
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

t-
4
'
o

n

o C
)

(A

t i
l

tp
	
C
)

r
n

M

r
)
	

Go
)

O
D

r
i

V
,,
0

LT
I

1 3
	
L

<
F
4

C

M

m

0
G-

) 	
7

t*l
	

:ro
cn

 4
-
W'

A

n 	
t
^

x

P
-

tA
l
1
1

U
)
	

I
:
j

H

X t-

I
"
i

n
o

:]
c
a

I
V

I-
A
H

c
n

 0
 =

FA

1.
4
m

•
t 4

:	

C)
 r

)
H

m
U
)
	

t 7l
M
A

.
m

.1
	

-
'T
it
o	

-1

r
e

•
6
p

9.

•

u
r

wPsi

h
a
l
k
-

National Aeronautics and Space Administration,
Goddard Space Flight Center
Greenbelt, Maryland	 20771

t

FINAL REPORT.	 Contract NSG•-5002

Architecture and Data Processing

Alternatives for the Tse Computer

VOLUME 3:	 Execution of a Parallel
Counting Al gorithm Using Array Logi c a

(Tse) Devices 3

A.	 G.	 Metcalfe

R.	 E.	 Bodenhe'imer

TECHNICAL REPORT TR-EE/CS--76--3

r	 September 1976

- 7

3

n	 +7.»
o

i

/
a

^^

O cT 1976
G

CZDN	 RECEIVED	-rz}
NASA sn iACIU11 c, x

; 'INPUT BRANCH. '	 ^^ ,

^<-'

^-'
f

ABSTRACT

A new family of digital 	 logic elements, 	 known as tse logic devices,

have been proposed by D. H. Schaefer and J. P. Strong at the Goddard

Space Flight Center, Greenbelt, Maryland._ Tse logic elements are r`

parallel	 computing elements which implement primitive logical functions

concurrently at each position of a two-dimensional 	 binary array.	 The

purpose of this research was to examine different tse hardware structures

for performing-a certain task.

A parallel	 algorithm for counting the number of logic-1	 elements	 in

a binary array or image was developed at GSFC during preliminary

investigation of the tse concept. 	 After summarizing the research at

GSFC, the counting algorithm is implemented using a basic combinationalti.

r c	 r	 .	 Modifications which improve the efficiency of the basicstutoe	 f	 p	 y

structure are also presented. 	 A programmable tse computer structure is

then proposed', along with a hardware control 	 unit,	 tse 'instruction set,

and software program for execution of the counting algorithm.	 Finally,`
I

a comparison is made between the different structures in terms of their

more important characteristics.	 To more clearly illustrate the projected

advantages of tse logic, a program to perform the same task was written
s

fora conventional	 binary processor and included in the comparison.

i

3

iv

f
^.

_.	 _

f

i,
kr

j

TABLE OF CONTENTS

y CHAPTER PAGE

-r
1. INTRODUCTION 1

I 2. TSE	 LOGIC	 DEVICES	 5

i 3. A PARALLEL COUNTING ALGORITHM		 :		 14

^R Modified forms of the counting algorithm 		 25

Generating sums	 in sectors of an image	 :		 25

Simplification of the algorithm for

j clustered elements		 30 a	 ?

4. TSE HARDWARE IMPLEMENTATION OF THE COUNTING ALGORITHM . 	 . .	 34

^a Combinational circuit	 approach	 '.	 34

Pipeline network	 implementation		 38 -	 1

' Implementation using a programmable tse processor 		 41

f Hardware considerations	 .	 . .	 41

Software	 considerations	,.	 ,	 ,		 ,	 .
.	 54

f Modified forms of the counting 	 algorithm-	 .	 •	 .	 .	 •	 .	 . .	 64

5. COMPARISONS AND CONCLUSION	 .	 . 66
s

LIST OF	 REFERENCES		 :	 .	 . .	 74

,
'

VITA 76

xn

f r

J

t;

i

,} >r r

LIST OF TABLES -j

,

i
TABLE PAGE

1 Summary of Modifications per Iterat'_an 		 26

2. Tse Computer Instruction Set 55,

3. Tse Processor Instructions	 58 x

4. Tse Program Control	 Instructions	 59-

5. Tse Computer Program for Execution of the j

Counting	 Algorithm		 60

6. Program for Execution of the Counting a

Algorithm on the IBM 360 	 . 68'
j^

7. Summary of Image Processing Times for Tse;

and	 Conventional	 Implementations 	 	 70 '	 l

8. Physical	 Characteristics of Tse Implementations

j
i of	 the	 Counting Algorithm		 72

n

j	 i

9

:

t}

.. vi

r

LIST OF FIGURES a

FIGURE PACE

1. A	 two tse	 Input,	 Digital	 AND Gate		 6 E; q

2: Use of DUPLICATORS to Increase Effective

Fan-Out of a tse Device to Four 8

^y 3. Method of Implementing SLIDE Operation	 :	 . .	 9

4. An Example of Elementary tse Operations on

Typ ica l	 Images	 .	 ,	 10

5. Control Method Used for Switching of Image Paths 		 12

6. A tse Plane in Which Each 1-Element Represents a

' Classified Region Whose Area	 is	 Desired	`	 15

7. The Result of Applying the Counting Algorithm to
1

t
the	 Binary	 Image	 of	 Figure	 6..	

' 8. Result After Each Iteration of the Counting Algorithm,
:i

i Indicating Partial Summing 'Method 18

9.; The Results of Applying the Steps in the Algorithm

to Image A for One Iteration 	 .	 .	 . 20

-' 10. The Results and Significance of Applying the Algorithm
f

is to	 Image A After Each	 Iteration	 24 {

11. Example of Partial Summing Where an Error

is	 Generated		 28

12. Example of Modified Counting Algorithm 31

13. Example of Simplification of the Algorithm . 33

vii

f

i

FIGURE PAGE

14. Combinational	 Network Implementation		 35

15. Contents of a Typical Box for the Combinational

` Circuit	 Implementations		 36

16. Pipeline Network Implementation to Increasei

Image Processing Rate	 .	 .	 . 39

17._ Latch Implementation for the tse Register	
	

.	 .	 40

' 18. A Microprogram, Microprocessor Control Unit

Concept for the tse Processor	 .	 . 44

19.	 -Block Diagram for the tse Processor		 46

-	 20. Organization of the tse Logical Operations Unit 		 47

21. Image Buss with Conditional and Monitor Devices 49

22.	 .Organizat,ion of the tse Image Registers 		 50 }

23. Organization and Content of tse ROM Registers 	-.	 .	 51

24. Implementation of a Horizontal Sweep Device [5] 		 52

i

;t

r 4^

a

t

P

T

'l

tyy

i

sal

i

i

w

t

1

{

}

w CHAPTER 7
t

r INTRODUCTION
L^

Since the advent of the first computers, a great deal of effort has

been devoted to the task of developing processors with improved data

processing rates.	 Technological	 innovations have been the primary

contribution to the improvements which have been realized throughout the

history of the computer. 	 However, there is evidence that the speed at

which present-day components can operate is fast approaching the limit

at which electronic signals can propagate [1]. 	 Thus, refinements in

areas other than the speed of semiconductor devices will provide the
t

probable source for significant increases in data processing rates in

the future.

One such area which has gained interest in recent computer

developments is the concept of parallel processing. 	 The term "parallel .,

I processor"	 is used to describe a computer whose Arithmetic Logic Unit

is structured to operate on each bit of an n- bit operand concurrently. i

This term is sometimes also used to describe computer architectures in

which a number of different instructions may be executing at any one

time.	 However, a description of such processors is beyond the scope of

this investigation.	 Of particular_ interest in this research is the

array processor, a special 	 type of parallel-data processor. 	 The array

processor,	 in general, addresses and operates upon large blocks of bits,

usually multidimensional 	 in their arrangement.

i	 '
,

3

1

y
S

:a

r
:E

r`

2

4k, The concept of the parallel processor is actually not new. j

Virtually all computers in use today exhibit some degree of parallelism

in that they Are word-oriented machines. 	 This is justified by the fact

A ;that some of the most common forms of data handled by these machines

(for example, ASCII or BCD information) occur most frequently as a

group of bits.	 The processing of such data would become unnecessarily

cumbersome if handled bit-by-bit. 	 Therefore, the word-oriented

r processor is favored over a completely serial one. 	 In fact, the word-

oriented computer has become the most highly developed and widely used

form of information processing machine in general use at this time.

Only recently have more highly parallel 	 processors been given

-serious consideration as practical tools for information processing.

Although the advantages of such processors are many, 	 their development

has been limited by such factors as cost, size, and maintenance

i..' considerations, which are due to the increased component count and

number of connections.	 Although' some array processors such as SPAC [2], j
'	 l

SOLOMON [3], and ILLIAC IV [4] have been proposed, few have actually
I

y reached an operational' status (the ILLIAC IV has been partially

completed), and 'virtually none have found widespread 'general 	 use.	 One

factor which is expected to contribute to the development of parallel

processors is the current state of integrated circuit technology. 	 This`
x;

technology allows the fabrication of large scale cellular component

,w
-	 structures at a reasonable cost and small 	 size. }

Insofar as present-day computers are concerned, they are well

Ym. organized to handle much of the data which they encounter, since these'

data occur mainly in a word-oriented fashion. 	 However, one form of

e
3
}}

[`	 w

3

data which becomes cumbersome to process is the digitized image. ,Even ay^

low resolution, simple binary image would be di g, 	tzed to a minimum of

x^. about 104 bits, and, at present, almost all 	 images are processed in a

<< highly serial manner using conventional	 processors.	 In order to

optimize speed and efficiency, a processor capable of handling at least

as many bits as there are image elements would be required. 	 Hence, l

image processing is a very likely field for the expansion of parallel

array processors._ In- particular, the organization of an image processor

would necessarily be two-dimensional, 	 implying communication between

4, horizontal	 and vertical	 neighboring elements,	 instead of simply

- employing a large number of bits which are spatially unrelated.

- The success of the Earth Resources Technology Program (ERTS-1, now

known as LANDSAT-1)	 has led to the consideration of parallel	 processing,

for the development of practical 	 and efficient methods for identifica-

tion and classification of earth resources.	 The fact that the LANDSAT-1

satellite images cover approximately six million square ki'l'ometers per

day has provided the main challenge to the NASA Data Processing Facility

for the retrieval	 and processing of these data. -Among the most promising

programs which have resulted from this challenge is one at the NASA

Goddard Space Flight Center which has 'projected the development of a

family of two-dimensional	 parallel	 logic devices.	 In essence, each of

.may
the logic devices represents a computing element whose array size is the

..

same as the number of picture elements 	 (or pixels)	 in the image and can

perform a primitive logical operation concurrently at each image
s

:m position.	 Currently, the utilization of fiber optics is being 	 considered

^n

for the fabrication of these devices.	 Projected refinements in fiber`

f ^	 i

1 .

