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ABSTRACT

A new family of digital Togic elements, known as tse Togic devices,
have been proposed by D. H. Schaefer and J. P. Strong at thé Goddard
Space Flight Center, Greenbelt, Maryland. Tse logic elements are
parallel computing elements which implement primitive logical functions
concurrently at each position of a two-dimensional binary array. The
purpose of this research was to examine different tse hardware structures
for performing a certain task.

A parallel algorithm for counting the number of logic-1 elements in
a binary array or image'was developed at GSFC during preliminary
investigation of the tse concept. After summarizing the research at
GSFC, - the Counting algorithm 1is impiemented using a basic combinationa1
Structure. Modifications which improve the efficiency of the basic
structure are also presented. A programmable tse computer structure is
then proposed, along with a hardware control unit, tse instruction set,
and software program for execution of fhe counting algorithm. Finally,
a comparison is made between the different stfuctures in terms of their
vmoré 1mportant’characteristics. To more clearly illustrate the pfojected
advantages of tse logic, a progrém to perfbrm'the same task was written

for a conventional binary processor and included in the comparison.
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CHAPTER 1
INTRODUCTION

Since the advent of the first computers, a great deal of effort has
been devoted to the task of developing processors with improved data
processing rates. Techno]ogicé] innovations have been the primary
contribution to the improvements which have been realized throughout tﬁe
history of the computer. However, there is evidence that the speed at
which present-day components can operate is fast approaching the limit
at which electronic signals can propagate [11. Thus, refinements in
areas other than the speed of semiconductor devices will provide the
probable source for significant increases in data processing rates in
the future. |

One such area which has gained interest in recent~computer
developments 1is the concept of parallel processing. The term “paro11e1
processor 15 used to descr1be a computer whose Ar1thmet1c Log1c Unit
is structured to operate on each bit of an n- bit operand concurrent1y
This term is sometimes also used to describe oomputer arch1tectures in
which:a number of different instrvctions may be executfng‘at any one
time., However a. descrwpt1on of such processors 1s beyond the scope of
this,1nvest1gat1on of part1cu1ar 1nterest in th1s research is the
array prooeseor,'a spec1a1 type of para11e1~data prooessor,;vThe array
processor¢ ih general, addresses and,operatéseupoh_Iarge.bjooks of bits,

usually multidimensional in their arrangement.



The concept of the parallel processor is actually not new.
Virtually all computers in use today exhibit some degree of parallelism
in that they are word-Oriented machines. This is justified by the fact
that some of the most common forms of data handled by these machines
(for example, ASCII or BCD infoimation) occur most frequently as a
group of bits. The processing of such data would become unnecessarily
cumbersome if handled bit—by-bit; Therefore, the word-oriented
processor is favoked over a completely serial one. In fact, the word-
oriented computerrhas become the most highly developed and widely used
form of information processing machine in general use at this time.

~ Only recently have more highly parallel processors been given
‘serious consideration as practical tools for information processing.
Although the advantages of such processors are many, their development
has been Timited by such factons as cost, size, and maintenance

considerations, which are due to the increased component count and

o

number of connections. Although some array processors such as SPAC [2],

SOLOMON [3], and ILLIAC IV [4] have been proposed, few have actually
reached an operational status (the ILLIAC IV has been partially
comp]eted), and V1rtua11y none have found w1despread genera] use. One

factor which 1s—expected to contr1bute to the development of parallel

processors is the current state of integratéd circuit technology. This

technology allows the fabrication of large scale ce]1u1ar'compbnent
structures atva:reasonable‘COst and small size: |
~Insofar aé bnesent day Computers are concerned, they are well
organ1zed to handle much of the data which they encounter, since these

_data occur ma1n1y in a word or1ented fashion. However, one form of
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data which becomes cumbersome to process is the digitized image. Even a
Tow resolution, simple binary image would be digitized to a minimum of

4 bits, and, at present, almost all images are processed in a

about 10
highly serial manner using conventional processors. In order to

optimize speed and efficiency, a processor capable of handling at least

as many bits as there are image elements would be required. Hence,

image processing is a very likely field for the expansion of parallel

array processors. In particular, the organization of an image processor
Wou]d necessarily be two-dimensional, implying communication between
hofizonta] and vertical neighboring elements, instead of simply

employing a large number of bits which are spatially unrelated.

The success of the Earth Resources Techno]ogy'Program'(ERTS-1, now
known as LANDSAT-1) has led to the consideration of parallel processing,
for the development of practical and efficient’methods for identifica-
tion and classification of earth résourées. The fact that the LANDSAT-1
satellite 1mages‘COVer approximate]y six million square kilometers per
day has provided the main challenge to the NASA Data Processing Facility
for the retrieva? and processing of these data. Among the most promising
pfograms which have resulted ffbm this'cha11enge is oné»at the NASA
ngdard Space FTight Center which has projected the deve]opmentkof a
- family of two-dimensional parallel 1091c~dey1cés. In éssence, each of
the logic devices represents a computing element Whpse'érfay sizeyis'the -
same as the number of picture~¢1ements (or pixe]s)'inifhe image and can
'perform a pfimitivé,logica] operation conturrent1y ét'each’imagé;
position. vCurrentiy, thefutf1iiatioh of fiber optics 1S‘Be1hg considefedk

for the fabrication of these devices. Prbjected_refinements in fiber



optics technology indicate that parallel computing'e1ements could be
constructed which are faster, less power-consuming, and possibly even
smaller than conventional electronic components [5].

In the second chapter of this thesis, the work of ‘Shaeffer and
Strong related to two-dimensional Togic devices is discussed. The
third chapter presents Strong's counting algorithm, and the fourth
chapter is devoted to the hardware implementation of the aTgorithm. In
the fifth chapter, the merits of the different hardware implementations

are compared, and conclusions are presented based on these comparisons.



CHAPTER 2
TSE LOGIC DEVICES

Consider an image composed of a 512 x 512 rectangular array of
picture elements in which the gray Tevel of each element is quantized to

six bits. There are over 1.5 x 106

bits of information in this image.
Another way to visualize a digitized image is as six binary image
pianes, each plane containing 512 x 512 bits. The binary image plane or
bit plane is a two-dimensional binary data array called a "tse.” The
origin of the term "tse" 1is the result of an analogy drawn between
binary bits and words of the English language. Just as the Chinese
language makes use of single symbols which renvesent many English words,
the binary array represents many binary bits. The term "tse" is the
transliteration of the Chinese word for the pictograph character, and
thus has been adopted as the word for the binary data array [5].

A family of tse logic devices which utilize é]ectro-optica]
technology and which are capable of performing simple, parallel logical
operations simultaneously on one or two tses has been proposed by
Shaeffer and Strong [5, 6]. Figure 1 illustrates a tse gate capable of
ANDing two,binary image planes. A tse gate consists of two parts, an
interleaver and an é]ectro-optica1 tHreSho]d device. kThe interleaver is
a paséive device which consists simply of two bundles of n2 optical
kfibers,'where n % n is the size of the bit p1ané for which the gate is
designed. These bundles are merged~ok interleaved such that corresponding

positional elements in the Image A and Image B inputs are combined to the



% integrated electro-
f?;; optic devi;i;7
) 4

) fiber optic interleaver
@ (COMBINER) ‘

A = eren 1 [ = Loetea o

Figure 1. A two tsekihput; digité]’AND gate.

