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COMPUTATIONAL ALTERNATIVES TO OBTAIN
 

TIME OPTIMAL JET ENGINE CONTROL
 

Abstract
 

This work presents two computational methods to
 

determine an open loop time optimal control sequence for
 

a simple single-spool turbojet engine described by a set of
 

non-linear differential equations. Both methods are
 

modifications of widely accepted algorithms which can solve
 

fixed time unconstrained optimal control problems with a free
 

right end. Constrained problems to be considered have fixed
 

right ends and free time.
 

Dynamic Programming, originally formulated by Bellman,
 

is defined on a standard problem and it yields a successive
 

approximation solution to the time optimal problem of interest.
 

A feedback control law is obtained and it is then used to
 

determine the corresponding open loop control sequence.
 

The Fletcher-Reeves Conjugate Gradient Method has been
 

selected for adaptation to solve a non-linear optimal control
 

problem with state variable and control constraints. It
 

uses gradient information to improve the performance index
 

of a nominal trajectory toward the minimum value. The control
 

sequence which produces this minimum trajectory is the open
 

loop time optimal control sequence.
 

The two above methods are theoretically and computationally
 

extended to include the free time, fixed right end time optimal
 

control problem with state variable and control constraints.
 

OPPo' QAt 



Computer software is developed which can solve a general
 

class of constrained non-linear time optimal control
 

problems. It is shown that the two methods producesimilar
 

solutions to the turbojet problem°
 



TABLE OF CONTENTS
 

Page
 

ACKNOWLEDGEMENTS ii
 

CHAPTER I: PROBLEM DEFINITION 1
 

1.1 Introduction 1
 
1.2 The Standard Discrete Optimal Control Problem 1
 
1.3 Jet Engine Control Problem 2
 
1.4 Reduction to Second Order Model 4
 
1.5 Scope 5
 

CHAPTER II: DYNAMIC PROGRAMMING 6
 

2.1 Motivation 6
 
2.2 Theory 6
 
2.3 State Variable Quantization 12
 
2.4 Initial Cost Function 13
 
2.5 Interpolation 14
 
2.6 Control Regions for the Turbojet Engine 15
 
2.7 Accurate Boundary Descriptions 22
 
2.8 Summary of Second Order Model Controls 25
 
2.9 Application to Third Order System 25
 

CHAPTER III: THE MODIFIED FLETCHER-REEVES
 

CONJUGATE GRADIENT METHOD 29
 

3.1 Motivation 29
 
3.2 The Fletcher-Reeves Conjugate Gradient Method 29
 
3o3 The Extended General Class of Problems 33
 
3.4 Feasible Directions Modification 34
 
3.5 Performance Index Function 35
 
3.6 Parameter Sensitive Cubic Fit Line Search- 37
 
3.7 Second Order Jet Engine Study 42
 

CHAPTER IV: CONCLUSION 51
 

APPENDIX A: COMPUTER SOFTWARE FOR DYNAMIC PROGRAMMING
 

53
 

APPENDIX B: COMPUTER SOFTWARE FOR THE MODIFIED FLETCHER-


REEVES CONJUGATE GRADIENT METHOD 57
 

REFERENCES 68
 



J1
 

oRIGINAL PAGE IS
 
CHAPTER I
OF pOOpQUALITY 


PROBLEM DEFINITION
 

1.1 	 Introduction
 

This chapter describes the unconstrained fixed time
 

optimal control problem which well accepted computational
 

methods are able to solve. It is seen that the jet engine
 

presents a tougher problem due to state and control variable
 

constraints and due also to the fixed right end which is the
 

design objective. Initially an optimal control problem is
 

carefully defined and then extended so that the jet engine
 

problem is included in the new class of problems for which
 

the computational methods are to be adapted. Although the
 

jet engine is described by a continuous time model, discrete
 

time systems are studied here because the methods are
 

developed to find time optimal open loop control sequences
 

on a digital computer.
 

1.2 	 The Standard Discrete Optimal Control Problem
 

Consider the nth order, time invariant discrete time
 

system
 

x(t+l) = x(t) + f(x(t),u(t)) (1.2-1)
 

with starting time k and terminal time N. In the system
 

with m controls, x(t) is an n-dimensional state variable
 

vector and u(t) is an m-dimensional control vector defined.
 

at each sampling instant. In general, various starting times
 

and states are considered, but we always denote
 

x(k) = x (1.2-2)
 

as our initial ti'me and state of interest. The terminal time
 



may be fixed or may be defined as the first instant at which
 

the system state reaches a designated target set S. A 

performance index 

N-i 
Jk(x,) = Y(x(N)) + t 

t=k 
L(x(t),u(t),t) (1.2-3) 

t = kk+1,...,N-1
 

is to be minimized with u(t)E U, a control set, and u is
 

the control sequence
 

a = u(k),u(k+l),...,u(N-1) (1.2-4)
 

It is understood that in the function L(x(t),u(t),t),
 

x(t) is dependent upon the u(t) choice.
 

Although there are proven methods which can solve the 

above problem, we actually -wish to solve a class of problems 

which include free time and fixed right end conditions in 

addition to state and control constraints -of the form 

A x(t.) + B u(t) L C (1.2-5) 

It is this class in which the jet engine control problem lies. 

1.3 Jet Engine Control Problem
 

From an accurate description of the Drone engine in [Il
 

Brennan in 2] has derived a seventh order model and further
 

reduced it to a third order model for simulation on a TR-48
 

analogue computer. The discrete time version, obtained from
 

the continuous time equations by Euler integration, is shown
 

below and the physical representations of the variables are
 

listed in figure 1.1. In this model, P4 (t+ot) is understood
 

to be P4 (t+1) and P4 (t) is understood to be P4.
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PHYSICAL REPRESENTATION OF VARIABLES
 

N = rotational speed
 

Pb = burner density
 

P4 = burner pressure
 

f = fuel flow 

3 = compressor discharge mass flow 

T3 = compressor discharge temperature 

Figure 1.1 

~P4
 
(t + l )
P4 P4 + at((.93586 P1+ 31.486)*f + 21.435*3T3
 

- 53.86 P4 ) (1.3-1) 

Pb(t+1) = Pb + t(37.85i 3 - 38.448P4 + .66849*f) 

(1.3-2)
 

N2N'(t+l) = N + ot(1.258/N)( P4 - ) (1.3-3) 
Pb
 

*3 = 1.3009N - .139825P4
 

.13982JP42 + .41688N2 - .0899P4 N (i.3-4) 

T3 = .64212 + -35788N2 (1.3-5)
 

The two constraints are 1, the surge margin constraint
 

P4 ! 1.25N (1.3-6)
 

and 2, the turbine inlet temperature constraint
 

125PbP4 . (1.3-7) 

The variables in the above equations are normalized in
 

=
[23 about an equl&Jbrium point (P4 =1 iPb e=lNe 1) such that
 



4 

f(P4 ePb N) = 0. The control objective is to find a 

discrete open loop fuel sequence which takes the system from 

an initial state x of windmill (P4=.5384,Pb=lo774 ,N=.54 61)
 

to a final state xF of military thrust (P4=tPb=l,N=I) in
 

minimum time such that the surge margain and turbine inlet
 

temperature constraints are satisfied.
 