4 t

optics technology indicate that parallel computing elements could be

constructed which are faster, less power-consuming, and possibly even

!'

smaller than conventional electronic components [5].

I
_ In the second chapter of this thesis, the work of'Shaeffer and

Strong related to two-dimensional	 logic devices is discussed. 	 The
r.

third chapter presents Strong's counting algorithm, and the fourth

(

i
chapter is devoted to the hardware implementation of the algorithm. 	 In

the fifth chapter, the merits of the different hardware implementations

are compared, and conclusions are presented based on these comparisons.

>m

i

i

4

^ M

1

I

ry

3

 t1

13.2!

r
1

1

(^	 1 A

nn

i

f	 x^ r

1 .

m

CHAPTER

Tn	 TSE LOGIC DEVICES

Consider an image composed of a 512 x 512 rectangular array of
r

picture elements in which the gray level of each element isp	 g	 y	 quantized to

six bits.	 There are over 1.5 x 106 bits of information in this image.

Another way to visualize a digitized image is as six binary image

planes, each plane containing 512 x 512 bits. 	 The binary image plane or

bit plane is a two-dimensional 	 binary data array called a "tse."	 The

origin of the term "tse" is the result of an analogy drawn between

binary bits and words of the English language.	 Just as the Chinese

language makes use of single symbols which re^ resent many Engl ; sh words,

the binary array represents many binary bits. 	 The term "tse" is the

transliteration of the Chinese word for the pictograph character, and

thus has been adopted as the word for the binary data array [5].

A family of tse logic devices which utilize electro-optical

technology and which are capable of performing simple, 	 parallel	 logical

operations simultaneously on one or two tses has been proposed by

Shaeffer and Strong [5	 6].	 Figure 1	 illustrates a`tse gate capable of

ANDing two binary image planes.	 A tse gate consists of two parts, an

interleaves and an electro-optical	 threshold device.	 The interleaves is

-	 a passive device which consists simply of two bundles of n2 optical

fibers, where n x n is the size of the bit plane for which the gate is i

designed.	 These bundles are merged or interleaved such that corresponding

positional	 elements in the Image A and Image B inputs are combined to the

5

1

a

7
3

same elemental	 position at the interface of the electro -optical	 device.
•^ 1

When used in this manner, 	 the interleaver is referred to as a combiner.

The electro-optical device is an active integrated circuit which

-- converts the optical	 inputs to electrical signals which are logically

ANDed in a conventional manner. 	 Electrical	 signals at the output are

converted to an optical output by an electro -luminescence process.

Since only one fiber bundle can be connected directly to the output,

the fan-out of a tse logic gate is one.	 In order to increase the 't

:
- effective fan-out, one or more interleavers can be used, in a reverse

manner, at the output of a tse gate. 	 An interleaver is referred to as a

duplicator when used in this manner.	 Since each output element of a
y

duplicator is one-half the intensity of the input, 	 the original	 fight

a

intensity must be restored before the outputs can be used. 	 Therefore,

each output from the duplicator must interface to a reformator, which is

an active tse buffer device used to restore the proper optical 	 signal

levels.	 Figure 2 demonstrates how the effective fan-out from the AND

. gate can be increased to four.

In addition to the AND operation, other primitive operations can be

implemented.	 The OR, EXCLUSIVE -OR, NEGATE and SLIDE operations are
}

implemented in a similar manner as the - 4ND gate, ; except that the single-

operand devices need not include tre combiner at the input. 	 The SLIDE

operation is an image; translation in the UP, DOWN, RIGHT or LEFT

direction.	 Conceptually,	 this operation is generated by interfacing two

fiber bundles with a physical 	 offset, as illustrated in Figure 3.. 	 The

results of performing these primitive operations on typical, images are

j depicted in Figure 4.

t

r	 ,

AN
s

8
. t

L,
(w
Z

Four Fan -O,ut ,
interleaver as	 Image A AND B
COMBINER

Lmage A

INPUT OUTPUT A

Image B

1
:

interleavers as
DUPLICATORS

e	 -tse AND	 D tse REFORMATOR
a

Figure 2. Use of DUPLICATORS to increase effective fan-out of a
tse device to four.

r

tt
Y Y

s

f

.

Y

W-r-mlm

10 r

Image A	 Image B	 s

_

A OR B	 A EX-ORB	 i

INVERT A	 SLIDE B RIGHT	 f{y	 ^
^	 s

LOGICAL 1	 LOGICAL 0

Figure 4. An example of elementary tse operations on typical r
images.

z

}

{

Al

1

.^^ 11

Tse logic gates which implement functions other than the primitive

logical	 operations have been proposed. ,	One of these gates, the

contractor, has been found to be useful 	 in most tse computer structures.

The contractor is ,a control 	 device which indicates the presence of any -
Y 1-elements in a tse.	 If there are no 1-elerients in any position of the

binary image, the output of the devicE 	 is logic-0, otherwise the output

-is logic-1.	 This' device is different in that the input is _a tse, but

the output is a single-bit logic signal.	 A, device of this type is

necessary for implementing conditional	 image operations.	 Other special	 -

tse logic devices can be found in Reference 5, Appendix A.

kt The basic tse gates can be interconnected in much the same manner
r

as conventional	 logic components to form structures which perform useful

functions.	 I`n order to realize more efficient utilization of components

j
in -a complex tse structure, some method of controlling the propagation

of images must be provided.	 To facilitate the switching of paths along 	 4

which an image will 	 travel, all active tse devices are assumed to have a

one-bit control	 line for turning the electro-luminescence on and off.

t In the off state,	 the output tse is a zero-tse;	 that is, all	 elements	 in

the array are logic-0.	 The use of this control scheme is illustrated in

Figure 5.	 Assuming that only one of -the three control 	 lines is active

at any time, the circuit can execute a SLIDE UP, SLIDE DOWN, or a

NO-OPERATION`.

In the sections which follow, a parallel 	 algorithm for counting

the number of 1-elements in a binary image will 	 be implemented using tse

logic devices.	 To provide a basis for comparison, different tse hardware

f

f

1 4

f^	

;r

h
CHAPTER 3

•r A PARALLEL COUNTING ALGORITHM -

In earth resource applications, techniques of pattern recognition

are appliedto the classification of terrain or surface features..	 After

the classification process, the measurement of the area of an identified

region is desired in many instances. 	 For example, a typical	 application

of earth resource technology might involve the mapping of the bodies of
W

water in a certain land region. 	 After the portion representing water is

identified in each frame, the total area of the water surface is

desired,	 since this information is important to the classification of

the land region, by percentage, of water.	 Figure 6 illustrates a tse

image plane of a typical	 frame after the identification of bodies of

water.	 The desired area is represented by the 1-elements.	 Each
i

element in the region classified contributes a partial area to the }	 ;

total;	 The problem of area measurement is solved by counting the

number of 1-elements in the tse.	 In a conventional	 digital computer,

this measurement is attained through a sequential 	 decision process, one

element at a time.	 The parallel	 counting algorithm of Strong [5 	 Appen-

dix F] achieves the solution differently. 	 A few of the descriptive

characteristics of the algorithm are presented in this section.

The counting algorithm is applicable to any binary image (or tse),
A w -

2m rows by 2 n columns, where m and n are any nonzero, positive integers.

After the application of the algorithm, the result is also in the form`
1

14

l
-z..R/"s ^..	 ..	 -_	 ..	 .inu.c...azar^-E._.sus.	 ' ..^.; ^ed^n' 	 '__.	 a-__	 .—_	 .^_..	 -	 -	 ,.	 _^.n:..e..,.k..,. z.-'	

.3,^i	 _q

16

of an image.	 However, the desired information, which is a binary

number indicating the number of 1-elements in the image, is found in the

bottom row of the image.	 The remaining elements of the image are all

zero.	 This is illustrated in Figure 7 for m,n = 3.	 The original	 image

` of Figure 6 is seen to contain23 1-elements. 	 Figure 7, which is the

result of the application of the algorithm, has the number 00010111 	 in

the bottom row.	 This is seen to be the binary representation of the

number 23.	 The method by which the image of Figure 7 is generated from

the original	 image is outlined as follows.

Basically, the counting process which is carried out by the algorithm

consists of a number of iterations, each of which generates partial 	 sums

over the image.	 Each successive iteration generates these sums over

larger areas, the final	 area being the entire image. 	 To illustrate the

r
process, consider the 4 x 4 binary image shown in Figure 8(a).	 Of course,

t the 1-elements and 0-elements in the image represent the logic level	 at

I each position.	 However, for this discussion, consider each as a one-bit

binary number, a 1-element representing one unit of area to be contributed

?I,. to the total, and a 0-element representing no area to be contributed. 	 In

the first iteration, each number in the first column and third column is

° added to the number immediately to its `right.	 Thus, eight additions of

two elements each are performed in parallel and the result is as shown in

Figure 8(b).-	 The eight groups or sectors over which the additions were

generated are indicated in Figure 8(b) 	 the encircled numbers being the s

two-bit first partial	 sums. `	In the second iteration, 	 each group (partial

x. sum)	 is added to the one immediately to its 'right,	 thus generating four
!

second partial	 sums, as shown in Figure 8(c).	 dote that each group

f _ w_
yF

17_

r

y^

0 0 0	 0	 0 0 0	 0 A	 °;

0 0 0	 0	 0 0 0	 0

0 0 0	 0	 0 0 0	 ,0

0 0 0	 0	 0 0 0	 0

0 0 0	 0	 0 0 0	 0

0 0 0-	 0	 0 0 0	 0

0 0 0	 0	 0 0 0	 0

0 0 0	 1	 0 1 1	 1
i

Figure	 7. The result of applying the counting algorithm to the_
binary image of Figure 6.

4

f

a^

a

x
ry ;

{; j:	 -fj->a-smmmvic,. m , v..s^a ^ 	 . 	 _:	 -xvsauam-c_,si-ti.+^vt m:aue-_	 '•.-uxe^.u.:^aiy:_i.rsre_...- . 	-mx-ma ac•-e+	 . -	 ..	 _ .	 .	 _

a	
-y.^	 z

-.

