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CHAPTER 1
 

INTRODUCTION TO AIRCRAFT PARAMETER IDENTIFICATION METHODS
 

K. H. Hohenenser and D. Banerjee
 

ABSTRACT
 

Some of the more important methods are discussed
 
that have been used or proposed for aircraft parameter
 
identification. The methods are classified into two
 
groups: Equation error or regression estimates and
 
Bayesian estimates and their derivatives that are based
 
on probabilistic concepts. In both of these two groups
 
the cost function can be optimized either globally over
 
the entire time span of the transient, or sequentially,
 
leading to the formulation of optimum filters. Identi­
fiability problems and the validation of the estimates
 
are briefly outlined, and applications to lifting
 
rotors are discussed.
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Preface to Second Yearly Report under Contract NAS2-7613
 

Work under Contract NAS2-7613 started on July l
 

1973 as a continuation of research conducted under
 

Contract NAS2-4151 since February 1, 1967. The
 

research goals stated in Contract NAS2-7613 are
 

(a) 	 Assess analytically the effects of fuselage
 

motions on stability and random response. The
 

problem is to develop an adequate but not overly
 

complex flight dynamics analyticAl model and to
 

study the effects of structural and electronic
 

feedback, particularly for hingeless rotors.
 

(b) 	 Study by computer and hardware experiments the
 

feasibility of adequate perturbation models from
 

non-linear trim conditions. The problem is to
 

extract an adequate linear perturbation model for
 

the purpose of stability and random motion studies.
 

The extraction is to be performed on the basis of
 

transient responses obtained either by computed
 

time histories or by model tests.
 

(c) 	Extend the experimental methods to assess rotor
 

wake-blade interactions by using a 4-bladed rotor
 

model with the capability of progressing and
 

regressing blade pitch excitation (cyclic pitch
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stirring), by using a 4-bladed rotor model with
 

hub tilt stirring, and by testing rotor models
 

in sinusoidal up or side flow.
 

Work on research goal (a) has been reported in
 

Part I of the First Yearly Report under subject contract
 

titled "Methods Studies Toward Simplified Rotor-Body
 

Dynamics". The results were published in the paper:
 

Hohenemser, K. H. and Yin, S. K., "On the Use of First
 

Order Rotor Dynamics in Multiblade Coordinates" presented
 

at the 30th Annual National Forum of the American
 

Helicopter Society, May 1974, Preprint 831.
 

Initial work on research goal (b) has been reported
 

in Part II of the First Yearly Report under subject
 

contract titled "Computer Experiments in Preparation
 

of System -Identification from Transient Rotor Model
 

Tests".
 

Initial work on research goal (c) has been
 

reported in Part III of the First Yearly Report under
 

subject contract titled "Experiments with a Four-Bladed
 

Cyclic Pitch Stirring Model Rotor."
 

The second Yearly Report under Contract NAS2-7613
 

is subdivided into two parts, whereby Parts I and II
 

are related to the research goals (b) and (c)
 

respectively. The authors and titles of the two
 

parts are:
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Part I Hohenamser, K. H., Banerjee, D. and Yin, S. K.,
 

"Methods Studies on System Identification from Transient
 

Rotor Tests."
 

Part II Hohenemser, K. H. and Crews, S. T., "Additional
 

Experiments with a Four-Bladed Cyclic Pitch Stirring
 

Model Rotor."
 

Part I begins with an introduction to aircraft/iden­

tification methods, it contains the results of computer
 

experiments with several selected methods of system
 

identification applied to lifting rotors, and contains
 

the development of a new method for optimal data
 

utilization.
 

Part II presents extended frequency response
 

measurements with the four-bladed model rotor including
 

dynamic wake measurements at zero advance ratio. It
 

describes the modifications of the model and its
 

instrumentation for transient pitch stirring tests,
 

and it discusses the development of software for the
 

data processing.
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Scope of Part I of Second Yearly Report
 

The computer experiments presented in the First
 

Yearly Report under Contract NAS2-7613 assumed a rotor
 

condition with .4 advance ratio. The input transients
 

consisted of rectangular and wave shaped normal flow
 

impulses. Noise polluted blade flapping responses
 

represented the system output. A linear identification
 

scheme was applied that worked well if data preprocessing
 

by a digital filter and by a Kalman filter was adopted.
 

Blade Lock number and collective pitch angle were
 

assumed to be not well known and were identified.
 

During the past year this work was extended in several
 

directions:
 

1. 	The normal flow transients were replaced by constant
 

acceleration pitch stirring transients, since the
 

wind tunnel model is particularly suited to accept
 

such transients.
 

2. 	 For zero advance ratio a two parameter dynamic wake
 

model was adopted that included a time constant. A
 

single blade representation is now no more applicable.
 

A multiblade identification analysis was developed.
 

3. 	The previously used identification method was modified
 

and extended to an iterative equation error esti­

mation with updated Kalman filter.
 

REPRODUCIBILITY 01 
ORIGINAL PAGE 18 PO&' 
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4. 	 The maximum likelihood method was applied to both
 

the single blade and the multiblade identification.
 

5. 	The maximum likelihood scheme, assuming the absence
 

of system noise, was used to obtain optimum data
 

utilization, that is to avoid inaccuracies of the
 

parameter estimates from insufficient data pro­

cessing, and to avoid excessive data processing for
 

a given desired accuracy of the parameter estimates.
 

Since parameter identification practice is a still
 

developing and somewhat controversial discipline, it
 

was believed of interest to provide a brief introduction
 

to aircraft parameter identification methods in Chapter
 

1 of this report. Chapter 2 describes the extensions
 

of the work with respect to items I to 4, while Chapter
 

3 describes the work performed with respect to item 5.
 

The 3 chapters are written as independent self suf­

ficient reports with separate abstracts and lists of
 

references for each.
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The application of methods for system parameter
 

identification from transients is a rapidly growing
 

field of study. There is a confusing multiplicity of
 

methods and of names for these methods; and contradic­

tory claims are made as to the efficiency and use­

fulness of the various methods. Widely varying
 

parameter identification methods are being used at
 

the various aircraft flight test centers. There also
 

is a substantial difference between what is theoretically
 

possible and what is practically desirable to perform
 

a given job with adequate accuracy and with a reasonable
 

computer effort. Since a comprehensive review of
 

aircraft parameter identification methods is not
 

available in the literature, it was believed useful
 

to provide a brief introduction to this field in Chapter
 

I before presenting the applications to lifting rotors in
 

Chapters II and III. The review of identification methods
 

is by no means complete. Only the most important methods are
 

discussed. Only rough outlines are given for the
 

various methods. Details of the derivations and of the
 

application algorithms are found in the cited literature.
 

ELEMENTS OF SYSTEM IDENTIFICATION FROM TRANSIENTS
 

System identification is the process of extracting
 

numerical values for system parameters and other sub­

sidiary parameters (process and measurement noise
 

PEpRODUCIBILITY OF T2. 
@RIGINAL PAGE IS PO'n 
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covariances, bias, initial states, etc.) from the time
 

history of control or other inputs and of the resulting
 

system responses. A schematic for the measurements is
 

shown in Fig. 1. The process of system identification
 

involves four steps:
 

1. 	 Selection of a suitable input that insures parti­

cipation of all important modes of the system in
 

the transient response.
 

2. 	Selection of sufficiently complete and accurate
 

instrumentation to measure the key input and output
 

variables.
 

3. 	Selection of a mathematical model that adequately
 

represents the actual system characteristics.
 

4. 	Selection of an efficient criterion function and
 

estimation algorithm for the identification of the
 

unknown system parameters.
 

The concept of system identification is illustrated in
 

Fig. 2. The design input is fed both to the actual
 

system and to its mathematical model that contains the
 

unknown parameters. The measured response, polluted by
 

measurement noise, is compared with the computed
 

response from the mathematical model. The difference
 

between these two responses, the response error, is used
 

in the parameter estimation technique based on the
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EXTERNAL DISTURBANCE 

EXTERNAL 
iN UT 
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Figure 1 Schematic of Measurements for System Identification 

SYSTEM NOISE MEASUREMENT NOISE 
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Figure 2 Illustration of System Identification
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criterion function and optimizing technique. The
 

estimation algorithm may also use apriori information,
 

e.g., initial statistics of the parameters. Here we
 

will be mainly concerned with the fourth of the
 

previously listed steps, that is with the various
 

estimation algorithms.
 

The mathematical representation of the system will
 

be given in the non-linear case by:
 

System equation k(t) = f(x,u,t) + r (t)w(t) (i)
 

Initial condition x(t = 0) = X0
 

Measurement Equation y(t) = h(x,u,t) + v(t) (2)
 

where x(t) n x 1 state vector
 

u(t) p x 1 input vector 

w(t) q x 1 system noise vector, covariance Q
 

y(t) r x 1 output or measurement vector
 

v(t) r x I measurement noise vector,
 
covariance R
 

If the system is linear, equations 1 and 2 reduce to
 

x(t) = F(t) x (t) + G(t) u(t) + r(t) w(t) (3) 

y(t) = H(t) x (t) + D(t) u(t) + g + v(t) (4) 

where g is the vector of bias errors.
 



5
 

CLASSIFICATION OF IDENTIFICATION ALGORITHMS
 

The various estimation algorithms can be classified
 

into two groups presented in Table 1. The first group
 

listed in Table 1 above the double line is based on
 

statistical regression and does not admit a probabilistic
 

interpretation. The algorithms listed in Table 1 below
 

the double line are based on probabilistic interpre­

tation. In the equation error estimate no measurement
 

noise is modeled, the following 4 methods include both
 

measurement and system noise, while in the output error
 

estimate no system noise is modeled. The various
 

algorithms listed in Table 1 will be discussed in the
 

following sections.
 

EQUATION ERROR ESTIMATES
 

Equation error methods assume a performance
 

criterion that minimizes the square of the equation
 

error (process noise). They are least squares techniques
 

and they require the knowledge of all response variables
 

(states) and their derivatives. In the so called least
 

squares method the unknown parameters are selected
 

such that the integral over the square of the state
 

equation error is minimized, see for example reference 1.
 

With equation 1 we have the error function (the upper
 

integration limit T is the time over which the measurements
 

are taken).
 



Classification Criterion 
 Solution
 
of Estimate 
 for Estimate for Estimate
 

A 

Equation Error Estimate 0 Minimizes equation error Closed form global or
 
squares and/or integrated sequential optimization


(no measurement noise equation error squares by optimum filter (Method

is modeled) 
 function 6(t-ti) or e-St).
 

Bayesian Estimate 0 = E(O/Z) 

A A
 

Quasi-Baysian Estimate Gx such that 
 Sequential optimization by

with augmented state 
 optimum non-linear filter
 

MAX f(Gx/z)= f(O, x/Z) (extended Kalman filter
 
0,x with or without local
 

iteration and/or smoothing).
 

Quasi-Bayesian Estimate 0 such that
 
A 

MAX f(0/Z) = f(O/Z) Iterative global optimi­
0 zation with state Kalman
 

filter equations as
 
Maximum Likelihood Estimate 0 such that 
 constraints.
 

MAX f(z/e) = f(Z/0)
 

Output Error Estimate 0 minimizes output error Iterative global optimi- '
 
(no system noise squares., zation with system


equations as constraints.
 

Table 1 Classification of Estimation Algorithms.
 

(1 

a
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f T J = [ - f(x,u,O,t)]T W[E-f(x,u,e,t)Jdt (5) 

0
 

where 0 is the m x 1 vector of unknown parameters. W is
 

a positive definite weighting matrix. An appropriate
 

choice for W would be q- where Q is the covariance of
 

the process noise. For the usual digital data pro­

cessing,the variables x, x, u-are sampled and only
 

available at discrete time points ti . Mathematically
 

the sampling process can be expressed by multiplying
 

the system equation with the delta function 6(t - ti).
 

The integral of equation 5 then becomes a sum. One
 

can use instead of the delta function also a different
 

- s t
"method function", for example e , that would allow
 

taking the Laplace transforms.
 

If the system is linear in the unknown parameters
 

0, the system equation can be written in the form
 

(t) = F(x,u,t)0 + r(t) w(t) (6) 

and the performance criterion (5) becomes
 

T 

J = Ex - F(x,ut)0] T WEx - F(x,u,t)e]dt (7) 

0
 

Since the function inside the integral has continuous
 

derivatives with respect to 0 we set
 

ajie= 0 (8)
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thus resulting in the closed form solution
 

T T 

e= f TFxu )W F(x,u,t)dtl f r cx,u,t)w ckt)dt 

0 0 
(9) 

The first factor is the covariance matrix of the
 

estimate. If the system is non-linear in the unknown
 

parameters,the solution equation 9 can be replaced by
 

an interative solution where F(x,u,t) is substituted
 

by af(x,u,ek,t)/36 and S on the left hand side is
 

replaced by 0 k+1 It can be shown (for example
 

reference 1) that the parameters in the nth row of
 

f(x,u,O,t) are independent of all the elements of Ct)
 

except kn(t). This independence is one of the
 

drawbacks of the least squares method, in that only
 

one of the measured state derivatives is used in­

determining a given row of the f(x,u,O,t) matrix. If
 

one of the signals has not been measured, the least
 

squares method does not provide an estimate of the
 

parameters related to that signal. This independence
 

also illustrates the fact that the estimate of one row
 

of the f(x,u,o,t) matrix is obtained independently of
 

the other rows, and no "trade-off" can be made between
 

elements in different rows to improve the estimate.
 