1.4 Reduction to Second Order Model
 

The effect of *f on the system occurs primarily in
 

equation (1.3-1); its effect on equation (1.3-2) is minor.
 

In addition the main single influence on equation (1.3-2)
 

is *f, so the assumption that P4 can be controlled almost
 

directly by *f is made. Therefore, a reduction of the system
 

to a second order problem is made and it is expressed, in
 

the discrete state variable form of section 1.2, as
 

x1 (t+l) = xI + 4 t(3?.78% - 38.448u1 + .66849) 

(1.4-1)
 
2
 

X2 (t+l) = x2 + 5 t(l.258/x2C ul 3x22) (1.4-2)
 

x1
 

*3 = 1"3009x2 - .139825ul
 

/2 2 O~

.13982 Jul + .41688x2 .0899ulx2 (1.4-3)
 

with the control constraints 

uI £1.25 x2 (1.4-4) 

u1 1.25 xI (1.4-5)
 

In this second order model, P4 is now understood to be the 

control variable with Pb = Xl and N = x2 the state variables. 

http:4t(3?.78


5 

Equation (1.4-.) includes the constant term because at the
 

equilibrium condition where the constant term would have
 

its largest effect, *f should have a value close to one.
 

The state variable constraints remain identical to the third
 

order model constraints but with the following subtle
 

difference; now, the control is constrained by its position
 

in the state -pace.
 

1.5' Scone
 

Three accepted methods which can solve the unconstrained,
 

fixed time, free right end problem described in section 1.2
 

are Dynamic Programming, the Discrete Minimum Principle,
 

and ordinary mathematical programming which minimizes a
 

function of many variables. In this thesis, two of these
 

methods are adapted to solve the general class of fixed right
 

end, time optimal control problems with state variable and
 

control constraints.
 

In Chapter II, a successive approximations technique
 

extends Dynamic Programming to produce a time optimal feedback
 

control law from which an open loop control sequence can be
 

determined, In Chapter III, non-linear programming is used
 

to solve the jet engine problem and produce an open loop control
 

sequence. Constraints are difficult to handle in the
 

Conjugate-Gradient approach, but a simple feasible directions
 

technique is used in conjunction with penalty functions to
 

give satisfactory convergence without jamming. Careful
 

inspection of the respective solutions shows that each method
 

yields the same time optimal control sequence.
 



CHAPTER II
 

DYNAMIC PROGRAMMING
 

2.1 Motivation
 

Dynamic Programming is a method weli suited.for solving
 

low order, fixed time, free right end optimal control problems
 

with state and control constraints. The feedback control
 

solution and the cost function are calculated in successive
 

steps as the state and control constraints actually reduce
 

the required number of computations per step. The main
 

difficulty is to include the fixed right end, free time
 

problems into the class of problems which Dynamic Programming
 

can solve. The appropriate modification of the theory is
 

given below.
 

Pontryagin in-f 3] has shown that time optimal control
 

problems very often tend to have bang-bang solutions. The
 

Dynamic Programming method is also well suited to the bang

bang solution because the control is quantized and each
 

control candidate is tested at each point in the state space
 

to determine the optimal control. Therefore, regions of
 

similar controls are expected and boundaries separating these
 

regions are not surprising. Suggestions on accurately
 

representing these boundaries are presented later in this
 

chapter.
 

2.2 Theory
 

Let K denote the integers, R the real numbers, X an
 

arbitrary nonempty state set, and StXxK an arbitrary nonempty
 

target set. Suppose we also have a control constraint Ukx) set
 



which depends on the state x and is such that controls in
 

U(x) guarantee that the next state is in the state set X.
 

Consider the discrete time system of section 1.2 and
 

the performance index Jk(x,1) in (1.2-3') to be-minimized.
 

We assume that
 

Vk (x) = min Jk(X, ) (2.2-1)
 

exists, where u denotes any admissible sequence u(k),u(k+l),
 

...,u(N-1) with values u(t)E U(x(t)). Only the above
 

assumption is required to prove Bellman's Conditions (43 , [5,
 

and [61
 

Vk(x) = ueU(x).Lx'uk) + Vk+l(x+f(x,u)) 

(x,k)$ S (2.2-2) 

Vk(x) = Y(x) 

(x,k) C S 

which are necessary and sufficient for optimality. These
 

are the usual equations of Dynamic Programming. A particular
 

u = v(x,k)4 U(x) which minimizes the expression above can
 

be used to make up v(x,k) for all (x,k) e S and comprises an 

optimal feedback control law.
 

The optimal open loop control sequence u can be determined
 

from v(x,k) as follows. Let xv(t) be the optimal trajectory
 

obtained using v(x,k) as a feedback control law. Then
 

u(t) = V(xv(t),t) (2.2-3)
 

and
 

u = u(k),u(k+1),...,u(N-1) (2.2-4) 

An alternative method for solving problems of this class
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called "successive approximations", was suggested by Bellman
 

[4) and later developed by Leake, Liu, and Richardson in (6]
 

and £7)
 

Let Vkn(x) be any function such that Vkn(x) Vk-x) and
 

let vn(x,k) be a control law which results when performing
 

the minimization
 

ui 
 L(xuk) + Vkn(x+f(x u)) (2.2-5)
 

(xk) S
 

Then it is shown in [6] that if Vkn+(x) is the performance
 

function resulting from vn(x,k), we have
 
vkknx) Vknx xx V x) (2.2-6)
Vk(X) 

and further Vkn(x) converges monotonically to Vk(x) in a
 

finite number of steps although .each (x,k) may require a
 

different number of steps.
 