1 8 	_e

1	 1	 0	 1 G::0 0 1 0-01	 1	
t

0	 1	 1	 1 0	 1	 1	 0 =0=1
0	 0	 1	 0 0	 0	 0 oho 0 1

0	 0	 0	 0_ 0	 0	 0 =0=0

(a) (b) (c)

original- Result after Result after
fi rst iteration	 second iteration

a

Y

y

V

^0	 0	 0	 0 0	 0	 0	 0
(t0 1 	 1	 0 0	 0	 0	 0
`0	 0	 0	 0 0	 0	 0	 0
LO	 0	 0	 1 0	 1	 1	 1

(d) (e)

Result after Result after
third iteration fourth iteration

Figure 8.	 Result after each iteration of the counting algorithm,
indicating partial 	 summing method.

^..	 POOR^	 , 1v'A E is
^'

f Y

1

19

encompasses a full	 row, and the number in the group represents the

number of 1-elements which were in that row of the original 	 image

(Figure 8(a)).	 Since the maximum. , number^of 1-elements in any row is

four, and only three bits are necessary to represent the sum of the

"° elements in that row, the sum is right-justified. 	 In thethird itera-

tion, the row sums are added to generate two partial sums, each over

two rows, and,	 in the final	 iteration,	 the two partial	 sums are
4

r.. combined to form the sum over the entire image. 	 Note here, that in

addition to being right-justified, the sum in each group, appears in

the bottom row of the group.

As evidenced by the above description, the algorithm is inherently

parallel.	 The algorithm could, of course, be implemented by various

methods, such as by conventional programmed processors. 	 However, the

parallel	 nature of the algorithm makes it particularly well 	 suited to the

-	 concept of tse logic. 	 In the following paragraph, one iteration of the

algorithm is reduced to a number of steps and described in terms of the

necessary tse operations which were defined in the previous chapter.-.

To complement the illustration of the algorithm, an arbitrary image

is used to show the effect of the execution of each step. 	 For simplicity,

the 8 x 8 (m,n = 3)	 image shown in Figure 6 (page 15)	 is chosen as the

original,	 and is	 identified in the algorithm as Image A.

STEP 1.	 Create a new image,	 Image B, by performing a SLIDE 1

RIGHT operation on Image A. 	 The result of this step

^. is shown	 in Figure 9(a).,

STEP 2.	 Mask the odd numbered columns of both Image A and

Image B.	 This forces these columns to contain all

f

s	
^

i

0`0 0	 1. 1	 1	 1	 1	 0 0 0 0 1	 1 1 'l 0 0 0 1 0 1 0 1 0'0 0 0 0 1	 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '0	 0

0'0 0 0 1 1	 1 1	 0 -0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1	 0 1	 -0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0

0 , 0000011 00'000001 00000001 00000001 00000101 00000000

0'0x11'0011 00011001 00010001 00010001 0000000/ 00000000.

0 1	 1	 1	 0 0 0 1	 0 0'1 1 1	 0 0 0 0 1
0

1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1. 0 0 0 1 0 0 0 0 0 0 0 0

0'1110001 00111000 01010001 00010000 00010000 01000001
1

0'00000`00 00`.000000 00000000 00000000 000'00000 01 000001

0'000'0000 00`00000'0 0000000'0 00000000 00000000 00000000

Image A Image B Image C Image D Image E Image F

Step 1 Step 2 Step '3_

(a) (b) (C)

`j 0 '0 0 0 0 0 0

00001010 00010000 00000000 0001 1010

00001 01 0 00000'000 00000000 00'001 01 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 a

00100010 00000000 00000000 00100010

00 °1 0000`0 01 000001 00000000 01 1 00001'

^d 00100000 01000001 00000000 01100001

S0 0 00 0 0 00 0 0 0 00000 000 0> 0 0 00 00 000 00 0

Image C Image D Image E Image F

Step 4 Step 5

(d)
(e)

Figure 9. The results of applying the steps in the algorithm to Image A for one iteration.
N

?

_ u.

b

L

21

zeros.	 The masked images are labeled ,Image C and

Image D, respectively, and the result of this step

is shown in Figure 9(b).

L	 :,
j;x. r STEP 3.	 The AND and EXCLUSIVE-OR of Image C and Image D

are generated and are labeled Image E and Image F,
I^

rY respectively.	 The result of this step is shown

i in Figure 9(c).

STEP 4.	 Image E is checked for all	 zeros.-	 If Image E is
;f

all	 zeros,	 the iteration is complete.	 If Image E

contains any 1-elements, a SLIDE 1 	 LEFT operation is

performed on Image E. 	 The result is labeled Image C,

and Image F is relabeled as Image D.	 The result of

performing this step is shown in Figure 9(d).

STEP 5.	 Repeat Steps 3 and 4 until Image E is all zeros.-_ r	 9

In the example, Steps 3 and 4 are repeated once.

- The result of performing this step is shown in

Figure 9(e).

These steps describe the first iteration of the algorithm. 	 All

subsequent <iterations use the same steps, with the exception that Step 1

M	 ;
and Step 2 are modified.	 The magnitude and direction of the Slide in

Step I and the pattern of the masking; in Step 2 are different for eachi

successive iteration.` These differences are outlined later. 	 First,

consider the effect of each step outlined above within the first 'w

iteration.

Step l	 creates a new I"mage B from the original 	 Image A in which
M

every element occupies; the same position as the one to its right in the

1 1

ing the odd columns from

creates Image C, which ci

the original image, and

22
t

both Image A and Image B,

)nsists only of the even-

creates Image D, which

one position to the right.	 No information is lost in the masking process,

as might first be concluded. 	 When Image A is masked to create Image C,

the effect is to retain the even-numbered columns of the original 	 image.

On the other hand, when Image B (same as Image A, displaced by one

column)	 is masked to create Image D, the effect is to retain the odd-

numbered columns of the original. 	 Therefore, all	 information which was

contained in the original 	 image has been retained, and none is lost.

The masking process actually removes redundant information from the

"	 Images.	 Step 3 adds,	 independently and concurrently, each element in

Image C to the corresponding element in Image D.	 The sums	 (result ofi

the EXCLUSIVE-OR operation) are placed in Image Fund the carries

(result of the AND operation)	 in Image E.	 Step 4 checks Image E to

(J

"`	
l

determine whether or not any carries were generated. 	 If not,	 Image F is

the result of the iteration.	 If any carries were generated, they must y-^

be added to the sums,	 using another EXCLUSIVE-OR and AND operation, 	 thus `-

generating another sum image and carry image (Image F and Image E).

Step`-5 indicates that the adding operation of Step 4 is repeated until

the carry image shows all 	 zeros, thus indicating that the addition has

f
j

been completed.	 Note that Steps 3, 4, and 5 describe an addition'

process which is completely analogous to the operation of a conventional

ripple-carry adder circuit [5, Appendix F].	 Step 3 implements a function

similar to that of the first half-adder in each cell	 of a conventional

a
f
s

`'l

r

N% 23
,

adder.	 Steps 4 and 5 represent the method by which the second half

adder of each cell adds the incoming carry to the sum fror the first

- half-adder of the cell to generate an outgoing carry to be used by the
a

next cell.	 Upon completion of all	 five steps, Image F is the result of4

the first iteration.	 This image is the original 	 for the next iteration.

I

Each successive iteration performs the same basic operation over s

larger groups,	 the final	 iteration being the one which generates the z

sum over the entire image.	 Figure 10 illustrates the result after

each	 iteration,	 along with the sectors over which summing is performed.

f f	 hThe	 act that an	 sector	 encircled areas in Figure 10 a) 	 through (f))Y	 (9	 (9 z

E contains a binary number representing the number of 1-elements in the

corresponding sector of the original	 (Image A) can be readily verified

from the figure.
x

^p

As previously stated, Step l and Step 2 must be modified for each

ry

iteration.	 For instance,	 the second iteration of the algorithm differs

from the first,in that the slide operation is a SLIDE 2 RIGHT and the

columns that are masked are the first, and second, fifth and sixth, r;

ninth and tenth, and so forth.	 Using the same approach as presented in

the first iteration, the sum over horizontal	 groups of four will	 be {k
r

generated when the second iteration is performed on the result of the

first iteration,	 as shown	 in Figure	 1'0(b).

a

Modification of the subsequent iterations 	 is similar,	 until	 each

horizontal group is the length of an entire row, as shown in

Figure 10(c).	 At this point,	 the rows must be added to one another,	 in

{C
much the same manner as groups were added before. 	 Therefore, Step 1 of

{

the next iteration will 	 be `'a SLIDE 1	 'DOWN,	 and the odd-numbered rows

1 ja
 1
4

1

1

--

G70)GZ U) 0 0 0 0 CEDED 0 0 0 0 0	 0	 0	 0	 0	 0	 0	 0 0	 0	 0	 0	 00	 0	 0

0' 0 0:1) 1	 1	 1	 1 0 0 (ED ED 1 0 CO	 0	 0	 1	 0	 1	 0 0	 0	 0	 0	 0	 1	 0	 1

0	 0	 0	 0	 1	 1	 1	 1 =66 0 0 T3 =16 0	 0	 0	 0	 0	 1	 0	 0 0	 0	 0	 0	 0	 1	 0	 0

ED E--O) I0 01 1 0 0^ 0 0 E3 1	 0 C0--O 	 00	 0	 0	 1	 0 0	 0	 0	 0	 0	 0	 1	 0

0 _0	 1	 1	 0	 0	 1	 1 =0) 1 :D 93 CD 0	 0	 1	 0	 0	 0	 1	 0 0	 0	 0	 0	 0	 1	 0	 0

0 J 1 1- ED ED COD ED 0 011 0	 0	 1	 1	 0	 D	 0] 0	 0	 0	 D,	 0	 1	 u	 0
i (ED= (Do 0 1 Co D ED ED =1 0	 0	 l	 l	 0	 0	 0	 1 0	 0	 0	 0	 0	 1 . 0	 0

0	 0	 0	 0	 0	 0	 0	 0 (ED 0 0 =ED0 0 0 0 0 =ED 0	 0	 0	 0	 0	 0	 0	 0

Image A Result After
First Iteration

Result After
Second Iteration

Result After
Third Iteration

SLIDE 1 RIGHT SLIDE 2 RIGHT SLIDE 4 RIGHT

(a)
(h) (o)

C0 	 0 -0' 0 0 „0 0 0 0
k	 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0	 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0	 0 0 0 0 '1 0 1 1

C
0 0 , 0 0 0 0 0 0	 0" 0 0 0 0 _0 0 0
0 0 00 1 0 0 0	 0 0 0 0 0 0 0 0

k, 0 G'0 0 0 0 0 0	 0 0 0 0 0 0 0 0

f	 0 0 0 0- 0 1 0 0	 0 0 0 0 1 1 0 0

Result After Result After Result After
F-' Fourth Iteration Firth Iteration	 Final or Sixth Iteration

SLIDE I I	 DOWN SLIDE 2 DOWN SLIDE 4 DOWN
f (d) (e)

(f)

Figure 10.	 The results and significance of applying the algorithm to Image A after each iteration.

i

^y

',.^a.u`.'_	,..	 ,..	y•tu.. .,^r.,...t.,a..x..,.a..w.^...aa,....,..._.,...a..,.. .w,^-a ^,...y.,. ._......... 	 __.	,.... ,.	 ..	 _..