 REPRODUCIBILITY OF THE
SEIGINAL PAGE IS POOR



same elemental position at the interface of the electro-optical device.
When used in this manner, the interleaver is referred to as a combiner.
The electro-optical device is an active integrated circuit which
converts the optical inputs to electrical signals which are logically
ANDed in a conventional manner. Electrical signals at the output are
converted to an optical dutput by an electro-Tuminescence process.

Since only one fiber bundle can be connected directly to the output,
the fan-out of a tse logic gate is one; In order to increase the.
effective fan-out, one or more interleavers can be used, in a revérse
manner, at the output of a tse gate. An interleaver is referred to as a
duplicator when used in this manner. Since each output element of a
“duplicator is one-half the intensity of the input, the original Tight
intensitybmust be restored before the outputs can be u&ed. Therefore;
beach output from the dup1i¢ator‘must interface to a reformator, which is
an active tse buffer device used to restore the proper optical signal
leveis. Figure 2 demonstrates how the effective fan-out ffom the AND
‘gate can be {ncreased to four. |

~ In addition to the AND operation, other primitive operations can be
implemented. The OR, EXCLUSIVE-OR, NEGATE and SLIDE operations are
1mp1émentedk1n a similar manner as the AND gate, except that the single-
opérahd devices need not'include the combiner at the 1nput;  The SLIDE
operatioh is an‘imagektrans1ation in the UP, DOWN, RIGHT of:LEFT
dibé;fion. Conceptually, this Qperaiidn'is generated by interfacing two
| fiber bundles with a physfca] offset, as illustrated in Figure 3. The
:resuité bf performing theSé;primitive operations on typicaiiimages are.

depicted in Figure 4.
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Tse logic gates which implement functions other than the primitive
logical operations have been proposed.. One of these gates, the
contractor, has been found to be usefu]yin most tse computer structures.
The contractor is a control device which indicates the presence of any
T-elements in a tse. If there are no 1-elenents in any position of the
binary image, the output of the device is logic-0, otherwise the output
is logic-1.  This device is different in that the input is a'tse, but
the output is a single-bit logic signal. A device of this type is
necessary for 1mp1ementing»condifiona1 image operations. Other special
tse logic devices can be found in Reference 5, Appendix A.

Thé basic tse gates can be‘interconnected in much the same manner
as conventidna1r1ogic components to form structures which perform useful
functions. In order to realize more efficient utilization of components
in a complex tse structure, some method of contfo11ing the propagation
of images must be providéd. To facilitate the switching of paths along
“which an image will travel, all active tse deviées’are assumed to have a
one-bit control line fqr turning the electro-luminescence on and off.

In the off state, the output tse is a zero-tse; that is, all elements in
the array'are logic-0. The use of this contrO] scheme is illustrated in
Figure 5. Assuming that only one of the three control 1ines is active
at any tﬁme, the circuit can»exeéute a SLIDE UP, SLIDE DOWN, or a -

NO-OPERATION. -

In the sections whith foT]ow, é para11e] algorithm for counting

the number of ]4e1ement$ in a binafy image Will be implemented using tse

logic devices. To provide a basis for comparison, different tse hardware
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structures are presented. In some cases, image processing rates show

very significant improvement over those of conventional processors.
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CHAPTER 3
A PARALLEL COUNTING ALGORITHM

In earth resource applications, techniques of pattern recognition
are applied to the classification of terrain or surface features. After
the classification pfocess, the measurement of the area of an identified
region is desired in many instances. For example, a typical application
of earth resource technology might involve the mapping of the bodies of
water in a certain land kegion. After the portion representing water is
jdentified in each frame, the total area of’the water surface is
desired, since this information is important to the classification of
the land region by percentage of water. Figure 6 illustrates a tse
image plane of a typical frame after the identification of bodies of
water. The desired area is represented by the 1-elements. Each
element in the region classified contributes a partial area to the
toté1; The pkob]em of area measurement is solved by counting the
number of T-elements in the tse. In a conventional dfgita] computer,
'this‘measqrement is attained through é sequential decision process, one
é1ement»at a time. The parallel counting algorithm of Strong [5, Appen-
dix F] aghiéVes the so]utibn diffefent1y. A few of the descriptive
characteristics of the aTgorithm are presented in this section.

The coﬁnting.aigorfthm fs‘épp1icab1e.tovany»bfnafyvimage (of tse),
2™ vows by 2" co1umn55_Where m-ahd~n éfé}any nonzero,_pbsitive_integers;'

After the application of the a1g9ﬁithm; theyresu]t is also in the form

14
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of an image. However, the desired information, which is a binary
number indicating the number of l-elements in the image, is found in the
bottom row of the image. The remaining elements of the image are all
zero. This is illustrated in Figure 7 for m,n = 3. The original image
of Figure 6 is seen to contain 23 1-elements. Figure 7, which is the
result of the application of the algorithm, has the number 00010117 in
the bottom row. This is seen to be the binary representation of the
number 23. The method by which the image of Figure 7 is generated from
the original image is outlined as fo]]oﬂs.

Basically, the counting process which is carried out by the algorithm
consists of a number of iterations, each of which generates partial sums
over the image. Each successive iteration generates these sums over
larger areas, the final area being the entire image. To illustrate the
process, consider the 4 X 4 binary image shown in Figure 8(a). Of course,
the 1-elements and O-elements in the image represent the logic 1eve1'at
each position. However, for this discussion, consider each as a one-bit
binary number, a l-element representing one unit of area to be contributed
to the total, and a O-element rapresenting ne area to be contributed. In
the first iteration, each number in the first column and third column is
added to the number immediate1y to its right.' Thus,,eight additions of
tWo elements each are performed in para]]ei‘and\the fesu1t is as shown in
 Figure 8(b). The eight groups or sectorsfovef,whichvthe additions were
generated are indicated in Figure 8(b), the encircled numbers being the
“two-bit first partial sums. In the second iteration, each greup (partial
sUm) is added to the ore immediately to its right, thus generatiﬁg four

second partial sums, as shown in Figure 8(c). Note that each group
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encompasses a full row, and the number in the group represents the
number of 1-elements which were in that row of the original image
(Figure 8(a)). Since the maximum-number-of T-elements in any row is
four, and only three bits are necessary to represent the sum of the
elements in that row, the sum is right-justified. In}§he third itera-
tion, the row sums are added to generate two partial sums, each over
two rows, and, in the final iteration, the two partial sums are
cbmbined to form the sum over the entire image. Note here, that in
addition to being right-justified, the sum in each group appears in
the bottom row of the group. L

As evidenced by the above description, the algorithm is inherently
rpara11e1. The algorithm could, of course, be implemented by various
methods, such as by COnventiohaT programmed processors. However, the
parallel nature of the algorithm makes it particularly well suited to the
concept of tse logic. In the following paragraph, one iteration’of the |
algorithm is reduced to a number of steps and described in terms of the
necessary tse operations which were defined in the previous chapter.

To complement the illustration of the algorithm, an arbitrary image
is uSed to show the effect of the execution of each step. For simplicity,
the 8’x 8 (m,n = 3) image shown in Figure 6 (page 15) is chosen as the.
original, andkis identified in the algorithm as Image A.