In the special case where Vk(x) is independent of k, 

VkCX) = Vx), the approximating sequence Vknx) may be taken 

as independent of k also to yield Vkn(x) = VnCx) and (2.2-5) 

becomes 

mnum FL(x,u,k) + Vn(x+f(x,u)Vvn+lx = ra(x) )LU V~x)x~~ 

(x,k)$ S (2.2-7)
 

Problem of Interest
 

Recall now that in the jet engine problem (sections 1.3
 

and 1.4) we wish to find the minimum number of steps (and
 

associated optimal controls) that it takes to drive the system
 

x(t+l) = x(t) + f(x(t),u(t)) (2.2-8)
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from x(k) = x to a fixed state xF with associated state and
 

control constraints x(t)E X and u(t)E U(x(t)). Note that the
 

minimum number of steps to reach the target state xF does
 

not depend on the starting time k. Thus the minimum number
 

of steps can be expressed as
 

Vk(x) = V(x) (2.2-9)
 

a function depending only on x. Similarly the control law
 

v(x,k) = v(x).
 

Ordinary Dynamic Dynamic Programming Problem
 

We now define a standard Dynamic Programming problem 

which yields a successive approximation solution to the time 

optimal problem of interest. Simply let the system be the 

same as before with target set 

S = S1\J S2 (2.2-10) 

where S is illustrated in figure 2.1 and 

Si1 = (x,k) : k = 0, xeX (2.2-11) 

S 2 =f (x,k) : k £ 0, x x. 

Let X and U(x) be as above, let N=O, let L(xu,k) = 1 to 

provide a time penalty to the system, andlet Y(x) be chosen 

such that
 

Y(x) a V(x) (2.2-12)
 

Y(XF) = 0
 

Then Bellman's conditions are as in equation (2.2-2) and
 

the problem can be solved as an ordinary Dynamic Programming
 

problem. Keep in mind however, that (xF,k)eS so we always
 

have
 

ORIGINAL PAGE IS
 
OF POOR QUALITY>
 



10 

TARGET SET FOR SUCCESSIVE APPROXIMATIONS DEVELOPMENT
 

V3(-x-)- V2(x) V1 W V0W) 

S2 = union of 

all circled pontzs 

etc. -

1 

-3 -2 -1 

Vertical lines represent the set X 

defined at each k. 

0 

Figure 2.1 



Vk(xF) = 0 (2.2-13) 

for any k & N = 0.
 

Successive Approximation Solution
 

To show that the ordinary Dynamic Programming solution
 

above amounts to a successive approximation solution to the
 

problem of interest, note that the actual target set of
 

interest is simply the set of all (xk)where x = xF. We
 

can establish a successive approximation of V(x) by choosing
 

V0 (x) = Y(x) (2.2-14) 

Then, if we equate 

Vk(x) = v-k (x) , k = 0,-1,-2,-3,... (2.2-15) 

we see that Bellman's Conditions are equivalent to
 

vn+i.= min [L(x,u,k) + vn(x+f(x,u)) (2.2-16)
 

(x,k)i S 

n = O,1,2,o..* 

which is simply the successive approximation equation. This
 

establishes that the Dynamic Programming problem actually
 

gives a successive approximation solution, with
 

Vn(x) JV(x) (2.2-17)
 

and associated feedback control law
 

vn(x)--> v(x) (2.2-18)
 

In practice, the state set is discretized and inter

polation is used to get approximate solutions, but convergence
 

still occurs. Choosing some kT as a time when convergence is
 

adequate, we equate
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-
V kT = V(x) (2.2-19)
 

where V(x) represents the number of time steps needed for
 

v(x,kT) = v(x) (2.2-20)
 

to take the system from initial state x to final state xF .
 

V(x) also reveals those initial states x for which a control
 

sequence such that u(t)e U(x(t)) cannot be found to move the
 

system to'the final state xF. The uncontrollable regions 

are simply found by observing that U(x) = 0 for the states 

in those regions. In the computer program, a penalty cost 

is arbitrarily assigned to those states and a suitable
 

representation is given to the corresponding feedback control
 

laws to indicate that no admissible control exists.
 

2.3 State Variable Quantization
 

The first computational requirement in using a dynamic
 

program is to determine an adequate quantization, independent
 

of k, of the state variables and the control variables. In
 

the jet engine problem, the time constants of Pb and N,
 

obtained from linearizing the third order model about the
 

design objective, (see (23 or section 3.5) differ by an
 

order of magnitude. This difference implies that Pb will be
 

able to react more rapidly than N. To complicate matters, a
 

suitable choice for the time step size for the Euler
 

integration must be -made to restrict the motion of one time
 

step to one increment in each state variable.
 

Larson in [5] presents a relation which is useful for
 

determining a proper state variable quantization. If we let
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.F(x(t),u'(t)) = f(x(t),u(t))/at (2.3-1)
 

and let xi(t) represent the ith component of x(t), let uj(t)
 

represent the jth component of u(t), and let Fi represent
 

the ith discrete time function, then Larson's relation is
 

=t i=1,2, (2.3-2)
= min ,:: i x xi(t) *n 
 -j=1,2, ,m Fi x~t'j(t))1t , 


The above equation requires that Fi (xi(t),uJt)) be scanned
 

over all possible states and controls to determine the maximum
 

motion of each state variable per time step. A short
 

= 
computer program easily determines that F1 max Pb max = 40
 

and F2 max = Nmax = 2 for the jet engine problem. From this
 

information, the values of 6t, OPb' and 6N are determined.
 

In problems with state variable and control constraints,
 

each possible control must be in the set U(x) before it is
 

tested to find the best u(t). The quantization of these
 

problems should include a large number of state variable points
 

which land on the boundary of the constraints-and it is
 

necessary that those points in S2 be members of the quantized
 

grid. In the jet engine problem, the discrete quantization
 

must include the point (Pb=I,N=1) and several points which
 

satisfy constraints (1.4-4) and (1.4-5) with equality.
 

2.4 Initial Cost Function
 

The initial assigned cost function, V0(x), is designed
 

to force the system to rapidly approach xFS One approach is
 

to assign an arbitrary large constant to all x y xF but it
 

is found to decrease the convergence rate of the successive
 

approximations solution because the large initial constant
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introduces significant interpolation errors into the algorithm.
 