I

25

instead of columns, will	 be masked in Step 2. 	 From that point,

modifications are the same numerically as before, retaining the DOWN

slide direction and row masking. 	 Table 1	 gives the necessary

modifications as a function of the number of the iteration being
r

performed. 3

Modified forms of the counting algorithm. 	 The parallel counting

algorithm is seen to be an efficient and potentially fast method of

summing elements	 in a binary image.	 Results similar to those shown can

be obtained by utilizing certain allowable variations 	 in the basic

steps of the algorithm.	 With these variations, the execution of the

algorithm can possibly be greatly simplified for special 	 types, of input

images.	 Some modified forms of the counting algorithm are presented

below,	 using the image in ,Figure 6 (page 15,)	 as an example. ?

I
Generating sums in sectors of an image.	 In the standard form of ,

the algorithm,	 the magnitude and direction of the slide in Step 1 of

each iteration is specified by the number of the iteration.	 For any

image 2m X 2 n ,	 the order of the slide operations	 is	 1, 2, 4

2
m-1	

RIGHT,	 then 1,	 2,-4	 2n-1
	
DOWN.	 Note, however,	 that the

l

iterations need not be tied to this specific ordering.	 After performing

I
any number of the	 iterations containing RIGHT slides, 	 the iterations

containing' DOWN slides may be commenced.	 After any number of DOWN

slides, more of the RIGHT slides may be performed, and so on. 	 The

iterations may be intermixed in any way, subject to only two

restrictions.	 First of all'_,	 the actual	 order of.the	 iterations

containing slides of a certain direction should not be disturbed when

,.,.	 7,,.

f

TABLE 1

SUMMARY OF MODIFICATIONS PER ITERATION

Operation Modifications

Step 1 -1
SLIDE 2k RIGHT,	 k < nSlide Operation

k-n-1SLIDE 2	 DOWN, k > n

Step 2
' Mask Operation
r

Step 2
(a)	 Mask following columns:

Mask Operation Fork < n	
n-kand	 i	 1,	 2,	 2

{ (2k7-2k+1	 2k -2 k +2,	 2ki-1),	 -	 -2k

(b) Mask following rows:

k

For k > n	
m+n-kand	 i	 = 1,	 2,	 2 ('

a
k-n-	 k-n	 k-n	 k-n	 k-n	 k-n-1)(2	 i-2.	 +1,	 2	 i+2,	 2	 i-2-2	 .,

^.

the current iterztion. 	 2n = Number of columns in the image.k = Number of

2m = Number of rows in the image.	 m + n = Total number of iterations per image.

N

^p F

p, t7

	

p+	 2 7 x

T	 iterations in the other direction are inserted between them. For

example, if the iteration containing the SLIDE 4 RIGHT is performed at a 	 i

	

^Y	 certain time, then no matter how many iterations containing DOWN slides 	 f

are performed, the next RIGHT slide iteration will be a SLIDE 8 RIGHT.

Of course, the same applies when RIGHT slides are inserted between DOWN

slides. The second restriction concerns the size of the partially summed

sectors which may be generated as a result of performing the iterations

in a different order. Certain orderings of the iterations will generate

sectors whose row lengths may not be large enough to contain the binary

number representing the number of elements in the sector. For instance,

consider the 8 x,8 image in Figure 11 to which the algorithm will be

applied. The order of the iterations is chosen to be theSLIDE 1 RIGHT
s

iteration, followed by the SLIDE 2 RIGHT iteration, followed by the

SLIDE 1 DOWN, SLIDE 2 DOWN, and SLIDE 4 DOWN iterations, as depicted in

C figure. After the application of these five iterations, the result

indicates partial summing over two sectors, each -8 rows by 4 columns.

However, note that there are 19 1 -elements in the left half of the

original image, and that the binary form for 19 (10011) cannot be
i

placed in the bottom row of the corresponding sector. The most signifi-

cant bit is lost, thus introducing an error in the computation. Clearly,

the result after the final iteration (SLIDE 4 RIGHT) is incorrect.

Within the restrictions	 n rearra ngement of the or der o^	 h	 ^ a_ Y	 9	 t	 e	 f the

z	 iterations will generate the same final result. The real significance of

r	 ^^
the rearrangement is that by properly choosing the sequence, then

i
omitting one or more of the iterations, the end result will indicate

	

--	 partial summing over a number of sectors of the original image. This'
l	 -

sp

x:

}
1	

a2s

1.	 1 1 1(r'^1 1	 1 0 1.0 1 0	 1	 0 0 1
_,

I1 1	 0	 0 1 0'0 0 1 0	 0 0	 0	 1 0 0
I1 1	 0	 0 0 0	 0 0 1 0	 0 0	 0	 0 0 0,

1	 1 	 1 0 0	 0 0 1 0	 1 0	 0	 0 0 0

I
O 0	 1	 1 1 0	 0 0 0 0	 1 0	 0	 1 0 0

IO 1	 1	 1 1 1 ` 	1 1 0 1	 1' 0	 1	 0 1 0
I0- 0	 1	 0 0 1.	 1 0 0 0	 0 1	 0	 1 0 T

10 0	 1	 0 1 1	 0 0 0 0	 0 1	 1	 0 0 0

Original First Iteration

r
3

0 1	 0	 0 0 0.1 1 0 -0	 0 0	 0	 0 0 0
1

0 0	 1	 0 0 0	 0 1 0 1	 1 0	 0	 1 0 0

0 0	 -1	 0 0 0	 0 0 0 0	 0 0	 0	 0 0 0 I

0 1	 0	 0 0 0	 0 0 0 1	 1 0	 0	 0 0 0

0 0	 1	 0 0 0	 0 1 0 0	 0 0	 0	 0 0 0

0 0	 1	 1 0 1	 _ ` 0 0 0 1	 0 1	 0	 1 0 1
0 0	 0	 1 0 0	 1 0 0 0	 0 0	 0	 0 0 0
0 0	 0	 1 0 0	 1 0 0 0	 1 0	 0	 1 0 0

Second Iteration Third Iteration 'R
.i

f

v

ti

i Figure 11. Example of partial summing where an error is generated. '2

^	 1 =a

1 4
fy	 y

y

tY N
'iCF

{

3

C

I
_

W	 .,

tt Sit

29
x

rr w

3

9
s

1

A_y

I
t

0 0 0	 0	 0	 0	 0	 0 0 0 0 0 00 0 0

0 0 0	 0	 0	 0	 0	 0 0 0 0 0 0 0 0 0

0 0 0	 0	 0	 0	 0	 0 0 0 0 0 0 0 0 0
1 1 0	 0	 0	 1	 0	 0 0 0 0 0 0 0 0 0

0 0 0	 0	 0	 0	 0	 0 0 0 0 0 0 0 0 0
0 0 0	 0	 0	 0	 0	 0 0 0 0 0 0 0 0 0

0 0 0	 0	 0	 0	 0	 0 0 0 0 0 0 0 0 0

0 1 1	 1	 1	 0 	 0	 1	 error here —r 0 0 1 1 1 1 0 l

Fourth Iteration Fifth Iteration

I
0 0 0	 0	 0	 0	 0	

0
J

' 0 0 0	 0	 0	 0	 0	 0
0 -0 0 _0	 0	 0_'0	 0 a
0 0 0	 0	 0	 0	 0	 0
0 , 0 0	 0	 0	 0	 0	 0

0 0 0	 0	 0 ',
	

0	 0	 0

0 ,0 0	 0	 0;`	 0	 0	 0,,

0 0 0	 0	 1	 1	 1	 1'{ incorrect
}

Figure 11.	 (continued)
a

a

k

!3

i

7

7

C .a 30

capability could be useful	 for some applications which require finding

average densities 	 in different partitions of an image.

As an example, consider the 8 x 8 image shown in Figure 12(a).	 In

addition to finding the total	 number of 1-elements in the image, the

distribution of these elements over the four quadrants is also desired.
r'

To achieve this,	 the order of the iterations is changed to SLIDE 1	 RIGHT,

SLIDE 2 RIGHT, SLIDE 1	 DOWN, and SLIDE 2 DOWN.. 	 After these four itera-

tions,	 the desired partial	 sums are available, as shown in Figure 12 (e), z_

To complete the operation, the remaining two iterations, a SLIDE 4 RIGHT

l and SLIDE 4 DOWN, are performed.

fSimplification of the algorithm for clustered elements.	 When the

elements to be counted do not cover most of the total 	 image frame, some

of the iterations may possibly be omitted. 	 Counting of clustered

elements, those which lie totally within some smaller area of an image,

j requires, only as many iterations of the algorithm as would the smallest l

2m x 2 n (m,n are integers)	 image which will	 enclose the cluster.	 Once

this reduced image size is determined, the partial' summing procedure
'l

described above is applied to the image.	 The process is complete when

the 'size of the partially summed sectors is the same as the 'reduced i

image size for the cluster. 	 Provided that every element of the cluster

(= was located within a single sector of the original, the result shown inj

that sector will	 actually be the desired sum. 	 In order to ensure that
l

o

i	 ,gig

the cluster lies entirely within the sector, a number of slides DOWN and

RIGHT should be applied to the original 	 to relocate the cluster to the

extreme bottom right of the image.	 This will also cause the result to
v

K
4

f Z= .{'tom a, j1[• .

i

ry

i

0 0 0 0 0 0 0 0 (f 0 0 0	 0 0 00 00 of
0001-1	 11	 T 11	 01	 0 000101	 00,
0 0 001 1-11 0000 1 	01	 0 000001	 ooj	 a
000000l 1 000001	 0^^ 000000	 o;
00 11 00.11 0o1, O IF 0 001o0	 0)
01.1 1-0001 .ol 1=0 00 00 l 	 10—'0--0'1^)

0 1	 1	 1- 0	 0 0 1 ED 1 0 0 0 0 1 0 0 31 0 0` 0 1)
0

f
0 0 0 0 0 0-0 0 0 0 0 0`0 0 0 0 0 0 0 0 0 0 0=1

(a) (b) (c)

_	
io000000000000000	 00000

1 10'001'01 0'	 00000000	 0000C
X00000000	 00000'000	 0000C
^0 0 0 0 '0 1 l 	 0 0 0 1 1 0 1 0	 0 0- 0 0 C
00000000	 00000000)	 00000

01 01<0011	 00000000	 0-000C
00000000	 00000000	 0000C

1001 1 000l	 1 0000'1 00	 000l
(d)	 fie)

Figure 12. Example of modified counting algorithm.

f^w

f	 a

E	 y

i,CDUCIBILI'rYF THE
w	 PAIGE IS I'OC}I

32

always be located in the normal bottom right position. Thus, by

elimination of some of the iterations, - the processing time can be

reduced.

