a bit error rate (BER) of 107,
Combining the equations from these two tables, we obtain the following expression for the

required ERS EIRP:

P =20 log F + 10 log R - 49.9 -% dBW : (7-1)

where is the carrier frequency in MHz

F
R is the data rate in Mbps
% is the earth terminal senmsitivity in dB/°K

Table 7-4 lists the results of applying Eq. (7-1) to the three cases of interest.
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Table 7-2

Basic Link Budget - ERS-To-Earth Terminal (ET)

BUDGET LTEM VALUE
Satellite EIRP P dBW
Space Loss(l) -102.1 - 20 log F dB (Hz)
(F in MHz)
Polarization, Atmospheric Losses -3.0 dB
(Clear Weather)
ET Antenna Gain , G dB
ET Receive System Temperature T dB
Boltzman's Constant (K) -228.6 dBw/OK/Hz
Therefore

G/KT = P+ o+ 123.5 - 20 log F dB(Hz)

(1) ERS Altitude = 920 km _
ET Elevation Angle = 5
Slant Range = 3034.5 km

Table 7-3

Required C/kT For QPSK Data Link

Theoretical E/N_ (For BER = 107%) 10.6 dB

Degradation due to link imperfections 3.0 dB

Data Rate (R) (Mbps) 60 + 10 log R dB(Hz)

Required C/kT 73.6 + 10 log R dB(Hz)
Table 7-4

Required ERS EIRP For 3 Cases

Frequency Band (GHz) 14.5 20.7 40.5

Data Rate (Mbps) 102 1580 1580
4 . & 2 _ &

ERS EIRP = (dBW) 53.5 T 68.4 T 74.2 T
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7.1.1.3 Earth Terminal Sensitivity:

quency bands is advancing rapidly.

7-7

The state-of-the-art of earth terminals for high fre-

For example, the Japanese are developlng 10-meter antennas

for operation at 20- and 30-GHz synchronous satellite service. Figure 7-1 indicates the

state~of-the-art low-noise amplifiers as a function of frequency. Uncooled paramps with 1-GHz

bandwidth are being developed at 20 GHz. At 40 GHz, more development is required. However,

the value of an extremely low-noise receiver (less than 100°K) is questionable because, at the

higher frequencies, the antenna temperature is highly influenced by clouds or moisture in the

atmosphere.

40 GHz.

At lower elevation angles, the antenna noise temperature could approach 290°K at

For our purposes, receiving system temperatures shown in Table 7-5 have been assumed.
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Figure 7-1. Amplifier Noise Temperature State-of-the-Art

* From H. C, Okean and P, P. Lombardo, '"Noise Performance
of M/W and MM-Wave Receivers,' the Midrowave Journal:
January, 1973,
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Table 7-5

Earth Terminal Sensitivity Derivations

Frequency (GHz) 14,5 20,7 40.5
System Noise Temperature: (OK) 170 200 400
Antenna Beamwidth (Deg) 0.3 0.3 0.1 0.3 0.1
Antenna Diameter (m) 4.9 3.4 10 1.7 5.0
(£t) 16 11 33 5.5 18.5
Gain (55% Ef£.) (dB) 54 54 64 54 64
Pointing Loss (dB) 1.0 1.0 1.0 1.0 1.0
Line Losses (dB) 1.0 1.0 1.0 1.0 1.0
Net Gain 52 52 62 52 62
G/T (dB/°K) 30 29 39 26 36

The diameter of the ET antenna is limited by the surface tolerances, and by the beamwidth.
High-precision antenna surfaces have been successfully achieved at 40 GHz and higher in radio
telescope applications. The narrow beamwidth is more of a problem since the antenna must
track at fairly high rates. A minimum beamwidth of 0.1° and more easily achieved beamwidth
of 0.3° have been postulated. A 1-dB pointing loss has also been assumed. These parameters

are shown in Tahle 7-5.

The feasibility of achieving these angular accuracies was not considered in detail. The maxi-
mum angular rate of the ERS is 0.055%/sec., which occurs for an overhead pass (altitude of

710 km). The conventional azimuth-elevation mount would not be suitable for tracking overhead
passes because of the high slewing rates encountered in azimuth. An X-Y mount, with the "key

hole" lying in the east-west direction, appears more suitable.

7.1.1.4 Rain Attenuation: As the carrier frequency increases, the path loss attenuation

introduced by rainfall also increases. Table 7-6 summarizes the attenuation expected for a
rainfall rate of 10 mm/hr., which corresponds to a moderate rain $torm with duration up to

20 minutes. The probability of the rainfall rate exceeding this level depends upon the loca-
tion of the earth terminal but, typically, runs around 0.002; thus, we might, on the average,
lose data from one pass out of 500. Whether or nbt this loss is significant depends on the
quality and urgency of earth resources data being collected at the time of high rainfall.
Obviously, the chances of cloud cover over the area of interest would be higher when the earth

terminal is encountering rain, especlally at higher elevation augles.
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Table 7-6
Predicted Rain Attenuation For 10 mm/hr Rainfall Rate
Frequency (GHz) 4,5 20.7 40,5
Attenuation Coefficient - dB/km 0.4 1.0 3.0

10 mm/hr Rainfall Rate
Effective Distance =~ km

5o elevation 16 16 16
10° elevation 10 10 10
20° elevation 6 6 6

Path Attenuation - dB

5o elevation 7 16 48
10° elevation 4 10 30
20° elevation 3 6 18

PROBABILITY > 10 mm/hr : 0.002%

* "propagation Data Required for Space Telecommunication Systems'',
Draft Report AD/5, C.C.I.R. Conclusions of the Interim Meeting of
Study Group 5 (Propagation in Non-Ionized Media), Geneva, 5-18 April
1972, pp. 259-27C.)

Table 7-6 shows haw the rainfall attenuation increases with frequency. As will be shown in
the next section, link designs with up to 20-dB margin are feasible, Thus, the 14,5- and
20,7-GHz links can be accommodated at 5% elevation angles, whereas, the 40,5-GHz link will
bezome inoperative at elevation angles much below 20°, The 5° and 10° elevation contours
for the lower ERS orbit (710 km) for ERS readout terminals at Fairbanks and Sioux Falls and
the 20° elevation contours for the 900-km ERS orbit for readout terminals at Fairbanks,
Goldstone, Sioux Falls, and Greenbelt ¢re shown in Figures 7-2 and 7-3, respectively. A
conclusion frem these figures is that, if the 40.5-GHz band is used, three earth terminals
rather than one must be used in the lower-48 states (Goldstone and Greenbelt and one some-
what more southerly than Sioux Falls -- say, Kansas City) to maintain the higher elevation
angle, Alternatively, for 40,5-GHz links, a single ET could be located in a desert area
where rainfall seldom occurs. However, for the USA, such desert areas are too far west to

support ERS passes over the east coast, especially at the 710-km altitude.

Another possible solution for rain aftenuation is space diversity. For medium to heavy rains,
a separation of twenty-five miles virtually eliminates fading. The obvious drawback to space
diversity is that two ground statioms are required, both manned sinultaneously, and a wideband
link must be established between them. There is no actual technology comstraint in the use of

space diversity; however, the added cost is significant.

It should be emphasized that the parameters discussed above are only estimates based on the
1672 CCIR study [2]. Considerable data is being or will be collected by a number of investi-
gations which will provide a more accurate assessment of the rainfall attenuation problem in

the future,
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Figure 7-2, 5° and 10° Elevation Contours for ERS Readout Terminals
at Fairbanks, AK and Sioux Falls, SD - ERS Altitude = 710km
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7.1,1.5 ERS EIRP: The satellite EIRP is derived by combining the results of Tables 7-4 and

7-5. The required EIRP is shown in Table 7-7 for the cases considered.

Table 7-7
ERS-ET Link Configurations
= =
FREQUENCY - GHz 14.5 20.7 40.5
DATA RATE - Mbps_ 105 1580 1580
ET NOISE TEMP - 'K 170 300 400
ET BEAMWIDTH - deg. 0.3 0.3 0.1 0.3 0.1
ET DIAMETER - m 4,9 3.4 10 1.7 5.0
ET G/T - dB/°K 30 29 39 26 36
SATELLITE EIRP - dBW 23.5 39.4 29.4 48,2 38.2
SATELLITE ANTENNA
BEAMWIDTH - deg. 60 2.5 2.5 1.25 2.5 1.25 2.5 1.25 2.5 1,25
PEAK ANTENNA
GAIN -~ dB 8 36 36 42 36 42 36 42 36 42
ANTENNA, POINTING
10SS - dB 3 1 1 1 1 1 1 1 1 1
LINE LOSS - dB L 2 2 ? 2 2 2 2 2 2
NET ANTENNA
GAIN - dB 4 33 33 39 33 39 33 39 33 39
SATELLITE ANTENNA
DIAMETER - m - 0.6 0.4 0.8 0.4 0.8 0.2 0.4 0.2 0.4
ft _ - 2 1.4 2.8 1.4 2.8 0.7 1.4 0.7 1.4
TRANSMITTER POWER
- dBW 19.51 -9.5 6.4 0.4 -3.6 -9.6 15.2 9.2 5.2 -0.8
o~ W 90 0.11 4.4 1.1 0.44 0.11 33 8.3 3.3 0.8
RAIN MARGIN - dB 7 7 16 16 16 16 18 18 18 18
TRANSMITTER POWER
-W 450 0.55~1}75 44 18 4.4 2100 520 210 50
*

5% elevation at 14.5 and 20.7 GHz; 20° elevation at 40.5 GHz.

The ERS antenna gain is determined by size constraints and the ability to steer the antenna

so that it is accurately pointing toward the earth terminal at all times. The size of the
antenna is insignificant for the frequency bands of interest, so the beamwidth becomes the
major design constraint. In Table 7-7, three beamwidths are assumed for the satellite antenna:
60°

(other than pointing the axis toward earth center). The gain toward earth edge is only 5 dB.

s 2.50, and 1.25°. The 60° antenna requires little or no antenna pointing mechanism,

For the 14.5-GHz link, a transmitter power of 90 watts is necessary to establish the link.
On the other hand, if a steerable antenna with a 2,5% beamwidth is used, the same link can be

established with only a 0.ll-watt transmitter.

At higher frequencies, only steerable antennas are considered. ' This technology is now under
development for use with the TDRS, anil should be available for ERS in the 1985-1995 time
period. Note that a 1-dB pointing loss was -assumed, which corresponds to a pointing error of

0.3 times the 3-dB beamwidth. This accuracy is readily achievable.
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Table 7-7 also lists the margin required to overcome rainfall attenuation at 5% or 20° eleva-

tion (see Table 7-6). The bottom line gives the required satellite power. A minimum elevation
of 20° was assumed for the 40.5-GHz band because higher transmitter powers to overcome rain

attenuation at lower elevation angles do not appear feasible in the immediate future.

A power output of 0.55 watts at 14.5 GHz is well within the TWTA state-of-the-art, as shown
in Table 7-8. However, solid-state devices (FETs) are not available which will generate
1-2 watts at X-band.
device by 1985.

Nevertheless, one may expect the 14.5-GHz transmitter to be a solid-state

%
Table 7-8

Satellite TWT

FREQUENCY (GHz)
POWER LEVEL -
(WATTS) 2.54 37 —4.2 7.25 - 7.75 11.7 - 12.2 17.7 — 20.2
2-4 HUGHES FOR HUGHES FOR HUGHES FOR
INTELSAT IV, | NATO 111, PHILCO-FORD
NEC FOR CS DSCS i1 CS SATELLITE
8-15 TELEFUNKEN | WJ, HUGHES th‘c ’f}l}j\ o
AEG FOR FOR DSCS 11 €S SALELLITE
SYMPHONIE ‘
20 THOMSON-CSF AND
TELEFUNKEN AEG
FOR OTS, CTS
INTELSAT V
100-200 WJ FOR JPL HUGHES AND LITTON
FOR JAPANESE
BROADCAST
SATELLITE
- 200-1000 SIEMENS AND
TELEFUNKEN AEG
FOR GERMAN TV
SATELLITE

* From C. L. Cuccia,'"Millimeter Wave Spacecraft Technology,' WDL IRDP Report; November, 1975.

At 20 GHz, TWTA's with power outputs up to 20 watts are being developad.
should be feasible.

A 50~watt TWTA

At 40 GHz, no work is underway above 10 watts, as shown iun Table 7-9.

A 50-watt TWTA transmitter could be developed without too much difficulty, however,
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*
Table 7-9
Millimeter Wave Space Power Devices
FREQUENCY A
DEVIC 18-21 GHz 30 GHz 35-40 GHz 60 GHz
2.5 WATT TWT 2 WATT TWT 10 WATT TWT 10 WATT TWT
TWT Hughes (ATS-6) Hughes (ATS-6) { Watkins Johnson | Hughes
4.5 WATT TWT Hughes
Hughes (JAPAN CS)
1,2.5,5,10,WATT TWT
Hughes for AT&T
IMPATT 29 dBm Output 29 dBm Output | 50 mW for
AMPLIFIERS COMSAT Labs for COMSAT Labs Classified
COMSTAR for COMSTAR Space Project
* C, L. Cueccia

7.1.1,6 Conclusion - ERS-to-ET Direct Link: Table 7-10 summarizes the key parameters of the

recommended links for transmission of data from the ERS to the earth terminal. It is seen
that the 30m/7-band link is readily implemented with today's technology, whereas the;
10m/12-band link would require considerable development, especially if the 40-GHz band

was used.

Table 7-~10

Recommended ERS-ET Links

Resolution/Spectral Bands 30/7 10/12

Data Rate - Mhps ] 105 1580
Frequency Band - GHz 14.4-14,5(20.2-21.2]  40-41
Satellite Transmitter Power - Watts 0.55 18 50
Satellite Antenna Beamwidth - Degrees 2.5 2.5 1.25
Satellite Antenna Pointing Accuracy - Degrees 0.75 0.75 0.38
Satellite Antenna Diameter ~ m 0.6 0.4 G.4
Earth Terminal Diameter - m 4.9 10 5
Earth Terminal Beamwidth - Degrees 0.3 0.1 0.1
Earth Terminal Noise Temperature - °K 170 300 400
Channel Bandwidth - MHz 100 1600 1000
Rain Margin (10 mm/hr) ~ dB 7 16 18
Minimum Elevation Angle (with Rain) - Degrees 5 5 20
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The cost of the recommended ERS Readout Terminal for the 30m/7-band link is summarized in

Table 7-11.

Table 7-11

Estimated Equipment Costs - ERS Readout Terminal
(30-meter/7-band link)

EQUIPMENT COST (SK)
ANTENNA (5m, Automatic Tracking), 200
FEED, MOUNT (Fully Steerable)

PARAMP TLNR (Redundant, 100-110°K) 90
DOWN CONVERTER 20
RECEIVER/DEMODULATOR 25

TOTAL 335

7.1.2 ERS to Earth via Satellite Relay: An alternative to regilonal earth terminals for

reception of raw ERT data is the use of a synchronous-satellite relay link. For the 30m/
7-band (LANDSAT D) case, the NASA TDRS system should be available by 1985. In fact, LANDSAT D
has been identified by NASA as a primary user of the TDRS.

Figure 7-4 shows the basic concept and frequency ; lan [3]. The primary single-access link is
used. The ERS would be equipped with a tramsmitter and tracking auntenna operating in the
14.6< to 15.25-GHz band. The data would be received by the TDRS and retransmitted to awu earth
terminal at White Sands, New Mexico. From there, the data would be demodulated, placed in

buffer storage, and then retransmitted by suitable means to the data preprocessing facility.

) R O
t) 14 6 70 15.25 GHz = PRIMARY (’Z@ ¢ §Y 22878 MHz-MULTIPLE ACCESS

2} 22C0 TO 2300 Wz TEST & SiM g) 220:) TO 2300 MH:}_SINGLE ACCESS
3) 2025 TO 2120 MHZ TT B C % v 3115.0086 GHa

N

1) 13.4 TO 14.0% GHz = PRIMARY \
2) 2025 TO 2120 MHr -TEST 8 SIM

/ Y.3) 2200 TO 2300 ¥Hz-TT 8 C *
1) 2106.4 MHz-MULTIPLE ACCESS
\ / - ~ Rl
\SZT 212025 TO 2120 MHE|_ oL e access
ie 3)13.775 GH:
! - N
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2 N EARTH
/4(""/\ N rosen
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Figure 7-4. TDRS System Frequency Plan
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In this study, use of TDRS for 30m/7-band data makes sense only for transfer of data
collected over Alaska. The impact of TDRS on the network is to replace the wide~

barnd data link from Fairbanks te Sioux Falls with a similar link from White Sands to Siocux
Falls. Since the difference in costs between these two links is insignificant when using
domestic satellites, the only advuiutage in using TDRS is the cost savings resulting from the

elimination of an ERS readout station in Alaska,

However, the impact of this TDRS link on the ERS is significant, For the 30m/7-~band

case, a 102-Mbps link is required. Trom Table 7-12 (plotted in Figure 7-5), the required
EIRP is 55.1 dBW. This translates to a 20-watt transmitter and a 5-foot diameter antenna on
the ERS, continuously pointed to the TDRS with an accuracy of c.5° (see Table 7-13). The
impact of this data transmission system on the ERS complexity, size, power, and weight is
considerably higher than the 5530-milliwatt transmitter and 2-foot diameter antenna required

for direct data transmission directly to an earth readout terminal (see Table 7-7).

%*
Table 7-12

Calculation for KSA Return Link

BER 10-5
User EIRP (dB) EIRP
Space Loss (dB) -209.2
Pointing Less (dB) =0.§
Polarization Loss (dB) -0.5
TDRS Antenna Gatn {(dB} §2.6 (557%)
Pg at Output of Antenna (dBW) ~157.6 + EIRP
Ty {Antenna Output Te~minals) (9K) . 893
KTy at Output of Antenna (dB\W/Hz) ~199,1*
Pg/KTg (dB-Hz) 41.5 + EIRP
Transponder Loss (dB) -2.0
Demodulation Loss {dB) ~1.5
PN Loss (dB) ['hdd
System Margin (dB) =3.0
Required Ep/Ng (dB - Hz) {A PSK) . -9.9
Achlevable Dtz Rate 1d8) 25.1 + EIRP .
FEC Galn, R =2, K & " {dB) 5.2
sv*Achievable Data Rate (dB) 30.3 + EIRP
*Refet to appendix F for DG1 when generated simultaneously with DG2.
**.1 dB for DGL. -
**+This achievable data rate is the user's information rate, [t should not be
confused with the channel symbol rate which {s nwice the information rate.

% From TDRSS user's manual
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Figure 7-5.* KSA Return Link, Achievable Data Rate vs User EIRP
% From TDRSS user's manual,
Table 7-13
Generation of EIRP by ERS for Transmission of Data via TDRS
From Table 7-11: EIRP = 10 log R - 25.1 = 55.1 dBW
f where R = 102 Mbps

v ey — o
. o s -

Transmitter Power ~ (20W) ' 13.0 dBW
Line Losses ' i - 1.9dB
Antenna Gain (55%, 5 ft.) ' : 45.0‘dB
"’1‘>ointing Loss (£0.5 deg.) = 1.0 dBW
EIRP © 55,1 dBW

C -2
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The above discussion is based on uncoded transmission as, at present, error correction coding

technology does not exist above 10 Mbps.

For the case of the l0m/lZ-band system, approximately 12 dB greater satellite EIRP would

be required (assuming the TDRS bandwidth could be increased to approximately 1 GHz). Such an
EIRP could be achieved with a 10-foot diameter antenna and an 80-watt TWTA, both of which
could be implemented, but only with significant increase in the size, weight, and cost of the
ERS.

Note that no plans presently exist to extend the capacity of the TDRS link beyond 300 Mbpé.
Therefore, TDRS can only be considered for use with the 30m/7-band ERS. On the other

hand, technology is being developed by the DoD for satellite-to-satellite links with 1.0-Gbps
capacity. These links employ laser beams, and an in~orbit test is planned in the early 1980
time period [4]. This technology could be extended to 1.58 Gbps to support the 10m/12-

band requirement.

If the scope of the study had been expanded to include ERS coverage of other continents, then
the use of TDRS becomes much more attractive. The cost of installing, operating and main-
taining ERS receiving stations on foreign territory is expensive and inconvenient, which is

the reason TDRS is being implemented.

As of April, 1976, no policy has been established for charging a user. for services provided
by TDRS. 1In the past, NASA has borne the cost of developing a system and a user paid for the
operation of the system only while he was using it. However, TDRS is to be financed by
private industry and leased to NASA and others, as required. At this time, there is no
reliable cost data available as to what this service would cost to an earth-resources data

user.

vIn conclusion, the use of TDRS does not appear justified for continental U.S. coverage, alone.

For extended coverage missions, TDRS is probably a lower cost. system compared to the cost of
installing and operating additiomal direct feadout'terminals plus the cost of the trunking

links to conmnect these terminals to the preprocessing center. However, the cost of the TDRS
service to the user is not known, at present, and the presently planned system cannot handle

a l0-meter, 12-spectral-band requirement.
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7.2 Data Transmission Between Two Eairth Locations.

There are five alternatives feasible, by current technology, for network data transmission from

point to point or from point to points on the earth. These are:

1. Common carrier

(a) landlines

(b) satellite, carrier-owned terminal
Leased-carrier transponder, user-owned terminals
Add-on transponder, user~owned terminals

Existing low-earth-orbiting satellite relay

v W

Microwave line-of-sight (LOS)

0f these, common-carrier landlines can be further categorized as digital and analog and as

dedicated and metered. (With metered service, link charges are based on actual link use.)

The purpose of this section is to establish the costs incident to implementation and use of
each of these altermatives. <Cost comparisons among the alternatives will be deferred until
Section 8 where estimates of network link parameters (i.e., required data rates, link lengths,

and frequency and duration of link use) are developed.

7.2,1 Common-Carrier Transmission Alternatives: The nature of common carriers is that they

provide end-for-end service; that is, given a data stream at point a, they will deliver data
to point b. Although some of the carriers will lease bandwidth on their systems, this situa-
tion will not be addressed here. Iwo modes of service are available: (a) landlines and

(b) satellite communications.

7.2.1.1 Common-Carrier Landline Service Costs: Landline service data rates are roughly con-

strained to the following: 2.4 kbps, 9.6 kbps, 36 kbps, and 1.544 Mbps. Representative rates
for digital and analog, metered and dedicated, data service, excluding one-time installation
charges, are shown in Table 7-14. The most importént characteristic of landline common-carrier
link costs is the distance dependency. (As link lengths increase, transmission alternatives

whose costs are not dependent on distance become more ‘attractive.)

Using the costs of AT&T‘s'Dataphone Digital Service (dedicated) and of Datran's Datadial Ser-
vicék(meterad) as typical of landline. transmission, this distance-dependent characteristic is
shown explicitly @ in Figures 7;6‘aﬁd 7-7 for either a half- or a full-duplex ‘link. It shbuld : 4
be noted that, as_indicéted in Table 7-14, the costs for 56 kbps and 1.544 Mbps metered sér-‘
vice are merely estimates and, as such, are highly subjective. These cost curves include the

fixed annual costs (i.e., independent of distance) given in Table 7-15.

* Subsequent to final drafting of this report, it was learned that DATRAN's services may no
" longer be available. [51 ' ' ' :
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Table 7-14

Charges for Landline Common-Carr

e

DIGITAL
SERVICE —
METERED DEDICATED 3
CARRIER) e |
DATRAN AT&T AT&T |
DATA (Datadial Service) (56 kbps Switched (Dataphone Digital (Telei
RATE CHARGE Service) Service) |
TYPE —
FIXED
: 155/END/MO. N/A 90/END/MO.
2.4 %) / / /
kbps —
MILEAGE | 5 5 » 107%/sce. N/A 0.4/M0. DAY
($/mi.) NIGH
FIXED 175 END/MO. N/A 155 END/MO.
9.6 ($) )
kbps :
MILEAGE -6 ]
(6/mi.) 5.0 x 10 ~/sec. N/A 0.9/MO0. |
F?SD 300/END/M0. &) 275/ExD/M0. ) 277.5/END/YO.
56 ‘ ]
kbps
M;?E%‘Gﬁ 3.3 x 107°/sec. 500 mi. = 1.75/min. 4.0/Mo.
(3/mi. 1000 mi. = 2.25/min.
2000 mi. = 3.25/min.
F?SD 2100/END/M0. 2 N/A 1700/END/M%A) E
: + 60/mi./MO. ;
1.544 ,
Mbps L, .
MILEAGE -4 64/M0, lst 200 mi.
(6/miy | L7 %10 /sec. N/A 50/MO. 2nd 300 mi.
40/MD, Remaining mi.
% One-time installation charges not shown
% Subsequent to final drafting of this report, it was learned that DATRANT%
-UQ§§ﬁ&A&EE / -
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Landline Common-Carrier Service

7-19

ANALOG

—

EDICATED

METERED

DEDICATED

COMMENTS

AT&T

phone Digital
Service)

AT&T

(1)

(Telephone + User Modem)

AT&T ®)

-

/END/MO.

5/END/MO.

(a)  (b)
SH  5.00 20.0

D 16.20
HD  37.90
LH --

27.1

p

0.4/MO.

DAY
NIGHT

1,13 x 10-5/sec.

6.5 x 10-6/sec.

SH
LD
HD

3.75
2.71
.92

—

5 END/MO.

v

n/a)

Same as 2.4
kbps

0.9/MO.

—

N/A

Same as 2.4
kbps

. 5/END/MO.

o

N/A

450/END/MO.(5)

A.O/Mo;

e

N/A

13/Mo0.

00/END/MO.
/mi. /MO. )

—

N/A

683/END/MO.(6)

1st 200 mi.
' 2nd 300 mi.
Remaiping mi.

N/A

31.55/M0.

1)
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Table 7-15

Typical Fixed, or Distance-Independent, Annual Costs
for Digital Landline Service

FIXED ANNUAL COSTS

DATA RATE\l o7eT's DEDICATED DATA-|  DATRAN's METERED

PHONE DIGITAL SERVICE DATADIAL SERVICE™ {51

2.4 kbps (61080) x 2 terminals ($1860) x 1.2 terminals
9.6 kbps ($1860) x 2 terminals ($2100) x 1.2 terminals
56 Kkbps ($3330) x 2 terminals ($3600) x 1.2 terminals
1.544 Mbps|| ($24000) x 2 terminals®® | ($25200) x 1.2 terminals

9

It is assumed that the central distribution terminal is

shared among 5 user links.
ek
Cost includes 5 miles of intercity interconnecting links.

The metered service may be cost effective for infrequent users. Based on the foregoing
charge structure, the break-even (metered to dedicated) hours of link usage aud the corre-
sponding percent link ut:ilizat:‘.or;‘v were calculated for various distances as shown in Figures
7-8 and 7-9, (The general equation used in generating these curves is derived in Appendix E.)
Metered transmission is cost effective at hours equal to or less than the designated hours.
The parameter m indicates'the number of user links that time share the metered terminal

located at the central distribution facility.

These figures show that, for annual link usages of less than 400 hours, metered service is
less costly than is dedicated service, regardless of link length. A second observation is
that dedicated service should always be used when link utilizations are greater than about

25% and should be considered at even lower link utilizations on links longer than 100 miles.

7.2.1.2  Common-Carrier Laundline Service Geographical Availability: In general, some form of

analog service (e.g., AT&T) is available everywhere, though its cost can be significantly
higher than that of digital service. (In the case of the 56-kbps services shown in Table
7-14, analog is from 2 to 3 times higher than digital service, depending on the length of the
link (see Figure 7-10),) Digital service, by contrast, is not widely available. - It is limited
at the present time, according to published tariffs and expansion plans of the common and
specialized common carriers, to the large metropolitan areas of the country -- approximately
the 100 largest cities (or to anm average of about two locations per-state), Therefore, if
remote users are to obtaln common-carrier landline service, it must be on the more expensive

analog links.

O A , ; i '
100% utilization is equivalent to full use during 16 hours per day, 365 days per year.
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Figure 7-11 indicates the location of digital service network nodes for landline common
carriers. This service availability is for 1975 and will expand some by 1985-1995. Table
7-16 1s a summary of the total number of nodes presently existing or proposed for leased-
line services. Once the suitability of the available data rates has been determined, Figure
7-11 can be used with projected user locations to estimate the geographical 1imitaﬁion of

using leased service.
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Table 7-16

Number of Network Nodes for Landline Digital
Common-Carrier Service

NODES
SERVICE (EXISTING AND PROJECTED)
AT&T DDS 100
Datran Datadial 50
«
SPCC 40
AT&T 56 kbps Switching 5

Southern Pacific Communications Corporation

7.2.1.3 Common-Carrier Satellite Service Costs: With recent favorable decisions by the FCC

related to domestic satellites, a number of new carriers are offering, or will offer, both

3
volee -and data service.7 Of these, all but SBS are providing this service in a hybrid manner;
that is, leased landlines (AT&T, Datran (5] etc.) supplement the main satellite channel. for

%
RCA Globecom, American Satellite Corporation (ASC), Western Union, and SBS or
Satellite Business Systems (IBM, COMSAT, and Aetna Life and Casualty).
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end-to~end service to users, Due to the nature of this hybrid type service, charges arc

highly dependent on the user's location relative to the carrier's earth terminal.

The cost structure for this service is still based on distance, although this makes little
sense when a satellite is employed. Table 7-17 summarizes the information obtained on tariffs
applied to domestic satellite carriers. This information is somewhat scanty and may be ex-
pected to change due to the fact that all of these services are just beginning, Indeed, the
rates stated therein for WESTAR for 1.544 Mbps service (1.2 MHz) are considerably out of line
with those quoted to the goverument [ 6] by RCA Globecom (~§225K/year).

Comparing the published rate structures for landiine and satellite common-carrier service, it

may be seen that they yield essentially equivalent costs for equivalent services,

7.2.1.4 Common-Carrier Satellite Service Geographical Availability: The locations, actual

and presently proposed, of earth terminals to be operated by these domestic satellite common
carriers are given in Figure 7-12, It can be expected that, as domestic satellite systems
mature, the locations of the ground stations will approximate the locations shown in Figure
7-11 for landline digital data service since it is reasonable to assume that both forms of
service will follow geographical population distributions. What is clear, however, from both
Figures 7-11 and 7-12 is the limitation of available carrier service to remote users. The
earth-resource data users, as modeled, include many users where no common-carrier service
exists. This fact alone (regardless of cost) would imply a severe limitation on using common

carriers for data distribution.

7.2.2 Leased Transponder Transmission Alternative: "The use of satellite transponders, or of

a portion of the bandwidth and power of a transponder, to trunk raw and preprocessed data and
to distribute preprocessed data to individual users appears very promising. The transmission
alternative discussed in this section consists of satellite bandwidth and power leased on an
existing commercial, synchronous satellite; system-owned trunking and up-link-distribution
terminals; and user-owned down-link-distribution (i.e., receive-only) terminals (UOT's). The
mix of private-user and common-carrier-type facilities thus envisioned may become subject to
politically motivated restrictions; though,’at present, there are no indications of major
problems in this area. The concept of satellite’ service for user data dissemination is shown
in Figure 7-13. The data of interest may be sent to each user in user-unique transmission ot
it could be "picked off'' by any given user from a broadcast of all the data. The following

subsections examine the cost of such'a system,



Table 7-17

. 1
Charges for Satellite Common-Carrier Serv1ce( )
SERVICE WESTERN UNION TELEGRAPH CO. AMERICAN SATELLITE CORPORATIO!
105
VOICE GRADE / With C-2 Conditioning +2.8
chAwer, seryics| FIED/EOAC. | w itk 4 Gonditioning _ 138 _
2.4 kbps 500 ~ 1000 miles .70 500 - 1000 miles .66
$/MILE/MO. 1000 - 2000 miles W42 1000 - 2000 miles 43
2000 - 3000 miles .38 2000 - 3000 miles .35
315 ’ ’ '
ALTERNATE . - et s
With C~1 Conditioning + 5
ggiﬁégglCE FIXED/END/MO. With C-2 Conditioning +19 310
ith C- ditioni
SERVICE ———————— W—l— —C—4.-—c9—n—l —lg_nl.f_ng_ — _+§.O ——————————————————
L Wl 500 -~ 1000 miles .70 500 - 1000 miles .66
2 $/MILE/MO. 1000 - 2000 miles A2 1000 - 2000 miles 43
9.6 'kbps 2000 ~ 3000 miles .38 2000 - 3000 miles ., .35
470 + Modem
ALTERNATE : : P
With C-1 Conditioning + 5 .
DATA/VOICE FIXED/END/MO. With C-2 Conditioning +19 No Charges Available
CHANNEL With G-4 Conditioning 430
SERVICE = P == = m o e = e s s e T TP = e e e e e e e e =
48 Wi 500 - 1000 miles 7.56 500 - 1000 miles 7.92
‘ z $/MILE/MO. 1000 .- 2000 miles 4,55 1000 - 2000 miles 5.16
56 kbps 2000 - 3000 miles 4.13 2000 ~ 3000 miles 4,20
WIDEBAND FIXED/END/MO. See Footnote (2) & (3) No Charges Available
CHANNEL I R P
SERVICE
In Increments 500 - 1000 miles 6,24 500 - 1000 miles 6.36
0fuas $/MILE/MO. 1000 - 2000 miles 4,29 1000 - 2000 miles 4,08
2000 - 3000 miles 3.52 2000 - 3000 miles 3.60
48 kHz F
1.2 MHz See Footnote (2) & (3)
FIXED/END/MO. No Charges Available
500 = 1000 miles 126.05
$/MILE/MO. 1000 = 2000 miles 75.84 No Charges Available
2000 - 3000 miles 68.93

(1) One-time installation charges are not shown.
(2) This service available only to other communication carriers,

(3) Connection to communication carrier facilities will be at the expense of the communication carr
(4) Data transmission modems must be supplied by customer (i.e., will incur additional chatges).
(5) Mileage charges pertain to local access channels outside of designated local exchange area,

FOLDOU praug |
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es for Satellite Common-Carrier Service
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ON TELEGRAPH CO.

AMERICAN SATELLITE CORPORATION

RCA GLOBAL COMMUNICATIONS, INC.