For some applications it is practical to include
 

the state vectors in the error minimization. In the
 

AA
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modified least squares method a combination of the
 

standard least squares with the integrated least
 

squares is used. The parameters obtained by this
 

method not only trace the derivative of the state
 

but also the state itself over the selected time
 

interval. The performance criterion now includes
 

in addition to the equation error also the integrated
 

equation error:
 

T t 

fS= Ic(t) - F(x,u,t)e + f r(T)dr ­

0 0 
t 

F(x,u,T)O dTllwdt (10)
 

0
 

where W is a positive definite weighting matrix and where
 

IlAliw A AT W A (11) 

Minimizing the expression, equation 10 results in the
 

estimate
 

0= F(x,u,t) + F(x,u,T) dt} W{F(x,u,T) +
J 
F(x,u,T) d-} dt

/ dt- (12) 

T t t 

{F(xut) + fF(xu,T)dT}TW{;(t) + f x(r) dTldtl 

nVPRODUCBITY OF THlE 
EYBIC-INAL PAGE IS POOR 
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This method has the same row independence of f(x,u,G,t)
 

as the standard least squares method.
 

Since these methods do not allow for measurement
 

errors, they result in biased estimates when this type
 

of error does exist. When measurement errors are small,
 

as is increasingly the case in modern instrumentation,
 

the equation error method is preferrable over other
 

methods because of its simplicity. It is widely used
 

also when measurement errors are substantial and then
 

serves as start-up technique for the output error and
 

other iterative methods.
 

In many applications,measurements of some of the
 

responses or their derivatives are not available. If
 

the response, but not the rate of response is
 

measured, it is tempting to differentiate the measured
 

response. However, the differentiation of measured
 

data introduces additional uncertainty so that this
 

- s t
technique is usually inaccurate. If e is used as
 

a methods function, Laplace transforms can be used.
 

The estimation then reduces to an algebraic manipulation
 

of the data that avoids their differentiation. The
 

Laplace transform technique as a substitute of dif­

ferentiating measurement data is discussed in reference 2.
 



11
 

BAYESIAN AND QUASI-BAYESIAN PARAMETER ESTIMATES
 

In the preceding methods we specified a cost
 

criterion J that represented the "loss" resulting
 

from an incorrect estimation of the unknown system
 

parameters. The parameters were then selected in such
 

a way as to minimize the loss. If a priori probabilities
 

exist not only for the measurement errors but also for
 

the unknown parameter vector e then one can define an
 

expected loss and select the parameter vector in such a
 

way as to minimize this expected loss. Such an estimate
 

is called a Bayesian estimate, see for example reference 3.
 

The form of a Bayesian estimate depends on the form
 

of both the loss function and of the a priori distri­

bution of the measurement and parameter noise. For the
 

particular case of positive semi-definite quadratic loss
 

functions the Bayesian estimate is the mean of 0
 

conditioned on the observations. This is true regardless
 

of the distribution of measurement and parameter noise.
 

It has also been shown that for the case of unimodal
 

symmetric a posteriori distribution of the parameters
 

given the observations, the Bayesian estimate is the
 

conditional mean for a considerably wider class of loss
 

functions. For these reasons the Bayesian estimate can
 

be defined as the conditional mean of the parameter
 

distribution.
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In order to compute the conditional mean it is
 

first necessary to determine the conditional probability
 

density for 0. This density can be written from Bayes
 

rule as (Z is the set of all observations)
 

f(O/Z) = f(Z/0) f(9)/f(Z) (13)
 

The denominator is a normalizing factor determined from
 

f(z) f f(Z/) f(e) do (14) 

all 0 

The optimal Bayesian estimate is now given by
 

e = (I/f(z) ) o f(z/0) f(O) do (15) 
all 0 

In general the evaluation of equations 14 and 15 would
 

require the solution of the system equations for all
 

possible values of the parameter vector 0. This is a
 

large effort, especially if the dimension of 0 is large.
 

If f(3/Z) is unimodal and symmetric about its mean
 

value, the conditional mean corressponds to the mode.
 

Since f(Z) is merely a scale factor the finding of the
 

mode requires neither the evaluation of the integral in
 

equation 14 nor that in equation 15. The mode 0 of 0
 

has the property
 

max f(O/Z) - max f(ZfO) f(s) = f(Z/0) f(G) (16)
 
e
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Even if the a priori density f(O) is symmetric it does
 

not follow that the conditional density f(S/Z) is also
 

symmetric since in general the observations depend
 

non-linearly on the parameters. Estimation according
 

to equation 16 is, therefore, called "quasi-Bayesian"
 

estimation. Another designation used for example in
 

reference 4 is maximum a posteriori probability (MAP)
 

parameter estimate. Since the logarithm is a monotonic
 

function of its argument we can replace equation 16
 

by maximizing the expression
 

J = log f(ZI5) + log f(o) (17)
 

If no a priori information about the parameters 0
 

is available, that is,if the a priori density is uniform,
 

f(s) = constant, the quasi-Bayesian estimate reduces to
 

the "maximum likelihood" estimate which involves
 

finding the maximum of f(Z/0).
 

ESTIMATES ASSUMING GAUSSIAN DISTRIBUTIONS
 

The evaluation of equation 17 becomes particularly
 

convenient if we assume Gaussian densities for the
 

parameters, for the observations and for the system
 

states. In linear systems and linear measurement
 

equations (equations 3 and 4) one needs only to assume
 

that the system noise w(t) and the measurement noise v(t)
 

is Gaussian. It then follows that states x(t) and
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observations y(t) are also Gaussian. For non-linear
 

systems with Gaussian noise f(Z/0) tends to a Gaussian
 

density as the sampling rate is increased (see for
 

example reference 5 p. 29). The assumption of Gaussian
 

densities for all variables is, therefore, a reasonable
 

one. Since 0 is a m x 1 vector we now have the a priori
 

density
 

- 1 / 2  - m
f(e) = P 1 (21r) / 2 exp - (1 /2 )(G-U)T p-1 (0-) (18) 

p0
 
P0 is the parameter covariance matrix, 0 is the
 

parameter mean. Except for a constant additive term,
 

log f(O) is now given by
 

1
log f(e) = (-1/2) -TP (19)
 

In order to obtain an expression for log f(Z/0) in
 

equation (17), we assume that Z consists of N consecutive
 

observations y(l) .. y(N).
 

=
Z = YN {y(l), . . y(N)1 (20) 

With successive application of Bayes rule we obtain
 

f(YN/ = f(y(1), ., y(N)/0) = F(y(N)/YN-l,0) f(YN-l'0 ) 

N . . . . . . . . .
 

IT f(y(j)/Yj_le) (21) 
j=l 

U'EPRODUC ILITY OF THE
 
ORIGINAL PAGE IS POOR
 



15
 

Taking the logarithm we have
 

N 
log f(YN/) = E log f(y(j)/Y.-I, o) (22)j=l
 

(wn/Y-Ie) is the observation estimate at time
 

given all preceding observations and given the parameters.
 

We denote the observation by y(j) and its expected value
 

and covariance respectively by y(j/j-l) and B(j/j-1).
 

We further denote the "innovation" by
 

y(j) - y(j/j-1) = v(j) (23) 

Since y(j) is a r x 1 observation vector, its Gaussian
 

density is
 

- I1 2 
f(y(j)) = IB(j/j_I)1 (27)-r/2 exp{-(1/2)vT(j)
 

(24)
 

B-l(j/j-l)v(j)
 

Taking the logarithm of equation 24 , summing according
 

to equation 22 , inserting in equation 17 and inverting
 

the sign we have now to minimize the expression (see
 

also equation 19)
 

N T 1
 
E {v (j)B- (j/j-l)v(j) + logIB(j/j-l)1}
 
j=l
 

+ O-e) TP 6 (0-U) (25) 
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If no a priori information is available before taking
 

observations, the last term in the expression 25 is
 

constant and we then have the criterion for the
 

maximum likelihood estimation. Bayesian or quasi-


Bayesian estimation is rarely used since a priori
 

densities for the parameters are in most applications
 

not available.
 

MAXIMUM LIKELIHOOD PARAMETER ESTIMATION
 

According to expression 25 maximum likelihood
 

estimation is equivalent to minimizing the so-called
 

likelihood function
 

N T 1lI~/-)] (6
 
J(0) E [Ev (j)B- (j/j-l)v(j) + log IB(j/j-1)1] (26)
 

j=l
 

In the presence of system noise the minimization of the
 

expression 26 is very difficult. When going from time
 

j-1 to time j one first has to solve the prediction
 

equations for the estimate of the state and for its
 

covariance. Assuming the linear system equation 3 with
 

zero mean Gaussian system noise w(t) the prediction is
 

given by
 

A 
x(j/i-l) = F x(j/j-l) + C u(t) , (j-l) < t < j (27) 

P(j/j-I) = F P(I/j-) + P(j/j-I)F T + r Q rT (28) 
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where Q is the system noise covariance and P the state
 

covariance. These equations use the estimated state
 

and its covariance at time j-1: x(j-l/j-1) and
 

P(j-i/j-l), to predict the state and its covariance at
 

time j: (j/j-l) and P(j/j-1). This is the prediction
 

before we know the result of the observations at time
 

j. After the observations y(j) have been made the
 

optimum estimate is given by the Kalman filter
 

equations for the state and for its covariance:
 

x(j/j) = x(j/j-l) + K(j) (y(j) H x(j/j-l)) (29) 

P(j/j) = (I - K(j) H) P(j/j-1) (30) 

with the filter gain
 

HTK(j) = P(j/j-i) (H P(j/j-l) HT + R)-1 (31) 

where R is the measurement noise covariance. The
 

covariance of the observations B(j/j-I) that occurs in
 

the cost functional 26 is given in terms of the state
 

covariance before observations by
 

HTB(1/j-1) = H P(j/j-l) + R (32) 

Thus the terms in the expression 26 that is to be
 

minimized require the solution of the prediction equations
 

27 and 28 for each time interval and of the up-date
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equations 29 and 30 at each sampling time together with
 

the solution of the measurement equation 4. Reference
 

5 gives an algorithm for the solution of the problem.
 

However, due to its complexity this algorithm has not
 

as yet been applied to a practical problem of aircraft
 

parameter estimation, see for example reference 6.
 

The problem of minimizing the expression 26 is
 

greatly simplified if the observation covariance
 

B(j/j-1) can be assumed constant. This is for example
 

true for zero system noise, when according to
 

equation 32 B(j/j-l) = R. The problem then reduces
 

to minimizing the cost function
 

N T ( 
J(C) E v (j) R- v() (33) 

1=1 

where vuj) is given by the innovation term 23. Since
 

equation 33 represents (according to equations 2 and 4)
 

the sum of the measurement error squares, the estimation
 

with equation 33 is also called output error method of
 

estimation. There are several algorithms available to
 

perform the optimization of J() from equation 33. The
 

most widely used is the modified Newton-Raphson or
 

quasiliniearization method. It has the advantage that
 

the sensitivity or information matrix is obtained as a
 

byproduct. The inverted information matrix gives the
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/
Cramer-Rao lower bound for the parameter covariance.
 

This lower bound is found in many applications to be a
 

more meaningful measure of the accuracy of the parameter
 

estimate than the parameter covariance obtained from
 

the equation error method (first factor in equation 9).
 

OUTPUT ERROR METHOD USING QUASILINEARIZATION
 

We use an iterative method beginning with an
 

initial parameter estimate ; = 00 The problem is to
 

find a zero of the gradient of the cost function 33,
 

aJ/a = 0. Consider a two-term Taylor series
 

expansion of DJ/30 about the kth value of 0
 

(aJ/aO)k+l Z (aJ/ aG)k + (a2jio 2 )k A Ok+1 (34)
 

where A 

A Ok+l = 0k+ 1 - ek 

(a2 J/e2)k is the second gradient of the cost function 

with respect to 6 at the kth iteration. If equation 34 

is a sufficiently close approximation, the change in 6 

for the (k + 1)th iteration to make (aJ/ae)k+l approximately 

zero is 

A Ok+l = - [(2J/32)k-i (1J/ae)k (35) 

Using now for v(j) the two term expansion
 

v(J)k Z v(j)k-1 + .2 (v(i))k A ek (36) 
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one obtains for the first and second gradients of the
 

cost function
 

N a T -l 

~ 2lM 2 = 

-(2J/ar)k = 2E [v(j)] R1 E 

° 

We thus need solutions for v(j)k and -A (J)k For
 

this purpose we first solve the system and measurement
 

equations
 

x f(x, u,t)
 

(39) 

y = h(;,u,t) 

for each iteration whereby the initial conditions are
 

either obtained from the measurements or are included
 

in the unknown parameters 0. The innovation is now
 

obtained from equation 23. Next we solve the
 

"sensitivity equations" for each iteration
 

ax/ao i = af/ao i t af/ xjx= x/aoi 

(40)
 

ayei = ah/axIx a x/aeo 
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The initial conditions of 3x/ao are zero except when
i 


x(O) is identified as part of the parameters 0. In
 

this case the initial partials have the value one. With
 

equation 23 we can now compute the first and second
 

gradient of the cost function, equations 37 and 38,
 

and then obtain the change in parameters for the next
 

iteration from equation 35 . This involves the
 

inversion of the sensitivity matrix M (equation 38),
 

whereby M-1 is the Cramer-Rao lower bound for the
 

covariance of the parameters.
 

The method is easily extended to the case with
 

a priori information on the parameters, equation 25.
 

The sensitivity matrix 38 is then augmented by the
 
,
term 2P I and the gradient 37 is augmented byt
 

term 2P01 (00 - Okl), see reference 2.
 