The simplification is practical only if there is some method of

determining the size of the cluster, adjusting the pattern of the itera-

tions, and determining the number of slides needed to relocate the
f_

cluster. In particular, if the execution of the algorithm is under the

control of some type of monitoring device, an overall reduction in

processing time may be realized by checking every image before starting

the counting process, then making the necessary adjustments, if any.

a
As an example, suppose that the binary image of Figure 13(a) is

the result of some classification process, and the encircled areas have
y

been found to be -the areas of interest. However, for some reason, only

the area at the lower left is to be measured. By some further classi-

fication process, the area at the upper right is removed, as shown in

Figure 13(b)	 Upon checking the image, the monitoring device finds that

the smallest area which is 2 m rows by 2n columns and contains all of

the elements to be counted is 4 x 4 (m,n = 2)	 To relocate the image to

the bottom right corner, simple slide operations are performed, resulting

in the image of Figure 13(c). The partial summing procedure is then

applied, with a final sector size of 4 x 4. Thus, the execution time

for the 'algorithm will be shorter.

More significant reductions in processing time will be realized when

image planes larger than 8 x 8 are used.
j	 -	 '

33

r

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000

00011111 00000000 00000000

00001111 00000000 00000000

00000011 00000000 00000000

001	 1-001 1 001 1	 0000 0000'1001 11

01110001 0111`0000 0000'01111

0 1	 1	 1	 0 0 0 1 0 1 1 1	 0 0 0 0 0 0 0	 0 11 0 1 1 1

00000000 00000000 00001000of
(a) (b) (c)

4x4

00000000
0 0 0 0 0 0 0 0
000000'00
0 0 0 0 0 0 0 0
00000000

0 0 0 0 0 0 0 0
0 0 0 0 1	 0 0 0 3

(d)`

after applying complete
i	 algorithm for a 4 x 4 image

Figure	 13. Example of simplification of the algorithm.

i

a	 x 1

t y;

1
_

i..

a _

_Y

CHAPTER 4

TSE HARDWARE IMPLEMENTATION OF THE COUNTING ALGORITHM

Combinational	 circuit approach.	 As described in the chapter on tse`'

components, tse gates may be interconnected to form more complex tse

functions in much the same manner as conventional gates are interconnected

to.form more complex boolean functions.	 Using a straightforward approach,

one method of implementing the counting algorithm is to simply connect

the proper gates together insuch a way that the desired steps are

performed on the image as it propagates through the network. 	 Conceptu-

ally,	 this	 is the simplest and most direct realization of the algorithm. y

The complete circuit for implementation of the algorithm may be

viewed as a`group of cascaded "black boxes," where each box has only an

input tse and an output tse, and performs a single iteration of the

algorithm.	 This arrangement is illustrated 	 in Figure 14.	 Since the

magnitude and direction of the slide and the pattern of the mask is

different for each iteration, each box will	 have different contents.

However, the following description of the contents of one box is a r	
a

general one, and the differences -between each box- can be summarized.

The hardware needed to performone iteration of the al_ orithm isp	 9
i

shown in Figure 15, and the steps within the iteration can be readi ly
:;	 a

associated with certain gates in the structure. 	 Tse-Gate l	 is the slide
:	 l

gate which performs the slide operation in the appropriate mask pattern, !{

as outlined in Step 2,	 by allowing information to pass through the AND

IA

° 34 -

r	 +-	 r^o
13001IGINAL PAGE is

I^

s 3 7

i

gate where a l	 appears in the same position in the mask, and generating

a zero elsewhere.

As described in Step 3, tse Gates 4 and 5 generate the sum and
r

carry images,	 respectively.	 Tse Gates 6, 7, 8, and 9 effectively

perform Step 4 and Step 5, but in a somewhat different manner.	 The -.

carry image generated by Gate 5 is one input of the OR gate (Gate 6),

whose other input is initially clear.	 The carry image then propagates

through Gate 6 unaffected to Gate 7, where a SLIDE l 	 LEFT is performed

on the image.	 This will	 displace any carry bit generated to the left, 1

as is expected when two binary numbers are being added. 	 Remember,
r

however, that many sets of two numbers are being added simultaneously in

this case.	 The displaced carries are then fed back into one input of

9'.

Gates 8 and 9, where they are added to the previously generated sums.

Again,	 this follows directly from the case for binary numbers. 	 When the t

carries are added to the sums, new carries may be generated. 	 These new

carries are,	 in turn, shifted left and added to the 'sum, which may

generate even more carries.	 Thus, carries will propagate around the

feedback loop until 	 no new carries are generated.	 This is analogous to ;`..

binary addition. 	 In fact,	 the entire summing operation performed by w

Gates 4, 5	 6,	 7,	 8,	 and 9 is equivalent to having 2m+n (the total	 number

of image elements) one bit full adders connected in groups of p, where p

is the number of image elements being summed per group in the particular

i"teration.	 Hence,	 the true potential' 	 of parallel	 processing is apparent.

After the feedback loop is stabilized ,(that is,-'no new carries are

y being generated),	 the output can be assumed to be correct.; Actually,

there is no indication as to when this condition has been reached;

f	 _

38

therefore, the amount of time required for worst-case carry propagation

delay must elapse before the output can be assumed to be stable and

correct for the next iteration.

The number of gates required for this implementation of the counting

algorithm for a 512 x 512 image is 360.	 Based on an initially projected

;power consumption of 3 watts per gate, the total 	 power required for the

circuit is '1080 watts. 	 The processing time, taken to be the delay from

the introduction of the original 	 image to theinput of the circuit to

the time at which the output is stable (worst-case), 	 is 756 tse gate

delays.	 In terms of a projected delay of '5 milliseconds per gate, 	 the

processing time for this configuration is 3.78 seconds.	 This corresponds

to an image processing rate of 0.26 images per second. 	 These character-

istics are summarized in the next chapter (see Chapter 5, page 70) l

where they are also compared to those of other implementation of the

algorithm:

;; 1

Pipeline network implementation.	 One of the most serious

disadvantages of the combinational	 circuit implementation is the large

propagation delay from the input to the output.	 Although this delay

cannot be	 easily reduced, a higher rate of image processing can be

realized by considering -a pipeline structure,	 such as the one illustrated

inin Figure 16.	 The circuit is basically the same as for the combinational

I-	 circuit implementation,	 except that intermediate tse registers have been

placed between each iterative box.	 An implementation of the tse register

is presented in Figure 17.	 These registers temporarily hold intermediate x	 i

results so that data flow through the structure at a constant rate,

A

rk,

f,

t	 ,'

#,..

41

controlled by the frequency of the clock.	 The clock is set at a

frequency such that its period is slightly greater than the worst-case

propagation delay of the slowest box. 	 Between each clock pulse, a
wu

completely new image can be placed at the input. 	 The result of that

9

-

>- image will	 appear at the output after m+n-1 clock pulses. 	 Although the

actual	 delay from the input to the output for any single image is -

..
greater, the rate of processing (number of images per unit time) 	 is t,

increased.

i,
w

The pipeline implementation of the algorithm requires a total of
„

:. 468 gates, representing a power consumption of 1404 watts. 	 For a single x;k	 a

image, the number of gate delays is 1368, corresponding to a processing

time of 6.84 seconds.	 However, the processing time per image for a -

number of images being input to the circuit at the clock frequency is

0.38 seconds.	 The image processing rate for this	 implementation is2.63 m

` images per second, 	 an improvement over the combinational	 circuit

implementation.
v

I
Implementation using a programmable tse processor.	 Present-day ._ti

technology and projections to the near future indicate that the early_tse
iv

components will	 be bulky, have large power consumption, and will	 not have a':

a suitable degree of fiber alignment to allow easy interconnection of
x.

gates.	 Therefore,	 initial	 efforts will	 tend to favor structures which LL	

r

_ are as simple as possible, even 	 though	 repetitive use of the structure

4 may require considerably greater execution times per image.

Hardware considerations,	 As an illustration of the type of

structure proposed, consider ,a unit which contains only the most

f PEI'RODUCIBILITX OF THE

OPIMNAL PAGE IS POOR

1

i

42

elementary gates AND, OR,	 NEGATE, SLIDE -1	 RIGHT, SLIDE 1	 LEFT,	 SLIDE 1

UP,	 and SLIDE 1	 DOWN.	 Consider also a'set of tse registers, as many as

needed to hold intermediate results, and a control and bus scheme which
w

allows any register to be directed through any gate and the result to be ;,$

directed to any register.	 Using this machine, a SLIDE 64 RIGHT operation,

for example,- would be implemented by executing the SLIDE l	 RIGHT opera-

tion 64 times on the same register.	 The EXCLUSIVE-OR function of

Register A and Register B, for example, would be implemented by performing

the proper sequence of AND, OR, and NEGATE operations to generate

AB'" + A'B.	 Registers A and B	 and three other registers for intermediate

results would be used in generating this operation.

The machine described in the previous paragraph is the general 	 form

of a tse computer.	 Although inherently slow, the machine has the

advantage of being structurally simple and versatile in that the control

unit can be reprogrammed to execute virtually any function or algorithm.