105
With C-2 Conditioning +28

T080 (%)

With C-1 Conditioning + 5

IR | With C-4 Conditioning _ +58 _ _| With C-4 Conditioning _+ 19 _
miles .70 500 - 1000 miles .66 No long-haul mileage charges
miles 2 1000 - 2000 miles 43 . .(5)
miies .38 2000 - 3000 miles .35 + 3.30/mi. /30mi
12 trond L5 1060 *)
d}t:{.on}ng »19 310 With C-1 Conditioning + 5

Ltioning A+ With C-4 Conditioning + 19
ditioning  +30_ | _ _ _ _ o o e e e e e L e
miles .70 500 - 1000 miles .60 No long-haul mileage charges
miles A2 1000 - 2000 miles <43 ; . (5)

3. . N

miles .38 2000 - 3000 miles .35 + 3.30/mi. /30mi
“Modem

nditioning- + 5
nditioning +19
nditioning 430

No Charges Available

9675 (*+)

With C-1 Conditioning + 5
With C-4 Conditioning + 19

failes 7.56 500 - 1000 miles 7.92 No long-haul mileage oharges
miles 4,55 1000 - 2000 miles 5.16 , . (5)
miles 4,13 2000 - 3000 miles 4.20 + 3.30/mi./30mi.
1-?;"(2) & (3) No Charges Available No Charges Available
miles 6.24 500 ~ 1000 miles 6.36
miles 4,29 1000 - 2000 miles 4,08 No Charges Available
miles 3.52 2000 -~ 3000 miles 3.60

(2) & (3)

P Gt ovme mew m oma o

miles 126.05
miles 75.84

- ——— — — —— . o— o — — — =

No Charges Available

No Charges Available

miles 68,93

k:a.tion carriers.

es will be at the expense of the communication carrier.

customer (i.e., will incur additional charges).
nels outside of designated local exchange area,
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7.2.2.1 System Cost Equation: If the total cost of the leased-transponder transmission

alternative is shared equally among all users, the annual cost per user is given by the

following equation:

c, = csy/n + Cpp + CET(n)-a(k,i) +Coy T Cpot (7-2)
where CSy = the annual satellite lease charge
n = the number of users (that is, the number of UOT's)
CTT = the initial installed cost of an up-link data distributior or trunking terminal

CET(n) = the initial installed cost of a UOT, based on quantity purchases of n units
a(k,i) = the amortization factor for amortization over k years at interest rate i

C,,, = the annual cost of operating and maintaining a UOT
C. = the assessed value of a UOT for tax purposes

t = the equivalent annual tax rate

7.2.2.2 TFrequency Comsiderations: It is clear from the outset that a leased-transponder

system can only be competitive with the common carriers if the UOT's are such that they may

be located on user premises. Therefore, of the three available frequency bands (C, Ku, and

Ka) wherein rain attenuation is not an insurmountable problem at low UOT elevation angles,

Ku band appears to be the logical choice. Ku-band operation avoids the C-band KRFI problem

and the consequent need of terrestrial connecting links, and, by contrast to Ka-band operation,
can be expected to be well established by the 1985-1995 time frame and supported with already-
developed, "off-the-shelf" hardware. Even supposing off-the-shelf equipment for Ka band, the
terminal costs would increase by 15-20% with respect to the Ku-band terminal. For operation
at C band, the initial terminal costs would decrease by 10-15%. It should be noted again,
however, that operation to C-band users in metropolitan areas would quite likely require an

additional terrestrial transmission link. In the‘following, Ku-band operation is assumed,

7.2.2.3 ‘Annual Lease Charges for Satellite Capacity: All three satellite common carriers

presently leasing satellite transmission capacity indicated their annual charge for an entire
unﬁrotected 20-MHz, approximately 34-dBW (single-carrier saturated output power) transponder
would be close to $1.2M. If protected service is deéired; the charge would be $1.4M/year. ‘
In all likelihood; these charges will be reduced as the carriers endure the demand uncer-
tainties inherent in initial start-up and are able to assess more precisely their position in
the market place and the long-term demand for their service. Some indicétion of this trend
may, indeed, alfeady have occurred. A fecent article stated that three WESTAR transponders

have been leaséd to the Public Broadcasting Service‘at an-annual rate of $800K each [71.

Although these transponders are operating at G band, their present lease charges, with a
reference of 1976 dollars, are assumed to approximate charges for a Ku-band transpoﬁder in

the 1985-1995 time frame.
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In view of this, two values of annual charge per 40-MHz transponder are used in this
study - $1.2M and $500K. It is believed that these figures represent likely upper and lower
bounds for this variable and, together, provide an assessment of its impact on the annual cost

per user.

It is probable that, in an initial system, less than an entire 40-MHz transponder would be
required. To estimate the cost for leasing a portion of the available bandwidth and power of

the transponder, the following assumptions were made:

® The single-carrier saturated EIRP of a satellite transponder is allocated to a user
in direct proportion to the fractional bandwidth of the transponder leased by the
user. However, only 80% of the power that is allocated is actually available to the

user.

® A user must lease a fraction of the satellite transponder bandwidth that is 20%
larger than that actually required to sustain the data rate received by his terminal.

This provides for guard bands.

e The cost to the user of leased transponder bandwidth is proportional to the fractional
transponder bandwidth leased and to a fractionmal utilization cost factor, p. (This

factor 1s shown in the inset of Figure 7-14.)

Given these assumptions, the functional relationship between the required link bandwidth,

Bwreq’ and the satellite lease charge, Csy’ is shown in Figure 7-14,

7.2.2.4 User-Owned Terminal Cost (C“Tl: A large investment for the user, one that counsti-

tutes, in many cases, a large fraction of the total annual cost per user of the leased-trans-
ponder transmission alternative, is the cost of his own receive-only terminal. A simplified
block diagram of a UOT is shown in Figure 7-15. It is estimated that, with UOT antenna
diameters less than or equal to 5m, no antenna tracking system wouid be necessary and that,
for-larger diameters, a simple step-track system would be édequate, Cost estimates for the
vor componénté are given in Table 7-18. These estimates are single-unit costs for a limited-
motion 15" terminal. They do not include development costs. With the thought in mind that
the initial system will have only a few users, the QPSK demodulator has been priced for

either one or four data rates.

Based on these costs, single-unit»UOT’initial installed cost was determined as a function of
G/T using both the TDA and the paramp front end. The resulting curve is given in Figure 7-16.
Details of the calculations are given in Appendix F. The change in UOT cost with G/T is due

mainly to a change in antenna cost. Experience has shown that antenna costs will vary in
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Table 7-18

Ku-Band, Receive-Only UOT Component Costs
(Single-unit prices, not including development costs)

COMPONENT C(Qif
*
Antenna System (5m) 12
Reflector ($6K)
Feed ($3K)
Mount ($3K)
Step-Track System 8
Receiver and Logic ($5K)
Motors, Gears, Sensors ($3K)
i Low~-Noise Preamplifier
i TDA/FET (400 K) 2
' . Uncooled Paramp (120°K) 18
; ORIGINAL PAGE IS Down Comverter 6
' OF POOR QUALITY
: Demodulator, QPSK 14
(four-rate: $18K)
jx Address and Data Extraction Module 20
? Miscellaneous 2+-5
i
Handling Overhead (10%)**
P %%
{ Integration, Installation, Test (20%)
% ek
: Profit (10%)

g For antenna diameters, D, between 3 and 10 meters,
L the antenna-system cost, Cp(D), is given by

- 6, =¢,(5)-0/5)22 = 12k (0/5) %2
- *%Percentages apply to all previous items.
.
175 = ﬁ
- 55 NO TRACKING /’
s 5 7/

! g 1504 y
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Figure 7-16+ ~ The Initial Installed Cost of-a Single User-Owned Term1nal vs the
Terminal G/T. (Cost components from Table 7-18)
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proportion to antenna diameter raised to approximately the 2.2 power for antennas in the 3-

to 10-meter range.

Earth terminal costs could also be affected by the number of terminals purchased. Were

several terminals to be ordered at one time, "assembly-line' methods would likely be intro-
duced into their production. In the theory of cost reduction by assembly-line methods, a
"learning curve' approach is generally taken.  That is, the cumulative average unit cost of

n units is determined as the product of the single-unit cost and a quantity, or cost-reduction,

*
factor, Q(n), given by:
log, (n)
Q) =p
where p represents the fraction by which the cost decreases per octave of items produced,
The values for p usually range between 0.85 and 0.95. A value of 0.9 is used in this study.

The normalized learning curve of quantity procurement (i.e., Q(n) versus n) for P = 0.9 is

shown in Figure 7-17.

o
o

60

NORMALIZED PER-UNIT COST, Q(n)

1 10 100 ] 1000
n, QUANTITY PURCHASED

Figure 7-17. The Normalized Learning Curve of Quantity Procurement

A learning curve is a pldt of .the cumulative average unit cost for m units versus the
number. of units. :
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7.2.2.5 Satellite Total EIRP per Traunsponder (EIRBTl: As shown in Figure 7-16, the cost of
a UOT will depend, in large measure, on the required UOT sensitivity or G/T. This, in turn,

will depend quite clearly on the total satellite EIRP per transponder (EIRPT). In fact, it
is shown in Appendix G that, for 40-MHz transponders,

G/T = 69.7 - EIRP, dB/°k (7-3)

It is pertinent, therefore, to indicate the range of values of EIRP A that may be realistically

T
expected in the 1985-1995 time period.

Three of the satellite corporatious mentiomed previously (RCA, ASC, WU) are all offering
40-MHz, C-band transponders with about a 34-dBW minimum EIRP over CONUS (Alaska and the
lower-48 states). It is possible that Ku-band satellites would offer similar effective
radiated power levels per transponder, However, in view of the absence of Ku-band flux
density limits (at the surface of the earth) and because of the higher rain attenuation rates
at Ku band, it is more likely that a higher value of minimum EIRP will be offered. 1In fact,
current plans for the Ku-band Satellite Business Systems satellite include the use of at

s least 38 dBW [8]. Were the antenmna gain to be more eveuly distributed across the field of

7 view or were a 40W instead of a 20W TWT to be used, the minimum EIRP could well be above the
40-dBW level. For this study, values of EIRPT of 34 dBW and 40 dBW seem appropriate.

7.2.2.6 UOT Sensitivity (G/T): The required UOT G/T can now be determined by substituting

%
. the above values of EIRPT into Eq. (7-3). The results of this substitution, along with the
corresponding UOT antenna diameter and initial installed cost (from Figure 7-16), are given

in Table 7-19.

Table 7-19

- : UOT Required G/T and Associated Cost for Two
: Values of Satellite EIRP per Transponder (EIRPT)

: ‘ ETRP,, 40 dBW 34 dBW -
: g?ﬁTRequired 29.7 aB/°K  35.7 dB/°K
L Crifsioni sm 10m
: . uos Intbial s100K - $185K

Installed Cost

t _ ) .
Based on Bwreq = Ry- G/T's higher by 1.8 dB

would be required if Bwreq‘= 0.667 Rd'

It should be noted that, as determined in Appendix G, the UOT required seunsitivity is, as
shown ‘in Eq. (7-3), independent of the data rate received‘by the UOT.
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In addition to initial cost, there are two reasons the 5m terminal (40-dBW EIRP per satellite
transponder) is preferred. First, it lends itself much more readily to easy, low-cost instal-
lation such as on the roof of a user's facility. This type of installation is pictured in
Figure 7-18. Second, the 5m antenna would not need to be a tracking antenna, thereby reduc-

ing maintenance.

SUBREFLECTOR

)

— / A
‘ A

/ ' ( i
- RF EQUIPMENT .

!/ 7 ENCLOSURE

CLEVIS

AC MOTOR

SCREW ~ ' “~._PEDESTAL
ACTUATOR »

“-  DRIVE ADAPTER e
Figure 7-18. TLow G/T, Roof-Mounted, Limited Mbtion, User-Owned Earth Terminal

In conlusion, then, primarily because of the large increase in UOT antenna diameter and
secondarily because of the near ‘doubling of the UOT terminal cost that accompanies the use
of 34-dBW EIRP transponders, the baseline UOT terminal design in this study is the 5m non-
tracking terminal with a G/T of 29.7 dB/°K. The cost of the components of this UOT are,
therefore, precisely those given in Table 7-18 (disregarding the’entries for the TDA/FET LNA

and the step-track system) with $5K for the miscellaneous items.
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7.2.2.7 Earth Terminal Operations and Maintenance Costs: The planned receive-only UOoT's

are intended to be extremely simple and basically self operating. In order to keep the costs

for 08M at a minimum, the following O8&M strategy is proposed.

1) Terminal operation is to be carried out by non-specialized user personnel and
limited to monitoring and recording two or three terminal parameters. These param-
eters (such as AGC, bit error rate, etc.) would be reported periodically to the

"maintenance depot.

2) Maintenance would be limited to 4 trips of approximately two days each a year
to each site to check out the terminal and perform any required repairs. 1In addi-
tion, any time a terminal failed, repalrs would be effected immediately (allow one

trip per year).

The estimate of costs for the above operations and maintenance are given in Table 7-20

Table 7-20

Estimated O&M Costs for Receive-Only Terminals

FUNCTION COST
Operation (performed by on-site persomnnel) $0/year
Maintenance
e Labor and travel - 5 trips ($73/day + $350/trip travel) $ 2,500
e Parts - 10% of initial terminal equipment costs per year $ 7,500
TOTAL $10,000

7.2.2.8 User Costs - Leased-Transponder Transmission Alternmative (Ku Band): The annual

per-user costs developed here for the leased-transponder alternative will find specific appli-
cation in Sections 8 and 11 during the cost comparison of candidate data dissemination systems.
To determine these annual costs, the subsystem costs given above* were substituted. into Eq.
(7-2) (Sectton 7.2.2.1) for the range of values of key system variables shown in Table 7-21,
The $500K annual satellite lease cost (per transponder) represents a lower bound to this

cost component and provides an assessment of its impact on user costs. The results of the

.calculations are presented in Figure 7-19 as curves of annual cost per user versus the re-

" quired déta rate into the UOT's. The éffect of changes in the other system variables are

shown as parametric variations of this curve.

The cost of the up-link data dissemination or trunking terminal is developed in
Section 7.2.2.9. ‘
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Table 7-21

Assumed Values of User-Owned-Terminal/Leased-Transponder System Variables

Data rate R = 1-60 Mbps

d
Number of UOT's (i.e., users) n = 10, 20, 100, 500 -~ assumed purchased such
that cost reduction may be applied using Q(n)
Satellite EIRP per transponder EIRPT = 40 dBW
Frequency Ku-Band (14.2-GHz up-link; 11.7-GHz down-link)
Interest rate i = 8
Amortization period k = 10 years
Annual satellite cost per transponder CST = $1.2M or $0.5M for total bandwith & total EIRP
UOT single-unit cost CET = $109K
Up-link data dissemination
terminal single-unit cost CTT = $§179K
UOT quantity-purchase cost-reduction log,n
factor Q(n) = 0.9 where n 18 the number of UOT's
purchased
Assessed value of UOT Ct = 0,25 CET
Property tax rate on assessed UOT t = 0,125
SO R i w0 SATELLITE EIRP PER 40-MHz TRANSPONDER = 40 dBW
T gunssysusndiactuns ; ,
140 oL ,7‘¥n‘v Sw / - CST = ANNUAL SATELLITE LEASE CHARGES PER TRANSPONDER
vo [ T EeaiguriREiesiant Cpp = $109K (INITIAL INSTALLED SINGLE-UNLT COST OF A
ST rr TR TR i USER-OWNED TERMINAL)
120 s i b
B3SRIEEE: AT n = NUMBER OF USER-OWNED TERMINALS IN THE DATA
110 ;‘f‘f’ ks a’L IS h o RRAGS SRSy ) DISSEMINATION NETWORK
g 100 i i) Com = $1.2
- SEEuaEady  SRRRERURI SRS sy © ¥
£ % : 74t a518 | Cgp = $500K
- Y Lt E a0
a by $ 44 4 7oL 4 4
g 710 Aae b
:) ey : ..‘...,./),. ': :
% &0 LL /‘/.l& ; It i”’
H M -t 13
s0fs dfuadbubd !
50 157 72}> “i =100
2 p Ll ne100
20 et : d n=500
i e= =~ n=500
LR »3» B
o 2

: 30 40.
REQUIRED DATA RATE INTO USER-OWNED TERMINALS, Ry (Mbps)

Figure 7-19. The Annual Cost per User wvs the Required Data Rate into User-Owned
Terminals for the Leased-Transponder Transmission Alternative
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The curves show that, on high-data-rate links (i.,e., links requiring all or mearly all of

the transponder bandwidth), annual user costs are very sensitive to both the number of users
and the annual transponder lease charges. This was to be expected as charges and satellite
costs are shared among only a few users., By contrast, the effect of these two variables on
annual per-user cost is much less pronounced at data rates less than 1 Mbps, For example, in
Figure 7-19, with a 1-Mbps required data rate, changing the annual cost of the satellite
transponder from $500K to $1.2M (an increase of 140%) increases the annual per-user cost by
only 12% from $29K to $32.5K, when there are ten users. The increase in user cost is even

smaller with more users in the network.

7.2.2.9 Cost of Trunking Link ET's: The cost of earth terminals for trunking of raw or

preprocessed data will be slightly higher than that of the single-user or area-center UOT's
described earlier. This cost increase arises from a need for a frequency generator, a modu-
lator, an up converter, and a high-power amplifier (HPA) for the up-link; and a desire to

have redundant preamplifiers for the down-1link.

It will be assumed that the equipment costs and the system costs incident to the installation
of a trunking earth terminal are as shown in Table 7-22., The initial installed cost of $179K
shown there converts to an equivalent annual cost per terminal of $43,0K, The conversion is

shown in equation form as follows (assuming that these terminals are unattended):

initial installed cost
$179K x 0.149 + ($4K + $123 x 0.10) = $43.0K

'
annual maintenance
amortization of - cost

initial cost over
10 years, @ 87 interest
Table 7-22

Trunking-Link Earth-Terminal Equipment Costs
G/T = 29.7 dB/°K)

5m antenna (limited motion) §$ 12K
500W* HPA (transmitter + power supply) 40K
Frequency generator, modulator and up ccnverter 10K
Paramp (uncooled), dual 36K
Down Converter 6K
Demodulator . (1 rate) . .- ’ 14K
Miscellaneous hardware 5K
TOTAL . EQUIPMENT COST $123K
Handling overhead (10%) 12.3K
Integration, installation, test (20%)** , 27.1K
Profit (10%)** 16. 2K
INITIAL INSTALLED COST ) $178.6K

Link budget is given in Appendix G.

bk Percentages apply to all previous entries.
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7.2.2,10 Trunking Link Costs: The annual cost of a raw- or preprocessed-data trunking link

will depend on the required link capacity in much the same way as does the annual cost of
user-data distribution links discussed in previous sections. That is, the cost of the trunk-
ing terminal, itself, is essentially fixed, the link cost then rising or falling according

to the fraction of the transponder needed to support the link capacity. Assuming that the
satellite charges are as given in Section 7.2.2.1 and that the required satellite bandwidth -~
as defined in assumption 1 of Section 7.2.2.1 ~-- is equal to the link data rate, the annual

cost of a trunking link as a function of link data rate is given in Figure 7-20.

1400
/// Cgp = $1200K
1200 /,
1000
2
z
=~
(72}
Q
© 800
3
S
~—
=
<5
=
-
3 600
= /// //" Cgp = $500K
=
o]
~
[
400 v

] CST; ANNUAL SATELLITE
TRANSPONDER COST

- . o TRUNKING TERMINALS REQUIRED AT
,/’// BOTH ENDS OF THE LINK

200 ' _—
{C//,/' o Ry = BW_ o

0o 10 20 30 40 50 60
TRUNKING-LINK DATA RATE, R, (Mbps)

Figure 7-20. "Annual Cost of Trunking Link vs. Trunking-Link Data Rate
for Leased-Transponder Transmission Alternative
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7.2.3 Add-On Transponder Transmission Alternative: An attractive alternative to leasing

satellite capacity from commercial carriers is the addition of a communication transponder to
a government-sponsored geo-synchronous satellite such as SEOS. The cost breakdown for a
single add-on transponder with and without redundancy for G, Ku, and Ka band are given in this
section. Both the recurring and the non-recurring costs are fairly straightforward, being
derived from existing programs. For this alternative, it is the cost/performance impact on

the host spacecraft which is difficult to determine.

If the host spacecraft were an earth-resources applications satellite such as SEOS, it would
be in the direct interest of the earth-resources program office to minimize costs to users
and, thus, to promote the add-on system. The cost might be absorbed in the general program
funding; i.e., not broken out and passed on to the user. A similar situation may arise if
the transponder were added to a second-generation synchronous meteorological satellite where
the communications capability might be shared with meteorclogical data dissemination services,
In either case, the cost to users of the add~on transponder should be minimal. However, if
the transponder were added to, for instance, another communication satellite, then the costs
of the satellite and launch would probably be shared by the earth-resources program office in
proportion to the fraction of the total satellite power and weight required by the add-on

transponder.

For this study, it is assumed that the transponder is added to SEOS and the costs associated
with the transponder are only for its development, fabrication, and integration on SEOS. No
charges for the host satellite's power and upkeep are assumed. Tables 7-23 and 7-24 detail
the cost breakdown for single-thread, no-redundancy transponders at C, Ku, and Ka bands.
Redundancy would double the cost of the TWTA and add about 30% to the electronics. The major
cost for a transponder 1s the development or non-recurring cost. If an existing design can
be used, which was assumed for the C-and Ka-band transponders,* the total cost can be reduced
to 1/2 of the cost required to develop an all-new transponder. In elther case, the resulting
transponder would probably be similar in appearance to the C- and Ka-band transponders of the

Japanese CS satellite, simplified block diagrams of which are shown in Figures 7-21 and 7-22.

The total cost of an add-on transponder for various combinations of off-the-shelf and no-prior-
development items can be obtained by combining the costs shown in Tables 7-23 and 7-24. For
Ku-band operation (chosen for essentially the same reasons as given in Section 7.2.2.2 for

the leased-transponder transmission altermative), combining these costs according to the
following assumptions leads to a value of $SOQK for the iustalled (i.e., integrated, in-orbit)

cost of the transpounder,

For C and Ka band, Aeronutronic Ford has an existing design from the Japanese Communication
Satellite (CS) program. :
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Table 7-23

Costs for an Add-On Transponder (mot including antenna) (SK)

NONRECURRING RECURRING
BAND/POWER SUBTOTAL | SOURCE
ELECTRONICS | TWTA | ELECTRONICS | TWTA

3
C (4 WATTS) - - 70-100" | 40-50 | 110-150| o©s
Ku (5-10 WATTS) || 400-500 | 50-70 90-120 | 55-65 | 600-755

%
Ka - - 120-140" | 70-90 | 190-220| s

*
Represent costs for integration, fabrication, and test for a single trans-
ponder from the Japanese CS program.

%
Table 7-24 % \/&,
Antenna Costs for an Add-On Transponder ($K) . ) Q)
%%,
TYPE NONRECURRING { RECURRING | SUBTOTAL 9046’
&
Spot Beam 120-150 80-90 200-240 YAY
Shaped Beam
(CONUS + Alaska) 250-300 100-115 350-415
FROM INPUT TO OUTPUT
MULTIPLEXER [~ — —— — — — — — — —i —r—— — — - MULTIPLEXER
| | river | |
] PREAMP IF AMP |4 BEF ;
BPF | H AMP 1 TWTA BPF |-
| 5 | | AGC !
| L I I [es
e e e ROR T

‘Figure 7-21. Block Diagram of Japanese Communications Satellite (CS) C-Band Trausponder

FROM INPUT ) TO OUTPUT

MULTIPLEXER ‘ [_ | r—=—--- -3 MULTIPLEXER
, | | | l

—f BPF 1F 1F TWTA B
| T o

| | l |
I LO | | LO I
| L I | l
L — — — RCVR L2

Figure 7-22, BRlock Diagram of Japanese Communications Satellite (CS) Ka-Band Transponder
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e Ku-band operation

e In the 1985-1995 time frame, 5+ and 20-watt TWTA's will have comparable costs.
e Transponder electronics and TWTA are off-the-shelf designs $105.0K

60.0K
e Cost of redundant electronics for transponder is equal to
30% of the recurring electronics cost. 31.5K
o Add the cost of one additional TWTA 60.0K
e Antenna costs are for a shaped beam including development 382.5K
$639.0K
e Integration costs onto the host satellite will represent
an additional 25% of the total costs above. x-'1.25
$798.75K

To assess the total cost per user of data distribution for a UOT/add-on transponder system,
Eq. (7-2) was modified to reflect an initial inwestment rather than an annual lease charge
for the cost of the satellite segment. It was also assumed that the full cost of the add-omn
transponder would be shared equally amoug the users of earth-resources data (i.e., that there
would be no mission for the transponder by which revenue could be generated other than that
of earth-resources data dissemination), and that the fuil power of the transponder would be
used to reduce the required UOT G/T as a function of data rate. The resulting equation is
C,, * a(k,i)

o - -XE
u n

+ CTT + CET(Rd,n) x a(k,i) + Com + Ct %t (7-4)

where Cyp 1s the initial cost of the add-on transponder, CET(Rd,n) shows that the cost of a
UOT is now a function of data rate, Rd’ as well as of the number of terminals; and the other

variables are as defined for Eq. (7-2).

With Eq. (7-4)*, the annual cost per user was determined for the UOT/add-on transponder sys-
tem és a function of the vequired data rate. This cost is shown in Figure 7-23 for '10-500
users. The amortization period of 10 years, an 8% interest rate, 25% assessed tax valie, and
12.5% tax rate oﬁ assessed tax value were the same as used in the leased-transponder system
calculations. 'The effect on annual user costs of doubling the initial transponder cost from
$800K to $1.6M is shown in Figure 7-24.

Comparing the costs shown in these two figures with those of Figure 7-19, the add-on-trans-
ponder alternative has a considerable cost advantage over the leased-transponder alternative
when high data rates ‘are required and there are relatively few {say, less than 50) users of

the system. However, at the lower data rates (less than 2 or 3 Mbps), the cost effectiveness

iof the add-on-transponder alternative is rather indepeﬁdent of the number of users and will.

depend, instead, on the initial cost of the-add-on transponder.,

* : .
’ Crr(Rq,;n) values used in generating Figures 7-23 and 7-24 are given in Table F-3.
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7.2.4 Impact of UOT Costs: 1In previous sectilons, the impact on user costs of cost changes

in the space segment of the leased-transponder and the add-on-transponder systems were deter-
mined. A common element for user data dissemination in both systems is the user-owned receive-

ouly ET. 1In this section, we assess the influence cost reductions in UOT equipment will have

on user costs.,

The three major cost items shown in Table 7-19, Receive-Only UOT Component Costs, are the
paramp, the QPSK demodulator, and the address and data-extraction module. Significant develop-
ment of these items will result in lowered costs for the earth terminal. The following assump-

tions were made for the purpose of evaluating the sensitivity of user costs to UOT initial

costs.

e In the future, system temperatures nearly equivalent to those of today's uncooled
paramps will be achieved using solid-state devices and thermoelectric cooling. This

will be done at a cost equaling that of present-day TDA LNAs.

® Modem costs will be reduced through the use of multiple high-speed microprocessors.

A cost of $5K is assumed for the demodulator.

e Similar cost-reduction techmiques will bring the cost of the address and data-extrac-
tion module down to $10K.

These assumptions represent a reduction in UOT initial installed cost of $51K; from $109K to
$58K, as shown in Table 7-25. * New annual per-user costs were computed with this reduced
cost and are given, as functions of the number of users, in Figure 7-25 and in Figures 7~ 26*¥
and 7~ 27 " for the 1eased- and the add-on-transponder systems, respectively The annual
maintenance cost 1s now reduced from $10,000 to $6,500 due to the lower cost of replacement

parts.

Comparing: these figures with Figures 7-19, 7-25, and 7-24, it may be seen that the reduced-
cost UOT reduces the annual user costs by from $5K to $10K, depending on the data rate.
Although savings of this magnitude are not very dramatic in the cases involving high data
rates and small numbers of users, for some 6f the lowéf-data~rate cases it amounts to a nearly

40% drop in overall per-user annual cost.

Even with these assumed cost reductions in terminal equipment, these terminals. (§40K total
equipment cost) are still expensive compared to the cost of a Communicatlons Technology
Satellite terminal ($10K total equipment cost). [9]

o Cgp(Rg,n) values used in generating these figures are given in Table F=4,
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Table 7-25
The Initial Installed Cost of a UOT with Reduced-Cost Components
COST
COMPONENT
($K)
Antenna System (5m) (Reflector, Feed, Mount) $12.0
Low-Noise Preamplifier (Uncooled Paramp, 120°K) 2.0
Down Converter 6.0
- Demodulator, QPSK 5.0
Address and Data Extraction Module 10.0
Miscellaneous 5.0
TOTAL EQUIPMENT COST $40.0
Handling Overhead (10%) 4.0
Sub-total $44.0
Integration, Installation, Test (20%) 8.8
Sub-total $52.8
Profit (10%) 5.3
INITIAL INSTALLED UOT COST $58.1
T FEER T IAREg =0 SATELLITE EIRP PER 40-MHz TRANSPONDER = 40 dBW
j ¥ A e f.{‘&’lh
10 b H Cgp = ANNUAL SATELLITE LEASE CHARGES PER TRANSPONDER
10 PR T ; Cpr = $ 58K (INITIAL INSTALLED SINGLE-UNIT COST OF A
T San USER-OWNED TERMINAL)
110 |1 I
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§ " it Cgr = ¥1. 2
=1 4 +-
© 80 [ : ——— ——
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Figure 7-25. The Annual Cost per User vs. the Required Data Rate into User-Owned
Terminals for the Leased-Transponder Data Transmission Altermative
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Figure 7-26. - The Annual Cost per User vs. the Required Data Rate into User-Owned
Terminals for the Add-On-Transponder Data Transmission Alternative
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7.2.5 Low-0Orbit Earth-Resources Satellite (LERS): With the addition of a communication
transponder  to a LANDSAT satellite or other LERS, it 1s possible to both trﬁnk raw or pre-
processed data and distribute user data during periods of mutual LERS visibility among the
affected earth locatious. However, it will be seen quickly that this scheme increases trunk-
ing-terminal and user-owned-terminal costs significantly and imposes restrictions on the
location(s) of the preprocessing/distribution center(s) beyond those applicable were a syn-
chronous communication transponder to be used.

'

7.2.5.1 User Data Distribution via LERS: The high UCT cost arises from the requirement that

it provide fully automatic tracking and full-motion capabilities. In addition, the very
limjited time.available for transmission (when both theacentral distribution terminal aund the
user terminal are in view of the LERS) forces the UOT to receive at data rates approaching
those of the raw-data link down from the LERS sensors (about 102 Mbps for the 30m/7-band
multi-spectral scanner). This type of UOT is very different from that proposed in Section
7.2.2.2, Indeed, the installed cost of a UOT, with LERS data distribution, would approximate
that of a raw-data terminal which 1s being estimated at $485K, for the rf-to-demodulation
equipment only ($335 + 10% handling; 20% integration, installation, and test; and 10% profit --

see Table 7-13). Clearly, this user-data transmission alternative is not cost effective.

7.2.5.2 Data Trunking via LERS: Data trunking could be réquired on any of the links shown

in Table 7-26. Some of the links may be ruled out because the periods of mutual visibility
between the end points are either non-existent or are too short to support the link with
economically viable data rates, This 1s the case for links betweep Fairbanks and any of

the three lower-48-state locations and for links between Goldstone and Greembelt, especially
with the ERS at 710 km, as may be seen from Figures 7-28 and 7-29. LERS trunking links between
Goldstone or Greenbelt and Sioux Falls could be supported but would require one primary, or
raw-data reception, terminal at Sioux Falls for each LERS in use, in addition to the primary
terminals at Goldstone and Greenbelt. This arrangement is costay and is not necessary since

a single primary terminal at Sioux Falls has adequate visibility from the LERS to receive

.

all the data directly.

Table 7-26

Possible Trunking-Link End-Point Locations in
a Data Dissemination Network

Fairbanks, AK and Sioux Falls, SD
Fairbanks,-AK and'  Greembelt, MD
Goldstoné, CA and  Greenbelt, MD
Goldstone, CA and  Sioux Falls, 8D
Sioux Falls, SD and Greenbelt, ™MD
White Sands, NM and Sioux Falls, SD
White Sands, NM and  Greenbelt, MD
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Figure 7-28., Site Coverage Contours for 5° ET Antenna
Elevation Angle and LERS Altitude of 710 km

Figure 7-29., Site Coverage Contours for 5° ET Antenna
Elevation Angle and LERS Altitude of 900 km
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A raw-data trunking link from White Sands to Sioux Falls or to Greenbelt for preprocessing
could be mecessary in the event that the raw data were relayed into White Sands via the TDRS.
In this case, however, use of the LERS for trunking would force construction of either two

or three otherwise completely unnedessary primary terminals.,

In any of the abovp trunking arrangements, a communications transponder and associated support
systems would first need to be installed on the LERS. Its cost would be roughly comparable to
that of adding a transponder to a synchronous satellite. In view, therefore, of the substan-
tial cost of additional primary ET's (as compared to the cost of Domsat-type ET's) to estab-
lish those LERS links that are even possible, it may be concluded that, from the standpoint of

cost, this alternative need not be considered further.

7.2.6 Microwave LOS Traunsmission Alternative: The costs of terrestrial LOS microwave

equipment are given in Table 7-27. They are estimates based on the average costs of similar
turn-key facilities [10,11,12]. With these estimates, a smooth curve has been constructed in
Figure 7-30 to show equivalent annual cost versus link length of an LOS link assuming adjacent
repeaters are spaced 30 miles abart, It is apparent that the LOS alternative would not be

cost effective except on relatively short, very high data-rate links.

Table 7-27
Microwave (LOS) Equipment Costs
COST ($K)
EQUIPMENT =
TERMINAL REPEATER

2 rf Channels (Redundant) $10.0 $19.0
Antenna(s) and Feed(s) 2.5 5.0
Batteries and Charger 2.0 2.5
Tower - 7.0
Miscellaneous 1.5 2.5
Installation and Test (~20%) ‘ 3.0 7.0
Power : 10.0
Land and Improvements 10.0
Shelter 6.0
Engineering and Initial Spare Parts - ' 4.0 7.5

INITIAL INSTALLED COST, CI $23.0 $76.5
Equivalent Annual Cost 8.0 26.7

CI*[(1/6.7)** + 0,2%%%]
Installed Cost of Additional rf Channel - 5.0 10.0

Located on user premises.

Amortization of initial capital cost over 10 years at &% interest.

Sk .
Annual operations and maintenance cost (207 of CI).
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Figure 7-30.

7.2.7

Summary of Systems for Transmission between Two Earth Locations:

1000

Equivalent Annual Cost vs Link Length of Terrvestrial Microwave LOS Facility

Data has been

presented, principally in the form of curves, that can be used to support cost comparisons

among the alternative transmission systems,

offered in Table 7-28.