PARAMETER ESTIMATION BY FILTERING
 

The parameter estimation methods discussed so far
 

can be denoted as "global" methods. The performance
 

criterion includes the test data for the entire duration
 

of the transient. Filtering is an important tool in
 

state and parameter estimation. It can be used either
 

in conjunction with global estimates, or it can be
 

used as a direct approach to state and parameter
 

estimation. An example of the first type of filter
 

applications is the prefiltering of test data before
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using them in a least squares regression estimate,
 

see for example reference 4. The Graham digital filter
 

can remove high frequency noise. A Kalman filter
 

can be used to estimate state variables and their
 

rates not directly measured. It also removes the
 

noise in the measurements. The role of the Kalman
 

filter in maximum likelihood estimation has been
 

shown in equations 29 to 31, where it is used to
 

establish the innovation sequence.
 

In addition to applications in global estimation
 

methods, filters can also be used as substitutes for
 

global methods. The advantage of such direct filter
 

methods is a reduction in computer effort particularly
 

in cases with a large number of parameters. The dis­

advantage is that unlike the inverted information
 

matrix of the maximum likelihood method that provides a
 

lower bound on the parameter covariances, no physically
 

meaningful parameter covariances are obtained with the
 

direct filter methods. The covariance propagation
 

equations require initial values that are usually
 

impossible to obtain in any rational way. Though
 

improvements of the filter solution (forward time
 

integration) can be achieved by smoothing (backward
 

time integration), the final parameter covariances
 

remain arbitrary, since they evolve from arbitrary
 

initial covariance estimates.
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Assuming that all state variables and their rates
 

have been either measured or are otherwise known from
 

manipulating the measurement data, the unknown
 

parameters, if they occur in linear form in the
 

state equation, can be found by application of a
 

linear filter, see for example reference 7. The
 

classical regression method is a special case of this
 

direct filtering method, namely for infinite initial
 

parameter covariances. In classical regression one
 

obtains a single value of the error covariance matrix.
 

The direct filter application allows the use of a
 

finite initial error covariance matrix and it gives
 

the evolution of this matrix as a function of time. One
 

thus obtains an indication when to stop processing the
 

test data after their information contents has been
 

exhausted. As mentioned before, the absolute values
 

of the error covariances are meaningless, since one
 

usually does not have a rational way of establishing
 

initial values for the parameter covariances.
 

A method that appears to be economic of computer
 

time for large numbers of unknown parameters was used
 

in reference 4 for application to helicopters. The
 

method consists of a simultaneous identification of
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states and parameters with the help of a non-linear 

filter. In other words, the unknown parameters are 

treated as additional state variables. Since there 

occur products of state variables and parameters, the 

filter is a non-linear one. The so called extended 

Kalman filter appears to be particularly useful for 

this purpose. Either non-linear filtering alone or 

linear filtering in combination with smoothing is 

performed. The absolute values of the parameter 

covariances are again of no physical significance since 

they depend on the arbitrary initial values. In the 

following, a brief discussion of the direct use of 

filters in parameter estimation is given. 

LINEAR FILTER METHOD OF PARAMETER ESTIMATION 

The equation error estimate based on the perfor­

mance criterion of equation 5 was given in global form 

by equation 9, which is valid provided that the system 

is linear in the unknown parameters e. The global 

estimate can be replaced by a filter solution. 

Consider a system with the process equation 

6 o (41) 

and with the measurement equation 

(t) = f(x,u,e,t) + v(t) (42) 

REPRODUCIBILITY OF TM. 
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The extended Kalman filter that minimizes sequentially
 

the performance criterion 5 is given by the filter
 

equation
 

a = P0C(f/o) W (af/o)e) (43) 

and by the covariance equation
 

=P P f/o)TW P (44) 

x and x are here quantities that are measured or that
 

have been reconstituted from measurements by prefiltering.
 

The weighting matrix W can be interpreted as the inverse
 

of the error covariance R- for v(t). The sequential
 

estimate from the filter solution gives the optimum
 

based on all preceding data. One can either select
 

an initial estimate e(0) to integrate equation 43,
 

or one can also assume a zero value for the initial
 

estimate. The initial error covariance Pe(O), as
 

mentioned before, is usually not known. One should,
 

therefore, use a rather large value for the initial
 

covariance. Though the resulting values of P (t) obtained as
 

function of time by solving equation 44 have no physical
 

meaning as far as absolute values are concerned, P0 (t)
 

will asymptotically approach zero, and it can be used as
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a criterion when to stop processing the data. As can be­

seen from equation 43, no further changes in the
 

parameters i will occur, once P has approached zero.
 

The covariance equation 44 has the closed form
 

solution (see reference 7)
 

t 

? (t) = [p-l (0) + f(af/ae) T W (f/ae) d-r 1 (45) 

0
 

and the filter equation 43 has the closed form solution
 

t
 

O(t) = PO(t) [pl (0)0(0) +f(af/9o1 W dT] (46)
 

0
 

Whether it is computationally simpler to numerically
 

integrate equations 43 and 44 or to evaluate equations
 

45 and 46 depends on how many points in time are to be
 

covered. For infinite initial parameter covariance,
 

P 1(0) = 0, equation 46 becomes identical to equation 9. 

BAYESIAN ESTIMATION AS A FILTERING PROBLEM
 

If we extend the quasi-Bayesian or maximum a
 

posteriori probability (MAP) criterion 16 to include
 

both the parameters 0 and the states x(t), we have
 

max f(x(t),/Z) - max f(Z/x(t),S) f(x(t),S) (47) 
x(t),0 x(t),0 
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Assuming now the non-linear system and measurement
 

equations 1 and 2, and assuming further that states
 

and parameters have Gaussian distributions of the
 

form of equation 18, the criterion 47 becomes (see
 

for example references 4 and 8) one of minimizing
 

the quadratic function
 

= (1/2) [IIo(o)-(o P + IP-) 
(48)
 

T 

+ ly(t)-h(x,u,t) IK-i+ llw(t)lIrQlrT dt 

subject to the constraint equation 1. If the system and
 

measurement equations 1 and 2 are linearized about the
 

current estimates x and 0 the recursive solution of the
 

minimization problem 48 results in the extended Kalman
 

filter equations given for the continuous case by (see
 

reference 4)
 

1A 
 T-l
 
x = (f/3x)x + (af/au)u + P(ah/ax) R- (y-(Oh/ax)x)
 

I 	 'T A 

0 = POx(ah/Dx) R- (y - (ah/ax)x)
 

= (af/ax)P + P(af/ax) T - P(ah/ax)TRl	(h/ax)P + Q (49) 

I T+ [(3f/aO)Pox+ (af/ao)Px 

-
PEx = PCOxf/ax )T + PI(af/aO)T - POx(ah/ax)T R l (ah/3x)P
 

h/ TPxT
with P = - POX(h/x)T R-l_
P0 ~(a/ax) (ah/ x
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P is as before the state covariance, Pe the parameter
 

covariance, and P0. is the combined covariance where
 

the parameters 0 are included in an augmented state.
 

P' is an abbreviation given in the last of equations
 

49. Even if the original system is linear, the
 

augmented system is non-linear and hence the filtering
 

problem must be solved by a non-linear filtering
 

technique. In reference 4 the raw data are preprocessed
 

by a digital filter and by a Kalman filter that doas
 

not use the unknown parameters but merely makes use
 

of the transformation equations from a space-fixed to
 

a body-fixed reference system (Euler equations).
 

Lebacqz in reference 9 applies basically the same
 

method except for a discrete instead of the continuous
 

filter formulation. He further uses a one stage
 

filtering-smoothing algorithm which has the advantages
 

of reducing the bias due to non-linearities and of making
 

the algorithm less sensitive to initial conditions.
 

Mehra in reference 4 is critical of using an extended
 

Kalman filter for the augmented state including the
 

unknown parameters. His arguments are that the
 

uncertainties in the states are usually much smaller
 

than the uncertainties in the parameters. Therefore
 

the assumption of local linearization about the latest
 

oD c'OZ OF 
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estimate which are acceptable for state estimation with
 

an extended Kalman filter are generally less valid for
 

parameter estimation0 Moreover, the filter for the
 

augmented state assumes knowledge of the a priori
 

parameter covariances which are unknown. As mentioned
 

before, the arbitrary a priori parameter covariance
 

used as initial conditions for a filter that includes
 

parameters as state variables gives unreliable confidence
 

limits on the parameter estimates. An added difficulty
 

of applying a filter to the augmented state is that poor
 

a priori estimates of the parameters make the convergence
 

rate slow or may even cause divergence of the filter
 

solution. Though improvements can be applied to the
 

extended Kalman filter like local smoorhing and local
 

iteration and smoothing, the basic shortcomings of this
 

method appear to have been correctly described in reference 4.
 

Unfortunately, the application of the complete algorithm
 

of maximum likelihood identification given in reference
 

5 is for a large system much more demanding of computer
 

size and time than the filter solution with the
 

augmented state. While aircraft parameter identification
 

with the complete maximum likelihood algorithm of
 

reference 5 has not as yet been accomplished, the method
 

of filtering the augmented state has been applied to
 

several aircraft parameter identification cases, for
 

example in references 4 and 9.
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IDENTIFIABILITY PROBLEMS
 

Identifiability problems can occur no matter what
 

identification algorithm is used. They are related to
 

the initial 3 steps involved in system identification
 

as listed at the beginning of this chapter: the
 

selection of a suitable input, the selection of the
 

instrumentation, and the selection of the mathematical
 

model. A few comments are added here to point out some
 

difficulties that have been encountered due to these
 

three initial steps.
 

If the input does not adequately excite some of
 

the system modes, the associated parameters cannot be
 

adequately identified. Sometimes it is practical to
 

combine the responses to various types of inputs into
 

a single identification run, see reference 4. While
 

each of the single inputs excites only a limited number
 

of modes, the combination of inputs provides an adequate
 

excitation of all modes required for the estimation of
 

the parameters. Efforts have also been made to design
 

inputs on the basis of certain optimization criteria.
 

More details on this problem are given in Chapter 3 of
 

this report.
 

If there are large unaccounted for instrumentation
 

errors non-physical parameter values may result. In
 

reference 10 instrumentation lags and control measurement
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errors were found to be most significant. Static
 

measurement errors and instrumentation lags can be a
 

much greater source of parameter inaccuracies than
 

white noise. A detailed analysis of the relationship
 

between static and dynamic measurement errors in states
 

and control inputs and the accuracy of the parameter
 

estimates is required.
 

If the selected mathematical model for the system
 

is inadequate, the parameters are forced to account for
 

some unmodeled effects. The estimated parameters may,
 

therefore, be quite different from those determined by
 

aerodynamic theory or wind tunnel tests would indicate.
 

A good example is given in reference 11 where a six
 

degree of freedom mathematical model for a helicopter
 

gave unrealistic derivatives, since it had to account
 

for effects of some neglected modes. A unique six
 

degree of freedom linear model for the helicopter flight
 

dynamics does actually not exist. When a nine degree of
 

freedom mathematical model is used, these difficulties
 

disappear. Modeling errors are also a major cause for
 

the lack of convergence of iteration procedures or of
 

parameter identification by filtering methods. The best
 

remedy against difficulties from modeling errors is the
 

adoption of a more suitable mathematical model. Some
 

other measures to improve the convergence of iteration
 

procedures or of filtering methods will be briefly discussed.
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In the cases where a priori values of parameters, for
 

example from theory or from wind tunnel tests, are
 

available, one can use an a priori weighting matrix
 

that expresses the confidence in these values and
 

prevents the algorithm from deviating too much from
 

the a priori values. Sometimes there exist some
 

relationships between the parameters\ These should
 

then be used as constraints in the optimization problem
 

to avoid non-physical parameter estimates. If para­

meter dependencies exist, difficulties are encountered
 

in inverting the information matrix. An exact
 

dependency between parameters should result in a zero
 

eigenvalue of the information matrix. A rank deficient
 

solution makes use of the fact that in case of near
 

parameter dependencies there is a large spread between
 

a set of small eihenvalues and another set of much larger
 

eigenvalues of the information matrix.
 

In filter solutions, divergence because of modeling errors
 

can occur when the covariance matrix becomes prematurely
 

too small, thus preventing further test data to be of
 

influence. There are several ways to prevent premature
 

small covariances. One can provide fictitious noise
 

input to the system or one can directly increase the
 

parameter covariance in each time step according to
 

some rule. One can also overweigh the most recent data
 

thus causing the filter to reduce its memory of the data
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of the more distant past. This indirectly increases the
 

parameter covariance matrix. Since too short data length
 

and too large errors in the initial parameter estimates
 

may also result in non-physical parameter values or in
 

divergence of the identification algorithm, longer
 

transients and better a priori parameter estimates can
 

lead to the avoidance of these difficulties.
 

VALIDATION OF ESTIMATES
 

Once a set of parameter estimates has been obtained
 

the question arises; what confidence can be associated
 

with this set? As mentioned before, the parameter
 

covariance matrix obtained by filtering the augmented
 

state is not a good measure of this confidence. The
 

inverted information matrix obtained with the maximum
 

likelihood method reDresents the Cramer-Rao lower bound
 

for the parameter covariances and is a better measure
 

of this confidence. Using the parameter estimates to
 

predict the transients from which the estimates have
 

been obtained, and computing the rms error with respect
 

to the measured transients, gives another confidence
 

measure. However, if the system is inadequately modeled,
 

one may obtain a small rms error despite the fact that
 

the parameter values are wrong in comparison to theoretical
 

or wind tunnel results, see reference 11. A better way
 

of validitation is to compare the prediction with the
 

results of test data not used in the identification process.
 

In fact, it is good practice not to use all of the
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available test data for the parameter identification but
 

to reserve some of the runs for such a comparison.
 