As intermediate results are generated,	 they are stored in certain

tse registers whose outputs must be directed along different paths

according to the nextdesired operation. 	 Therefore, some method for the

switching of image paths	 is necessary.	 Recall	 that Figure 2	 (page 8)

shows a typical gate whose fan-out has been increased to four using image
i

R

duplicators.	 The four outputs are then connected to four different paths
a

through reformators.	 In order to cause the image to propagate through

{ only one of the four paths, the control	 bit to the reformators in the

other three paths	 is turned off.	 This will	 allow all-zero	 images to

propagate through these paths, which is the same as having them

disconnected from the source of the image.	 Hence, the method of control

43

in a tse structure is to switch the active tse elements on and off in

the proper sequence.	 Since the control	 signals switch entire images and

not individual	 elements within an image, the generation of these signals

can easily be controlled by a small conventional 	 binary computer or

microprocessor. }

Shown in Figure 18 is a mi. croprogrammed control system for a tse

computer organized around a microprocessor. 	 The use of the Intel 8080

j microprocessor is projected in this paper, although any other micro-

processor would be suitable. 	 The memory consists of conventional ROM

and RAM organized as 8-bit words.	 The microprogram, which generates the

control sequences for the tse processor,	 is stored in the ROM portion of

the memory.	 For ease of modification, the main program is stored in the
t

RAM portion of the memory.

The various operations performed by the tse processor (AND, OR,

NEGATE, and so forth), along with program control functions (Branch, i

Halt, Register Transfer, and so forth)	 comprise the instruction set. M

These instructions, which are coded in some 8-bit format, are used to

a	
o

structure the _progr m for the c ounting algorithm.	 This program is

stored in the memory associated with the microprocessor. 	 As each tse

instruction is encountered during execution of the program, the micro-

processor decodes the instruction under the direction of a system monitor

program.	 The microprocessor then outputs the appropriate control words ;?

through the output port to the tse control	 lines in a proper sequence.

When a program control instruction is encountered, its effect will 	 be

restricted to the microprocessor control system, and no control of tse

components	 is generated.

w

t
i _ ..;s^ s._	 .._	 ..e.ti..:.^._	 . ^.^ ..	 ^•^+:.tiv FhA.nN. N.Y ^.	 .::.. ._	 :...	 '."

N	 ^' az
1	 `.-,c... Ltie^..^'F

1

I

M1

Clock INPUT	 OUTPUT

1
{

{

tse	 tse a

8080

Microprocessor

ADDRESS
tse

Status BUS PROCESSOR
Register ARRAY

Conditional

° MEMORY and Monitor i
V

RAM	 ROM Inputs
i

Microprocessor

Control

DATA
INPUT

BUS
PORT

MICROPROGRAM
CONTROL•	 ^

—.REGISTER

OUTPUT

PORT

Figure 18.	 A microprogram, microprocessor control	 unit concept for the tse processor.

In tse conditional 	 instructions,	 the status of the tse processor

must be monitored by the control, as in checking an image for the
4

presence of any l-elements and branching if true. 	 For this purpose,

certain devices whichmonitor tse images and convert the status of these

images to a few binary bits are required.	 The outputs of these devices

are connected to the input port, where the information may be addressed

by the microprocessor control.

E Figure 19 presents a block diagram for the tse processor. 	 The

architecture includes these subsystems:	 a tse Logical Operations Unit,

an Image Bus.,	 tse_Re Regis ter, fixed	 Read Onl y) 	tse Regi sters, and tseg	 g^	 y	 g•
z_a

monitor devices.	 Control inputs to the logical devices are not shown;

however, each active device which is involved in the switching of image

paths represents an incoming control 	 line.	 Each subsystem of this

3
organization is described below.

The organization of the tse Logical Operations Unit is illustrated -

in Figure 20.	 An image placed at Input 1 	 will	 be directed through the

n

SLR, SLL, SLU, SLD,	 NEG or NOP gates to the output. 	 NOP is used in tse

register transfer operations. 	 When another image is placed at Input 2, a

the two images can be directed through the AND or OR gate to the output. ;a

Input 2 ` can be disabled and the SLR or SLD gate in the feedback path

enabled to perform the Horizontal or Vertical	 Sweep operation [5] on the
a

image at Input 1.	 Sweep_ operations are required to generate the 18

masks	 (m+n = 18) for an image size of 512 x 512 used in the counting
A

algorithm without the requirement ` for a large ROM.	 The latch at the

output is a register which retains the result of the operation until

r

^_	
a cleared.

,

1

7
f

y_^

f' o-

'^

',^

1

47

ti

48
z

A primary purpose of the Data Bus is to transmit an image from the

output latch of the Logical Operations'Unit to the tse Image Registers,

where the image is gated into a destination register. • Also connected to

the Data Bus are two special	 tse devices as shown in Figure 21. 	 One of

the devices is a tse contractor gate. 	 This device serves as a zero-image

or zero-tse detect bit when monitored by the control unit. 	 Another

special device on the Data Bus is a tse row output gate, which transmits

to the control unit input port the information in the eight rightmost

-, elements of the bottom row of the image latched on the Data Bus. 	 This

device allows the control	 unit to have access to the numerical 	 result of

the counting algorithm.at

The tse Image Registers are connected to the Data Bus, as shown in

Figure 22.	 For implementation of the counting algorithm, eight tse

registers are required.	 The output of any one of these registers can be

directed to Input 1	 of the Logical Operations Unit, with the exception of

one register which will	 be labeled Register RO.	 This register is
_ A

connected directly to Input 2 of the Logical Operations Unit and is 	 the	 i

only path connected to that input.	 s
;A

Two fixed (read-only)	 image registers are used to store certain

pattern images, as presented in Figure 23, for an 8 X 8 image. 	 These

patterns are used in conjunction with the sweep operations to generate
;a

}	 -' each mask required by the counting algorithm. 	 The method used to

generate these masks 	 is outlined below:

Consider the simple tse circuit shown in Figure 24(a). 	 Let the

image of Figure 24(b) be planed at the input.	 The SLIDE 1 RIGHT gate in	 s

_

,,	 aN	 l
the feedback loop will 	 cause the contents of any column in the input

^a

; I PRODUCIMLITY OF THL ,A	 ..

ORIGNAL Mt 18 POOR	
',

:

yl

0	 0 0 0	 1 0 0	 0 0 0 0 0	 0 0 0 0

0	 1 0 0	 1 0 0	 0 0 1 0 1	 0 1 0
0 0101:00 0 0 0 11001^

4 M1
0	 1 1 0	 1 0 0	 0 0 0 0 0	 1 1 _1 1

M2 0	 0 0 1	 1 0 0'	 0 1 1 1 1	 1 1 1 1
-	 0	 1 0 1	 1 0 0	 0 0 0 0 0	 0 0 0 0

0	 0 1 1	 1 0 0	 0 0 0 0 0	 0 0 0 0

F;
0	 1 1 1	 1 0 0	 0 0 0 0 0	 0 0 0 0

M1 M2

' Figure 23.	 Organization and content of tse ROM registers.

j

S

3

k

f

h

INPUT tse
1 0 0	 0	 0 0 0 0 1 1 1	 1	 1 1 1 1

1 0 0	 0	 0 0 0 0 1 1 1	 1	 1 1 1 1

1 0 0	 0	
0 0 0 0

1 1
1	

1	
1 1

1
1	 r

0 0 0	 0	 0 0 0 0 0 0 0	 0	 0 0 . 0 O

+ 0 0 0	 0	 0 0 0 0 0 0 0	 0	 0 0"0 0

1 0 0	 0	 0 0 0 0 1 1 1	 1	 1 1 1 1

1_ 0 0	 0	 0 0 0 0 1 1 1	 1	 1 1 1 1
SLR

0 0 0	 0	 0,0 0 0 0 0 0	 0	 0 0 0 0

OUTPUT tse INPUT tse OUTPUT tse

(b)
(c)(a)

Figure 24. Implementation of a horizontal sweep device [5].

-	 CT7..
N

i

elk,	 ,?J{G 	 +^+v.rudSU-	 ..,.u.._.....wi(M31.aaWa.Libusa .ull^r. .sh.w6.l.:.:	 j' 1ui.^ .u.,.,	 r... nw.uw .ws	 ^_<	t 	 a	 .e w.	 .w u	 u w.

53

image to be duplicated in the column to its right. The duplicated

column will propagate through the OR gate and be duplicated again. As

shown in the output image of Figure 24(c), the column will continue to

duplicate, or "sweep," across the image until all 'columns have been

duplicated. This operation is called a HORIZONTAL SWEEP [5]. A VERTICAL

SWEEP is implemented in a similar manner. When the OR gate in the

Logical Operations Unit is enabled, and the SLR or SLD gate in the

feedback path of the Logical Operations Unit is enabled, a circuit

similar to that of Figure 24 is realized, and a sweep operation is

performed on the image at Input 1.

The sweep operation is utilized in the generation of masks as

illustrated in the followin g example. During the execution of the third

G
iteration of the counting algorithm, the following mask is required for

an 8 x 8`image:

00001111

r 0 0 0 0 1 1 1 1

00001111

00001/11

00001111

O 0 0, 0 1 1' 1 l

000'01 1 1 l

000>01 1 1 1

To generate this mask, two images are formed by a SLIDE 3 UP and a

SLIDE 4 UP on the contents of M2 (Figure 23).` The results of these

operations are ANDed. This places the desired mask pattern in the top

row of the tse, and 0-elements elsewhere. A VERTICAL SHEEP operation is

f	 _
i

54

then performed to duplicate the pattern downward, and the result is the

required mask for the third iteration.

Software considerations.	 The instruction set for the tse processor ,

includes the operations performed by the Logical Operations Unit. 	 Since

y ^	 the processor was designed on the basis of a minimal	 hardware structure, j

operations such as EXCLUSIVE-OR and slides of magnitude other than one
t)

are not included, but must be programmed by the user when required. 	 In

addition to the tse instructions, there must be available to the program-

mer certain program control 	 instructions or tse-microprocessor'

instructions.	 These instructions are used for branching, subroutine

call	 and return,	 indexing,	 halting,	 and so forth.	 The primary distinc-

tion _between tse processor instructions and program control	 instructions

is that the latter do not involve any transfer or modifi cation of
is

information by the tse processor array. 	 Their effect is confined to the
x

microprocessor control	 system.
c t;

The complete instruction set derived for the tse processor is

- presented in Table 2.	 This set is partitioned into a tse processor

- instruction set and a tse program control set. 	 All	 tse registers are

indicated by upper case letters,	 and all microprocessor system registers

are indicated by lower case letters.	 Note that some of the program

_control	 instructions have double-precision	 (16-bit)	 capabilities.	 These

are indicated by an asterisk (*). 	 Double precision operations are

necessary to allow for numbers which may exceed 28 1, or 255, as in the

case where image sizes may exceed 256 x 256 elements. 	 Of course,	 the

use of doub'l'e precision operations 	 implies the extension of the

r

55

TABLE .2

TSE COMPUTER INSTRUCTION SET

Mnemonic Instruction Description

tse	 Processor Instructions

AND A Logical AND (A)	 (RO)	 A

OR A Logical OR (A)	 +	 (RO)	 A

SLR A Slide I	 Right SLIDE R	 (A)	 A

SLL A Slide 1	 Left SLIDE L	 (A)	 A

SLU A Slide I	 Up SLIDE U	 (A)	 A

SLD A Slide 1	 Down SLIDE D	 (A)	 A

NEG A Compl ei'iient NEG	 (A)	 A

VSW A Vertical Sweep V.	 SWEEP (A)	 A

HSW A Horizontal Sweep H.	 SWEEP	 (A)	 A

MOV A, B Register Transfer (A)	 B

JMZ A, n Conditional	 Jump on null If (A)	 0,	 GO TO	 n
Image to Location n

tse Program Control	 Instructions

Mnemonic Instruction Description

Microprocessor Instructions

JMP n Unconditional Jump to GO TO n
location n

JMZ a, n	 Jump on zero to a location n IF a	 0, GO TO n

MOV a, b	 Register Transfer (b)	 -^-	 a

LDI a, n	 Load Immediate n	 a

INC a Increment (a)	 +	 I	 a

CALL n Subroutine Call Store Program Control
Register, Go To n

RET Return from Subroutine GO TO	 (location
stored by CALL)

*DAD a Arithmetic Left Shift (a)	 +	 (a)	 a
(Multiply by 2)

f

OP 121'

(WICKNAL PAGE IS PO()Tz

57

associated register to 16 bits using some auxiliary register.	 Other

control	 instructions are implemented by microprocessor subroutines, as -.
.'

in the case of *Sub a-, b.

