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I`	 ABSTRACT

A new computing concept, called Tse Computing, has been introduced
a.Y

A

by D. H. Schaefer and J. P. Strong at Goddard Space Flight Center (GSFC)

Greenbelt, Maryland.	 Tse Computing is an optical, digital, image pro-

cessing technique which utilizes an entire image as its basic com-

putational entity.	 The purpose of this investigation was the extension

i	 of the research being conducted at GSFC by organizing tse computing

machines capable of extracting topological information from an image.

The desired information consisted of global and local maxima, first and

second partial derivatives, and the gradient of the image.

After summarizing the research at GSFC, a simple programmable tse

processor organization was introduced and arithmetic_ operations necessary

for extraction of the desired topological information were developed for

this organization.	 In order to improve the processing performance of

the simple Ise processor, hardware additions to this organization were

w	 introduced with a discussion of the trade-offs peculiar to the tse

computing concept.	 An improved organization was then proposed, with the

complementary software for the various arithmetic operations.	 The

performance of the two organizations was then compared in terms of speed,

w	 power, and cost.

-^	 Utili zing the instruction set of the improved tse processor,

A	 software routines were developed to extract the desired information from

an -image. a

fi
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CHAPTER T i

INTRODUCTION
,

Since the 1940's, when the first relay computers were introduced, r

w
there has been rapid improvement in the processing capabilities of

these machines.	 Most of these improvements may be attributed to the

development of faster and more sophisticated hardware. 	 However,

considering the pace of hardware development in recent years, the

possibility exists that the maximum velocity at which electrical signals

can propagate will soon establish a limit on the amount of data that

future generation computers can process in a given time frame;	 There

have been many methodsdevised to circumvent this physical limitation. t

These methods, in the areas of "Multiprocessing" and "Parallel

Processing," have become especially important in applications for which

the data flow would tax even the fastest of the present generation`

computers.	 One such application occurs in array processing tasks in

e.	 which the data is two--dimensional.
..1

The two-dimensional data processing problem was addressed by

Unger [3] in 1958, and later by Kruse [4] and others [5,6].	 Parallel

processing machines, essentially of the type shown in Figure 1.1, were

proposed.	 These machines were conceived as an array of processing

elements controlled by a single control unit. 	 Each processing element

is a self-contained computer, capable of performing at least a minimum

number of logical operations.	 To provide data exchanges and inter-
;l

communication between adjacent cells in the array, each element is

l

Y
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c: a

connected to its nearest neighbor. These parallel processing machines

i	 offered a significant advantage over the conventional computer whenr«

addressed to array processing tasks; the instruction execution time or

L.	
simply the processing speed was independent of the size of the array.

Thus these machines were capable of processing large arrays many times

faster than a conventional computer. Unfortunately, as the size of

the array increased, so did the hardware costs. Due to the hardware

costs, these machines were feasible only for the smallest arrays.

However, a small version of a computer of this tape was produced in

1965 and called the Solomon computer [.5]. Studies of the Solomon 	 *

r.
computer led to the development of Burroughs' Illiac IV array processing

computer in 1972 [5]. The Illiac IV system is composed of four re-

^-	 configurable arrays of the type shown in Figure 1.1, each containing

64 processing elements. The control unit is a Burroughs' 86500

general purpose computer. This system is capable of greatly reducing

the computation time necessary for matrix manipulations compared to

conventional computers. 	 However, for a picture or image processing

application in which very large arrays are required for reasonable

x resolution, even this "super-computer" is strained.

Since some computational tasks, such as fourier transforms, are

being performed optically, the utilization of optical  methods for image9

processing tasks seems a natural, and efficient method of computation.

However, although many optical analog methods have been successfully

Implemented, optical digital computing is not so well developed.

When the National Aeronautics and Space Administration began its

Earth Resources program in 1967 [7], the processing of the large amount

:a
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of data in image form that was gathered by satellite was of major

concern. In order to properly account for and manage the earth's

resources, the data must be processed and disseminated in a reasonable

{	 amount of -time. NASA projects that by 1980, 50,000 images per day

will be acquired. With this in mind, new processing methods capable

of much greater performance than that available with conventional

computers are being investigated. Research of one group at Goddard

Space Flight Center, (GSFC) (investigation is not complete) generated

the concept of a new family of computers, called tse computers [3].

These computers, conceived at NASA, GSFC, utilize an entire image as 	 a

its basic computational entity, instead 61 , a single bit as in -a ^a

conventional digital computer.	 f`,

The purpose of this study is to investigate the data processing,

and consequently the architectural alternatives in the organization of

a tse computer to extract certain topological information from an image.
;i

The desired information consists of the global and local maxima, first

!	 and second partial derivatives, and the gradient of the image. Chapter

t	
11 discusses the tse concept at its present stage of development, and 	 P

!	 the remainder of this study is devoted to the organization of a machine

to perform the desired operations.

,=	 1

f

r 

r	 word_	 l tse ^, s, the c:rgl ^^ .^h transliterationterati on of the Chinese aord i or	 }
a pictograph character.

r
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CHAPTER II

x
	 TSE CONCEPT

To facilitate the processing of pictorial information rapidly and

at reasonable cost, Schaefer and Strcng [1], at Goddard Space Flight

Center, (GSFC), have exploted the feasibility of performing conventional

logical operations on entire images simultaneously using optical

techniques. Their research concludes that a computer organization

composed of electro-optical devices capable of performing logical

operation on binary images has enormous potential in the area of image

processing. This chapter summarizes the research at GSFC.

The basic computational entity of the tse computer is a binary

4

	

	 image, called a tse. Since pictorial information is naturally re-

presented by the distribution of a reflectance or density parameter,

imaged information is acquired in an analog form. In order to put this

pictorial information in a form useful for tse computer processing, the

image must bedigitized into a specified number of "grey-levels" to give

a string of binary images, or tses. This process is illustrated in

Figure 2.1. The digitizationgitizaton process, performed by .image threshold

devices, characterizes the tse as a binary image whose positional

elements contain either a "0° 1 (black a the absence of light) or a

"1" (white - the presence of light), depending on the "grey" content

of the corresponding positional elements in the original image. For

example an original image composed of a 1024 x'1`024 array of picture

elements ire which the grey level of each element is quantized to sin

5
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bits, would contain over 6 x 106 bits of information. Analogous to a

conventional digital computer, the performance of various computations

is achieved by the manipulation of the tse data word (string of binary

images) in the tse computer.

t	 Tse logic components.  Schaefer and Strong have proposed a family

of tse logic devices which perform basic logical operations on all

elements of one or two input tses-simultaneously by utilizing electro-

optical technology. The basic operations are AND, OR, NOT, EXOR, and

SLIDE. These devices are illustrated in Figure 2.2. The method of

data transfer that has been chosen is an optical fiber bundle. This

--	 bundle contains one optical fiber per element in the array. Optical

transport methods were chosen to facilitate the interconnection of

components.

Tse logic devices are implemented by bringing the proper fibers

of each input tse into adjacency, and then utilizing photoconductors

and semiconductor technology to perform the indicated operation.

Electroluminescence techniques are then used to derive a light output

from the device. The component used to bring the correct fibers of

the two input 'Images into adjacency is called an`"interleaver. 	 The

operation of this strictly optical device, is illustrated in Figure 2.3.

An important structural advantage to the interieaver is that it can be

used in reverse operation as a duplicator of images. A prototype

interleaver is shown in figure 2.4. Its actual length is six

centimeters and its weight is 0.7 grams.

The SLIDE operations are implemented by -four separate devices

-..	 which provide the options of sliding an image UP, DOWN, RIGHT, or

- ------
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FIGURE 2.4, A Prototype inter leaver

(Courtesy of Earth W er.atjor Systems Division, Goddard Space Flight Center)
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LEFT in the X and Y directions. 	 These devices facilitate the inter-

communication of elements of the array in different coordinate positions.

Actual structural details of the sliding devices are shown in Figure

2.5.	 Sliders are implemented by allowing an interface between the

input optical bundle and the output optical bundle which is offset

with respect to the input bundle.

Several specialty tse devices have also been proposed. 	 One
i

important example of these specialty devices is called a "contractor."

The output of a contractor is a single bit while the input is a binary
s

Image.	 If the input image to the contractor contains at least one

element which is logical 1 	 (white), the single bit output is logical 	 1`.

However, if the input image is all Logical 0 (black), the single bit

output will be logical 0.	 This device is useful for intercommunication

with conventional digital systems.

The interconnection of tse logic devices in the organization

of a tse computer to perform the operations discussed in Chapter I must j

be achieved with the performance specifications of the tse devices in -	 -=

mind.	 CSFO projects a propagation delay through, each tse logic component

of five milliseconds and a power requirement of not more than three

watts Ell.	 Unless one recalls that each device is performing simul-

taneous operations on many bias of information, these specifications

seem rather pessimistic. 	 Nevertheless, the designer of an optimal tse

computer must be concerned with the normal trade-offs necessary to

perform the desired tasks as fast as possible and at a reasonable cost.

M	 Unfortunately, speed and cost have been traditionall y contradictory.
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r In this respect, there is a similar trade-off in the organization of

the tse computer.

E ` Another very important consideration in the design of a tse

computer is the fan -out/fan-in restriction. 	 In the present stage of

l development of the tse components, a fan-out of one has been specified.
C

This requires duplication of images in any tse computer organization.

As discussed previously, this duplication is accomplished by the tse

hardware devices called an "interleaver" coupled with what is essentially

a gain device called a " reformatter."	 Also, a fan-in of not more than

two has been specified.	 This requires, in some applications, the use

of more than one tse logic device when one device with a greater -fan-in

i
would be sufficient. 	 In addition to the extra hardware required as a

result of these specifications, additional tse logic devices add

propagation delay to the data path. 	 Simplicity of design in the tse w
E

logic networks required is an important consideration.	 In order to

better evaluate the relative merits of one organization to another, a

tse hardware cost 'function has been proposed. =_:

Cost function.	 For a cost function to relate meaningfully to

the tse computer concept, active devices (with gain) should be distin-

guised - from passive devices (without gain).	 For example, the AND, OR

NOT, EXOR, and "reformatter" tse devices are active, while the " inter-

leaver" 	 s a passive device.	 A distinction must be made between these

devices because active devices consume power while the passive device z

does not.	 However, the passive device contributes size and weight to

y any organization of the tse computer. 	 Also, the number of inter-

^u

A
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connecting optical fiber bundles is a factor contributing to cost and
a

size.	 Therefore, the proposed cost function is as follows:

cost = Ax + By + Cz
r

where

x = number of active tse login devices

y = number of passive tse logic devices

z- number of interconnecting  fiber bundles

A, B, C are appropriate weights attached to

each cost factor.