Sometimes it is desirable to perform the parameter
 

identification not just with one mathematical model but
 

with a varietv of models. In the case described in
 

reference 11 a mathematical model with more parameters
 

gave a much better identification result than a model
 

with fewer parameters, better in the sense of an
 

improved correlation with theoretically and wind tunnel
 

generated parameters. However, there are also cases
 

where mathematical models with a larger number of
 

parameters gave worse identification results than a
 

model with fewer parameters, see reference 12.
 

Adequate parameter estimation from transients requires
 

careful attention to the many contributing factors in
 

the input, instrumentation, mathematical modeling and
 

the estimation algorithm; and the validation of this
 

process can only be considered complete after the rms
 

errors of the prediction with the estimated parameters
 

as compared to test data have been found acceptably
 

small for all types of possible transient excitations
 

of the system.
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APPLICATIONS TO LIFTING ROTORS
 

Contrary to the fixed wings of airplanes, lifting
 

rotor characteristics are not well approximated by the
 

usual set of aerodynamic derivatives. One reason is
 

.blade modes that! must be considered particularly in
 

rapid transients. Another reason is the dynamic rotor
 

wake that is produced by the time varying rotor thrust
 

and rotor pitching and rolling moments and that has a
 

feedback effect on the rotor forces and moments. The
 

omission of the blade modes, as shown in reference 11,
 

results in non-unique and non-physical rotorcraft
 

derivatives. The identification is better if separate
 

rotor degrees of freedom are introduced even in the
 

crude form of a first order lag as was done in reference
 

13.
 

A variety of identification methods have been used
 

with respect to lifting rotors. After preprocessing the
 

test data with a digital filter followed by a Kalman
 

filter that does not contain the aerodynamic derivatives
 

(transformation or Euler equations), least squares iden­

tification is applied to rotorcraft transient flight
 

test data in references 4 and 11. Each identification
 

run is made with several transients simultaneously. The
 

least squares results are then used as start-up values
 

for an extended Kalman filter for the augmented state.
 

It is not obvious that the extended Kalman filter
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actually improves on the least squares results, though
 

filter convergence is achieved. In reference 13 the
 

output error method with quasilinearization is applied
 

without preprocessing the flight test data. The flight
 

data of both references 4 and 13 were obtained in calm
 

air. The equation error method in its filter form was
 

applied in reference 7 to simulated noisy blade flapping
 

and torsion measurements at high rotor advance ratio.
 

The simulated data were preprocessed by a Graham
 

digital filter, but not by a Kalman filter. Reference 7
 

assumed that all states and their derivatives had been
 

measured. In contrast reference 14 assumed that only
 

flapping deflections are measured but not flapping rates
 

or flapping accelerations. For the dynamic wind tunnel
 

tests simulated in reference 14 there is no way of
 

applying a Kalman filter that does not contain the
 

unknown parameters. However, it was found that for the
 

cases studied, a Kalman filter with considerable errors
 

in the unknown parameters was useful in obtaining the
 

non measured flapping rates and accelerations. The
 

parameter identification was then performed by the
 

equation error method in its filter form.
 

In Chapter 2 of this report the same method (except
 

for using global estimates) is used in an iterative form.
 

In addition, the output error method with quasilineari­

zation is applied to the same and to more complex rotor
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identification problems. As will be shown, the first
 

method is more computer cost effective in cases where
 

it works, while the second method is more reliable
 

and more versatile.
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Chapter 2
 

COMPUTER EXPERIMENTS WITH PITCH STIRRING TRANSIENTS
 

K. H. Hohenemser and S. K. Yin
 

ABSTRACT
 

Selected methods are applied in the form of computer
 
experiments to two problems of lifting rotor state
 
variable and parameter identification. The first
 
problem refers to a rotor condition at .4 advance ratio.
 
Cyclic pitch stirring with constant acceleration is
 
assumed as known input. Noise polluted blade flapping
 
measurements are assumed as the only measured output.
 
Blade Lock number and collective pitch are the unknown
 
parameters to be identified. The second problem refers
 
to a rotor condition at zero advance ratio again with
 
constant acceleration pitch sitrring. A two parameter
 
dynamic inflow model is stipulated. The only measurements
 
are noise polluted blade flapping responses. Blade Lock
 
number and the two parameters of the dynamic inflow model
 
(including a time constant) are the unknown parameters
 
to be identified.
 

Two parameter identification methods are applied and
 
their relative merits evaluated: Iterative equation
 
error estimation with updated Kalman filter and the
 
maximum likelihood method. The latter method, though
 
requiring increased computer effort per iteration, was
 
found to be more versatile.
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INTRODUCTION
 

The identification method used in reference 1 is
 

based on the experience gained from references 2 and 3
 

where states and parameters were determined simul­

taneously with the help of an extended Kalman filter.
 

The filter can easily diverge unless good initial
 

estimates are available. Particularly in reference
 

3 a considerable effort was applied to obtain such
 

good initial estimates. The test data were first
 

processed with a digital filter that took out high
 

frequency noise without distorting the main signals.
 

The data were then processed with a Kalman filter based
 

on the Euler equations,which do not contain the
 

unknown parameters. Thus measurement bias was removed
 

and missing channels were reconstituted. Finally a
 

least squares algorithm was applied to obtain estimates
 

of the unknown parameters. The subsequent application
 

of the extended Kalman filter led to modified parameter
 

estimates, however it is not clear whether or not
 

these modifications represent improvements. In any
 

case the modifications were not large, and the initial
 

estimates appeared to be satisfactory approximations.
 

In trying to apply the experience from reference 3
 

to wind tunnel model transients a difficulty arises,
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in that no equivalent to the Euler equations for the
 

aircraft exists. Thus there is no way of using a
 

Kalman filter which is free of the unknown parameters.
 

Instead, if a Kalman filter is to be applied,
 

estimates of the parameters must be inserted. Another
 

difficulty for our wind tunnel model tests is that
 

only flapping deflection measurements are made, while
 

the rates of deflection and the accelerations are not
 

measured. Thus the Kalman filter with the estimated
 

parameters is called upon to provide both rates and
 

accelerations. Finally, the least squares algorithm
 

of reference 3 was replaced in reference 1 by a
 

sequential linear estimator for the parameters.
 

This has the advantage that finite initial parameter
 

covariances can be used, and that the time history of
 

the parameter covariance provides a measure for the
 

time beyond which no more useful information can be
 

extracted from the test data. As far as digital
 

filtering is concerned it was found in reference 1 that
 

a cut-off frequency range from 2.5 to 2.9 removed the
 

high frequency noise without unduly distorting the
 

main signal.
 

The method used in reference 1 worked well in the
 

computer experiments using normal flow transients at
 

.4 advance ratio for the identification of the Lock
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number and of the collective pitch angle. However, a
 

number of questions had to be answered by the sub­

sequent studies. It had been decided to begin wind
 

tunnel model rotor transient testing with constant
 

acceleration pitch stirring inputs, and later follow
 

up with normal flow transient testing. Therefore, it
 

was desirable to perform computer experiments with
 

pitch stirring transients. All of the identification
 

work reported here concerns such transients. The
 

linear sequential estimator used in reference 1
 

requires the simultaneous integration of the filter
 

and of the covariance differential equations. A
 

simpler "global" estimate requires only the inversion
 

of a system of linear equations for the unknown
 

parameters and the evaluation of a number of integrals
 

over the time period of the transient. Therefore, a
 

number of comparisons were made between these two
 

methods. Finally, the Kalman filter for the test data
 

requires estimates of the unknown parameters. The
 

question arises whether an iterative form of the
 

method is practical, where the identified parameters
 

are reinserted into the Kalman filter and a second
 

identification is performed, etc. This iteration
 

method was tried out in several cases.
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While the substitution of the theoretical blade
 

Lock number by an equivalent Lock number can be
 

expected to provide a reasonably good approximation of
 

dynamic rotor wake effects if the transient is
 

relatively slow and does not contain high frequencies,
 

a better dynamic wake representation is given by
 

introduction of the L-matrix (reference 4) together
 

with a time constant (reference 5). For zero advance
 

ratio the L-matrix degenerates into a L-scalar, so that
 

a two parameter dynamic wake description is obtained.
 

A single blade representation is now no more applicable,
 

and a multi-blade analysis is necessary. A number of
 

computer experiments were conducted for this case
 

whereby the blade Lock number was treated as third
 

unknown parameter.
 

During the last decade the maximum likelihood
 

method of parameter identification has been success­

fully applied to airplane and helicopter transient testing.
 

This method does not require preprocessing of the test
 

data and also does not need complete measurements of
 

the deflecitons, of their rates and of the accelerations.
 

The parameter covariance estimates obtained with this
 

method are more meaningful than those obtained with
 

the linear sequential estimator used in reference 1. A
 

number of cases were treated with the maximum likelihood
 

method.
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In its most general form presented in reference 6
 

the maximum likelihood method is capable of handling
 

identification problems for cases with both measurement
 

and system noise. The method then becomes computa­

tionally quite complex and has not as yet been applied
 

to aircraft transient testing. The usual assumption
 

is that the system is free of noise. In this case
 

the maximum likelihood method is greatly simplified
 

(output error method). It has been applied in this
 

report in the simplified form. If the random system
 

noise is measured, the simplified method is still
 

applicable. However in the planned wind tunnel model
 

testing the system noise will not be measured, and
 

though it is expected to be small, the question is
 

whether or not it will unacceptably degrade the
 

estimates of the parameters. Therefore a few computer
 

experiments were conducted with both simulated mea­

surement noise and with simulated system noise, whereby
 

the maximum likelihood method was applied in its
 

usual simplified form.
 

EXCITATION OF PITCH STIRRING TRANSIENTS
 

For the wind tunnel experiments with pitch stirring
 

transients the initial state of the rotor will be given
 

by prescribing the advance ratio, the collective pitch
 

angle, the rotor angle of attack (set at approximately
 

SRPRODUCIBILITY OF 
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zero) and the cyclic control setting that will be
 

zero longitudinal cyclic and 1.50 lateral cyclic. 

At the time t pitch stirring is initiated. Denoting 

by w the angular pitch stirring speed, positive in 

the direction of rotor rotation, and by A the pitch 

stirring angular acceleration assumed to be constant,
 

we have
 

W = A(t - to ) (1) 

For a progressing mode w is negative, for a regressing
 

mode w is positive. In a rotating reference system the
 

blade pitch angle is given by
 

0 = 0o + 1.5 cos [w(t-t ) + t]o
 

0 for t < to
ci C2) 

A(t - to ) for t > to 

In a multiblade representation the blade pitch angle of
 

the kth blade is
 

Ok = o - 0I sin 'k + 01 cos lkk (3) 

where 0 for t 4 to
 
0I = (4)
 

1.5 sin o(t-t ) for t > to
o
 

1.5 for t < to 

0 = (5) 

1.5 cos w(t-t0 ) for t > to
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0I represents forward cyclic pitch, 01, represents
 

left cyclic pitch. The wind tunnel experiments will be
 

conducted with a variety of pitch stirring accelerations.
 

The computer experiments were mostly conducted with a
 

pitch stirring acceleration of
 

= - .1/v (6)
 

which is in the progressing sense.
 

Since in the non-dimensional time units used here
 

the time of one rotor revolution is 2w, the angular
 

pitch stirring velocity one rotor revolution after
 

initiation of pitch stirring is .2, that is one fifth
 

of the rotor angular speed. Figure 1 shows the time
 

history of blade pitch for about two rotor revolutions
 

(to = 12, t = 12 to 24) in a rotating frame of reference.
 

Figure 2 shows the time history of blade pitch in
 

multiblade representation, that is 61 and i vs.
 

time t . Figures 1 and 2 refer to the progressing mode.
 

A convenient way of conducting the computer
 

experiments is to impose at time t = 0 a step input
 

of lateral cyclic control. If to is sufficiently large,
 

the transient from the step control input will have
 

subsided when pitch stirring begins at t = to. It
 

was found that for single blade identification a value
 

of to = 12 is adequate. In the multiblade identification
 



8
 

including the time delayed rotor wake this value was
 

found to be insufficient. Instead, to = 70 was used.
 

Measurement noise was simulated by polluting the
 

analytical flapping response with zero mean white
 

Gaussian computer generated random sequences. System
 

noise was simulated by adding to the multiblade inflow
 

coordinates in the system equations zero mean white
 

Gaussian sequences. Data processing extended over
 

nearly two rotor revolutions, from to to to + 12. In
 

Chapter 3 it will be shown that this choice leads to
 

approximately optimal data utilization. If a shorter
 

time period were used, large errors in the parameter
 

estimates would occur. If a longer time period were
 

used, the additional data processing would be unnecessary
 

in view of the adequate accuracy of the parameter es­

timate using a time period of two rotor revolutions.
 

For the wind tunnel experiments a variety of collective
 

pitch settings 8° will be tested. For the computer
 

experiments the collective pitch setting was mostly
 

assumed to be OO = 20.
 

LINEAR SEQUENTIAL AND GLOBAL ESTIMATORS
 

In reference 7 the parameter identification is
 

performed from a "system equation"
 

=0 (7) 



and a "measurement equation"
 

= h(6) + v (8) 

Equation 8 is actually the system equation arranged
 

in a form where the left hand side contains all terms
 

that are free of the unknown parameters 0. If the
 

system equation is linear in the state variables E and
 

in the unknown parameters e, h(,e) is a linear
 

function of the parameters. The noise vector v refers
 

only to the terms on the left hand side of equation 8.
 

The state variables that are multiplied by the unknown
 

parameters in h(9,e) must be noise free. To obtain
 

the 8 both C and E must be known. If only part of the
 

variables in c and E have been measured, Kalman
 

filtering is required in order to reconstitute the
 

missing terms.
 