STEP 1. Create a new image, Image B, by perform{ng~a SLIDE 1

- RIGHT operation on Image A. The result of this step
is shown in Figure 9(a). | | | ’ |

STEP 2. Mask the odd numberedkco1umns~of both Image A and

Image B.  This forces these columns to contain all
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zeros. The masked images are labeled Image C and
Image D, respectively, and the result of this step
_ s shown in Figure 9(b).

STEP.3. The AND and EXCLUSIVE-OR of Image C and Image D
are generated and are 1abe1ed'Image E and Image F,
respectively. The result of this step is shown
in Figure 9(c).

STEP 4. Iimage E is checked for all zeros. If Image E is’
all zeros, the iteration is complete. If Image E
containa any 1-elements, a SLIDE 1 LEFT operation is
performed on Image E. The result is labeled Image C,
and Image F is relabeled as Image D. The result of

o performing this step is shown in Figure 9(d).

STEP 5. Repeat Steps 3 and 4 until Image E is all zeros.:

In the example, Steps 3 and 4 are repeated once.
The result of performing this step is shown in
~ Figure 9(e).

These steps,describe the first iteration ef,the a]gorithm. All a

subsequent iterations use the same steps, with the exeeption that Step 1

and Step 2 are modified. The magnitude and direction’of the'STide in.

Step 1 and the pattern of the mask1ng in Step 2 are dwfferent for each

success1ve 1terat1on These d1fferences are out11ned Jater. First,

consider the effect of each step outlined above w1th1n the f1rst
iteration. ’ | |
Step 1 creates a new Image B from the or1g1na1 Image Ain wh1ch

every element occuples the same pos1t1on as the one to 1ts r1aht in the
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original. By removing the odd columns from both Image A and Image B,
Step 2 effectively creates Image C, which consists only of the even-
numbered columns of the original image, and creates Image D, which
consists only of the odd-numbered columns of the original image, shifted
one position to the right. No information is lost in the masking process,
as might first be concluded. When Image A is masked to create Image C,
the effect is to retain the even-numbered columns of the original image.
On the other hand, when Image B (same as image A, displaced by one
column) is masked to create Image D, the effect is to retain the odd-
numbered columns of the original. Therefore, all information which was
contained in the original image has been retained, and none is lost.
The masking proceés actually removes redundant information from the
Images. Step 3 adds, independently and concurrently, each element in
Image C to the corresponding element in Imagé D. The sums (result of
the EXCLUSIVE-OR operation) are placed in Image F and the carries
(resu1t of the AND operation) in Image E. Step 4 checké Image E to
determine whether or not any carries were generated. If not, Image F is
the result of thekiteration. If any cafries were generated, they must
be ‘added to the sums,‘using another EXCLUSIVE—OR and -AND operations thus
generating another sum 1mage and carry image (Image F and Image E).
Step 5 indicates that the adding opefatidn'of Step 4 is repeated until
thé carry image shows all zeros, thus indicating that the addition has
been completed. Note that Steps 3, 4, and 5 describe'an addition
process which is cdmp]eteiy aha]ogous to the dperation of a conventional
“ripple-carry adder circuit [5, Appendix Fj. Step 3’1mp1ements a fuhction

similar to that of the first ha]f-addek in each cell of a conventional
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adder. Steps 4 and 5 represent the method by which the second half
adder of each cell adds ihe incoming carry to the sum fror the first
half-adder of the cell to generate an outgoing carry to be used by the
next cell. Upon completion of all five steps, Image F is the result of
thekfirst jteration. This image is the original for the next ijteration.

Each successive iteration performs the same basic operation over
larger groups, the final iteration being the one which generates the
sum over the entire image. Figure 10 i]]ustrates the. result after
each iteratioh, along with the sectors over which summing is performed.
The fact that any sector (encircled areas in Figure 10(a) through (f))
contains a binary number representing the number of 1-elements in the
corresponding sector of the originé1 (Image A) can be readily verified
from the figure. |

As previously stated, Step 1 and Step 2 must be modified for each
jteration. For instance, the second iteration of the algorithm differs
from the first, in that the slide operation is a SLIDE 2 RIGHT and the’
columns that are masked are the first and second, fifth and sixth,
ninth and tenth, and so forth. Using the same approach askpresented in
| the first iteration, the sum over horizontal groups of four will be
generated when the second iteration is performed on the result of the
first 1£eration, as’shown in Figure 10(b).

.Modification of the subsequent iterations is similar, until each
horizontal group is the length of an entire row, as shown in |
,FigUre 10(c). At this point, the rows must be added to dne another,rin
much the same manner asﬂgroupsbwere added befofe. Therefore, Step 1 of

the next iteration will be a SLIDE 1 DOWN, and the odd—numbered'ﬁgﬂi,
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instead of columns, will be masked in Step 2. From that poiht,
modifications are the same numerically as before, retaining the DOWN
slide directioh and row masking. Table 1 gives the necessary
modifications as a function of the number of the jteration being

performed.

Modified forms of the counting algorithm. The parallel counting

algorithm is seen to be an efficient and potentially fast method of
summing. elements in a binary image. Results similar to those shown can
be obtained by utilizing certain allowable variations in the basic
steps of the algorithm. With these variations, the execution of the
algorithm can possibly be greatly simplified for specia1 types of input
.images. Some modified forms of the counting algorithm are presented‘k

below, using the image in Figure 6 (page 15) as an example.

Generating sums in sectors of an image. In the standard form of

~the algorithm, the magnitude and direction of the slide in Step 1 of
each iteration is specified by the number of the iteration. For any

2", the order of the slide operations is 1, 2, 4 . . . ,

image oM
2" RIGHT, then 1, 2,4 . . . , 2™ ! DOWN. Note, however, that the
iterations need net be tied to this specific ordering. After perfofﬁing A‘
any number of the ijterations COntéining'RIGHT sTides, the iterations
containing DOAN s1ﬁdes may be'commencéd' After any number of DOWN
sl1des, more of the RIGHT slides may be performed, and so on. The
iterations may be 1nterm1xed in any way, subject to only two

restr1ct1ons First-of all, the actual order of the 1terat1ons

‘containing slides of a certain d]rect1on should not be disturbed when



TABLE 1

SUMMARY OF MODIFICATIONS PER ITERATION

Operation : Mcdifications
Step.-1 : : : k-1 ,
Slide Operation . ' SLIDE 2 RIGHT, k < n
: | sLIDE 2571 pouN, k > n
- Step 2

Mask Operation

step 2 e ' Co (a) Mask following columns:
ot , For k <n
Mask Operation ; , and =1, 2, ... 2"k
(285251, 2Kj2fup, L L L okiookTy
(b) Mask following rows:
For k > n
and i =1, 2, . . ., 2™k
(2K Mgk M, pkemy gkengy | gkeny pkene1)
; ™ ; -
k = Number of the current iteretion. 2" = Number of columns in the image.

Number of rows in the image. m + n = Total number of iterations per image.

