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FOREWORD
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technical direction of the U.S. Army Air Mobility Research znd Development
Laboratory, Ames Directorate, Ames Research Center at Moffett Fielﬁ, Californi.
and was monitored and administered by Dr. Dewey H, Hodges of that directorate.

The work covered in this report was supervised and performed by
Professor E. H, Dowell, Principal Investigator. He was aided in the
experiments by Mr. Joseph J. Traybar, Research Staff and Mr. J. P. Kukon,
Technical Staff. The test equipment and apparatus was fabricated by
Messrs, E. L. Griffith and J. A, Grieb., Spacialists.
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ABSTRACT

An experimental study ¢f the large deformation of o cantilevered beanm
under a gravity fip load has been undertaken, The beam root is rotated
so that the tip load is oriented at various angles with respect to the
beam principal axes. Static twist and bending deflections of the tip and
bending natural frequencies have been measured as a function of tip load
magnitude and orientation. The experimental data are compared with the
results of a recently devéloped non-linear-structural theory and agreement
is good for deflections small compared to the beam span with systematic
deviations for larger deflections. These results support the validity and

utility of the nonlinear structural theory for rotor blade applications.
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1, INTRODUCTION

1,2
Hodges and Dowell have formulated a nonlinear theory of hingeless

rotor blade dynamics which indicates that the primary nonlinear effect
is due to a nonlinear stiffness arising from mutual interaction

among elastic flap, lag and twist, The goal of the present study has
been to devise a simple experiment to measure the predicted effect and
make a quantitative comparison of the results with the theoretical model.

The simplest relevant experiment would appear to be a non-rotating
uniform beam under a static point load. A measurcment of the variation
of static deflections in flap, lag (and twist) and also flap and lag
natural fquuencies with static load allows an evaluation of the theoxy.
A strictly linear model would predict a linear variation of flap and
lag static deflections with load and no twist., Also a linear model
would predict no change in natural frequencies with static load. On
the other hand, the Hodges-Dowell nonlinear model predicts nonlinear vari-
ations of static flap, lag and twist deflection with static load and
a change in natural flap and lag natural frequencies with load. Hence,
the proposed experiment does provide a critical test of the nonlinear
theory.

How to provide a static point force to the beam without introducing
additional dynamic effects is a delicate question, however. For example,
if one uses a weight and gravity to ﬁfovide the force, its inertial mass
would also change directly the dynamic characteristics of the rotor

blade. Similarly, for a spring induced static force, dynamic effects are
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inevitably introduced as well. In principle for a relatively long,

heavy, flexible beam the mass effect may be made as small as desired,
Conversely, for a relatively short, stiff beem and a relatively long,
soft spring the dynamic effect of the spring may be made as small as
desired, In practice neither option leads to rotor blades (beams) of con-
venient dimensions. Hence, we have chosen to use a gravitational forcoe
and incorporate the inertial effects of the weigh* l. vur mathematical
model, 'The latter, though quantitatively substantial, are nevertheless
non-controversial and readily accounted for theoretically. To make the
experiment as simple as possible a tip weight was used whose dimensions
are small relative to the radius of the uniform, rectangular cross-
section rotor blade, Hence, the torsional frequency is substantially
higher (greater than 2 factor of ten) than either the flap or lag fre-
quencies., In the fcllowing, the experimental apparatus and method is
described in some detail, Next, the theoretical method is briefly reviewed
and the experimental data are presented and compared with the available
theory, Finally, conclusions are drawn and recommendations for further

work made,
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2. EXPERIMENTAL APPARATUS AND METHODS

Experimental Apparatus

Fhotographs of the experimental apparatus are shown in Fig. 2.1 and 2.2,
In the exporimental phase of the study, blade spars were simulated
by various sized rectangular sections fabricated from 707% aluminum, The
7075 aluminum belongs to a zinc alloy group noted for its very high
strength and hardness. The typical mechanical properties are: '
Modulus of elastieity; 10.4 x 1_06 psi
Tension strength; Ultimate, 83,000 psi; yield 73,000 psi
Shearing strength; 48,000 psi
All beams were machined frem 7075 aluminum stock with the temper designation
651 where coded number 6 defines the basic temper, coded number 5 denotes that
the material has received stress relieval treatment and the coded number 1
indicates the method used to effect stress relief ~- in this case "stretching".
All beams were carefully machined to size so that machining stresses, warping
and bending were minimized. The beams fabricated for these experiments were
srxzed as indicated below:
Beam #1: Length (Radius) 20", Width 1", Thickness 1/8"
Beam #2: Length (Radius) 20", Width 1/2", Thickness 1/8"
Beam #3: Length (Radius) 30", Width 1/2", Thickness 1/8"
Beams 2 and 3 were instrumented with strain pages mounted at the roots
on the width and thickness portions nf the beam. These gages were
mounted in the proper orientation to be utilized as frequency transducers
(combined with the associated signal conditioning instrumentation) to measure
chordwise and flapwise beam natural frequencies accurately. All frequency

data were recorded in analog form on direct-writing, recording-oscillographs
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(Visicorder). An additional time reference channel was included on the
recorder to improve timing accuracy.