The tse computer concept is summarized nicely by the illustration

of Figure 2.6.	 The remainder of this study is devoted to the devel-

opment of a tse computer to perform certain arithmetic operations

necessary to extract topological; information from an image.

i

^ m

F
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FIGURE 2.6. Tse Computer Concept

(Courtesy of Earth Observation Systems Division, Goddard Space Flight Center)



,-I

r CHAPTER III

ARITHMETIC OPERATIONS FOR THE TSE COMPUTER

1 *

In order to extract the topological information from an image,
i; r

certain arithmetic operations are required. 	 These operations are basic,

and essential to the structure of any machine which manipulates data in

a digital manner. 	 As with conventional logic, each of these arithmetic

operations may be implemented by software using only the universal set
.v.

of operators, AND, OR, NOT, and the slide operators of Chapter II.

This approach allows a simple ALU organization such as the one shown

in Figure 3.1.	 Starting with this simple structure, more complex tse

logic networks may be added to achieve greater performance parameters,

!!'
J,

However, the restrictions of power requirement, fan-in and fan -out as

discussed in Chapter II must be considered when making additions.	 The

ti possibility exists, that due to the rigid fan-in and fan-out restric-

tions, the simple ALU structure could prove to have greater processing

capability than a more complex structure.	 This .chapter will Inves-

tigate different organizations to implement the necessary arithmetic

operations and compare them with respect to computation times, hardware

costs, etc.

ThresholdfCompare.	 The first operation to be discussed is the

threshold or comparison operation. 	 This operation is useful in ex-

tracting the information from an image which can be determined by a

relationship to a, specified -threshold.	 For example, areas of an image

A whose reflectance is greater than 5, but less than 10, may be	 i

' 16

1



4	 _	 ^,.^,^- ..,__-R--	 _	 _.,^	 _	 _	 _.T	 ._•	 _	 °•---^

.^ , .

,__.^,



18 .j

f

characteristic of the reflectance of a wheat field. The area of this
	 3

region is desired. This region may be isolated by applying the

threshold operation twice; first by extracting areas of image A

greater than the specified threshold B 1 (= 510 = 0101 2 ), and then areas

of the resulting image which are less than the second threshold

B2 (= 1010 = 10102) are extracted. This isolation of specific areas of
L^

the input image would then allow the calculation of the physical area

of the regions of the image characterized by the values of certain

parameters. This process is illustrated in Figure 3.2. In the above

4u	 application, the threshold consisted of a digital representation of a

real number by either all black (0's) or all white (1 1 s) tses	 A

L^	 more general comparison operation is achieved by letting the indi-

vidual threshold tses take on any possible matrixed combination of

T.	 0's and Vs. With this general comparison function, the threshold/

compare operation becomes useful for many other arithmetic applications

F	
such as convergence tests, etc.

As stated, all arithmetic operations may be software-implemented

on the simple ALU structure of Figure 3.1. A complete CPU organization

for the tse computer is shown in Figure 3.3. The individual networks

ro	 are enclosed by dotted lines and are designated by letters.

C	 Each-network performs the specific function listed below:

Block A. Provides data paths to the ALU and transfer

network 'B for "A" and "B" accumulators, and

the ten intermediate registers of block E.

i

4

^	 ;	 u	 Y	 .,.
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p

0	 1 1	 0 1	 1 1	 0	 1	 1	 0

0	 1 1	 1 1	 1	 1 1	 _	 0	 1	 1	 1
f

p	 1 1	 1 1	 1'	 0 0	 Q	 1	 0	 0
0	 1 1	 1

1	 0	
0 0	

_ 0	

0	 0	 0
a

A > g 1 A < B2 Region
Isolated

}Y}	 y5d

a

N

M

FIGURE 3.2. (continued)
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Block B.	 A transfer network which routes information

from network A to the appropriate destination.

An all l ' s (white) tse is also provided for

1r

special purpose loading.

' Block C.	 A transfer network which allows data flow to

and from memory, and selects the appropriate

path .for ALU output or transfer data from network B.

Block D.	 Provides data paths and selection capability for

E
the ten intermediate registers.

Block E,	 Ten intermediate registers.

e	 data paths and selection capab ility-H.	 Prov ides	 tB locks  F	 v	 Pp
"_^^	 "	 „	 lto	 A	 and	 B	 accumu lators.

Accumulator organizations for the CPU are shown in Figures 3.4 and 3.5: 	 a i

The subtleties of the CPU- organization will become more _ a 	 rent later.o	 a

The basic blocks of the CPU organization are as follows:

a.	 "A" accumulator - Right-shift register - Figure 3.4.

b. '	 "B" accumulator - Right-shift register - 'Figure 3.5.
r

x<
c.	 10 one-tse latches - Figure 3.6.

a

d.	 ALU.

e.	 Support hardware.

Note that a significant percentage of the hardware cost of the organ-

zation is the support hardware.	 This is directly attributable to the y

fan-in and fan-out restrfctions.

With the simple ALU structure of Figure 3.1 (page 17) and the

above CPU organization, the threshold/compare operation may be software

x.
implemented by the routine of Table 1 	 A complete listing of tse computer









TABLE 1

PROGRAM TO THRESHOLD/COMPARE THE CONTENTS OF
A AND B ACCUMULATORS

26

4

(See Appendix for Complete Instruction Set Definition)

NUMBER INSTRUCTION TYPE COMMENTS

1 CONT 5 CONTROL- SUBROUTINE WHICH SETS
UP AN ITERATION COUNTER
IN CONTROL

2 TRNN B, R4 tse

3 LAND A, R4, R5 tse

4 LORE A, R4, Rl tse

5 LAND Rl, R6, R1 tse REGISTER R6 CONTAINS
ALL 0's (BLACK) FOR
FIRST ITERATION

6 LORE R1, R5, R6 tse

7 TRNN A, Rl tse

8 LAND B, Rl, R2 tse

9 LORE B, Rl, R4 tse

10 LAND R3, R4, R4 tse REGISTER R3 CONTAINS
ALL O's (BLACK) FOR

y. FIRST ITERATION -"

11 LORE R2, R4, R3 tse

12 SHFA 1
;.

13 SH FB 1 a.

14 DCR CONTROL DECREMENT COUNTER

15 JNZ 2 CONTROL JUMP TO INSTRUCTION
NUMBER 2 WHEN COUNTER
IS NON-ZERO

16 RET CONTROL

The.A < B tse is available in register R3. µ

The A > B tse is available in register R6.

' wDLTCIBILiTY OE THE
. 3NA.L ME 18 POOP,
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instructions is provided in the Appendix. Within this routine, there

are two types of instructions The first type of instruction is

called a tse instruction. A tse instruction is implemented by

sequencing one-bit control signals directly to the active tse logic

r

devices. The second type of instruction is the control instruction.

Control instructions do not directly affect the tse data, but

sequence the program to assure proper processing. A more detailed

discussion of tse computer control is found in Chapter V. e

The threshold/compare operation is initialized by loading the

digitized tse word into the A accumulator. The threshold tse word i

then loaded into the B accumulator. The program then sequences

through a number of iterations equal to the number of significant tses

of the digitized tse words. Proper control timing for representative

instructions needed in the threshold/compare operation is shown in

Figure 3.7. These control timing diagrams are for the ALU structure of
1

Figure 3.1 (page 17). Also, an example of the tse data manipulation is

shown in Figure 3.8. Note that all comparison operations (A < B,
3

A > B, A > B, A e B) are user-programmable. With the simple ALU of

Figure 3.1 (page 17),- the threshold/compare operation requires 320 tse

logic device delays per iteration. Assuming a propagation delay of 5

milliseconds per tse gate, the threshold/compare operation requires

1.6 seconds' per iteration. For a typical tse word length of 6 tses,p	 yp	 g

the result tses are available in 9.6 seconds.

A hardware threshold/compare network of the type shown in

Figure 3.9 may be added to the simple ALU structure to improve per-

formance of the operation. The additional hardware cost of this
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TRNN B, R4: TRANSFERS THE COMPLEMENT OF THE
CONTENTS OF THE LEAST SIGNIFICANT
tse POSITION OF THE 8 ACCUMULATOR
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3 4	 5 0 1 1 1	 0 0 1 0

5 4	 5 _ 1 1 1 0	 0 0 1 0	 1

6 5	 4 1 1 1 1	 0 0- 0 1	 0

(A) AZ_
Al

AO r

4 5	 6 1 1 1 0	 0 1 0 1	 0

3
^'

4	 6 _ 0 1 1 1	 0 1 _ 1 0	 0

5 5	 3 1 1 0 0	 0 1 1 1	 1
1

A

(s) B2 -g1 BO

t
l

AFTER INSTRUCTIONS 1-4.

1 0 1 0 0 0 0	 0 0

1 l 1 0 0 0 0	 0 0

A 1 p 0 O, p p	 p p

(RI) (R2) (R3)

1 0 1 1 0 1 0	 0 0

0 1 1 0 0 1 0	 0 0

0 0 0 0 0 0 0	 0 0

(R4) (R5) (R6)

FIGURE 3.8. Example of Threshold/Compare Operation

{

y	

- ^f
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AFTER INSTRUCTIONS 5,6 	 R29 R3, R4, R5 REMAIN UNCHANGED

0 0	 0	 1	 0	 1

0 0 0	 0 0 1

0 0 0	 0 0 0	 r

	

(RI	 (R6)

AFTER INSTRUCTIONS 7-9,	 R3, R5, R6 REMAIN UNCHANGED 	 t

f -	 0	 1	 0	 0	 1	 0	 0	 1	 0

I	 0	 1	 0	 0	 0	 0	 1	 1	 0

1	 0	 1	 1	 0	 1	 1	 1	 1

(R1)	 (R2)	 (R4)

	

AFTER INSTRUCTIONS 10, 11 	 R1 R2, R5, R6 REMAIN UNCHANGED
I

0	 1	 0	 0	 0 0
s

0 0 0	 0 0 O

1	 0	 1	 O	 0	 0

(R3)	 (R4)	 m	 _..

AFTER THREE ITERATIONS OF THE ABOVE, THE RESULTS ARE

1	
1	 1	 0	

0	
0

0	 0	 1	 1	 0	 0

0	 0	 0	 1	 0	 1

(A < B)	 (A > B)

FIGURE 3:5. (continued)
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network is 40 A + 24 B + 16 C. However, one iteration of the threshold/

compare operation now requires only 42 tse gate delays or 0.21 seconds

per iteration. For the typical tse word length of 6 significant tses,

the result is now available in 1.26 seconds. The hardware network has
1
3

allowed a decrease in computation time of approximately 7.6 times
	 r

that of the software approach. This network will be advantageous in

later arithmetic and tse operations.