In order to program the processor to perform any task, the proper

,g	 sequence of instructions must be stored in the working memory of the
i

processor.	 Therefore, a coding scheme or format must be provided to

represent each instruction.	 Tables 3 and 4 show a coding scheme for

the instructions	 in Table 2..	 Although there are many possible formats,

the one shown has been structured to require a relatively simple micro-

program for decoding.- This simplification reduces the amount of

read -only memory required to store the microprogram, and also reduces

the decoding time for the tse instructions.

A tse computer program for execution of the counting algorithm is

presented in Table 5. 	 The size of the image in this case is 512 x 512

elements.	 Note that some subroutines are called upon which perform

frequently-used functions.	 These functions were omitted from the basic

instruction set for simplicity. 	 The subroutines are EOR, VSLR, VSLL,

VSLU and VSLD.	 Subroutine FOR performs the EXCLUSIVE-OR operation on

the images in Registers A and B.	 Subroutines VSLR, VSLL, VSLU and VSLD

perform variable-length slide operations in each of the four directions.

The image upon which the slide is performed is stored in Register A and

P	
the magnitude of the slide in Register z prior to the call. 	 Since the

.

four variable slide subroutines differ only in the slide instruction at
1

location IOTA, only one of the subroutines is shown in the table.

i4	 i

S t

** 58

}

TABLE 3

TSE PROCESSOR INSTRUCTIONS r

Number of

Instruction Bytes Coding

USW A 1 1	 0001 xxx

HSW A l 1	 0010 xxx

SLL A 1 1	 0100 xxx i

SLR A 1 1;	 0101 xxx

SLU A 1 1	 0110 xxx
SLD A 1 1	 0111 xxx

AND 1 1	 1001 RRR

OR 1 1	 1010 RRR

NEG 1 1	 1011 RRR

JMZ 2 1	 1101 RRR
aaaaaaaa

MOV 2	 _ 1	 1110 xxx
[RRRR], s [RRRR Id

aaa a aaaa Branch AddressnhA

xxx = Don't Care

s ='Source Register

d _ Destination Register

I;
Register Format (RRR or [RRRR]):

RRR: -A 000	 RRRR	 or RRRR
s	

d

A 0000

B 001 B 0001
C 010 C 0 010
D Olt D 0011
G100 G0100
L 101 L 0101

V M 110 M 0110
N 111 N 0111

t11 1000

M2 1001

..
RO 1100

a

is t^
59

i

'	 TABLE 4 k

TSE PROGRAM CONTROL INSTRUCTIONS

Number of

Instruction Bytes Coding

MOV 2 0 0001	 xxx

xx	 [rrr]s[r,rr],,

LDI _3 0 1011	 [rrrld
nnnnnnnn
nnnnnnnn

SUB- 2 0 0011 xxx
xx [rrr]s[rrrld

1

JMZ r 2 0 1010 rrr

t aaaaaaaa 9

JMP 2 O 0010 xxx
aaaaaaaa

i	
CALL 2 0 0100 xxx

aaaaaaaa

r	 RET 1' 0 1100 xxx

DAD 1- 0 1110 rrr

INC 1 0 1111	 rrr 1
HLT 1 0 1101 	 xxx

i

aaaaaaaa = Branch or Call	 Address g

nnnnnnnn = Immediate Bytes

j
Register Format:

a	 000
1

b	 001
c	 010
v	 Olt
w	 100

x	 101

y	
110 2

F	 z	 111
j

r

,
1

60

TABLE 5

y '	 TSE COMPUTER PROGRAM FOR EXECUTION OF THE COUNTING ALGORITHM

Location Mnemonic Comment

LDI 2,	 1 Initiate

LDI x,	 1 Microprocessor`
Counter

LDI y,	 0

ZETA MOV L,	 A
Test for Row

MOV y,	 a Counting or

SUB a,	 1 Column Counting

JMZ a,	 ALPHA

MOV ` x,	 z Slide	 Input

CALL VSLR Image Right

MOV, A,	 B

MOV M2,	 A

MOV w,	 z

CALL VSLR
Create Mask

MOV M4,	 RO

AND A'

VSW A
l

MOV A,	 C

ALPHA JMZ y, BETA

vI
4 MOV x,	 z Slide Input

CALL VSLD Image Down

k MOV A,	 B

MOV MI, 	 A

MOV w,	
z

:^. CALL VSLL >Create Mask

MOV M3,	 RO a

AND A

HSW A

. MOV A,	 C

:^
y

61

TABLE 5 (continued)

Location Mnemonic	 Comment

BETA MOV C,	 R0

AND B AND input image

AND L
with mask	

f`

MOV B, RO

MOV L,	 A
Generate Sum,
Store in C

CALL FOR
3

MOV A,	 C

MOV L,	 B Generate Carry,'

AND B
Store in B

MOV B,	 RO

DELTA OR G

MOV G,	 RO
Test for
additional	 carry

MOV D,	 A bits

CALL FOR
If none, begin
next grouping

JMZ A, GAMMA

_MOV G,	 D

MOV D,	 A
i

SLL A

MOV A,	 R0 Add Carry_ to Sum,

MOV C,	 -A
Generate New
Carry

_
CALL FOR

MOV A,	 L

AND C

MOV C,	 G

JMP, DELTA Repeat Carry test	
F

GAMMA DAD x Increment Counters

INC w
i

r

RLTRODUCI ILITY OF THE
I9 POOP PAGE

rT	 .L_	
_	

_ate ^.. :::	 ^.	 •..

n 62

TABLE 5 (continued)

Location Mnemonic Comment

A LDI v,	 512 Test for Completed

SUB v,	 x
Row or Column
Summing

JMZ z,	 EPSILON If Column Summing

JMP ZETA
Completed, Start
Row Summing

EPSILON JMN a,	 ETA If Row Summing

LDI x,	 1 l Complete, Stop , --,t
LDI y,	 1

Reset Counters,
Start Next

LDI w,	 l Grouping

JMP ZETA

ETA HLT
l

Location
Subroutine VSLR

Instruction

VSLR LDI	 b,	 0

IOTA SLR	 A

INC	 B

I
MOV	 b,	 c

SUB	 c,	 z

JMZ	 c,	 THETA

JMP	 IOTA j

THETA RET
- --^1

Subroutines VSLD, VSLU, VSLL are similar y
to VSLR l

Location
Subroutine FOR

Instruction

FOR MOV	 A,	 M
3

MOV	 B,	 N

NEG	 A

NEG	 B

MOV	 A,	 RO

,r

f	 - r
C
{

^)	 — _ { h nm L

x , 63

P

TABLE 5 (continued)

i Location Instruction

AND	 PJ
_

MOV	 B, R0

AND	 M

MOV	 M, R0

OR	 N

MOV	 N, A

R ET i

Note:	 All	 registers are assumed to be cleared before execution
of this program.

Original	 image is	 in Register L.

* Image size = g	 92	 x 2.

-.1

I

r

F

!d

64

Modified forms of the counting algorithm. 	 Basically, the tse_

program shown in Table 2 (page 55) 	 is used to implement the modified

r
forms of the algorithm. 	 Of course, some adjustments to parts of the

program are necessary.	 These adjustments are minor and are presented
7

without listing the entire program.

In one of the modified forms of the algorithm,	 recall	 that not all	 ?`

of the right-slide iterations or the down-slide iterations are performed,

but are truncated.	 To accomplish this, the immediate bytes of the LDI:

instruction at program location GAMMA+2 must be alt 	 ed, since the value
'	 1

they contain will signal 	 the end of each series of iterations. 	 Before

execution,	 the immediate bytes of the LDI should be loaded with the 	 r

number 2m , where m is the number of right-slide iterations to be

executed.	 After all	 desired right-slide iterations have been performed,

the immediate bytes of the LDI should be loaded with 2 n , where n is the

number of down slides to be executed.•	 -	 i

In another modified form of the algorithm, which concerns partial

summing by sectors,	 the right-slide iterations and the down --slide itera-

tions can be intermixed. 	 To accomplish this, the 'desired sequence of
i

iterations must be specified in some portion of memory and addressed by

the main routine.	 The program is not changed up to location GAMMA. 	 At

this	 location,	 however, a branch should occur to address the portion of

memory in which the iteration sequence is located.	 When the next

desired iteration is	 identified,	 registers w, x, and y should be modified
u

accordingly.	 These registers control	 the magnitude and direction of the
r

slide operation for each iteration.	 At this point,	 a branch to location

ZETA should occur.	 This will	 start the-iteration.- 	 Upon completion of

the iteration,	 the processor will	 again be at location GAMMA. 	 Thus, the

iterations are repeated in this manner until	 the desired sequence is

completed. r

A total	 of 92 tse gates are required for theprogrammable tse

computer implementation of the counting algorithm. 	 The corresponding
is

power requirement for this number of gates is 276 watts. 	 Total	 process-

ing '	time for a single image is 68,775 tse gate delays, representing.

an image processing time of 343.9 seconds per image. 	 This corresponds

to an image processing rate of 2.9 X 10
-3
 images_ per second. 	 Image

r.,

processing times are based on an average carry-propagation distance of

three positions per image.	 Unlike the combinational	 and pipeline
A

implementations,	 the processor can indicate early completion of the

algorithm.	 Maximum carry, propagation in each iteration is unlikely,
1

especially where this maximum is eight or more.

a

z
H

Z
"

a

f	 _

C
^p

o

,

r

1	 ^	 `

The concept of two-dimensional logic devices and the tse computer

represents a new and different approach to the task of image processing.