All beams were end mounted in specially fabricated end firtures
that insured positive support and clamping. These beam end-fixtures were
inserted into a milling machine type, precision, indexing-chuck that
provided both a secure, stable mount and the accurate, repeatable gangular
settings required for experiments,

Several experiments were madn where beam tip-end displacement or static
deflection was measured instead of frequency. In these cases, a simple
"mapping't on graph paper was made of the beam tip-end elastic axis reference

point location as a function of applied load and pitch angle.

Experimental Methods

Various experiments were conducted using the previously described
beam specimens and apparatus. The principal parameters varied included
blade tip load (P) and blade pitch angle (8). Figure 2.3 displays
the axis system and notation utilized. Figure 2.4 is a schematic showing
typical loading procedures and excitation/deflection sense.

In the static deflection expe. 'ents, the selected values of pitch
angle (measured at the blade root end) were pre-set and locked for cach run.
A weight bucket was attached to a small machine screw (by a string) at the
blade tip elastic axis point. Then, increasing loads using 1/2 pound incre-
ments were applied and the beam tip elastic-axis reference point location
was "'mapped" on graph paper. An example of this data is shown in Figure

2.5‘
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In the natural frequency experiments, selected tip loads were applied
(as shown schematically in Figure 2.4) and the beam natural frequencies
were measured as functions of beam pitch angle (measured at the beam root
end) and excitation sense. Each tip weight was rigidly attached to the
beam tip end and the beam was excited in flapwise as well as chordwise
senses, Figure 2.4, Strain gages used as frequency transducers and: their
associated instrumentation permitted relatively accurate measurement of
both the flapwise and chordwise frequencies, All data were collected on
direct~writing, recording oscillographs in the form of sinusoidal dis-
placement traces versus time. A typical example of a portion of the data
oscillograph is shown in Figure 2.6, Records lengths were of the order of
ten to fifter -v-onds and becausc of the additional 60 cycle timing pulse
shown on each trace, timing accuracy for the longer record lengths was
probably on the order of plus or minus one millisecond, Determination
of the peak to peak distances (based »n time) for one cycle (or repeated
cycles) of flapwise or chordwise motion could be accurately measured to
within plus or minus 5 to 15 milliseconds, Considering data record lengths
of 5 seconds (5,000 milliseconds) to 15 seconds (15,000 milliseconds),
measuring accuracies for frequency using this instrumentation system are
on the order of about 1 part in 1,000 or about plus or minus 0,1%.

The determination of flapwise and chordwise frequencies was done in
separate experiments. That is, the weight mounted at the tip-end was

excited (by hand) in the flapwise sense so that the output trace of fre-



quency in the flapwise sense was of acceptable amplitude whereas, the
output trace in the chordwise sense was minimized (or ideally--zexo).
Then the strain gage trace data were recorded (5 seconds to 15 seconds in
length depending on frequency) and the frequency determined from the
accurate time trace on the recording chart. The same experiment was
then repeated except thzt the beam was now excited in the chordwise.sense
with the flapwise motion minimized.
The data measured using this technique and the specified instrumentation

are shown in tabular form in Tables I and II.

REPRODUCIBH,ﬁ ‘ ’ -
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3, THEORETICAL MODEL

We briefly review the form of the theoretical model and its solution
employed here. The basic equations (a Rayleigh-Ritz modal solution)
are taken from.Hodgesl. They are generalized to include a tip mass. One
modal shape is used for flap, lag and twist and torsional inertia is
neglected (Hodges ''modified fiap-lag equations') on the basis of a 1arge
torsional natural frequency compared to flap and lag., The cquations are

(suitably non-dimensionalized)

2 = L - ¥2 ~192y2
wl” [1 + MTIP 411 (X/R 1] + Bl Wl Klll (e 1) vlwl

mR gv12
3 R 2
= | mgR .[. wl.ii * Mprpt R 2 (x/R = 1) | siné (1}
EL, 7y R BT,

2 - Y _r..2 2 (0112
V1'| [1 + MTIP 4’1 (X/R 1)] + e sl Vl ]\111 Vlwl Ei.’! 1)
mR g, %
R o
=} mgR3 .}r Py dx + MupogR2 Yy (x/p = 1) | cosh
— = ——
Elov o L,

In the above, the following twist equation of equilibrium was used to

eliminate the twist angle, i.e.