Add/Subtract.	 In order to perform add/subtract operations, the

tse word structure must be defined.	 The proposed tse word must con-y

tain a sign tse and N magnitude tses. 	 The positions of the sign tse

which are characterized by the absence of Tight (0) represent a

positive data word, while those positions characterized by the

presence of light (1) 'represent a negative data word. 	 The sign tses

must be directly accessible to the ALU, without altering the accum-

7ator organization as right-shift registers. 	 This accessibility will F

afford a computation savings. 	 For ease of computation, a two's

complement	 representation is chosen instead of the magnitude

representation.	 The two's complement representation allows less

complexity in the sign control problem than a one's complement

representation.

When the add or subtract instruction is read by the control

unit, the sign tses are routed through contractors located at the out- -

put of the sign positions to the control unit.	 The contractor device

was introduced in Chapter II. 	 The output of the contractor is a single-

bit signal which is lo g ical	 1	 if and only if 'there is at least one

,
i
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position of the tse that is logical I. This single-bit output controls

the logical disposition of a flag bit in the control unit. By checking

this flag bit when an add or subtract instruction is received, the

control unit determines whether the tse data word requires two's

complement representation. Another control flag is used to monitor

the tse word representation, When the tse word has been complemented,

the flag is set; when the 'use word is in magnitude form, the flag is

cleared. An example of this computation is shown in Figure 3.10.

To better illustrate the add,/subtract and two's complement

operations, algorithms for implementing these operations are shown in

Figure 3.11. These algorithms are converted to software form for the

ALU of Figure 3.1 (page 13) in Tables 2 and 3. Computation times for

m^
	

these routines are 188 gate delays/0.94 seconds per iteration and 180

gate delays/0.90 seconds per i.terati on', respelcti vely.

Due to the computational methods required for the two's

complement and add/subtract operations, there exists an interrela
	 i

tionship which allows a single hardware tse logic network that will per-
.	 ,:.

form both operations in a minimum amount of time. This network is shown

in Figure 3.12. Using this network., the add/subtract routine requires

44 gate delays/0.22 seconds per iteration and the two's complement

routine 40 gate delays/0.20 seconds per iteration.

There are many possible versions of tse logic networks to 	 -	 7

implement the threshold/compare, add/subtract, and two's complement

_	 operations. However, the above networks have been introduced because

of an interrelationship which exists between these three operations

and their corresponding hardware implementations. Because of this
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	SIGN	 MAGNITUDE

	

_- 0 1	 1 0	 0 1	 0 1
A word

CONTROL	 0 O	 0 0	 1 0	 0 1 s
UNIT

	

0 l	 0 0	 1 1	 1 0
B-word

	

1 0	 1 0	 0 0	 0 1

MS	 LS

INSTRUCTION	 r

TWO'S COMPLEMENT REPRESENTATIONc

SIGN

0 1	 1 1	 0 0	 0`1

0 0	 _0 0	 1 0	 0 1

-	 i
1

0 1	 0 1	 1 1	 1 0	 1

1	 0	 1	 0	 0 0	 0 1	 >.._

For positions in which the sign tse is 0,
the magnitude, remains unchanged.

For positions in which the sign tse is 1,	 i
the magnitude is complemented and the
sign tse is added to it,

K

{

FIGURE 3.10, Example of Two's Complement Operation s

f
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(two's complement form)START

Fn uses# significant

r

i=0

c.	 = 0

X i = Ai + B i Zi	 Ai + BiYi	 A i	 B i

S C i	 + Xi Ri	 Ci	 Zi

C i+^ _ Ri	 Yi

NO
i^ + 1^ OUTPUT IS i	 = n + 1

Si

YES

OUTPUT

S , 
+1

n	 _..

S

K^ ADD

(a)

f- FIGURE 3.11.	 (continued)

3



TABLE 2

ADD/SUBTRACT SOFTWARE FOR THE MACHINE OF ;.
FIGURE 3.1 ;r l

(See Appendix for Complete Instruction Set Definition)

y
ADDU N

NUMBER INSTRUCTION TYPE COMMENTS

1 CONT	 N+2 CONTROL SETS ITERATION COUNTER
TO N+2

2 LAND	 A, B, R2 tse

3 LORE	 A, B, R4 tse

4 LAND	 R3, R4, R5 tse

5 EXOR	 A, B, R4 tse

6 SHIA	 1 tse

7 CLRC	 SA tse

8 EXOR	 R3, R4, SA tse b

9 SHIB	 1 tse

10 DCR CONTROL

11 JNZ	 2 CONTROL JUMPS TO INSTRUCTION
NUMBER 2 ON NON-ZERO
COUNTER t'

12 RET CONTROL

The result is available in the A accumulator.
(Two's complement form)

y
i

i

y...N_  .^$	 . _.-0,:^ 	 ^	 ,w_.  _-	 ._ur.,,<a,^.c,._s,^a.^,..3-.^,:.m^ss.^ 	 ,_..ar^.me —	 ^wr	 ts,^. m.	 ^^i}',eti	 ac _iBe^..r.+^3..m....s..,..^^^... ...^°•Y	r^
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TABLE 3

TWO'S COMPLEMENT SOFTWARE FOR THE MACHINE
OF FIGURE 3.1

(See Appendix for Complete Instruction Definition)

-T	 TCMA (Two's complement of the A accumulator)

r

x

NUMBER COMMENTSINSTRUCTION TYPE

1 LORE	 SA , 0, R6 tse TRANSFERS THE SA tse TO
REGISTER R6

2 CONT	 N+1 CONTROL

3 EXOR	 A, R6, - tse NO DESTINATION

4 SHFA	 1 tse

5 CLRC	 AMS tse

6 MOVE	 A tse

7 DCR CONTROL

8 JNZ	 3 CONTROL JUMPS TO INSTRUCTION 1

NUMBER 3 ON NON-ZERO_
COUNTER

9 CONT	 N+1 CONTROL

10 EXOR	 A, R6, R1 tse 1

11 LAND	 A, R6, R6 tse j

12 SHFA	 '1 tse

13 CLRC	 AMS tse

14 IRAN	 Rl tse

15 DCR, CONTROL

16 JNZ	 10 CONTROL JUMPS TO INSTRUCTION
NUMBER 10 ON NON-ZERO
COUNTER

17 RET CONTROL



	

12 (OUTPUT)	 -- --	 9'
i
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1
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D
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5	
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I	 i

8	 ^_J I 6 —F
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131!	 f	 11 I	 {^
iw
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FIGURE 3.12. Hardward Add/Subtract/Two's Complement Network
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interrelationship, there is no need to incorporate the threshold network

of Pigure 3.9 (page 31) #nto the tse processor; the threshold/compare

operation may be implemented with the network of Figure 3.12 as well

as the add/subtract and two's complement operations.	 For applications
r

in which a fast threshold/compare operation is necessary, this results
`r`

in a considerable hardware savings.	 There are some modifications to

the network of Figure 3.12 that are necessary.	 For maximum flexibility,

all four comparison operations should be available, and will be rep-

resented by the following mneumonics:

THRG:	 (A greater than B).
r

THRL:	 (A less than B).
r

X

THLE:	 (A less than or equal to B).

THGE:	 (A greater than or equal to B).
E.

Since THLE is equal to	 NOT(THRG),	 and THGE is equal to NOT(THRL), only

THRG and THRL need be generated. 	 Table 4 is a summation of instructions

needed to perform the threshold/compare, add/subtract, and two's

complement operations on the modified processing unit of Figure 3.13.

[	 Table 4 is given in program type format. 	 The corresponding timing
L

diagrams for these operations on the processor of Figure 3.13 are

shown	 in Figures 3.14, 3.15, and 3.16.

P

Square of an n-tse data word.	 The squaring operation is

required in the computation of the -magnitude of the gradient of an

!	 image.	 Due to the size and power requirements of the tse components,

4	 a hardware approach to the squaring operation is clearly not feasible.

Also, algorithms exist which require only those operations already

l

J
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TABLE 4

PROGRAM INSTRUCTION SUMMARY FOR THRESHOLD/COMPARE
ADD/SUBTRACT AND TWO'S COMPLEMENT OPERATIONS

FOR THE P OCES 0 OF t U ER	 SR F.GR 3.13

NUMBER INSTRUCTION TYPE COMMENTS

THRL	 N

1 CLER tse

2 CONT	 N+l CONTROL

3 CMPL tse ON RECEIPT OF THIS
INSTRUCTION, CONTROL
SEQUENCES A AND B
THROUGH THE PROPER ALU
PATHS

4 DCR CONTROL

5 JNZ	 3 CONTROL JUMPS TO INSTRUCTION
NUMBER 3 ON NON-ZERO
COUNTER

6 TRNS tse A < B to IS IN THE
OUTPUT LATCH OF THE ALU

7 RET CONTROL_

* MOVE	 — tse STEERS THE RESULT TO THE
DESIGNATED REGISTER

THGE	 N

_	 SAME AS THRLa_EXCEPT FOR:

** MCME tse STEERS THE COMPLEMENT
OF THE RESULT TO THE
DESIGNATED REGISTER

L.

1:

{

41
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TABLE 4 (continued)

NUMBER INSTRUCTION TYPE COMMENTS

THRL	 N
y,

SAME AS THRL, EXCEPT FOR:

3*
^Y

CMPG tse

THLE	 N

S

SAME AS THRL, EXCEPT FOR:

3** WEB tse

i	 1

MCME	 - ts-

ADDU	 N —

1 CLER
tse

2 CALL CONTROL CALLS A SUBROUTINE TO
CHECK THE STATUS OF THE
CONTRACTOR OUTPUTS ON Sc,
tse, AND SD tse

3 TCMA se

a



f
l

_I

i

TABLE 4 (continued)

t

NUMBER

w.