If V(x) denotes the minimum number of time steps required
 

for the feedback control law to take the system from an
 

initial state x to a final state XF, equation (2.2-12)
 

establishes a lower bound for the initial constant which is
 

the maximum time expected divided by the time step size. A
 

lower constant function increases the convergence rate of
 

the successive approximations method and also reduces the
 

errors induced by interpolation. The lower bound can be
 

found with a few trial Dynamic Programs or with preliminary
 

equation study. For the jet engine problem, the optimal time
 

required to move from windmill to military thrust is slightly
 

less than one second, or approximately .8 seconds.
 

Consequently the constant is set equal to 1/At.
 

2.5 Interpolation
 

Recall that vn(x) will have numerical representations
 

stored on the computer only for those states x which lie on
 

the discrete quantization grid. If a particular control
 

uE U(x) forces the motion
 

x, = x + f(x,u) (2.5-1) 

to a state x' not defined on the discrete grid, interpolation 

is required to approximate Vn+l(xI). Figure 2.2 illustrates 

the general case and presents an interpolation formula which 

produces good results for the jet engine problem.
 

Early results have indicated a tendency for the cost
 

function associated wi'th the members of $2 v-k(xF) = Vk(XF,k), 



15 

Vij+l 	 Vi+l, j+i
 

V
P 

b 	 -

Vi~ 	 a Vi+l, j
 

Vp = 	(1-a)(1-b)Vi j + b(1-a)Vij+ 1 + a(1-b)Vi+l, j + abVi+lj+ 1
 

Figure 2.2
 

to incur with each iteration small positive values which
 

propagate through the algorithm and grow larger. These
 

errors arise from quantizing and interpolating non-linear
 

system equations and cost functions. To minimize this effect,
 

Vn(xF) is reset to zero after each iteration.
 

In figure 2°3, a flow chart, describing the general
 

Dynamic Programming Method with the successive approximations
 

extension, is presented. The actual computer program, written
 

in FORTRAN IV for use on the FORTGI compiler in Notre Dame's
 

IBM 370/158 computer system, is listed and documented in
 

appendix A.
 

2.6 	 Control Regions for the Turbojet Enpine
 

Recall the reduced jet engine problem of section 1.4
 



16 Flow Chart for Dynamic Programming Method 


Initialize VOID
 

Enter state grid parameters,

time step size, and number
 
of iterations
 

Iteration Index
 

State Space Index
 

NOT - 0 
VOTES 100o 

Control Index N 

SVNEW -- VOTES 
UOPT 6 UOTEq 

*Note: If NOT=O, point VOLD-VNEW
 
is uncontrollable.
 

IV 
Print
 
VOID
 
UOPT 

Figure 2.3-A 
 t5
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Sx~t+1) = 

x(t) + r(x(t),u(t)) 

Is x~t+1)EX ? Yeso 

7NOT--NOT + 1 

Interpolate to find 

VOID(x(t+l) ) 

SVTEST ~-I +VOIL-xt+1)) 

-Is VTEST < VOTES ? 

UOTES <--U 

VOTES <-VTEST 

B 

Figure 2.3-B i
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which has one control variable P4 (or u,) and two state
 

variables, Pb (or x1 ) and N (or x9. The control set U
 

consists of real numbers which lie in the interval (0.5,
 

1.25) and various state sets X are considered which have
 

members surrounding the design objective. Recall that the
 

quantization is independent of k so that the design objective
 

can loosely be referred to as the target. As the Dynamic
 

Programming Method is run, the successive approximation
 

solutions show that the controllable region of Pb grows
 

quickly while the controllable region of N grows slowly.
 

This is due to the vast difference in the time constants of
 

Pb (TPb=0309) and N (TN=.352). A state set X consisting of
 

a narrower range of N (0.8-1.1) and a wide range of Pb (0.5

1.8) produces the most meaningful results. For greater
 

detail near control region boundaries, smaller quantization
 

increments and state sets X defining smaller regions can be
 

studied. They yield more information about the boundaries
 

and the feedback control regions are more clearly defined.
 

The time optimal feedback control solution is illustrated
 

on a state variable map in which three distinct control regions
 

can be seen in figure 2.4. The sharp boundaries which are
 

examined closely in section 2.7 and which separate these
 

regions are indicated by solid lines while the motion of the
 

system, xv(x,kT), due to the feedback control law, v(x,kT),
 

is indicated by dotted lines for several starting states x.
 

The design objective xF is denoted by a circle and every tenth
 

of a second along the trajectories is marked by crosses.
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Detail of Region 3
 
75
P4 min = 


1.5F6 max = 

P4 =,75
Region 3 

P4=.875
 

N
 

1.02 . 

1.01 

..- - \ I 
1-00
 

Regi n 2 

•.99
 

1 Region 

.98
 

-97 ,-----...---

.6 .8 1.0 1.2 1.4 1.6
 
fb
 

Dotted lines indicate optimal control contours
 

Figure 2.4-B 
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In region 1, the control variable rides the surge margain
 

constraint. This causes a rapid decrease in Pb with a little
 

increase in N. When the motion reaches the 1:2 boundary, the
 

control switches to ride the turbine inlet temperature
 

constraint0 In region 2, all starting states have motions
 

which take the system to a common main path which does not
 

lie on a region boundary. Along this path, N increases to
 

its design objective but only a small increase in Pb is
 

observed. -At a poin-t determined by the 2:3 boundary, the
 

control jumps to its minimum value and the system motion
 

rapidly approaches the target where the control assumes a
 

value of one. It is-this rapid switching action which
 

Pontryagin refers to a's abbang-bang control.
 

Region 3 is -the area in which the value of N is higher 

than the military thrust value. Physically, this area is of 

little interest, but it reveals an interesting control pattern 

which has no obvious analytic properties such as those in 

regions 1 and 2. The results in figure 2.4-B are obtained
 

from a control set U6(.75-1.25), and state variable set
 

N6 (.97-1.025) and P,$ (.,6-1.5). The time optimal feedback
 

solution reduces N rapidly by reducing the control variable
 

to its minimum value,, however the low control simultaneously
 

increases the value of Pb above the design.objective. The
 

dotted line contours indicate when the control value is
 

continuously raised to cause the motion of the system to
 

move along the 1:3 boundary, where the control follows the
 

surge margin, directly to the target.
 

http:U6(.75-1.25
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2.7 Accurate Boundary Descriptions
 

At certain sections in the state map, the time optimal
 

feedback control solution reveals the location of a boundary
 

where the trend of controls changes. Between regions 1 and
 

3, a line is implied for which states above have an optimal
 

feedback control value v(x) 1.25N and for which states
 

below have feedback control values which satisfy the surge
 

margain constraint with equality. The exact boundary is the
 

trajectory which, formed by the motion of the system due to
 

controls lying on the surge margain constraint, proceeds
 

directly to the target. This is determined in figure 2.5 by
 

integrating the system forward with.a few selected states as
 

initial conditions. In the neighborhood'of this boundary,
 

the control contour is continuous, or in other words, there
 

is a smooth transition of feedback control values from region
 

3 into the boundary.
 