Summary comments regarding each alternative are

Comparison of the transmission alternatives is contained in Section 8

and is followed in Section 1l by comparisons of complete data dissemination network configura-

tions.
Table 7-28
Transmission Alternatives - Summary Comments
. *
TRANSMISSTON SUMMARY COMMENTS
ALTERNATIVES

TRUNKING LINKS

USER DATA LINKS

Common Carrier l

Satellite °
Landline ]
Leased Transponder °

Add~on Transponderij e
LERS °

LOS Microwave °

Probably available
Not least cost
Very flexible, if available

Probably available
Not least:cost
Very flexible, 1f-available

Available

Not least cost if add-on trans-
ponder available

Moderately flexible

Probably not available
Least cost
Moderately flexible

Probably not available
Very high cost
Moderately inflexible

Available
Very high cost

Inflexible

Not always available

Least cost only for short, low-
data-rate links

Very flexible

Always available

Not least cost except for short,
low-data-rate links

Very. flexible

Available

Next to add-on system in cost for
most links

Flexible

Probably not available
Least cost for most links
Flexible

Probably not available
Extremely high cost
Moderately flexible

Available
Extremely high cost
Inflexible

D . ,
* Flexibility is with
any particular link,

regard to the relative ease and cost of relocating the end points of
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SECTION 8.0

PRELIMINARY SELECTION OF TRANSMISSION ALTERNATIVES

8.1 Introduction,

Several combinations of network topologies and data transmission altermatives may be envi~
sioned to accomplish dissemination (collection and distribution) of earth-resources data
generated by low-orbit satellites. The purpose of this section is to describe the topologies
and the various links within each topology by generic category and then to compare the costs
of the various electronic data transmission alternatives* that may be used within each link
category. The more costly transmission alternatives are then eliminated from further

consideration.

8.2 Network Topologies & Transmission Links,

A network topology is defined as the physical layout of a network. Topologies may be classi-
fied according to whether they incorporate regional or central raw-data reception and whether
they incorporate regiomal or cemntral data preprocessing and distribution. For this study,
three generic classes of topology are being considered; 1) regional reception with regional
preprocessing and distribution, 2) regional reception with central preprocessing and distri-
bution, and 3) central reception with central preprocessing and distribution. - Within each
generic class, two sub-classes exist. The data may be transmitted from the preprocessor
directly to the user, or it may be transmitted to the user via an intermediate data distri-
bution hub, herein called an agency area center. Illustrative diagrams of these topologies

are shown in Figure 8-1.

The various transmission links represented or implied in the topology diagrams are: 1) trunk-

ing links -- links from the primary earth terminals to the central preprocessor or the link
from the central preprocessor -to the central distributor, 2) area input links -- links from
the central or regional distributors to the area centers, 3) direct-to-user links -~ links

from the central or regional distributors direct to the users, and 4) area-to-user links --

links from the area centers to the users.

8.3 Electronic Data Transmission Alternatives,

Data may be transmitted over any of the transmission links by any of a number of transmission
alternatives. These alternatives may be classified as either terrestrial or satellite trans-

mission alternatives, as shown in Table 8-1. Each class, together with mail and special

* As stated in Section 4,2.2, the timeliness requirements in the user demand model were

selected specifically with a view toward determining network capability and structure for
fast (less. than nine-day) user-request response time, This rules out the distribution of
user data by mail or specilal courier.
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Table 8-1

Electronic Data Transmission Alternatives

by Class of Service

CLASS OF SERVICE

TRANSMISSION ALTERNATIVES

Terrestrial or Land-Line
Transmission

"

Common-Carrier Full Dedicated
Common-Carrier Metered
User-Owned Terrestrial Microwave

Satellite Transmission

Common-Carrier Full Dedicated

Common-Carrier Leased Transponder with
User-Owned Earth Terminals

Add-On Transponder to Government-Owned
Satellite (e.g., SEOS) with User-
Owned Earth Terminals

User-Owned Satellite and User-Owned
Earth Terminals

LERS and User-Owned Earth Terminals

FUNCTION 1 5
RAW DATA REGIONAL REGIONAL CENTRAL
RECEPTLON
PREPROCESSING | REGIONAL CENTRAL CENTRAL
& DISTRIBUTION
DIRECT
USER
LINK
/ ;
i
DATA !
DISSEMINATION [ l
TO USERS 3 ESNIR
- ViA  AREA ; VIA . & AREA VIA  AREA
DIRECT CENTERS DIRECT CENTERS DIRECT CENTER/?
AREA-TO-USER
LINK

Filgure 8-1, Three Generic Classes of Data Dissemination Network Topology

courier service, will, in general, find application for the combinations of user timeliness,

user data volume, and transmission link length indicated in Eigufe 8-2.

This figure shows

that, for fast data delivery, either land-line or satellite transmission is necessary.

this case, satellite transmission is less costly for transfer of large volumes of data over

long distances.
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TIMELINESS (DAYS)

& o

A\
¢
S j
é§§§> /1y e
o LAND-LIRE gt SATFLLYTE )
Ve TRANSMlSSiONA% TRANSMLSSTON 7

USER-REQUESTED DATA VOLUME (B1TS)

\

.

Figure 8-2. General Areas of Least-Cost Service
of Three Data Transmission Alternatives

8.4 Cost Comparisons Among Transmission Alternatives

The costs associated with the above transmission alternatives have been detailed in Section 7.
To apply these costs to specific transmission links, it suffices to characterize each link in
terms of the following four parameters: L, the length of the link; R, the required link data
rate; D, the time duration of each transmission; and F, the frequency of the traunsmission
(number of tramnsmissiomns per year). In the following subsections, the values of these param-
eters are determined for each of the link types in turn, except for the area-to-user links,
and a comparison of transmission alternatives is given., The choice of transmission alterna-
tive for area-to-user links is more user~-specifiec than is the case for other links and is
“eritically dependent on factors outside the scope of this tudy (e.g., the cost of user-speci-
fic processing and whether it is performed at an .area center or at the individual user loca-
tions). Given this, and the fact that this choice would not affect the choice of transmission
alternative on either area-input or direct-to-user links and would not, therefore, be a
factor in selecting from among the three classes of network topology, area-to-user links will

not be discussed further.

8.4.1 Trunking Link Transmission Parameters: By definition, trunking links would be

established among regional primary terminals, between regional or central primary terminals

and a central preprocessor, and between a central preprocessor and a central distributor.

Possible sites for these facilities and the resulting possible trunking-link lengths, L, are

shown in Figure 8-3. (Not all sites and not every facility at each site would ever be imple-

mented.)
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) NOTE! Possible facilities at each of
Fairbanl ! AK these sites could inelude:
aix an<si ) primary earth terminal, prepro-
% : cessor, and/or distributor,
i
u\
Z R \
’ B
2 3

Sioux Falls, SD e

Greenbelt, MD

\\“‘*-\~\. e
& R, C
g & o / &‘g.%? ’
AL Q 1. _;1;\
////’///// — =
R W g
\_’l 20 ;

L]
Goldstone, CA /
c

L]
White Sands, NM

LEGEND:
R = Regional Facility
c Central Facility

il

[

Figure 8-3. Link Lengths, L, of Possible Raw~ and Preprocessed-Data Trunking Links

The transmission rates on these links must be at least such that transmission of the raw data
that is received and/or preprocessed on any given day can be completed prior to reception of
the succeeding day's data. Based on the maximum data volumes in bits, vmax’ that could be
received by each of the above facilities on any one day and on an assumed 16-hour work day
({.e., two shifts) during which continuous transmission would occur, the required transmission
rates in bits per second, R, may be approximated by Vmax/(lé x 3600). These values of R, the
associated wvalues of Vmax’ and the set of swaths that correspond to VmaX are given in Table
8-2. Because transmissidn would be continuous, dedicated rather than metered service would

be used so D and F need not be determined.
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Table 8-2

Required Transmission Rates, R, for Raw and Preprocessed Data Trunking

TRANSMISSION N T (1)
! R (Mbps
ORIGINATION POINT TRANSMISSION LINK SWATH No.'s Vinay (Gb1tS) (Mbps)
AND COVERAGE AREAT TERMINATION POLNT 30/7 |1 10/12 30/7 { 10/12
Goldstone, CA Sioux Falls, SD 10 & 48
tWestern Lower 48 or and 39 109 1680 1.891 29.1:
States Greenbelt MD
Fairbanks, AK Sioux Falls, SD 65 & 83 : .
YAlaska or and 80 1230 1.39 21.4
Greénbelt MD 74 & 92 %
Greenbelt, MD Sioux Falls, SD 11 & 29
tEastern Lower 48 91 1410 1.59 1 24.5
and 20
States
Greenbelt, MD or Sioux Falls, SD 11, 29, 47,
White Sands, NM or 65 & 83 and
tLower 48 States Greenbelt, MD 20, 38, 74 238 3670 4.13 1 63.7
and Alaska & 92
(1
R = max/ 10 Rraw x & st/vg

L x 16 x 3600 6

1 x 16 x 3600 x 10

where V. 1is the maximum single-day data volume that could be received at each
transmission link origination point
Rraw is the raw data bit rate from the low-orbit satellites to the primdry ET's
ELSW is the sum of the lengths of the swaths shown in column 3, and
vg is the ground trace velocity of the low-orvit satellites
8.4,2 Trunking Link Cost Comparisons: All bit rates for trunking the 30m/7-band data are

such that at least a 1.544-Mbps link would be required. For the shortest of the trunking
links the costs of the various transmission altermatives at this transmission rate are shown
in Table 8-3,

satellite transmission is by far the least expensive altermative, even for this relatively

along with references to relevant information in Section 7, Since some form of

short link, and since, according to Figure 8-2, longer distances and higher bit rates will
increasingly favor satellite transmission, the conclusion is inescapable that, wherg data
trunking is required, satellite transmission has significant cost advantages.

Recognizing that the very high transmission rates required for trunking of 10m/12-band data
(e.g., as high as 64 Mbps) may restore the cost advantage to the user-owned terrestrial micro-
wave alternative, it is appropfiate to investigate this case, The incremental cost for the
microwave alternative would be that associated with one more rf channel at each repeater and
terminal location (assuming that a single channel would support a transmission speed of 30
Mbps)-.
Table 7-27), making the annual cost for the microwave link approximately‘$9OOK

7
) To cover 930 mi, in 30 -mi., hops requires (930/30 -1) = 30 repeaters, plus two terminals.

Assuming a terminal cost of $28K, the initial installed cost of the Iink is 30X$86.5K+2X$28K
= §2.65M. Amortizing this cost over 10 years at 87 interest and adding an annual operations
and maintenance cost equal to 20% of the capital cost, the equivalent annual cost of the
link is (0.149 4+ 0.2) X $2.65M = $925K.

This would increase the installed cost per repeater from $76.5K to $86. SK (see
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Table 8-3

The Equivalent Annual Cost (SK) of a Dedicated Transmission Link Between
White Sands, NM and Sioux Falls, SD Using Various Alternatives

LEASED ADD~ON COMMON USER ~ OWNED
TRANSMISSION TRANSPONDER TRANSPONDER CARRIER MICROWAVE
RATE (Mbps) (L0S)
8500K/yr | $1.2M/yr | $800K $1.6M LANDLINE | SATELLITE
1.544 119 165|110 | 134D | 542 225(3) 790
60 595(4) 1295(4) 214(4) 333<4) N/A N/A 925
| | | | l
[ | Relevant Material from Sectiop 7 | |
Tables 7-22 7.22 7=22 7-22 7-13 7-27
Figures 7-20 7-20 7-4 N/A 7-30
Sections 7.2.3 7.2.3

(1) Assumes link pays for 1/5 of the cost of the add-on transponder and uses 1/20 of
the transponder power. Required ET G/T = 29.4 dB/°K (from Eq. G-1), so cost of
terminal is as given in Table 7-21,

(2) Assumes a total of 5 miles of intercity connecting link.

(3) RCA's domestic satellite subsidiary recently contracted with DoD to provide two
1.544-Mbps links and one 64-kbps link between Washington, DC and Camp Roberts,

CA at an annual cost of $500K. [1]

(4) Assumes link pays for and uses the entire transponder. Required ET G/T = 31.3 dB/°K.
Total equipment cost is as given in Table 7-21 plus $8K for step-track system and
86K more for a larger antemna. These costs of $137K lead to an initial installed
cost per terminal of $199K and an annual cost per terminal of $47.5K.

This cost and the corresponding costs for the other alternatives, where available, are also
shown in Table 8-3. The add-on transponder (to SEOS, for example) alternative continues as
the least-cost alternative, - If the add-on transponder alternative is mnot available, the
user-owned microwave facility would be the next-best alternative unless the annual cest of
the leased transponder in the UOT/leased transponder alternative were less than approximately
$800K.* A precedent for the $800K/year/transponder price was, however, set earlier this

year,** and the likelihood is that this price will decrease over the next’ ten years.

8.4.3

annual cost penalty for land-line rather than satellite trunking of 30m/7-band data using com-

Trunking Link Conclusions: It may be seen from Table 8-3 that a realistic per-link

mon-carrier facilities would be at least $350K, With a user-owned terminal satellite option,
The higher data rate of the 10m/12-band data

may or may not reduce this penalty but would not, in all probability, eliminate it,

this per-link annual penalty could exceed  $450K,
Therefore,

any trunking of raw or preprocessed data as defined herein should be by satellite transmission,

This conclusion is substantially the same as that reached by Natiomal Scientific Laboratories,
Inc. during a study of trunking links for ERS data, the final report for which was submitted
- to NASA GSFC in November of 1974 [3]. :

Allows mnearly $50K annually for the earth terminals. According to Section 7.2.2.9 and
footnote (4) of Table 8-3, this amount is entirely adequate.

*
" The Public Broadcasting Service will lease three satellite transponders from Western
Union at an annual lease price of $2.4M, or $800K per transponder. 21
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8.4.4 Area Input Links Transmission Rates: Agency area centers are intermediate data

dissemination centers that serve geographically proximate users who have presumed common or

similar data processing needs (e.g., users within an agency of the Federal Government located
in the same geographical area). Such centers are being considered in light of possible over-
all cost savings resulting from: 1) a single shared high data rate area input link, 2) shar-
ing of common processing equipment, 3) reduced length of individual user links from the area

centers coupled with 4) lower data volumes (a result of processing) to be sent over the area-
to-user links, and 5) the existence of a less congested, closer data bank for the interactive

user or for the specilal courier.

The objective of this subsection is to get a feeling for and to establish a method and
rationale for calculating the transmission speeds that would be required on typical area
input links. These speeds are a function of the timing of data requests and of the volume of
data asked for in each request. Only data that 1is specifically requested by the user is
being considered here, the assumption being that area center archive storage of all area

data, if required, could be accomplished by mail.

The basic equation for the average transmission rate, R, required on an area input link is
V/T, where V is the volume of data to be transmitted and T is the length of the time period
during which transmission must occur. If one is willing to make certain assumptions regarding
the timing of data requests and the land area or data volume specified in each request, the
values of V and T are contained in information available from the user model; i.e., from area
center avallable data schedules,* user timeliness criteria, and probability of demand.
Examples of this information for typical area centers are shown in Table 8-4 and 8-5. These
examples are part of the nominal user model derived in Sectiom 5, They show the length of

the land area in each swath over which the paricular user has jurisdiction.  For example,
referring to Table 8-4, the Boise office df the Bureau of Land Management (BLM) is responsible
for a 90 n.mi. section of swath 41. The swath- and user-specific land areas are called cells.
That is, a '"cell" is defined as that portion of a spécified swath which an Individual user
desires. Each user request is for a single cell, in the context of the user model described
in Section 5. Hohéver, in reality, a user would generally request data from an area encom-

. passing a number of swaths. 1In the following discussion, the word "request’ is used to
describe two possible types of '"real' user requests in addition to the‘artificial user request
defined in the user model for use in computer simulation. The maps of Figure 8-4 and 8-5

show- the locations of therusers of Tables 8-4 and 8-5, respectively.

o Three possible situations will be introduced and the corresponding values of R determined

prior to selecting one situation for use in this study. The situations are realistic. From

Available data is data that is available for request by the area center in question. It
consists, therefore, of all preprocessed data from land areas within the jurisdiction of
that area center. Available data is not sent to the particular area center unless requested.



WDL-TR7187 8-8

- Table 8-4

Summary by Swath of Cell(l) Lengths in Nautical Miles of the Nominal Demand
Model of the Western Region of the Bureau of Land Management

NOTE: Requires 9-day timeliness with 0,333 prébability of demand.

USER SATELLITE SWATH NUMBER

LOCATION \[33[ 3% [ 35 [ 36 [ 3738 [ 39 [ 40| 41|42 | 43 [ 4k | 45 | 46| 47 46 [ 49 | 50
Billings, MT 100 (220 {150 {220 [L70 |200 [190 | 50
Boise, ID : 90 140 |L50 {120 {200 | 50 | 25
Cheyenne, WY .~ 1100 {140 1250 240 {170
Denver, CO 90 {100 {150 [100 [230 | 50
Phoenix, AZ ' 90 | 90 {150 {200 |250
Portland, OR 100 {240 {290 1340 (350 {250
Rero, NV 290 1320 {300 [250 [210
Sacramento, CA 25 {190 [230 {150 (130 {180 |190 |120 {100
Salt Lake City, UT 25 240 [220 |230 [200 ;
Santa Fe, NM 25 |120 230 310 310 |

(1) The portion of swath over which user has jurisdictiom,

their associated timing and per-request volume of data requests, they lead to maximum inter-
mediate, and nominal transmission speeds. These“situations will be illustrated with the
information for the Western Region Area Center of the Bureau of Lund Management (BLM) at
Denver, Colorado and the Region VII Area Center of the United States Army Corps of Engineers
(USACE) at Tulsa, Oklahoma.

In this illustration,vit will be assumed that 1- and 2~day timeliness data will be received,
trunked to the central preprocessor, and preprocessed in one-half day (8 hours), and that the
5- and 9-day timelinesss data will exit the preprocessor one full day (16 hours) after recep-

tion from the LERS sensors.

8.4.4.1 All Area Land Per Request; The first situation involves a single request for the
entiré land area under area ceﬁter jurisdiction. This request would be submitted to the
distribution center with probabilify p during every 9-day satellite coverage cycle.* Data
for all cells of the entire area would them be transmitted to the area center as soon after
the request as it is received from the LERS satellites and preprocessed. This situation may
occur, for example, 1f all area users are subject to a coordination directive from the area

center that requires near-simultaneous coverage of all area land,

* A coverage cycle is the period of time, in days, between successive passes of a satellite
(not necessarily the same satellite) over ‘a given cell. With two LERS satellites, the
coverage cycle 1s 9 days. ' ’
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Summary by Swath of Cell(l) Lengths in Nautical Miles
, , Model of the United States Army Corps of
NOTE: Requires 5-day timeliness with 0.33 probability of demand.

USER
LOCATION

S W
31

SATELLITE
26127] 28129130

11J12]13]14 (15[ 16] 17| 18 19|20 21| 22} 23| 24 25

‘Region I
. Boston, MA
' Providence, RI

70 1230 [330

70 {220

‘Region II

. New York, NY

. Philadelphia, PA
. Baltimore, MD

. Norfolk, VA

25| 90 [290
160
60

80

40

280
90

270
30

‘Region III

. Wilmington, NC

. Charleston, SC

' Jacksonville, FL
¢ Savanah, GA

. Mobile, AL

140
180
200

120 {180
180

180

190
100
200

50
110

170 | 40

310 [260 |250 260

'Region IV

{ Pittsburgh, PA
' Huntington, WV
| Nashville, TN
i Louisville, KY

250
40
90

100
180
120

190
150
50

50
170
180

140
270

160
270

25
230

‘Region V

| New Orleans, LA
! Memphis, TN

. Vicksburg, MS

. St. Louis, MO

60 [150
140
200

180

110
200
160
160

100 { 70| 25

80

170 | 50

Region VI

{ Buffalo, NY

| Detroit, MI

| Chieago, IL

i St. Paul, MN

! Rock Island, IL

110 {120 1110 40

320

110 (270

330 [320 310

140 400

130

150
210
250

340 280 |2]

180

270
160

300
120

300
25

Region VII
{ Little Rock AR
; Galveston, TX

! Fort Worth, TX

160
130
100

200
60
70

260

176 430 [340 1260 |1

| Tulsa, OK
- Albuquerque, NM

601270 {270 [31.0

300
25

?egion VIII
;Kansas City, MO
| Omaha, NE

25 [160 [220 [210 110

190

150
190

Region IX

‘Walla Walla, WA
iSeattle, WA

. Portland, OR

Region X

iLos Angeles, CA
~Qacrameunto, CA
San Francisco, CA

FOLDOUT FRAMB ;

(1)

That portion of swath over which user has jurisdiction.
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Lengiths in Nautical Miles of the Nominal Demand
aited States Army Corps of Engineers

SATELLITE SWATH NUMBER
26 | 27( 28] 29[ 30 3132|3334 35({36]37[38|39,40]| 41|42 43| 44| 45] 46| 47] 48] 49 50 51 52

100 | 70} 25
80

170 | 50

150

210 (340{270-1300 [300 {280 [210 150 | 80| 80 | 50 25
250 |180 |160 {120 | 25 ‘

200 J160
60 1130 260
70 4100170 (430 {340 {260 {170 (160

60 (270 [270 |310 |300 {240 {180 | 80

e 25 160 |240 (440 |470 (500 |150

25 1160 20 210 |110 [150 120 |140 [120
190 {190 310 [350 1420 |520 [560 |510 470 410 1390

1120 |150 (190 {280 |350 {350.1210 {120
601200 {130.{130 |120°|180 {160 {140 [150 | 80
170 {140 {320 (310 | 25

540 1610 [650 |740 [320 380 [370 [310 | 50 | 25
‘ - 1310 (260 {220 {210 K40 %00 ,
' 25| 90 {210 210 4

& SOSIN ... »oipOUT FRANE %
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Figure 8-4. User Locations in the Western Region of the Bureau of Land Management
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Using the nominal demand model with 30m/7-band data for the BLM area center, a request for
data for all of the cells of Table 8-4 would be sent to the distribution center on an average
of every 27 days.* In this case, the data volume, V, would be 268 gigabits and the period
for data transmission, T, would be 17 days (9 days during which data is received plus 9 days
allowed by user timeliness minus 1 day preprocessing delay). Without considering the effect
of cloud cover, this would require R to be 274 kbps. The cofresponding value of R for the
USACE Region VII Area Center is 208 kbps.

8.4.4.2 All Single-User Land Per Request: In the second situation, the individual users

associated with any given area center would generate independent requests for data. Each
request would, however, encompass all of the data for the land under the corresponding user's
jurisdiction and would, as before, be submitted to the distribution center with probability

p during every 9-day satellite coverage cycle. This situation could occur, for example, if

each user desired to achieve near simultaneous coverage of all his land area.

Assuming further that an area center Qirective requires that each user request be scheduled
within the (9/p)-day average request eycle to avoid simultaneity and reduce R, the nominal
demand user request schedule over a 27-day period for the BLM Area Center might then appear
as shown in Table 8-6. 1In this table, the heavy black lines associated with the cells of a
given user indicate the time period, T, during which transmission would occur. The corres-
ponding R is 187 kbps. ~For the USACE Region VII users, this situation produces an R of

133 kbps. The associlated nominal demand user request schedule is given in Table 8-7.

8.4.4.3 Single Cell Per Request: In the third situation, not only would users submit inde-

pendenﬁ requests for data from their own land, but also requests for individual cells within
a given user's jurisdiction would be submitted independently. Data for a cell would be
requested from the distribution center with probability p every time a satellite passes over

that cell.

To illustrate, data requests for only one-third (p = 0.33) 6f the cells would bé submitted
from the BLM Area Center to the distribution center during a typical 9-day period. Therefore,
V would be 89.3 gigabits and T would be 9 days, giving an R of 172 kbps. If one supposes

that cloud cover**and various other -causes of schedule perturbation could intermittently
-increase the mnormal 9-day demand for cells from one-third of them, or 20,3, to 31.4 (the 30
peint obtained using a binomial probability law with o =61 and p = 0.33), R would have to be
266 kbps. |

o

s

With-a probability of demand of 0.33, meaning that, on the average the data from two out
of every three satellite passes of a given cell will not be requested, the average request
cycle is 27 days (9/0.33). ‘

Data that is obtained over land obscured by clouds 1s less desirable than cloud-free data.
Clouds cau, in fact, render the data useless. .The effect of cloud cover, therefore, will
be a bunching, or concentrating, of the data requests to coincide with cloud-free passes,
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A Possible BLM Western Regilon Area Center Sched

Corresponding

Table 8-6

to All Single-User Land per R%

DAY

SWATH

SATELLITE ONE

Billings
Boise
Cheyenne
Denver
Phoenix
Portland

Reno
Sacramento
Salt Lake City

Santa Fe

8| 94110 11

12

13

14

15

16| 17

18

19

-
R

33 |34 35363738

39

40 | 41 | 42| 43

44

45

46
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48 | 49

50

33

34

= 33.8 kbps
avg

100 P20 150

220|170 200 1190

50

av

25 {190 1250

L0

130

180

190

12071100

25

SWATH

SATELLITE TWO

Billings
Boise
Cheyenne
Denver
Phoenix
Portland
Reno’
Sacramento
Salt Lake City

Santa Fe

42 | 43 | 44 | 45| 46 | 47

avg

48

49150133 34

9.3 kbps
90

35

36

37

38

391 40

41

42

100

90

150 |L00 230

50

90

150 200

250

100 240 290

B340

350 250

290 BT0BO0 IS0 00

200 |

avg
i

= 37.3 kbps

avg

3

avg

.3

kbps

9.8

kbps

avg

The Overall Data Rate Required to Accommodate Each Day's Scheduled
(& of each day's Ravg) in kbps: ;

144 170 170 170 181 182 182 182 182 187 187 156 156 156 184 184 184 185 170 l6é

/. Required Data Rate, R =191 kbps
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n Region Area Center Schedule

Single-User Land per Request

8-12

14 | 15| 16|17 18| 19| 20| 21 | 22 |23 | 24 | 25 | 26| 27
46 | 47| 48|49 50 | 33 34|35 |36(37|38|39]|40] 4L
. = 40.5 kbps
avg
100 [TZO T30 an T
SATELLITE @NE NOW
BEGOMES SATELLITE TWO
i

g0 ITO0 [I20|T00 = 38.2 kbps

: avg

' 25 250 1220 (23

| 25 TS0 1250 510 P10
37 |38 (39|40 |41 | 42|43 | 44 | 45| 46| 47| 48|49 50

— I '
90 [TZ0 [150 [120 [200 | 50 | 25

00 230 | 50 Royg = 285 Jbpg ~
; ~ SATELLITE TWO NOW
90 | 90 1150 200 12 Rovg = 28.4 KPPS /) BRGOMES SATELLITE ONE
T _ R = 48,9 kbps
‘ : avg
.8 kbps
a

. L
date Fach Day's Scheduled Transmissions

E 1 ;
day's ]Ra'vg

) in kbps:

2556 184 184 184 185 170 166 166 166 177 177 172 172 144

ta Raﬁe, Ra’= 191 kbps

b F R(&} g I—v



DAY

SWATH

SATELLITE ONE
Little Rock

Galveston
Ft. Worth
Tulsa

Albequerque

Table 8-7

A Possible USACE Region VII Area Center Schedule Corresponding to
All Single-User Land per Request

9{10 [11 (12| 13| 14

15 {16 | 17| 18 {19} 20 (21| 22|23 {24} 25|26 |27

26|27 282930 31(32]33

34135 |36 (37 | 381} 39

70(100{170 }430|340{260]170 |160

60(270{270{310|300}240(180

40 {41 | 42| 43 (26|27 |28|29]30{31]32]33]34

200 |160 R =26.2kbps
av%
601130260 R___=28.0kbps
avg
R___=61.7kbps
avg l
80 R____=62.1kbps
avg

SWATH
SATELLITE TWO
Little Rock
Galveston
Ft. Worth
Tulsa

Albequerque

35136 3738|3940 41|42

431 26127 1282930

31132133 34}135({36]37)|38]39140| 41| 42|43

25 [160 [240 {440 J470 {500 [150 R__'=78.6kb

an'

ps

The Overall Data Rate Required to Support Each Day's
Scheduled Transmissions, in kbps (% of each day's Ravg's):

0 62 124 124 124 124k124 124 124 124 124 124 124 62

J. Required Data Rate, R,a

0 79 79 79 79 133 133 133 133 133 133 107 O -
= 151 Kbps

L8TLAL~"TAM

£1-8
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Applied to the nominal demand model for the USACE Region VII Area Ceunter,; this set of assump-
tions produces a data rate of 100 kbps, with a 30 rate of 181 kbps. All three sets of

assumptions and the corresponding values of R are tabulated in Table 8-8,

Table 8-8

Required Data Rates from a Central Preprocessor
to Area Centers for Three Different Situatious

(kbps)
AREA CENTER
BIM USACE
SITUATION WESTERN REGION REGION  VII
AREA CENTER AREA CENTER
AT DENVER, COLORADO | AT TULSA, OKLAHOMA
(Nominal Demand) (Nominal Demand)
1) Near-simultaneous coverage 0
of all area land 274 208
2) Single-user simultaneous 187 133
coverage, only
3) Single-cell simultaneous 172 100
coverage, only (30 rate) (266) (181)

8.4.4.4 Influence of the Probability of Demand: When the probability of demand, p, changes,
the effect on the above data rates is not uniform. Under the first situation, R does not
change at all; only the frequency of data transfer to the area center would change. Under

the second situation, R decreaces as p decreases, although not proportionally, but does not
decrease below the value required by the most demanding single ﬁser. In the BIM Western
Region, this user is Portland with an R of 49 kbps (see Table 8-6; if the allowed full 13-day
transmission time were scheduled for Reno =-- which could be done if the frequency of trans-
mission were reduced ~~- the associated R would be 45.9 kbps which 1is less than 49 kbps) . For
USACE Region VII, Albuquerque 1s the most demanding single user with R of 79 kbps (see

" Table 8-7).

Under the third situation, R is proportional to p but cannot be less than the rate required
to complete transmission, within the user timeliness constraint, of the data for the longest

cell. That is, -

| pnL, avg Lo max”
2 2
R oo max{ =3 b 4
where Lc dvg is the average cell length within the area,
3
Lc i is the length of the longest cell within the area,

C is the coverage cycle for any particular user cell,

n is the number of cells in the area,

i
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p is the probability that the data available from any given satellite coverage
cycle will be requested,

U is the user timeliness requirement, in days, and

D is the assumed delay, in days, for preprocessing.

For the two areas used in the illustration, the value of p is large emnough that both data
rates under the third situation are still proportiomal to p. In order that the data rates

to the BLM Western Region and the USACE Region VII be governed by the user timeliness con-
straint rather than by the probability of demand, p would need to be less than 0.037 and 0.18,
respectively. These values of p correspond, in the present case, to average intervals of

244 days and 50 days, respectively, between successive requests for data from the same piece
of land,

8.4.4,5 Choice of Assumptions for R: The foregoing discussion of transmission rates under-

scores the uncertainty that accompanies estimates of rates that are likely to be required in
an operational system. Furthermore, the uncertainty is compounded by the fact that the choice
of the value of p, the probability of demand, is, itself, somewhat arbitrary. In the face of
this uncertainty, a desire to avoid favoring satellite over land-line transmission, and a
feeling that one effect of cloud cover on data availability will be the creation of a situa-
tion that encourages a single-cell-per-request demand schedule, the third situation will be
assumed in. computing transmission rates for this study. This assumption leads to the required
area input link transmission rates shown in Table 8-9 for the tem USACE regions (30m/7-band
data using the nominal demand model shown in Table 8-5).

8.4.4.6 Computer Simulation of Area Input Links: To validate the approach taken above in

calculating the average transmission rates required on area input links, the single-cell-per-
request model was simulated on a computer for the BLM Western Region and for Regions IV and
VII of the USACE. The simulation program is similar to that of the main simulation program
(sae Section 10) but reduced in scope. The relative timing of the reception of satellite
data 1s preserved, assuming no cloud cover; i.e., that all the data from all the passes of
b..th satellites are received at the time the satellites pass over. The demand for this data
is determined by applying the probability of demand on a cell-by-cell basis. Those cells

for which a demand exists are passed to the preprocessor queue, and thence, in turn, to the
preprocessor, to the transmitter queue, and finally, to the ﬁransmitter. After transmission

is completed, the system time is recorded for user timeliness statistics.

The preprocessor speed was assumed to be that appropriate for the 1980 to 1985 time frame.
Even though faster preprocessors will become available during the 1985 to 1995 period, it
was judged that the effect of having only a single area center's or end user's data load on
the preprocessor would more than offset the effect of a slower preprocessor speed. The
resulting transmission rates are, therefore, probably too low. Only the LERS-to-primary

earth terminal data rate associated with 30m/7-band data was simulated.
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Table 8-9
Transmission Rates on the Area Input Links to the Ten USACE Regiomns

- Single-Cell-per-Request Situation -
- 30m/7 Band, Nominal User Demand -

R DISTANCE FROM
AREA CENTER (kbas) SIOUX FALLS
P (mi.)

Region 1 -~ Boston, MA or

Providence, RI 36 1287
Region 2 -~ Baltimore, MD 32 1080
Region 3 - Savannah, GA or

Mobile, AL 50 1000
Region 4 - Loulsville, KY or

Huntington, WV 43 678
Region 5 =~ Memphis, TE 30 677
Region 6 - St., Paul, MN or

Rock Island, IL 95 201
Reglon 7 =~ Tulsa, OK or

Albuquerque, NM 100 507
Region § -~ Omaha, NB 90 175
Region 9 - Walla Walls, WA 66 1075
Region 10 - Sacramento, CA or _

Los Angeles, CA 103 1329

The results of the simulation, recorded in Table 8-10, do indeed confirm the accuracy of the
method used to calculate the area input link transmission speeds. As expected, the delay due

to preprocessing was only a few minutes and 1s not shown separately.

8.4.5 Area Input Link Leugths: The links to the area centers of the ten USACE Regions

~ can be considered as representative of area input links, Airline distances between possible
central or reglon¢ - distributor locations and the nearest end user in each of these ten
regions are shown {4 Pigures 8-6 and 8-7. With a central distributor at Sioux Falls, SD, the
average link length to area centers is about 800 mi. With regional distributors located at
Goldstone (los Angeles) and Greembelt (Baltimore), the average link length is a little over
600 mi.

8.4.6 Frequency of Use and Duration of Use of Area Input Links: Implicit in the calcu-

lation of the area input link data rates just completed, and verified by the near unity
average utilities shown in Table 8-10, is the requirement for dedicated links between the
distributor and the area centers. In other words, use of the link is practically continuous
and, consequently, the parameters F and D have no meauing. (They are relevant only when

metered servige must be considered.)