COMMENTSINSTRUCTION TYPE

4 TCMB tse INSTRUCTIONS 3 AND 4 AREu
EXECUTED ON COMMAND FROM
THE SUBROUTINE OF
INSTRUCTION NUMBER 2.
IF NEITHER TCMA OR TCMB
ARE NEEDED, THEN THE
CONTROL SUBROUTINE OF
INSTRUCTION 2 JUMPS TO
INSTRUCTION NUMBER 5 x

5 CONT	 N+1 CONTROL

6 ADSU	 A, B tse

7 MOVE	 A CONTROL

-	 8 DCR

9 JNZ	 6 CONTROL: JUMPS TO INSTRUCTION
NUMBER 6 ON NON-ZERO
COUNTER

10 RET CONTROL

SUBU	 N

SAME AS ABOVE, EXCEPT FOR:

INSERT AFTER INSTRUCTION 1 ABOVE:

r	 (a) LORE	 S0 -tse NO DESTINATION

(b) MCME	 SB tse COMPLEMENTS THE SIGN OF
4

,. B ACCUMULATOR





t l t2 t3	 t4 r

j 0.08s 0.01s `0.03s 0.O1s

C5 
,6

i
1 1

X11,12 i r

25 I I
A ^)

C19

020 ; -

C21 ^ ^^ ►

CMPL - SAME AS ABOVE, EXCEPT SUBSTITUTE
C $ FOR C5
7,	 ,6

AND C9
,10

FOR C1
1,12'

I I

iy

FIGURE 3.14.	 Threshold/Compare Timing for Machine 2
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TCMA 

tl t,2 t3 t4 

0.075 O.Ols 0.035 O.Ols 
I I I I 

C4 J , I I 
I I I I 

C5 ,6 S I I I 

e9,10 ~ I I I 
I I I 

I 
C19 

I I 
I I 

C20 
I 1 
I I I 

C2l I I I 
I I I 

C23 J 1 I 
I 

C25 J 
I 

FIGURE 3.16. Two's Complement Timing for Machine 2 
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developed in the preceding sections to compute the square of an n-tse

data word. One approach to the squaring problem would be to develop

a software multiplication scheme and compute the tse-word "A" multiplied

by itself. However, this approach would require many addition oper-

ations and extra storage to accomodate the partial products. A more

elegant algorithm which utilizes the identity of the multiplicand and

the multiplier has been developed [2] a„d:will significantly reduce

storage and computation time requirements. A conventional logic

analogy of this algorithm is shown in Figure 1.17. Note that the

algorithm is not an iterative technique.

A program to implement this algorithm is shown in Table 5, and

may be performed on either the programmed machine (machine l) of 	 i

Figure 3.1 (page 17), or machine 2 of Figure 3.13. To implement this

program, the specific number of significant tses in the data word to be

-

	

	 squared is assumed to be 6. With this program, the square of a

6-significant-tse word is available in 3250 gate delays/16.25 seconds

on machine 1, or 2000 gate delays/10 seconds on machine 2. The per-

formance of the program may be gauged by the relative computation	 -..

times of the squaring operation and the addition operation (since the

u'< square of a 6-tse-word is represented by a 12-tse word, a comparison

to 12-tse addition is appropriate). The squaring operation requires

approximately 4 times the computation time of the addition operation,

which by conventional logic standards is very good indeed.

i

0j)t70jBILITY OF T:
-,-r FINAL PAGE IS P(P
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;J A5
$11
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A5 S S S1 p

A5
u A 

3
A5 —y...

__ ^__	 C S
	 S9

A2
A5

A3:
C

S
CS`S8

A4
A4
Al
A

C S
S7

A2
A4

..	
A
AC

A3

S
C

S
S

6

A2
A^

S5

Cl A3 `S S S4 .'

A
Al2

{ Aa CS.	 53 —	 -.
A2

^v Ap

Al

A l C S S2

`
S
1 

= p

A 
p

S
p

(A5 A4 A3 A2 A 1 Ap72= S11S10S958S7S6S5S4S3S2S1Sp

FIGURE 3,17.	 Squaring Algorithm Shown in Conventional Logic

1
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TABLE 5

k	 PROGRAM TO COMPUTE THE SQUARE OF A 6-TSE DATA WORD
LOCATED IN A ACCUMULATOR

UA (S2048 S 1024 5512 5256 5128 S64 S32 S16 S8 S4 S2 S1)

NUMBER	 INSTRUCTION	 TYPE	 COMMENTS

	

1	 CLER	 tse

	

2	 TRAN A, M	 tse	 M t 51

	

3	 TRAN A, R4	 tse

	

4	 SHFA 1	 tse

	

5	 LAND A, R4, R5	 tse

	

6	 ADSU A, R5	 tse

	

7	 SHFM 2	 tse	 M	 S 2	y

	

8	 MOVE M	 tse	 M S4

	

9	 SHFM 1	 tse

	

10	 TRAN A, R6	 tse`	
1

.d,	11	 SHFA 1	 tse

	

12	 LAND A, R4, R5	 tse

	

13	 ADSU R5, 0	 tse

	

14	 MOVE M	 tse	 M S8

	

15	 SHFM 1	 Ilse	 3

	16	 LAND A, R6, R6	 tse

	

17	 TRAN R6, R5	 tse

	

18	 LAND R5, A, R5	 tse

_	 19	 TRAN A, R1	 tse

	

20	 LAND R1, R4, R4	 tse
'	

21	 SHFA 1	 tse

l	 22	 LAND -A, R4-, R1	 tse

	

23	 LORE R1, R6; R1	 tse	 1

	

24	 ADSU R5, 0	 tse

a

r

1
-- s
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TABLE 5 (continued)

t

i	 .

j	 NUMBER COMMENTSINSTRUCTION TYPE

f
25 MOVE M tse M	 S16

h
^

26 SHFM 1 tse

27 TRAN Rl, M tse M	 S32 '{

28 SHFM 1 tse

29 TRAN A, R4 tse

i 30 SHFA 2 tse

31 TRAN A, R5 tse

i	 . 32 SHFA 1 tse

33 LAND A,	 R5,	 Rl tse

34 EXOR R1, R4, R2 tse

35 LAND Rl,	 R4,	 R3 tse

36 SHFA 2 tse

37 LAND A, R4, R5 tse

I 38 ADSU R2, R5 tse

39 MOVE M tse M	 S64
z

40 TRNS tse

41 'MOVE Rl tse

42 LDCA R3 tse LOADS THE CONTENTS OF
1 = REGISTER R3 INTO CARRY

j
L LATCH 2

43 TRAN A, R5 tse
44 SHFA 2 tse

45 TRAN A, R2 tse

A6 LAND. R2, R5, R6 tse
..	

.47 SHFA 1 tse

48 TRAN A, R5 tse

L.	 49 ' SHFA 2 tse

s

1



r^

I

52

ii

TABLE 5 (continued)

I NUMBER COMMENTSINSTRUCTION TYPE

I
50 LAND A, R5, R3 tse

51 ADSU R3, R6 tse

52 MOVE M tse M- 5128

53 SHFM 1 tse

54 SHFA 1 tse

55 TRAN A, R3 tse

_ 56 LAND R3, R5, R3 tse

57 TRNN R4, R6 tse

58 LAND R2, R6, R6 tse

Rm 59 EXOR R3, R6, R6 tse

60 LAND R2, R4, R4 tse

61 SHFA 2 tse

62 TRAN A, R5 tse

63 LAND R3, R5, R3 tse

64 LAND R3, R4, R3 tse

65 ADSU R1, R6 tse

66 MOVE M tse M f 5256

67 SHFM 1 tse

68 SHFA 1 tse

69 TRAN A, R4 tse

r_ 70 SHFA 4 tse

71 LAND , A,	 R4,	 R5 tse

72 LAND R3, R5,	 R6 tse

73 EXOR R3, R5, tse NO DESTINATION

74 MOVE M tse _M .	
S512

75 SHFM 1 tse
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TABLE 5 (continued)

NUMBER INSTRUCTION TYPE COMMENTS

1

76 SHFA	 1 tse

77 LAND	 A, R4, Rl tse

78 ADSU	 Rl, R4 tse

79 MOVE	 Rl tse

80 EXOR	 Rl, R6, - tse NO DESTINATION

81 MOVE	 M tse M + S
1024

$2 SHFM	 1 tse M	
52048

83 RET CONTROL ='

a

r
a

^.
9y

j: a
a

^'

W

y
s	 ;

_

i

_.	 _	 is	 _ .L _	 •:.^..	 __	 _ ._._^_..__.:	 _..___ ^ ^_^^^...^..:._^.^v._:...^^.._...^`..._W:. _..	 :,	 ,^ .	 .. :^.	 _ :.:^.__._.._._.___._^__. __^	 . "'^
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Square root. The square root operation is the most difficult

of the tse arithmetic operations. As was the case with the squaring

operation, a hardware network to implement the square root is not

feasible. Any type of iterative technique to compute the square root

must account for the fact that the tse word is composed of N2 positions

(i.e., N =-512, 1024, ...), some of which may converge to the square

root faster than others. Therefore, the positions that have converged

must be masked from further operations, while continuing to perform

the algorithm on the positions which have not converged. One algorithm

which achieves this is shown in Figure 3.18. The S register contains

the tse data word for which the square root is desired. The R

register will eventually contain the square root of S. The algorithm

begins with the R register containing all black tses. Then, the

R register is squared and subtracted from S. The result is compared

to a preset threshold. Positions of (S 	 R2 ) less than or equal to

the fixed threshold have converged. Positions of (S - R 2 ) greater

than the threshold have not converged. The threshold/compare operation

generates the S > R2 tse, which consists of 1's in positions for	 - a.,j

which S is greater than R2 and O's elsewhere. The S > R2 tse is then

added, to the contents of the R register. This is equivalent to	 )

incrementing those positions of R which have not converged. The

algorithm continues the iterations until the S > R2 tse contains 	 3

all 0's.

The above algorithm introduces some problem areas in the

computation of the square root. Firstly, a fixed threshold value to
o

Y



I
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i

..r

test for convergence allows significant error in either the small

number or large number positions when performing fixed-point compu-

tations. If the threshold is set to a small value, the possibility

exists that the S register contains numbers in some positions which

are large enough, that will not converge at all. This problem may be

solved by either developing floating-point computations for the tse

computer, or allowing the threshold to be changed with each iteration

by tracking the relative magnitude of S in each position. However,

since floating-point for the tse computer requires much more develop-

ment and since the varying threshold introduces a more complex

computation, the algorithm of Figure 3.18 is not feasible for the tse

computer in its present stage of development.

A second method to compute the square root is based on the

algorithm of Figure 3.19. This method is outlined in Table 6 In

program form. The program of Table 6 will compute the square root of

a 12 significant tse data word to the least significant integer.

However, the algorithm may be extended to any degree of accuracy when	 3

floating-point is available. The result of the square root operation

of Table 6 is available in 5780 gate delays/28.9 seconds on the	 a

machine of Figure 3.13 (page 44), or 20,950 gate delays/104.8 seconds

on the machine of Figure 3.1 (page 17).

The results of the investigation of arithmetic operations on

the tse computer are outlined in Table 7. These results clearly show

the superiority of the organization of Figure 3.13 ( pa ge 44). For the

discussion of tse operations in Chapter IV, only this organization will

be considered.

