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ABSTRACT 

A simplified methad has been developed ta predict broad frequency range 
vibration criteria which account for both primary and component load 
impedance for structures excited by random acoustic excitations. The vibro­
acoustic environments were predicted by a one-dimensional equation which 
utilizes four types of parameters at equipment mounting locations. These 
parameters consist of input impedance of support structure, acoustic mobility 
of structural system, input impedance of component package, and blocked 
pressure spectrum. A set of nomograms and design charts was developed to 
evaluate the force response graphically with minimum amount af manual 
camputatian. The accuracy of the equation in predicting force responses has 
been verified satisfactorily and the method has proved to be a practical and 
useful preliminary design tool for aerospace veh icles. Two example problems 
with different structural configurations were used to demonstrate computation 
procedures. Satisfactory agreements between analytical predictions and 
ex peri menta I measurements were observed. 

INTRODUCTION 

The prediction of localized vibratory criteria for space 
vehic Ie components due to acoustic excitation has been 
accomplished based on the empirical techniques as 
described in Reference 1. These techniques provide 
standardized approaches to predict vibro-acoustic 
en vironments with sufficient conservatism to satisfy 

design and test requirements for unloaded primary 
structures. The testing of components to such criteria 
is va I id on Iy when the impedance of a primary structure 
is sufficientl y higher than that of the attached com­
ponent. Otherwise, there is a strong possibility that 
the specimen would be overtested. 

A complementary technique by which the vibratory 
criteria are to be specified in terms of actual forces 
acting on components has been considered [2]. Test 
specifications are given in terms of the power spectral 
density of a force environment which accounf for the 
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effects of component-primary structure coupling and the 
approach is designated as the "Force-Spectrum" method. 
This approach requires sophisticated measurement 
techniques to define the dynamic parameters required 
for the prediction equation. The objective of this paper 
is to present a simplified computation procedure to 
a 1I0w performance of quick estimates on force spectra. 
It is recognized that several analytical methods, such 
as the direct integration method and other numerical 
methods, can be used for the prediction of loads on 
finite cylindrica I structures. Neverthe less, the resu It­
ing equations are either too sophisticated or too genera I 
and are not practical for performing quick estimates 
with adequate accuracies. Considering the fact that an 
average engineer does not have ample time to thorough­
ly analyze each individual problem; therefore, 
simplified methods are needed to solve complex problems 
with a minimum amount of calculations and yet provide 
adequate accuracy. This is accompl ished by the use of 
charts and nomograms to reduce complex computations. 



FORCE-SPECTRA EQUATIONS 

The force-spectro equotion is deri ved bosed on 0 one­
dimens ionol structurol impedonce model [2] . By 
opplying Thevenins' ond Norton 's theorems to this 
model, the eouation which relates the force-spectra to 
external excitation forces, component impedance and 
dynamic properties of support structures, such as struc­
t ural impedances ond ocoustic mobilities, is estobl ished . 
The final equotion is ob tained as follows: 

(1) 

where <l> L (w) Predicted driving force spectrum 

I 
I 
I 
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Due to structural complexities of space vehicles, precise 
analyticol approaches to obtain the parameters defined 
above are not practical. Therefore, in order to 
validate Equation (1 ), approximate equations along 
with measured data were used to predict the farce 
spectra quantitati vely. 

An alternate approach to compute the driving force 
spectrum could be achieved by replocing the produce of 

I 0/(w) / 2 • <l> p(w) by <l> R(W) , which is defined as the 

velocity response spectrum at the component mount ing 
points of the unloaded primary structure . Thus, 
Equation (1 ) can be written as follows: 

(2) 

and this spectrum may be acquired from the avoi loble 
experiments on the selected test specimens . A flow 
chart indicoting the computation sequence to determine 
the force spectra is explained in Figure 1 . 
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Figure 1. Flow Chart for Predicting the Force Spectra of Structures 
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TAB LE 1. SUMMARY OF IN PUT- IMPED AN CE EQUATIO NS OF BEAMS , RINGS AN D SH EL LS 