The 2:3 boundary separates two regions having radically
 

different optimal control strategies. States x which lie
 

in region 2 have v(x) = 1 o25Pb and states x which lie on and'
 

above this boundary in region 3 have corresponding minimum
 

feedback control values. Figure 2.6 illustrates the resulting
 

boundary as a function of P4 min which can be chosen arbitrarily
 

in the reduced jet engine problem. Its most realistic value
 

depends upon how quickly P4 decreases when Wf in the third
 

order model is suddenly reduced to zero.
 

The boundary separating regions 1 and 2 is simply the
 

line "b = N.
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Detail of 1:3 Boundary
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Detail of 2:3 Boundary 
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2.8 Summary of Second Order Model Controls
 

Figure 2.7 shows the optimal time plots of the reduced
 

jet engine problem to which the time optimal feedback control
 

laws obtained from the dynamic programming algorithm are
 

applied. P4 has three control rules. Initially, P4 follows
 

the surge margin constraint until Pb is lowered sufficiently
 

to equal N, at which point P4 will follow the turbine inlet
 

temperature constraint. Physically, these two rules represent
 

the maximum allowable throttle without stalling or overheating
 

the jet engine. At .79 seconds, N has a value slightly
 

above the design speed but Pb will have only 80% of its
 

design value. The point is determined by the 2:3.boundary
 

where P4 is dropped to P4 min for an instant and then returned
 

to a value of one. This discontinuous rapid switching action
 

is an example of a bang-bang control -and it -moves Pb directly
 

to the design value in only .01 seconds. Therefore, the jet
 

engine is controlled from windmill to military thrust in
 

.8 seconds.
 

2.9 Aplication to Third Order System
 

From the reduced system information, the optimal time
 

responses for the third order description of the Drone engine
 

can be calculated. To determine the proper f, it is required
 

to find the desired P4 from the time optimal feedback control
 

law and calculate the value of *f which will force P4 to
 

assume values which follow the time optimal control law.
 

When the trajectory reaches the 2:3 boundary, *f is suddenly
 

reduced to a zero value which causes P4 to decrease and Pb to
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increase to its design value. Then, *f must be a positive 

impulse to raise P4 to the target rapidly without changing 

N or Pb" Once this is accomplished, * f is set equal to one 

and the system is in the military thrust state. 

The time responses for the third order model are plotted
 

in figure 2.8. -The initial impulse of *f forces P4 up to
 

the N constraint in one time step.
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1.6 
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CHAPTER III
 

THE MODIFIED FLETCHER-REEVES CONJUGATE GRADIENT METHOD
 

3.1 	 Motivation
 

Ordinary non-linear mathematical programming is a well
 

known method which can solve an unconstrained optimal control
 

problem with fixed time and a free right end by minimizing
 

a performance index, J(u), which is a function of several
 

variables. This method determines the optimal open loop
 

controlsequence and its computational requirements increase
 

only arithmetically with the order of the system under study.
 

In this chapter, a feasible directions idea is presented in
 

conjunction with penalty functions to extend the general class
 

of problems which the Fletcher-Reeves Conjugate Gradient Method
 

can solve to that which includes a constrained time optimal
 

control problem with a fixed right end. The developed
 

computer software is listed and documented in appendix B for
 

use to determine open loop time optimal control sequences for
 

the general class of non-linear free time, fixed right end
 

optimal control problems with state variable and control
 

constraints.
 

3.2 	The Fletcher-Reeves Conjugate Gradient Method
 

Consider the nth order, time invariant discrete system
 

having m controls
 

x(t+l) = x(t) + f(x(t),u(t)) (3.2-1)
 

and
 

x(-O) = x (3.2-2)
 

with starting time zero, terminal time N, and f(x(t),u(t))
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is continuously differentiable over the entire state space
 

and control domain. The performance index to be minimized
 

is
 
N-1
 

J(u) = K(x(N)) + a L(x(t),u(t),t) (3.2-3)
 

t = 0,1,2,...,N-1 

which is a function only of u given a starting state x where 

u denotes the control sequence 

= u(0),u(1),...,u(N-I) (3.2-4) 

and 

u(j) = u1 (j),u 2 (J),...,um(j) (3.2-5) 

so that u is a sequence of Nm real numbers.
 

This general class of unconstrained free right end fixed
 

time optimal control problems can be solved by the Fletcher-


Reeves method which uses a combination of steepest descent
 

and conjugate gradient techniques presented in [8) to minimize
 

a directionally convex multivaniable function, J(u). In
 

figure 3.1, a flow chart for this algorithm is presented and
 

the appropriate equations are described below.
 

Suppose a nominal control sequence u with a resulting
 

state variable trajectory and .performance index is selected.
 

The gradient of the trajectory is calculated while the adjoint
 

system equations are solved in reverse time according to
 

y(t) = y(t+1) + y(t+1) Vxf(x(t),u(t)) + VxL(x(t),u(t))
 

t = N-1,N-2,...,2,1
 

y(N) = VxK(x(N)) (3.2-6)
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with y(t) an array of n length, V f(x(t),u(t)) is the Jacobian,
 

x1 x 2 Zn 

f2 ... 

Vxf(x(t),u(t)) = X X 2 X (3.2-7) 

fn ff n f ... fn 

xi ?x2 ~ xn 
and
 

VxL(x(t),u(t)) 

-

r 'L _L ... - ] (3.2-8) 

[' I aX2 xn 

The gradient is the Nm length sequence
 

)
2 ( 1) = 1u(o)J(1 1 J( ) Vu(N l)J( R]1(uJ( ....

(3.2-9) 

and each component can be calculated from the relation 

Vu(t)J(I) = y(t+1) Vuf(x(t),u(t)) +VUL(x(t),u(t)) 

(3.2-10)
 

with Vuf(x(t),u(t)) and 'VL(x(t),u(t)) similarly defined.
 

