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ABSTRACT

A simplified method has been developed to predict broad frequency range
vibration criteria which account for both primary and component load
impedance for structures excited by random acoustic excitations. The vibro-
acoustic environments were predicted by a one-dimensional equation which
utilizes four types of parameters at equipment mounting locations. These
parameters consist of input impedance of support structure, acoustic mobility
of structural system, input impedance of component package, and blocked
pressure spectrum. A set of nomograms and design charts was developed to
evaluate the force response graphically with minimum amount of manual
computation. The accuracy of the equation in predicting force responses has
been verified satisfactorily and the method has proved to be a practical and
useful preliminary design tool for aerospace vehicles. Two example problems
with different structural configurations were used to demonstrate computation
procedures. Satisfactory agreements between analytical predictions and

experimental measurements were observed.

INTRODUCTION

The prediction of localized vibratory criteria for space
vehicle components due to acoustic excitation has been
accomplished based on the empirical techniques as
described in Reference 1. These techniques provide
standardized approaches to predict vibro-acoustic
environments with sufficient conservatism to satisfy
design and test requirements for unloaded primary
structures. The testing of components to such criteria
is valid only when the impedance of a primary structure
is sufficiently higher than that of the attached com-
ponent. Otherwise, there is a strong possibility that
the specimen would be overtested.

A complementary technique by which the vibratory
criteria are to be specified in terms of actual forces
acting on components has been considered [2]. Test
specifications are given in terms of the power spectral
density of a force environment which accounf for the
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effects of component-primary structure coupling and the
approach is designated as the "Force-Spectrum " method.
This approach requires sophisticated measurement
techniques to define the dynamic parameters required
for the prediction equation. The objective of this paper
is to present a simplified computation procedure to
allow performance of quick estimates on force spectra.
It is recognized that several analytical methods, such

as the direct integration method and other numerical
methods, can be used for the prediction of loads on
finite cylindrical structures. Nevertheless, the resulf-
ing equations are either too sophisticated or too general
and are not practical for performing quick estimates
with adequate accuracies. Considering the fact that an
average engineer does not have ample time to thorough-
ly analyze each individual problem; therefore,
simplified methods are needed to solve complex problems
with a minimum amount of calculations and yet provide
adequate accuracy. This is accomplished by the use of
charts and nomograms to reduce complex computations.




FORCE-SPECTRA EQUATIONS

The force-spectra equation is derived based on a one—
dimensional structural impedance model [2]. By
applying Thevenins' and Norton's theorems to this
model, the eauation which relates the force-spectra to
external excitation forces, component impedance and
dynamic properties of support structures, such as struc-
tural impedunces and acoustic mobilities, is established.
The final equation is obtained as follows:
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where ¢L(w) Predicted driving force spectrum
Zs(w) = Input impedance of primary structures
ZL((.)) = Input impedance of component
alw) = Acoustic mobility of primary structure
¢P(u) = Blocked sound pressure spectrum

Estimate Dynamic

Due to structural complexities of space vehicles, precise
analytical approaches to obtain the parameters defined
above are not practical. Therefore, in order to

validate Equation (1), approximate equations along

with measured data were used to predict the force
spectra quantitatively.

An alternate approach to compute the driving force
spectrum could be achieved by replacing the produce of

’a(U)lz . ¢P(u) by ¢R(u) , which is defined as the

velocity response spectrum at the component mounting
points of the unloaded primary structure. Thus,
Equation (1) can be written as follows:

ZLZS ’
‘PL(u) - 2?75_ '¢R(w) (2)

and this spectrum may be acquired from the available
experiments on the selected test specimens. A flow
chart indicating the computation sequence to determine
the force spectra is explained in Figure 1.
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TABLE 1. SUMMARY OF INPUT-IMPEDANCE EQUATIONS OF BEAMS, RINGS AND SHELLS