~ Beam Ring Shell 
Stiffened 

Shell 
Frequenc y 

Low Frequency 1.25 
K = KS + L: Ka 

R 1/2 
Range K = 48 EI K = _ _ EI_ 

K
S

=2 .5Eh (T) ({- ) (or + L: K
R

) 
a l3 R 0. 15 R3 (f S\ ) Izi = K/ w 

Fundamenta 1 1 0.375 
Freque ncy , f L 27T (ff{F; 0 .427 ~ El 

R2 pA - l - ~ Eh 
p R 

Intermediate 
Z = 

a 
2 (1 + i ) pA Z R= i2 {2 pA Zsl = ~ ph2 ~ Z = Zs + L:za 

Frequency Range 
1 1/ 

[El ] \ (\<fSfR) 
[pElf ~ • ( ~ ) 4 

1 
+ L: ZR . • pA F ~ 

Ring 

Frequency , f R 

High Frequency 
Ronge Some as Some as 

( f> fR) 
fntermediate lntermediote 

Input impedances in the farce-spectra equati an are 
specified in terms of the "force/ velocity" format . 
The cylindrical type structures considered herein a re 
stiffened by stringers in the axial d irect ion, ond ring 
frames are a t tached inside the shell wa ll . The d irec ­
tion of vibratory response under conside ra t ion is referred 
to ds that normal to the skin which is excited by imping ­
ing acoustic pressures. The approximate equations fo r 
predic t ing the input im pedance of the above struc tura l 
components a re g iven in Table 1 in three d ifferen t 
frequency ranges as defined be low [ 3 ] : 

• Low frequency range or freq uencies below 
the fundamental frequency of the she ll, 

• Inte rmediate frequenc y range ,. and 

• High frequency range o r frequenc ies 
above the ring frequency of the she l l. 

Therefore , the evaluation of the stiffened shell im ped ­
ances is ob tained for these three frequency ranges as 
fo ll ows : 

Low Frequency Impedances - The stat ic st iff­
ness is the predominant fac tor which influences the 
input impedance . Due to the lack of theore t ica l 
expressions for input impedances of stiffened cyl indrica l 
shells , it is assumed tha t a t low frequencies t he input 
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Z = Zs 

Z = 
4 h2 ~ Z = Z 

S {3 
a 

Z = ZR 

impedance a t an y location follows the stiffness line, 
th is st iffness being equal to the summation of the stiff­
ness of the individual str uctural elements tha t a re 
presen t in that location . Two cases a re cons ide red in 
this frequency range , namely: 

• If the stiffness of the ring is sma ll in 
comparison to the stiffness of the stringer 
or the unst iffened shell , the overall st iff­
ness can be com puted by adding the stiff­
ness of the pro pe rl y mode led structura l 
e lements that o re presen t at the input 
location, as follows: 

K 

where K static stiffness of shells 

static stiffness of stringers 
or beams 

KR = sta t ic stiffness of rings 

Thus the input impedance of a st i ffened 
cy lindrical shell a t low frequency follows 

(3) 

a stiffness line whose volue can be computed 
from the sum of stiffnesses of structural 
e lements at that poin t. 



• For 0 stiffened cy li ndricol shell, if rings ore 
sufficientl y stiff in comparison w ith the 
entire shell, these rings act like the 
boundary of structure pone Is. Then the 
chorocteristic impedance of the shell can be 
determined from the length of the spacing 
between two adjacent rings. 

K (4) 

The characteristic impedance represents the 
impedance of a structure of such a length 
that reflections from the boundaries are 
negligible. In other words, the resonance 
modes of a structure with an y non-dissipati ve 
boundary conditions are identical to the 
resonance modes of a supported structure 
whose length is equal to the distance 
between the node lines. 

Intermediate Frequency Impedances - Within 
the intermediate frequenc y range, which extends from 
the fundamental frequenc y to the ring frequency, the 
input impedances of the test specimens can be evaluated 
as the combination of the characteristic impedances of 
the primary structural components. The equation is 
written as: 

where Zs characteristic impedance of she lls 

ZB characteristic impedance of stringers 

Z R characteristic impedance of rings 

High Frequency Impedances - The input 
impedance of a stiffened shell at high frequencies 
depends on the location of a measurement point and is 
evaluated by the following rules: 

• Unstiffened (skin ) Point - The input 
impedance approaches that of an infinite 
plate of the same thickness. 

• Stiffened Point - The skin and the 
stiffener(s ) decouple dynamicall y at h igh 
frequenc ies, therefore, the input imped ­
ance approaches that of the stiffener(s) . 

• Stiffened Intersection Point - The input 
impeda nce at the centers of short stiffeners 
segments are generall y higher than those of 
longer sti ffener segments; and the imped­
ance at an intersection of the stiffeners is 
approx imatel y equal to the sum of the 
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indi vidual impedances of the two stiffeners 
- the ring impedance and stringer 
impedance. 