Denoting by PO the parameter covariance matrix 

and by R the noise covariance matrix, assuming that v 

is zero mean Gaussian white noise, optimal parameter 

estimates 0 can be obtained by minimizing the cost
 

function 

T 

J=(i/2){'(e(o)-O(o)) Pe (o)(CO)-0(o))+j(C-h(,0)YRl 

0 (9) 
(C-h( ,0))dtl 
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where the apriori estimates 0(0), P (0) are assumed to
 

be given together with the noise covariance matrix R.
 

The differential equations associated with this
 

optimal problem are (see for example reference 8)
 

o P (h/O) T -1 (c - h(9,0)) (10) 

Pe = - P (ah/ae)T R-l (h/ae)P 0 (11) 

Beginning with the initial a priori estimate for the
 

parameters 8(0) and their covariance matrix P0(0),
 

these equations can be integrated and result at each
 

time t in the optimal parameter estimate given the
 

preceding measurements. Since the initial parameter
 

covariance is usually not known and the assumed
 

values are rather arbitrary, the matrix P from
 

integrating equation 11 is not a useful measure of the
 

actual parameter covariance. However, once P has
 

approached zero, the effect of any further measurements
 

on the estimate 0 also approaches zero as is evident
 

from equation 10. P0 , therefore, is valuable in judging
 

for what length of time the data should be processed.
 

Equations 10 and 11 represent the "linear estimator"
 

used in references 1 and 7.
 

REPRODUCIBILITY OF THE 
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Instead of the sequential estimation by integrating
 

equations 10 and 11 with some initial estimates e(0)
 

and PC(0), one can also obtain a "global" estimate
 

directly from equation 9. If one assumes that one and
 

the same parameter estimate ; is valid throughout the
 

time range from 0 to T, one obtains by setting
 

a /ie= 0
 

T
 
-
rPek0)+f(3h/0)TR-l(3h/ae)dtr [Ps601(0)
 

0
 

(12)
T 


-
+ f (ah/e)TR 1 dt]
 

0
 

see for example the appendix of reference 7. A con­

venient assumption is Psi(0) = 0, which means an
 

infinite initial parameter covariance matrix. The
 

initial estimate 0(0) is then not required and the
 

evaluation of equation 12 is reduced to the deter­

mination of fixed boundary integrals, a matrix
 

inversion and a matrix multiplication. The parameter
 

covariance matrix at the time T is given by the first
 

factor of equation 12:
 

T
 

- 1
P0 (T) = [Ps0) +/ (ah/9e)TR-l(3h/ao)dt] (13) 

0
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which follows from the integration of equation 11, (see
 

for example the appendix of reference 7). P (T) from
 

equation 13 can again be used to judge whether or not
 

all the significant information contents has been
 

extracted from the data. A comparison between the
 

estimation with equations 10 and 11 and with the
 

"global" method of equation 12 will be given later
 

for a specific example.
 

ITERATIVE EQUATION ERROR ESTIMATION WITH UPDATED
 

KALMAN FILTER
 

When using the parameter estimation methods of the
 

preceding section it is necessary to first determine
 

from the noisy deflection measurements estimates for the
 

deflections, for their rates, and for the accelerations.
 

In reference 1 this was done by passing the noisy
 

deflection data through a digital filter that takes out
 

the noise above a certain frequency without distorting
 

the signal in the low frequency range. The filtered
 

deflections were then either differentiated twice, or
 

a Kalman filter was applied in order to obtain the
 

derivatives. Later studies showed large errors in the
 

parameters for too low cut-off frequency of the digital
 

filter. It was then decided to omit the digital filter
 

and instead use the Kalman filter in an iterative way.
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In typical examples already the second iteration was
 

as accurate as the result with the combined digital and
 

Kalman filter given in reference 1.
 

Only simulated noisy blade flapping measurements
 

were used in the Kalman filter. The filter provided
 

the deflection rates and accelerations needed for the
 

"global" parameter estimate, but not the deflections
 

themselves. In other words, the parameter estimate
 

was performed with the simulated noisy deflection
 

measurements and with the rates and accelerations
 

from the Kalman filter. In the first iteration a
 

Kalman filter with estimated parameter values was
 

used (typically 20% error). After updated parameter
 

values had been obtained, a second pass with an
 

updated Kalman filter was performed, etc. The deflection
 

data remained the same for each iteration, but the
 

rates of deflection and the accelerations were updated.
 

As will be seen in the numerical examples this method
 

worked well for the single blade identification. The
 

reason for the good parameter identification in spite of
 

substantial measurement noise is probably the following.
 

In the equation of single blade flapping the flapping
 

deflection term includes a large part that is
 

independent of the Lock number, and only a relatively
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small part that is dependent on the Lock number.
 

Therefore, the major part of the noisy deflection
 

term can be included in the left hand side of equation
 

8 in c. The method allows noise in this part. The
 

smaller part of the flapping deflection term that is
 

of aerodynamic origin and includes the blade Lock
 

number is part of the right hand side of equation 8
 

and should be noise free. Apparently the actual
 

noise in this relatively small term does not lead to
 

a substantial bias in the parameter estimate.
 

MAXIMUM LIKELIHOOD ALGORITHM
 

The maximum likelihood method for our particular
 

case pertains to a system equation (zero system noise)
 

x = f(x,u,O) (14) 

where x is the state vector, u the input vector as­

sumed to be known, 0 is the vector of unknown para­

meters that may include initial values of state
 

variables. The measurement equation is assumed to be
 

linear and of the form
 

y = H x + v (15)
 

y is the vector of observed quantities, H is a matrix
 

relating the state variables to the observations, 
v
 

is the vector of random measurement errors, assumed to
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be zero mean white noise with given covariance matrix R
 

T
E[v(t)v (T)] = R 8(t, T) (16)
 

R is assumed to be constant with time. Though the
 

preceding equations do not show bias terms, bias
 

errors could easily be included in the unknown
 

parameter vector 0.
 

A sample of measurements yl Y2 . . . yn is now 

made during the time of the transient and the parameter 

estimate 0 is selected such that the conditional
 

probability of this sample of measurements given 0
 

is maximized. 

0 = max p(y1 . . . Yn/9) (17) 

The following steps lead to the maximum of the likelihood 

function p(yl . . * Yn/e), though there is no assurance 

that the maximum is global. The method outlined here is 

called quasilinearization with the modified Newton-


Raphson method. It assumes Gausian distributions of
 

the random variables.
 

1 Select an initial parameter estimate B = 00.
 

2 Solve the system equation 14 with this parameter
 

estimate
 

x = fxu, ) (1)
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The initial conditions can either be obtained
 

from the measurements, or, where this is not
 

feasible, they can be included in the unknown
 

parameter vector 0.
 

3 Calculate for each measurement the "innovation term"
 

A
yj H x (19)
 

4 Solve the "sensitivity equations"
 

1
SX/%k = af/a k + F(t) 3 x/ 0 k (20) 

where F(t) = aF(t)/a xj
 

The initial conditions of Wx/ek are zero except when
 
A 

x(0) is identified as part of the parameter vector 0.
 

In this case the initial partials have the value one.
 

5 The likelihood function for zero system noise is
 

NT
J = log P(yl " Yn/0) = (1/2) X1 T (21)
j=l J I 

Determine now the gradient of this function with
 

respect to 0 

N T 1 
= 

j=l 
V. R -I 
] 

B/DO
] 

(22) 
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where 3V /D=- H D x./30 (23) 

6 Compute the information or sensitivity matrix 

M = N (av/80)T R 1 8v./De (24) 

7 

The inverse M­ 1 of the information matrix 

provides a lower bound for the covariance of 

the updated parameter estimates. 

The updated parameter estimate is 

8 =6 + A O (25) 

where Ae -M- (J/ 3 0 )T 

8 Go now back to equation 18 with the updated 

parameter estimate and repeat the steps to 

equation 25. Reiterate until convergence of 

the information matrix and of the parameter 

vector is obtained. 

SINGLE BLADE PARAMETER IDENTIFICATION 

We first present a case where the sequential 

estimate is compared to the global estimate of the 

parameter y (blade Lock number). The excitation of 

the progressing mode is given by 
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0 = 1.5 cos (w + l)t
 

o for t 4 12 
= (26) 

(.i/v)(t-12) for 
 t > 12
 

This excitation is somewhat different from that defined
 

by equation 2 and illustrated in Figure 1. While
 

equation 2 defines a constantly accelerated progressive
 

excitation, equation 26 deviates somewhat from a
 

constant acceleration. The difference is, however, not
 

essential. The collective pitch angle is 0 0 0. The
 

rotor advance ratio is p = .4. The blade frequency in
 

the rotating system is P = 1.2. System and measurement
 

equations for the single blade case are given by
 

equations 14 and 15 of reference 1.
 

The sequential estimate of y and of its covariance,
 

was found from equations 10 and 11, using as initial
 

estimate at time t = 12 the value zero, and using the
 

initial covariance Po = 2000. The global estimate
 

was determined from equation 12 setting the initial
 

covariance to infinite, or P-1 = 0. Figure 3 gives the
 
0
 

estimate y and its covariance from the sequential method
 

for the time t = 12 to 24 and also the value of the
 

global estimate, y = 5.05. The true value of this
 

1EPRODUCIBIL1Ty OF T-Hf 
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parameter is 5.00. From the covariance plot it is seen
 

that at t = 16 the covariance is quite small as
 

compared to the initial value so that any further data
 

processing will not appreciably change the estimate.
 

This is born out by the ; plot. The global estimate
 

for the time t = 24 agrees with the sequential
 

estimate at this time, as it should be, since there
 

is little difference between assuming the initial
 

covariance as P = 2000 or Po = -. The method used
 

for figure 3 is the same as that used in reference 1.
 

The flapping response data were noise polluted by
 

white noise with a standard deviation of a8 = .2.
 

This is a large noise since the maximum flapping
 

excursion is only 1.2. The polluted flapping
 

deflections were then passed through a digital filter
 

with the cut-off frequencies of 2.5 to 2.9. Rates
 

of deflections and accelerations were determined from
 

a Kalman filter with the erroneous value of y = 4.0.
 

Sequential and global estimates were determined with
 

the flapping deflections from the digital filter output
 

and with the flapping rates and accelerations from
 

the Kalman filter output. It is seen that this method
 

worked very well in this case. The effect of the
 
I 
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digital filter cut-off frequencies is, however,
 

substantial. The global method gave for the same
 

case the following estimates
 

Cut-off Frequency Estimate y for t = 24
 

WCW 
 Lt
 

1.7 1.9 5.27
 

2.5 2.9 5.05
 

3.5 3.9 4.89
 

Because of the sensitivity of the estimate with
 

respect to the cut-off frequencies of the digital
 

filter it was decided to omit the digital filter and
 

to use only the Kalman filter, however in an iterative
 

way.
 

The following example is again for a rotor advance
 

ratio of p = .4 blade frequency in the rotating system
 

=
W1 1.2 and for a collective pitch setting of 00 = 20.
 

Constant acceleration of progressive pitch stirring
 

according to equation 2 is assumed, whereby t = 12.
 

The polluted flapping response was processed with a
 

Kalman filter using the initial parameter values of
 

y = 4.0 and 6 = y0o = 8.0 as compared to their true
 

values of 5.0 and 10.0 respectively. The two parameters
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assumed to be unknown, y and 6, were determined by
 

the global estimate equation 12 with P0 (0) = 0 and
 

R = I. For the initial conditions of the Kalman
 

filter (0) was taken from the simulated measurement
 

and A(0) was taken with a 20% error. The following
 

table gives in addition to the parameter values for
 

4 iterations also the diagonal terms of the
 

covariance matrix. There is some overshoot in both
 

parameters and the convergence is not very good.
 

Note that the covariance does not properly reflect
 

the actual errors in the parameters.'
 

6 = .2, R = I
 

Parameter y 6=Y8 0 Py P
 

True value 5.00 10.00
 

Initial estimate 4.00 8.00
 

Iteration 1 5.66 8.95 .092 .113 
(i.6 CPU 
seconds Der 2 4.76 10.31 .082 .111 
iteration) 

3 4.52 10.09 .073 .111 

4 4.59 9.93 .071 .111
 

We now treat the same problem with the maximum
 

likelihood method, and first assume the correct initial
 

conditions 0(12) = -.921 and A(12) = .986. The first 3
 

iterations are given by
 

REPRODUCBILITY OF THuD 
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a = .20 

Parameter y I J/y ai/a
 

True value 5.00 10.00
 

Initial estimate 4.00 8.00
 

Iteration 1 4.94 9.70 -6.11 -5.84
 
(2.6 CPU
 
seconds per 2 4.91 9.82 .10 -.34
 
iteration)
 

3 4.91 9.82 -.002 .001
 

Though the computer CPU time is now per iteration higher
 

than for the preceding method, the convergence is very
 

rapid and the accuracy is very good. The Cramer-Rao
 

lower bound for the parameter covariance matrix for
 

the second and third iteration is
 

211 -.036 

M- I = 6 R= 

-.036 .365 

In order to obtain the covariances for the actual
 

=
simulated measurement noise a B .20 one must multiply 

the above values by .04. Thus the lower bounds for 

the parameter standard deviations are a = .092,Y
 

as = .12 which is quite close to the errors in the
 

second iteration.
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In a second version of the same problem it is
 

assumed that the initial conditions are unknown and
 

must be included in the parameter identification.
 