RN
Il

92
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iterations in the other direction are inserted between them. For
example, if the iteration containing the SLIDE 4 RIGHT is perfocrmed at a
certain time, then no matter how many iterations containing DOWN slides
are performed, the next RIGHT siide iteration will be a SLIDE 8 RIGHT.
0f course, the same applies when RIGHT slides are inserted between DOWN
slides. The second restriction concerns the size of the partially summed
sectors which may be generated as a result of performing the iterations
in a different order. Certain orderings of the iterations Will generate
sectors whose row lengths may not be large enough to contain the binary
number representing the number of elements in the sector. For instance,
consider the 8 x 8 image in Figure 11 to which the algorithm will be
applied. Thé order of the iterations is chosen to be the SLIDE 1 RIGHT
1teration, followed by the SLIDE 2 RIGHT iteration, followed by the
SLIDE 1 DOWN, SLIDE 2 DOWN, and SLIDE 4 DOWN iterations, as depicted in
the figure. After the application of these five iterations, the result
1ndicates partial summing over two sectors, each 8 rows by 4 co]umns.
However, note that there are 19 1-elements in the left half of the
original image, and that the binary form for 19 (10011) cannot be
‘placed in the bottom row of the corresponding sector. Thé most signifi-
cént bit’is.lost, thus 1ntroduc1ng én efror 15 the computation. Clearly,
the result after the final iteration (SLIDE 4 RIGHT) is incorrect.

Within the re§trictions, any Fearrangement bf the ofder of the
iterations will generate theksamé:final‘resu1t.iiTHe real significancé*of'
the rearréhgemenf is thatrby pkoper]y chqosing the'sequencé,;then :
omitting one orkmore of theyiterétions,.the end result wi11,fndica£e

partial summing over a number-of sectobs,of the original image. This
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capability could be useful for some applications which require finding
average densities in different partitions of an image.

As an example, consider the 8 x 8 image shown in Figure 12(a). In
addition to finding the total number of T-elements in the image, the
distribution of these elements over.the four quadrants is also desired.
To achieve this, the order of the jterations is changed to SLIDE 1 RIGHT,
SLIDE 2 RIGHT, SLIDE 1 DOWN, and SLIDE 2 DOWN. After these four itera-
tions, the desired p&rtia] sums are available, as shown in Figure 12 (e).
To comb]ete the operation, the remaining two iterations, a SLIDE 4 RIGHT

and SLIDE 4 DOWN, are performed.

Simplification of the algorithm for clustered elements. When the

elements to be counted do not cover most. of the total image frame, some
- of theriferations may possibly be omitted. Counting of clustered
elements, those which 1ie totally within some smaller area of an image,
requires only as many iterations of the a]gorithm as would the sma11e§t
o™ x " (myn are integers) image which will enclose the cluster. Once
this reduced image size is determined,'the pgrtia1 summing procedure
described above 1is applied to thé.image. The pfOcess is complete when
the size of the partially summed sectors is the same as the reduced
image size for the cluster. Provided that every element of the cluster
,'was located within a sing]e“sector of the original, the'resu1t Shbwn in
that sector will actually be the desired sum. In order to ensure that -
»thé'¢1USter 1jes entirely within the sector, a humber of.s]ides'DOHN and
RIGHT’ShOQWd be applied tb the~0rigina1bto relocate the c]uSten to the

extreme bottom right of the image. - This will also cause the;résu1t to
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always be located in the normal bottom right position. Thus, by
elimination of some of the iterations, the processing time can be
reduced.

The simplification is practical only if there is some method of
determining the size of the cluster, adjusting the pattern of the itera-
tions, and determihing the number of slides needed to relocate the
cluster. In particular, if the execution of the algorithm is under the
control of some typé of monitoring device, an overall reduction in
processing time may be realized by checking every image before starting
the counting process, then making the necessary adjustments, if any.

As an example, suppose that the binary image of Figure 13(a) is
the result of some classification process, and the encircled areas have
been found to be the areas of interest. However, for some reason, only
the area at the ]ower left -is to be measured. :By some further classi-
ficétion process, the area at the upper right is removed, as shown in
Figure 13(b). Upon checking the image, the monitoring device finds that
the smallest area which is 2" rows by 2" columns and contains all of
the elements to be counted is 4 x 4 (m,n = 2). To relocate theyimage to
the bottom right corner, simple slide operations are performed,'fesu1ting
in the image of Figure 13(c). The partial summing procedure is then
applied, with a final sector size of 4 x 4. Thus, the execution time
for the a]gorithm_wi11’be shorterf

'More,significant reduétions 1n prdcessing't1me will be fea]ized when

image planes larger than 8 x 8 are used.
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CHAPTER 4
TSE HARDWARE IMPLEMENTATION OF THE COUNTING ALGORITHM

'Combinationa1 circuit approach. As described in the chapter on tse

components, tse gates may be interconnected to form more complex tse
functions in much thebsame manner as conventional gates are interconnected
to. form more complex boolean functions. Using a straightforward approach,
one method of imp1ement1ng the counting algorithm is to simply connect
the proper gates together in such a way that the desired steps are
performed on the image as it propagates through the network. Conceptu-
ally, this is the simplest and most direct realization of the algorithm.

The complete circuit for implementation of the a]gorithm may be
'viewed és a group of cascaded "black boxes," where each box has only an’
input tse and anvoutput tse, and performs a single 1terat10h of the
algorithm. This arrangement is illustrated in Figufe 14. Since the
magnitude and direCtion of the slide and the pattern of the mask is
different for each iteration, each box wiTT have different contents.
However, the fo]]owihg description of the contents of one box is a
general one, and the diffekences'between each box..can be summarized.

The hérdware needed to pefform,one iteration of the algorithm is
shown in Figure 15,'and the sfeps within thé fteration can be readily
-associated With certain gates in the structure; Tsé Gate 1 1is thers11de
gate which berforms‘the slide opératiohvinvthe‘appropriate mask pattern,

as outlined in Step 2, by allowing information to pass through the AND

34 SIS AN o
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gate where a 1 appears in the same position in the mask, and generating
a zero elsewhere.

As described in Step 3, tse Gates 4 and 5 generate the sum and
carry images, respectively. Tse Gates 6, 7, 8, and 9 effectively
perform Step 4 and Step 5, but in a somewhat different manner. The
carry image generated by Gate 5 is one jnput of the OR gate (Gate 6),
whose other input is initially clear. The carry image then propagates
through Gate 6 unaffected to Gate 7, where a SLIDE 1 LEFT is performed -
on the image. This will displace any carry bit generated to the left,
as is expected when two binary numbers are being added. Remember,
however, that many sets of two numbers are being added simultaneously in
this case. The displaced carries are then fed back into one input of
Gates 8 and 9, where they are addéd to‘the previousiy generated sums.
Again, this follows direct1y‘from the case for bihary humbers. lhen the
carries are added to the sums, new carries may be genefated. These new
carries are, in turn, shifted left and added to the sum, which may
generate even more carries: Thus, carries wi]]ypropagate around the
feedback Toop until no newkcarries are generated. 'This is analogous to
binary addition. In fact, the entire summing operation pefformed by |
Gates 4, 5, 6, 7, 8, and 9‘is equivalent to having 2m+n (the total number
of image elements) one bit full adders connected inbgroups of p; wheke p
is tﬁé'humber of 1maée elements being summed per group in thé particular
~iteration. Hence, the truefpotehtia1 of parallel processing is épbarent;

| After the feedback loop is stabi]iZed (that is, no new carries ére
being generated), the-output cankbekassumed to be cokkett. Actually,

there is no indication as to when this condition has been reached;
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therefore, the amount of time required for worst-case carry propagation
delay must elapse before the output can be assumed to be stable and
“correct for the next iteration.