Structure SHEfa
. iffene
Beam Ring Shell Shell
Frequency
Low Frequency Y, 1.25 5T KS e KB
Range K = 48 E1 = El K_=2.5Eh (L) (__"\_) (or + 3 K.)
(F<f,) L R 0.158° s 1 R R
e |z| = k/w
Fundamental 1 ( E )2 | 0427 [EL 0.375 [ Eh
Frequency, fL 2 ? pA R2 pA i pR
= =12 27 = 4L ‘[L Z =7
Intermediate ZB 2l ps ZR 2 W< gk ZS| ﬁ pH pR 5 z ZB
Frequency Range
(fL<FSR) e ] R E\4 1
sf ELIES o | Sl =] T (_) + Yz
5 [PA } ¢ [pA] % p P R
Ring 1 BES
Frequency, fR 2nR p
Z= ZS
High Frequency
Range Same as Same as 7 = 4 i JE_ z=2
Intermediate Intermediate S F P B
(f>f ) il
R z ZR

Input impedances in the force-spectra equation are
specified in terms of the "force/velocity" format.
The cylindrical type structures considered herein are
stiffened by stringers in the axial direction, and ring
frames are attached inside the shell wall.

The direc-

tion of vibratory response under consideration is referred
to ds that normal to the skin which is excited by imping-
ing acoustic pressures. The approximate equations for
predicting the input impedance of the above structural
components are given in Table 1 in three different
frequency ranges as defined below [3]:

Low frequency range or frequencies below
the fundamental frequency of the shell,

Intermediate frequency range, and

High frequency range or frequencies

above the ring frequency of the shell.

Therefore, the evaluation of the stiffened shell imped-
ances is obtained for these three frequency ranges as

follows:

Low Frequency Impedances — The static stiff-

ness is the predominant factor which influences the

input impedance. Due to the lack of theoretical

expressions for input impedances of stiffened cylindrical
shells, it is assumed that at low frequencies the input
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impedance at any location follows the stiffness line,
this stiffness being equal to the summation of the stiff-
ness of the individual structural elements that are
present in that location. Two cases are considered in
this frequency range, namely:

e If the stiffness of the ring is small in

comparison to the stiffness of the stringer
or the unstiffened shell, the overall stiff-
ness can be computed by adding the stiff-
ness of the properly modeled structural
elements that are present at the input
location, as follows:

(Gl B B S B 3)

where Ks = static stiffness of shells
KB = static stiffness of stringers
or beams
KR = static stiffness of rings

Thus the input impedance of a stiffened
cylindrical shell at low frequency follows

a stiffness line whose value can be computed
from the sum of stiffnesses of structural
elements at that point.




e For astiffened cylindrical shell, if rings are
sufficiently stiff in comparison with the
entire shell, these rings act like the
boundary of structure panels. Then the
characteristic impedance of the shell can be
determined from the length of the spacing
between two adjacent rings.

=K+ ZKB (4)

The characteristic impedance represents the
impedance of a structure of such a length
that reflections from the boundaries are
negligible. In other words, the resonance
modes of a structure with any non-dissipative
boundary conditions are identical to the
resonance modes of a supported structure
whose length is equal to the distance
between the node lines.

Intermediate Frequency Impedances — Within
the intermediate frequency range, which extends from
the fundamental frequency to the ring frequency, the
input impedances of the test specimens can be evaluated
as the combination of the characteristic impedances of
the primary structural components. The equation is
written as:

= - +
£ S T Lo Al (5)
where ZS = characteristic impedance of shells
ZB = characteristic impedance of stringers
ZR = characteristic impedance of rings

High Frequency Impedances — The input
impedance of a stiffened shell at high frequencies
depends on the location of a measurement point and is
evaluated by the following rules:

e Unstiffened (skin) Point — The input
impedance approaches that of an infinite
plate of the same thickness.

e Stiffened Point — The skin and the
stiffener(s) decouple dynamically at high
frequencies, therefore, the input imped-
ance approaches that of the stiffener(s).

e Stiffened Intersection Point — The input
impedance at the centers of short stiffeners
segments are generally higher than those of
longer stiffener segments; and the imped-
ance at an intersection of the stiffeners is
approximately equal to the sum of the

individual impedances of the two stiffeners
— the ring impedance and stringer
impedance.