It is incidental that the Fletcher-Reeves method under
 

appropriate convexity assumptions actually solves the discrete
 

minimum principle for the above class of problems. If the
 

Hamiltonian of the system is defined by
 

H(x(t),u(t),y(t+l)) = y(t+l)f(x(t),u(t)) + L(x(t),u(t)) 

(3.2-11) 

then 

Vu(t)J(L) = VUH(x(t),u(t),y(t+l)) (3.2-12) 

which is zero along the optimal trajectory, corresponding to
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the Hamiltonian being minimized. 

During each first inner iteration, a line search is 

performed along the conjugate direction of the gradient 

= -a to find the best d such that 

h( min J(u +Oa.) (3.2-13) 

For each successive inner iteration, the direction of the
 

line search is
 

d + Bd (3.2-14) 

a linear combination of the present gradient and previous 

direction with 

B T (3.2-15) 

and g* is the present'gradfioent, . the previous gradient, and 

d is the previous direction -After N i nner, iterations, the 

direction is again set equal to the conjugate direction of 

the gradient and the present performance index is compared to 

the previous one to determine if another set of inner 

iterations is required0 If, during a set of inner iterations, 

the line search pnoduaes an.o . 0., the performance index 

can not be improved with further inner iterations so the 

algorithm skips to the next outer iteration. The control 

sequence 1 which minimizes J(u) is the optimal open loop 

control sequence. 

3.3 The Extended General Class of Problems
 

We actually wish to solve a constrained time optimal 

control problem with a fixed -.irght -end. -Recall'the reduced 
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jet engine problem of section 1.4 with control constraints
 

and a design objective xF = (Pb=1,N=1). A combination of
 

a simple feasible directions idea used in conjunction with
 

penalty functions will extend the capabilities of the Fletcher-


Reeved Conjugate Gradient Method to solve the general
 

constrained time optimal control problem with a fixed right
 

end.
 

3.4 Feasible Directions Modification
 

Several barrier functions were tried which would heavily
 

penalize the system if a control constraint is violated. All
 

attempts to find a continuously differentiable function to
 

force the control variable, P4, to obey its constraints failed,
 

-so great is-,the tendency of thesystem to overshoot them. The
 

overshoot path arlways yieldsa lower performance index than
 

any legal control sequence would yield. As the barrier
 

functions are steepened, computer overflows appear when the
 

performance index is differentiated, and therefore barrier
 

functions do not provide a solution to the overshoot problem
 

in the reduced jet engine model.
 

Hence, barrier functions are abandoned and a simple
 

feasible directions idea is added to the algorithm. If a
 

member of a control sequence violates its constraints, the
 

control is reset at the nearest constraint boundary,
 

making it impossible for any control member to violate the
 

control constraints. This subroutine is called from all
 

trajectory calculations, and especially from those in the
 

line search0 The .restri.ct-ed.a- ori-thm-still uses gradient
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information to compute the steepest direction, but it restricts
 

the magnitude of that direction which can be added to each
 

member of the nominal control sequence. It should be noted
 

that the gradients are no longer zero along the optimal
 

path and also that a jamming possibility exists.
 

Recall in the reduced jet engine problemthat there
 

are two control constraints. In addition we constrain the
 

value of P4 to be at least .5 to prevent negative values
 

which would increase Pb and N arbitrarily. This constraint
 

provides an equivalent problem to that solved by Dynamic
 

Programming in chapter II.
 

3.5 Performance Index Function
 

A performance index function is used to convert the
 

Fletcher-Reeves Method to solve a free time, fixed right end
 

optimal control problem. Since, in-the optimal time problem,
 

the state variables are desired to reach xF in minimum time,
 

a performance index function, which penalizes the system for
 

not being at XF, takes the form
 

N-1 n N-1 
Y L(x(t),u(t)) = I I c (xj(t) - Tj) 2 (3.5-1) 
t=o J=i t=o 

where xF = (T1,T2,o..,Tn ) and e = (c1 0C2 )..,Cn ) are selected 

weighting constants. The squared criterion is chosen to 

provide a symmetric convex penalty function about the state 

XF which is continuously differentiable. Initially the c 's 

were assigned the same value but this choice is found to 

produce an oscillating time optimal solution, a condition 
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not suggested by the Dynamic Programming solution of chapter II
 

To remove the oscillation effect and obtain an accurate
 

time optimal open loop control sequence, the cjIs are
 

chosen so they are in proportion to the time constants of
 

the state variables, which can be obtained by linearizing the
 

system about xFO If we represent the A,B linear state
 

description of small deviations about the design objective as
 

x = A Sx + B Su (3.5-2) 

with
 

A = f (XF,U ) (3-5-3) 

then the time constants are the inverse of the real parts of
 

the eigenvalues -of -the Jacobian evaluated at xF and uFo In the
 

jet engine problem, TN = -352; TPb = o0309, andTP4 = o0123
 

and the resulting-cj ratios become 1000:90:35. The slowest
 

state variable, N, should have the higher penalty because it
 

requires the most time to react. In the reduced problem,
 

P4 is the control and is not assigned a penalty to find a
 

time optimal control sequence for the problem.
 

A prior knowledge of the approximate optimal time is
 

needed to choose a good time step size and state variable
 

array length. Chapter II has already shown that the jet
 

engine can move from windmill to military thrust in .8 seconds
 

so a t = .005 and an N = 200 are used in the program.
 

For the optimal time problem, the early states in the
 

trajectory are given a small penalty with respect to that
 

given to later states. This gives the system freedom to
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reach the design objective. If we let t be the time step of
 

interest and let N time steps exist, then the performance
 

index functions become
 

L(x(t),u(t)) = N i cj(xi(t) T (3.5-4)N(t j=l	 

and
 

K(x(N)) = N c (x (N) - T (3.5-5)
 
j=1
 

A point 90% along the trajectory is given a penalty only 38%
 

of that received by the endpoint. Computational experience
 

has revealed that for problems in which the time optimal
 

control sequence lies along the constraint boundaries for
 

most of the state variable trajectory, a much lower exponent
 

must-be used in (3.5-4) to prcvide higher earlier penalties.
 

In run I of section 3-7, an original exponent of 9 produces
 

a solution in which the jet engine idles at windmill for most
 

of the allowed time and only approaches the design value
 

near the end. When the exponent is lowered to two, the
 

solution is a control sequence which rapidly accelerates
 

the engine.
 