+ 2 o .
g'\f.l @1 + Klll Vlwl (e-1) 0 (2)
i The various coefficients sre given by
e = EIz'
BT,
g = GJ
EL,,
Klll = 5.039
Yy =/
. Bl = 1,875
Alsc
! wl - natural banding mode of a non-rotating, uniform cantilever

normalized so that

b/ = 1) = 2

Vi Wps 9 - generalized coordinates of lag, flap and twist respectively
us(dz)mu
dt?/ EI,

For our purpose Vv,, W, mnay be expressed as the sum of static and

dynamic equlibrium values, i.e.



vy =Vt Yy (t) |
o FS (3) . -
Wy E W b Wy (t)

where vlo, wlo are, by definition, independent of time., Substituting
(3) into (1) we may obtain (nonlinear) equations for vlo, wlo by Zdeleting
the time derivatives in (1). The (linear) perturbation equations for

vy W, are obtained in the usuul way from (3) and (1) by assuming they

are small (compared to vlo, w1°), namely

LI | -~ ~ Dr\

4 - O o =
Wy Mgt Bl Wy D [vl Wyt 2 WV vl] 0
~ 1t EN ~ -~

b . . oz, 2 o © =
Vi Bt eBl vy- D [wl Vit 2w vy wl] 0 (4) %
: = 2 -
where W, E 1+ MTIP l‘bl (X/R 1)
mR
D=

=( K111) 2 (e-1)?
Yy g

From (4), having first computed the static solutions, we may calculate the
flap, lag natural frequencies.

In particular, for e > 1 and € = 0° , we may compute the lateral buckling
load as follows. For ¢ = 00, we see that

o

Wy = 0
R
o _ 3 2 =
vy o= [mgR fwlﬁ“*hp gR lbl(x/R 1) s)
;:'Iy, 0 R EI},.

a ]
e 81
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The lateral buckling condition may be identified as the vanishing of the

flap frequency, TFrom (4) this means

B.¥-Dv.%2 =9

1 1 (6)

From (5} and (6), we may determine the tip weight at which buckling
occurs as (neglecting weight of beam which is generally small compatred

to tip weight)

Mprp 8 % 6.8 V EL, 6 (__9_> &)
R2

e-1

Timoshenko!s exact analysis3 of this problem (effectively an infinite
number of modal shapes were used) gives (7) with the nuxerical factor

6.8 replaced by 4.013, (Also it should be noted that Timoshenko

assumed e >> 1 and hence e/(e-1) w1, The above formula does net

have this restriction). Using this result one might empirically medify
the single mode analysis by adjusting D sc that one obtains the
Timoshenko numerical factor. It should be emphasized that the Timoshenko
and Hodges-Dow:11 theories for lateral buckling are essentially identi-
cal, It is only in the use of a single mode solution procedure that we

have been led to a different numerical factor.
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4. EXPERIMENTAL RESULTS AND COMPARISON WITH THEORY i

Static Deflections:

Results have been obtained for two beams, one of 1/2" x 1/8" cross-
section, the other of 1" x 1/8", and both 20" in length, The static
experimental loading is a simple weight (denoted by P, see Figure 4.1)
with the beam rotated to achieve various loading angles., Measurements
of flap and lag bending deflection at the beam tip, WTIP and VTIP‘ have
been obtained for 8 = 0° » 90° and for P = 0 - 5#. Representative ‘
results are presented in Figure 4.2 - 4.7, .

As predicted by theory, there are no signii®:iant nonlinearit..s for
6 = 0° and 90°, See Figure 4.2, For intermediate angles, e.g. 30% in Fig-
ure 4.3 and 4.6, nonlinear behavior is clearly evident. The correlation
between theory and experiment is generally satisfactory for the linear
regime and also for the initial deviation from linear behavior into the
nonlinear regime. However, wh.n one of the deflection components (usually
NTIP) becomes a substantial fraction of beam radius, the theory (which

assumes Worp VTIP much less than 1} is inadequate. Indeed

— e——

R R
theory predicts a reversal and/or jump in the load deflection curve (see
Figure 4,4A and 4.4B) but such behavior has not been cbserved experimen-
tally,
It would be very desirable to measure the twist of the beam as well,
Theory predicts that its variation with load is nonlinear even for very

small loads.
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Natural Frequencies:

Results have been obtained for two beams, one 20" long and the other
30", and both of cross-section 1/2" x 1/8", Measurements of flap and lag
frequencies have been obtained for 9 = 0° > 90° and P up to 10# for
6 = 0°. A rather complete set of results is presented in Figure 4.8 -
4,17. 1In Figure 4.8 experimental results are shown for P = 1,2,3,4# over
a raﬁge of 8. Nonlinear theoretical results for the same conditions are
shown in Figure 4.9, Linear theory would predict no change in frequency
with 8 (the lag results being those for & = 0° and the flap results
those for 6 = 9003. As can be seen the trends of the theoretical and
experimental data are similar. As expected, both theory and experiment show
a convergence of frequencies as 68 -+ 90°. The dead weight load has
(theoretically) no effect on the flapwise mode for 8 = 90° or the chord-
wise mode for 6 = 0°. The weight still contributes a dynamic mass effect,
of course,

A more detailed comparison of experimental and theoretical results is
shown in Figure 4.10 - 4,15, The correlation between theory and experiment
is much better for the chordwise than the flapwise mode, Systematic
deviations for the latter occur for increasing angle and/or tip weight.

As noted above, there is a systematic discrepancy between (nonlinear)
theory and experiment for flapwise natural frequencies as a function of
increasing static loading. It was hypothesized that this might be due
to the finite dimensions of the tip weights, particularly for the larger

tip weights used in the experiment. Thus, a longer beam (30" vs 20') was
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tested, This beam also requires smaller tip weights; hence the dimensions of
the tip weights compared to beam length were much smaller then for the 20" beam.
The results for both the 20" and 30" beams with & = 0° are shown in Figure 4.16
and 4.17, The systematic discrepancy remains. It now seems plausible that
this is a defect in the solution to the theoretical model. In particular it
may be a result of using only a single mode in the Rayleigh-Ritz procedure

which is inaccurate for large tip weights,

4

To test this latter hypothesis we have shown two additional theoretical
results in Figure 4.16, namely those from linear theory and those from
nonlinear theory with an empirical correction to give the known theoretienl
buckling loads. The buckling load is that value of P for which the
flap frequency goes to zero, As may be seen, linear theory is in poor
agreement with the experimental data for large tip weights and, in
particular, does not predict any buckling at all. In the linear model
the decrease in flap frequency is solely due to the mass of the tip weight.
The nonlinear theory (without any empirical corrsction) is in better agree-
ment with the experimental data and predicts buckling at a load approxi-
mately 50% higher than that measured. The nonlinear theory (with empirical
correction to give the known theoretical buckling load) is in much better
agreement with the experimental data.

Similar results are shown in Figure 4,17 for the chordwise frequency;
there is no difference, for the range of parameters shoun, among the
linear and the two forms of nonlinear theories.

Clearly, it is desirable to use a larger number of modes in the

solution procedure, since we are assured the results will converge to the
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known buckling loadS. Also it would be very desireable to measure the

static and dynamic shapes of the beam for various 8 and P to verify

{ » the above assessment of the reason for the present differences between

theory and experiment,




- 15 -~

5. CONCLUSIONS AND RECOMMENDATIONS

From the correlation of theory and cxperiment, we see there is
qualitative agreement. The solutions to the theoretical model used a
single mode shape in flap and lag. By making an empirical correction
to the single mode theoretical model so that the known lateral buckling
load (static load in lag direction for which flap frequency is zero)
is given, one obtains improved agreement between theory and experiment.
This suggests that by including a larger number of modes in the theoretical
madel so as to obtain the known lateral buckling load, a systematic
improved correlation with the experimental data may be obtained. Clearly
this should be done to establish more firmly the basic accuracy of the
thecretical model. Also measurements of distribution of beam bending and
twist and their variation with the magnitude and direction of loading
should be made. This will allow a firmer evaluation of the theoretical
model and a better understanding of any remaining differencoes between

theory and experiment.
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TABLE I

Test 51 : Blade Frequency Experiments using Aluminum Beam

Blade Radius and Cross-section: Radius = 20", Width = 1/2", Thickness = 1/8",

1tc ] Chordwise 7 ‘lapwise
Angle Frequency Frequency
(Degrees) (Hertz) (Hertz)
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TABLE 1

Test 51 : Blade Frequency Experiments using Aluminum Beam

Blade Radius and Cross-section: Radius = 20", Width = 1/2", Thickness = 1/8".

vihupwlso
Frequency Frequency
(Degrees) (Hertz) (Hertz)
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TABLE 1

Test 5% Blade Frequency Experiments using Aluminum Beam

Blade Radius and Cross-section: Radius = 20", Width = 1/2", Thickness = 1/8",

Run - an - : : apwise
Number Frequency Frequency
(Hertz) (Hertz)
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TABLE 1