Acoustic mobility, afw), is defined as the ratio of the
mean-square spectral density of the velocity of the
mean-square spectral density of the fluctuating pressure
driving the structure. This quantity is expressed by
Equation (6) as follows:

ofw) = (6)

where S. (@) has units of (in./sec)? /Hz, and Sp(w) is

the blocked pressure spectral density having units of
(psi)?/Hz. The blocked pressure includes the effects
of reflection and thus accounts for the pressure doubling
effect when an object is immersed in a random pressure
field.

Generally, the acoustic mobility for a given structure
would be calculated based upon modal analysis or
statistical energy analysis. However, for the purposes
of presenting simplified design curves for acoustic
mobility derived from acceleration data of a wide range
of vibro-acoustic measurements are shown in Figure 2
for two values of damping: Q =20 and Q =200 [E31]*

Based on the empirical curves of Figure 2, the a-term
is dependent on the structural damping, Q, the
diameter of the cylinder, D, and the unit surface
weight, m, where f is the frequency in Hz. For
structural damping values other than those shown in
Figure 2, the acoustic mobility term may be interpo-
lated since an increase in Q by a factor of 10 results in
an increase in the acoustic mobility term of one decade.

The blocked pressure spectrum, xpp(m), is defined as the

effective acoustic pressure acting on a primary structure.
The pressure is equivalent to that acting on a rigid
cylinder which has the identical geometrical dimensions
as the primary structure. This pressure can be deter-
mined from the far-field sound pressure measurement

and is given by [4]

©
block l _ ) . -
= 4(kR)Z Y € |H KR @)
[ far m=0
where [ PF :l = measured sound pressure levels
=l without the presence of

flexible structures

k = wave number = 27f/c




c = speed of sound in acoustic medium;
for air ¢ =13,400 in./sec

R = radius of cylinder
€ = Neumann factor =1 for m =0,
m
2form O
Hrln(kR) = derivative of Hankel function

of order, m

The foregoing equation is derived for an infinite panel
and does not account for diffraction effects of structures
with finite length. However, the error due to diffrac-
tion effects is considered as insignificant and will not
influence the final results. In the frequency range of
interest, the RMS blocked sound pressure is approxi-
mately 40 percent higher than the measured sound
pressure and such a conversion factor generally leads

to conservative estfimates of the force spectra.

COMPUTATION CHARTS AND GUIDELINES

In order to minimize manual efforts in performing force-
spectrum computations, it is necessary to reduce the
derived equations into the forms of nomograms or charts
so that Jengthly computations can be avoided.

@ = Acoustic mobility (in./sec/psi)
m = Surface weight density (Ib/in2)

All equations listed in Table 1 contain a frequency
dependent and a frequency independent term. There-
fore, by evaluating the frequency independent terms,
and later, combining with the frequency dependent
term, the impedance curve can be easily constructed.
The approaches, which are based on the separation of
the frequency dependency to simplify the impedance
prediction, are presented below.

Nomographic Charts — A nomograph, in its
simplest and most common form, is a chart on which
one can draw a straight line that will intersect three
or more scales in values that satisfy an equation or a
given set of conditions. The equations summarized in
Table 1 were converted into nomographic forms, and
are shown in Figures 3 through 8. Figure 3 evaluates
the static stiffness of the ring frame. By knowing the
values of radius, R, and the flexibility, EI, of the
ring, and connecting these two values on the R scale
and the EI scale with a straight line, the intersection
point in the K scale represents the computational result
of the given equation,

Figures 4 and 5 perform similar computations for static
stiffness of beams and the frequency independent part
of rings, respectively.
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Figures 6, 7 and 8 are four-variable type nomograms
for evaluating the frequency independent part of the
remaining equations shown in Table 1. For example,
in Figure 6, by using one additional axis, T, which
lies between the / and R axes and need not be
graduated, the four-variable equation was broken into
two three-variable equations and are handled as the
proceeding way, i.e., connecting the £ scale and the
R scale with a straight line, then joining the intersec-
tion point on the T axis and the h scales with another
straight line, the intersection point on the K scale is
the resulting value.