5 (.

l

1	 .a



R2 = S 12 S 11 S 10 S 9 S8 S7 S6 S5 S4 S3 S2

Bit For	 I ur oup_ i o i ne K1 gnti ur ire

These	 }
Positions	 To The Right Of R, Put 01 LetIs 0	 This	 N

R = 3- Computed Thus Far	
a

YES	 NO
R01 > M

FIGURE 3,19. Square Root Algorithm Two

i



SQUR (S12 S ll	 S10 S
9 S8 S7 S6 S5 S4 S2 S1)

(The word for which the square root is to be computed is assumed r

x	 to be located in memory)

^N
NUMBER COMMENTSINSTRUCTION TYPE

1 CLER tse

2 CLRA tse

3 CLRB tse

4 TRAN	 M, Rl tse TRANSFER THE CONTENTS OF
THE MEMORY OUTPUT LATCH

1
(S 12 ) TO REGISTER Rl

5 TRAN	 M, R4 tse TRANSFER THE CONTENTS OF
THE MEMORY OUTPUT LATCH
(Sil) TO REGISTER R4

6 LORE R1, R4, R6 tse LOGICALLY AND THE CONTENTS
OF R1 AND R4, AND PLACE
THE RESULT IN R6.	 THE
RESULT IN THE MOST
SIGNIFICANT tse OF THE
SQUARE ROOT WORD

7 TRNN	 R4, RS TRANSFER THE COMPLEMENT
OF R4 TO R5

_	 8 LAND	 Rl, R5, B

9 SHFB	 1 SHIFT THE MAGNITUDE OF
B ACCUMULATOR RIGHT ONE
POSITION

10..; LAND	 Rl, R4, B

11 SHFB	 8 SHIFT THE MAGNITUDE OF B
ACCUMULATOR RIGHT EIGHT 3

POSITIONS
y

12 TRAN	 M, B 
LS+1

B	 E	 S
LS+1	 10

:n
;

i

l '



NUMBER COMMENTSINSTRUCTION TYPE

13 TRAN M, BLS BLS 
f 

S9

14 TRAN 1,	 A TRANSFER AN ALL WHITE
tse INTO A

15 SHFA 2

-	 16 TRAN R6, A

17 SHFA 9

18 THGE 4 THGE SUBROUTINE COMPARES
A ACCUMULATOR AND B
ACCUMULATOR AND GENERATES
THE A	 B tse.	 THE
SUBROUTINE WILL BE
SEQUENCED 4 TIMES

19 MOUE R9 R9 REGISTER NOW CONTAINS
THE NEXT MOST SIGNIFICANT -
tse OF THE SQUARE ROOT

20 CLRA

21 TRAN 1, A

22 SHFA 1

23 TRAN 1,	 A tse

24 SHFA 1 tse

25 TRNN R6, A tse

26 SHFA 1 tse

27 TRAN 1,	 A tse

28 SHFA 8 tse

29 ADDU 4 tse THE A AND B WORD ARE
ADDED.	 THE ADDU ROUTINE

j

IS PERFORMED 4 TIMES
WITH THE RESULT BEING
LOADED BACK INTO THE A
ACCUMULATOR

30 TRNN R9,	 R1 tse

3

T



60

TABLE 6 (continued)

n

NUMBER	 INSTRUCTION	 TYPE	 COMMENTS

.K	 r

31	 CONT 5	 CONTROL	 tse INSTRUCTION WHICH
REFERENCES A CONTROL
SUBROUTINE TO SET UP AN
ITERATION COUNTER. THE
SECOND BYTE CONTAINS THE
NUMBER OF ITERAiONS TO
BE PERFORMED, PLUS 1.

32 LAND R1, B,	 R2

33 LAND _R9, A,	 R5

- 34 LORE R2, R5, B

35 SHFB 1

36 SHFA 1

37 CLRC BMS

38 DCR CONTROL	 DECREMENTS COUNTER

39 JNZ 32 CONTROL	 JUMPS TO INSTRUCTION
NUMBER 32 WHEN COUNTER
IS NON-ZERO

x,
40 SHFB 6

41 TRAN M, BLS+1 BLS+1 ' S8

42 TRAN M, B LS ^'L.S	 S7
+

43 CLRA

44 TRAN 1,	 A

45 - SHFA 2-; s

46 TRAN R9, A
1

47 SHFA 1 I'tL'PRODUCIBILITY OF Tk? i .

r 48 TRAN - R6, A
0R IGI NAL PAGE IS POOR

t

49 SHFA 8 1

50 THEE 6

51 MOVE RI  REGISTER R10 NOW CONTAINS
THE NEXT MOST SIGNIFICANT
tse'OF THE SQUARE ROOT

_ r ,w
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I
TABLE 6 (continued)

tiI
NUMBER COMMENTSINSTRUCTION TYPE

52 CLRA

53 CLER

54 TRAN	 1, A

55 SHFA	 1

56 TRAN	 1, A

57 SHFA	 1

58 TRNN	 R9, A

59 SHFA	 1

60 TRNN	 R6, A
r

61 SHFA	 1

62 TRAN	 1, A

63 SHFA	 1

64 TRAN	 1, A

_r	 65 SHFA	 6

66 ADDU	 6

67 TRNN	 R10, R1

68 CONT	 7 CONTROL

69 LAND	 Rl, B, R2

70 LAND	 _R10, A, R5

?1 LORE	 R2,	 R5, B

72 SHFB	 1

73 SHFA	 1

74 CLRC	 BMS

I	 75 DCR CONTROL

y	 76 JNZ	 68 CONTROL JUMP TO INSTRUCTION
. NUMBER 68 ON NON-ZERO

COUNTER

77 SHFB	 4

78 TRAN	 M, BLS+1 BLS+1	 S`6

4

1
_	

t

F
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TABLE 6 (continued)

-	 NUMBER INSTRUCTION	 TYPE COMMENTS

79 TRAN	 M, BLS BLS	
S5

`	 80 CLRA.

81 CLER

82 TRAN	 1, A

83 SHFA	 2 -

84 TRAN	 R10, A

85 SHFA	 1

86 TRAN	 R9, A

87 SHFA	 1

_ .	 88 TRAN	 R6, A

89 SHFA	 7 as

90 THGE	 8

91 MOVE	 R8 R8 REGISTER NOW CONTAINS
THE NEXT MOST SIGNIFICANT
tse OF THE SQUARE ROOT

92 CLRA

93 CLER

94 TRAN	 1, A

95' SHFA	 l

96 TRAN	 1, A
a

97 SHFA 1

98 TRNN	 R10, A

99 SHFA	 1

100 TRNN	 R9, A a
A

101 SHFA	 1

102 TRNN	 R6, A

103 SHFA	 1

104 TRAN	 1, A a

r

f

i
_ _
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TABLE 6 (continued)

NUMBER INSTRUCTION TYPE COMMENTS

105 SHFA	 1

106 TRAN	 1, A

107 SHFA	 1 x

108 TRAN	 1, A

109 SHFA	 4

110 ADDU	 8

111 TRNN	 R8, Rl

112 CONT	 9 CONTROL

113 LAND	 Rl, B, R2
s

114 LAND	 R8, A, R5

115 SHFB	 1

116 SHFA	 1

117 CLRC	 BMS z

118 DCR CONTROL
v

119 JNZ	 111 CONTROL JUMP TO INSTRUCTION
NUMBER 111 ON NON-ZERO a

COUNTER

120 SHFB	 2

121 TRAN	 M, B LS+1 BLS+1 + A4

122 TRAN	 M, B LS B	 + S
LS	 3

123 CLRH

124 CLER
V

125 TRAN	 1, A

126 SHFA	 2

127 TRAN	 R8, A

128 SHFA	 1

129 TRAN	 R10, A

H
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TABLE 6 (continued)

NUMBER INSTRUCTION TYPE	 COMMENTS

130 SHFA	 1

131 TRAN	 R9, A

132 SHFA	 1

133 TRAN	 R6, A

134 SHFA	 6

135 THGE	 10

136 MOVE	 R7 R7 REGISTER NOW CONTAINS
THE NEXT MOST SIGNIFICANT
tse OF THE SQUARE ROOT

137 CLRA

138 CLER

139 TRAN	 1, A

140 SHFA	 1

141 TRAN	 1, A

1142 SHFA	 I

143 TRNN	 R8, A

144 SHFA	 1

145 TRNN	 R10, A
ti	

146 SHFA	 I

147 TRNN	 R9, A

148 SHFA	 1

149 TRNN	 R6, A

150 SHFA	 1

151 TRAN	 1, A

152 SHFA	 1

153 TRAN	 1, A

154 SHFA	 1

u.	 155 TRAN	 1, A
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j

I

TABLE 6 (continued)

I	
-,

NUMBER COMMENTSINSTRUCTION TYPE

156 SHFA 1

157 TRAN 1,	 A

158 SHFA 2

159 ADDU 8

160 TRNN R7, R1

161 CONT 11 CONTROL

162 LAND Rl, B,	 R2

163 LAND R7, A, R5

164 LORE R2, R5, B

165 SHFB 1

166 SHFA 1

167 CLRC BMS

168 DCR CONTROL

169 JNZ 160 CONTROL JUMP TO INSTRUCTION
NUMBER 160 ON NON—ZEROn

COUNTER

170 TRAN M, 
BLS+1 BLS+I { S2

4

171 TRAN M, B
LS BLS 

f S 1 "-
.

172 CLRA

173 CLER

174 TRAN 1, A

175 SHFA 2

176 TRAN R7, A

177: ....
S
SHFA 1

1 OF THEP_ ,EPRODUCIBILITY
,

s	 178 RAN „8, A
= lGiNAL PAGE IS POOR

179 SHFA 1

180 TRAN R10, A
1

I

Awl

;F.
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TABLE 6 (continued)
 a

i
NUMBER	 INSTRUCTION	 TYPE	 COMMENTS

	

181	 SHFA 1

	

182	 TRAN R9, A

	

183	 SHFA 1

	

184	 TRAN R6, A

	

185	 SHFA 5

	

186	 THGF 12

	

187	 SHFA 1 `	A NOW CONTAINS THE SQUARE
ROOT

	

188	 CLRC AMS

	

189	 SHFA 1

	

190	 MOVE A

	

191	 SHFA 11

a

9

e

a

3

3

.	 r



COMPUTATION TIMES MAXIMUM DATA PEAK POWER
ORGANIZATION COST	 PER ITERATION RATE CONSUMPTION

(GATE DELAYS/SECONDS) (tses/MINUTE) (WATTS)

Machine 1 Threshold:	 320/1.6 37.5

39A + 23B + 17C	
Add/Subtract:	 188/0.94 63.8

117
(Figure 3.1) Square:	 3250/16.25

TOTAL
Square Root:	 20,950/104.8}

3.7 words
0.6 words

Machine 2
Threshold:	 42/0.21 286

88A + 52B + 28C	
Add/Subtract:	 44/0.22 273

264
(Figure 3.13) Square:	 2000110.0

TOTAL
6 words

Square Root:	 5780/28.9 2 words

NOTE:	 Power consumption pertains only to the ALU section of the tse computer.