The following table gives the results of the first
 

3 iterations.
 

a .20
 

Parameter I y 6 (12) A(12)
 

True value 5.00 10.00 -.921 .986
 

Initial estimate 4.00 8.00 -.750 1.200
 

1.02
Iteration 1 4.96 9.68 -. 89 

(t.3 	CPU
 
seconds per 2 4.90 9.85 -. 89 1.01
 
iteration) 

3 4.90 9.85 -. 89 1.01 

The parameter covar-ance lower bounds are 

.230 -.059 -.048 .023
 

-.059 .405 .058 .022
 
-I R=I
 

-.048 .058 .130 -.066
 

.023 .022 -. 066 .228
 

The computer CPU tine per iteration is once more increased,
 

but the convergence is excellent and the accuracy of the
 

estimate is very good. Again the inverted information
 

matrix gives physically meaningful covariances for the
 

unknown parameters.
 



One can then conclude that for single blade
 

identification with two unknown parameters y and
 

= yOo the iterative equation error estimation with
 

updated Kalman filter gives the lowest CPU time per
 

iteration, however because of the much faster convergence
 

of the maximum likelihood method and because of its
 

greater versatility (inclusion of initial response
 

values in the set of unknown parameters), it definitely
 

is preferable. For the following cases the maximum
 

likelihood method will be used.
 

MULTIBLADE PARAMETER IDENTIFICATION
 

The preceding example is now treated with a multi­

blade representation. The excitation in multiblade
 

coordinates is given by equations 3 to 5 with to = 12.
 

The pitch input is shown in Figure 2 assuming a
 

constant progressing stirring acceleration given by
 

equation 6. The multiblade responses Po, 81, 08, are
 

polluted from t = 12 to t = 24 with zero mean Gaussian
 

noise of standard deviation .2.
 

We first identify the parameters y and 6 = y 0
o


with given initial values of 00 o I, I 8,II' II
 

at t = 12. The responses are obtained with the periodic
 

system equations. However, for the parameter identi­

fication, constant coefficients are assumed so that
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modeling errors are present. The initial states at
 

t = 12 are?
 

00 	= .880, 01 = -.983, Oil = 1.698, a = .060
 

= .038, ; = .034, Ai = .03 = -o030
 

refers to the reactionless mode of a four-bladed
Rd 


rotor, 50 is the coning angle, 0I represents forward
 

tilt and ii left tilt. For the constant coefficient
 

approximation 0 d does not couple with the other
 

states and can be omitted. The multiblade equations
 

for a four-bladed rotor are given in reference 9.
 

The exact and the noise polluted responses 1 , ii
 

are shown in figure 4.
 

Using the above initial conditions one obtains with
 

the maximum likelihood method the following values
 

Parameter 	 Y 6
 

True Value 	 5.00 10.00
 

Initial Estimate 2.50 	 5.00
 

Iteration 1 4.97 8.46
 

(4 CPU seconds 2 5.00 9.62
 

per iteration) 3 4.99 9.65
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The lower bound for the parameter covariance in the
 

3rd iteration is
 

M-I= ,R I
 

.003 .269
 

The result as compared to the preceding single blade
 

identification is better for y and worse for 6. Note
 

the assumed large errors of 50% in the initial para­

meter estimate.
 

In order to assess the effect of errors in the
 

initial states at t = 12, it is now assumed that all
 

initial states are zero. One then obtains:
 

=0 = AII = 0 at t = 12 

Paraetpr y 6
 

True value 
 5.00 10.00
 

Initial estimate 2.50 5.00
 

Iteration 1 5.68 9.u5
 
(4 CPU seconds
 

per iteration) 2 4.87 10.27
 

3 4.92 10.26
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For R = I the inverted information matrix is
 

4
.


0151 

.043 .278
 

The result shows that large errors in the initial states
 

can be tolerated.
 

Finally the 3 initial deflections have been assumed
 

as unknown parameters, increasing the number of para­

meters to be identified from 2 to 5. 'The initial
 

values for the response rates were assumed to be zero:
 

= ;I I 
Ao A, = = 0 at t = 12. The initial values of 

0o0, i i are given in the table:
 

Parameter Yi 6 0 (12 l(21 I512) 

True values 5.00 10.L) .880 -.983 I1.E98 

,
Initial estinates 2.50 5. 1.00 -1.00 2.C3
 

Iteration 1 4.94 8.25 .979 -1.039 1.926 
(6 CPU seconds 
per iteration) 2 

3 

5.01 

5.00 I 
9.97 

9.98 

.920 

.920 

-.985 

-.984 

1.732 

1.730 
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The inverted information matrix for y and 6 is: 

.133 -. 006 

M - = R = I 

-.006 .304 

It is seen that now the convergence is much faster, 

the second iteration being even better than previously 

the 3rd iteration. However, the CPU time per 

iteration is increased from 4 seconds to 6 seconds. 

The following table compares the results of the 

various methods. The last 4 rows refer to the maximum 

likelihood method. 

True Value 

Iterated equation 
error, single blade 

Single blade, correct 
initial conditions 

Single blade, identi­
fied initial conditions 

Multiblade, zero 
initial values 

Multiblade, zero 
initial rates iden-
tified initial 
deflections 

Iterations 

3 

2 

2 

2 

2 

y 

5.00 

4.52 

4.91 

4.90 

4.87 

5.01 

6 

10.00 

10.09 

9.82 

9.85 

10.27 

9.97 

Variances of 

Y 6 

.073 .111 

.0085 .0146 

.0092 .0162 

.0060 .0111 

.0053 .0210 

Total CPU 
time, sec. 

4.8 

5.2 

8.6 

8.0 

12.0 

The number of iterations indicated in the table is that 

for which convergence has been achieved. The iterated 

equation error estimation with updated Kalman filter 
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needs the lowest total computer effort, however, the
 

accuracy of the estimate is worst for y. The maximum
 

likelihood estimation, due to faster convergence, needs
 

only moderately more computer effort and yields better
 

accuracy. For the single blade the identification of
 

the two initial states, 8(12) and 8(12),results in the
 

same good accuracy of the parameters as when using
 

the correct initial conditions.
 

The multiblade identification - despite modeling
 

errors by omitting all periodic terms in the equations
 

of motion and despite assuming zero initial con­

ditions - also converges rapidly and provides only
 

slightly less accuracy of the parameters. The multi­

blade analysis with identification of the 3 initial
 

deflections gives the best accuracies, however with
 

more than twice the computer effort. Note that the
 

convariance estimate of the Kalman filter method is an
 

order of magnitude greater than for the maximum
 

likelihood method. The latter values have been obtained
 

-
from M for R = I by multiplication with .04, since
 
'04 0]
 

R .04] They represent lower bounds of the
 

actual parameter covariances but agree fairly well with
 

the errors found for the identified parameters. This
 

is not true for the covariance estimates of the Kalman
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filter method. The latter method was attempted
 

also for the multiblade representation but was
 

found to require impractically long computer runs
 

per iteration combined with a lack of convergence.
 

The multiblade identification studies were, therefore,
 

limited to the maximum likelihood method.
 

DYNAMIC WAKE PARAMETER IDENTIFICATION FOR ZERO ADVANCE RATIO
 

For the case of zero advance ratio reference 10
 

gives a mathematical model of the dynamic rotor
 

wake that has 2 constants: The quasi-steady wake
 

number L that relates the pitching and rolling
 

moments of the rotor to the sine and cosine components
 

of the wake velocity, and a time constant r. The
 

third rotor constant is
 

A = B y/8 (27)
 

where B is the tip loss factor and y the blade Lock
 

number. The inflow angle from the rotor wake is
 

assumed constant over the radius and represented
 

for the kth blade by
 

= +
Xk o XI Cos *k + XII sin 'pk (28)
 

In a linearized analysis for zero advance ratio the
 

coning mode is uncoupled from the tilting modes. The
 

system equations of reference 10 are in matrix notation
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1 --A 1o-A -2 A 0 

- 2_ 1!ail A 2 -(W-i) -A 0 A 

AI 0 AL/t AL/T 0 -(AL+1)/T 0 aII 

i -AL/T 0 0 AL/t 0 -(AL+1)/T OI 

xI
 

0 Aa
 

+ -A 0 0
 

0 -AL/T 

AL/T 0 (29)
 

There are 
6 state variables: 0I3 1, 0I 11, XI , 
xI
 

The flapping angles of the 4 blades 1, 82,03,84 are 

measured in the rotating system and combined into 

a1-53 and 82-64. The measurement equations - that is 

the relation between the measured quantities and the 

system state variables - are given by 

[m ] [('1-3/2 
 cos t 
sin t [I'1+ 

[nj 

(30)
0m 02(04)/2 -sin t cos t 0II I n 

where l, n2 are measurement noise of 8m 9nd 'm2
 

respectively. Thus only 2 of the 6 state variables
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are measured. The parameters to be identified are
 

A, AL/T, li/T, and the blade natural frequency in
 

the rotating system is assumed to be given:
 

l= 1.2.
 

The pitch stirring input is again described by 

equations 4 to 6 (progressing mode). The rotor 

wake causes an increased stabilization time. 

Therefore to = 70 was selected instead of to = 12. 

The measurement noise nl' is assumed to be whiten2 


and Gaussian with the standard deviations
 

aml m2
 

The reduction to one half the noise amplitude as
 

compared to the preceding examples is justified by
 

the fact that 0ml and 0m2 are substantially smaller
 

than a and aii see figures 4 and 5.* The true values
 

of the 3 parameters for which the response was
 

determined are
 

A = .500 AL/T = .250 l/T = .125
 

These values are in the range expected to be found
 

for the model rotor. They will depend essentially
 

on the collective pitch setting. In preliminary
 

*Note that figure 5 refers to a m = .05
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computer runs it was found that the initial estimate
 

of l/T should not be zero.
 

Using the true initial conditions one obtains
 

with the maximum likelihood method
 

Paraneter A AL/T !/t
 

True value .500 .250 .125 

Initial estinate U00I .201 .250 

Iteration 1 .500 .290 .086 
(3.8 CPU
 
seconds ner 2 .486 .253 .125
 
iteration)
 

3 .487 .255 .128
 

.487 .255 .128
 

With the inverted information matrix for the 4th
 

iteration
 

F.052 .059 .013 

I = .059 .094 .023 , R = 

013 .023 .9!0 J 

Despite the fact that only 2 out of 6 state variables
 

are measured, the parameter identification is very
 

good and the second iteration has almost converged.
 

The following case is the same as before except
 

for regressing excitation (+w) instead of progressing
 

excitation (-t)
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Parameter i A AL/ 1/t
 

True Value .500 .250 .125
 

Initial Estimate .400 .200 .250
 

Iteration 1 .524 .262 .087
 

(3.8 CPU 2 .540 ,264 .134
 

seconds per 3 .536 .264 .139
 

iteration) 4 .536 .264 .139
 

with Fit .179.167 .0291] 

M = .179 .256 .045 , R = I 

.029 .045 .013 

Though convergence is good and the second iteration
 

has almost converged, the errors are now larger
 

-
than before as expressed also by the M matrix.
 

The physical reason why regressing modes are less
 

suited for rotor wake identification is the fact
 

that at w = .2 the excitation is in resonance with
 

the regressing flapping mode. At this condition
 

no dynamic rotor wake exists since aerodynamic
 

excitation and aerodynamic damping cancel each other.
 

Since regressing mode transients include a frequency
 

region with a weak dynamic rotor wake, the identi­

fication of the wake parameters is less good than for
 

progressing mode transients.
 

OF TIEREPRODUCIBILITY 
OeGLNMAL PAGE IS POOR 
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Finally the same case is treated with very large
 

errors in the initial parameter estimates. Now the
 

4 initial displacements are identified in addition
 

to the 3 parameters, resulting in 7 instead of 3
 

unknown parameters. The initial rates are assumed
 

i I I
to be zero: i = ;II = XI = = 0 at t = 70. 

Using progressing excitation one obtains 

TO1m I = YO1m2 = .10
 

Parameter A AL/T i/' 0 (70) 8 (7 0 )X 1 (70) Ii (70) 

True Value .500 .250 .125 .497 .188 -.874 -.331
 

Initial Estimate .400 .067 .083 .601 .305 -.531 -.268
 

Iteration 1 2443 .184 .150 .500 .211 -.864 -.309
 

(6? CPU seconds 2 .471 .233 .115 .497 .210 -.859 -.322
 

per iteration) 3 .474 .235 .119 .497 .211 -.870 -.327
 

4 .474 .236 .120 .497 .211 -.871 -.327
 

11-I diagonal 4th .121 .184 .055 .088 .095 1.069 .796
 
iteration, R = I
 

The convergence is again good and the second iteration
 

is almost converged. The errors in the 3 parameters
 

are somewhat larger than before but still acceptable.
 

The errors in the initial conditions, except for 111
 

- I
are also small, though the M matrix shows larger
 



covariances for XI and X11 4 The initial estimate of
 

the initial displacements 1 ,Sii, I, AII at t = 70
 

are not arbitrary but are determined from the
 

equilibrium equations before the beginning of pitch
 

stirring, using the initial estimates of A, AL/T
 

and i/t. Since the true initial conditions for XI
 

and A are unknown, their inclusion in the identi­

fication is necessary. 01 and i are measured, thus
 

their initial conditions are known within the accuracy
 

of the measurement and their inclusion in the
 

identification may not be required if the measuring 

error is small. The computer time for identifying 

all 4 initial displacements (13I Bir Al, Aii at t = 70) 

is however quite moderate, so that their identi­

fication is practical. 

On the basis of the computer experiments the
 

method to be used for the rotor model tests at
 

zero advance ratio is then as follows:
 

1. 	Estimate the parameters A, AL/, l/t
 

2. 	Determine from the steady state equations 29 

with zero rates and zero accelerations the 

initial values for a,, 011 , XI, AII at time t = to, 

using the estimated parameters.
 