Charts for Computing Structural Impedance —
The impedance of an ideal damping, spring and mass
system may be represented by three intersection lines.
By using this approach, the driving-point impedance
for beams and rings based on the equations of Table 1
can be represented by two sets of intersection lines
varying with the frequency as shown in Figure 9. In
this figure, the line representing the proper stiffness
value is obtained either from the result of Figures 3 or
4 for rings and beams, respectively, and the line defin-
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ing the proper Zr value of the structure is determined

from Figure 5. The stiffness lines represent the imped-
ance at low frequencies and the Zr lines represent the

impedance at high frequencies. The intersection of
these two lines determines the fundamental resonant
frequency of the structural system. In this figure and
the following figures, a scale factor is used to obtain
correct scale values for the standard diagrams.

The driving-point impedance for unstiffened cylindrical
shells is shown in Figure 10, where the Zr lines are

replaced by the Zf lines. The lines represented the
proper stiffness, Zf, and infinite-plate impedance are

obtained from Figures 6, 7 and 8, respectively. At low
frequencies, the impedance of cylinders follows a
stiffness line and at high frequencies the impedance is
equal to the impedance of an infinite plate which has a
constant value. Within the intermediate frequency
range, the input impedance may be represented by the
Zf line.
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The fundamental frequency and the ring frequency of
cylinders are determined by the intersection of these
three characteristic lines.

Figure 11 represents the impedance curves for the com-
ponent package which are defined as an ideal damping,
spring and mass system. The graph shown on the upper
portion of these two charts will be used to compute

the logarithmic sums of two impedance curves. The
application of the logarithmic summation chart is
explained in example problems.

Charts for Computing Blocked Pressure

Spectrum — The conversion of a far-field sound

pressure spectrum into a corresponding blocked pressure
spectrum is achieved by multiplying the far-field spec-
trum by the correction coefficient, 3, as described in
Equation (7). To facilitate graphical computation,
Equation (7) is converted to Figure 12, in which the
abscissas scale is expressed in terms of fD; where f is
the frequency in Hz, and D _is the cylinder diameter
in inches. To obtain the 43_ - coefficient for a

particular cylinder in the frequency scale, it is accom-
plished by shifting the fD scale in Figure 12 to the
left for the amount corresponding to the cylinder
diameter, D. For example, if the diameter of a
cylinder is 36 inches, the F - coefficient for that

cylinder is obtained by shifting the fD scale by a factor
of 36 to the left, as shown by the " B =-curve in

Figure 13. The blocked pressure spectrum of the far—
field pressure spectrum is then obtained by adding the

\’ B values at each frequency point to the far-field

pressure spectrum.,

Charts for Computing Response Spectrum — The
velocity response spectrum is obtained by the product
of the blocked pressure spectrum and the velocity
acoustic mobility. The normalized acoustic mobility
curves as shown in Figure 2 must be converted to

l a ’2 versus frequency format for use in response

computation, The conversion can be accomplished
graphically by shifting the abscissas scale to the left
corresponding to the diameter of a cylinder, D; and
shifting the ordinate scale downward corresponding to
the quantity (m/D)?. For example, by applying the
above procedures to an aluminum cylinder with

D =36 inches, Q =20, and (m/D)% - 10" ¢ Ib/in?,
the velocity mobility for the cylinder curve is obtained
as shown in Figure 14. The velocity response spectrum
is obtained by summing up logarithmically the velocity
acoustic mobility curve and the blocked pressure spec-
trum curve. The response spectrum is indicated by the
dashed-line.