“Table 8-10

Results of Computer Simulation of Area Input Links

Assumed 1982 Preprocessor Speed

TRANSMISSION QUEUE

TRANSMISSION FACILITY

ARRIVAL STATISTICS

AVERAGE

AVERAGE

AVERAGE

AREA CENTER MUM
LOCATI OI?T TIME/ MAXIMUM | PRESENT SPEED TIME / AVERAGE | REL. ARR. MAIﬁ[TE ];Iil;gE;IT
TRANS. | CONTENTS | CONTENTS | (kbps) TRANS. UTILITY TIME(l) ?ﬁ)
(hrs) ARRIVING
(hrs) (hrs) (hrs)
1 BIM - DENVER, CO
Nominal Demand _
30/7 Data Rate 345.58 75 73 70 16.3 0.9999 145.06 ~ 450 72.9
50.51 16 13 172 7.0 0.9473 -158.35 - 0.0
USACE 1V - LOUISVILLE, KY
lominal Demand
30/7 Data Rate 13.97 3 0 70 16.10 0.6648 - 83.05 - 0.0
42.79 4 3 47 24.34 0.9128 - 50.90 35 10.4
USACE V11 - TULSA, OK
Nominal Demand
- 30/7 Data Rate 233.5 22 20 70 22.8 0.9299 167 345 94.1
57.35 6 5 100 15.80 0.9972 - 40.51 5 12.3
15.02 4 0 140 11.3 0.7767 .- 88.76 0.0

(1)  Average relative arrival time is
the data arrives late, the value

value is megative.

referred to the user timeliness requirements. If

is positive.

If the data arrives early, the

(2) Percent late in arriving does not take into account those cells still waiting
in queues.

LBTLYL~TAM

L1-8
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8.4.7 Cost Comparison for Area Input Links: The transmission speeds required on typical

links are such that, for common-carrier service, at least a 56~kbps link would have to be
considered, (Note: Even where a 30- to 36-kbps link would suffice, Figure 7-6 indicates
that the cost of a 56-kbps link is less than that of a 36-kbps link if the latter is composed
of four standard-cost 9.6-kbps links; and this would not include the data splitter required
to form four separate 9.6-kbps bit streams from a single 36-kbps stream and then to recover
the original stream at the receiving end.) At this and lower speeds, there is not much
difference in cost between simllar service offerings of the satellite common carriers and
the land-line common carriers. In what follows, therefore, the costs for these two alterna-

tives will be assumed to be the same.

Sinece the cost »f a user-owned terrestrial microwave facility is clearly not competitive with
that of common-carrier service at these speeds (compare Figures 7-6 and 7-30), the choice of
transmission alternatives for area input links and direct-to-user, and for area-to-user links

as well, is between a UOT satellite system and common-carrier service,

It is convenient at this point to prepare a general comparison of common-carrier land-line
transmission costs with UOT satellite transmission costs. For the moment, let us restrict
this cost comparison to three transmission speeds that are commonly offered by the common
carriers. For each transmission speed, a maximum and a minimum expected cost of service
with the UOT satellite system will be determined from Figures 7-1% and 7-23 through 7-27.
Then, from the dedicated land-line service cost curves of Figure 7-6, crossover distances
corresponding to the two expected satellite system costs will be determined. For minimum-
cost tramsmission, link lengths shorter than the shorter crossover distance should be served
by land line. Link distance longer than the longer crossover distance should be served by
satellite.

Suppose first that 56-kbps transmission is required. From the aforementioned figures, the
annual cost per user for UQT satellite transmission is shown to be between $15K and $28K
(assuming that 1 MHz split amoung 20 users will support data rates of 56 kbps per user). From
Figure 7-6, the annual cost of a dedicated leased 56-kbps link exceeds $15K for distances
greater than approximately 160 miles. It exceeds $28K for distances greater than approxi-
mately 440 miles. If 9.6 kbps is required, the annual UOT satellite system costs are between
$10K and $20K per user (assuming that 1 MHz split amoung 100 users will support data rates of
9.6 kbps per user). The corresponding annual cost for dedicated land-line se: -ice exceeds
these figures for distances greater than 560 wiles and 1560 miles, respectively. When a
2.4-kbps transmission speed 1s considered, there is more uﬁcertainty associated with' the
satellite charges in the UOT satellite system than when the higher data rates are considered.
Nevertﬁeless, the cost of the service should still be bracketed by the options specified in
Section 7. Thus, assumlng that 1.2 MHz split among 500 users will support data rates of

2.4 kbps, the UOT satellite system cost will be between $8K and $17K per year, which corresponds

to distances of 1240 miles and 3100 miles, respectively, of equivalent land-line service.
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Using these three point-pairs to construct smooth curves in data-rate/link-length space,

Figure 8-8 results.
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Figure 8-8. Combinations of Transmission Speed and Link Length for Least-Cost Service --
Comparing UOT Satellite Transmission with Common-Carrier Dedicated Tramsmission

8.4.8 Conclusion - Area Inmput Links: Entering Figure 8-8 with an average area input link

length . of 700 miles (see Figure 8-6 and 8-7) and a required transmission speed of 56 kbps
(see Table 8-9), the conclusion is that, for the present model of user demand, UOT satellite
transmission rather than common-carrier transmission should be used on most area input links
for least-cost service. Common-carrier transmission might be used on the shorter links if

the required transmission speeds are not greater tham 56 kbps.

One should also bear in mind that, for area centers not located where a 56-kbps service is
available or planned (see Figures 7-11 and 7-12), dedicated or metered common-carrier service

will not even be possible,
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8.4,9 Direct-to-User Link Transmission Rates: Using the earlier decision that user

demand will be modeled on a '"single-cell-per-request" basls, the required transmission rates
to individual users, not accounting for the effects of cloud cover, were calculated for each
user in the BIM Western Reglon and in USACE Regions IV and VII. They are shown in Table 8-11,
The method used was to first determine the transmission rate, Rc,max’ needed for the largest
single cell of the user in question, Next calculated was the transmission rate, Rmax’ that
would be necessary if data for all of the users' cells were demanded during any single 9-day
coverage cycle -- a maximum composite demand situation. The required transmission rate, R,

was then estimated to be the sum of R max and one-third of the difference between R

s c,max

and Rmax'

As with the method used in calculating area input link transmission rates, this method was
checked by computer simulations. The program was identical to that described in Section
8.4.4.6. 1In this instance, direct-to-user links were simulated using the actual estimated
transmission rate (Table 8-11) for users in USACE Region VII only. The results of the simu-
lations are gilven in Table 8-12, They tend, in general, to validate the method for calcu-

lating direct-to-user link transmission rates.

Two observations suggest themselves as one compares the results of these computer simulations

with those of the area input link simulations. First, the average utility of the transmission
facility cannot be used as a guage of the adequacy of the facility. This 1s seen in the fact

that, for area imput links, the average utilities were over 0.90 while, for the direct-to-user
‘links, the average utilities were as low as 0.22.* Yet, in both cases, the links provided

close to 1007% on-time service.

A merely equivalent performance (compared to area input link performance) from relatively
idle direct-to-user links, although a seeming contradiction, occurs because their transmission
speeds must be governed by the user timeliness criterion rather than by the probability of

demand. Or, using the equation of Section 8.4.4.4, R must be proportional to Lc maX/(U -D)
)

rathexr than to anc avg/9. The actual values of R used in the direct-to-user link simulations
b

were only slightly higher than réﬁuired to meet the user timeliness criterion for data on the
largest single cell. Therefore, in these cases, regardless of how infrequently one chooses

to make the request for déta -~ 1.e8., regardless of how small one makes the probability of
demand, and, consequently, of how infrequently the link is used -- the transmission speed

may not be decreased significantly and still provide on~time performance for all user data,
(Where the probability (frequency) of demand is very low, use of metered rather than dedicated

common-carrier service should be considered.)

* .
This figure 1s estimated as follows. The average utility of the direct-to-user link for

Galveston, TX, given in Table 8-12 is 0.21. Since there were no unsatisfied users for the
associated transmission rate of 29.8 kbps, a reduction in transmission rate is possible.

A lower bound on the rate is 28,3 kbps, which is Rc,max’ the rate needed for the largest
single cell in Galveston's jurisdiction. The average utility occasioned by an R of 28.3
kbps would be approximately equal to the average utility occasioned by the 29.8-kbps rate
times the ratio of 29.8 to 28.3. Or 0.21 x 1.05 = 0.22,
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Table 8-11

Required Transmission Rates on Direct-to-User Links in
BLM Western Reglon and USACE Regions IV and VII

REQUIRED
USER LOCATION TRANSMISSION
RATES (kbps)

BLM Western Region

Billings ' 20.6
Boise 15.3
ldheyenne 20.1
Denver 16.4
. Pheonix 18.6
Portland 30.3
Reno 28,2
Sacramento 32.2
Salt Lake City 19.4
Santa Fe 23.7
o = 224.8

USACE Region 1V

* Pittsburgh 28.5
Huntington 23.5

Nashville 25.0

Louisville 37.9

% =114.9

USACE Region VII

Little Rock 25.1
Galveston 29.8
. Fort Worth 53.8
Tulsa 45.3
Albuquerque 65.2

T = 219.2

~



Table 8-12

Results of Computer Simulation of Direct-to-User Links

TRANSMISSION QUEUE TRANSMISSION FACILITY ARRIVAL STATISTICS
g S| ey | o | erssme | soemn | ey | ATPRAGE | g Sl x| szmc
_ ?ﬁﬁg?. CONTENTS | CONTENTS | (kbps) ?ﬁﬁf?. CORRECTED Tiﬁfs) (hrs) ARRIVING(Z)
USACE’Regiqn Vi

Little Rock 0 1 0 25.1 50.3 0.25 - 49.7 0
Galveston 0 1 0 29.8 33.2 .21 - 770 0
Fort Worth 10.47 2 0 53.8 26.8 0.50 - 70.1 ~15 7.1
Tulsa 24.83 2 0 45.3 31.9 0.52 - 49.6 ~35 7.7
Albuquerque 21.28 2 0 65.2 32.0 0.72 - 53.5 ~75 11.8

(1) Average relative arrival time is referred to the

If the data arrives late, the value is positive.
the value is negative.

user timeliness requirements.

If the data arrives early,

(2) Percent late in arriving does not take into account those cells still waiting
in queues.

L8TLYL~TAM
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Second, it is apparent that the sum of the transmission speeds required on the direct-to-user
links is much larger (by factors of 1.3, 2.7, and 2.2 for the BIM Western Region and the

USACE Regions IV and VII, respectively) than the transmission speed required on the associated
area input links, This observation would hold true in general, suggesting that area centers
may be cost effective if a strictly land-line distribution network were implemented, even if

no processing (i.e., classification) is dome at the center.

8.4.10 Link Lengths: User locations will be clustered around their respective area
centers. Some will be closer to, and some further from the preprocessor/distributor location
than is the area center. One may expect, therefore, that the average direct-to-user link
length will be approximately equal to the average area input link length; i.e., 600 to 800

miles.

8.4.11 Frequency of Use and Duration of Use: The average utilities of the links in USACE
Region VII vary from 0.21 to 0.72. (See Tables 8-10 and 8-12.) Quite probably, therefore,

the minimum average utility on a direct-to-user link would be approximately 0.20. (Little
Rock and Galveston are among the lowest volume users in any of the ten USACE regioms, having
jurisdiction over only 2 and 3 cells, respectively.) This suggests that metered, rather than
dedicated service might be better suited for these links since, on an annual basis, they

would only be used for a total of 75 days of transmission rather than a full 365 days. Re-
plotting, in Figure 8-9, the data given in Figures 7-8 and 7-9 to show the crossover usage,

in days, between metered and dedicated service, it i1s evident, however, that dedicated service

is still the least-cost altermative. F and D do not, as a consequence, need to be determined.
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8.4.12 Cost Comparison: As dedicated lines have been determined to be less costly than

metered lines on direct-to-user links ~- given the present user demand model -- Figure 8-8

can be used for this comparison. Required bit rates will range from about 9.6 kbps to 56 kbps
and higher. The average link length will be about 700 miles. With these figures in mind,
Figure 8-8 indicates that the cholce between common-carrier and UOT satellite transmission is
somewhat uncertain for the shorter, lower-speed links. It also shows, however, that notwith-
standing this small uncertainty, a UOT satellite transmission system will be the least-cost
alternative on the majority of the direct-to-user links -~ more especially where required
transmission speeds are more than two and a half to three times the standard 9.6-kbps offering.
(Remember that the annual cost of a 56-kbps link is only between three and four times that of

an equal-length 9.6-kbps link.)

8.4.13 Conclusion - Direct-to-User Links: 1In the general case, least-cost transmission on

direct-to-user links will require the use of a UOT satellite system. This conclusion could

be stated even more strongly where an add-on transponder could be used.

8.5 Summary

The discussion of Section 8 has shown that data dissemination by electronic transmission on
a scale commensurate with the user demand model of Section 5 is accomplished at least cost

with some variation of a user-owned-earth-terminal satellite system.

The discussion has been almost completely in terms of the 30m/7-band data. The 10m/12-band
data will simply force an increase in the required link transmission rates by a factor of
approximately 15 (i.e., (30/10)2 x (12/7)), thereby increasing the cost advantage of a UQT

satellite system over the other transmission alternatives.

In addition to the cost of the transmission facility, there are, in general, other criteria
‘that could be considered during the selection process. . Some of these have already been in-
voked earlier in this section., It is appropriate at this point to state these criteria in
summary form and to indicate their applicability to the selection of t¢he UOT transmission
alternatives in the context of specific realizations of each of the three candidate classes
of topology. This is done in Table 8-13. Discussion and comparison of the three classes of
netwo;k topology isvgivén in Section 1l subsequent to presentation of the results of a com-

puter simulation of the tbpologies.
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Table 8-13

Summary Results of Transmission Alte

COMMON -
SPECIFIC REALIZATIONS CARRIER
TOPOLOGY CLASS OF TOPOLOGY CLASS TRANSMISSION LINK CLASS|| ypoppen
SERVICE
, (L) Trunking Links $
- d
Central Reception White Sands
i . . A
CenLFal ?rgp?oce551ng/ White Sands or Area Input Links $,
Distribution Sioux Falls or
t-to- L A
Goddard (Greembelt) Direct-to-User Links %
Sioux Falls & Fairbanks or Trunking Links $,4
Reglonal Reception Goldstora, Greenbelt & Failrbanks
Central Preprocessing/ - - Area Input Links $,A
Distribution Sioux Falls or
Greenbelt Direct-to-User Links $,A
Sioux Falls & Fairbanks or Trunking Links(8) $
Regional Reception Goldstone, Greenbelt & Failrbanks ,
Regional Preprocessing/ Area Input Links $,A
Distribution Sioux Falss & Fairbanks or
Goldstone, Greenbelt & Fairbanks | Direct-to-User Links $,A
;
(1) True central reception of CONUS (lower 48 plus Alaska) data requires the use of (6) S
a Tracking & Data Relay satellite since no single location in either the lower a
48 states or in Alaska is within view of the LERS for all LERS passes over CONUS. d
White Sands, NM, is currently being mentioned as the site of the primary ET for 5 g
TDRS down link, although comments regarding this topology are not limited to N ﬂ
this particular site. ;
(2) A 10/12 dissemination network could possibly support a user-owned satellite %
since, as stated in Section 11, the 10/12 data would require about three 40-Mbps %
transponders. ‘ i
:
(3) As stated in note 1, a truly central-reception topology requires use of a TDRS. 3
The TDRS ET would not be available for, nor would it be capable of (not being a i
tull-tracking terminal), transmitting through the LERS. A separate primary ET (8) 0
would be required for the up link. |
1
(4) The TDRS could be used for trunking of either the 30/7 or the 10/12 data but @
would not, as presently configured, have the capability to handle the 10/12 raw ;
data into White Sands without some further techmnology development.
(5) The cost of receive-only area-input-link or direct-to-user-link.ET's for use with

a LERS would be prohibitive since they would be¢ +~zaquired to acquire and track the

LERS and to receive at bit rates approaching that of the raw data rate downlink
into the primary ET's. Since an add-on transponder would have to be placed on

the LERS to handle these links in the first place, it would be more cost effective

to place the transponder on a geosynchronous satellite (e.g., SEO0S).
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Table 8-13

of Transmission Alternative Comparisons

‘ TRANSMISSION ALTERNATIVES
‘ COMMON- COMMON~- | USER-OWNED vor/
: CARRIER CARRIER LOS UOT / LEASED | UOT / ADD-ON ~

LINK CLASS\| ypTRRED | DEDICATED | MIGROWAVE | TRANSPONDER | TRANSPONDER I{SSIETP;’I?IEJINE) LERS TDRS

j ‘ SERVICE SERVICE -

ks 8 g $ * * $(2) $<3) A,R<4’6)
inks §,A $,A 8 w ¥ 5 () 5,7 RG)
er Links $,A §,A 8 * % $(2> $(5,7) A(é)
ks 5, 5,4 $ * * s 1 6,1 a®
inks - $,A $,A 5 %* % $<2) $,I(5’7) A(6>

f ’ 6

er Links $,A $,A 8 * * §(2) 5 151 | 4©)
NG s ; s R . s@D | s 1D | a®

1 : 6
inks $,A $.A 8 * * 52 s, 17 RO)

‘ : -
er Links $,A $,A $ * * $<2) $,I(7) A( )
. the use of (6) Scheduling problems might prevent use, especially for the 10/12 case with TDRS
" the lower as presently configured. Barring this eventuality, the use of TDRS for dissemi-
s over CONUS, nation of data would be no different, in coucept, from the UOT satellite systems.
: ET £
iizzd to oF (7) Mutual viewing time of Fairbanks and Sioux Falls or Greembelt or Goldstone is
: : inadequate. However, even for a possible link between the central preprocessor
, (eg, Greenmbelt) and the central distributor (e.g., Sioux Falls), the ET at the
itellite central distributor would have to have acquisition and full tracking capability
‘hree 40-Mbps and would be forced to receive at a rate equal to that on the raw data down link

; into the primary ET’'s. Since a transponder would have to be added to the LERS

, of a TDRS. to handle this type of link, it would be less ’costly to add it, instead, to a
not being & synchronous satellite (e.g., SE0S). ’ ,
primary ET (8) Only used between regional distributors, if required at all.
1 .1 y [}
| i
data but | o . Eciions:
fle 10/12 ray Transmlssmﬁ Alternative Symbol Definitions:
| $ - high cost
- for use with A - (probably) not available

and i:rack the
te downlink

 placed on I - is a physical impossibility
cost. effective ‘

R - if available, higher risk

% chosen for further study

FOLDOUT ERA},{E}<\
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SECTION 9.0

DATA PROCESSING TECHNOLOGY/COSTS

9.1 Introduction,

The purposes of this section are:

1. to define a preprocessing structure for simulation
2. to estimate ground processing development requirements in support of the

higher data and throughput rates implied by improved spatial resolution,

The assumptions implicit in this section are:

1. All data will be maintained in a digital-data base from reception to delivery
to the user.

2. Users, through either a regional or a local facility, will have computational
ability to perform user~specific analysis.

3. Users will be capable of 'cosmetic' corrections such as insertion for line
drop-outs, Such corrections, particularly involving visual inspection, will not be
required in a preprocessing facility., Furthermore,stripping, so troublesome in current
LANDSAT imagery, will be eliminated by 1985 by proper design of the sensor calibration
including nonlinear calibration curves,

4. TIn order to support users with sophisticated computational ability, all calibra-
tion, attitude, orbital parameters (best estimate), and time data will be maintained in the
data stream. Transformation to user-unique coordinate systems will be performed by the
user. This assumption seems reasonable in view of the range of coordinate systems now in
practice and the 1likely availability of automatic hardware and software for coordinate

transformation by 1985,

9.2 Requirements,
This section sets forth the processing requirements in terms of type of functions to be
performed, their sequential constraints, and the timing limits associated with the timeliness

requirements suggested in Section 5.0,

9.2.1 Timing Requirements: Timing requirements for data preprocessing and transmission

are first derived for the case of six satellite passes over CONUS in a single day. These are
based on two orbiting satellites phased such that LANDSAT paths 11, 29, and 47 are traversed
by one satellite and paths 15, 33, and 51 by the other., For a cloud-free day, these represent

about 4690 n.mi or approximately 47 scenes.

For a 30m/7-band case, a single scene represents 2,134 x 109 bits. A 10m/12-band scene

correspondingly has 1,9207 x lO10 bits, Given the six passes in a single day cousisting of
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47 scenes and allowing for 10% overhead, the toal number of bits per day for each case is

1.1 x 10'1 and 9.93 x 10", respectively.

Currently, the NASA NDPF processes about 200 scenes per day which accommodates both the

domestic and the international requirements., For 200 scenes, the corresponding daily data

12
loads would be 5,696 x lO11 bits (30m/7 band) and 3.84 x 107" bits (10m/12 band) per day.

Table 9-1 lists the minimum throughput rates for 30m/7-band, and 10m/12-band data to pre-
process and disseminate 47 and 200 scenes daily. These rates are given for serial data
(parallel by band and parallel by detector data), and for 8-, 16- and 24-hour preprocessing

and dissemination time constraints.

Table 9-1

Minimum Throughput Rates (bits/sec)

47 Scenes 200 Scenes
30m 10m 30m 10m

Serial Data

8 Hrs. 3.82 x 10° | 3.45 x 107 | 1.63 x 107 | 1.47 x 108

16 1.91 x 10° | 1.73 x 107 | 8.13 x 10 7.36 x 10’

2% 1.27 x 10° | 1.15x 10" | 5.4 x10° | 4.8 x 107
Band Parallel

8 Hrs. 5.46 x 10° | 2.88 x 10° | 2.3 x 10 | 1.23 x 107

16 2,73 x 10° | 1.44 x 10° | 1.16 x 10° | 6.13 x 10°

2% 1.82 x 10° | 9.59 x 10° | 7.74 x 10° | 4.08 x 10°
Detector Parallel

8 Hrs. 3.64 x 10 | 3.6 x10% | 1.55 x 10° | 1.53 x 10%

16 " 1.8 x 10" | 1.8 x10° | 7.66 x 10* | 7.6 x 103

2 " 1.2 x10" | 1.2 x10° | 51 x10* | 5.1 x 10°
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The data from the foregoing table serves as a guideline for minimum throughput rates through-
out the network., It should be noted that parallel processing of 800 detectors per band is
unlikely due to cost factors. The band-parallel rates should, therefore, serve as an estimate

for the 10m case,

Another means of identifying the timing requirements is to use an equivalent preprocessing
time per pixel. Figure 9-1 presents the preprocessing time per scene in terms of spatial
resolution, number of spectral bands, and preprocessing time per pixel., By way of comparison,
current preprocessing time per pixel is about 3.75 microseconds per pixel [1]., By inspection
of Figure 9-1, 10m/12-band data would require pixel throughput rates less than 0,25 micro-

seconds per pixel which currently is a severe technological constraint.

n=12

NUMBER OF
SPECTRAL BANDS

1 ps/pixel

2 ps/pixel

r- ; T T | A !
30 20 10 0 10 ; 20 30 40
rg, SPATIAIL RESOLUTION (M) _ PREPROCESSING TIME (MIN/SCENE)
200 SCENES 50 SCENES
16 HRS 50 SGENES 16 HRS
8 HRS

Figure 9-1, Preprocessing Time Requirements
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9.2.2 . Preprocessing Functions: 1In this report, preprocessing refers to those functions

which are performed prior to data delivery to the user. The specific preprocessing functions

considered were:

Record and playback Radiometric correction
Reformatting Geometric correction
Address insertion Cloud~-cover assessment
Channel redundancy removal Archival storage
Quick~-look data extraction Data routing

Cloud~cover extraction

Each of the above is described in the following text,

9,2.2.1 Record and Playback: This function refers to the initial recording during

reception of the satellite signal., At least three techniques are possible:; direct record,
demultiplexing and record on parallel tracks, or serial-to-parallel conversion and record
on parallel tracks. The bulk data rates assumed for the polar orbiters range from 101.3 Mbps

to 1552.4 Mbps. These two extremes were used as criteria for 30m and 10m data, respectively,

The recording requirements are established by the bulk data rate, the maximum satellite pass
time, and the modulation technique. For the polar orbiter assumptions, this translates to
direct-récord rates between 108 and 1.6 x 109 bits per second. For quadrature phase shift
keying (QPSK) modulation and assuming preservation of parallel data streams, these reduce

by half to 5 x 107 and 8 x 108 bits per second. For CONUS reception only, the maximum pass
time will not exceed 7 minutes. However, if data recorded in the satellite over foreign
territory is included, then reception and record time would be increased, ifawimum reception

time between 10-degree elevation angles is about 15 minutes.

Table 9-2 lists data rates and capacity requirements for the two data cases.

Table 9-2

Data Rates & Volumes - 30m/7-band, 10m/12-band

30m 10m
QPSK 8PSK
Direct Direct ) (2 Data (4 Data
Streams) Streams)
Data Rate (Mbps) 102 1600 § 800 400
i 10 11
Data Volume . (bits) 4,28 x 10+ 6.72 x 10
(CONUS single pass)
‘ 10 12
Data Volume (bits) 9.18 x 10 1.44 x 10
(10o elev. angle
single pass)
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Playback requirements present another constraint. In order to avoid significant buffering,
it is desirable to match the playback rate to the transmission rate (for regional reception)
or the throughput rate and intermediate storage capacity (at the central processor). For
regional reception, the trunking data rate Rt’ therefore imposes a requirement on the ratio
of record speed to playback speed, r. This is given in Figure 9-2. The importance of the
playback speed becomes apparent during consideration of real-time processes such as quick-

look extraction.

«
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POST-RECORD TRANSMISSION (THROUGHPUT) RATE, 106 bps

Figure 9-2, Data Rate Versus Record-ﬁo-Playback Ratio

Existing technology is adequate to record the 30m/7-baﬂd data (102 Mbps). This can be
accomplished by parallel-to-serial conversion and record on a multi-track instrumentation
tape recorder. For the case of a 32-track recorder of which 28 tracks are dedicated to

data, an input serial data rate of 102 Mbps would require a record rate of 3,64 Mpbs per
track. At a record rate of 120 inches per second, a packing density of about 30.3 kbits per
inch per track-is required. Packing densities of 33 kbits pér inch per track are now éommonly
avéilable. A standard 9200-foot tape recording at 120 inches per second provides about

15.3 minutes of record time which exceeds the maximum time of a single satellite pass over

CONUS by about 8 minutes, This excess could accommodate recorded (international) data,
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Other systems now under development include the RCA High Density Multi-track Recorder (HDMR)
[2] which uses 142 tracks recording at 108 inches per second; thus accommodating serial data
rates up to 240 Mbps. This unit, however, is not now designed for a lower playback speed

which might necessitate an additional record-and-playback operation.

Current magnetic-tape-recorder technology will allow recording of bulk data rates up to
approximately 130 Mbps. Development projects such as the Ris high-density multitrack
recorder would extend this capability to 240 Mbps within a decade. This recorder, which
could be available as either a flight- or ground-based unit, is expected to be available by
1979 at a cost estimated in the vicinity of $400,000, One design goal of this unit is to
achieve a bit packing density of 1.2 to 2,0 x 106 bits per square inch which compares with

0,92 x 106 bpi2 for a standard IRIG 28-track recorder.

Optical recording appears to be the preferred technology for higher rates. Development
technology using hologram recording is now demonstrating §00 Mbps record rates on 35-mm

film media., This development, by Harris Radiation Inc., has been estimated to be extendable
[3) to 1.2~ to 1.,8-gigabit-per-second rates in the next 5 to 10 years. Currently, film
speeds are at 12 feet per second and demonstration has been performed on only 250 feet of
film (20.8 secs)., The design goal is to achieve record times of 7 to 9 minutes which would

be roughly compatible with a single pglar-orbiter pass.

The technological constraint for gigabit-data-rate recording alsé applies to the film pro-
cessing cycle, Currently, film processing requires about 60 times the record time which

would be excessive for a rapid data dissemination network, For example, a l10-minute pass
would require 10 hours processing time, Processing speed would be one area of required
technological development if timely (24 hr) data delivery is coupled with increased resolution

below 30m.

Another approach to the high-data-rate bulk recording is to take advantage of modulation
schemes such as multi-phase shift keying that preserves inherent timing; thus, avoiding
synchronization problems with parallel recording on different recorders. TFor example, QPSK

modulation allows a reduction by a factor of two in the bulk data rate.

9.2.2.2 Reformatting: With digital processing, it is preferable to work with data in a
line~by~line format with each spectral band and detectar as a separate portion of the data
stream, Furthermore, the data format thrbughout the processing sequence should be compatible
thus allowing for common control signals, In addition, if the quick-look data format is
common -to the preprocessed data. format, & common frame synchronizer at the user facility
would suffice for both data types., While there are numerous formatting techniques, the
procedures described in the following sections were used to establish an estimate of pre-

processing requirements.
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Formatting must accommodate each detector per band and each band per line, A mechanical
scanner consists of some number of contiguous detectors for each spectral band. This

number, n, is dependent on, among other factors, the sensor spatial resolution, aperture,

)

and detector type:; For example, each spectral band of the four-channel MSS consists of six
detectors that simultaneously scan cross-track to the orbital path, Point designs for the
LANDSAT-D Thematic Mapper (TM) (30m resolution) have from 14 to 16 contiguous detectors.

For this study, 15 detectors were assumed at 30m resolution. A 10m-sensor mechanical scanner

e

will have a large number of detectors per band. This number can be estimated by extrapolating

the Hughes TM design assuming the following factors constant:

apparent radiance at detectors

=z

F spatial frequency response
i S/N detector signal-to-noise ratio
e, optical efficiency
= R detector responsivity
e scanner efficiency
. ny detector noise factor
h orbital altitude
e W swathwidth
} D* detectivity
£ f-number

Given this assumption, then

&

s a6D4n = ‘constant, K1 photodiode [4]
> 4 2 . P -
. o Dn = constant, Kz photoconductive and photomultiplier tube [4]
' ; where
o = sensor instantaneous field of view
i D = sensor aperture
n = number of parallel detectors

R ol
. L

Figure 9-3 is a plot of D versus n for a 10m ground resolution at an altitude of 920 n,mi.
Obviously, the number of parallel detectors per channel is dependent on the aperture which,
E : in turn, is constrained by system weight and volume. A range from 300 to 800 detectors

might be expected to indicate the number of parallel detectors for 10m resolution,

Lo Each data point can be identified by a pixel, detector, and specﬁral band number. Data
derived in the satellite will be on an instantaneous basis; that is, all data will be
collected by band and by detector for each pixel thus the total data stream could be

described as three summations:
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Figure 9-3. Number of Detectors, n, versus Sensor Equivalent Aperture,
D(rg = 10 meters; PMI and Photoconductive)

L m n
Data = g T ) detectors_, band , pixelsr
r=1 g=1 p=1 P 4
the desired format would be:
Data = % E é pixelsr, detectors , band
=1 p=l r=l P 1

The following values are assumptions of this study:

30m/7-band 10m/12-band

n = number of parallel sensors 15 800
m = number of bands 7 12
2 = number of pixels per line 6173 18520 o

Given the notation (di, bi’ pk) to identify each data point where d represents the detector,
b the band, and p the pixel; the typical data input sequence (ignoring overhead data) to a

regional terminal would be:

. -~ ] ‘ ) »ow
(d1 b1 pl) (d2 b1 pl) .................(dn Pl pl) : :
. . S data for pixel 1
(dl ?m pl) (dn ?m Pl) ) e
. , . S .
(d) by p,) (@, by Py )
: > data for pixel g
(d; b pz) . _ (dn b pl) ; ' v
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Reformatting would consist of inserting the proper addresses or documentation words and re-

arranging the data sequence to:

(P d, B.) sevenssariunsennassiarnnes (p d, b
1171 s 1 1> data for n detectors along

. , one scan of band 1
(pl dn bl) ssusecess s et et s s s e s eV a0 U (PL dn bl)
(py dy b ) wevreserisiiiiiiiiiiiiiies (p i, b))

m 4 1 m data for n detectors along
one scan of band m

A eee

b )

(Pl dnbm) R R I I A R A I I R I IS A A Y ) (pl’ n °m

In this instance, the reformatted sequence would be:

Word 1, word (nmt+l) eveeeevesssecasss word [ (g -1)mntl]

Word 2, word (nmt2) ceescevesssssvess word [ (4 -1)mn+2)

Word mn, word 2mn, feressesnsecesees wWord mny

Such reformatting could be achieved by scan line, That is, during playback, each line would
be loaded into a buffer and read out in the desired sequence. During that read operation,
an address could be inserted for each detector line. Thus, for the 30m case consisting of

7 (bands) times 15 (detectors per band) a seven-bit word would be required for detector
identification. A 600-detector-per-band 1Om design with 12 bands has 7200 detectors, thus

requires a 13-bit word for identification.'

Buffer requirements to achieve this reformatting depend on the‘input and output data rates.
An 'on-the-fly' operation (that is, equal input and output rates) would require a storage

capacity of 2 lines or 2 (¢ -1)mn words. ©For the 30m case (7 bands, 15 detectors), this
would be about 691 kilowords; for the 10m example (12 bands, 600 detectors), about 266 mega-

words.

9.,2.2.3 Address Insertion: The handling of high~speed digital data is greatly facilitated

by the presence of synchronization and identification words that provide the ability to
perform real-time operations on any line in the data stream and to protect against data loss

associated with data drop-outs. As an example, identification words could indicate:

Platform source Scan number
Time (resolution to. period Detector number
of one scan line) Swath number
Spectral band Nadir latitude, longitude
identification

Resolution
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As the identification data is either known a priori or by word counts in the primary data

stream, address insertion could be accomplished with a computer that loads an address buffer.
Synchronization insertion may or may not be required, depending on the satellite data format.
If required, a pseudonoise (PN) sequence could be inserted easily in the address buffer. 1In
either case, approximately 500 8-bit words for identification aﬂd synchronization would be a

sufficient size for the address buffer,

Both reformatting and address insertion could be performed during playback, This would allow
at least seven minutes (record time) for a computer to set the read sequence (if variable)
and to preparé an address table. Reformatting would be accomplished by loading a two-line
buffer‘which is read out in the desired sequence. For 30m data, a single line consists

of 6173 pixels times 7 bands times 15 detectors, plus overhead or 6.48 megabytes. For 1lOm
data and 600 contiguous detectors, a single line would require 133-megabyte storage. This
procedure implies a random-access-storage requirement ranging from about 13 megabytes (30m/

7-bands) to 266 megabytes (10m/l2-bands).

Address insertion for each scan line would have to be accomplished in the time required to
load one scan line in the memory. This time is dependent on the record-to-playback ratio
as well as the data structure; i.e., band parallel or serial (see Figure 9-2)., Assuming

500 words are adequate for an address, the minimum transfer rate would be given by the

expression:
500
R - 28
t rn
where Rt = transfer rate (bytes/sec)
R, = bulk data rate (bits/sec)
r = record-to-playback ratio
n = number of pixels per line

The number of pixels per line is given by the expression

_ 185200 m
n = LAV
r
g
where
m = samples per IFOV
rg L= spatial resolution
thus 5 Rb r
R = ———-—-B-—-
t 1852 r m

For reference, Rb was initially determined by the expression:

R, - bn SWZN v see Section (3.2.3)
er_

in which m (samples per IFOV) was assumed equal to one.
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The required transfer rate (bytes/sec) for a serial data output from a tape recorder as a

function of rg and r are given in the following table:

Rt (megabytes/sec) 43.2 8.26 10.8 2,06 4.32 .826

rg (meters) 10 30 10 30 10 30

r 1 1 4 4 10 10

For comparison, current minicomputer cycle times are in the order of 1 megacycle per second,
This implies a required playback reduction of about 10 for 30m/7-band data and over 40
for 10m/12-band data if constrained by current cycle-time technology and the use of a

minicomputer for address loading.