Although the basic ideas used in the development of tse operations are

not particularly innovative and were conceived long ago, the use and

refinement of these ideas have been severely limited by the lack of 'a

technology required to implement them. Only now can such a highly

parallel logic structure even begin to be considered as having practical

hh
	 applications in the future. At the present time, the first tse gates

I have been conceived and are under design and development. The specifi-

cations related to these gates give an indication that, in the near
I

future, tse computers may replace conventional computers in certain

applications. In order to _gain a better perspective as to the relative

merits of tse processors, the characteristics as presented in the

previous, sections will be compared with the characteristics of a

G	 conventional processor.

Of course, the execution of the counting algorithm cannot be

considered as a proving g round for tse processors. There are many tasks

that can be performed on a tse computer which could allow the processor

to compete effectively with conventional processors, in terms of effi-

ciency. Each task would generate a different set of specifications for

comparison, which in turn would generate a different set of conclusions.

Therefore, the results of consideration of the countin g algorithm for tse

66

t	 r	 ^.

"	 67

implementation must not be taken to 	 rigidly apply to tse computers in
fx	

general.	 Any projection based on the results generated here must be

carefully evaluated.

All comparisons presented in this section are based on an image

-^	 size of 512 x 512 pixels.	 This represents an excellent resolution,
i

almost that of a standard television receiver. 	 At present, the
I

512 x 512 is projected as the upper limit on the image size of tse

{	 components.

A good evaluation of the usefulness of the tse computer must W

include a comparison to a typical 	 conventional	 processor.	 For the

purpose of comparison, the counting algorithm will 	 be implemented in j

terms of the language of the IBP^ 360. 	 The total	 processi ng time will

then be determined using the actual	 instruction cycle times of the

_	 360/65,	 Level	 N.

The IBM 360 is not by any means the fastest processor available;	 -

i	 however,	 its characteristics are intended to be representative of most

computers in general	 use today.	 Also, the results generated by this

example can be easily extended to fit almost any conventional 	 processor

by determining actual	 times for tasks performed. a

'	 A program written for the 360 to count the number of 1-elements	 in

an image is shown in Table 6.	 The basic approach is to address each

y

picture element and increment a counter if the element is a logic- 	 "l."
i

An image is stored as 8192 consecutive 32-bit mennory locations in the

computer.	 The image could also be stored externally, 	 possibly latched

at the output of a parallel-type camera, 	 and addressed in much the same`

manner as the internal memory would be addressed. 	 For the basic

1

68

TABLE 6	 a.

PROGRAM FOR EXECUTION Of THE COUNTING;
ALGORITHM ON THE IBM 360

Location	 Instruction	 Comment

SR	 8, 8	 Clear Register 8

SR	 4, 8	 Clear Register 4
a	

LA	 6, 1 (0, 4)	 81 92 •}- Register 6

SLA	 6, (13, 0)

s,	 SR	 5, 5	 Clear Register 5

A3	 L	 3, 0 (5, 2)	 Load Register 3 with one word
from memory

LA	 7, 32 (0, 0)= 32 	 ^- Register 7

A2	 CR	 3,'8	 Compare MSB of Register 3 to
zero. If zero do not
increment Register 4-BH	 Al

LA	 4, 1 (0, 4)

Al	 SLL	 3, 1 (0)	 Shift left one position
Register 3R	

BCT	 7, A2	 Go to A2 unless 32 shifts
v	 have occurred

LA	 5, 1 (0, 5)	 Increment pointer to
address new word

CR	 5, 6	 Compare new word address
to 8192

BL	 A3	 Go to A3 unless 8192 words'
have been checked

A .	 END

Register 2 should contain the absolute address of the first_ word- of
the image before this program is executed.

Register 4 will ,contain the result after the execution of the..	
program.

hit-

1	 r	 ^_

ty^	 s	 ,_,

69

counting algorithm, the program of Table 6 is very efficient. The

execution time for this program ranges'between 1.06 seconds for an

all-zero tse and 1.15 seconds for an all-one tse, where the average

time is 1.10 seconds.	 ?

The execution times for the three tse implementations of this

research depends upon the propagation delay per gate._ Initially, a

delay of 5 milliseconds per gate has been specified for tse gates

which are being developed [5, page 5]. Of course, future technological

_projections indicate improvement in the propagation delay. Eventually,

the delay is expected to be comparable to the delays of present-day

binary logic, gates.

Table 7 summarizes the processing time per image for the 360, along

with number of gate delays per image of each tse implementation and the

corresponding execution times for different projected values of the tse

!

	

	 gate delay. A comparison indicates that tse hardware structures behave

in much the same manneras binary gate structures. For instance, (1) a

combinational structure will be much faster for any given task than a

sequential structure (computer) because ofrepetitive use of fewer

components in the latter, and (2) a pipeline structure will improve the

image processing rate (number of images per unit time) over that of 'a	 -

combinational structure. However, the actual delay for any image through

the pipeline structure may be longer.

Another indication which results from the comparison is that, for

the basic parallel counting algorithm, the image processing rates for

4.y

	

	the combinational` and pipeline methods are on the same order of maanitude

as that of the binary processor, but the programmable tse computer is

i
f

TABLE 7

SUMMARY OF IMAGE PROCESSING TIMES FOR TSE AND
CONVENTIONAL IMPLEMENTATIONS

imageGate Processing time per
Delays tse gate delay:

y

Implementation per Image 5 ms	 5 Us 5 ns

tse-Combinational 756 3.78 sec	 3.78 ms 3.78 ps

tse-Pipeline 76 0.38 sec	 0.38 ms 0.38 us

tse-Computer 68,775 343.8 sec	 0.344 sec 0.344 ms
1

IBM 360 1.10 seconds

li

r

_
 eta

i

_ 1

}

i

i

I

B^I 	
OFi

^^	 -	 PAGE
v	

Ay
O^I

, u

-r

71

slower, for the present time. 	 This is not unexpected since tse logic is

fast compared to conventional	 logic (due to the inherent parallelism),

yet slow compared to _delays to present-day binary gates fabricated by

TTL or CMOS technologies (about 10 nanoseconds). 	 However, as the speed

of the tse gate is improved, the processing rate of the tse computer will

surpass that of the binary processor. 	 As the tse gate propagation delay

approaches that of today's binary gates, the advantage of the tse

computer is apparent in that the number of 1-elements	 in a 512 x 512

image can be counted in about one-third of one millisecond.

j
I

Other characteristics which could be used to compare the merits of

the different implementations are total 	 power, total size and weight,
F

dollar cost, speed -power product, and gate count. 	 However, most of

I

t
these are physical	 characteristics which may be refined independently

of each other.	 Therefore, no projections can be made as to when a certain

characteristic will	 be refined to the point that the tse computer is

feasible for a certain application.	 Some of the more meaningful

characteristics are summarized in Table 8. 	 The only conclusion, that can	 a

be drawn concerning these characteristics is that any tse_ processor that

could be built using current fiber optics technology would probably not

be a practical	 replacement for the binary processor.	 Currently, alter-

natives to the power-consuming light sources and bulky optical 	 fibers-
e

are being considered for the fabrication of tse logic components.

The need for improved data-handling capabilities in digital'
g

;
computers will	 inevitably lead to research into increased parallelism.

The results of this section indicate that tse computers will 	 not replace

o -conventional	 processors presently, although they have a definite

f
Y

j 	 -

ffi

72

TABLE 8

PHYSICAL CHARACTERISTICS OF TS'E IMPLEMENTATIONS
OF THE COUNTING ALGORITHM

Speed-Power y
w; $ Power	 Product Gate

Implementation Consumption	 @ 5ms/gate Count

tse-Combinational - 1080 W	 4082.4 G!-sec 360

tse-Pipeline 1404 W	 533.5 W-sec 468

"	 tse-Computer 276 W	 94,888 W-sec 92

r

Ai

73

potential for future use.	 From the standpoint of the tse computer in

orbit as an earth resources image processor, many of its characteristics

are very promising.	 However, the size and power consumption of the

processor must be brought to within limitations for practical 	 spacecraft.	 r'	 -

The development of the tse computer will, of course, depend primarily

upon the amount of research effort devoted to the concept in the near

future.	 Until	 then,	 the expansion of today's digital 	 computer will

more than likely take the form of increased parallelism of conventional

logic components.	 At some time in the future, however, the physical

characteristics of tse devices will	 be refined to the point where they

are more attractive than are the increasing number of inter-connections

a
required for conventional gates, thus marking the advent of the

generation of tse computers 	 in digital	 processing.
1

l

i

i

e

r

a

-a

LIST OF REFERENCES

1

z

LIST OF REFERENCES

1. Millman, J., and H. Taub, Pulse, 'Digital and Switching Waveforms.
New York: McGraw-Hill, 1965.

2. Unger, S. H., "A Computer Oriented Toward Spatial Problems,"
PROC. IRE, vol. 46, October 1958, pp. 1744-1750

3. Slotnick, D. L., W. C. Qorch, and R. C. McReynolds, "The Solomon	 ?
Computer," AFIPS PROC. FJCC, vol. 22, 1962, pp. 97-107.

4. Barnes, G. H., et al., "The ILLIAC IV Computer," IEEE TRAM. on
Computers, vol. C17, August 1968, pp. 746-757,

5. Schaefer, D. H. and J. P. Strong, III, "tse Computers," X-943-75-14,
NASA, GSFC, January 1975.

6. Schaefer, D. H., and J. P. Strong, III, "Two-Dimensional Radiant
Energy Array Computers and Computing Devices," Patent Application
Serial No. 468614, May 8, 1974.	 -

i

{

i

75

VITA

Alan Gerald Metcalfe was born in , on

, He graduated from Clarksville High School in 1969, at

which time he enter^, J the pre - Engineering curriculum at Austin Peay.,	 i

State University. In 1974, he received the Bachelor of Science degree
I

in Electrical Engineering from The University of Tennessee. At this

time, he entered The University of Tennessee Graduate School and earned

the Master of Science degree in Electrical Engineering in December 1976.

In September 1975, he was employed as an Electrical Engineer with

the Tennessee Valley Authority.

q

I	
_

76