Chart for Computing Force Spectrum — The
response spectra and the structural impedance obtained
from Figures 14 and 11, respectively, are again plotted
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on Figure 15 for final computation. The curve repre-
senting the sum of these two curves is the resulting force
spectrum for the design structural system. Note that all
charts developed are in same length scale and the trans-
fer of data curves from one chart to next chart can be
easily done by overlay technique.

EXAMPLE PROBLEMS

To aid in understanding the computation procedure, two
examples are illustrated. The first example is used to
demonstrate the procedures used to predict structural
impedances of a stiffened cylinder. The predicted
results were then compared with the measured data [5]
to evaluate the accuracy of impedance prediction
equations. The second example is used to illustrate the
procedures in computing a force spectrum based on the
structural configurations and the loading criteria used
in Reference 2. The measured force response data was
used to evaluate the accuracy and conservatism of the
predicted force spectrum.

Example of Prediction of Structural Impedance

The specimen used in the prediction consists of a basic
cylindrical shell, four longitudinal stringers and two
ring frames. The basic cylindrical shell has overall
dimensions of 96.0 in. (length) x 48.0 in. (diameter)
x 0.08 in. (wall thickness). All structural elements
were made of aluminum. The ring frames are built-up
channel sections which are attached to the inside sur-
face of the shell wall by means of rivets; and, the
stringers are angle sections which are similarly
attached to the outside surface of the shell wall. Two
heavy end rings consisting of angle sections were weld-
ed to the inside surface at the two ends of the shell
wall; and, thick circular plywood bulkheads were
bolted to the end rings, and are used to provide radial
constraint at the ends of the shell wall. Overall
dimensions of the specimen are listed in Table 2.

The computations of static stiffness, Zr and Zf for

the primary structure components have been demon-
strated previously as shown in Figures 3 through 8. The
impedance computations for the configuration with two
ring frames and four stringers are illustrated in Figures
9 and 10. In these two figures, the plotting scale is
10 times the true value as denoted by Factor = 0.1.

In the computation, it was assumed that these two

rings act like end bulkheads with high structural rigidity
so that the effective length of cylinder becomes the
length of the middle segment which is equal to

32 inches. In Figure 9, the impedance for one stringer
and four stringers are plotted based on the values
obtained from Figures 4 and 5. Similarly, the imped-
ance curve representing the unstiffened cylindrical
shell is plotted in Figure 10, in which the impedance
representing the sum of four stringers is also shown,
except that at high frequencies where the structural
system decouples dynamically, and the impedance
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TABLE 2. SUMMARY OF DIMENSIONS, STIFFNESS AND MASS PROPERTIES
OF CYLINDER AND ITS COMPONENTS

Property

Dimension

Structural Items

Ring Stringer Shell
Mean Radius, R (in.) 23.0 -—- 24,0
Overall Length, / (in.) 144.5 96.0 96.0
Shell Skin Thickness, h (in.) -— -— 0.08
Cross-section Area, A (in2) 0.215 0.123 -—-
Moment of Inertia, I (in) 0.135 0.012 ---
Weight per Unit Volume, pg (Ib/ind) 0.1 0.1 0.1
Modulus of Elasticity, E (Ib/in2) 107 107 107
Weight per Stiffener * (Ib) 3.10 1.18 116.0

*

Two rings spaced at 32" in the longitudinal direction and four longitudinal

stringers spaced at 37.7" in the circumferential direction.
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approaches that of one stiffener only. The impedance
of the stiffened shell as shown in Figure 10, is equal to
the linear summation of these two component impedance
curves and it is obtained in the following way:

e At any frequency point, measure the
difference of two impedance values and
use this length as the abscissas value in the
logarithmic summation chart (LSC).

e The ordinate corresponding to the abscissas
in the LSC is the resulting value for these
two curves in logarithmic summation.

e Add the length of the ordinate to the upper
impedance curve, the resulting curve
denotes the linear combination of these two
impedances.