The number of gates fequired for this implementation of the counting
algorithm for a 512 x 512 image is 360. Based on an initially projected
«power consumption of 3 watts per gate, the total power required for the
circuit is 1080 watts. The processing time, taken to be the delay from
the introduction of the original image to the input of the circuit to
the time at which the output 1skstab1e (worst-case), is 756 tse gate
delays. In terms of a projected delay of 5 mi]]fseconds per gate, the
processing time for this config&ration is 3.78 seconds. This corresponds
to an image processing raté of 0.26 images per second. These character-
istics are summarized in the next chapter (see Chapter 5, page 70)

.where they are also compared to those of other implementation of the

algorithm.

Pipeline network 1mp]ementation. “One of the most serious

disadvantages of the combinational circuitﬂimp]ementafion is the large
propagation delay from the input to the Qutput.' Although this delay
cannot be easily reduced, a higher rate 6f image processing can be
realized by considering.a pipe1ine structufe,,such as the one illustrated
jn Figure 16. The circuit is basica}ly the same as for the combinational ‘
’cibcuit,impIementation, except-thatlintermediaté tse regisﬁers have beéh‘
placed between each 1terat1ve box. Ah'fmplementatioh of the tse register
s presented in Figure 17.v,Thésé fegisters tempokari]y ho1dHintermédiate

results sb that,datakf1ow through the structure at a constant rate,
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controlled by the frequency of the clock. The clock is set at a
frequency such that its period is slightly greater than the worst-case
propagation delay of the slowest box. Between each clock pulse, a
completely new image can be placed at the input. The result of that
image will appear at the output after m+n-1 clock pulses. Although the
actual delay from the input to the output for any single image is
greater, the rate of processing (number of images per unit time) is
1ncreased.

The pipeline implementation of the algorithm requikes a total of
468 gates,frepresenting a power consumption of 1404 watts. For a single
image, the number of gate delays is 1368, corresponding to a processing
ijme of 6.84 seconds. However, the processing time per'imégerfor a
number of images being input tb the circuit at the clock frequency is
0.38 seconds. The image processing ratelfor this implementation is 2.63
1magés per second, an improvement over the combinational circuit

implementation.

Implementation using a programméb]e tse processor. Present-day
technology and projéctions to the néar future indiéate that the early'tse
components will be bulky, have 1afge bowek consﬁmption, and will not have
a suitable degree of fiber a]ignmentjto a]?ow easy interconnection of
ggtes. Theréfdre; initfé1 efforts w111vtehd tovféVof §tructures.whiéh N
are as $1mp1e és possible, even though ’repetitivé’use of the structure |

may require considerably greater execution times per image.

' Hardware COnsiderations.~_As an illustration of thé.type of

str@&turé‘proposed, consider a unit which contains only the most

' REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
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elementary gates AND, OR, NEGATE, SLIDE 1 RIGHT, SLIDE 1 LEFT, SLIDE 1

UP, and SLIDE 1 DOWN. Consider also a ‘set of tse registers, as many as
needed to hold intermediate results, and a control and bus scheme which
allows any register to be directed through any gate and the result to be
directed to any register. Using this machine, a SLIDE 64 RIGHT operation,
fqr example, would be impTemented by executing‘the SLIDE 1 RIGHT opera-
tion 64 times on the same register. The EXCLUSIVE-OR function of
‘Register A and Register B, for example, would be implemented by performing
the proper sequence of AND, OR, and NEGATE operations to generate
AB' + A'B. ‘Registers A and B, and three other registers forlintermédiate
results would be used in generating this operation.

The machine described in the previous paragraph is the general form
of a tse computer. Although 1nherent1y slow, the machine has the
‘advantage of being structurally simple and versatile in that the control
unit can be reprogrammed to execute virtually any function or algorithm.

As intermediate resu]ts‘aré generated, they are stored in certaink
tse registers whose outputs must be directed along different paths
;according to the next desired operatioh. Therefore, some method for the
switching of image paths is necéssary. Recall that Figure 2 (page 8)
shows a typical gate whose fan-out has been increased to four using image
dup]icatdrs. _Thé four}outputs are then connected to four different paths
through reformators In order to cause . the image to propagate through
‘on]y one of the four paths, the control bit to the reformators in the
other three paths is turned off. This will allow all-zero images to
propagate through these paths; which is the same as having,thén el

disconnected from the source of the Tmage. Hence, the method of control
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in a tse structure is to switch the active tse elements on and off in
the proper sequence. Since the control signals switch entire images and
not individual elements within an image, the generation of these signals
can easily be controlled by a small conventional binary computer or
microprocessor.

Shown in Figufe 18 is a microprogrammed control system for a tse
computer organized around a microprocessor. The use of the Intel 8080
microprocessor is projected in this papef, although any other micro-
processor would be suitable. The memory consists of conventional ROM
and RAM organized as 8-bit words. The microprogram, which generates the
control sequences for the tse processor,'is stored in the ROM portion of
the memory. Fof ease of modification, the main program is stored in the
RAM portion of the memory.

The various operations performed by the tse oroceésor (AND, OR,
NEGATE, and so forth), along with program control functions (Branch,
Halt, Regiétef Transfek, and so forth) comprise the instruction set.
These instructions, which are coded in some 8-bit format, are used to
structure the program for the counting algorithm. This program is
stored in the memoky associated with the microprocessor. As each tse
instruction is encountered during execution of the program, the micro-
processor decodes the instruction under the direction of a systemrmonitor
program. The microprocessor then outputs the appropriate control words
through the outout port to the tse‘oontrol lines in a proper sequence.

hen a program control 1nstructjon is oncountered, its éffect will be
- restricted to the microprocessor control SyStem, and noVCOntrol of fse.

components is generated.
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In tse conditional instructions, the status of the tse processor
must be monitored by the bontro], as in checking an image for the
presence of any l1-elements and branching if true. For this purpose,
certain devices which monitor tse images and convert the status‘of these
images to a few binary bits are required. The outputs of these devices
are connected to the input port, where the information may be addressed
by the microprocessor control.

Figure 19 presents a block diagram for the tse processor. The
architecture includes these subsystems: a tse Logical Operations Unit,
an Image Bus, tse Register, fixed (Read Only) tse Registers, and tse
monitor devices. Control inputs to the logical devices are not shown;
however, each active device which is involved ﬁn the switching of image
paths represents an incoming control 1line. Each subsystem of this
organization is described below.

- The organization of the tse Logica1 Operations Unit is illustrated
in Figure 20. An image placed at Input 1 will be directed through the
SLR, SLL, SLU, SLD, NEG or NOP gates to the output. MNOP is used in tse
register transfer operations; When another image is placed at Input 2,
the two images can be directed through the AND or OR gate to the output.
Input 2 can be disabled and the SLR or SLD gate 1n’the feedback path .
enabled to perform the Horizontal or Vertical Sweep operation [5] on the
image at InpUt 1."SWeep bperations afe required to generate the 18
masks (mtn =18) for an image‘siZe of 512 x 512 used inkthe‘codntjng
algorithm without the requirement for a 1afgefROM.' The Tatch at:the
output is é register whichkretaihs the result of the operation until

cleared.
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A primary purpose of the Data Bus is to transmit an image from the
output latch of the Logical Operations Unit to the tse Image Registers,
where the image is gated into a destination register. . Also connected to
the Data Bus are two special tse devices as shown in Figure 21. One of
the devices is a tse contractor gate. This device serves as a zero-image
or zero-tse detect bit when monitored by the control unit. Another
special device on the Data Bus is a tse row output gate, which transmits
~ to the control unit input port the information in the eight rightmost
elements of the bottom row of the image 1atchéd on the Daia Bus. This
device allows the control unit to have access to the numerical result of
the counting algorithm.