A further implication is the requirement to dedicate recorderc to specific satellites or

(in the case of 10m/l2-band data) as many as 5 recorders per satellite in order to allow for read
time prior to the next satellite pass record. Alternatively, a separate recorder could be

used for playback (as would be the case for optical recording) with the attendant requirement

for tape change.

9.2.2.4 Channel Redundancy Removal: As the spatial resolution of a mechanical scanner is

reduced, a given cross-track swath, consisting of n paraliel detectors, will exhibit a gap
or overlap with the adjacent swath., This is due to variations of the orbital altitude which.

at a minimum, results from the earth's oblateness. This gap or overlap can be expressed as;

x = Ahn o
where .
= overlap in meters
- Ah = altitude variation in meters
n =  number of parallel detectors
o = -sensor instantaneous field of view in radians (IFOV)

Altitude variation over CONUS due to oblateness alone is about + 4.5 kilometers. Using this
figure, Table 9-3 gives the resulting swath overlap as a function of IFOV and a both in

meters and percent of IFOV, These data were based on a 920-km orbit.
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Table 9-~3

Swath Overlap

r = 10 Meters o = 11 mrad
=§ ——

n 300 600 800 900

g 14.85 29.7 39.5 44,55

% IFOV 148.5 297 395 445.5

rg = 30 Meters o = 33 mrad

i 9 15 20

g (m) 1.32 2,23 2,97

% TFOV 4.4 7.4 9.9

The driving parameter is n, which from Figure 9-3 is determined by the sensor design.

Redundancy removal is not necessary for 30m/7-band.

Assuming that the sensor design will be set to produce an overwrite rather than a gap, this
error can be corrected within an sccuracy of one pixel simply by discarding redundant scan
lines or swaths (4 lines for the 10m/l12-band, 800-detector case). This correction can

be accomplished from a priori information (satellite altitude as a function of time) or,
more precisely, by data from an onboard altimeter merged in the primary data stream.

In either case, the redundant lines can be removed by reading the scan line identification

and discarding the scan lines indicated by the altitude information.

9.2.2.5 Quick-Look Extraction: If a quick-look data link to the users is established,

then this data must be extracted (preferably as early as possible) for transmission. Quick-
look data can consist of selected spectral bands, selected areas (sectors), or degraded
resolution. .The primary purpose of quick-look data is quality assessment particularly to'
allow the user to evaluate the extent of cloud cover and to generate or discontinue a data
request or to prepare for subsequent data reception, Depending on the network configurationm,
this may reduce the preprocessing load. A secondary purpose is to review archival data for

selection of preferred data sets.

Given proper data addresses, i.e., source identification, spectral band, scan number, etc.,
quick-look data extraction from the primary data sequence can be performed by reading each

address and gating this data to a quick-look buffer.

Resolution degradation is accomplished easiest by pixel averaging and line skip. Current
technology will allow this function to be performed at data rates up to 250 Mbps using

conventional emitter-coupled logic. Thus, quick-look data extraction can be performed in
real time after reformatting and address insertion.
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Since some quick-look data may have multiple user demand, a two-stage extraction procedure
is implied. Initially, the data set consisting of all quick-look data requested can be
extracted from the primary data stream in real time., Quite probably, this extractiun would
be by band sets. After this step, parallel area, band, and resolution data sets would be
extracted for each user., Buffering would then be necessary on each user channel prior to
multiplexing, if necessary, and transmission. Alternatively, if user transmission is broad-
cast on a non-unique basis; i.e., users select desired data from a continuous data stream,

then two-stage extraction, additional buffering, and multiplexing would not be required.

In the broadcast mode, the user terminal would, by pre-selected addresses or headings,
automatically select the area of interest. The broadcast transmission would consist of one,
or possibly two, spectral bands of reduced resolution both contributing to a lower data rate.
Assuming one spectral band of 90m spatial resolution (roughly equivalent to current LANDSAT
resolution) the resulting reduction in data volume relative to the primary data volume would
be a factor of 972 (for 10m/12 bands) and 63 (for 30m/7 bands). For the user that requires
only one scene (100 n.mi, by 100 n.mi.) in four bands, the data volume reduction relative to
the data in a maximum~length swath (approximately 1400 n.mi.) over CONUS would be 30 and
17.5 for 10m/12-band data and 30m/7-band data, respectively, The implication is that, for
users with antenna reception, the quick-look data rate could be less than the data rate for
preprocessed data. Thus, the cost penalty imposed for reception of quick-look data would be,
at most, the cost of a receiver and recorder. However, if quick-look data were broadcast

at the same data rate as the preprocessed data, the user would suffer no cost penalty for

its receptionm.

9.2,2,6 Cloud-Cover Extractlon: Synchronous meteorological satellites are now providing

virtually continuous daytime data on cloud cover within resolutions of 1 km (nadir), This
data can be used, as is now the practice, to reduce satellite transmission over areas of
heavy cloud cover. Alternatively, cloud-contaminated data can be eliminated on the ground
by discarding those scan lines associated with known cloud cover by reading the scan line
address. Again, thils correction can be performed in real-time given properly registered

auxiliary meteorologilcal data,

9,2.2.7 Cloud-Cover Assessment: Current user requaests for LANDSAT data specify acceptable
¢loud-cover percentages, Typical requests allow 10-20% cloud cover although the correlation

of cloud cover to area of interest méy allow much higher percentages. This factor is, of
course, the prime advantage of a quick-look link or éven a dissemination network that
rapidly provides all data so that the user can perform his or her own assessment. Neverthe-
less, a cloud-cover assessment will likely be necessary prior to archives to support con-

ventional data distribution.
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Cloud-cover assessment has been performed on an interactive basis invelving human

judgment. By 1985, automatic cloud-cover assessment should be operational.

Whichever, human interactive or automatic, this function can be performed 'off-line' under
the reasoning that data rapidly disseminated to the user need not be annotated with a cloud-
cover percentage. The user can make the decision of data quality with either quick-look or

the actual data.

9.2.2.8 Radiometric Correction: As each detector exhibits different spectral response and

sensitivity, the radiometric values must be adjusted to eliminate this error source. This
can be done either by using the in-flight calibration data to adjust coefficients of lineax
equatior.s or by adjusting the means and standard deviations of all detector probability-
density functions to be similar. The latter correction, which can be parformed without
auxiliary data, is based on the assumption that over large areas the probability-density

furictions should be the same.

For the network simulation in this study, the radiometric correction technique uses on-board
calibration data, The specific algorithms used were taken from "A Study of Ground Data
Handling Systems for Earth Resources Satellites,'' NASA JSC Contract NAS9-1261, Volume III,

page 3-4., This procedure involves. the following steps:

a. Calibration words for each line and detector are averaged, then smoothed

by Kalman filtering by the relations

CH = CH + w {cH - CH
n n-1 n n n-1
and
CH_ = CL + W CL-CL>
n n-1 n n n-
where L th
CHn, CLn = high, low calibration words for n line
CHh’ CLn = ‘high, low calibration word averages for nth line
Wn' = Kalman weight

b. The dynamic offset, given by Efn, is subtracted.

c. Using a table look-up procédure, sensor nonlinearities and scan-angle dependent
errors are corrected., ~This correction requires 256 (for eight-bit words) addresses
per table and some number of tables, typically 10, per scan line for each detector.
Thus, for the 30m/7-band case, a memory of 26.88 kbytes are required, For the 10m/

12-band case, and 600 detectors per band, 18.43-megabyte storage is required. =

d. System gain variations are corrected by the following relationship
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= CH - CL

Eij = CL + w5, - C s

where Cij = pixel value (ith line, jth pixel)
Eﬁi’ Eii = high, low filtered calibration words (ith line)
Eﬁi Ef; =  long-term high, low filtered calibration words
Eij =  corrected pixel value

The radiometric correction described previously will not correct for scene-dependent radio-
metric distortions; that is, detector relative responses that differ for saturated and un-
saturated scenes or for detector hysteresis, This type of distortion may be corrected by

convolution filtering.

9.2.2.9 Geometric Correction: Geometric correction is the time-consuming preprocessing

function, Geometric distortions can arise from several factors including eastward dis-
placement of scan lines due to the earth's rotation, earth curvature, satellite attitude
changes, and altitude variations affecting the image scale. In addition, parallax distortion
may arise during the comparison of two images, particularly when viewing an overlap region

from adjacent passes,

Distortion due to the earth's rotation can be corrected by displacement of each line with

an additional correction of the aspect ratio of each pixel. This correction, which is a
function of latitude, can be performed using a priori information. Other distortions
require some means of resampling the distorted input image to new locations in the corrected .
output image. The density values in the output image are recomputed by interpolation of
some set of neighboring pixels in the input image. Various techniques have been implemented
to perform this function, The first requirement is to locate the pixels in the input image
to be used for interpolation. This can be done by referencing to a precision-corrected
image or by comparison of ‘ground control points' (GCP's) in the image to the correct GCP
location from a master file, Typically, 10 GCP's are required for each scene. Improved
satellite jitter performance may reduce the number of required GCP's. The resulting displdce-
ment can be used to derive, as by a least-squares fit, the nearest neighbor pixels in the in-
put image to a given pixel in the output image., Various techniques such _as a simple nearest
neighbor relocation, bilinear interpolation, or the TRW cubic convolution can then be used

to resample the density value of the corrected pixel. These techniques differ as to the

number of nearest neighbors employed for -each interpolation.

This study was not directed toward an evaluation of geometric correction techniques nor was
the simulation based on a particular technique. The simulation of geometric correction is

discussed in Section 9.3.
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9,2.2,10 Archival Storage: It was assumed that archival storage would occur after geometric

correction. As this involves 'off-line' processing, no time loss is assoclated with the
dissemination of current data., It should be noted that the address insertion would facilitate
data search for archival requests as each scan line would contain satellite source, time, and
latitude-longitude coordinates (nadir). Thus, record keeping would be reduced to a table
identifying data on each tape, Digital logic on the output of each tape recorder could allow

for automatic identification and selection of the appropriate data sets requested from archives.

9,2,2.11 Data Routing: Data routing consists of selecting data sets for specific users, If
a broadcast mode is used to disseminate data to the user, data routing consists simply of

merging archival data requests with the pipeline data flow. If, however, a unique mesage is
transmited to each user, then the appropriate data sets must be selected and stored prior to

user transmission.

The routing function could be accomplished by data sectorizers that select areas by line
count, pixel count, and spectral band in real time. Each sectorizer would be dedicated to

a single user or to a set of users that require non-overlapping data. A user-unique address
would be inserted at the output of each sectorizer. This function could be performed in

real time at the output of the geometric correction. A hierarchy of sectorizers would select
the appropriate data sets as indicated by a controller and route them to buffer storage.
These data would then be routed to separate transmission links or multiplexed on a single
link as dictated by the transmission scheme. Buffer storage could be minimized by the
selection of a data transmission rate roughly equivalent to the combined throughput rate

at the routing output,

9.3 Baseline Preprocessing Facility

The purpose of this section is to configure a baseline preprocessing facility that can be

used to support:

a, cost differential estimates between regional and centralized preprocessing,
and

b, verification of throughput rates indicated by the simulation.

Unlike transmission link costs, processing costs cannot be accurately related to throughput
rates without reviewing specific hardware requirements. As the required throughput rate is
increased, different hardware items become bottlenecks, and, if possible, must be duplicated.
Often, a redesign of the data handling approach may circumvent a bottleneck. Thus, data

processing schemes tend to become deterministic based on assumed requirements.,

In order to generate cost estimates for preprocessing, a baseline configuration, as reported

in this section, was configured. As noted in Section 9.2, several technology coustraints
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prevent implementation of a rapid turn-around system for 10m/12-band data loads., These
constraints include recording, playback, and high-speed resampling processing at 0,25 micro-

seconds or faster per pixel. Therefore, this baseline was configured for 30m/7-band data,

A generalized functional block diagram of the baseline facility is depicted in Figure 9-4,
The primary characteristic of this system is the use of three dedicated controllers that
maintain functional control over specialized hardware, provide working memories, perform
calculations, and transfer auxiliary data through the system. All data remains in the
digital domain, except during display, and all operations are digital. For purposes of
presentation, this facility is divided into four subsystems; radio frequency, data handling,

correction processing, and user transmission.

\\§§i:LK DATA
A/

INSTRUMENTATION
RADLO —>3 PRE-RECORD DIGITAL - TAPE

FREQUENCY — R ECORDER

DATA HANDLING
CONTROLLER

3

CORRECTION ¢ .lINTEﬁMEDIATE CORRECTION

PRE~ UICK LOOK DAT
CORRECTION 3 &

DIGITAL

CONTROLLER STORAGE PROCESSING
COMMUNICATION ]
CONTROLLER ARCHIVES

HDDT

CORRECTED J .

USER DATA ‘L\\~&\\ A
, USER .

A c':::::‘'I‘RANSHISSION il

Figure 9-4, Generalized Functional Block Diagram
of Baseline Central Facility

It is assumed that the satellite/sensor design will provide all calibration attitude, mirror
gcan,. and time information in the primary data stream. This data is read and is transferred
to the data handling controller prior to recording. During recording (7 to 17 minutes), this
data is tranferred to the appropriate controller or specialized processor so that radiometric
look~up tables, bulk data GCP locations, attitude arrvor estimates, and header information is
calculated and loaded into registers prior to playback. In this manner, the record time is

usefully employed.
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Imnediately upon playback, the bulk data is reformatted and each scan line and all detector
lines within a scan line are identified in a header address. Thus, at any time during sub-
sequent operations, the data identity can be determined for each scan line., Similarly,
certain functional hardware, such as quick-look data extraction, can use this header informa-
tion to perform the desired operations. This type of data structure also allows the operator
to identify data at various points in the flow. Furthermore, user reception is facilitated

by the availability of header ii‘ormation to automatically extract user-desired data sets.

In this configuration, data is played back band parallel to an intermediate disk storage.
During this storage, GCP matching and computation of the mapping function is performed.
Upon completion of this process, data can be resampled at rates in the vicinity of 1 Mbyte/

sec (8 Mbits/sec) per spectral band. The general data rate requirements for this facility

are:
Bulk data rate (Mbps) 105
Scan time (ms) 70
(7 bands, 15 parallel detectors
per band, 6.46-km/sec ground
track velocity)
Band parallel data rate (Mbps) 15
9.3.1 Radio Frequency Subsystem: The radio frequency subsystem consists of those

components from the antenna through the receiver/demodulator; the output of which is a
digital signal. The equipment (consisting of antenna feed, preamplifier, receiver,

demodulator, and antenna control unit) is shown in Figure 9-5.

4\ PARAMPLIFIER .
DOWN CONVERTER RECEIVER DEMODULATOR ~—Pp

ANTENNA
CONTROL UNIT

Figure 9-5. Céntral Facility Radio Frequency Subsystem

The bulk data (ERS to ground) link requirements are presented in Section 7.0. In summary,
the reception antenna is less than 5 meters in diameter and the required system noise
temperature is 170°K. The satellite antenna exhibits a beamwidth of 2.5° at a diameter of

0.6 meters. A frequéncy of 14.5 GHz was assumed to derive the above values.
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Several studies have been directed toward on-board data processing in the satellite. Given
the availability of transmission technology, preprocessing, as defined in this report, seems
best performed on the ground rather than on the satellite; a possible exception seems to be
direct transmission to special users, However, preprocessing can be greatly simplified by
merging attitude, scan-mirror position, time, and calibration data in the primary data stream.
This process, up to 1 Gbps, is within existing techuplogy of spaceborne multiplexers. Even
at 1.6-Gbps data rates (10m/12 bands), this function can be implemented using QPSK modulation.
It was, therefore, assumed that proper housekeeping data sets would be multiplexed on the

primary data stream during each scan line,
All radio frequency equipment associated with reception of 105-Mbps data is either off-the-
shelf or, at most, requires modification to existing designs. Candidate preamplifiers,

down converters, receivers, and demodulators exist for this application.

9.3.2 Data Handling Subsystem: It was assumed that all data handling would be computer-

controlled from reception to user dissemination. Figure 9-6 is a functional block diagram

of pre-record and playback equipment up to the correction functions,

9.3.2.1 Pre-record Functions: The output of the subsystem (demodulator) will be some form

of an NRZ digital signal. A bit synchronizer will establish bit clock, The next component,

termed a digital interface, performs three primary functions. These are:

1. Read, store, and transfer to the controller requested attitude,
calibration, etc,, data in the primary data stream.

2. Generate line sync signals for each detector row in each spectral
band.

3. TInsert data headings, including best estimate of the trajectory on
each scan line for archival storage.

Logic circuits to perform these functions have frequently been employed. The process of
reading selected words from the data stream and transferring these to the data handling
controller may be implemented in a manner as shown in Figure 9-7.  As data is received,
the sync detector searches the data to establish synchronization., When sync is detected,
the bit clock counter and the wofd clock counter are reset to establish synchronization,
The decoder examines the word clock counter to determine when appropriate data words
(calibration, attitude, etc.) are present. The decoder provides start and stop points
which span the length of the desired data words., During this period, the data is shifted

into a shift register and is transferred to the computer bus with the transfer clock.

The data and clock outputs of the digital interface will be converted to parallel data
streams for the tape-recorder track assignment. A'special-purpOSe instrumentation tape
recorder could be used for primary recording. As noted in Section 9,2.2,1, current
technology is adequate to perform this function. The primary functions of the controller

are listed in Table 9-4.
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Table 9-4

Controller Functions

Function Comment

1. Display data reception status (in-lock Status data translated at digital inter-
conditions, source, bit error rate, face and displayed on alpha numeric
receiver S8/N, etc., data identity) CRT.

2. Gontrol record and playback search. Exercised through digital interface.

3. Construct line addresses. Loads address register during

: reformatting.

4, Select quick-look spectral-band Pre-sets quick=look extraction hardware

resolution and sectors. based on quick-look requests and trans-

mission constraints.

5. Perform ephemeris update to drive Updates antenna controlr unit during
antenna to next pass location. transmission dead time.

6, Transfer attitude, mirror, scan, Attitude determination data and time
and time information to correction extracted by digital interface apd
controller. transferred to controller during

reception.

No attempt was made to size the controller memory core or disk capacities. The computer
minimum-cycle time is a requirement set by the data rate. Since the digital interface
operates in real-time, the controller must bekéapable of responding to a protocol and
accepting extracted data in the period of one scan line., Assuming 12 calibration words

per detector and 30 words (time, mirror position, and attitude) per scan line, then 210
words would have to be transferred in 70 ms. This requires a maximum of 0.33 microseconds
per word (packed two words to a byte) which exceeds current mini-computer specifications

{1 ms) but is certainly within current technology. The general requireﬁents for this con-
troller imply that a medium-class minicomputer Would be adequate. for this function. Record-

ing would be accomplished as described in Section 9.2.2.1.

9.3.2.2 Playback Functions: Playback data handling functions are defined as reformatting,
parallel-to-band conversion, and quick-look extraction., Use of an instrumentation tape
recorder will allow the playback rate to be adjusted. Depending on the system design, this
rate can be critical in sizing subsequent storage. In this baseline configuration, the

playback duration is limited by the capacity of mass storage disks (see Section 9.3.3).

Reformatting can be accomplished by loading a 2-line buffer and reading out in the desired
sequence. For the assumed 30m/7-band case, this would require about 1.3 x 106 words (6173
pixels x 7 bands x 15 detectors x 2 lines). During this reformatting operation; the con-

troller could insert additional heading information, such as nadir latitude/longitude, that

requires calculation after data reception. Parallel-to-band conversion would be performed

£S
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in real-time; quick-look extraction can also be performed in real time. The data may be
“selected by spectral band and averaged over m pixels with n line-skips to provide a
resolution reduction by a factor of a. Again, logic to perform this function is frequently
employed. 1In addition, specific sectors can be extracted as desired. The sectorizer would
be set by the controller which would review the quick-look requests and establish a master
data set to be extracted. This function would not be necessary if a standard quick-look
format is disseminated by a broadcast mode. Operational sectorizers now exist that perform

similar extraction.

The quick-look data stream is a convenient source to provide a visual quality check. This

could be performed most inexpensively by use of a scan converter to refresh and monitor.

9.3.3 Correction Subsystem: Correction processing consists of geometric and radiometric

correction. In this baseline configuration, these functions are performed with a combination
of a medium-size general-purpose computer, two dedicated microprogrammed processors, and a
special-purpose array-proceséor. A functional block diagram of this equipment is shown in
Figure 9-8, As depicted, radiometric correction and GCP extraction are both performed on

the fly, Both the look-up table and extraction logic (band, line start/stop, pixel start/
stop) are loaded prior to playback by virtue of information extracted from the primary data

stream during reception,

After GCP extraction, the primary data enters an intermediate storage consisting of seven
(bad parallel) disks each of 300-Mbyte storage capacity. This intermediate storage provides
capacity for 7 30m/7-band scenes. Thus, only seven scenes are transferred at a time. Once
the mapping function has been calculated and an address table has been derived, a random-
access working storage is loaded and resampled to the output image which is then loaded on

one of two output disks. Specific details of this subsystem follow.

9.3.3.1 Radiometric Correction: The radiometric correction procedure suggested for this

"baseline uses calibration words imbedded in the primary data stream, The technique is
identical to the procedure described in Section 9.2.2.8, Calibration words are read from

the primary data stream and transferred through the data handling controller to the correction
controller that averages and smooths each set of high and low calibration words for each
detector, This process is performed during the record period. The high, low calibration
averages are stored and inserted as constants into a band-parallel look-up table. As noted

in Section 9.2.2.8, the look~up table would require 26,88-kbyte storage. Scene-dependent
gorrections based on detector statistics would require a delay (storage) not provided in

this configuration. Such a correction, however; could be inserted after intermediate storage

during the resampling process.
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Figure 9-8. _.Baseline Correction Processing
9.3.3.2 GCP Extraction: GCP extraction logic is identical to the sectorizing logic:

Given expected GCP window locations based on the microprocessor error model estimates, this
process could be performed at data rates up to several hundred megabits per second. Since
the data is band-parallel, simultaneous extraction from more than one band will only impact

the buffer size with minor cost impact,

9.3.3.3

facility. Typically, this process involves the following steps:

Geometric Correction: Geometric correction is the bottlenmeck in the preprocessing

1. Ground control point matching
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2. Calculation of the mapping function and input/output pixel addresses

3. Image resampling

One study [ 5] estimates that using near-term technology, the corresponding times for

correcting a 4-band LANDSAT scene for each of these steps is:

1, Ten (10) control points using automatic recognition - 4.5 min. (automatic
recognition requires technological development)

2, Mapping function caléulation - 0.5 min.

3. Image resampling using hard-wired cubic convolution algorithm and 3330-class
disks - 3.5 mins,

If each step were sequential, these times would give a total geometric corri:ction time of
8.5 minutes per LANDSAT scene, By comparison, the IBM system now under development for
Goddard Space Flight Center is estimated to perform these functions in 2 minutes per LANDSAT
scene using binomial interpolation in resampling. Scaling the latter time to a 30m/7-band

scene indicates that current technology would require about 31.5 minutes.

A general description of the geometric correction technique is as follows. The extracted
GCP windows are compared to reference GCP's using cross-correlation techniques or the IBM
sequential simulation detection algorithm, This process is automatic and the time required

to perform this task was estimated at 5 seconds per GCP.

The differences between observed and referenced GCP's are then used as feedback to correct
the coefficients of the satellite/sensor error model. The error model is continuously
updated with a Kalman =tate variable filter. This continuous updating will reduce GCP

search times.

The GCP observed-to-reference differences are also used to evaluate the coefficients of two
5th-order bivariant polynomials which relate the output image grid to input image line/pixel
coordinate system. The evaluation can be dramatically speeded up using special-purpose
matrix-function integrated eircuits., The time required to perform this mapping function
calculation using a dedicated microprocessor was estimated at 4 minutes per scene. Finally,

the input image is resampled at an estimated rate of 1 microsecond per pixel,

Using these estimates, a timeline was constructed to indicate the elapscc time from initial
recording to completed user transmission based on a 7-scene transfer. Figure 9-9 illustrates

this timeldine by showing permissible overlaps in functions.

The preprocessing timeline was constructed in the following manner. First, a record time
of 17 minutes was assumed. This overstates CONUS coverage and relates to horizon=-to-horizon
coverage. After recording, a 3-minute rewind period occurs. During this 20 minute period,

auxiliary calculations are performed based on the data imbedded in the primary data stream.
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Figure 9-9., Preprocessing Timeline Estimate
(30m/7 Band) - 7 Scenes

Assuming a playback band parallel at 30 ips, a total of 10.75 minutes is required or about

1.54 minutes per scene.

If the desired GCP window were in the last portion of the first scene, GCP matching could
not be started until 21.54 minutes from first reception., For one scene, this would require
0.833 minutes at 5 sec/GCP and 10 GCP's per scene or about 22.4 minutes total elapsed time.
Similarly, GCP matching of the last scene (worst case) could not be accomplished until 31,58

minutes after initial reception.

The mapping computatibn (estimated at 4 minutes per scene) would require a total of 28 minutes
for 7 scenes. This calculation for the first scene would not be completed until 26.4 minutes
tad elapsed. Since the playback rate per scene (1,54 minutes) is less than the estimated
time for calculating the mapping function (4 minutes), the pacing time becomes the 28 minutes
reguired for performing this caiculation for 7 scenmes. The total elapsed time for 7 scenes

is now approximately 50.4 minutes.
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The foregoing estimates are predicated on using one band for performing the mapping com-

‘putation (correlation of distortion between bands). Additional bands per scene would increase

this time estimate unless parallel processing were implemented.

Given 2.93 x 108 pixels per scene (30m/7 bands) and a resewpling rate of 1 microsecond per
pixel, approximately 4.88 minutes is required for resampling one scene, For the first scene
(worst case) this would be completed after approximately 30.4 minutes total elapsed time.
Again, since the resampling time per scene exceeds the mapping computation per seene, the
total elapsed time for the last scene to be resampled is 25.5 minutes plus 34.2 minutes or

59.7 minutes.

Assuming 5 Mbps broadcast transmission to the users, each scene would require 7.8 minutes for
transmission. The first scene would be transmitted after 38.1 minutes and the last scene
after 85 minutes total elapsed time. The average time per scene, including recording and
transmission, is about 12.2 minutes. However, it should be noted that the next seven scenes
would not include the record time giving an average preprocessing time of 9.7 minutes per

scene.

While this rudimentary timeline analysis fails to recognize certain operations, such as
transfer times from the microprocessor(s) to the general-purpose computer memory and the
allocation of operations between the CPU and microprocessor, the time pacing item is

actually in the user dissemination transwission. Both the mapping computation and resampling
times could be nearly doubled before significant increases in elapsed time would be
experienced, This timeline does illustrate the time advantages of distributed processing

and the need to balance throughput rates for sequential operations,

9.3.4 User Transmission Subsystem: In this configuration, three gources of data can be

broadcast to users. These are: quick-look data, archival data and preprocessed pipeline
data., These sources time share a single link and so their entry must be controlled. Figure
9-10 depicts generally the organization of this subsystem, The key element is a minicomputer
that,” through digital logic in the source select, controls the tape recorders and disks

during read operations. This controller maintains a file on pipeline data location (trans-
ferred from the correction controller), quick-look data status and age (from the data handling
controller via the correction controlier), and archival data requests. While this unit was
identified as a separate controller, these functions might well be collapsed into one of the
other units, Nevertheless, data transmission to the user could be largely automatic with

a changing priority structure for any of the data sources.

9.4 Processing Costs.

For a parametric study of this nature, processing costs should be presented as a function of

throughput rate or required time per scene, Given the rapid technological development in
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Figure 9-10, Baseline Facility Data Dissemination

processing equipment and the highly varied system design possibilities, a precise cost
estimate over a wide throughput rate would involve des¢ign estimates for optional processing
approaches., This was not the intent of this stul:; therefore, this approach is; 1) to
estimate the cost of the baseline system described in Section 9.2, 2) to identify throughput-
dependent hardware and associated costs, and 3) to vary these latter costs witch

processing speed, This approach will be checked subsequently in BSectica 11 by allowing the
processing costs to vary, holding all others constant, to determine if the conclusions (e.g.,

regional versus central costs) change,

9.4.1 Equipment Costs: For ease of presentation, equipment costs are presented for

four subsystems; 1) radio frequency reception of the ERS bulk data and the digital equipment
through quick-look-data extraction, 2) correction equipment, 3) user-preprocessing equipment,

and 4) trunking or user-dissemination equipment (Domsat ET's).

Table 9-5 presents the estimated cost of each hardware component needed to provide a

processing time of about 10 minutes per scene for 30m/7-band data.

With minor exceptions, all equipment that is cost dependent on processing speed appears
under the correction heading. Cost extrapolations, therefore, focus on this equipment.

It should also be noted that the cost estimates in Table 9-5 do not include nonrecurring
(software, desigh manuals) costs. Archival costs.include one-only high-density tape
recorder aﬁd controller. ~ Some of the individual costs appearing in this table should be
accurate to within 15%. Other items, however, are best estimates and are, thus, subject to
uncertainty. These items are working storage, correction controller, and array processor
which total $2466K or about 60% of the total estimate. The correction-controller cost was

based on the use af an IBM 360-158 general-purpose machine. - While the use of such a
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Table 9-5

Estimated Hardware Costs

Radio Frequency Reception (14.5-GHz Service)

Antenna/Feed/Pedestal ' $ 200
Preamplifier (redundant) 90
Down Converter 20
Receiver/Demodulator 25
Bit Sync 8’
Digital Interface : 40
Serial/Parallel/Band Conversion 20
Instrumentation Tape Recorder

(33 track @ 33 kbpi-3 required) 300
Controller (minicomputer with small disk, teletype, 120

128K word storage, intermediate capacity disk)
Reformatter Buffer 38
Quick-1look Extraction 30
Quick-look Storage 35

Quick=-look Display

(Scan Converter, 525 line monitor) 7
Cables, Console and Miscellaneous 8
Subtotal $ 941
Correction
Radiometric Look-up 10
GCP Extraction 30
GCP Buffer 3
Microprocessor - error models 15
Microprocessor - mapping, GCP matching 40
Intermediate Storage - 10 disks and controller 261
Working Storage - Input/Output 56
Array Processor 110
Correction Controller 2300
Cables, Console and Miscellaneous 10
Subtotal 2835
f Post-preprocessing
5 Archive tape recorder (on-line unit only) 80
i Source select logic 15
; Controller - (Minicomputer with small disk,; teletype) 60
' Subtotal 155
| Trunking Order Dissemination (Transmit only)
i
i Up Converter, modulator 10
i Power Amplifier 40
i Antenna {HiﬂiquI:Iyl 12
| OF poop GE IS
; Subtotal QUALITY 62

TOTAL : $§ 3993 K
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computer with minicomputers and microprocessors will present interface problems, this cost
based on a general-purpose computer such as the 360-158, should be an overstatement of cost,
particularly in the face of current technology expansion. A more definite cost estimate
would require allocation of computational functions between this machine and the micro-

processors with related timeline estimates, This was not done in this study.

Correction controller costs will tend to be step functions associated with movement from
one machine to the next as a bottleneck occurs., -For example, an IBM 360-145 will reduce
the processing speed by a factor of three [6] and the cost will be reduced by a factor of
less than two ($2300K versus $1300K). Ignoring the processing speed discontinuity that

would occur between these machines, speed versus cost was estimated by the straight~line

expression;
C = a - bT
where C = Cost
T = Processing time (min/scene)
a,b = Constants
. 2300-1300 _
where b = 5.9 50
a = 3300, based on $2800K for 10 min/scene at 30m/7-band

The above expression assumes a linear cost relationship to processing time based on current
technology [7). However, as noted in the reference, faster speeds will invcive increasingly
larger cost increases. Similarly, at the lower speeds, a break-point exists where mini-
computer class machines in the $100K to $200K price range can replace the correction
controller. These variations in the straight-line assumption were not investigated in this
study. Rather, given total network cost, the cost elements of preprocessing equipment
dependent on throughput speed were varied and their impact on total network cost was

evaluated.

Using this technique, it is possible to extrapolate processing costs for regional processing

requirements based on the required processing time per scene,

‘From the simulation {(see Section 11), the required regional processing times, for CONUS
coverage only, were 27.3, 41.7, and 52 minutes per scene. ‘Again, for CONUS only, the
processing time/scene requirements for a central facility was 15 minutes, With Alaska
added, an Alaska regional facility required 30 minutes per scene and a central facility
(CONUS and Alaska) required 10 minutes per scene. Using the described extrapolation, the

respective costs for the correction processing would be:
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Processing Time (Min/Scene) Cost Estimate ($K)
10 2835
15 2550
27.3 1935
30 1800
41,7 1185
52 700

It should be noted that these estimates are for speed-dependent hardware only (30m/7-band
data). Thus, total equipment costs require the addition of rf and digital, post-preprocess-

ing trunking @r user dissemination equipment costs.

The impact on equipment costs for regional-versus-central processing, CONUS data only, is

thus estimated as;

Regional (3 Centers)(SK) Central (8K)
RF & Digital 2823 941
Post-Preprocessing 465 : 155
Trunking 186 62
Correction 1935 (27.3 min/Scene) 2550 (15 min/Scene)

1185 (41.7 min/Scene)

700 (52 min/Scene)
TOTALS $7294K $3708K

The impact on equipment costs for regional-versus-central CONUS and Alaska data is thus

estimated as;

Regional (2 Centers) ($K) Central (5K)
RF & Digital 1882 1882
Post=Preprocessing 310 155
Trunking 124 : 185
Correction 2550 (15 min/Scene) 2835 (10 min/Scene)
1800 (30 min/Scene)
TOTALS $6666K $5057K
‘9.4.2 ~ Personnel Costs: Personnel costs were estimated in the following manner, Given

the base salary, X, a 15% administrative cost was added. To this number, a 407% fringe
benefit cost was added., To this number, a 55% burden cost was added. Finally, a 10% profit

was added. Explanations of these factors follow.

Administrative costs include supervisory and clerical salaries, TFringe benefits include

costs for sick leave, vacation, insurance, and other such factors available to the individual.
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Burden costs include facilities, such as buildings and power. The cost expression to support

an individual at a base salary, X, is;

C1 = 1.,15X Buse plus administrative
G2 = (1.15%) + .4(1.15%)
= 1.,51X Base, administrative and fringe
C; = L1.51Xx + .55(1.51X)
= 2,34X Base, administrative, fringe, and benefits
C, = 2.34x + 0.1(2.34X)
= 2.,57X Total individual costs

Attempting to estimate personnel requirements requires an assumption of management philosophy.
It is assumed here that; 1) minimum personnel are used, 2) supervisory costs are covered by
the 15% allocation (for small facilities this cost would be understated), and 3) personnel
costs assoclated with archival retrieval, filing, indexing, etc., were not estimated. Given
the foregoing assumptions, it follows that the personnel cost estimates represent a minimum

cost.