Acoustic mobility, a(w) , is defined as the rotio of the 
mean-square spectral densit y of the velocity of the 
mean-square spectral densit y of the fluctuating pressure 
dri v ing the structure. This quantity is expressed by 
Equation (6 ) as follows: 

a (w) 
\, (w) 

~ p 
(6) 

w here S. (w) has units of (in ./ sec t / Hz, and S (w) is 
u p 

the blocked pressure spectral density having units o f 
(psi )2/ Hz. The blocked pressure includes the effects 
of reflection and thus accounts for the pressure doubl ing 
effect when an object is immersed in a random pressure 
field . 

Generall y , the acoustic mobility for a given structure 
would be calculated based upon modal analysis or 
statistical energy analysis . However, for the purposes 
of presenti ng simpl ified design curves for acoustic 
mob i lity derived from acceleration data of a wide range 
of v ibro-acoustic measurements are shown in Figure 2 
for two val ues of damping: Q = 20 and Q = 200 [3]. 

Based on the empirical curves of Figure 2, the a -term 
is dependent on the structural damping, Q, the 
diameter of the cy linder, D, and the unit surface 
weight, m, where f is the frequenc y in Hz. For 
structural damp ing values other than those shown in 
Figure 2, the acoustic mobility term ma y be interpo~ 
lated since an increase in Q by a factor of 10 results in 
on increase in the acoustic mobility term of one decade. 

The blocked pressure spectrum, ¢ p(w), is defined as the 

effecti ve acoustic pressure acting on a primary structure. 
The pressure is equi valent to that acting on a rigid 
c y linder which has the identical geometrical dimensions 
as the primary structure. Th is pressure can be deter­
mined from the for-field sound pressure measurement 
and is given by [4]: 

whe re [p ] far 

k 

= 4(1TkR,-2 ~ € m 1 H~ (kR ) 1-
2 

m- O 

measured sound pressure levels 
wi thout the presence of 
fle xible structures 

wave number = 21Tf/ c 

(7) 



c 

R 

H' (kR) 
m 

speed of sound in acoustic medium; 
for air c = 13,400 in . /sec 

radius of cylinder 

Neumann factor = 1 for m = 0, 
2 for m 0 

derivative of Hankel function 
of o rder, m 

The foregoing equatian is derived for an infi nite panel 
and does not account for diffraction effects of structures 
with finite leng th . However, the errar due to diffroc­
tion effects is considered as insignificant and wil l not 
influence the final results . In the frequency ronge of 
interest, the RMS b locked sound pressu re is opproxi ­
mately 40 percent highe r than the measured sound 
pressure ond such a conversion factor genera lI y leads 
to conservative estimates of the force spectra . 

COMPUTATION CHARTS AND GUIDELINES 

In order to minimize manual efforts in pe rforming force­
spectrum computations, it is necessary to reduce the 
derived equations in to the forms of nomograms or charts 
so that lengthl y computations can be avoided . 
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All eq uations listed in Table 1 contain a frequenc y 
dependen t and a frequenc y independent term . There­
fo re , by eva luating the frequency independent terms , 
and la ter , combining with the frequenc y dependent 
term, the impedance curve can be easi Iy constructed. 
The approaches, which are based on the separation of 
the frequency dependency to simplify the impedance 
prediction , are presented below . 

Nomographic Charts - A nomograph, in its 
simplest and most common form , is a chart on whi ch 
one can draw a straight line that wi ll intersect three 
or more scales in values that satisfy an equation or a 
given set of conditions. The equations summarized in 
Table 1 we re con verted into nomographic forms, and 
a re shown in Figures 3 through 8 . Figure 3 evaluates 
the stat ic sti ffness of the ring frame . By knowing the 
values of radius , R, and the flexibi lity, EI, of the 
ring , and connecting these two values on the R scale 
and the El scale with a straight line, the intersection 
point in the K scale represents the computational result 
of the given equation . 

Figures 4 and 5 perform simi lar computations for static 
stiffness of beams and the frequency independent part 
of rings , respectivel y . 