The tse Image Registers are connected to the Data Bus, as shown in
- Figure 22. For implementation of the counting algorithm, eight tse
registers are required. The output of any one of these registers can be
directed to Input 1 of the Logical Operations Unit, with the exéeption of
one register which will be ]abéled Register RO. This register is
connected directly to Input 2 of the Logicai Operations Unit and is the
only path connected to that input;

Two fixed (read-only) image registers are used to store certain
pattern images, as présented in Figure 23, for an 8 x 8 image. These ’
patterns are used 1n/conjUhction with the sweep operatiohs to generate
 each mask required by the countfhg algorithm. The method used to
generate these masks is outlined below. |

Consider the simple tse circuit shown in Figure 24(a). Let the
image of Figure 24(b) be placed at the input. The SLIDE 1 RIGHT gate in
“the feedback ]oop wi]]'éaUEegthe,conténtS'of any column in the input

T © 4EPRODUCIBILITY OF THy,
e OBIGINAL PAGE I8 POOR
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image to be dupTicatéd in the column to its right. The duplicated
column Will propagate through the OR gate and be duplicated again. As
shown in the output image of Figure 24(c), the cd1umn will continue to

duplicate, or "sweep," across the image until all columns have been
duplicated. This operation s caT]ed a HORIZONTAL SWEEP [5]. A VERTICAL
SWEEP is implemented in a similar manner. khen the OR gate in the
Logical Operations Unit is enabled, and the SLR or SLD gate in the
feedback path of the Logical Operations Unit is enabled, a circuit
similar to that of Figure 24 1is realized, and a sweep operation is
performed on the image at Input 1.

The sweep operation is utilized in the generation of masks as
illustrated in the following example. During the execution of the third

iteration of the counting algorithm, the fo]lowing mask is required for

an 8 x 8 image:

1
1
1
1
1
1
1
1

O oo o0 o0 o oo
0O 0o o0 o o o o
O 0O 0O o0 o o o

o 0o o o o o oo

B —_— —— p—) — — -—1 — —

To generate this mask, two images are formed by a SLIDE 3 UPvandka
- SLIDE 4 UP on the contents of M2 (Figure 23) . The-resuTts of these
Qperations are ANDed. This places the desired_mask-pattern in the top

row of the tse, and O-elements elsewhere. A VERTICAL SHEEP operation is
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then performed to duplicate the pattern downward, and the result is the

required mask for the third iteration. -

Software considerations. The instruction set for the tse processor

includes the operations performed by the Logical Operations Unit. Since
the processor was desighed on the basis of a minimal hardware structure,
operations such as EXCLUSIVE-OR and slides of magnitude other than one
are not included, but must be programmed by the user when required. In
addition to the tse instructions, there must be available to the program-
mer certain program control instructions or tse-microprocessor
instructions. These instructions are used for branching, subroutine
call and return, indexing, halting, and so forth. The primary distinc-
tion between tse processor instructions and program control instructions
is that the latter do not involve any transfer or modification of
information by the tse processor array. Their effect is confined to the
microprocessor control system. |

The complete instruction set derived for the tse processor is
presented in Table 2. This set is partitioned into a tse prbcessor
instruction - set and a tse program control set. -All tse registers are
indicated by upper case letters, and all microprocessor system registers
ére indicated by lower case letters. Note that some of the program
_control instructions have'double—precision (16-bit) capabilities."These'
are fndicatéd by an asterisk (*). Double precision operations are |
necesséry to allow for numbers which may exceed 28-1, or 255, as in the
case where image sizes may exceed 256 x 256 elements. Of course, the

use of double precision operations implies the extension of the
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TABLE .2
TSE COMPUTER INSTRUCTION SET

Mnemonic v Instruction Description

tse  Processor Instructions

AND A Logical AND (A) = (RO) -

OR A Logical OR (A) + (RO)

SLR A - Slide 1 Right 4 SLIDE R (A) ~

SLL A Slide 1 Left SLIDE L (A) =

SLU A Stide 1 Up SLIDE U (A) -

SLD A Slide 1 Down SLIDE D (A) ~

NEG A ’ Complement NEG (A) -~ A

VSW A Vertical Sweep V. SWEEP (A) =~ A
HSH A ’ Horizontal Sweep H. SWEEP (A) - A

MOV A, B _ Register Transfer (A) - B
COMZ A, Conditional Jump on null If (A) =0, GO TO n
’ Image to Location n
tse Program Control Instructions
Mnemonic | : . Instruction Description
Microprocessor Instructions
JMP n Unconditional Jump to GO TO n
o Tocation n ’

JMZ &, n ~ Jump on zero to a location n IFa=0,60T0n
MOV a, b Register Transfer , (b) » a

LDI ~ a, n  Load Immediate on-=+a

INC a Increment ' o (a)+1-a

CALL n S Subroutine Call o . Store Program Control

~ ’ : -~ - Register, Go To n
RET o Return from Subroutine GO TO (location
' o ' stored by CALL)

*DAD 2 Arithmetic Left Shift . (a) +(a) »a

(Multiply by 2)

 REPRODUCHILIY OF 1H:
© ORIGINAL PAGE IS POOR
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TABLE 2 (continued)

Mnemonic Instruction Description

Microprocessor Subroutine Instructions
*SUB a, b Double precision Subtract (a) - (b) »~ a
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associated register to 16 bits using some auxiliary register. Other
control instructions are implemented by microprocessor subroutines, as
in the case of *Sub a, b.

In order to program the processor to perform any task, the proper
sequence of instructions must be stored in the working memory of the
processor. Therefore, a coding scheme or format must be provided to
represent each instruction. Tables 3 and 4 show a coding scheme for
the instructions in Table 2. Although there are many possible formats,
the one shown has been structured to require a relatively simple micro-
program for decoding. This simplification reduces the amount of
read-only memory required to store the microprogram, and also reduces
the decoding time for 'the tse instructions.

A tse computer program for execution of the counting algorithm is
presentéd in Table 5. The éize of the image in thfs case is 512 x 512
e]ements; Note that.some subroutines are called upon which perform
frequently-used functions. These functions were omitted from the basic
instruction set for simplicity. The subroutines are EOR, VSLR, VSLL,
VSLU and VSLD. Subroutine EOR performs the EXCLUSIVE-OR operation on
the images in Registers A and B. Subroutines VSLR, VSLL, VSLU and VSLD
perform variab1e—]ength‘s1ide operations in each of the four directions.
The image upon which the s1ide is performed is stored in Register A and
the magnitude of the slide in Register z prior to the call. Since the
four variable slide subroutines differ only in the s]fde ihStruction at

location I0TA, only one of the subroutines is shown in the table.