Personnel tasks associated with the baseline facility (Section 9.3) are divided into;

operational, preprocessing and archival/dissemination. Proposed task descriptions are:

Operational Engineer I: Monitors data flow during acquisition and data transfer

to correction processing; sets antenna for acquisition (automatic tracking)
services primary tape recorder; initiates operational commands; trouble-shoots
malfunctions,

Classification - Senior Engineer, base salary $9.80/hr.

Data Processing Engineer: Monitors data flow into and out of correction processing;

interacts during GCP matching; éupetVises correction controller; logs processing
results; trouble-shoots malfunctions.

Classification - Engineering Specialist, base salary $13.00/hr.

Operational Engineer II: Monitors data flow from quick-look, archives and pipeline;

enters and prioritizes user requests for archival data; maintains transmission schedule;
trouble-shoofg malfunctions.

Classification - Senior Engineer, base salary $9.80/hr.
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Clerical: Performs indexing, tape retrieval, and assorted tasks for data location;
types reports, letters, etc.

Classification - Clerical, base salary $4.95/hr.

Technician: Performs local repairs; cleans and maintains tapes; annotates tapes;
supplements operational engineer tasks.

Classification - Technician, base salary $5.90/hr.

Programmer: Maintains software; updates programs; capable of generating, testing,
and implementing software adaptations; supplements operational engineering tasks.

Classification ~ Senior Programmer, base salary $9.95/hr.
In assigning these classifications to facilities, the following assumptions were made:

1. Clerical and programming personnel would be available only during one shift
per day,

2. A minimum complement at any shift at any facility would be two engineers
and one technician when receiving, processing, and dissemination tasks
are required,

3. Each facility would operate seven days a week,

4. Every two man-years requires an additional man-year to fill in for vacations,
week-ends (7 day operation), and sick leave.

5. Domsat terminals do not require personnel attendance as minor adjustments to
the antenna (maximum, four times a day) can be performed by other on-site
personnel.

Given these assumptions, job classifications were assigned to four types of facilities:

1. A central facility receiving, processing and disseminating data
2. A regional facility receiving, processing and disseminating data
3. A central facility receiving and processing data

4. A regional facility, receiving data (no processing)

The estimates for each of these follow.

Central Facility receiving, processing (10 to 15 minutes per scene) and disseminating data.

Day Shift - 2 operational engineers, 1 data processing engineer, 2 clerical,

2 technicians, and 1 programmer. Total base cost per hour $64.25.
Evening Shift(s) - 1 operational engineer, 1 data processing engineer, and

1 technician., Total base cost per hour $28.70.

Annual personnel costs for this facility is then estimated by extending the hourly cost

over the year and accounting for 7-day operation,

The annual cost is derived by; base hourly‘cost times 2.57‘(fringe, burden, etc.) times
40'(hours per work week) times 52 (weeks per year) times 1.5 (personnel costs for weekends,

vacations, etc). Thus, for the central facility, estimated annual personnel costs are:

Qe 3
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.

$509,323  (8-hour operation)
230,128

739,451 © (l6-hour operation)
969,579 (24-hour operation)

Day Shift

* Evening Shift(s)
Combined 2 Shifts
Combined 3 Shifts

_g*_ém

Regional Facility receiving, processing - (30 to 50 minutes per scene), and dissemination

Day Shift - 1 operational engineer, 1 data processing engineer, 2 clerical,

o
N 1 programmer, and 1 technician., Total base cost per hour $48,55,
Evening Shift(s) - 1 operational engineer, 1 data processing engineer, and
' 1 technician, Total base cost per hour $28,70, '
2%
s Using the same multipliers as applied to the central facility, estimated annual personnel
: costs are: '
- Day Shift - $389,293 (8-hour operation)
j Evening Shift(s) - 230,128
Combined 2 Shifts - 619,411 (16-hour operation)
?’ Combined 3 Shifts - 849,539 (24-hour operation)
Central Facility receiving and processing (10 to 15 minutes per scene)
%, Day Shift ~ 1 operational engineer, 1 data processing engineer, 2 clerical,

2 technicians, and 1 programmer. Total base cost per hour $54.45.

e Evening Shift(s) - 1 operational engineer, 1 data processing engineer, and

1 technician, Total base cost per hour $28.70

Again, using the same multipliers; the estimated annual costs are:

$434;132 (8~hour operation)
230,128

664,260 (16-hour operation)
894,388 (24-hour operation)

Day Shift

Evening Shift(s)
- Combined 2 Shifts
Combined 3 Shifts

Regional Facility receiving or -dissemination data only

Day Shift - 1 operational engineer, 1 technician, and 1 clerical.

Total base cost per hour $20.65.

Evening Shift(s) - 1 operational engineer, and 1l technician,

E % : ~ Total base cost per hour $15.70.
o
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These convert to the following annual costs: b

Day Shift
Evening Shift(s)
Combined 2 Shifts
Combined 3 shifts

$165,679 (8-hour operation)
125,888
291,567 (16-hour operation)
417,455 (24-hour operation)

The foregoing cost estimates are certainly subject to question. They do, however, represent
a minimum estimate of operational costs based on current wage levels., In order to test the
impact of these estimates, in Section 11 they are varied upward relative to all other network

costs.
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SECTION 10.0

NETWORK SIMULATION

10.1 Introduction.

In order to support the trade-offs and evaluations of alternative earth-resources data

F dissemination networks, a versatile computer simulation was constructed to determine com-
}ﬁ munication and data processing throughput and to evaluate the satisfaction of user timeliness
constraints.
= This chapter describes the simulation and illustrates the form of the simulation output with
i an example. Appendix M gives detailed flow charts of the entire simulation program.
The primary considerations in designing the program were to both accurately simulate the
‘ network being modeled and maintain flexibility in the program's structure to allow for
= quick and easy changes to create alternative network designs.
;) Parameters that can be changed with little difficulty are: number of earth-resources
satellites, their period and data rate; number of receiving earth terminals; preprocessing
j locations (e.g., centralized in one location vs all or part of preprocessing at each region);
= computer storage and speed; and number of hours that each part of the network is operational.
it Data for nominal and expanded user demand models has also been generated and can be inter-
i, changed easily for satellite scanners with either 30-meter resolution/7 spectral bands or
with 10-meter resolution/12 spectral bands.,
i Key features of the simulation are shown in Table 10-1. This simulation was written as a
el discrete-event simulation using the GESIM language (GESIM is virtually equivalent to GPSS-TIL).
ho This language was chosen to gain maximum flexibility in supporting trade-off studies of
several data dissemination concepts.
e 4 10.2 Simulation Inputs/Variables/Outputs
EAV In general,'the computer simulation inputs, variables, and outputs are:
g e Inputs
i; Functional Distributions
Network Types'
i
g , e Variables
:Number of Users
3 Computation Speed

Primary Data Rates
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e Outputs
Memory Size Requirements

Data Processing load Requirements
Queue Lengths
Waiting Times

Percentage of Users Satisfied (by time of product delivery)

Table 10-1

Simulation Key Features

KEY FEATURES
e SIMULATE SWATHS OVER CONTINENTAL U.S. (41 FOR ERTS ORBIT, 64 FOR LANDSAT D ORBIT)
— USERS PER SWATH IDENTIFIED
— USER TIMELINESS SPECIFIED
— USER DATA VOLUME SPECIFIED

o COMMUNICATION DATA RATES CALCULATED BETWEEN SATELLITES, CENTRAL FACILITY,
AND REGIONAL FACILITIES

e PREPROCESS ALGORITHM COMPUTATIONAL REQUIREMENTS CALCULATED
— REFORMATTING
~ RADIOMETRIC CORRECTION
— GEOMETRIC CORRECTION
— ARCHIVING
— STORAGE AND ROUTING
® EVENT ORIENTED SIMULATION ~ GESIM LANGUAGE

More specific input and output parameters are listed in Table 10-2 and Table 10-3,
respectively, However, since the simulation was constructed to support configuration trade-
offs, the format and content of these parameters can be changed extensively from run to run.
Figure 10-1 illustrates the type of information from the user demand model included in the

gimulation.

10.3 Simulation Structure.

Initially, the simulation was structured around the centralized concept; however, provision
was made in the simulation for modifications and, during the study, alternatives were incor-

porated. Figure 10-2 summarizes the possible choices currently built into. the simulation.

The basic sequence of events from user demand for data-to-user reception of data that was
incorporated into the simulation is shown in Figure 10-3. During the phased development of
~the simulation, provisions for all of these events were included. Initially, however,
modeling efforts were concentrated on the sequence from the time the swath data is actually
‘received at a ground station until the data is delivered to the communication concentration

node.
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Table 10-2

Simulation Input Parameters

SWATH DESCRIPTORS
e SWATH NUMBER
e SATELLITE LOOK TIME WINDOW (START AND FINISH TIMES)
o SWATH LENGTH
SATELLITE DESCRIPTORS
e IFOV
e NUMBER OF BANDS
o DATA TRANSMISSION RATE
o NUMBER OF SATELLITES
COMPUTER/ALGORITHM DESCRIPTORS
® COMPUTER ARCHITECTURE AND COMPUTATIONAL THROUGHPUT (MIPS)
e ALGORITHM FUNCTIONAL MODEL AND INSTRUCTION COUNT
USER DESCRIPTORS
o SWATH NUMBER
e FRACTION OF SWATH DATA REQUIRED
o TIMELINESS REQUIRED
e FACILITY THAT STORES DATA FOR USER DISSEMINATION
DATA DISTRIBUTION DESCRIPTORS
e NUMBER OF REGIONAL CENTERS
o REGIONAL (OR CENTRAL) CENTER ASSOCIATED WITH EACH SWATH

Table 10-3

Simulation Output Parameters

R QUALITY

Buffer and Processor Memory Size Requirements
Maximum Contents -

Average Contents

Average Utilization

Average Resident Time

Current Contents (at snapshop)

Data Processor Load Requirements
e  Average Utilization
e Average Processing Time
e  Throughput

Trunking Load Requirements
e - Average Utilization
#  Average Transmission Time
¢ - Throughput

User Requirement Satisfaction
e  Distribution of Data Product Age at Delivery
for Various User Classes
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10-4

ERS TO
GROUND

PROBABILITY
USER NO.OF | LENGTH | TIMELINESS OF
USER IDENTIFICATION | LOCATION | BANDS | (N.M.) | (DAYS) DEMAND
156 USACE CHARLESTON 6 180 5 0,29
157 USACE CHARLESTON 6 180 1 0.29
158 USACE CHARLESTON 6 25 1 0.145
""""""" VARIATION
IN USER
DATA
VARIATION
N~ INDATA — | RATES
VOLUME

Figure 10-1.

CHARLESTON

User Demand Model - Example Corps of Engineers
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Figure 10-2, Network Simulation Configuration Definition
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DEPENDS UPON: DEPENDS UPGHN: DEPENDS UPON:
e NUMBER OF SATELLITES e REGIONAL TO CENTRAL e USER PRODUCT SORTING
® SATELLITE ORBIT COMMUNICATION LINK e USER COMMUNICATION LINK
P NIy e SWATH LENGTH ~
[ | | e r ‘l
I | | I | |
| | | l | l
l l | I ! {
| | i ] | 1 TIME
| [ | l [
TIME TIME TIME TIME TIME TIME
USER SWATH SWATH SWATH SWATH DATA
REQUESTS DATA DATA DATA DATA DELIVERED
DATA FIRST ACTUALLY RECEIVED DELIVERED TO USER
COuLD RECEIVED AT TO COMMUNICATION
BE AT PROCESSING CONCENTRATION
RECEIVED GROUND FACILITY NODE
AT GROUND  STATION ! I
STATION ] 1 I
: 1 \ |
Nwean. e, e’
DEPENDS UPON: DEPENDS UPON:
e CLOUD COVERAGE ® USER PRIORITY

o PREPROCESSING SPEED
® COMMUNICATION LINK

Figure 10-3,. Basic Sequence of Stochastic Events
Incorporated into the Simulation

The functional structure of the simulation is illustrated in Figure 10~4, which shows the
basic information flow paths., It should be emphasized that, since the simulation is a
discrete-event simulation, multiple, simultaneous events may (and usually do) occur in each

of the various functional blocks shown.

The Earth Resources Data Dissemination Simulation program has several versions, each corres-
pondiﬁg to a basic network structure (e.g., central preprocessing versus regional preproces-
sing). This program consists of eight segments: (1) the data base (functions and variables),
which defines most of the capabiliﬁies of the entire system (e.g., satellite-station contact
times and duratioms, processor speeds, data rates, throughput of data lineé, ete.,) as well

as. the user demand model (number of possible users of a swath, individual user-request prob-
abilities, and percent of swath requested and data timeliness*’specified by each user;

(2) the run-timer segment which defines how long the simulation is to run; (3) the shift-
timer segment which determines when the various facilities are operating; (4) the satellites
with orbit 103 (98) minutes and cycle 252 (264) orbits for the ERTS (LANDSAT) satellite;

(5) the regional stations which may either act only as buffers and data relays from the
satellites and the central facility or perform preprocessing and dissemination to user tasks;
(6) the communication links which deliver data from the regional stations to the central ’
facility (if one exists) énd from the processing centers to the users; (7) the central

facility (modeled, of course, only in the centralized configuration) which receives data

LI ; i
Maximum acceptabie age of data,
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Figure 10-4,

Simulation Functional Structure

USER
PRODUCTS
DELIVERED

directly from the satellites and from all of the regional stations, performs all remaining

preprocessing tasks and routes the data to users; (8) the users when the data's journey ends

.and statistics are gathered.

10.3.1

The Data Base: The data bavs consists of 214 functions and usually 20-25 variables

(more are added for some versions of the program).

Functions 1-212 are functions associated with user demands, There are 70 swaths of data

that are received by the ground station and there are three list functions associated with

each, The swaths are numbered 1?70; for swath n(l ¢ n g 70), function 3n-2 lists the .

percentage of the swath demanded by each user, function 3n-1 lists the demandeéd timeliness

2
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(maximum acceptable age) of the data by each user, and function 3n lists the probability

that each user asks for the data at each occurrence cf its availability.

Function 211 is a test function providing the number of possible users of each swath.
Function 212 is a discrete function that establishes the priority of each user request based

7"
on the timeliness demanded.

Functions 213 and 214 establish the interaction of the satellites and the receiving terminals,
Function 213 indicates what station receives data from each swath. Let £(s) be the value of
Function 213. Then

£(s) = { 0 if the orbit, s, contains no data of interest

n> 0 if the data from orbit s is received by station n

, . s s t , ;
£(s) is defined sequentially; i.e., argument s indicates the s b orbit of the satellite

since its cycle of 252 orbits began.

Function 214 defines the duration of contact of the satellite with the station receiving its

data. This information is then used to compute the data volume contained in the swath.

The variables are defined in Table 10-4 (V1 indicates variable i). Variables other than
those tabulated may be used to change network configurations during multiple runs or for

other purposes,
10.3.2 The Run Timer: A Generate Block sends a timer pulse every 24 hours and the model
may be run for any number of days. The basic unit of time used in the program is the

second and each duration is in whole seconds (i.e., there are no fractional delays).

10.3.3 The Shift Timer: After an initial interval of 16 hours when the facilities are

available (day and swing shift), a Generate Block sends a timer pulse which preempts all

of the facilities modeled so that they are unavailable, They remain preempted for 8 hours
and are, then, again made available. Twenty-four hours after the first pulse and every 24
hours thereafter for the duration of the run, the process of preemption (8-hour interval -

release) is repeated, thus modeling a two-shift work day, In using the preemption technique,

*
Let t, be the age of the swath of data after reformatting, radmometrlc correction,

geometblc correction and other preprocessing done to the entire swath (e. g., cloud
filtering). Let X be the time that it will take to transmit the user's request
via the communication channel being used (simply, the data volume divided by the
transmission rate, and let T ba the timeliness demanded by the user). Then; the
quantity E =T - t - X indicates the amount of "excess time'' remaining to meet

the demand. The requests are assigned 8 levels of priority (0-7) with higher
priority given to-those Withrsmaller values of Et (how the priorities are assigned

is, to some extent, arbitrary but also flexible).
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the facilities are used optimally since they are available for precisely 16 hours. Other

modeling techniques considered would have made the facilities artificially available either

too much or too little, but it is believed that in a real world situation, planning would

be implemented that would approach the perfect facility availability of the model,

Table 10-4

Simulation Varilable Definitions

Define the orbit and swath of the ''second" satellite
which is one half the orbit cycle ahead of the other
satellite,

Specifies the data volume of the swath (defined by the
resolution and number of spectral bands of the satellite
scatiner),

The time required to route and store each user request.

Pointers to facilities. In general, for i = 7, 8, 9,
if Vi = k mod (n) (where n is the number of regions

being modeled) then Vi points to a facility at region
station k,

The amount of data remaining after cloud filtering.
The time required for the cloud filtering algorithm.
Transmission time from a region to. the central facility.

The time required for the primary preprocessing tasks -
radiometric and geometric correction, etc.

The difference between the timeliness requested and the
sum of the age of the data when the user's data is about
to be stored and routed and the expected transmit time
once transmission is begun - used to assign priority.

Three times the swath number (where the swath number
indicates the number of station contacts of the satellite
since its cycle began with orbit 1) - used to point to
the 3 correct user demand functions.

The difference of the timeliness requested and the age
of the received data,

" V16

Number of possible users of swath - 1. = (Index to the
random number generator).

Data volume requested by a user.

Time to transmit data to a user.

The MIPS (mega instructions per second) of the preprocessing
computer.

Transponder rates.

Pointer to SAVE VALUES 3 & 4 - used when orbit cycles are
re~initialized.
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10.3.4 The Satellites: Each satellite is simulated with a Generate Block which has as

its A-field argument, n, the orbit period of the satellite, in seconds. Every n seconds

of simulated time, the Generate Block sends a transaction into the model; if funetion 129

is non-zero for the transaction, it represents a swath of data of interest; otherwise, it

is immediately terminated, C-field offsets are used so that no two satellites are trans-
mitting to a station simultaneously - in the case of two satellites, one satellite has offset
[n/Z],* the other 0.

10.3.5 The Regional Stations: The principal components of the 'regional stations' segment
are the storages and the computer facility., One storage represents the sum total of the
memory required at the region, two others represent the buffer that receives data from the
satellite and the transmit buffer that holds data waiting to be transmitted, Finally, there
1s a storage to represent processor memory. The storage representing the ‘nemory does not
attempt to model the actual transfer of data in and out of memory as it would actually be
performed; the whole swath of data is brought into storage at once, where in reality that
probably never occurs, However, it is in the computer that the volume of data in a swath
would either increase or decrease and the ''processor memory'" storage helps to explain that
change.

The '"computer"

facility is seized and 1s held for & period determined by the data volume
being processed, the instruction count of the algorithms used, and the speed of the computer.

Section 10.4 describes the functional instruction count models of the algorithms developed.

10,3.6 The Communication Links: The communication links are, in some cases, modeled as

facilities, in others, as storage. Facilities are used when transponders on the sateliite
are modeled since (1) they are used for communications requiring high data rates (e.g.,

40 Mbps) so that relatively few are required to handle the data volume, and (2) by using
facilities, the utilizatiou of each transponder can be determined, Storages do not provide
information on the utilization of each link but do allow for the simple modeling of the many

links necessitated by the slower data rates of ground lines.

10.3.7 The Central Facility: The central facility is modeled in much the same way as

the regional facilities with an additional storage buffer which receives data from other
regions. N
In a centralized configuration, if the data requested by each user is to be transmitted
separately (i.e., a broadcast mode of dissemination is not used, a separate data package
is created at the central facility to satisfy each request (overlapping of user-request

land "areas, notwithstanding). ‘ e

7' .
c[n/Z], the greatest integer less than or equal to n/2.



WDL-TR7187 10-10

10.3.8 The Users: Tabulations are made on statistics such as the age of the data and the
distribution of time-constraint satisfaction (i.e., how early or late is the data). In
addition, in the broadcast mode, the user model assumes that there is at least one requestor

for every swath of data.

Appendix H contains the flow chart of the simulaticn of the centralized configuration with
no broadcast mode., All segments crucial to the logical flow of the program are shown except
the '"Run-Timer Segment" which would vary with the number of days that one wishes to simulate,
the frequency that one wishes to see statistical surveys (e.g., every day, or once a week),
etc, Other versions of the program are easily created with small modifications to the one

of Appendix H, since they are basically simplifications of that version,

10.4 Algorithm Instruction Counts.

In order to determine the data processing time required to perform the preprocessing
algorithms; the algorithms must be explicitly defined and the computer instructions required
to execute the algorithm must be enumerated. Five preprocessing algorithms have been con-
sidered. Figure 10-5 identifies these algorithms and presents their sequence of execution.
The "demand" algorithm represents users who wish to utilize data stored in the archives,
These users are in addition to the day-to-day or week-to-week regular users. Brief

descriptions of the purpose of the other algorithms are given below:

e Reformatting

Data received from satellite packed by band number, line number, then
pixel number, The algorithm repacks data by pixel number, band numbers,
then line number.

e Radiometric Correction

Calibration data is used to determine a correction bias and gain that
is used to upgrade the data.

e Geometric Correction

Pixel by pixel, position inaccuracies in data, due to platform error,
are corrected with fifth~order polynomials

® Archival Storage

Corrected data is stored for future use in specified format

® Storage and Routing

Data is sorted into blocks fcr routing to users

Functional instruction count models for each of the above algorithms have been constructed
using the algorithms taken from '"A Study of Ground Data Handling Systems for Earth Resources
Satellites," Vol, IIL, Philco-Ford Houston Operation. Basic instructions counted were add,
subtract, multiply, d;vide, store, and recall, Table 10-5 lists the resulting instruction
count model equations, These equations assume a serial computer and a swath width of 100

nautical miles. (1.852 x lOSm). ‘The first equation therein estimates the data processing
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{

REFORMATTING

RADIOMETRIC
CORRECTION
GEOMETRI [ aRcHIVAL | r— -1
c ARCHIVAL
CORRECTION ~ |——®= &fonaGe. |[=— DEMAND _}
e

ROUTING AND
STORAGE

Figure 10-5., Data Preprocessing Algorithm

time required to perform the reformatting algorithm for swath length, SW’ as a function of
the satellite parameters and the computer instruction execution times. Equation 2 estimates
the data processing time required to perform the radiometric correction algorithm. Equation
3 estimates the data processing time required to perform a geometric correction algorithm
which incorporates a Kalman filter and a fifth-order polynomial fit. Equation 4 estimates
the data processing time required to store the data from swath length, Sw, into the archives.
For a.set of 1 users, Equation 5 estimates the data. processing time required to repack the
archived data into data blocks for each user. The total time is merely the sum of the time

required for each user,

10,5 Simulation Example ,

14 order to illustrate the use of the simulation and the form of the output, an example earth
resources data dissemination configuration is presented in this section. The simulation

example assumptions are as follows:

e 2 Earth Resources Satellites - 30m IFOV, 7 bands
e ERTS Orbits - period of 18 days
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Table 10-5

Data Processing Requirements for Swath Length, Sw

1. REFORMATTING

S 5 5
_ Sy 1.852 X 10 1.852 X 10
Tor = all [(2 rspn (HEBZXAT 4 qg)) T, 4 spxn (BREE) T
+S XN (—————1'852,’;10 +18) Tgr + 8 x n (LES2XI0 10° | 1g) TRC]
WHERE =~ T, = ADDTIME Sy = NUMBER OF BANDS

T¢ = SUBTRACTTIME R = IFOV (M)

Te; = STORAGETIME N = NUMBER OF SENSORS

Tae = RECALLTIME S, = SWATHLENGTH

2, RADIOMETRIC CORRECTION

SwXS 5
Taap = wR B [(14 1852)(10 ) Ty +ATg + (2+1.852F;<10 )Ty + 3To]
WHERE T, = MULTIPLY TIME
T, = DIVIDE TIME
3. GEOMETRIC CORRECTION
s 5 . 5
_ Sw 1.852x10 1.852x10
Tgeo = " [72X————R'—— Ty + 116X R TM]
4. ARCHIVAL STORAGE
T _ Sw [1 g 4+ 1:862x 10 J T
ARC = AXM 4+MXSg X (9 + T ) ST
WHERE M = NUMBER OF LINES IN A SCENE
5. STORAGE AND ROUTING
DEFINE THE USER SET 1=1,2,...,1
i 5
T = L :‘)’(’l{n [14+stB x (o + L892X 107 )] (Ter +Tre)

WHERE S, = THE SWATH LENGTH OF USE TO USER |
)

102-Mbps down-link to one of two receiving stations
2 -Centers - Sioux Falls, Sp - Central
Fairbanks, AKX - Regional

Regional facility linked to central via 6.5-Mbps channel
All preprocessing performed at central

o Reformatting

e Radiometric correction

® Geometric correction

® Archive storage/retrieval

e Storage and routing

[ i
TR
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e 20 MIPS serial processor

e Expanded user demand model

Data broadcast to all users via 6.5-Mbps channel - shared with

forward trunking from regional facility to central.

® Queueing discipline for 6.5 Mbps was first-come-first-serve
with forward trunking given higher priority.

e 35 days simulated with l6-hours/day operation

Figure 10-6 pictorally illustrates the simulation example configuration. Various queues,
storages, and facilities (computer or communication link) are shown with their identifica-

;3 tion numbers, These identification numbers correspond to those on the standard output

summaries shown in Figure 10-7,

SHARED CHANNEL WITH
: FORWARD TRUNKING
- GIVEN HIGHER PRIORITY DOMSAT
s THAN USER-PRODUCT
2 DISSEMINATION

Q (FACILITY #9)—2 /,
ERS ,

: || npUT QuEtE\ | REGTONAL __,| oureur
, I || BUFFER # 1 PROCESSOR BUFFER
. i
b | { STORAGE - | FACILITY STORAGE |
1 #13 #1 #9 )
| | |
i i ! 1 |
% { REGIONAL | i BUFFER |,
ey i PROCESSOR : I , |
i MEMORY * | STORAGE
| , ' i #17  [T7
i | STORAGE | | I [quete OUTPUT [, | CENTRAL QUEUE i
{ #5 P L # 6 71| BUFFER PROCESSOR # 2 i
e | '[ I INPUT |,
| | STORAGE FACILITY BUFFER
. » Lo STORAGE #1 _ _ . _ _ N sy i :
e FAIRBANKS, AK I STORAGE
3 REGIONAL FACILITY | 1 1 a7 2{
= i CENTRAL . |
== | PROCESSOR 1
OR { MEMORY I
- |
IGWA_L PAG ! STORAGE |
OF POOR E IS | 46 |
QUALITY' ! |
| R STORAGE _# 2 _ __ _ _ _ N
) : S10UX FALLS, SD
* NOT ‘USED. IN SIMULATION CENTRAL FAILITY

Figui'e 10-6.,  Simulation Example Configuration

i The standard output summaries give various accumulated statistics gathered during the simula-
. tion run, Note in Figure 10-7 that the central processor (Facility #2) processed 295 swaths
of data in 35 days with an average processing time of 1:87 hours (6733.75 seconds) and was
60.57% utilized (.6057 = 1.5 (.7371-.3333)) during its hours of operation (16 hours/day).

Other similar statistics can be extracted from the printout for other system elements.




FACILITY

"FACILITY
REFERENCE
s
20

3
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REFERENCE
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CUEVE
REFEXENCE
19

20

%

SUBTRACT 0.333 AND MULTIPLY BY 1.5 TO GET UTILIZATION FOR 16-HOUR OPERATION

AVRAGE
UTILITY
«3333
« 7371
«3333
«3333
«3333
«3333
«3333
#3333
«BL28
«3332
«3333
«3333
«3332
3333
2333
«3333

# OF
ENTRUES
168
331
36
36
36
‘38
36
36
463
36
36
36
36
36
36
36

SUBTRACT 36 TO GET SWATH COUNT

TIME IN SECONDS

AVERAGE
TIME/TRANS
€000.06
6733.75
28800.00
28000.00
28000.00
28000.00
28000.00
28000.00
5504.37
28600.00
28000.00
28000.00
28000.00
28000.00
280800.00
28000.08

STORAGE CAPACITY SET TO =

CapacITy
131871
131071
131074
131671
131071
131071
131071
131071
131071

Ya XIvuH
CONTENTS
1

2
5

J—-#
AVERWGE
CONTENTS
55.98
4L62.37
.00
123.98
185.43
145.99
.00
57.16
5.73

AVERAGE
CONTENTS

.22
- 73

or 10% Bits

AVERAGE
UTILITY
= 0004
«0035
- 0000
<0010
«0014
«001t
0000
<0004
<0080

TOoTAL
ENTRIES
132

295

47

SEIZING
TRANS ¢

coopooooooOOoooae

TOTAL # OF 108 BITS OVER ENTIRE SIMULATES TIME

£ENTRIES
24621
75520
24621
75526
43242
50905
24621
509035
24621

ZeRQ
ENTRIES
132

91

83

Figure 10-7

PREcMPT
TRANS #

oo OO

+ OF 108 BITS

«t——-—FACILITY #2 1S CENTRAL PROCESSOR

~——FACILITY #9 IS DOMSAT SHARED CHANNEL

LVERALGE CURRENT MAXIMUM
TIME/ TRANS CONTENTS CONTENTS

6875445
18512.86
-08
4964420
11390.66
8672.58
«00
3395.48
764,02

Do oooooo

PERCENY TOTAL AVE. NZEXO AVE.
ZEROS  TIME/TRANS TINE/TRANS

100.0
30.9 2616.07 3733.04
19. % 5941.93 7374 .48

Simulation Example Output

722 ~ TOTAL REGION-1 MEMORY - ALASKA
1440 ~ TOTAL REGION-2 MEMORY - SIOUX FALLS
332 - REGION-1 PREPROCESSOR MEMORY

443 - REGION-2 PREPROCESSOR MEMORY

762 - REGION-1 TRANSMIT BUFFER

793 - REGION-2 TRANSMIT BUFFER

332 - REGION~-1 RECELIVE BUFFER

746 - REGLON-2 RECEIVE BUFFER

332 ~ INTER-REGIONAL BUFFER

QTABLE CURRENT QUEUE FOR
NUMSER SONTENTS

5 D REGION-1 PROCESSOR

6 8- REGION-2 PROCESSOR

9 0 DOMSAT SHARED CHANNEL

L8TLAL-TaAM

#1-01
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Another type of output available from the simulation is in the form of distributions. Figure
10-8 shows three such distribution printouts for the simulation example. Printouts of this
form are extremely valuable in determining system design biases that may not be observable
from mean-value estimates, alone., For example, the printout of Table #10 (from Figure 10-8)
shows that, even if the data products destined for users requiring one-day delivery from
observation is delayed by 6 hours (21600 seconds), the timeliness deadline for all such users
will still be met. In the following section (Section 11), the results of a number of simula-

tion runs for the various configurations are analyzed.



/

T «81LE STATISTICS - FOR # 1 DISTRIBUTION OF AGE (SECONDS) OF DATA

ENTRIZS

PRODUCTS AT USER DELIVERY TIME

MEAN ARGUMLNT

STANDAX] OCVIATION

SUM OF ARGUMENTS

Q Q 6418 296204391 9452.0645 33885417.500
§7'Qy UPPEX  IBSERYEC PER CENT  “»e% CUMULKTIVE **+ JULTIPLE DEVIATION
ﬁvAéSv CIMIT  FREQUENIY OF TOTAL FERCINTAGE  REMAINDER OF MEAN FROM MEAR
<§P 2 0 .00 .0 10040 . 00e -2.182
& @ 10802 866 13.49 13.5 8645 -524 -1.039
21600 2512 39.14 5246 Yy 1edu8 o104
¢° & 32400 2819 43.92 9646 kP 1.571 1.24€
Q, b o 43240 s} .00 3646 3ol 2.09% 2389
A ¥ 54000 32 1ou3 98.0 2.0 2. €19 3.532
64800 129 2.01 100.0 .0 3.143 4. 674
'Cg? , THE REVAINING FRECUENCIES AKE ALL ZERC
T A3 L & STATISTICSS  FOR L] DISTRIBUTION OF WAITING TIME (SECONDS) FOR DOMSAT SHARED CHANNEL
ENTRIZS EAN ARGUMENT STALNDARD BEVIATION SUM IF ARGUMENTS
w27 5841.033 6046, 746 2536821 000
UPFER  DUSERVID PER.CENT = *+% CUMULATIVE »e» HULTIPLE DEVIATION
LIMIT FREQUENTY OF TOTalL PERCENTAGE KEMAINDER OF ™MEAN FROvM YEAN
0 33 19444 13.4 80.6 . 000 -.982
10800 245 57438 76.9% 23.2 1.818 «804
21600 35 22.25 99.1 .9 3.636 2.590
32400 0 <00 99.1 ] Se 454 L.376
43204 & « G4 10040 -3 7,272 €.162
THE ZEMAINING FRECUENCIES ARE ALL Z:FQ
T A3 LCE STATISTICE FOR # 10 DISTRIBUTION OF TIMELINESS (SECONDS) FOR USERS REQUIRING 1-DAY DELIVERY
ENTRIZS HEAL ARGUMENT STAND:RD DEVIATION SUY OF BRGUMENTS
1928 67252.337 8350.601 324156264250
UFPER  DUYSERVED PER CENT = *** CUMULATIVE #e» MULTIPLE OEVIATION
CIMIT  FREQUENSY - OF TOTAL FERCENTAGE  REMAINLER GF HEAN FROH. 4EAN
~43200 2 «00 0 1008.,0 642 ~12a340
- =32403 8 «00 0 10040 o482 =11.13%
~21603 o .80 .0 10Cau . 321 -3.927
~13800 a <40 ed 100. 8 o161 -B.728
4 ] «00 -3 100.0 « 030 7514
10802 b «00 i} 100.0 «1lp1 -5e307
21030 0 «00 «d 109.0 «321 -5.100
J2ui) 25 1.30 1.3 93.7 . 482 ~-3.894
%3209 It .99 2.3 97.7 “6uz -2.687
54004 1 .00 2.3 S7.7 .03 ~1.481
54A03 713 36.98 39.3 60.7 - 904 -.274
75600 Rub 143,88 83.1 1v.9 1a124 .933
BH0Y 32y 16.86 100.3 0 1.235% 2139

THE <EMAINIJL  FRELUENIIES AmE ALL 2EFG

Figure 10-8. Simulation Example Distribution Outputs
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SECTION 11.0

NETWORK CONFIGURATION COMPARISON AND SELECTION
11.1 Introduction.