CHAPTER IV

TSE OPERATIONS

Tse operations are subroutined instructions for the tse computer.

With the instruction set discussed in Chapter TIT and listed in the

Appendix, one is now able to compute the desired topological information.

This instruction set has been designed to provide maximum processing

flexibility, and the following tse operations are only a representative

set of all the operations possible.

Global maxima. The global maxima operation extracts the area(s)	
j

of the input image for which the digitized parameter has the greatest

magnitude. Note that the global maxima operation is not an absolute
y

maxima operation in a mathematical sense, since an absolute maxima

	

	 3
,a

operation requires comparison of each element with its nearest

neighbors. The global maxima operation, as well as all others, may be

performed on either the simple machine 1, or machine 2. In either case,

the control unit must be capable of program sequencing on intermediate

results from the tse processor.

Conditional control is accomplished by the contractor tse device 	 3

located at the output of the ALU. The contractor output controls the

disposition of one of the tse processor status bits which are available

to the control unit '(see Chapter V on control). The logical disposition

of this bit allows the control unit to determine if an intermediate 	
d

result, is logical 0 (black). On this determination, control may

sequence the program accordingly.

s	 68

J
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A routine to compute the global maxima operation is listed in

Table 8. Also, an example of this operation is shown in Figure 4.1.

The computation time for the global maxima on either of the organi-

zations of Chapter ti is approximately the same and is equal to 0.15

seconds for each significant tse of the data word. A global minima

operation may also be performed by first complementing the tse data

word and then performing the routine of Table 8.

Local maxima/minima. The extraction of local maxima/minima

requires the comparison of each element in the image array with each

of its eight nearest neighbors, which are shown in Figure 4.2. This

comparison is accomplished by means of the threshodding operation.

Figure 4.2 shows that proper manipulation of the slide instructions may

be used to achieve this comparison. Table 9 contains a routine to

perform the local maxima operation. Due to the flexibility of the

threshol di ng operation, either maxima or minima, allowing or disallowing

plateau regions, is a programmable option to the user. Figure 4.3

illustrates the generation of the tse neighborhood planes and the

computation of the local maxima tse. Note, in Figure 4.3, that positions

on the bordering edges of the input image are not eligible to be

positions of local maxima/minima since they do not have the required

'_ y
eight neighbors. The local maxima operation requires 11.34 seconds

i
per iteration on machine 1, or 1.53 seconds per iteration on machine 2.

First and second partial derivatives. In many image processing

applications, the locations of the boundaries of certain regions are

J

d t
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TABLE 8

GLOBAL MAXIMA ROUTINE

NUMBER COMMENTSINSTRUCTION TYPE

tse WORD FOR WHICH THE
GLOBAL MAXIMA INFORMATION
IS DESIRED, IS ASSUMED TO
BE IN THE A ACCUMULATCr;

1 TRAN A, Rl tse
2 SHFA 1 tse

3 CHEK 1 tse THIS INSTRUCTION SETS UP
A CONTROL SUBROUTINE
WHICH INPUTS THE
CONTRACTOR BIT, AND IF
ZERO, JUMPS PROGRAM
CONTROL BACK TO
INSTRUCTION 1.	 IF THIS
CHEK INSTRUCTION IS
EXECUTED A NUMBER OF
TIMES EQUAL TO THE
NUMBER OF ts p s OF THE A
WORD, THEN THE ROUTINE'

I HALTS.

4 TRAN A, R4 tse

5 SHFA 1 tse

6 CHEK 4 tse

7 LANi R1 , R4, R5 tse

8 CHAK 10 tse
9 GO TO 17 CONTROL

10 LAND R4, A, R5 tse

11 SHFA 1 tse

12 CHAK 14 tse
13 GO TO 17 CONTROL

14 TRAN R1, R6 tse

15 LAND R6, A, R5 tse

1
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TABLE 8 (continued)

a

NUMBER INSTRUCTION TYPE	 COMMENTS

16 SHFA	 1 tse

17 LAND	 A, R5, R6 tse

18 SHFA	 1 tse

19 CHAK	 1 tse

20 TRAN	 R6, R5 tse

21 GO TO	 17 tse	 GLOBAL MAXIMA tse IS IN
R5

22 RETURN CONTROL

4 4.

4
	 ^

^- s

ay

i
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A	 A3	 A2	 Al

0	 1	 2	 3	 0	 0	 0	 0	 0	 0	 1	 1	 0	 1	 0	 1

2	 2	 4	 3	 0	 0	 1	 0	 1	 1	 0	 1	 0	 0	 0	 1

4	 3	 5	 4	 1	 0	 1	 1	 0	 1	 0	 0	 0	 1	 1	 0

5	 4	 6	 6	 1	 1	 1	 1	 0	 0	 1	 1	 1	 0	 0	 0

(A2)•(A1)=(R5)1	 (R5)1-(A3)=(R5)2	 (A3)•(A2)=(R5)3

	

0 0 0 1	 0 0 0 0	 0 0 0 0

0	 0	 0	 1	 0	 0	 0	 0	 0	 0	 0	 0	 l

	

0 1	 0 0	 0 0 0 0	 0 0 0 0

	

0 0	 0 0	 0 0 0	 0	 0 0 1	 1 a
(R5) 1	(R5)2	 (R5)3

i

'i

FIGURE 4.1. Example of Global Maxima Operation

1
F

3
,
II

5
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p
1-1,j+1 Pi,j+l P1+l^j+l	 {

P i j Pi +l ,j

P i -1, j-1 Pi ' j -1 Pi +1,

a
3j -1

FIGURE 4.2. Neighborhood of a Tse Element

i

Y

1
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TABLE 9

LOCAL MAXIMA/MINIMA ROUTINE

LMMR (Input digitized image is assumed to be in A accumulator)

r	 ^

NUMBER	 INSTRUCTION	 TYPE	 COMMENTS

1	 CONT N	 CONTROL	 N = NUMBER OF SIGNIFICANT
tses

2	 SLDR A	 tse	 ELEMENTS OF A ARE SLID
TO THE RIGHT AND STORED
IN B ACCUMULATOR

3 SHFA 1 tse

4 SHFB 1 tse

5 MOVE B tse 7

6 DCR CONTROL

7 JNZ 2 CONTROL B ACCUMULATOR NOW
CONTAINS THE CONTENTS OF
A ACCUMULATOR WITH THE
i -1, j ELEMENTS OF EACH 	

A

A tse IN THE i , j
POSITION

8 THGE tse SUBROUTINE WHICH COMPARES
_- A AND B ACCUMULATORS

AND GENERATES THE A > B
tse IN THE ALU OUTPUT
LATCH

9 MOVE R1 tse

10 CONT N CONTROL

11 SLDD B tse ELEMENTS OF B ARE SLID
_ DOWN AND STORED IN B

ACCUMULATOR

12 SHFB 7 tse

13 MOVE B tse

14 DCR CONTROL

15 JNZ 10 CONTROL i 1,j +1 ELEMENTS IN THE
i,j POSITION

f

A	 f	 •_
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TABLE 9 (continued)

NUMBER COMMENTSINSTRUCTION TYPE

16 THGE tse

17 MOVE	 R4 tse

18 LAND	 R1,	 R4,	 R1 tse

19 CONT	 N CONTROL

20 SLDU	 B tse ELEMENTS OF B ARE SLID
UP AND STORED IN B
ACCUMULATOR

21 SHFB	 1 tse

22 MOVE	 B

23 DCR CONTROL j

24 JNZ	 19 CONTROL

25 CONT	 N CONTROL

26 SLDU	 B tse

27 SHFB	 1 tse

28 MOVE	 B

29 DCR CONTROL

30 JNZ	 23 CONTROL i-T,3-1 ELEMENTS IN THE
i 9j POSITION

31 THGE tse

32 MOVE	 R4 tse

_	 33 LAND	 R1, R4, R1

34 CONT	 N CONTROL

35 SLDL	 B tse

36 SHFB	 1 tse
n ,.

37 MOVE	 B tse

38 DCR CONTROL
,.	 39 JNZ	 35 - CONTROL

40 CONT	 N CONTROL

41 SLDL	 B tse

Y

i C-	 ^	 ._	 ._ 	 _	 _.	 -_.	 _ .__..	 ...	 ..	 ._	 _.. ......	 ._ ,u,.03M„.	 wwwe..Mn	
aaM^me+..e..ac

ss.
..	

_ x	 ____-	 '

ioaa v_	 -	 _	 _	 _
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TABLE 9 (continued)

NUMBER

s

COMMENTSINSTRUCTION TYPE

i 42 SHFB	 1 tse

43 MOVE	 B tse

44 DCR CONTROL

45 JNZ	 41 CONTROL i +l,;,j-1	 ELEMENTS IN
THE i,j POSITION

46 THGE tse

47 MOVE	 R4 tse

48 LAND	 Rl, R4, Rl tse

49 CONT	 N CONTROL

50 SLDD	 B tse

51 SHFB	 1 tse

52 MOVE	 B tse

-a 53 DCR CONTROL

54 JNZ	 50 CONTROL i+1,j ELEMENTS IN THE
i,j POSITION FOR THE
FIRST PASS, THEN i+l,
j+l FOR THE SECOND
PASS

55 THGE tse

56 MOVE	 R4 tse

57 LAND	 Rl, R4, Rl tse

' 58. GO TO	 49 CONTROL FOR PASS TWO

59 CONT	 N, _ CONTROL

60 SLDR	 B tse

E' 81 SHFB	 1` -tse

62 MOVE	 B tse 7

63 DCR CONTROL

64 JNZ	 60 CONTROL i,j+l ELEMENTS IN THE
I i_, j POSITION

65 THGE tse
i

r

REPRODUCIBILITY OF TH" 	 x
%'PimAL PAG}l 1q T OOR



TABLE 9 (continued)

i

NUMBER	 INSTRUCTION	 TYPE	 COMMENTS

66	 MOVE R4	 tse

67	 LAND R1, R4, R1	 tse

68	 CONT N	 CONTROL

69	 SLDU B	 tse

70	 SHFB 1	 tse

71	 MOVE B	 tse

72	 DCR }	 CONTROL

73	 JNZ 69	 CONTROL

74	 CONT N	 CONTROL

75	 SLDU B	 tse

76	 SHFB 1	 tse

77	 MOVE B	 tse

78	 DCR	 CONTROL

79	 JNZ 75	 CONTROL	 i,j-1 ELEMENTS IN THE
i,j POSITION

80	 THGE	 tse

81	 MOVE R4	 tse

82	 LAND R1, R4, Rl	 tse	 Rl CONTAINS THE LOCAL
MAXIMA tse 1

83	 RET	 CONTROL

C
t.r

For; Local Maxima (plateau regions allowed), use CMGE
Local Maxima (plateau regions disallowed), use CMPG
Local Minima ,(plateau regions allowed), use CMLE
Local Minima (plateau regions disallowed), use CMPL

w
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f+
3 5 4 4 0 1 1 1 1	 0	 0	 0 1 1 0 0