3.6 	Param¢e S§nitive Cubi Fit Line Search
 

A quick, accurate line search to find
 

*)t 0
hminh( ~O = j( +cc a) (3.6-1) 

is a vital component of the modified Fletcher-Reeves method.
 

Lasdon in (9] has proposed a quadratic fit technique to find
 

the best alpha. Also considered is a golden section line
 

search but neither approach simultaneously allows a wide
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range of possible 4* values and requires relatively few
 

trajectory calculations todetermine a test point h(a).
 

The line search proposed here fits a cubic polynomial
 

through three test points and with derivative information
 

algebraically solves for k* in one step0
 

Consider the general situation pictured in figure 3.2.
 

h(b) Conditions 

h(o) 
h(a) 

-0I 

h 

1) h(a)z h(O) 
2) h(b) 7h(O)
3) h'(0)4 0 
4) 0 asb 

a K* b 

Figure 3.2
 

Suppose that h(ct) can be described by
 

h() = h(O) + hl(0) + AcA 2 + Bet3 (3.6-2) 

and 

h(d )Y 
= 0 (3.6-3) 

gives c( * in terms of A,B,h(O), and h'(O) from the solution 

of the following equation. 

h'(&. ) = h'(0) + 2AOt + 3Bo2 = 0 (3.6-4) 

The positive solution of the quadratic formula solves the 

above equation to give 

2 : 
_ -A + - 3Bh1(0) (3.6-5)

3B
 

To find A and B, note that
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h(a) = h(o) + h'(0)a + Aa2 + Ba3 (3.6-6)
 

h(b) = h(0) + h'(0)b + Ab2 + Bb3 (3.6-7)
 

and the expression for A is then obtained by multiplying
 

(a/b)3 to both sides of (3.6-7) and subtracting the result
 

from (3.6-6).
 

A h(a) - h(b) + h(0)(3- 1)+ hc(O)(-A - a) 

(3.6-8)
 

- Aa2
B = h(a)- h(O) - h'(O)a (3.6-9)
 
3
a .
 

The flow chart for the parameter sensitive cubic fit
 

line search is illustrated in figure 3.3. The components
 

of the line search ate explained in the remainder of this
 

section0 Recall from the Fletcher-Reeves flow chart that
 

h(O) is already known and h'(0) can be expressed as g d.
 

1) Selection of "a" Value
 

As an initial guess for "a", let
 

a - (3.6-10) 

with II II denoting the-usual norm of a vector. If the 

resulting h(a) satisfies condition 1 of figure 3.2, let 

b = 5a and proceed to find a suitable "b" value; if not, 

divide "all by ten and try condition 1 again. Sometimes when 

J(u) is very close to the minimum value, "a" can get minutely 

small with no decrease in h(a). If this happens, set a*
 

to zero and continue with the main program.
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2) Selection of "b" Value
 

If the resulting h(b) satisfies condition 2 and has
 

a reasonable value, use the cubic fit routine to find o(*
 

with equations (3.6-5),(3.6-8), and (3.6-9). If h(b) is
 

less than both h(O) and h(a), move tb" values into "a", let
 

b = 2b and try condition 2 again0 This step moves,the value 

of "au closer to the minimum point and improves the accuracy 

of the cubic fit. If condition 2 is not satisfied and h(b) 

is greater than h(a), let c * = a. Experience indicates that, 

in this case, the function h(o() has the shape indicated in 

figure 3.4. Since much computer time is spent to find a
 

a b 

Figure 3.4
 

"b' which will satisfy condition 2, and since both of the
 

values of "a" and "b" are close to the minimum point, let
 

= a, It must be noted that in the jet engine problem, 

this case only appears at the first iteration when the 

trajectory approaches the control constraints. After the 

cubic fit, there is a final test to check that h(o*) is 

actually lower than h(a), which will be the usual case.
 

In the jet engine problem, this line search works well
 

and always improves the'performance index with -each iteration.
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There seem to be many tests in the line search of figure 3-3,
 

however the answer is yes to all tests in the usual case and
 

only three or four trajectory calculations are required to
 

find an accurate * Another advantage is the wide range
 

1

of values which 0 * can assume. It ranges from 10- to
 

.0015 in the jet engine problem or eight orders of magnitude.
 

3°7 Second Order Jet Engine Study
 

In solving the jet engine problem and comparing the two
 

computational methods of this thesis, trajectories resulting
 

from two important sets of initial conditions are studied by
 

the Modified Fletcher-Reeves Conjugate Gradient Method. From
 

chapter II, itis already learned that the jet engine can be
 

controlled from windmill to military thrust in close to .8
 

seconds, so for this case, the state variable arrays will
 

have a length of 200 and a time step size of .005. From
 

figure 2.4-A, an initial state (Pb=1O774 ,N=.9) is-seen to
 

require about .3 seconds so a state variable array length of
 

200 is used with a time step of .002 for this problem.
 

A poor nominal constant control of P4 = .6 which decreases
 

the rotational speed and increases the burner density is
 

used in the non-linear programs because this nominal control,
 

unable to influence the solution, yields a true test of the
 

feasible directions modification and free time, fixed right
 

end extension. The number of inner iterations per outer
 

iteration is equal to the array size of the variables. Outer
 

iterations are run until the performance index no longer
 

decreases. If the line search produces an 4 * equal to zero,
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no further improvement can be made until a new gradient
 

direction is calculated. Therefore, significant c.pou. time
 

can be conserved by skipping the remaining inner iterations
 

when and.* equal to zero is produced. Table 3.1 tabulates
 

the action of the performance index as outer iterations of
 

the three significant programs are run. The vast improve

ment in the first iteration represents the rapid action away
 

from the poor ini.tial -control sequence toward a much improved
 

open loop control law, Further iterations refine the optimal
 

solution and only slightly lower the performance index. An
 

illustration of this in the bang-bang portion of run III, in
 

which the time plot of the.control sequence assumes a
 

rounded shape in the-earlier iterations and refines later
 

to a rectangular shape8 
 -

Run I directly attacks the jet engine problem posed in
 

section 1.4 and produces very encouraging results. A close
 

inspection of the time response in figure 3.5 reveals that
 

the control sequence follows the control constraints through

out most of the trajectory. Near the end, the control is 

reduced and increased but not with the rapid switching action 

suggested by the dynamic programming solution. The author 

hypothesizes that the algorithm has jammed here because the 

optimal direction is calculated with no awareness of the 

control constraints and also the gradients along those 

constraints do not approach zero. However, a great part of 

the solution has been calculated with run I and it agrees 

with that in chapter II. Figure 3..6 reveals that run-II 
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ITERATIONS REQUIRED AND RESULTING
 