TABLE 3
TSE PROCESSOR INSTRUCTIONS

Number of

Instruction Bytes Coding
VSW A 1 T 0001 xxx
HSW A ] 1 00710 xxx
SLL A 1 1 0100 xxx
SLR A 1 1071071 xxx
SLU-A 1 1 07110 xxx
SLD A 1 1 01771 xxx
AND ] 1. 7001 RRR
OR ] 1 10710 RRR
NEG 1 11011 RRR
JMZ 2 T 1101 RRR

aaaaaaaa
- MOV 2 1 17110 xxx

[RRRR ], [RRRRI

aaaaaaaa = Branch Address
xxx. = Don't Care
s = Source RegisteF‘
d = Destination Register

Register Format (RRR or [RRRR]):

RRR: A 000 | RRRR or RRRR,: A 0000
B 001 | B 0001
C 010 - ¢ 0010
polt | D 0011
G 100 o G 0100
L 101 | CLool01
M 110 | | M ollo
NI | N 07111
o | M1 1000
M2 1001

RO 1100



TSE PROGRAM CONTROL INSTRUCTIONS

TABLE 4
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Register Format:

000
001
010
011
100
101
110
11

NS X = < (@I e agy

Number of
Instruction Bytes Coding
- MOV 2 0 0007 xxx
XX [rrr]s[r'rr]r1
LDI 3 0 1017 [rerly
nnnnnnnn
nnnnnnnn
SUB 2 0 0071 xxx
XX [rrr]sfrrr]d
JMZ r 2 0 1010 rrr
aaaaaaaa
JMP 2 0 0010 xxx
aaaadaaa
CALL 2 0 0100 xxx
aaaaaaaa =
RET 1 0 1100 xxx
DAD 1 0 1110 rrr -
INC 1 0 1117 rrr
‘HLT 1 0 1107 xxx
aaaaaaaa. = Branch or Call Address
nnnhnnnn = Immediate Bytes



TABLE 5

TSE COMPUTER PROGRAM FOR EXECUTION OF THE COUNTING ALGORITHM
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Location

Mnemonic

Comment

ZETA

ALPHA

LDI
LDI
LDI
MOV
MOV
SUB
Mz
MOV
CALL
MOV
MOV
MOV
CALL
MOV
AND
VS
MOV
JIMZ
MOV
CALL
MOV
MOV
MOV
CALL
MOV
AND

HSW

MOV

—
-
— QO I o -— —

a, ALPHA |
X, Z

VSLR

A, B )
M2, A ’
W,z
VSLR
M4, RO
A

A

A, C
Yy, BETA
X, Z
VSLD

A, B )
MI, A

W‘, Z
VSLL I
M3, RO

A, C I3

Initiate
Microprocessor
Counter

Test for Row
Counting or
Column Counting

STide Input
Image Right

Create Mask

STide Input
Image Down

Create Mask
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TABLE 5 (continued)

Location Mnemonic Comment
BETA MOV C, RO
AND B AND input image
AND L } with mask
MOV B, RO )
ov LA | Generte S,
CALL EOR
MOV A, )
MOV L, B Generate Carry,
AND B f Store in B
MOV B, RO }
DELTA OR @ L
MOV G, ... RO 1§3$t§82a1 carry
MOV D, A bits .
e | £ o bt
JMZ A, GAMMA |
MOV G, D)
MOV D, A
SLL A
MOV A, RO | , Add Carry to Sum,
MOV C, A r gggi;ate New
CALL EOR
MOV A, L
AND C
“MOV C, G )
‘ _ JMP- . DELTA Repeat Cakry test
GAMMA : ' DAD x ' Increment Counters
' INC w }

REPRODUCIBILITY OF THE
ORIGINAL PAGE 18 POOR
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TABLE 5 (continued)

Location Mnemonic Comment
LDI v, 512 Test for Completed
' Row or Column
SUB v, x 7 Summing
JMZ z, EPSILON If Column Summing
IMP ZETA Comp]eteq, Start
Row Summing
EPSILON JMN a, ETA ' If Row Summing
DI x, 1 ] Complete, Stop
Reset Counters,
LDI "y, 1 Start Next
LDI w, 1 Grouping
JMP  ZETA
ETA HLT
Location Subroutine VSLR Instruction
VSLR LDI b, O
IOTA SLR A
INC B
MOV b, ¢
SUB ¢, z
JMZ ¢, THETA
JMP - I0TA
THETA SRR RET
Subroutines VSLD, VSLU, VSLL are similar
, : ~to VSLR
Location’» Subroutine EOR Instruction
EOR MOV A, M-
MOV~ B, N
NEG A
NEG B
MOV A, RO




TABLE 5 (continued)

Location - Instruction

AND M

MOV B, RO
AND ‘M

MOV M, RO
OR N

MOV N, A
RET

Note: ATl registers are assumed to be cleared before execution
of this program.

Original image is in Register L.

* Image size ='29 X 29,
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Modified forms of the counting algorithm. Basically, the tse

program shown in Table 2 (page 55) is used to implement the modified
forms of the é]gorithm. 0f course, some'adjustments to parts of the
program are necessary. These adjustﬁents are minor and are presented
without 1isting the entire program.

In one of the modified forms of the algorithm, recall that not all
of the right-slide iterations or the down-slide iterations are performed,
but are truncated. To accomplish this, the immediate bytcs of the LDI.
instruction at program location GAMMA+2 must be alt "ed, since the value
they contain will signal the end of each series of icerations. Before
execution, the immediate bytes of the LDI sth]d be loaded with the
number 2™, where m is the number of right-slide iterations to be
executed. After all desired right-slide iterations have been performed,
the immediate bytes of the LDI‘shou]d'be Toaded with 2", wheré n is the
number of down slides to be executed. |

In another modified form of the algorithm, which concerns partial
summing by sectors, the right-s11de iterations and the down-s1ide‘1tera—
tions can be intermixed. To accomplish this, the desired sequence of
1térations must be specified in some portion of memory and addressed by
the main routine. THe program is not’changed up tb'1ocation GAMMA. At
this location, howevgr; a branch should occur to address the portion of
memory in Which the'iteration,sequénce is Jocated. When the next
desired iteration is identified, registefs Ws X, andvy should be modified
aCcording]y. These regiéterslcontro1 the magnitude and direction of tHe
s]ide operation fbf each iteration. At this point, a branch to location

ZETA should occur. This will stért'the iteration. Upon completion of
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the iteration, the processor will again be at location GAMMA. Thus, the
iterations are repeated in this manner until the desired sequence is
completed.

A total of 92 tse gates are required for the programmable tse
computer implementation of the counting algorithm. The corresponding
power requirement for this number of gates is 276 watts. Total process-
ing time for a single image is 68,775 tse gate delays, representing.
an image processing time of 343.9 seconds pek image. This cbrresponds
to an image prqcessing rate of 2.9 x 10‘3 images per second. Image
proceééing times arebbased on an average carry-propagation distance of
three positions perAimage.v Unlike the combinational and pipeline
implementations, the processor can indicate ear1y’comp}etion Qf the
algorithm. Maximum carry propagation in each iteration is unlikely,

‘especially where this maximum is eight or more.



CHAPTER 5
COMPARISONS AND CONCLUSION

The concept of two-dimensional logic devices and the tse computer
represents a new and different approach to the ﬁask of image processing.
Although the basic jdeas used in the development of tse operations are
not particularly innovative and were conceived Tong ago, the use and
refineméht of these ideas héve been severely 1imited by‘the lack of a
technology required to imp]ément them. Only now can such a highly

parallel logic structure even begin to be considered as having practical
applications in the future. Atvthe present time, the first tse gates
have been conceived and are undér design and development. The specifi-
cations related to these gates give an indication that, in the near
future, tse computers may replace conventiona1icomputers in certain
applications. In order to gain a better perspective as to the relative
merits of tse processors, the characteristics as presented in the
previous sections will be compared with the characteristics of a
‘,éonventiona] processor. |

Of Course, the execution of the counting algorithm cannot be
considered as a proving around for tée'processofs. There are many tasks
that can be performed onia tse computer which could a]]ow’the processor
ﬁo compete effective]ykwith’conventioné] processors, in terms of effi-
ciency. Each task would generate a different set of specifications for
comparison, which in turn would generate a different set of conclusions.