5 7 6 4 1 1 1 1 0	 1	 1	 1 1 1 0 0

6 5 7 5 1 1 1 1 1	 0	 1	 0 0 1 1 1

i 6 5 3 1 1 1 0 1	 i	 0	 i 1 0-

X 1 0 1 X 0 1 1 X	 1	 0	 0 X 1 1 0

X 1 0 0 X 1 1 1 X	 0	 i	 1 X i 1 0

X 0 0 X 1 1 1 X	 1	 0	 1 X 0 1 1

X 0 0 0 X l 1 1 X	 1	 1	 0 X 1 0 1

(RI ) i-i^ j neighbors

X X X X X X X X X	 X	 X	 X X X X X

X 1 0 0 0 1 1 1 1	 0	 0	 0 1 1 0 0	
i
9

X 0 1 0 1 1 1 1 0	 1	 1	 0 1 1 0 0

X 0 0 0 1 1 1 1 1	 0	 1	 0 0 1 1 1

(RI) i-1, j+1 neighbors

X X X X X 1 1 1 X	 0	 1	 1 X 1 1 0

X 1 0 0 X 1, 1 1 X	 1	 0	 1 X
0

1 1

X 0 1 0 X 1 1 1 X	 1	 1	 0 X 1 0 1

X X X X X X. X X X	 X	 X	 X X X X.. X	 -#

(R1) i -1 , j-1 neighbors

is a

X indicates points which are not eligible to be local maxima,
but are eligible to be neighborhood points.

FIGURE 4.3. Example of Local Maxima Operation
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v-	 X X X	 X 1	 1	 1 X 1	 1 0 1 0 0 X

X 1 0	 X 1	 1	 1 X 0	 1 0	 X 1 1 1 X
s,

X 0 1	 X 1	 1	 0 X 1	 1 1	 X 0 1 1 X

I_	 XXXX XXXX Xxxxxxxx
(Rl) i+1,	 j-1 neighbors

X X X	 X 1	 1	 1 X 0	 0 0	 X i 0 0 X

X 1 0	 X 1	 1	 1 X 1	 1 0 	 X 1 0 0 X

_A	 X 0 1	 X 1	 1	 1 X 0	 1 0	 X 1 1 1 X

X X X	 X 1	 1	 0 X 1	 0 1	 x 0 1 1 X
_i

(R1) i+l, j neighbors
a

r.	

X x
y/

X	 X
^/	 ^/	 yX	 X	 X y

X y
X	 X

y	 y
X	 X

y
x

y
X

y
X

y	

i

X
1

X 1 0	 X 1	 1	 1 X 0	 0 0	 X 1 0 0 X

X 0 1	 X 1	 1	 1 X 1	 1 0	 x 1 0 0 X

X X X	 X 1	 1	 1 X 0	 1 0	 X 1 1 1 X

(R l ) i+1, j+l neighbors a

X X -X	 X -X	 X	 X X X	 X, X	 X X X X X

X 1 0	 X 0	 1	 1 1 1	 0 0	 0 1 1 0 0

X 0 1	 X 1	 1	 1 1 0	 1 1	 0 1 1 0 0

X X
X	 X 1	 1	 1 1

1	
0 1	

0
0 1 1

(R1) 1,	 j+l neighbors

X - filler points

FIGURE 4.3. (continued)
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f

X X	 X	 X	 1	 1	 1	 1	 0 1	 1	 0	 1	 1	 0	 0

X 1	 0	 X	 1	 1	 1	 1	 1 0	 1	 0	 0	 1	 1	 1

h,
X 0	 1	 X	 1	 1	 1	 0	 1 1	 0	 1	 1	 0	 1	 1

X X	 X	 X	 X	 X	 X	 X	 X X	 X	 X	 X	 X	 X	 X

(RI )	 i, j -1 neighbor

Local Maxima tse

ly: X - filler points

^.
s

i-^

i

FIGURE 4.3.	 (continued)
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useful for analysis purposes. Partial derivatives may be employed to

distinguish these boundaries. For the tse computer, a finite difference

approach is used to approximate the partial derivatives. The first

partial derivative with respect to the x coordinate may be approximated

by either a forward, backward, or central difference. Utilization of

the central difference allows less error and does not require signif-

icantly more computation effort with respect to the tse computer. The

central difference approximation to the first partial derivative with

respect to the x coordinate is as follows [8]:
1 _"

F

aF	 F(x+h,y) - F(x-h,y)
ax	 2

xo,ya

In the tse computer case, h is assumed to be equal to one. The central

difference approximation with respect to the y coordinate is analogous

i to the above expression. The division by 2 is accomplished by a

shifting of the accumulator register to the right one position. In the

tse computer, at the present stage of development, this shifting amounts

to the loss of the least significant tse of the difference. However,

i	 when the results of the partial derivative operation are used to

compute the gradient of the image, the division by two alleviates any

overflow problems that may occur. An example of the partial derivative

operation. is shown in Figure 4.4,

A routine to compute the first partial derivative with respect

to the x coordinate is listed in Table 10. A computation of the partial

derivative with respect to the y coordinate may be achieved by



1}M.il-	^ n{.	 ^ ^ tR ^i	 t ^d iX b a 4 # w d 4 k t.	 .!

e

1 2 4 5 4 6 5'4 0	 0 1	 1 1 1	 1 1 0 1 0	 0 0	 1 0 0 1 0 0 1 0 0 1 0

1 2 3 4 4 7 6 5 0	 0 0	 1 1 1	 1 1 0 1 1	 0 0	 1 1 0 1 0 1 0 0 1 0 1

2 3 4 4 7 7 6 4 0	 0 1	 1 1 1	 1 1 1 1 0	 0 1	 1 1 0 0 1 0 0 1 1 0 0

3 4 5 6 5 5 5 4 0	 1 1	 1 1 1	 1 1 1 0 0	 1 0	 0 0 0 1 0 1 0 1 1 1 0

3 4 7 6 5 5 6 5 0	 1 1	 1 1 1	 1 1 1 0 1	 1 0	 0 1 1 1 0 1 0 1 1 0 1

2 3 6 7 6 5 5 3 0	 0 1	 1 1 1	 1 0 1 1 1	 1 1	 0 0 0 0 1 0 1 0 1 1 1

2 2 4 7 6 6 5 4 0	 0 1	 1 1 1	 1 1 1 1 0	 1 1	 1 0 0 0 0 0 1 0 0 1 0

3 3 4 3 5 6 5 4 0	 0 1	 0 1 1	 1 1 1 1 0	 1 0	 1 0 0 1 1 0 1 1 0 1 0

First partial derivative with respect to x of the image

X X X X X X X X X	 X X	 X X X	 X X X X X	 X X	 X X X X X X X X X X X

X '1 1 0 1 1 -1 X X	 0 0	 0 0 0	 1 X X 0 0	 0 0	 0 0 X X 1 1 0 1 1 1 X
X 1 0 1' 1 0 -1 X X	 0 0	 0 0 0	 1 X X 0 0	 0 0	 0 0 X X 1 0 1 1 0 1 X

-X 1 1 0 0 0 0 X X	 0 0	 0 0 0	 0,X X 0 0	 0 0	 0 0 X X 1 1 0 0 0 0 X

X 2 1 -' 0 0 0 ;( -	 X	 0 0	 1 0 0	 0 X X 1 0	 0 0	 0 0 X X 0 1 1 0 0 0 X
X 2 2' 0 -1 0 -1 X x	 0 0	 0 1 0	 1 X X 1 1	 0 0	 0 0 X X 0 0 0 1 0 1 X
X 1 2 1 0 0 -1 X X	 0 0	 0 0 0	 1 X X 0 1	 0 0	 0 0 X X 1 0 1 0 0 1 X

X X X X X X X X X	 X X	 X X X	 X X X X X	 X X	 X X X X X X X X X X X

r
Sign tse

4 X - filler points

FIGURE 4.4, Example of Partial' Derivative Qperatfon
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TABLE 10

FIRST PARTIAL DERIVATIVER OUTINE

PDEX (Assume the tse data word is in the A accumulator)

a

NUMBER COMMENTSINSTRUCTION	 TYPE

1 CLER	 tse

2 CONT	 N+1	 CONTROL

3 SLDR	 A	 tse

4 SHFB	 1	 tse

5 MOVE	 B	 tse

6 OCR	 CONTROL i

7 JNZ	 3	 CONTROL F(x-h)	 IS IN B
ACCUMULATOR

8 CONT	 N+1	 CONTROL .>

9 SLDL	 A	 tse a

10 SHFA	 1	 tse

11 CLRC	 SA 	tse

h
I	 12 MOVE	 A	 tse

13 DCR	 CONTROL

14 JNZ	 9	 CONTROL F(x+h) IS IN A
ACCUMULATOR

15 SUBT	 N+1	 tse SUBTRACT ROUTINE

16 SHFA	 1	 tse

17 CLRC	 AMs	 tse

3F aF
The above routine computes ax x 

^Yo	 o
replaceFor ay 

I xopyo

Instructions 3 and 9 as _follows:

3^	 SLDU	 A

9^	 SLDD	 A

s{
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replacing the slides right and left in the routine of Table 10 by slide

up and down. The routine of Table 10 requires 2.6 seconds per'iteration

on machine 1, and 1.025 seconds per iteration on machine 2.

The second partial derivative may be computed by the application

of the following approximation method [81:

a 
2 
F	 F(x+h,y) + F(x-h,y)	 2F(x,y)

ax 2 
X051yo	

h

This method is shown in the second partial derivative routine of Table

11. The routine of Table 11 requires 5.2 seconds per iteration on

machine 1 and 2.5 seconds per iteration on machine 2.