Q =200 I 

.i "- I 
i 

Q · 20 "- I"-

~~ 
'()()()() 100000 '000000 100 

fACTOR = I .0 fD , Frequency)( Diameter (Hz- In . ) 

Figure 2 . Veloci ty Acoustic Mob il ity Levels for Cylindrical Structures 
(Based on B locked Pressures ) 
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Figures 6, 7 ond 8 ore four - varioble type nomogroms 
for evoluating the frequency independent part of the 
remaining equations shown in Table 1 . For example, 
in Figure 6 , by using one addit ional axis, T, which 
lies between the i and R axes and need not be 
graduated, the four-variable equation was broken into 
two three-variable equations and are hand led as the 
proceeding way, i.e., connecting the £ scale and the 
R scale with a straight line, then joining the intersec ­
tion point on the T axis and the h scales with another 
straight line, the intersection point on the K scale is 
the resulting value . 

Charts for Computing Structural Impedance -
The impedance of an ideal damping, spring and mass 
system may be represented by th ree intersection lines . 
By using this approach , the driv ing-point impedance 
for beams and rings based on the equat ions of Table 1 
can be represented by two sets of intersec t ion lines 
varying with the frequency as shown in Figure 9 . In 
this figure, the line representing the proper stiffness 
value is obtained either from the result of Figures 3 o r 
4 for rings and beams, respectively, and the line defin -
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Figu re 8 . Nomogra ph for Eva lua t ing 
Impedance of Infinite Pla te 

ing the proper Zr value of the structure is determined 

from Figure 5. The stiffness lines represent the imped­
ance a t low frequencies and the Zr lines represent the 

impedance a t high frequencies . The intersection of 
these two lines determines the fundamenta l resonant 
freq uency of the structural system. In this figure and 
the fol lowing figures, a scale factor is used to obtain 
correct scale values fo r the standard diagrams . 

The d riving-point impedance for unstiffened cylindrical 
shells is shown in Figure 10, where the Zr lines are 

replaced by the Zf lines. The lines represented the 

proper stiffness, Zf' and infinite-plate impedance are 

obtained from Figures 6, 7 and 8, respectively . At low 
frequencies, the impedance of cylinders follows a 
stiffness li ne and ot high frequencies the impedance is 
equa l to the impedance of an infinite plate which has a 
constant value. Within the intermediate frequency 
range, the input impedance may be represented by the 

Zf line. 
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The fundamental frequency and the ring frequency of 
cylinders are determined by the intersection of these 
three characteristic lines. 

Figure 11 represents the impedance curves for the com­
ponent package which are defined as on ideal d'Jmping , 
spring ond mass system . The graph shown on the upper 
portion of these two charts wi II be used to compute 
the logarithmic sums of two impedance curves . The 
application of the logarithmic summation chart is 
explained in example problems . 

Charts for Computing Blocked Pressure 
Spectrum - The conversion of a far-field sound 
pressure spectrum into a corresponding blocked pressure 
spectrum is achieved by multiplying the for - field spec­
trum by the correction coefficient, (3 , as described in 
Equation (7). To facilitate graphical computation, 
Equation (7) is converted to Figure 12, in which the 
abscissas scale is expressed in terms of fD; where f is 
the frequency in Hz, and D is the cylinder diameter 
in inches. To obtain the,[3 -coefficient for a 

particular cylinder in the frequency scale, it is accom­
plished by shifting the fD scale in Figure 12 to the 
left for the amount corresponding to the cyl inder 
diameter, D. For example, if the diameter of a 
cylinder is 36 inches, the .J73 -coefficient for that 

cylinder is obtained by shifting the fD scale by a factor 
of 36 to the left, as shown by the {73 - curve in 

Figure 13. The blocked pressure spectrum of the far ­
field pressure spectrum is then obtained by adding the 

..[73 values at each frequency point to the far-field 

pressure spectrum. 

Charts for Computing Response Spectrum - The 
velocity response spectrum is obtained by the product 
of the blocked pressure spectrum and the velocity 
acoustic mobility. The norma lized acoustic mobility 
curves as shown in Figure 2 must be conver ted to 

I a /2 versus frequency format for use in response 

computation. The conversion can be accomplished 
graphically by shifting the abscissas scale to the left 
corresponding to the diameter of a cylinder, D; and 
shifting the ordinate scale downward corresponding to 
the quantity (m/ D) 2 . For example, by applying the 
above procedures to an aluminum cylinder with 
D = 36 inches , Q = 20, and (m/ D)2 - 10- 6 Ib/ in ~ , 
the velocity mobility for the cylinder curve is obtained 
as shown in Figure 14. The velocity response spectrum 
is obtained by summing up logarithmically the velocity 
acoustic mobility curve and the blocked pressure spec ­
trum curve. The response spectrum is indicated by the 
dashed-I i ne • 