Figure 16 shows the experimental impedance data
obtained from Reference 5 along with the predicted
impedance for comparison. Generally speaking, the
comparison is considered quite satisfactory both in low
frequency and high frequency ranges. Fair agreement
is also observed for frequencies just below the ring
frequency. Some discrepancies are observed in the
intermediate frequency region. Such discrepancies
are attributed to the errors incurred in summing the
impedances of the stringers. However, it may be con-
cluded that the equation and guidelines presented are
adequate for determining the structural impedances for
design purposes.

Example for Prediction of Force Spectra

The structure used in the second example was a stiffen-
ed aluminum cylinder whose dimensions were 36.0 in.
(diameter) x 36.0 in. (length) x 0.02 in. (thick).
The cylinder consisted of five aluminum rings spaced at
6 inches in the longitudinal direction, and 24 longitu-
dinal stringers spaced at 4.7 inches in the circumferen-
tial direction. All stiffeners were mounted to the
cylinder wall by rivets. The dimensions of the curved
panels formed by the stiffeners were 6 inches and

4.75 inches. Two steel rings of angle sections were
rivetted at both ends and two circular sandwich plates
were bolted to the end rings.

The simulated component package consisted ofa1/2 in.
aluminum plate with lateral dimensions of 8.0 in. x
8.0 in. The plate was supported by four sets of leaf
springs at its corners. The bottom of each spring was
fitted with a load washer assembly. The total weight
of the component package was 3.81 pounds; the
resonant frequency of the package was measured at

110 Hz.

In order to estimate the force spectra, the analytic
procedures used to predict the impedance of the
stiffened cylinder are essentially the same as that
described in the preceding example. Hence, no
analytical prediction was made and the impedance

was obtained from the experimental testing. The
impedance of the component package is estimated and
is shown in Figure 11. The measured impedance for the
stiffened cylinder is also presented in the same figure,
which is approximated by two inclined straight lines as
shown. In this figure, the plotting scale is 100 times
the true value as denoted by Factor = 0.01. These two
impedance curves are then combined according to the
logarithmic summation technique as described for the
impedance of the stiffened shell except that the resul-
tant curve is obtained by subtracting the length of the
ordinate coordinate from the lower impedance curve,
i.e., by summing the two individual mobility curves.
The summed curve given is the impedance term in the
computation of the force-spectra equation.

The measured sound pressure and the blocked pressure
spectra for this example have been obtained according
to the procedure as described previously and the results
are shown in Figure 3. The response spectrum is then
obtained by summing the acoustic mobility curve and
the blocked pressure curve as shown in Figure 14. The
resulting curve as shown in Figure 15 is the computed
force spectrum. In Figures 14 and 15, the plotting scal
scale is 10,000 times the correct value as denoted by
Factor = 0.0001. The measured force response spec-
trum obtained from Reference 2 is shown in Figure 17
along with the computed force spectrum. The predicted
force spectrum was slightly high, but was judged to be
acceptable, since the computed results provide the
more conservative estimate for design evaluation.

CONCLUSIONS

A simplified procedure has been developed to predict
the interaction force between a component and its
support structure (space vehicle) which is subjected to
broadband random acoustic excitations. This method
was derived from a one-dimensional impedance model
and the computation was performed by ways of nomo-
grams and design charts. The conclusions resulting
from this study are:

e The force-spectrum equation provides
satisfactory results on the predicted force
environments of components mounted on
space vehicles. This equation is valid for
the prediction of forces in the radial direc-
tion of the support structure. However, the
same concept can be expanded to include
the coupling effects induced from the longi-
tudinal and tangential directions so that the
complete description of forces in all three
directions is feasible.

e The simplified computafion method as pre-
sented has been shown to be accurate and
conservative within current acceptable
tolerance limits. The computation process
requires minimum manual effort and no
computer assistance is required.
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