Gradient. The magnitude of the gradient of an image is defined

as [91:

(3Fgrad	 /4x	 ay)
As with partial derivatives, the gradient is useful in defining

boundaries, and developing topological descriptions of the properties

of an image. Figure 4.5 depicts the gradient operation as applied to

an image. All operations that are needed to compute the gradient of

an image haVe been developed. These operations are combined in Table

12 as a program to compute the gradient. The complete gradient

computation requires 44,2 seconds per iteration on machine 1 and 13.8

seconds per Iteration on machine 2.
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TABLE 11

SECOND PARTIAL DERIVATIVE ROUTINE

SPDX (Assume the tse data word is in A accumulator and memory)

NUMBER INSTRUCTION TYPE COMMENTS

1 CLER tse

2 CONT	 N+1 CONTROL

3 SLDR	 A tse

4 SHIA	 1 tse

5 MOVE	 B tse

6 DCR CONTROL 5

7 JNZ	 3 CONTROL

8 CONT	 N+l CONTROL

9 SLDL	 A tse

10 SHIA	 1 tse
_	

11 CLRC	 SAS tse

12 MOVE	 A tse

13 OCR CONTROL

1 4 JNZ	 9 CONTROL

15 ADDU	 N+1 tse _ADD ROUTINE

16 LODB	 M tse LOAD THE tse DATA WORD
INTO B ACCUMULATOR
FROM MEMORY, ASSUMING	 g
A 12 tse ACCUMULATOR

17 SHFB 11 tse

18 SUBT N+1 tse

az
For

a 
2 substitute for instructions 3 and 9 as follows:

xo,yo

3' SLDU	 A

9' SLDD	 A

r

1



Original Image

1 2 4 5 4 6 5 4 0 0 1 1 1 1	 1	 1 0	 1	 0 0	 0	 1 0	 0 1 0 0 1 0 0 1 0

1 2 3 4 4 7 6 5 0 0 0 1 1 1	 1	 1 0	 1	 1 0	 0	 1 1	 0 1 0 1 0 0 1 0 1

2 3 4 4 7 7 6 4 0 0 1 1 1 1	 1	 1 1	 1	 0 0	 1	 1 1	 0 0 1 0 0 1 1 0 0

3 4 5 6 5 5 5 4 0 1 1 1 1 1	 1	 1 1	 0	 0 1	 0	 0 0	 0 1 0 1 0 1 1 1 0

3 4 7 6 5 5 6 5 0 1 1 1 1 1	 1	 1 1	 0	 1 1	 0	 0 1	 1 1 0 1 0 1 1 0 1
2 3 6 7 6 5 5 4 0 0 1 1 1 1	 1	 0 1	 1	 1 1	 1	 0 0	 0 0 1 0 1 0 1 1 1

2 2 4 7 6 6 5 4 0 0 1 1 1 1	 1	 1 1	 1	 0 1	 1	 1 0	 0 0 0 0 1 0 0 1 0

3 3 4 3 5 6 5 4 0 0 1 0 1 1	 1	 1 1	 1	 0 1	 0	 1 0	 0 1 1 0 1 1 0 1 0

Gradient of the Image

X X X X X X X X X X X X X X	 X	 X X	 X	 X X	 X	 X X	 X X X X X X X X X

X 1 1 0 2 1 1 X X 0 0 0 0 0	 0	 X X	 0	 0 0	 1	 0 0	 X X 1 1 0 0 1 1 X

X 1 1 2 1 1 1 X X 0 0 0 0 0	 0	 X X	 0	 0 1	 0	 0 0	 X X 1 1 0 1 1 1 X
X 1 2 1 1 1 0 X X 0 0 0 0 0	 0	 X X	 0	 1 0	 0	 0 0	 X X 1 0 1 1 1 0 X

X 2 1 1 0 -0 0 X	 - X 0 0 0 0 0	 0	 X X	 1	 0 0	 0	 0 0	 X X 0 1 1 0 0 0 X
X 2 2 0 1 0 1 X X 0 0 0 0 0	 0	 X X	 1	 1 0	 0	 0 0	 X X 0 0 0 1 0 1 X
X 1 2 2 0 0 1 X X 0 0'0 0 0	 0	 X X	 0	 1 1	 0	 0 0	 X X 1 0 0 0 0 1 X

X X X X X X X X X X x X X	 X	 X X	 X	 X X	 X	 X X	 X X X X X X X X X

(Note Boundary)

X - filler points

FIGURE 4.5. Example of Gradient Operation 00
rn
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TABLE 12

ROUTINE TO COMPUTE THE GRADIENT OF AN IMAGE

GRAD

NUMBER	 INSTRUCTION	 TYPE	 COMMENTS

1 CLER tse

2 CALL PDEX CONTROL FIRST PARTIAL DERIVATIVE
wrt x ROUTINE

3 CA LL S AQ R CONTROL SQUARING ROUTINEEQ	 N

4 STOA Z tse STORES THE CONTENTS OF
A ACCUMULATOR IN
LOCATION Z

5 LODA M tse RELOADS THE tse DATA
WORD INTO THE A
ACCUMULATOR

6 CALL PDEY tse FIRST PARTIAL DERIVATIVE
wrt Y ROUTINE

7 CALL SQAR tse

i	 8 LODB Z tse

9 ADDU N tse ADD ROUTINE

10 CALL SQRT tse SQUARE ROOT ROUTINE

The gradient of the image is available in the A accumulator.

a
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The above operations are only a Few of the many that are

possible due to the flexibility of the tse processor. As the tse

computer proceeds in its development, more processing power and improved

hardware will enable the tse computer to handle more complex tasks at

I< a greater rate of speed.

J
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CHAPTER v

CONTROL OF THE TSE COMPUTER

The control unit of the tse computer is assigned the task of

sequencing the stored instructions in the proper order, selecting

the correct information source and destination, and providing the

appropriate processing path through the tse processor. One control

organization is shown in Figure 5.1. Tse processor control is achieved

by the selection of a "control word" which is output from the control
q
d

unit and interfaced with the tse processor. Each bit of the control

word is used to ac+ivate or deactivate one or more of the "reformatters"

in the tse processor. The reformatters may be termed switched-output

devices, in that the electroluminescense may be turned nn or off by a

conventional logic signal. Thus, proper data paths are chosen by

i,	
activating the reformatters which lie in the specific processing paths

chosen by the instruction. Of course, the control unit must observe

C	 the timing constraints dictated by the tse logic device propagation

delay.

is

	

	 Conditional control is accomplished by inputting-to the control

unit the status information provided by the "contractor" outputs in

the tse processor. The tse status information is stored in a register

which is available for input to the control unit.

Control implementation may be achieved by utilizing any ofthe
small computers now available. Since the instruction cycle time of the

tse computer is significantly greater than that of a conventional

89
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computer. A control unit organized around a microprocessor is

sufficiently fast for the tse processor. The tse computer routines of

f	 Chapter III and IV were written using the instruction set of the

Intel 8080 microprocessor as the control commands. Thus, the

organization of Figure 5.1 shows the control unit based upon the

r	 8080 CPU. However, any of the microprocessors available could be used.

The control unit functions under the management of a "System
r.

Monitor Program (SMP)." When the control unit receives an instruction

for execution, the SMP determines whether it is a control or tse

instruction. If the command received is a control instructions it is

executed without affecting the "control word." However ., if the command

i s a tse instruction, the SMP directs the output of the proper control'

word to the tse processor, and maintains the control word for the

minimum amount of time necessary for the tse data to propagate along

the proper paths. Figure 5.2 illustrates the operation of the SMP.

A control unit of this type has the advantages of being small

J
lightweight, and having low power consumption relative to the tse

processor.

h
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CHAPTER VI

CONCLUSION

Tse processing of pictorial information has been shown to be an

_ efficient method relative to conventional processing. 	 By utilizing

the ALU organization of Figure 3.13 (page 44) with the CPU organization

of Figure 3.3 (page 21), the desired topological information may be

extracted speedily and efficiently. 	 With this organization, the

processing flexibility to develop other tse or arithmetic operations

has been provided.	 Tse processing capability is limited only by the
I

cleverness of the programmer.

Since the tse hardware is in the early development stage,

rt hardware specifications on speed, power requirement, etc., will

r.
improve with time.	 Consequently, the microprocessor control must also

k be faster.	 As these improvements are realized, the tse computer will

gain an even greater margin on conventional machines in image processing
l: tasks.

r

k
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APPENDIX

TSE COMPUTER INSTRUCTION SET

i
One-byte Instructions

x CLER: Clears all ALU latches. 1

CLRA: Clears the "A" accumulator.

CLRB: Clears the "Be l accumulator.
m

TRNS: Transfers the contents of ALU carry latch 2 to

the ALU output latch. =

CMPL: Compares the contents of the least significant

tse positions of the A and B accumulators.	 The

resulting tse (A < B) is stored in ALU carry

latch 2.

CMPL: Compares the contents of the least significant

tse positions of the A and B accumulators.	 The

resulting tse (A > B) is stored in ALU carry

latch 2.

TCMA: Microprogrammed instruction to replace the contents
_ .

of the "A" accumulator with ` its two's complement.

TCMB: Microprogrammed instruction `to' replace the contents

of the "B" accumulator with its two's complement.

SSUR: Microprogrammed instruction to compute the square

of a 6-tse data woad.

S RT Microprogrammed instruction to compute the square

root of a 12-tse data word.

97



Two-byte Instructions

SHFA n: Shift the "A" accumulator right n positions. 	 The

magnitude only is affected.

SHFB n: Same as SHFA n, except with "B" accumulator.

SHIA n: Shift the "A" accumulator right n positions. 	 All

tses, including the sign tse, are affected.

'	 SHIB n: Same as SHIA n, except with "B" accumulator.

CONT n: Sets up a control instruction subroutine which

establishes a counting loop starting at n.
3

CLRC X: Clears location X.	 Permissabie X are:	 Rl-R10

latches, SS	 A	 B	 B	 B	 ALU carry	 3A	 B	 MS	 MS'	 LS'	 LS+1

Latches 1 and 2, and the ALU output latch.

MOVE X: Transfers the contents of the ALU output latch to

the designated location X.

MCME X: Transfers the complement of the ALU output latch

to the designated location X.

LDCA X: Load the contents of location X into the ALU

carry latch 2.	
^9

CHEK N: Sets up a subroutine of control instructions which

inputs the tse status register, checks that bit

position which represents the output of the ALU	 i

"contractor", and jumps to the instruction of

location N when that bit is logical 0. 	 Otherwise,

the next instruction is executed.

CHAK N: Same as CHEK N, except program control jumps on

logical	 1.

F
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^,.. Three-byte Instructions

^p IRAN X,Y: Toansfers the contents of location X to location Y.

TRNN X,Y': Transfers the complement of the contents of
l^

location X to location Y.

Y
ADSU X,Y: A single iteration add/subtract instruction.

Generates a sum tse in the ALU output latch, and

a carry tse in ALU carry latch 2.

;rt	 .

Four-byte Instructions

LAND X,Y,Z: ' Forms the intersection (AND) of the contents of X and
3

Y locations, and stores the result in location Z.

i
LORE X,Y,Z: Forms the union (OR) of the contents of X and Y

locations, and store's the result in location Z.

L EXOR X,Y,Z Forms the logical exclusive-or of X and Y locations,
3

and stores the result in location Z.

{
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