3. 	Assume zero initial rates:
 

= =
;i I AII at t
I 	 - = = 0 = to 
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4. 	Apply the maximum likelihood algorithm to
 

equation 29 and determine iteratively the 7
 

parameters A, AL/T, l/, fi(t 0 ), 1 1 (( 0 ), xi(to),
 

XIC(t0).
 

SIMULTANEOUS MEASUREMENT AND SYSTEM NOISE
 

Though the simplified maximum likelihood
 

algorithm as currently used in aircraft parameter
 

identification work and as defined here by equations
 

18 to 25 does not provide for system noise, such
 

noise is unavoidable in full scale and wind tunnel
 

tests. The origin of the system noise is either
 

in atmospheric or wind tunnel flow turbulence, or
 

in modeling errors. In order to assess the detri­

mental effects of the system noise on the quality
 

of the maximum likelihood estimates, the preceding
 

example was recomputed under the assumption that
 

equation 29 has an additional noise term on the
 

right hand side of
 

A 0 

0AV2] 
(29a) 

-(AL + l)/r 0 

0 -(AL + l)/T
 

This means that we have noisy inflow components XI' AII.
 

For V1 , V2 a zero mean computer generated Gaussian
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sequence with standard deviations aVI = aV2 = .1 was 

assumed. Figure 6 shows the noise polluted inflow
 

components II, XIi" In addition noise was added
 

as before in the measurement equations 30, however
 

= 
now with standard deviations a$ml am2 = .05 which 

is one half the previously assumed value and which is
 

more representative of the expected measurement errors.
 

We first determine the effect of the lower
 

measurement noise on the parameter identification:
 

aaml = aQm2 .05, aVI = aV2 = 0 

Parameter A AL/T l/T 8 (70) 8 (70) X (70) X1(70) 

True Value .500 .250 .125 .497 .188 -.874 -. 331
 

Initial Estimate .400 .067 .083 .601 .305 -. 531 -.268
 

Iteration 1 .455 .189 .159 .504 .195 -. 880 -.330
 

2 .483 .238 .119 .500 .194 -. 867 -. 339
 

3 .485 .239 .123 .501 .194 -.874 -.341
 

4 .485 .239 .123 .501 .194 -.874 -.341
 

It is seen that the accuracy of the parameters is
 

improved as compared to the preceding case of
 

aaml = a8m2 = .10, as it should be. 

'REPRODUCIBILITY OF THE
 
ORIGINAL PAGE IS POOR
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Combining now the measurement and system noise 

one obtains: 

a ml = f8m2 =05, (F = V 2 
= .10 

Parameter A AL/T I/T U (70) 8I (70) X (70) X1(70) 

True Value .500 .250 .125 .497 .188 -.874 -.331 

Initial Estimate .400 .067 .083 .601 .305 -.531 -.268 

Iteration 1 .455 .189 .153 .505 .188 -.860 -.319 

2 .482 .236 .115 .502 .188 -.847 -.324 

3 .483 .235 .118 .502 .190 -.853 -.325 

4 .483 .236 .118 .502 .190 -.854 -.325 

It is seen that the system noise indicated in figure 6 

has only a small detrimental effect on the accuracy 

of the identified parameters. Of all computer 

experiments of parameter identification we have shown 

here only the results of one computer run. Since these 

results are dependent on the computer generated random 

sequences, we are actually dealing with identified 

parameters that are random variables. A repeat run 

will, however show only minor differences in the 

identified parameters, so that the presented results 

in comparison to the true values can be considered 

as typical. The parameter that suffers most in its 
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accuracy when system noise is added is the reciprocal
 

time constant l/t. Even so the error is only 5.5%
 

which would appear quite acceptable for all
 

practical purposes.
 

CONCLUSIONS
 

The computer experiments presented here can be
 

used to establish preferences with respect to various
 

alternatives in the rotor parameter identification
 

schemes.
 

1. 	 Iterated Equation Error Estimation with Updated
 

Kalman Filter vs. Maximum Likelihood Method
 

For single blade parameter identification from
 

pitch stirring transients the equation error
 

method applied in an iterative form using a
 

Kalman filter with the latest parameter updates
 

worked well and required the least computer CPU
 

time. For multiblade parameter identification
 

this method became impractical because of slow
 

convergence and high computer CPU time. The
 

maximum likelihood method worked well both for
 

single blade and multiblade applications,though in
 

case of single blade identification it requires
 

somewhat more computer CPU time. The parameter
 

covariances from the maximum likelihood method are
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clearly superior to and more meaningful than the
 

covariances determined with the equation error
 

method. The maximum likelihood method also gave
 

good parameter identifications in the presence
 

of both measurement and system noise, though
 

most of the computer experiments were conducted
 

with measurement noise only. Overall one can
 

conclude that the maximum likelihood method in
 

its simplified form in which system noise is
 

not modeled, is for the applications studied
 

superior to the equation error method and thus
 

will represent the method of choice for the
 

parameter identification from wind tunnel rotor
 

model tests.
 

2. 	Fixed vs. Identified Initial State
 

Since prior to the initiation 6f pitch stirring
 

the rotor is approximately in a steady condition
 

as far as the multiblade coordinates are concerned,
 

one can always assume their initial rates as zero.
 

For two parameter identification in forward flight
 

(u = .4) the use of zero initial values for all
 

states gave good identification results. Including
 

the initial displacements in the identification ­

while retaining initial zero rates of displacement
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greatly improved the convergence and the
 

accuracy, though at a cost of about twice the
 

computer CPU time per iteration. For the mul­

tiblade analysis it appears nevertheless
 

practical to identify the initial displacements
 

in order to improve convergence and accuracy
 

of the parameters. For the single blade analysis
 

the initial value of the flapping rate is not
 

zero and must be identified.
 

3. 	Single Blade vs. Multiblade Analysis
 

If rotor wake lag is included, only a multiblade
 

analysis is possible. Without rotor wake lag and
 

using an "equivalent" Lock number to describe
 

the 	wake effects, a single blade analysis is
 

possible. Initial flapping deflection and rate
 

of deflection should be identified. The multi­

blade analysis with zero initial rates and
 

identified initial deflections is more accurate
 

though more demanding in computer CPU time per
 

iteration. The multiblade analysis is thus
 

preferable also in those cases where a single
 

blade analysis is possible.
 

4. 	Progressing vs. Regressing Pitch Stirring
 

Progressing pitch stirring leads to more accurate
 

rotor wake parameter identification than regressing
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pitch stirring, because the regressing stirring
 

transient passes through the flapping resonance
 

at which no dynamic rotor wake exists.
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Chapter 2
 

FIGURE CAPTIONS
 

Figure 1 	 Time History of Blade Pitch, Rotating
 
Reference System, Progressing Mode
 

Figure 2 	 Time History of Blade Pitch, Multiblade
 
Representation, Progressing Mode
 

Figure 3 	 Estimate 9 and its Variance for 
P(O) = 2000, '(O) = , = .2, 
00 = 0, p = .4, wi = 1.2, Progressing 
Excitation 

Figure 4 	 Exact and Noise Polluted Multiblade 
Responses , 0 51, to Inputs Shown 
in Figure 2 for " = .4, 0 = 20, 
y = 5.00, w1 = 1.20, a00 = a, = II= o2 

Figure 5 	 Exact and Noise Polluted Multiblade
 
Responses 8m1l Bm2 to Inputs Shown in
 

Figure 2 for p = 0, A = .500,
 
AL/T = .250, lI/T = .125, wi = 1.20,
 

,05
am20 .
a0 1  


Figure 6 	 Exact and Noise Polluted Inflow Components
 
?1 , AIi (system noise) for V = 0,
 

A = .500, AL/T = .250, l/T = .125, 
0
wi = 1.20, aXi = a = .10 
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CHAPTER 3
 

OPTIMAL DATA UTILIZATION FOR PARAMETER IDENTIFICATION
 

PROBLEMS WITH APPLICATION TO LIFTING ROTORS
 

K. H. Hohenemser and D. Banerjee
 

ABSTRACT
 

A method is developed for optimal data utilization
 
in the maximum likelihood identification of systems
 
without process noise, based on stipulated upper bounds
 
of parameter covariances. The method is applied to a
 
case of simulated transient wind tunnel testing of
 
lifting rotors.
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INTRODUCTION
 

Methods for state and parameter estimation from
 
4
2' 3'
are widely used in aircraft testing.

1'
transients 


The problem is to obtain optimum estimates (based on
 

certain performance criteria) of initial states and of
 

unknown parameters (derivatives) from noisy measurements
 

of some inputs and response variables. In most cases
 

of airplane parameter identification a constant system
 

is used as an analytical model. For lifting rotor appli­
5
 

cations a periodic system model is required. State
 

and parameter identification from transients looks
 

promising also for wind tunnel testing and may well
 

drastically reduce the amount of test efforts as compared
 

to e.g., frequency response testing of lifting rotors.
 

The following study was performed in preparation for
 

transient wind tunnel tests with a lifting rotor model.
 

In the most general case the identification method
 

has to account for the following types of uncertainties:
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(a) 	Modeling errors which originate from the difference
 

between the mathematical model and the actual
 

physical phenomenon.
 

(b) 	Uncertainties from input noise, e.g., turbulence
 

(in the atmosphere or in the wind tunnel).
 

(c) 	Uncertainties from measurement inaccuracies. This
 

includes measurement bias and noise and also incom­

plete measurements when some of the input and
 

output data are missing.
 

Three basic methods have been applied to the air­

craft identification problem. If the measurements are
 

a linear function of the unknown parameters, the
 

classical least squares regression or equation error
 

method is applicable. This method was widely used in
 

the early stages of aircraft parameter identification.
 

For the application of this method the time histories of
 

all the states and their derivatives are needed together
 

with the input variables. Since the equation error
 

method becomes less reliable the noisier the measure­

ments are, it has been replaced in the last decade by
 

less restrictive methods that allow considerable
 

measurement noise and that work also when some states
 

have not been measured. One of the most widely used is
 

the maximum likelihood method, which, in the absence of
 

modeling errors and input noise, reduces to what is also
 

REPRODUCIBILITY OF THE
 
OIJGINAL PAGE IS POOR
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called the output error method.1 ,2,4 Another way of
 

overcoming the limitations of the least squares
 

regression method is the application of the extended
 

Kalman filter. 3 This note is applicable to data
 

analysis with the output error method. This method is
 

not necessarily limited to smooth air testing. Atmos­

pheric or wind tunnel turbulence may be included if
 
7
 

appropriate input measurements are taken.
6'


In aircraft or wind tunnel transient testing the
 

question comes up as to what kind of transient should
 

be selected. If the transient is too short, the
 

parameters will be identified with inadequate accuracy.
 

If the transient is too long, an unnecessary amount of
 

data must be processed. The question we pose here for
 

the maximum likelihood method is: Given a required
 

accuracy of the paraneter estimate, and given an input
 

function, what is the minimal quantity of measured data
 

necessary to achieve this accuracy? From a survey of
 

the pertinent literature it appears that this question
 

has not been asked before, much less a solution
 

presented. However, there are some recent studies
 

where certain criteria were used to define an optimum
 

input. We will first briefly discuss two of these
 

optimal input proposals, and then proceed to develop
 

the method of optimal data utilization for a given type
 

of input.
 



TWO PROPOSALS FOR OPTIMAL INPUT DESIGN
 

General questions of input design are:
 

(a) What type of input function should be used?
 

(b) For what time period should the response data be
 

processed to enable identification of the system
 

parameters with a specified accuracy? Are certain
 

time periods of the response particularly rich in
 

information contents and should they, therefore, be
 

preferably used?
 

There usually are some constraints on the input design
 

like amplitude constraints, smoothness constraints
 

(step or impulse inputs are mathematical idealizations
 

but often practically not realizable), instrumentation
 

constraints, and constraints imposed by the selected
 

analytical model that usually filters out the higher
 

frequency contents of the input.
 

Analytical solutions of the problem of optimal
 

input design require the minimization of a cost function.
 
1
 

Stepner and Mehra use the sensitivity of the system
 

response to the unknown parameters as the performance
 

criterion for optimal input design. The time of the
 

transient is assumed to be fixed. Thus questions (b)
 

are not involved. The measurement equation is
 

ym(t) = y(x, 0, u, t) + v(t) (1)
 

x is the state vector, 0 the parameter vector, u the
 

input vector, v(t) the additive measurement noise with
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covariance matrix R. We write the Taylor expansion
 

-with respect to the parameter 8 about the a priori
 

estimate 00 of B and neglect higher order terms:
 

y(t) = y(x, 0 , u, t) + o y(x , u, t)(0-0 o)
 

(2)
 

+ v(t) 

In the output error method (e - 80) is determined by a
 

least squares solution of Eq. (2) for a fixed time
 

period (to, tf). For a high degree of accuracy in
 

determining (6 - e0) the sensitivity function ay/aO
 

must be large. The scalar performance index selected
 

in Reference 1 is
 

J = Trace (WM) (3)
 

where
 

M = (y/ae) T R 1 (ay/ae)dt (4) 

to
 

-
Due to the introduction of R in M the performance
 

criterion favors the measurements which are more accurate.
 

The weighting matrix W is based on the relative impor­

tance of the parameter accuracies.
 

Assuming now linear system and measurement equations
 

x(t) z F x(t) + G u(t) (5) 

Ym(t) H x(t) + v(t) (6)
 

REPRODUCIBILITY OF THE 
OIRIGINAL PAGE IS POOR 
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together with an "energy constraint" for the input
 

tf
 

T
E f u u dt (7) 

to
 

the optimum input u can be determined as a two point
 

boundary value problem whereby the Hamiltonian includes
 

the term
 

(1/2) o (uT u - E/tf)
 

11, is the time invariant Langrange factor (scalar) to
 

be evaluated from the Euler differential equations of
 

the optimization problem. It should be noted that the
 

energy constraint" Eq. (7) has no physical signifi­

cance but is a convenient device to obtain smooth
 

input functions. Physically the input will usually
 

be limited by amplitude rather than by the quadratic
 

criterion (7) and quite different "optimal" inputs can
 

then be expected.
 