In Section 9, the various electronic transmission alternatives were compared. It was shown
that, given the user model of Section 5, a versioﬁ of the UOT satellite system is the least-~
cost transmission alternative for data dissemination by electronic transmission, Moreover,
this result is independent of the particular class of network topology that may be used. In
this section, therefore, a satellite data dissemination system is assumed and various
realizations of the three candidate network topologies (Figure 8-1) are compared by computer
simulation using the simulation program described in Section 10. (Each realization is here-
inafter referred to as a network configuration or, more simply, as a network.)"Based on the
results of these simulations, the costs of the various configurations are developed and com-
pared for a 30-meter-resolution/7-spectral-band ERS data source. The results are given both
as total system and as approximate per-user equivalent annual costs. Finally, the sensitivity

of the cost comparisons to changes in the estimafed cost of preprocessing equipment and of

operating personnel, and to changes in the raw data rate corresponding to a 10m/12-band

ERS sensor is determined.

11.2 Network Configurations.

Figures 11-1 through 11-3 show the network configurations evaluated in this study. Configura-
tions 1 and 2 compare regional versus central preprocessing facilities for coverage of” the
lower-48 states. (Three regional ERS readout terminals in the lower-48 states are necessary
for lower-48-state coverage when the ERS-to-readout-terminal link frequency is at 40 GHz or
above, See Section 7.1.1.4 and Figure 7-3.,) Configuration 3 centralizes the raw data
reception function to one readout station located at Sioux Falls. This is possible provided

the minimum elevation angle to the ERS is allowed to drop to 5° (see Pigure 7-2).

Klaska was not included in the first three configurations for three treasons: 1) It-is of
interest to determine the effect on a data dissemination network of adding the demand for
Alaska data,vz) the demand models for the lower-48 states were gomﬁleted before those for
Alaska and could thus be used (while the Alaska models were being completed) to gain under-
standing of the simulation program and the interpretation of simulation results, and 3)
results from these simulations (regarding the performance of various network tqpologies)
would help determine simulation sequences,fofvthe longer, more complex,'combined Alaska-and-

lower-48~state runs.

Configurations 4 and 5 (Figure 11-2) include Alaska in addition to the lower-48 states.
Configuration 4 is configuration 3 with a separate ERS readout terminal and preprocessor. for

Alaska. Configuration 5 centralizes all préprocessing at Sioux Falls,
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FUNCTION 1 2 3
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Figure 11-1. Network TConfigurations - Lower 48 States .
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NETWORK

FUNCTION 5 - CENTRALIZED 6 - SPLIT FUNCTION 7 = SPLIT FUNCTION IN TDRS
FAIRBANRS SIOUX FALLS | GOLDSTONE FAIRBANKS GREENDELT WHITE 5ANDS
RAW DATA
RECEPTION
TRUNKIN TRUNKING TRUNKING
LINK —z LINK == LINK 2
PREPROCESSING SIOUX FALLS GREENBELT GREERBELT
DISTRIBUTION STOUX FALLS STOUX FALLS STOUX FALLS

USERS

Figure 11-3. Centralized and Split Preprocessing/Distribution Networks

Figure 11-3 compares centralized configuration 5 with two other configurations currently
under consideration by other groups in NASA, Configuration 6 is similar to that now- in use
on LANDSAT-A with the addition of a readout terminal at Fairbanks. Configuration 7 postulates
the availability of the Tracking and Data Relay Satellite (TDRS)T with preprocessing per-
formed at Greenbelt. Another configuration (not shown) uses TDRS and performs both preproces-
sing and distribution functions at Sioux Falls. The only difference between that cbnfigura-

tion and configuration 7 is the absence of the trunk link between Greenbelt and Sioux Falls.

Figure 11-1 shows the possible existence of area centers. An area center would receive data
from the preprocessing facility and then distribute it to individual users within its juris-
diction. As discussed in Section 8.4.4, such centers could reduce costs by consolidating
communication and user-unique processiﬁg functions for a number of users with similar
requirements located in relatively close proximity. All network modeling and cost analysis
in this section, however, are based on data dissemination to each user diréctly from the

preprocessing center(s).

11.3 Network Simulations.

Ninety simulation runs were made of the first five network configurations for various
combinations of the following parameters, as tabulated in Tables 11-1 and 11-2: (1) 30m/7-band

vs 10m/12-band ERS seﬁsors, (2) nominal user demand vs expanded user demand, (3) different

*The use of TDRS for ERS raw data. transmission is under consideration by NASA. Present plans
place an upper limit of 300 Mbps on the TDRS channel capacity, limiting the resolution to
17.5m (7 bands) or to 22.9m (12 bands). Therefore, the 10m/12-band case would require
development of a new wideband data relay satellite, probably operating in a higher millimeter
or optical band.




Table 11-1

Lower-48-State Simulations

N &
R &
: USER ERS PREPROCESSING NUMBER TRANSMISSION RATE NUMBER
NETWORK DEMAND RES/BANDS|SPEED(MIN/SCENE)} TRANSPONDERS | PER TRANSPONDER (MBPS)|SIMULATIONS|OTHER PARAMETERS
#1 K
Regional ET | Nominal 30/7 5, 15-17 1 5.5 - 6.5 5 16-Hour Shift
Regional oo
Preprocessor{ Expanded 30/7 11-17 6 -8 2 ERS @ 920 km
Nominal 10/12 31 40 1 Dicerete uges
Expanded | 10/12 nt o, 3-6 40 8 ¥aissien
12 - 16
2 :
Regional ET | Nominal 30/7 15 1 10 - 50 4 (Same as above)
Central
Processor | Expanded 30/7 15 1 10 - 50 5
Nominal 10/12 11 - 18 - 40 4
Expanded 10/12 11 - 18 3 - 40 6
#3
Central ET | Nominal 30/7 15 1-6 1-6 4 (Same as above)
Central
Processor | Expanded 30/7 15 1 6 - 8 3
Nominal 10/12 15 - 17 3 -4 40
Expanded 10/12 11 - 17 3-4 40 6
#3
Central ET Expanded 30/7 15 1 2.5 -6 3 16-Hour Shift
Central 2 ERS @ 920 km
Processor
Broadcast Broadcast User
Mode- Xmission
' TOTAL NUMBER SIMULATIONS: 60

* Per regional processor

*%* Divided according to load

L8TLYL-TAM
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Table 11-2

Lower-48-State and Alaska Simulations

TRANSMISSION
PREPROCESSING RATE PER
USER ERS SPEED NUMBER TRANSPONDER | NUMBER OF
NETWORK DEMAND RES/BANDS (MIN/SCENE) TRANSPONDERS (MBPS) SIMULATIONS | OTHER PARAMETERS
E/7A
Regional ETS 16-hour shift
(AK and SD) 2 ERS @ 920Km
Regional Expanded 30/7 AK: 30, 15 1 3.7-4.75 6 Broadcast user
Preprocessors : SD: 10 transmission
(AK. and SD)
#5 .
Regional ET's : ; )
Central Expanded 30/7 3.0-12.5 1 4.,75-10.5 24 (Same as above)
Preprocessor §
(sD)
- TOTAL NUMBER OF SIMULATIONS 30
e
’v o §
S5
5o
I
Er
e 5
N &
&P ‘

£81L41-TdN

S-11
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preprocessing speeds, (4) different transponder link capacities, and (5) user-unique vs

*
broadcast user data transmission. The results are presented and compared helow.

11.4 Simulation Results: Lower~48 States.

The results of the lower-48-states simulations show: (1) the superiority of the central-
receiving/central-preprocessing network topology, (2) the existence of thresholds in both
preprocessing speed (scenes per hour) and transponder transmission rate, both of which
thresholds must be exceeded simultaneously or the response time of the network-to-user
requests will become infinite, (3) the distinct advantage of broadcast over user-unique
transmission, and (4) the impact on network parameters of nominal versus expanded user
demand and of 30m/7-band versus 10m/12-band data,

11.4.1 Central Receiving/Preprocessing Most Efficient: The results of simulating network

configurations 1, 2 and 3 may be compared by plotting the percentage of the user requests that
are not delivered to the user (via a UOT satellite transmission system) within the user time-
liness requirement versus the preprocessing time per scene with transponder transmission
speed as a parameter, (A scene is defined to include all of the spectral bands.) The

curves of Figure 11-4 result from consideration of the expanded user demand model with user-
unique user data transmissions for 10m/12-band and for 30m/7-band ERS sensors. These figures
are summarized in Table 11-3 which show the required preprocessor speed and transponder
transmission speed for timely dissemination of all user requests for the three configurations.
For completeness and ease of reference, Table 1ll-4 also summarizes a comparison presented in
Section 11.4.3 of required preprocessing times per scene and transponder transmission speed

for configuration 3 with user~unique vs broadcast user data transmission.

These results show the superiority of network 3; centralized receiving and centralized pre-
processing. Network 2 requires trunking links which are not required in networks 1 and 3.
Network 1 requires three preprocessors whereas only one is required in networks 2 and 3,
Network 2 tends to satisfy the least number of users, everything else being equal. The poor
performance of network 2 is believed to be caused by the additional load on the transponder
which must handle the trunking of raw data as well as the transmission of preprocessed data

to the users.

5
11.4.2 Computer and Transponder Throughput Regquirements: On the average, the two-polar-

orbit satellite data-collection model generates 51,7 scenes per day (coverage of the lower-48
states only). With two contiguous 8-hour shifts, this requires a preprocessing time through-
put of 18.6 minutes/scene. This requirement is confirmed in Figure ll-4 where preprocessing

times approaching this upper limit show increasing numbers of requests not satisfied. - Pre-

*The distinction between these user data transmission alternatives is given in Section 11.4.3,
Table 1i-4.
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A 18,6 % 18.6
sof min. /SCENE 80 | min. /SCENE
R L o R
E 70 #2 E 70 | =
Q (3 XPOND) Q
9] U
E (]0] of E 60 I
S 4 S
T - T -
g 20 (3 XPOND) 2, s 50
u 4or U 40t
N #2 N
S 30F (4 XPOND) S 30
A A
T 20F g2 Teof Mbps)
g (5 XPOND) S
i 101 Q\’ ~=-#3 (3 xpow0)  F 10 s Mbps)
E o ) B ()‘/»2//” 1#2 Mbpz)
13 4 ¢ 0 4 - =%
D 10 15 20 D 10 15 20
PREPROCESSING TIME” (min./SCENE) PREPROCESSING TIME® (min, /SCENE)
1¢/12, EXPANDED DEMAND 30/7, EXPANDED DEMAND
(45.2 GICABITS/SCENE) (2.9 GIGABITS/SCENE)
* COMBINED TIME OF 3 REGIONS IN NETWORK #1
Figure 11-4. Percentage User Requests not Satisfied vs the Preprocessing Time
for Coverage of the Lower-48 States Using Configurations 1, 2 and
3 (see Figure 11-1), with Transponder Transmission Speed as a
Parameter,
Table 11-3
*
Required Prevrocessing Time and Transponder Transmission Speed
With Lower-48-State Coverage Using the Expanded Demand Model
10m/12-band 30m/7~band
ERS Sensor ERS Sensor
C?NFIGURATION PREPROCESSING | TRANSPONDER PREPROCESSING | TRANSPONDER
TIME .| TRANSMISSION TIME TRANSMISSION

(min. /scene)

SPEED (Mbps)

(min./scene)

SPEED (Mbps)

ERS Reception/Preprocessing

l.. Regional/Regional 110 6.5
(User-Unique) Goldstone 39 42
Sioux Falls 48 52
Greenbelt 25 27 .
2. Regional/Central
(eertnique) 10 130 15 7.5
3. Central/Central
(User-Unique) 15 110 15 6.5
4, Central/Central
(Broadcast) : o o 15 3.0

For all requests satisfied (i.e., delivered to user within specified user timeliness

constraint)
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Table 11-4
Alternatives for User Data Transmission
. Unique User Transmission
° Portion of Swath Requested by Each User Transmitted Sequentially:
User 1 User 2 User 3
= i
® Higher Priuvrity to Users with Lower Timeliness Requireﬁent
. Same Data Transmitted More Than Once if User Swath Requests Overlap
° Compatible with Terrestrial Link Network
) Broadcast Transmission
° Complete Swath Broadcast to All Users Simultaneously
ADDRESS CODE FOR SC 1, BAND 2
70 sec’ o
SC 1, BAND 1 SC 1, BAND 2 SC 1, BAND 3
£ o
ADDRESS CODE FOR SC 1, BAND 3
° Each User Receives all Data and Stores Desired Data Only
° Uses Address Header Transmitted at Beginning of Each Scene
. Compatible with Communication Satellite Network

*6-Mbps data rate
processing times equal to or exceeding 18.6 minutes/scene create a steadily increasing

preprocessor queue length and, ultimately, an infinite user-request response time:

A lower limit to the allowable values of transponder transmission speed is also evident
from Figure 11-4; although its precise value for a particular configuration cannot thereby
be accurately determined. With one of the Alaska configuration (#5) simulations, this limit

was very carefully explored (see Figure 11-10).

11.4.3 Data Transmission Alternatives: Two modes of data transmission to the user were

investigated: ''User-unique transmission" and 'broadcast transmission.' User-unique trans-
mission consists of transmitting to each user, in turn, all of the data he requested for
each swath (see Table 11-4). 7Users with the shortest timeliness requirement are given

highest priority.

This mode of data transmission proved inefficient because much of the data is transmitted
more than once due to overlapping of areas requested, In the broadcast transmission mode,
each scene is transmitted only once. All users wishing to receive that scene do so. As

shown in Table 11-4, an address code is transmitted prior to each scene. Each user terminal

(e .

;,m,;-v
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continuously monitors the signal transmitted from the communication satellite. When the
address of a desired scene is received, automatic logic circuitry recognizes that address,
starts up a tape recorder, and records the scene. (Tc provide time for tape recorder start-

up, the address will actually be transmitted one scene ahead of the identified scene.)

Figure 11-5 compares the two modes of tramsmission. It is seen that the transponder data
rate required to satisfy all users is reduced by approximately one-half by use of the broad-

cast transmission mode.

The broadcast mode is well suited for use with a domestic satellite which covers the entire
area where users are located with its antenna beam. If the satellite used a multiple-beam

antenna with narrower beamwidths, the broadcast mode described above would be modified.

11.4.4 Impact of User Demand: The effect of the expanded user demand over the nominal

demand for both the 30m/7-band and 10m/12-band cases is illustrated in Table 11-5 using

network 3, TFor the 30m/7-band case, the network sized for the nominal demand starts into
saturation when required to handle the expanded "demand -- 19.4% of the users do not meet
their timeliness requirements. A small increase of the transponder capacity (from 6 to 7
Mbps) corrects this situation., Based on the average utilization of the transponder, it
would be possible to deliver all requested data within the timeliness criteria with a trans-

ponder data rate of about 6,1 Mbps (7 x 0.87).

The 10m/12-band system simulation contained sufficient transponder capacity to handle the
expanded demand, Both the average utilization of the transponders and the average age of
T

the delivered data increased; however, as shown.

This shows that the network system parameters (and cost) are relatively insensitive to the
choice between the two user models. Therefore, the expanded user model was used in most of

the simulations.

This relative insensitivity to demand model may be used to introduce a conclusion that
becomes even more readily apparent from simulations of wetworks 4 and 5, whers broadcast
user transmissidn is used (see Section 11.5.3): viz., if, ‘in a particular network con-
figuration, the parameters are sized to pfevent network saturation (i.e., build-up of
infinite queues for the preprocessor and/or the transponder), the data timeliness require- -

ments will be satisfied automatically.

11.4.5 30m/7-band versus 10m/12-band Data: From Table 11-3, it is seen that, with very

good accutacy, the effect on aﬁy given network of the 10m/12-band data is to increase the

speeds required for preprocessing and transmission of 30m/7-band data in direct proportion
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NETWORK #3

1 ET AT SIOUX FALLS
1 PROCESSOR AT

SIOUX FALLS
30m/7 BANDS

EXPANDED USER MODEL
2 ERS @ 920 km

16-hr. SHIFT

15 min./SCENE PREPROCESS-
ING SPEED

Figure 11-5.

11-10

TRANSPONDER DATA RATE

Table 11-5

Impact of User Demand

(Mbps)

%

R

E

Q 60 4

U

E 50 4

S

T BROADCAST UNIQUE USER
g 40 =+ TRANSMISSION TRANSMISSION
U

N 30 T

S

A ot

T 20

1

s 10 4

F \.

E 0 1 2 3 4 5 6 7 8
D

Comparison of Data Transmission Techniques to User

AVERAGE »| AVERAGE
(1) (1) UTILIZATION REQUESTED AGE OF
REQUIRED REQUIRED oF NUMBER | DATA VOLUME| DELIVERED
RES/ USER NUMBER TRANSPONDER TRANSPONDER | REQUESTS (? DAYS) DATA
BANDS | DEMAND | TRANSPONDERS (Mbps) (%) (9 days)l (gigabits) (hrs.)
30/7 | Nominal 1 6 97.5 225 3212 20,2
Expanded 1 6(2) 100.0 420 3808 26,7
Expanded 1 7 87.0 420 3808 13.7
10/12| Nominal 40 68.5 225 45955 11.6
Expanded 40 89.5 420 51365 1.,7
* i.e., the sum of -all the»usér requests, including requests for identical or
overlapping land areas., (Total data volume, independent of requests, for
9-day period from two ERS's is 1360 Gigabits and 2100 Gigabits for 30m/7-band
and 10m/12-band data, respectively.)
(1) Required for 0% unsatisfied users.,
(2) 6-Mbps transponder rate ==~ 19,4% unsatisfied users
Assumptions: Lower-48 states

2 ERS

#3. - Central ET, Central Processor
User-unique Transmission
lS‘minutes/scene preprocessing time
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Y
to the ratio of the total data volumes. This is evident for the tranponder data rates --

the ratios of 110 Mbps/6.5 Mbps and 130 Mbps/7.5 Mbps, being approximately the same as the
ratio of the down-link data rates (1579.2 Mbps/102.3 Mbps) for 10m/12-band and 30m/7-band
data (see Section 3.2,3). For the preprocessor, it becomes evident when it is noted that,
although the preprocessing time per scene remains constant, going from 30m/7-band to

10m/12-band data, the data volume per scene has increased, per force, by exactly the ratio

of the total data volumes.

11.5 Simulation Results: Networks Including Alaska.

Simulations of networks 4 and 5 sh.v the impact on network parameters of adding demand for
Alaska data to the demand model, show there is no clear-cut advantage (not considering cost)
to either network, describe the trade-off of transponder transmission rate for preprocessor
speed for a given average age of delivered data, illustrate causes of network saturation,
and indicate a dependence of buffer storage capacity on transponder rate and preprocessor
speed. Having ruled out the necessity of further simulations with user-unique transmission
(Section 11.4.3), with the nominal demand model (Section 11.4.4), or with 10m/12-band data
(Section 11.4.5), these simulations are all restricted to broadcast user transmission,

expanded user demand, and 30m/7-band data,

11.5.1 Impact of Alaska: When Alaska is added to the demand model, a central receiving

location (as in network 3) is no longer possible for direct reception from the ERS's (see
Figures 7-28 and 7-29). The choice of networks is, therefore, between one with regional
preprocessing (#4) and one with central preprocessing (#5), both of which must use regional
reception. The addition of Alaska increases the average data volume generated by approxi-
mately 50%. Figure 11-6 shows a comparison between network 3 and networks 4 and 5, where
#4 and #5 include Alaska. In the latter case (network 5), the Sioux Falls preprocessor
speed would have to be increased by 50% and a trunking link from Fairbanks to Sioux Falls
would be added., In the former case, (metwork 4), a second preprocessor, half the speed of
the Sioux Falls preprocessor; would have to be added at Fairbanks and the transponder data
rate would need to be increased., The transponder data rate shown in Figure 11-6 is the
total required for trunkipg plus user broadcast transmission. The transponder would be used
on a time-shared basis between Fairbanks and Sioux Falls in network 4 and between the trunk-
ing and user transmission links in network 5, In the latter case, the trunking link was

given priority over the user link,

11.5.2 Simulation Comparing Networks 4 and 5: Tigure 11-6 also shows, of course, a

comparison between networks 4 and 5. A definite superiority of one over the other is not

apparent, -Although regional preprocessing requires a'léwer transponder transmission rate

%*The ratio of the data.rates is equivalent‘to the ratio of the total (e.g., 9-day cycle
period) -data volume since the duration of each ERS pass is unaffected by the‘'data rate.
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30m/7BAND: EXPANDED USER DEMAND; BROADCAST MODE

LOWER 48 - #3 LOWER 48 + ALASKA - #4 LOWER 48 + ALASKA - #5
FALRBANKS S10UX FALLS | FAIRBANKS S10UX FALLS
RAW DATA RECEPTION SI0UX FALLS
TRUNKING
LINK
PREPROCESSING &
DISTRIBUTION S10UX FALLS SI0UX FALLS
USERS USERS USERS
AVERAGE NUMBER 46.6 67.2 67.2

REQUESTS/DAY

AVERAGE DALILY DATA

VOLWME (Gbits) 151 74 151 225

MAX1MUM ALLOWED PRE~
PROCESSING TIME 18.5 37.5 18,5 12.4
{min, /SCENE)

MINIMUM TRANSPONDER
TRANSMISSION RATE 2.6 3.9 5,2
REQUIRED (Mbps)

Figure 11-6, Impact of Alaska

than does central preprocessing, it also requires two preprocessors, aibeit of slower
individual speed, rather than one. Looking at the distributions of the age-at-delivery of
individual user requests for approximately equivalent implementations (in terms of trans~-
mission and preprocessing capacities*) of networks 4 and 5 (Figure 11-7), slightly earlier
delivery is seen for network 5. The average age of data delivered by these implementations
of the two networks is 12,8 and 9.9 hours for #4 and #5, respectively. The longer average-
time-to-delivery of network 4 is believed to be caused by the first-in-first-out queuing
discipline used to time share the transponder, Two facts lend support to this belief.

First, increasing both the transponder and the Fairbanks preprocessiﬁg capacity -- separately
and then simultaneously -- had very little effect on the pattern of data deliveries versus
time (see Figure 11-8), even though the average age of delivered data was reduced. In the
best case, however, the average data age still exceeded that of network 5 by .a little more
than an hour. Second, increasing the speed of the Fairbanks preprocessor without increasing
the transponder transmission rate caused late delivery of 2.2% of the user requests; whereas,
before; all deliveries had been early. This is attributed to the queuing discipline as
follows. The féster preprocessing of data received at Fairbanks now allows this data to
reach the transponder queue ahead of (rather than‘after) some ''shorter' timeliness data
received at Sioux Falls, The Fairbanks data would, therefore, be transmitted first, delaying

and causing late delivery of the shorter timeliness data,

*Transmission capacities of 4.2 Mbps (#4) and 5.8 Mbps (#5) are approximately 10% above the
respective required minimum values. Parallel preprocessors (#4) with processing times of
15 and 30 mir/scene are equivalent to a single preprocessor (#5) of 10 min/scene, since
preprocessor speeds (the ‘reciprocal of preprocessing time) add directly; i.e.,

15 1 1 .,

i5 ¥ 30 ° 10
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3000 ~ . 3000~
ALL USER REQUESTS 1-DAY TIMELINESS REQUESTS
’ NETWORK #4 NETWORK #4
FAIRBANKS: 30 min/SCENE
’ SIOUX FALLS: 15 min/SCENE
. 2 TRANSPONDER: 4,2 Mbps
) Z 2000}~ AVERAGE AGE OF DATA: 12,8 hrs. 2000}
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11-14

NETWORK #4

ALL USER REQUESTS
AVERAGE AGE OF DATA: 11.8 hrs,
4.75 Mbps
. SF: 15 min/SCENE
F: 30 min/SCENE

—

0 3 6 9 12 15 18 21 24

AVERAGE AGE OF DATA: 12,3 hrs.
™ 4,2 Mbps
SF, F: 15 min/SCENE

0 3 6 9 12 15 18 21 24 27

AVERAGE AGE OF DATA: 11,0 hrs,
- 4.75 Mbps
SF, F: 15 min/SCENE

AGE OF DELIVERED DATA (HOURS)

1-DAY TIMELINESS REQUESTS

2000 ¢~
1000 =
0 ot
0O 3 6 9 12 15 18 21 24
2000
1000 =
o D e e B
0 3 6 9 12 15 18 21 24 .27
2000 pm
1000 =
0 I —
0 3 6 9 12 15 18 21 24

AGE OF DELIVERED DATA (HOURS)

Figure 11-8, Observed Frequency of Delivery of Requested Data
' Vs Age of Requested Data at Delivery For Network #4
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A series of simulations underlies the parameter values given in Figure 11-6 for networks 4
and 5. Some results from these simulations are presented in Tables 11-6 and 11~7 and Figure
| 11-9. An important, fact to be noted from Figure 1159 is the sharpness of the threshold for
total transponder transmission rate. The transition region between all-user-requests satis-
- fied and no-user-requests satisfied (i.e., network saturation) is very narrow, (Unsatisfied
requests are those that do not arrive within the user-specified timeliness criterion.) This
phenomenon is believed to be associated with broadcast user transmission, and may be con-
trasted with the more gradual degradation in network performance with reduction in preproces-
sing speed and transponder transmission rate when user-unique transmission is used (see

- Figures 1l-4 and 11-5). '

11.5.3 Average Age of Delivered Data and Network Capacity: Computer simulations of net-

work 5 were made to determine the average age of delivered data (from time of data arrival

at the readout station to time data is received by the user). Seiected results from these

-~ simulations are given in Table 11-6. The average data age is a function of both preprocessing
speed and transponder capacity. Figure 11-10 shows the relationship between these parameters.
This figure clearly illustrates the conclusion first introduced in Section 11.4.4 that, if
preprocessing speed and transponder capacity are sufficient to keep up with the data generated
by the earth-resources satellites, then the average age of the delivered data will be small

- » and user timeliness criteria will be met. Sufficiency of capacity, in this instance, means

a transponder throughput rate greater than 5.2 Mbps and, simultaneously, a breprocessing

time less than 12.46 min/scene, .

- 11.5.4 Network Saturation: Progressive network saturation, or overload, due either to

- insufficient transponder capacity or to excessive preprocessing time is shown in Table 11-8.

In the first simulation shown there, the 4.75-Mbps transponder transmission rate is less

than the minimum allowed 5.2 Mbps. As a result, weekly snapshots of system status over the

35-day simulation period record marked and continued deterioration in system performance
(average age of delivered data and percentage of user requests unsatisfied). The cause is

- easily seen to be the steady increase in the length (i.e., contents) of the transponder

queue and the resulting increase in ‘the average time an individual request spends in the

transponder queue,

In the second simulation, the 12.5 min/scene preprocessing time just barely exceeds the
allowed maximum time of 12.46 min/scene. Consequently, the ;ssociated deterioration in
system performance is‘not as rapid as in the first simulation. Nevertheless, given
sufficient time, the preprocessor queue length would become infinite, The third simulation

merely confirms that, when both transmission rate and preprocessing speed are above their

respective thresholds, even slightly, the network will not saturaté though system performance

may not be perfect.

The main objective, then, becomes one of establishing adequate margin in the design, especially

in buffer storage capacity, to insure the system does not overload,




Table 11-6

Computer Simulations of Network #5
(Broadcast User Transmission, Expanded User Model, 30m/7-Band Data)

CONTENTS

Length of queue for preprocessor increasing toward infinity.

Length of queue for transponder increasing toward infinity.

Data point not shown in Figure 11-7.

M = maximum contents; C = current contents; A = average contents; %0's = percentage of all preprocessed or transmitted

Simulation statistics registers were not zeroed prior to run.

data that had zero time in queue.

PROgﬁ;glNG TRAﬂigganR‘ AVERAGE | % UTILIZATION | % UTILIZATION | % USERS PREPROCESSOR TRANSPONDER
¥ AGE (hrs) | PREPROCESSOR | TRANSPONDER | UNSATISFIED QUEUE*** QUEUE***
(min/SCENE) (Mbps) No. SWATHS |, . | No. SWATES [ .
» Mlc] A | M]T¢cC 2 1%0's
12.5 4.75 76.77% 99.99 100.00 57.6 6{2|2.03] 0.341|40]19.70| 0O
12.5 5.25 17.0t 99.99 98.58 7.9 61212.05] 0.3 4| 3| 1.38] 5.6
12.5 6.30 14.37 99.99 82.20 6.0 61212.03| 0.3 4| ol 0.47]27.3
12.5 10.50 12.6" 99.99 49.42 4.3 71212.08] 0.3} 3| o 0.08(63.8
11.5 4.75 76.8% 93.03 100.00 58.0 4100.80|12.5 43 |43]21.30| 0
11.5 5.25 14.1 93.03 99.12 2.5 410(0.80|12.5| 4| 3| 2.00{ 2.6
11.5 5.80 11.1 93.03 90.13 0 410]0.90 |12.5| 4] 1] 1.13]15.2
11.5 6.30 9.9 93.03 82.42 0 slofo0.90(12.5| 4| o] 0.72]20.0
11.5 10.50 7.7 93.03 49.53 0 5{0/0.90{12.5| 3| 0| 0.12{55.4
10.7 4,75 76.3% 86.52 100.00 57.7 410|0.61]12.9 |44 | 44| 21.65] O
10.7 5.25 13.3 86.52 99.15 0.6 4{0{0.62{12.5) 5| 4| 2.29{ 2.6
10.7%% 5.80 12.0 86.52 89.97 0 tl1lo.62)11.8] 4| 3| 0.76 |15.6
10.7 6.30 9.3 86.52 82.56 0 410l0.65(12.5] 4| 1| 1.07|19.7
10.7 10.50 6.5 86.52 49.62 0 41010.74{12.5| 3| 0| 0.14|51.8
10.0 4.75 75.7% 80.76 100.00 56.9 410|0.48]16.3 4544|2167 0
10.0 5.25 12.8 80.76 99.16 0 410l0.48[20.7] 5| 4| 2.39| 3.5
10.0 5.80 9.9 80.76 90.09 0 4|0]0.51113.9{ 5| 3| 1.59]16.4
10.0 6.30 8.6 80.76 82.56 0 5(0/0.54|13.9{ 4] 2| 1.08/}18.3
10.0 6.85 7.6 80.76 76.24 0 4{0lo0.56{13.2| 4| o] 0.7320.1
10.0 10.50 5.3 80.76 49.68 0 41010.6212.5{ 3| 0| 0.14 |47.3
7.5 4.75 74, 8% 60.57 100.00 56.3 21010.20{41.0 45|43 |21.74| 0
7.5 5.80 8.3 60.57 90.13 0 210}0.21137.0] 5| 1| 1.44]12.9
7.5 6.85 5.7 60.57 76.42 0 21010.22{30.9) 5! 0o} 0.73{19.4
3.0 4.75 73.1% 24.22 100.00 54.3 1{0]|0.00]92.245{43]{21.70| o
3.0 .~ 10.50 1.8 264.22 49.68 0 1{0lo0.00)92.9) 2| o] 0.11]46.8
T

LSTLAL~TaM
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C Table 11-7
I
QB
';% E Computer Simulations of Network #4
O (Broadcast User ‘Transmission, Expanded User Model, 30m/7-Band Data)
S
o
~ =
RE -
CONTENTS
PREPROCESSING . o -
TIME TRAgiggNDER AVERAGE | % UTILIZATION | % UTILIZATION 1{°EQI€JSEI§5RTS PREPROCESSING QUEUE TRANSPONDER QUEUE
(min / SCENE) (Mbps) AGE (hrs) | PREPROCESSOR \TRANSPON‘DER UNSATISFIED STo TFalls Tolrbanks
~ . No. SWATHS T, ., "[No. SWATHS T, =\ | No. SWATHS |, ..
Sioux Falls | Fairbaunks SF F M|C A © MiC: A ° M|C A °
15 30 3.70 46.6" 81.6 |.78.8 100.00 46,1 310}0.59 [21.5]3100.60|32.6{23}23[11.0 | 0O
15 30 4,20 12.8 81.6 | 78.8 93.4 3,010.59 {21.5]3'0 0.60(32.6| 3| 2| 0.68|25.9
15 30 4.75 11.8 81.6 | 78.8 83.0 0 3:0:0.59{21.5|3 0.0.60|32.6 D2 0.47 [40.5
z —
15 3.70 46.7" 81.6 | 39.5 100.00 43.6 3°0:0.59 [21.5[3 0 0.16 [35.6 (24 :24 11.8 | 0
15 4.20 12.3 81.6 | 39.5 93.4 2.2 3:0 0.59 [21.5{3°0 0.16}35.6 4{ 2 1.27 | 16.0
15 4.75 11.0 81.6 | 39.5 83.0 0 3,0,0.59 |21.5 3'0,0.16 |35.6 &# 21 0.95|25.7
1
i 1 |

Sk

Length of queue for transponder ine¢reasing toward infinity.

M o=

maximum contents; C = current contents; A = average contents; %0's = percentage of all swaths with zero

time in queue.

L8TLYT-Tam

LT-T1
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Network Configuration

#4 - Regional #5 - Central
Preprocessing Preprocessing
Preprocessing
Time (min/scene)
Sioux Falls — 15 10 30m/7 Bands

Fairbanks — Maximum Demand
Broadcast Mode

XPONDER -+—No Users
4.0 Satisfied
XMISSION /
RATE 4 7 /)
5.0
(Mbps)
5.5
TRUNKING «— All Users
+ 6.0 Satisfied
USER LINKS :
6.5

Figure 11-9. Performance of Sioux Falls/Fairbanks Network

11.5.5 Buffer Storage Capacity: Not surprisingly, transmission and preprocessing

capacities of a network have some influence on the amount of buffer storage required in the
transmission and preprocessing queues, The interaction of these functions for network 5 may
be illustrated in reference to the five simulations that use a preprocessing time of 11.5
min/scene (see Table 11-6). As the transponder transmission capacity is increased, there
are two offsetting effects as far as total required storage capacity is concerned. First,
the transponder queue length is reduced, going from a maximum of 4 swaths to 3 swaths,
Second, the preproceséor queue length is increased because transfer of raw data to the pre-
processor queue from Alaska is more rapid. The maximum contents increases from 4 swaths to
5 swaths. Notice that, for a transmission speed of 6.3 Mbps, the total storage capacity is

at a maximum of 9 swaths,

Looking now at the five rums using a 10.7 min/scene preprocessing time, it is seen that the
maximum contents of the preprocessor queue is now only 4 swaths, whereas, with the slower
115 min/scene preprocessor, ‘the maximum contents of the queue'reéched.S swaths. At the

same time, as anticipated, the maximum contents of the transmission queue (for 5.25 Mbps)

‘has increased from 4 swaths to 5 swaths, That isy until such time as the combined capacities-

of the preprocessor and the transponder allow reception, preprocessing, and broadcast of an
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Figure 11-10.

Effect of Transponder Rate and Preprocessing Time On Average

Age of Delivered Data.
in 100% user satisfaction.

in the user-specified timeliness criterion.)