Test 51: Blade Frequency Experiments using Aluminum Beam

Blade Radius and Cross-section: Radius = 20", Width = 1/2", Thickness = /8",

Frequency Frequency
(Degrees) (Hertz) (Hertz)
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TABLE 1

Test 51 : Blade Frequency Experiments using Aluminum Beam

Blade Radius and Cross-section: Radius = 20", Width = 1/2", Thickness 1/

Run '1tch Chordwise aApwilse
Number Angle Frequency Frequency
(Degrees) (Hertz) (Eertz)
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TABLE 1

Test 51: Blade Frequency Experiments using Aluminum Beam

Blade Radius and Cross-section: Radius = 20", Width = 1/2", Thickness = 1/8",

Run | Blade Tip P1tc) "Chordwise T Flapwise
Number Load Angle Frequency Frequency

(pounds) (Degrees) (Hert:) (Hertz)

103 7 0 ‘ 0,543 ;

104 7 0 0,543

105 0 0 41.143 10,154

106 0 0 10,152

107 0 0 10,143

108 7 0 2.616

109 7 - 0 - 0.543

110 7.5 0 2,531

111 7.5 0 - 0.502 i

112 5 0 2.446 ,

113 8 0 - 0.457 |

114 8.5 0 2.374 -

115 8.5 0 - 113

116 9 0 2,299

117 9 0 2.311

118 9 0 - 0.365

119 9.5 0 2.25]

120 9.5 0 - 0.312
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TABLE 11

Test 52 : Blade Frequency Experiments using Alumirum P am

Blade Radius and Cross-section: Radius 30", Width = 1/2", Thickness = ]1/8"

dpwise
Frequency Frequency
(Degrees) (Hertz) (Hertz)
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TABLE 11

Test 52: Blade Frequency Experiments using Aluminum Beam

Blade Radius and Cross-section: Radius = 30", Width = 1/2", Thickness = 1/8"

Run BladcmTip itch wordwise Tapwlse
Number Load Angle Frequency Frequency

(pounds) (Degrees) (Hertz) (Hertz)

21 1 40 3.354

22 1 40 - 0.979

23 1 50 a1l

24 1 50 - 0.997

25 1 60 3:215

26 1 60 - 1,012

27 1 « 70 2,179 -

28 1 70 - 1,023

9 1 80 3.145

30 1 80 - 3

31 1 90 3.138 |

32 1 90 - 1.033 }

33 1 105 3.155 I

34 1 105 . 1.029 ,

35 1 -105 3.138 .

3¢ | -105 ] 3

37 1 =90 3.122

38 1 -90 5.12 -

39 1 -90 1 03

10 ] -75 54135
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TABLE 11

Test 52 : Blade Frequency Experiments using Aluminum Beam

Blade Radius and Cross-section: kadius = 30", Width = 1/2", Thickness = ]/8"

Run 1tC TChor apwise
Number Angle Frequency Frequency
(Degrees) (Hertz) (Hertz)

51 | 0 0.928
52 2 0 2.629

53 2 0 0.632
54 . 5 2.559

55 2 5 - 0.636
5¢ 2 10 517 -
57 2 10 - 0.648
58 2 15 2.424 -
59 2 15 - ( 64
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TABLE 11

Test 52: Blade Frequency Experiments using Aluminum Beam

Blade Radius and Cross-section: Radius = 52", Width = 1/2", Thickness = 1/8"

IE— - -— e — e —

Run cTip Pltc Jordwi se “lTapwlse
Number Load Angle Freauency Frequency
(pounds) (Degrees) (Hertz) (Hertz)
61 2 20 - 0.683
62 2 0 2.637 -
63 2 0 - 0.631
64 2 -10 2.517 -
65 2 -10 - 0.648
66 2 -20 2.315 -
67 - " -20 - 0.682
68 2 25 2.232 -
69 2 25 | - 0.706
70 3 0 2.162 - !
\
71 3 0 - 0.402 *‘
72 3 5 2,043 - ?
;
73 3 5 - 0.478 I
74 3 10 1.863 - |
75 3 10 - 0.515
76 3 i5 1.731 -
it 3 15 - 0.553
78 3 -15 1.723 -
79 3 -15 - 0.555
- =40 1 862 =
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TABLE 11

Test 52: PBlade Frequency Experiments using Aluminum Beam

Blade Radius and Cross-section: Radius = 30", Width = 1/2", Thickness = 1/8",

Run Blade f:;_ - ~ I Chordwise Tlapwise
Nunber Load Frequency Frequency
(pounds) (Hertz) (Hertz)
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