Chart for Computing Force Spectrum - The 
response spectra and the structural impedance obtained 
from Figures 14 and 11, respectively, are again plotted 
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on Figure 15 for fi no I computation. The curve repre­
senting the sum of these two curves is the resulting force 
spectrum for the design structural system. Note that all 
charts developed are in same length scale and the trans­
fer of data curves from one chart to next chart can be 
easi Iy done by overlay technique. 

EX AMPLE PROBLEMS 

To aid in understanding the computation procedure, two 
examples are illustroted. The first example is used to 
demonstrate the procedures used to predict structural 
impedances of a stiffened cylinder. The predicted 
results were then compared with the measured data [5 ] 
to evaluate the accuracy of impedance prediction 
equations. The second example is used to illustrate the 
procedures in computing a force spectrum based on the 
structura l configurations and the loading criteria used 
in Reference 2. The measured force response data was 
used to evaluate the accuracy and conservatism of the 
predicted force spectrum. 

Example of Predi ction of Structural Impedance 

The specimen used in the prediction consists of a basic 
cylindrical shell, four longitudinal stringers and two 
ring frames . The basic c ylindrical shell has overall 
dimensions of 96.0 in. (length) x 48.0 in . (diameter) 
x 0.08 in . (wall thickness). All structural elements 
were mode of aluminum . The ring frames are built-up 
channe l sections which are attached to the inside sur­
face of the shell wall by means of rivets; and, the 
stringers are angle sections which are similarly 
attached to the outside surface of the shell wall. Two 
heavy end rings consisting of angle sections were weld­
ed to the inside surface at the two ends of the shell 
wall; and, thick circular plywood bulkheads were 
bolted to the end rings, and are used to provide radial 
constraint at the ends of the shell wall. Overall 
dimensions of the specimen are listed in Table 2. 

The computations of static stiffness, Zr and Zf For 

the primary structure components have been demon­
strated previously as shown in Figures 3 through 8. The 
impedance computations for the configuration with two 
ring frames and four stringers are illustrated in Figures 
9 and 10 . In these two figures, the plotting scale is 
10 times the true value as denoted by Factor = 0.1 . 
In the computation, it was assumed that these two 
rings act like end bulkheads with high structural rigidity 
so that the effective length of cyl inder becomes the 
length of the middle segment which is equal to 
32 inches . In Figure 9 , the impedance for one stringer 
and fou r st ringers are plotted based on the values 
ob tained from Figures 4 and 5. Similarly, the imped­
ance curve representing the unstiffened cyl indrical 
shell is plotted in Figure 10, in which the impedance 
representing the sum of four stringers is also shown, 
except that at high frequencies where the structural 
system decouples dynamically, and the impedance 
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TABLE 2. SUMMARY OF D·IM EN SIONS, STIFFN ES S AND MASS PROPE RTI ES 
OF CY LI N DE R AN D ITS COMPONEN TS 

Structura I Items 
Prope rty Dimension 

Ring St ri ng er Shell 

Mean Radius , R (in.) 23.0 --- 24 . 0 

Overall Length, 1 (in.) 144.5 96.0 96 . 0 

Shell Sk in Thickness, h (in . ) --- --- 0.08 

Crass-section Area , A (in?) 0.215 0.123 ---
Moment of Inertia , I (in ~ ) 0.135 0.012 -- -

Weight per Unit Volume, pg ( I b/in~) 0.1 0.1 0. 1 

Modulus of Elasticity , E (Ib/ in? ) 10 7 10 7 10 7 

Weight per Stiffener * (lb) 3.10 1.18 11 6.0 

Twa rings spaced at 32" in the longitudinal direction and four longit udinal 
stringers spaced at 37.7" in the circumferential direction . 
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approaches that of one stiffener only. The impedance 
of the stiffened shell as shown in Figure 10, is equal to 
the I inear summation of these two component impedance 
curves and it is obtained in the following way: 

• At any frequency poi nt, measure the 
difference of two impedance values and 
use this length as the abscissas value in the 
logarithmic summation chart (LSC) . 

• The ordi nate correspanding to the absc issas 
in the LSC is the resulting value for these 
two curves in logarithmic summation. 