(All simulations shown here resulted
All requests were delivered with-

average-length swath prior to reception of the succeeding swath, the faster data is pre-

processed, the more time it will spend in the transmission. queue,
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Simulation 1:

11-20

Table 11-8

Three Simulations of Network #5 Showing The Progressive Network Saturation

Caused by Insufficiency of Transponder Rate or Preprocessing Speed

(Broadcast User Transmission, Expanded User Model, 30m/7-Band Data)

11.5 min./Scene, 4.75 Mbps (Insufficient Transponder Rate)

TRANSPONDER QUEUE™ PREPROCESSOR QUEUE*
- Average
LENGTH LENGTH %
Total Total Age
Day (No. of Swaths) %0's [Avg Time (No. of Swaths) %0's{Avg Time (Hours) Unsat.
Max | Avg |Cur (Hrs) Max | Avg | Cur (Hrs)

7 14 6.0 |13 0 19.0 4 0.5 0 13.81 2.5 35.6 28.7
14 22 10.1 | 22 0 25.8 4 0.65 0 12,7 2.5 44,9 43.3
21 29 14,0 | 29 0 33.2 4 0.73 0 12.4] 2,6 55.0 49,7
28 37 17.7 | 34 0 40,4 4 0.77 2 12.7 2.6 65.9 53.1
35 43 21.3 | 43 0 47.3 4 0.80]| 0 12.5] 2.6 76.8 58.0

Simulation 2: 12.5 min,/Scene 10,5 Mbps (Excessive Preprocessing Time or Insufficient
Preprocessing Speed)

7 2 0.05} 0 | 67.5 0.16 5 0.98 1 1.7 4.84 10.5 0
14 3 0.07] 0 | 64.3 0.19 5 L.37 1 0.9 5.3 10.8 1.0
21 3 0.08] 0 | 62,8 0.18 6 1.65] 2 0.6| 5.8 11.3 1.2
28 3 0.08| O 63.9 0.18 6 1.89 2 0.4] 6.3 11..9 2.8
35 3 0.08( 0 63.8 0.19 7 2,08 2 0.3] 6.8 12.6 4.3

Simulation 3: 11.5 min./Scene, 5,25 Mbps (Capacity Sufficient to Prevent Network Overload)

7 4 1.33] 2 1.2 4.4 4 0.52 0 13.8] 2.6 13,6 2.8
14 4 1.73] 4 2.9 4,5 4 0.68 o] 12.7 2,6 13.7 2.6
21 4 1.87] 3 2,7 4.5 4 0.77 0 12.4] 2.7 13.9 2.2
28 4 1.93] 2 3.2 4.5 4 0.82 2 12,7 2,7 13.7 2,2
35 4 2,041 3 2,6 4,6 4 0.83 0 12,5 2.7 14.1 2.5

= Current, %0's = the percent of swaths with zero

* Max

maximum, Avg = Average, Cur

time in queue.
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11.6 Network Cost Comparisons.

The seven network configurations described in Section 11.2 were sized to satisfy all user
requirements, The 30m/7-band case and the expanded user demand model were postulated. These
configurations are shown in Table 11-9. Two cases were considered for network 3; one using
user-unique transmission, the other using broadcast transmission. The annual costs were

determined for each network and are shown on the last line of the table.

Table 11-9

Summary - Network Comparisons

2 ERS
30 m/7 BANDS
EXPANDED DEMAND LOWER 48 LOWER 48 + ALASKA
16-HOUR SHIFT 1 9 A 3 B 4 5 6 7
GD SF GR |GD SFGR SF A SF| A SF|A GD GR TDRS
CONFIGURATION - SF SF GR GR
SF SF
DISSEMINATION UNIQUE USER BROADCAST MODE
TRANSPONDER .
DATA RATE 6.5 " 7.5 6.5 3.0 4 6 8 8
Mbps -
PREPROCESSING 27 30
SPEED 42 15 15 15 156 10 10 10
min/SCENE 52
TOTAL ANNUAL
COST, SK/yr 4829 4043 2352 2250 4024 3046 4432 2985

NOTE: USER-OWNED EQUIPMENT AND TDRS COSTS NOT INCLUDED .

In comparing these costs, two facts should be noted: First, networks 1, 2 and 3 collect
data from -the lower-48 states only. Second, network 7 does not include any costs associated
with the use of the TDRS (other than the cost of special digital-handling equipment at White
Sands).

Tables 11-10, 11-11 and 11-12 present the breakdown of cost data. Costs above the line are
for equipment procurement and installation. Development costs and other non-recurring Costs,
such as preparation of documentation, are not included, Costs of redundant equipment and

facilities (buildings, land) also are not included,
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Table 11-10
Cost Comparison of Lower-48-States Network
2 ERS 1 #2 #3A #3B
30m/7-bands ERS Reception.s] REGIONAL | REGIONAL CENTRAL
Expanded Demand Preprocessingegs REGIONAL CENTRAL CENTRAL
16-hour shift USER-UNTQUE TRANSMISSTION | BROADCAST
EQULPMENT & INITIAL INSTALLATION COSTS ($K)
EQUIPMENT
ERS DATA RECEPTION =~ THROUGH
Q-L EXTRACTION 2823 2823 941 941
PREPROCESSING 3812 2550 2550 2550
POST-PROCESSING 465 155 155 155
TRUNKING (DOMSAT ET's) 186% 247%% 62% 62%
TOTAL EQUIPMENT 7294 5775 3708 3708
EQUIPMENT HANDLING (10%) 729 578 371 371
INTEGRATION, INSTALLATION & TEST (20%) 1605 1270 816 816
PROFIT (10%) 963 762 489 480
TOTAL INITTYAL INSTALLED COST 10591 8385 5384 5384
ANNUAL COSTS ($K)
Amortization (of initial installed 2034 1611 1034 1034
cost: 7 yrs, 8% int.)
Maintenance (107 Total Equipment)#¥ 733 590 375 375
Transponder (Leased) 204 230 204 102
Operation and Administration 1858 1612 739 739
TOTAL ANNUAL COST 4829 4043 2352 2250

% Transmit-only terminals,

%% 3 Transmit-only and 1 Transmit-Receive Terminal

#*¥%% Includes an additional $4K for each Trunking ET (See Section 7.2,2.9)

Table 11-11

Cost Comparison of Alaska-Plus-Lower-48-States Networks

2 ERS
30m/7-bands e #5
Expanded Demand ERS Receiving —s=| REGIONAL REGIONAL
16-hour shift Preprocessing —wm| REGIONAL. | CENTRAL -
Broadcast User Transmission
EQUIPMENT AND INITIAL
INSTALLATION COST ($K)
EQUIPMENT
ERS DATA RECEPTION ~ THROUGH Q-L 1882 1882
EXTRACTION
PREPROCESSING 4350 2835
POST~PREPROCESSING 310 155
TRUNKING (DOMSAT ET's) 124:% 185%%
TOTAL EQUIPMENT 6666 5057
EQUIPMENT HANDLING (10%) 667 506
INTEGRATION, INSTALLATION & TEST (20%) 1467 1113
PROFIT (10%) 880 668
9679 7344

TOTAL INITIAL INSTALLED COST

Amortization (of initial installe
- 7 yrs, 8% int.)

Maintenance (10% Total Equipment)

Transponder (Leased)

Operation and Administration

TOTAL ANNUAL COST

d cost:

dededle

ANNUAL COSTS ($K)

1859 1411
675 514
132 190

1358 1031

4024 3046

 Transmit-only terminals,
Terminal.
section 7.2.2,9)

3%

*% 1 Transmit-only and 1 Transmit-Receive
#*%%Includes an additional $4K for each Trunking ET (See
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Table 11-12

Cost Gomparison with Preprocessing at
Greenbelt, Distribution at Sioux Falls

Includes Alaska

2 ERS , #5 #6 #7
30m/7~bands ERS Reception —#| REGTIONAL REGIONAL TDRS
Expanded Demand Preprocessing —w|STOUX FALLS| GREENBELT | GREENBELT

16-hour shift
Broadcat User Transmission

EQUIPMENT AND INITIAL INSTALLATION

COSTS ($K)
EQUIPMENT

ERS DATA RECEPTION - THROUGH Q-L EXTRACTION 1882 2823 616%

PREPROCESSING 2835 2835 2835

POST-PREPROCESSING 155 155 155
TRUNKING (DOMSAT ET's) 185%% 370% 308

TOTAL EQUIPMENT 5057 6183 3914

EQUIPMENT HANDLING (10%) 506 618 391

INTEGRATION, INSTALLATION & TEST (20%) 1118 1361 861
PROFIT (10%) . 658 816 517

TOTAL INITIAL INSTALLED COST 734k 8778 5683

ANNUAL COSTS ($K)

Amortization (of initial installed cost: 7 yrs,8% int) 1411 1724 1092
Maintenance (10% Total Equipment)¥#¥ ‘514 634 403
Transponder (Leased) 190 242 242
Operation and Administration . 1031 1832 1248
TOTAL ANNUAL COST 3046 4432 2985

* Does not include cost of TDRS service. *¥ Transmit-only and Transmit-Receive Terminals
*%% Includes an additional $4K for each Trunking ET (See Section 7.2.2.9)

11.6.1 Initial Installed Network Costs: ~ ERS data reception covers the cost of the data

readout terminal, including the antenna, the receiver, demodulator, buffer storage, reformat-
ting, address insertion, and quick-look extraction (see Section 7,1.1.6 and 9.4.1). Networks
1, 2. and 6 require three readout terminals; networks 4 and 5 require two, and network 3
requires one, Network 7 is also a single installation located at White Sands and includes
everything except the antemnma and réceiver.; (An interface at IF is assumed.) A single

ERS data-reception station costs about $940K,

Preprocessing covers all radiometric and geometric correction equipment plus auxiliary buffer
storage, displays, etc., as detailed in Section 9.4,1.. The costs are a function of pre-
processing time per scene being about $2.55M,for a time of 15 min/scene and $2.84M for a

time of 10 min/scene. Network 1 requires three preprocessing facilitice, network 4 requires

¥
two, and the others only one. ¢

Post-preprocessing covers the cost of archive recording/playback, source selection, and inter~

face conctrol equipment. One set of equipment is located with each preprocessing facility.
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Trunking/dissemination requires either transmit-only or transmit-only and transmit-receive
trunking terminals, A transmit-receive trunking. terminal consists of a limited-motion 5m -
antenna, 500W transmitter, .120 °x low-noise preampllfier, receiver demodulator, and miscel-

laneous equipment, Total equipment cost for a single transmlt receive terminal is $123K and

for a single transmit-only terminal is $62K (see Table 7-21).

Equipment handling costs are estimated to.be 10% of the equipment costs and integration,
installation, and test costs are estimated to be 20% of both hahdling and equipment costs,
Profit is estimated at 10% of the total of these costs, thus completing the itemization of

initial installed cost of the various networks.,

11.6,2 Annual Network Costs: Initial installed network costs are converted to an equiva-

lent annual cost, assuming a 7-year equipment life (amortized over 7 years) and an 8% interest
rate, Annual maintenance césés are estimated to be 10% of the initial equipment costs, not
including handling.‘ (Maintenance of the trunking terminals includes an additional S$4K as
discussed in Section 7.2.2.9. See also Table 7-19.,) The leased Domsat transponder cost is
based on a nominal $800K per year per 40-Mbps charge (see Figure 7-14)., Operations costs

are based on personnel assigned for each shift to perform the functions shown in Table 11-13.
Two shifts (16 hours per day), seven days a week are assumed, Total personnel costs are

shown in Table 11-14 for each network configuration. They are given in detail in Section

9.4,2, Administrative costs are included in the personnel costs, being estimated at 15% of
the total base salary.

Table 11-13

Operational Personnel for Data Dissemination. Network

A, OPERATIONAL ENGINEER - acquisition, monitors BER, maintains
rf equipment, operates data handling console, changes
primary record tapes, maintains digital equipment,

B. PROCESSING ENGINEER - operates and controls correction
operations, maintains equipment.

C. DATA DISSEMINATION ENGINEER - controls transmission from
pipelines, archives and quick-look, changes quick-
look and archlve tapes.

D. CLERK - responsible for typing, reproduction, etc., assists
in maintaining archive file, retrieves and shelves
archive tapes (day shift only).

E. TECHNICIAN. - performs minor trouble-shooting and repairs.
. , . )
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Table 11-14

Network Total Annual Personnel Cost and Cost

Breakdown by Facility Typew

FACILITY TYPE AND NETWORK CONFIGURATION

COMBINED 2-SHIFT

ANNUAL PERSONNEL COST #1 {£2 #3 4 #5 #6 #7
CENTRAL - $739K . 1 1 1 1

reception, pre=~
processing and
dissemination

REGIONAL - $619K 3 1
reception, pre=-
processing and
dissemination

CENTRAL - $664K 1 1
reception and
preprocessing

REGIONAL - $292K 3 1 4 2
reception or
dissemination
only

TOTAL ANNUAL

PERSONNEL COST ($K) 1858 1612 739 | 1358 1031 1832 1248

% The detailed costs of personnel for each facility type are given in Section 9.4,2

11.6.3 Sensitivity to Preprocessing Costs: As mentioned in Section 9.4, rapid changes in

the state-of-the-art of digital processing hardware and software make cost estimates for
these components less reliable than those for other components, It is appropriate, therefore,
to determine the sensitivity of the total annual cost of the networks to variations in the
estimated cost of the preprocessing equipment. Figure 11-11 presents the results of this
determination in which the cost of the preprocessing equipment was assumed to vary from 0.5
to 1.5 times the nominal estimates given in Tables 11-10 through 11-13,

In reading Figure 11-11, networks .l, 2 and 3, which do not include Alaska, should be inter-
preted separately from the other 4 networks.  The cﬁrves show that even a + 50% error in the
preprocessing cost estimate does not change the relative order of the three lower-48-state
networks (1,2,3). The order of the lower-48-plus-Alaska networks (#4, #5, #6, #7) is changed
slightly only if the nominal equipment cost estimate proves to be low. In this case, network
4 would become sllghtly more costly Lhan network 6. - Networks 5 and 7, however, continue to
be the least- cost choices &egardless of the cost of the preproce531ng equipment. It is
interesting to note that the cost difference between networks 4 and 5 decreases with decreas-
ing préprocessing costs, A crossover would occur when the dual processing fécilities of

‘metwork 4 becomes 1ess'costly than the trunking link of network 5.
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COST OF PREPROCESSING EQUIPMENT - RELATIVE TO NOMINAL ESTIMATE

Figure 11-11. ‘Network Costs Vs Preprocessing Costs

Note: Networks #1, #2, #3 cover lower-48 states only, others include Alaska.

Sensitivity to Operations Costs: The cost of network operations developed in

Section 9.4.2 and summarized in Table 11-14 are believed to be minimum estimates and, as
such, subject to increase, Were they to increase, the new amounts for the various networks
would retain their relative ranking (e.g., operations cost for network 6 would still be more
than for network 1, that for network 1 would still be more than for network 2, etc.) Since
this ranking is the same, with one exception,* as the ranking of networks by total annual
cost prior to the increase in operations costs (compare Tables 11-9 and 11-14), such an
increase would not change the annual cost ranking., The results and conclusions of this

study are, therefore, transparent to upward changes in the costs of operations,

11.6.5 Cost of 10m/12-Band Data Networks: = Detailed cost estimates for the 10m/l2-band

case were not attempted because of the rather large extrapolations in the state-of-the-art
required (see Section 12). Figure 11-12 presents an approximate extrapolation from the cost
figures described above for networks 1’through 5 based on the reasoning shown in Table 11-15.
The main difference between the two cases is the cost of data transmission which is expected
to increase more rapidly than the cost of preprocessing, thus magnifying the advantage of

the broadcast mode over the user-unique transmission mode,(network 3B vs 3A). No development

costs were included in this comparison,

*Networks 5 and 7 interchange rankings when ranked by total annual cost. This inter=
change could be reversed only if operations costs increased nearly 200%. ’
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Figure 11-12. Comparison of 30m/7-Band and 10m/12-Band Annual Costs

Table 11~15
Cost of 10m/12-Band Networks Relative to That of 30m/7-Band Networks

e Readout Station Cost, x 3
- larger antemnnas and better pointing
- high-speed buffer
~ higher frequency rf equipment

e Preprocessing Cost, x 2
- higher data rates by 15.5
- large increase in state-of~the-art

o Archive Storage Cost, x 2
- larger volume by 15,5
- large increase in state-of-the-art

e Domsat ET Cost, X &
-~ larger antennas
- multiple channels

e Leased Transponder Cost, x 8
-~ 15:1 higher data rates
- 50% reduction in space segment costs
(state~of-the-art increase; supply and demand)

e Labor (Equipment Handling; Integration, Installation and Test;
Profit; Operation and Administration), x1
- man-machine interface state-of-the-art increases
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11.7 User Costs.

The network costs derived in the previous section did not include the cost of the user terminal
required to receive the data from the communication catellite. To estimate an annual cost per
user, it is assumed that the network costs are divided evenly among all users, While this is
not likely to be the case in actual practice, the results should indicate the cost to an

average user,

Each user owns a small receive-only terminal operating at 12 GHz which consists of the equip-
ment shown in Figure 11-13 (see also Figure 7-15 and Table 7-18). This figure also shows

the breakdown of equipment costs which total $75K. This cost is used in deriving a total
annual user cost where the annual cost for network 5 (from Table 11-9) is divided equally
among n users, This is shown in Table 11-16., For example, for n = 100, each user pays

§30,5K per year as his share of the network costs plus $20.5K per year for his terminal costs.

Assuming a demand of 500 scenes per year for the average user, the cost per scene is $102.

12 GHz

COST - SK

5 m DIAMETER
LIMITED MOTION ANTENNA 12
LOW NOISE PREAMP (120°K) 18

DOWN CONVERTER AND

DIGITAL RECEIVER (DEMOD) 20
ADDRESS AND DATA EXTRACTION 20
MISCELLANECUS 5
TOTAL EQUIPMENT. COST 75 K

Figure-11-13, User Terminal Equipment

The dbove analysis gives a rough idea of what an automated high-speed data-dissemination
network would cost to a user., Actual user cost per scene could vary significantly from the
figure derived above, depending upon the degree to which the earth-resources program is sub-

sidized by the government, the number of users sharing the costs, and the_number of scenes

_ required, Furthermore, user processing (classification, analysis, display) costs must be

added to obtain the total cost.
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Table 11-16

User Costs

*

_ /ANNUAL NETWORK GOST INITIAL INSTALLED *
AVERAGE ANNUAL COST = ( ) (
T n + \USER TERMINAL COST) x (1/5.2) " +

(2.5K 4+ 0.10 x $75K)***
ededede

3046K/n + 109K x Q(n) x (1/5.2) + 10K
3046K/n + 21K x Q(n) + $10K

n 25 50 100 200
AVG. AC | 145K $83K | $51K | 835K

il

n = Number of Users
No Operator Required for User Terminal Operation
No Facility Costs

* Equipment Cost x Quantity Procurement Factor + Equipment Handling Gost (L0%) +
Installation, Alignment, & Test (20%) + Profit (10%)

= EC x Q(n) x 1.1 x 1.20 x 1.1  (Non-Tracking Antenna, Single-Rate Demodulator)
“*¥% . Amortization of Capital (7 years, 8%)
%% Annual Maintenance (10% of Equipment Cost + 2.5K)

#*%¥k%  See Figure 7-17 for a definition of the quantity procurement factor, Q(n)

The current (1975) user cost for digital data on computer-compatible tapes (CCT's) from the
EROS data center in Sioux Falls is approximately $200 per scene (one tape) [6]. Two factors
should be noted in connection with this cost., First, the ratio of the volume of data in a
planned 30m/7-band scene from LANDSAT-D to that of a 90m/4-band LANDSAT-A scene is approxi-
mately 15, In practical terms, this would require 15 CCT's/scene rather than 1, and perhaps
entact a wimilar 15-fold increase in cost, if the present data demsity of 1600 bpi were
maintained, Second, in constrast to the estimated $102-per-scene cost developed above, the
dollar value of current EROS products covers the cost of reproduction only and does not include
any of the following: total EROS center costs, NASA operating costs associated with data
reception, costs of data transfer ffom reception sites to the central data center, the
National Data Processing Facility (NDPF) costs, or correctional processing costs including
NDPF operations. In addition, the costs oI saia iLrunsfer from the Sioux Falls data center

to the user are not included.

11.8 Impact of Data Compression.

*

Data compression has the potential to decrease the costs of trunking data. The decrease was
determined for network 5 -~ the trunking link from Fairbanks to Sioux Falls -~ for various
assumed values of the cost of the data compression equipment and for pre-compression trunk-
transmission rates appfopriate for 30m/7-band and 10m/12-band data. The results are shown

in Figure 11-14, Details of the calculations are given in Appendix I. From a previous
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NASA-funded study [ 1], a compression ratio of 4:1 seems achievable with little or no distor-

tion. This ratio was assumed here.

The conclusion is that data compression would have little or no effect on a 30m/7-band net-

work but could realize significant savings in a 10m/12-band network.

11.9 Summary and Illustration.

The least-cost network either for Alaska and lower-48-state data collection and dissemination
or for lower-48-state coverage only, is one using central reception (as much as possible) and
preprocessing facilities, Network costs will be further minimized with broadcast user trans-
mission., The transmission rate (Mbps) will be determined largely by the ERS-to-readout-
terminal data rate but need not be more than 6 Mbps to handle both data trunking and broad-

cast user transmission for 30m/7-band data. The required preprocessing time per scene must

400
TRUNKING LINK
UNCOMPRESSED DATA RATE
23 Mbps (10m/12-BANDS)
g 300 f=
el
~
b4
<y
192]
(4]
Z
> 200 ASSUMES NETWORK #5
c @ TRANSPONDER LEASE CHARGE: $800K/YEAR PER 40 Mbps
g APPLY DATA COMPRESSION TO FAIRBANKS-SIOUX FALLS LINK
8 EQUIPMENT LIFE: 7 YEARS
- INTEREST RATE: 8%
%“ 100k COMPRESSTION RATIO: 4 TO 1
z
<
1.5 Mbps, (30m/7-BANDS)
0 hh.-§“"‘£:£=: | I { 1

0 100 200 300 400 500 600
INITIAL INSTALLED COST OF DATA COMPRESSION EQUIPMENT ($K)

Figure 11-14. Annual Cost Savings with Data Compression vs Initial Cost
of Data Compression Equipment

be geared to the input data volume with 10 min/scene being adequate for lower-48-state-plus—
Alaska coverage. This translates into preprocessor speeds of approximately 70K pixels/sec

and 630K pixels/sec for 30m/7-band and 10m/12-band data, respectively.
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The implementation of network 5, the least-cost network covering the lower-48 states and
Alaska, is illustrated in Figure 11-15 for 30m/7-band data. The ERS raw data link parameters
are given in the first column of Table 7-10, The domestic communication satellite link
parameters are given in Figure 11-16. As mentioned previously, the domestic satellite link
utilizes a single frequency channel which is time-shared between the Fairbanks-to-Sioux Falls
trunking link and the user broadcast transmission link, The trunking link has first priority.
The central facility at Sioux Falls is implemented according to the block diagram shown in

Figure 11-17. It is described in detail in Section 9.
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Figurevll-ls. Tilustration of Network 5 Implementation



11-32

WDL-TR7187
EIRP/TRANSPONDER = 40 dBw
G/T = -8 dB/%
# SYNCHRONOUS SATELL1TE
o LEASED SATELLITE TRANS-
PONDER OR
e TRANSPONDER ON SEOS
12 GHz
ANTENNA DLAMETER ANTENNA DIAMETER = 5 m
=5m .
TRANSMIT POWER RECEIVE TEMPERATURE = lZUQI\
= 500 W G/T = 29.7 uB/®x
TERMINAL AT USER
PREPROCESSING FACILITY
FACILITY
Figure 11-16. Domestic Satellite Link Parameters
for Implementation of Network 5
R.F, TO DIGITAL DIGITAL TO REGORD
DATA HANDLING Rgg;};éns:%gc
CONTROLLER Q-L EXT
CORREGTION | RADTOMETRIC
CONTROLLER GEOMETRIC
CORRECTTONS
>§ ARCHIVES
\v4
.| USER TRANSMISSION ‘ ZS
COMMUNTCATION
CONTROLLER
Figure 11-17. Baseline Central Facility (30m/7 Band)




WDL~-TR7187 12-1

SECTION 12,0
TECHNOLOGY REQUIREMENTS

Required technological development is paced by two factors, both related to speed; namely,
data rate and throughput, All equipment in a dissemination network can be classified as
data-rate dependent or througput dependent. This section presents required development by
that classification, In addition, development, in this report is classified as non-recurring

design and research, the latter reflecting necessary experimentation.

12,1 Data Rate Dependent Equipment

All equipment associated with signal reception through the first recording is data-rate
dependent. Serial-to-multi-channel conversion naturally reduces this dependency. Multi-
phase shift keying is a modulation technique that, in effect, performs this conversion at
the data source. - For example, quadrature-phase shift keying (QPSK), is currently the most
efficient digital transmission scheme, time allows the use of equipment at half the data
rate. For earth-resources data, another technique is serial-to-band conversion soon after
conversion to the digital baseband. Thus, at least for the data rates considered in this

study, there are design approaches to circumvent technological constraints,

This study'focused on a data rate range from 100 Mbps to 1600 Mbps. Data rates at the lower
end (100 Mbps) can be accommodated by all equipment with existing technology. The first
factor to be considered, as this data rate is increased, is the allowable bandwidth allocation.
At about 120 Mbps, it is necessary to increase the carrier frequency in order to rewain within
the allocated bandwidth., This is discussed in Section 7.1.1 of this report., Carrier
assignment is dependent on the type of service, In section 7.1.1 three frequency allocations
were indicated as possible for earth~resources data. These were 14,45 GHz, 20.7 GHz, and 40.5
GHz. The actual availability of and assignment to fhese bands is dependent on international

agreement.

Technically, data rates up to 120 Mbps could be serviced at the 14.45-<Ghz band. No devel-
opment would be required in this frequency band for any ground-based equipment, . Space-to-
space links such as from a polar orbiter to a TDRS will, however, impose engineering develop=~

ment of a large pointable antenna,

At the 20.7-GHz band, non-recurring engineering will be required for all radio-frequency
components from the preamplifier to the demodulator. However, no research development is

required,

At 40,5 Ghz, where rain attenuation becomes a critical factor, emphasis must be placed on

low-noise operation., This may be circumvented, in part, by location of ground terminals.
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Also, further research is required to gain an accurate assessment of rainfall attenuation,

As the data rate is increased above 120 Mbps, the next critical technological constraint occurs
at the recorder., At about 300 Mbps, magnetic tape recorders reach a technological limit,

Above this rate, magnetic tape recorders would need to be parallel -- an approach which creates
prohibitive synchronization problems for a precise serial data stream. The use of magnetic
tape recorders, therefore, requires research development., This development should be

directed essentially toward increasing the packing density. Current operational technology

is in the vicinity of 33 kbpi (kilobits per inch). An increase in this packing density can

be accomplished with digital data by coding techniques f{17]. Packing densities up to 50 kbpi
are now design goals. Given this accomplishment, data rates accommodated by a single recorder

could be extended to about 450 Mbps.

Optical recording is an alternative technology for higher data rates. Harris Radiation, Inc.
has demonstrated hologram recording on 35mm film at 600 mbps [2], Using QPSK modulation,
this data rate could be extended by a factor of 2 thus accommodating a 1.2~Gbps serial signal.
Given research development, the direct-record rate could be increased to 1 Gbps which, with
QPSK modulation, would accommodate the 1.6-Gbps signal associated with 10m/12-band data.
However, optical recording is currently restrained by the playback speed which is about a
factor of 50 less than the record speed. This is a throughput speed constraint. Research

development would be required on optical playback rates.

Digital components are now operating at gigabit rates. Front-end digital circuits would
require engineering development but not research at rates above about 250 Mbps. This develop-
ment would not, however, be greater in cost than the normal non-recurring cost for any special
digital design. Again, QPSK modulation would allow data handling up to the 1.6-Gbps data

rate.

In summary, required research development is dependent on the frequency allocation. At 40 GHz,
rain attenuation effects and design approaches must be evaluated, Above 300 Mbps, further
research is required on magnetic tape recording. Above 600 Mbps, further research is required
on optical recording. TIf the latter is employed, research is required on playback techniques

to satisfy throughput rates.

12,2 Throughput-Dependent Equipment.

If band-parallel processing is used, no research technology development is required on digital
components. As suggested in section 9.0, all digital operations can be performed on-the~fly.

Non-recurring engineering will be necessary for any special device.
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The major bottleneck is in the area of geometric correction. Current technology using limited
distributed prdcessing will accommodate throughput rates for current correction schemes at
about 3.75 microseconds per pixel. Increasing this rate is heavily dependent on specific
system design. In addition to higher computational speeds that can be expected with array
processors, major gains can be expected through changes in computer architecture. Technological
development now in process should extend the throughput speed to 1 microsecond per pixel [3].
Depending on the required scene production rate, spatial resolution in excess of 30m will
require further research development. Quite likely this development will be the result

of current trends independent of earth-resources data requirements,

For example, the introduction of the large scale integrated (LSI) circuit is creating a
major change in computer architecture. The emphasis on maximizing the utilization of an ex-
pensive resource, the central processing unit, is no longer the primary concern. Computers
may now be configured in a functional manner to accomplish a specific task in an economical
manner as a result of the mini/micro-computers, which are a consequence of the large number
of circuit components on a single chip. The maximum components/chip as a function of time

since 1960 is shown in Figure 12-1,
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Figure 12-1 Maximum Components/Chip vs Time (Projection)
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The limitations posed by optical diffraction are being bypassed with the introduction of
electron beam and soft xe-ray lithography [2]. Typical improvements to be expected by use of
the advanced lithography is a reduction from 5-pm lines to l-uym lines with a 25:1 increase in

dengity and a 125:1 improvement in the power-delay product. Circuit speeds should improve by
a factor of 5,

If increased resolution implies proportionally increased registration accuracy of a fractional
pixel, then another constraint will be introduced in error models of 3-axis stabilized plat-
forms., The outputs of such models are employed to narrow the window of extracted GCP's in the
primary data stream. Thus, the time for GCP matching to reference GCP's is dependent on the
error model accuracy. Research development will be required in software at 30m or greater
resolution if fractional pixel registration accuracy is required. Tt should be noted that
there are now no positive results relating classification accuracy to registration accuracy.

Thus, such technological development may not be necessary.

Figure 12+2 summarizes required technological development. The horizontal axis indicates data
rate, spatial resolution, and preprocessing time per pixel to achieve a 10-minute-per-scene.

production rate. The spatial resolution was normalized on 7 spectral bands.
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SECTION 13.0

CONCLUSIONS AND REDOMMENDATIONS

13.1 Conclusions.

The major conclusions from this study are as follows:

a., Data from satellites in sun-synchronous polar orbits (700-920 km) will generate

most of the earth-resources data :n the 1985-1995 time period.

b, Data from aircraft and shuttle sorties, being either on film or tape, requires special-
ized processing and handling, and cannot be readily integrated in a data-dissemination
network unless already preprocessed in a digitized form to standard geometric coor-

dinate system,

¢, A potential demand now exists for earth~resources data delivered within 1-2 days after
reception by a data readout station. The U,S. Department of Agriculture and the U,S,

Department of Interior are major potential users of such data,

d, Data transmissions between readout stations and central preprocessing facilities, and
between preprocessing facilities and user facilities are most economically performed
by domestic communication satellites. This is especially true for a 10m/12-band system,
The satellite transponder channel is either leased, or a transponder may be placed on
a geosynchronous earth-resources satellite. User earth terminals for data reception
may be leased or owned by the user. An exception to the above is when a user requires
a small amount of data (less than 1 scene of the 30m/7-band data)* and the distance
is less than about 600 miles, in which case, common-carrier. terrestrial links are more

economical if timeliness is not critical,

e, Transmission of preprocessed data to the user by satellite is most economically
accomplished by broadcasting all the data, scene-by-scene, suitably identified by

address codes so that each user can automatically extract the data of interest.

f. Given that most users will receive their data via broadcast satellite, a single
facility consisting of a centrally located readout station, preprocessing equipment
~and data dissemination equipment is more ecomomical that networks with‘distributed
or separated facilities, This is true over a wide range of costs for the preprocessing

equipment,

g. All data can be preprocessed and broadcast to the ﬁser within one day of reception
from the earth-resources satellite provided a preprocessing time of 10 to 15 minutes
per scene 1s achieved and is coupled with a communication satellite link capacity of
6 Mbps for the 30m/7-band case, and 120 Mbps for the 10m/l2-band cese.

* 1 scene (all bandé)_gf 30m/7-band data is less than 1/15th scene (all bands) of 10m/12-~band data.
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k.,

13.2

Real-time user interaction with the data dissemination newtork is feasible provided
the interaction is based on quick-look data; i.e., unpreprocessed data, In light of
conclusion (g), a substantial volume of data from quick-look requests is not foreseen,

Furthermore, the impact of user interaction on the total system cost is small.

Use of TDRS is not cost effective for continental USA coverage, unless tne cost of
TDRS is less than $100K/year. However, if the data-dissemination netwcrk is expanded
to cover areas outside of the North American continent, then TDRS probably becomes
more economical than the implementation and operation of additional readout stations.

TDRS has insufficient capacity for the 10m/12-band system.

The addition of Alaska (including its continental shelf) to the lower-48§ states incyrases
the total data volume by 50% and the annual cost of implementing and opergting the data

dissemination network by approximately 3

The implementation of a LANDSAT~D type system (30/meter resolution with 7 spectral bands)

is technically feasible and within today's state-of-the-art,

The implementation of a 1l0-meter resolution system with 12 spectral bands requires
a considerable advance in the state-of-art, especially in the development of high-
frequency (20-40 GHz) high-data-rate (1.58 Gbps) technology, and accurate (10 meter)

high-speed (0.15 s per pixel, or 10 minutes per scene) geometric correction technology.

From an overall cost standpoint, the use of data compression equipment in dissemin-
ating 30m/7-band data does not seem justified. Use of data compression may be justified

in a 10m/l2-band system,

A direct readout link for a 30m/7-band system will require a 100-MHz channel bandwidth
allocation. A carrier frequency of 14,45 GHz is recommended, For a 10w/l2-band system,
a channel allocation of at least 1 GHz is required, The 20.2-21.2-GHz band is

recommended, An alternative is the 40-41-GHz band.

Recommendations,

With the methodology and computer simulation program developed under this contract, a number

of additional studies could be performed:

Examine effect of cloud cover on system performance, required parameters, and cost.
A statistical model would be developed which would be incorporated in the simulation
program,

Examine impact of expanded coverage, including Hawaii, and international areas.

Defirie and simulate the function of the area center, . Expand to include user-unique

processing and user interactiom.

Optimize the network parameters for other user demand models.
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e. Examine impact on user costs of various strategies for allocating network operation

costs (e.g., pricing strategies).

The use of earth-resources data is still in its early stages of development, It is expected
that both user requirements and applicable technology state-of-the-art will change significantly
over the next few years, Such changes should be taken into consideration when interpreting the

results of this study in the future,
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