Therefore, the results of consideration of the‘counting a]gorithmvaPFtse

66
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impTementation must not be taken to rigidiy apply to tse computers in
general. Any projection based on the results generated here must be
carefully evaluated. |

A11 comparisons presented in this section are based on an image
size of 512 x 512 pixels. This represents an excellent resolution,
almost that of a standard television receiver. At present, the
512 x 512 is projected as the upper Timit on the image size of tse
components.

A good evaluation of the usefulness of the tse computer must
include a comparison to a typical conventional processor. For the
purpose of comparison; the counting algorithm will be implemented in
terms of the language of the IBM 360. The total processing time will
then be determined using the actual instruction cycle times of the
360/65, Level H.

The IBM 360 is not by any means the fastest processor available;
however, its characteristics are intended to be representative of most
computeré in general use today. Also, the results generated by this
example can be easily extended to fit almost any conventional processor
by determining actué} times fbr tasks performed.

A program writteh for the 360 to count the number of 1-elements in
an image is shown in Table 6. The basic approach is to address each |
picture element andlincrement a counter if the element is a 10916— ”1;“
An image 1s stored as 8192 consecuti?e 32-bit memory Tocations in the
computer. ~ The image could also be stored externally, possbey latched
at the output of a Para]]e];type camera; ahdkaddressedjin‘mQCh the Samé

manner as the internal memory would be addressed. For the-basié S



TABLE 6

68

PROGRAM FOR EXECUTION OF THE COUNTING
ALGORITHM ON THE IBM 360

Location Instruction Comment"
SR 8, 8 Clear Register 8
SR 4, 8 Clear Register 4
LA 6, 1 (0, 4) 8192—s Register 6
SLA 6, (13, 0)
v SR 5, 5 Clear Register 5
A3 L 3, 0 (5, 2) Load Register 3 with one word
» from memory
LA 7, 32 (0, 0) 32— Register 7
A2 CR 3, 8 Compare MSB of Register 3 to
zero. If zero do not
BH Al increment Register 4
LA 4, 1 (0, 4)
A1 SLtL 3, 1 (0) Shift Teft one position
: , Register 3
BCT 7, A2 Go to A2 unless 32 shifts
have occurred
LA 5, 1 (0, 5) Increment pointer to
- address new word
CR 5, 6 Compare new word address
‘ to 8192
BL A3 Go to A3 unless 8192 words
have been checked
END '

Register 2 should contain the absolute address of the first word of

~the image before this program is executed.

Register 4 will contain the result after thé execution of the

program. :
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counting algorithm, the program of Table 6 is very efficient. The
execution time for this program ranges between 1.06 seconds for an
é]]-zero tse and 1.15 seconds for an all-one tse, where the average
time is 1.10 seconds.

The execution times for the three tse implementations of this
research depends upon the propagation delay per gate. Initially, a
delay of 5 milliseconds per gate has been specified for tse gates
which are being developed [5, page 5]. Of course, future technological
projections indicate improvement in the propagation delay. Eventually,
the delay 1is expected to be comparable to the delays of present-day
binary logic gates.

Table 7 summarizes the processing time per image for the 360, along
with number of gate delays per image of each tse implementation and the
~ corresponding execution times for different projected values of the tse
gate delay. A comparison indicates that tse hardware Structures behave
in much the same manner as binary gate structures. For instance, (1) a
combinational stfucture will bekmuch faster for any given task than a
sequential structure (computer) because of repetitive use of fewer
components in the latter, and (2) a pipeline structure will improve the
image~processing raﬁe'(number Qf images per unit time) over’that of a |
combinational structure. However, the actual delay for any image fhrOugh'
the pipeline strUctufé may be Tonger.- |

Another 1ndwcat1on which results from the compar1son is that, for
the basic parallel count1ng algorithm, the 1mage process1ng rates for
thegcomb1nat1ona1 and p]pe11ne methods are on the same order of magnitude

"as that of the binary processor, but the programmable tse computer is
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TABLE 7

SUMMARY OF IMAGE PROCESSING TIMES FOR TSE AND
CONVENTIONAL IMPLEMENTATIONS

Gate Processing time per image

Delays tse gate delay:
Implementation per Image 5 ms 5 s 5 ns
tse-Combinational 756 3.78 sec  3.78 ms 3.78 us
tse-Pipeline 76 0.38 sec  0.38 ms 0.38 us
tse-Computer ‘ 68,775  343.8 sec 0.344 sec  0.344 ms
IBM 360 - : 1.10 seconds
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slower, for the present time. This is not unexpected since tse logic is
fast compared to conventional logic (due to the inherent parallelism),
yet slow compared to delays to present-day binary gates fabricated by
TTL or CMOS technologies (about 10 nanoseconds). However, as the speed
of the tse gate is improved, the processing rate of the tse computer will
surpass that of the binary processor. As the tse gate propagation delay
approaches that of today's binary gates, the advantage of the tse
computer is apparent in that the number of 1-elements in a 512 x 512
image can be counted in about one-third of one millisecond.

Other characteristics which could be used to compare the merits of
the different implementations are total power, total size and weight,
dollar cost, speed-power product, andvgate count. However, most of
these are physical characteristics which may'be refined independently
of each other. Therefore, no‘brojections can be made as to when aycertain
characteristic will be refined to the point that the tse computer is
~ feasible for a certain application. Some of the more meaningful
characteristics are summarized in Table 8. Thebon1y conclusion that can
be drawn concerning these characteriétics is that any tse processor that
4cou]d be built using current fiber optics technology would probably not
be a practical replacement for the binarylpfocessor. Currently, alter-
natives to the powér—conSUming light sourées‘and bulky optical fibers
are being considered for the fabrication of tse logic components.

The need for improved,data—hand]ing capabilities in digital
'computers’wi]1 inevitably lead to research into ihcreased paré11éjism.
Tﬁe'results of this section 1ndicaté that tse computérs will not replace

conventional processors presently, although theykhaVe a definite
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TABLE 8

PHYSICAL CHARACTERISTICS OF TSE IMPLEMENTATIONS
OF THE COUNTING ALGORITHM

: Speed-Power
Power Product Gate

Implementation Consumption @ 5ms/gate Count
tse-Combinational 1080 W , 4082.4 W-sec 360
tse-Pipeline 1404 W 533.5 W-sec 468

tse-Computer 276 W 94,888 W-sec 92
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potential for future use. From the standpoint of the tse computer in
orbit as an earth resources image processor, many of its characteristics
are very promising. However, the size and power consumption of the
processcr must be brought to within limitations for practical spacecraft.
The development of the tse computer will, of course, depend primarily
upon the amount of research effort devoted to the concept in the near
future. Until then, the expansion of today's digita] computer will

more than Tikely take the form of increased parallelism of conventional
logic components. At some time in the future, however, the physical
characteristics of tse devices will be refined to the point where they
are more attractive than are the inéreasing number of inter-connections
required for conventional gates, thus marking the advent of the

genération of tse computers in digital processing.
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