8
Chen attacks the problem of optimal input design
 

in an entirely different way as a time-optimal control
 

problem by minimizing
 

tf

J f dt (8) 

:to
 

under the following constraints:
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System equations
 

x 
 f(x 5, E , t) , x(t )=x 0 (9)0 

Sensitivity equations 

xl-/xo = (af/ax)(ax/axo ) , Dx(to)/x o = I (10) 

D/a8 = Caf/ax)(ax/a6) + af/la, ax(to)/ao = 0 (11) 

Information matrix equations 

;-I = _M-1 (aV/3G)T R-l(-/)M-I (12) 

where v is the innovation:
 

= Ym - Y (13) 

and where the information matrix M is given by Eq. 4.
 

Finally Chen assumes an amplitude constraint
 

Jul < V (14) 

and he prescribes the trace of the information matrix 

for time tf 

2Cii(tf) = a. (15)
 

One can show that for linear input u(t) into the system
 

equation and for an input matrix independent of any
 

unknown parameter, the optimal input is of the "bang-bang"
 

form between the amplitude constraints. The solution of
 

this problem requires a computer search which was not
 

performed in Reference 8. Rather an arbitrary set of
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bang-bang inputs in the form of Walsh functions was
 

shown to result in a specific case in lower values of
 

M-l(tf) (given tf) than those obtained by using
 

Mehra's "optimal input". This apparent contradiction
 

can be explained by the differential equation (12)
 

- . ­governing M 1 For a particular value of 141 the
 

rate of decrease of M- 1 with time is dependent on
 

all elements of
 

Cay/3D) T R- (y/3D)
 

while Mehra, in his criterion (3), optimizes only the
 

trace of WM.
 

While the input amplitude constraint Eq. (14)
 

used by Chen is physically more significant than the
 

quadratic constraint Eq. (7) used by Mehra, the actual
 

constraints are usually still more complex. In cases
 

of airplanes or lifting rotors one usually wishes to
 

limit the response to the linear sub stall regime,
 

since the analytical model to be identified is often a
 

linear one. The stall boundary is, however, a complex
 

function of the input and cannot be represented by an
 

amplitude constraint for the input transient. This is
 

particularly relevant for the lifting rotor, so that
 

neither the Mehra nor the Chen input optimization
 

criteria are useful for lifting rotor applications,
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quite apart from the excessive computer effort involved
 

in obtaining the optimal inputs. Furthermore, the
 

input matrix usually contains unknown parameters. In
 

this case Chen's optimum solution would not be of
 

the bang-bang type and would be still more difficult
 

to obtain. For all of these reasons it was concluded
 

that at the present state of optimal input design
 

methods an attempt to compare our selected inputs with
 

an "optimum input" would not be practical. Instead, a
 

more limited approach has been taken described in the
 

following section.
 

OPTIMAL DATA UTILIZATION FOR GIVEN INPUT FUNCTION
 

We first point out the difference between the
 

continuous and the discrete case. In the maximum
 

likelihood method (output error method for zero process
 

noise) using the Newton-Raphson approach with quasi
 

linearization, one obtains for the parameter update
 

increment the following expressions:
 

Continuous case:
 

tf 3v.T R-1 -i tf3\T IAG = (.-) R ()dt T R v dt (16) 

ft)to -1 


Discrete case:
 

, F N 3 T -_1 (V) -l N ( T -li8 d.")r R (3)i r R- . 
li=l "" 

-1 (a) (17)= REPRODUOBILIT OF 
PAGE IS POOR 

OIGINAL 
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The Cramer-Rao lower bound has been defined only for
 

a vector of sampled measurements and not for the
 

9
2'
case.
continuous 


For high sampling rate one can define an approxi­

mate differential equation for M from Eq. (17) in the
 

following way:
 

Set Si. (3v/ae) i (18)
 

then 

IT T N T R-_ (19) 

M SR S -- E S, Ati= At i= 1 

As N increases, At gets smaller and the right hand side
 

of Eq. (19) can be approximated by
 

tf z NAt T­

j -1 M z (1/At) ST R S dt (20)
 

to
 

M- I z At f ST R - I S dt (21) 

Taking the derivative of M -1 with respect to tf:
 

- 1
 
dM-/dtf = -M-I(M/tf)M 

or with Eq. (20):
 

- 1 -1 -1
dM-i /dt = -(l/At)M ST R S M (22) 
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The point is that even in a continuous formulation the
 

time increment At between samplings must occur.
 

Eq. (21) is the correct formulation for the Cram4r-Rao
 

lower bound of the covariance matrix for the parameters.
 

We can now use the approximately valid differential
 

equation (22) to obtain some insight into ways of best
 

data utilization. Let us assume that we wish to pre­

scribe certain values for the parameter standard
 
A 

deviations ai and that we wish to compare the Cramer-Rao
 

lower bound with these standard deviations. Since we
 

are dealing not with the unknown actual parameter
 

covariances but only with their lower bounds, we should
 

apply some conservatism to the selected ai, that is we
 

should select ai smaller than we really need for the
 

specific data processing case. We thus require
 

0 < (i, i) < a. (23) 

1-­
whereby Mtf is the value of M at time tf. For
 

non-zero values of S, the right hand side of Eq. (22) is
 

negative definite and hence M1 (i, i) are monotonically

tf
 

decreasing functions of tf. There will thus be a
 

minimum time for which the constraints of Eq. (23) are
 

satisfied.
 

Another way of reducing the amount of measured
 

data for the parameter identification is to select for
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the data processing those time periods for which the
 

components of the matrix
 

sT R-s
 

have significant values. From Eq. (21) it follows
 

that then the Cramer-Rao lower bound MI will be
 

particularly small. The components of M- 1 also
 

decrease with decreasing time element At between samples.
 

Since it is impractical to use for the integration
 

of Eq. (22) infinity as initial condition, it is
 

-
recommended to determine M1 for a small time period,
 

say for N = 10, from Eq. (21) and integrate Eq. (22)
 

with the solution to Eq. (21) as initial conditions.
 

Since S includes parameter estimates, one needs a
 

preliminary estimation of the unknown parameters in
 

order to use Eq. (22).
 

APPLICATION TO A CASE OF LIFTING ROTOR PARAMETER IDENTIFICATION
 

Using the simplest analytical model of a lifting
 

rotor, a straight blade flapping about the rotor center,
 

one has in a rotating frame of reference for the flapping
 

angle 0 the following equation.
1 0
 

a + (y/2)C(t) + (y/2)[P + K(t)13 = (y/2)[m6 0 + mA A] 

(24)
 

where: y is the blade Lock number
 

P is the blade flapping natural frequency in
 

the rotating system
 

PEPRODUCBILITY OF THE 
JfIINAL PAGE IS POOR 
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8 
is the instantaneous blade pitch angle
 

X is the non-dimensional normal inflow
 

One rotor revolution corresponds to t = 21. For
 

neglected reversed flow effects, zero root cut-out
 

and with tip loss factor B, the functions C(t), K(t),
 

me(t), mX(t) in terms of rotor advance ratio p are:
10
 

3
C(t) = (1/4)B 4 + (1/3)B V sin(t) (25)
 

3
K(t) =(l/3)B p cos(t) + (1/4)B 2 p2 sin(2t) (26)
 

me(t) = (1/4)(B 4 + B212) + (2/3)B 3p sin(t) 
(27)
 

- (1/4)Bv 2 cos (2t)
 

mx(t) = (1/3)B 3 + (1/2)B 2 P sin(t) (28) 

In the numerical analysis, we use B = 0.97. A
 

simple improvement of this analytical model that takes
 

into account blade bending flexibility is possible.1 1
 

In transient conditions the inflow X includes the
 

dynamic rotor wake in a complicated form. As a first
 

approximation of dynamic rotor wake effects one can
 

use, instead of the actual blade Lock number an equivalent
 
12
 

smaller value of y. Such an approximation can be
 

expected to be satisfactory if the transient is
 

relatively slow. For transients with high frequency
 

contents, this approximation is invalid.1 3
 

http:possible.11
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Due to rotor induced cross flow in a wind tunnel,
 

the inflow parameter A will usually not be well known.
 

In addition, the aerodynamic pitch angle 6o, due to
 

airfoil inaccuracies and pitch setting errors, will
 

also not be well known. For the wind tunnel tests
 

considered here, we assume X = 0 and use the collective
 

pitch setting 80 as an unknown parameter to be
 

determined from the blade flapping measurements. In
 

addition we have a transient blade pitch input 8
 

assumed to be known. The problem then is to determine
 

from blade flapping transients caused by blade pitch
 

inputs, the equivalent Lock number y and the
 

equivalent collective pitch setting 00.
 

The lifting rotor wind tunnel model described in
 

reference 14 allows excitation of progressing and
 

regressing flapping modes at various frequencies. By
 

a minor modification of this model, progressing or
 

regressing transients can be excited. One can describe
 

such inputs as pitch stirring transients. In a
 

helicopter, this would amount to cyclic stick stirring,
 

whereby the amplitude of the cyclic pitch would remain
 

constant while the frequency of the stirring motion
 

changes. The blade pitch input for such a stirring
 

transient is selected to satisfy the equation:
 

0 = 1.5 cos[w(t - to ) + t] + 00 (29) 
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where w is the angular stirring speed in the sense of blade
 

rotation 

t
0 

= 12 and 

0 0<t<t o 

- (Oo/T)(t - t0 ) to < t < T
 

The meaning of these input equations is the fol­

lowing. At time t = 0, a step lateral cyclic pitch
 

input of 1.5 degrees is imposed. At time t = 12,
 

the response to this input is approximately stabilized.
 

At this time the pitch stirring acceleration of
 

-(0.1/it) is introduced which leads to'a progressing
 

flapping excitation. The identification starts at
 

t = 12 with the pitch stirring transient.
 

Test results with transient pitch stirring inputs
 

will be presented at a later time when they become
 

available. Here we are concerned with the problem of
 

designing the tests in such a way that the test data
 

will be sufficient to determine the two unknown para­

meters y and 0 with good accuracy, i.e., to determine
 

a suitable value of T that allows an accurate identi­

fication of parameters.
 

The simulated identification analysis was performed
 

under the assumption of a random zero mean white noise
 

sequence superimposed on the analytical flapping transient.
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This transient was obtained for 8o = 20, V = 0.4 and 

y = 5.0. For convenience, the parameters 6 = yoo and 

y instead of 0o and y were identified. 

System and measurement equations corresponding to
 

equations (5) and (6) are:
 

= 0lt) ,+0
 

L12 -(y/2(P2 + K(t)) -(y/2)C(tj x 2 (y/2)mol 

(30)
 

Ym = [1 0] + v(t) (31) 
x
2
 

where 

E {v(t)} = 0 E[v(t) v(T)] = 0.2 6(t - T) 

and Ex x 21 = [0 A] 

ANALYSIS OF RESULTS
 

We first show in Table 1 the effect of data length
 

on the narameters and their associated M-l(i,i) values.
 

The iteration of the maximum likelihood method was
 

begun with a 20 percent error in the parameter values.
 

It is seen that a data length of t 12 - 14 is quite
 

inadequate, a data length of t = 12 - 18 gives 

reasonably good parameters, while a data length of 

t = 12 - 24 is much better and leads to very small 
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lower bounds of the parameter covariance matrix.
 

Fig. 1 shows the correct flapping response together
 

with the simulated measurement data. Pitch stirring
 

is initiated at t = 12. Figs. 2 and 3 show M-1(Y)
 

and M-1(6) from Eq. (22) between t = 16 and t = 24.
 

Two curves are plotted, one for the initial crude
 

estimate of the parameters (y = 4, 6 = 8), and one for
 

the final estimate of the parameters for t = 24,
 

(y = 4.91, 6 = 9.83). The two curves are in this 

case not much different. Note the steep descent of 

the curves to about t = 17.5. It would, therefore, 

be not acceptable to use the data up to less than the 

time t = 17.5. However, there is another descent to 

t = 23.0, causing the improvement shown in Table 1. 

From Figs. 2 and 3 it is clear that the selection of 

T = 24.0 is a good one, that the use of fewer data
 

would result in substantial decrease in parameter
 

accuracy, and that the use of additional data is
 

unnecessary.
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FIGURE CAPTIONS
 

=
Fig. 1 Simulated measurements of 8, a$ .2
 

Fig. 	2 Cramer-Rao Lower Bound M-l(y) vs. time
 

Fig. 	3 Cramer-Rao Lower Bound M'1 (8) vs. time
 

Table I 	Iteration vs. Time Variation of Parameters and
 
Their Cramer-Rao Lower Bounds.
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Parameter 

True value 

Tteration 0 

1 

2 

3 

y 

5.00 

4.00 

4.29 

4.17 

4.10 

t = 12 - 14 

a tI-I (y)M-IC) 

10.00 

8.00 

9.73 48 6.5 

9.71 37 8.1 

9.67 37 8.0 

y 

5.00 

4.00 

5.36 

5.23 

5.23 

t 

s 

10.00 

8.00 

9.67 

9.73 

9.73 

=12 - 18 

M-1 (y) M -1 (6) 

.096 .032 

.100 .035 

.094 .035 

t =12 24 

y S 1-I(y) 

5.00 10.00 

4.00 8.00 

4.94 9.69 .007 

4.91 9.85 .008 

4.91 9.83 .008 

I(6) 

.013 

.015 

.015 i 

TABLE 1 