• Add the length of the ordinate to the upper 
impedance curve, the resu Iti ng curve 
denotes the lineor combinotion of these two 
impedances. 

Figure 16 shows the experimental impedance data 
obtained from Reference 5 along with the predicted 
impedance for comparison. Generally speaking, the 
comparison is considered quite satisfactory both in low 
frequency and high frequency ranges. Fair agreement 
is also observed for frequencies just below the ring 
frequency. Some discrepancies are observed in the 
intermediate frequency region. Such discreponc ies 
are attributed to the errors incurred in summing the 
impedances of the stringers . However, it may be con­
cluded that the equation and guidelines presented are 
adequate far determining the structural impedances for 
design purposes. 

Example far Prediction of Force Spectra 

The structure used in the second example was a stiffen­
ed aluminum c yl inder whose dimensions were 36.0 in. 
(d iameter) x 36.0 in. (leng th) x 0.02 in . (thick) . 
The cylinder consisted of five aluminum rings spaced at 
6 inches in the longitudinal direction, and 24 longitu­
dinal stringers spaced at 4.7 inches in the circumferen­
tial direction . All stiffeners were mounted to the 
cylinder wall by rivets. The dimensions of the curved 
panels formed by the stiffeners were 6 inches and 
4.75 inches. Two steel rings of angle sections were 
rivetted at both ends and two circular sandwich plates 
were bolted to the end rings . 

The simulated component package consisted ofa 1/2 in . 
aluminum plate wi th lateral dimensions of 8.0 in. x 
8.0 in. The plate was supported by four sets of leaf 
springs at its corners. The bottom of each spring was 
fitted with a load washer assembly. The total weight 
of the component package was 3.81 pounds; the 
resonant frequency of the package was measured at 
110 Hz. 

In order to estimate the force spectra, the analytic 
procedures used to predict the impedance of the 
stiffened c y linder are essentially the same as that 
described in the preceding example. Hence, no 
analytical prediction was made and the impedance 
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was obtained from the experimental testing. The 
impedance of the component package is estimated and 
is shown in Figure 11. The measured impedance for the 
stiffened cyl inder is also presented in the same figure, 
which is approximated by two inclined straight lines as 
shown . In this figure, the plotting scale is 100 times 
the true value as denoted by Factor = 0.01. These two 
impedance curves are then combined according to the 
logarithmic summation technique as described for the 
impedance of the stiffened shell except that the resul­
tant curve is obtained by subtracting the length of the 
ordinate coordinate from the lower impedance curve, 
i .e., by summing the two individual mobility curves. 
The summed curve given is the impedance term in the 
computation of the force-spectra equation. 

The measured sound pressure and the b locked pressure 
spectra for this example have been obtained according 
to the procedure as described previously and the results 
are shown in Figure 13. The response spectrum is then 
obtained by summing the acoustic mobility curve and 
the blocked pressure curve as shown in Figure 14. The 
resulting curve as shown in Figure 15 is the computed 
force spectrum. In Figures 14 and 15, the plotting scal 
scale is 10,000 times the correct value as denoted by 
Factor = 0.0001. The measured force response spec­
trum obtained from Reference 2 is shown in Figure 17 
along with the camputed force spectrum. The predicted 
force spectrum was slightly high, but was judged to be 
acceptable, since the computed results provide the 
more canservative estimate for design eva luotion. 

CONCLUSIONS 

A simplified procedure has been developed to predict 
the interaction force between a component and its 
support structure (space vehicle) which is subjected to 
broadband random acoustic excitations. This method 
was derived from a one-dimensional impedance model 
and the computation was performed by ways of nomo­
grams and design charts. The conclusions resulting 
from this study are: 

• The force-spectrum equation provides 
satisfactory results on the predicted force 
environments of components mounted on 
space vehic les. This equation is va lid for 
the predictian of forces in the radial direc­
tion of the support structure. However, the 
some concept can be expanded to inc I ude 
the coupling effects induced from the longi­
tudinal and tangential directions so that the 
complete description of forces in all three 
directions is feasible. 

• The simpl ified computation method as pre­
sented has been shown to be accurate and 
conservative wi thin current acceptable 
tolerance limits. The computation process 
requires minimum manual effort and no 
computer assistance is required. 
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Figure 16. Measured Input Impedance: Shell with Two Rings and Four Stringers 
(Reference 5 ) 
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