PERFORMANCE INDEX
 

OUTER ITERATION # PERFORMANCE INDEX 

Run I x = (Pb=1.o774 ;N=.5 4 61) t =, .005 

0 2639895 00 
1 107942.56 
2 107791.62 
3 107725.00 
4 107724.44 
5 no change 

Run II x = (Pb=1.774 ,N=.9) t-= .002 

0 2556673.00 
1 333.52 
2 328.07 
3 327.53 
4 no change 

Run III x = (Pb=.7 8 33,N=.-9 853) t = .001 

0 88460.69 
1 101.49 
2 90.17 
3 89.22 
4 no change 

Table 3.1
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has produced a similar situation and has also defined a state
 

variable path which joins that formed in run I. This oc

currence verifies the existence of the common trajectory of
 

Dynamic Programming's region 2 which is seen in figure 2.4-A.
 

The initial conditions of run III are obtained by
 

assuming that the portion of the solution, of which the control
 

values lie on the constraints, is valid and by choosing a
 

point near the end of the boundary as an initial condition for
 

another run. The new state variable array dimension is 100
 

and the time step size is .001. The time response plot in
 

figure 3.7 reveals a bang-bang control sequence which is
 

faster than that in figure 3.5 and 3.6 and is similar to the
 

solution of chapter II. It shows that P4 switches directly
 

to the P4 min constraint from the turbine inlet temperature
 

constraint. This later sequence added to the control sequence
 

obtained from the first part of run I produces an open loop
 

control sequence which is most similar to that of chapter II.
 

The methods and results of section 2.9 can again be
 

employed to calculate the third order time optimal control
 

sequence which is already graphed in figure 2.8. Since.the
 

reduced solutions are identical, so are the third order solutions.
 

In figure 3.8, the discontinuous control law for the
 

two methods is shown.
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CHAPTER IV
 

CONCLUSION
 

Two well known computational methods, Dynamic Programming
 

and the Fletcher-Reeves Conjugate Gradient Method, are
 

successfully adapted in this thesis to solve the general
 

class of fixed right end, free time optimal control problems
 

with state variable and control constraints0 Both methods
 

have determined similar time optimal open loop control
 

sequences for the discretized version of the reduced jet
 

engine problem. These solutions have bang-bang features
 

and also control values satisfying constraints with equality.
 

A successive approximations technique extends the
 

capabilities of Dynamic Programming to 'produce a -time optimal 

feedback control law which has described, in the get engine 

problem, several-regi-ons in the,-state -space-map for which the 

controls follow a common rule. Separating these regions are 

distinct boundaries whose locations are approximately indicated
 

on the discretized state variable grid. Unfortunately, the
 

number of required computations increases geometrically with
 

the order of the system and there is a problem with picturing
 

a multi-dimensional feedback control law.
 

A feasible directions idea, used in conjunction with
 

penalty functions, extends the Fletcher-Reeves Conjugate
 

Gradient Method to produce a time optimal open loop control
 

sequence for a fixed right end optimal control problem with
 

state variable and control constraints. The solution of the
 

reduced jet-engine -problem again shows the control values
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lying on the control constraints for most of the state
 

variable -trajectory. Using a point near the end of the
 

constraint region as an initial condition, a discontinuous
 

bang-bang control sequence,identical to that suggested by
 

the feedback control law of Dynamic Programming, is obtained.
 

This method is well suited to higher order problems because
 

the number of computations required to solve higher order
 

systems increases only arithmetically with the system order.
 

The computer software which produced the main results
 

of this thesis has been generalized to solve any general
 

problem in this class.. In the appendix, the software programs
 

are listed and documented for general use to solve fixed
 

right end, free time optimal contbol problems with state
 

variable and control constraints,.
 



APPENDIX A
 

This appendix lists and documents the software which
 

implements the successive approximations technique to
 

Dynamic Programming. It is written with the reduced jet
 

engine equations but it is carefully-documented to describe
 

a straightforward extension to the general constrained
 

time optimal control problem. The flow chart appears in
 

figures 2.3-A and 2.3-B.
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C DYNAMIC PROGRAMMING SOLUTION FOR SECOND ORDER SYSTEM
 
C THIS PROGRAM ALLOWS AN ARBITRARY SELECTION -OF TI-E STATE SPACE
 
C TO BE STUDIED

C DIMENSION VNEW(30,30 ).VOLO(30,30"),UOPT(3O.3O),ALIST(30)
 
C
 

C NITT=DESIRED NO. OF ITERATIONS
 
C DELTA IS THE DESIRED TIME STEP'
 
C
 
C PB IS THE BURNER DENSITY STATE VARIABLE XI
 
C EN IS THE ROTOR SPEED STATE VARIAdLE X2
 
C P4 IS THE BURNER PRESSURE USED AS THE CONTROL IN THIS SYSTEM.
 
C
 
C FST IS THE FIRST POINT IN THE ALLOWABLE STATE SPACE
 
C 'LST IS THE LAST POINT IN THE ALLOWABLE STATE SPACE 
C INC IS THE INCREMENT IN THE STATE SPACE -

C NOTE, RESTRAIN TO 30_.POINTS PER VARIABLE,
 
C THE TARGET POINTS MUST BE-ON THE GRID
 
C 

ENFST=0.98
 
ENLST=1.05
 
ENINC=O.0025
 
PBFST=:06
 
PBLST=Ib
 
PBINC:0.05
 
P4FST='.75
P4LST=1,25
 
P4IWC=Oo125
 
P41NC=PINC/2.

DELTA=.O...O1
 
NITf=130
 

C
 
C ENTER THE TARGET POINTS
 

PBTAR=E.
 

ENTAR=1.
ER=IlzEo6 
NENtIFIX.A,(ENLS-ENFST EP)/ENINC)+1
 
NPB=IFIX(.{.RBLS'T-PBFST+EP)/PBINC)+I
 
NPq=IFIX((P4LST-P4FST+.P)/P41NC)+I

NENI=IFIX((ENTAR-ENFSI'+EP)/ENINC)+I

NPBi=IFIX((PBTAR-PBFST+EP)/PBINC)+I

NNEN=NEN+1
 
NNPB=NPB+1
 

C
 
C NSP IS THE STARTING POINT FOR rHE PB PRINTOUT
 
C NEP IS THE END POINT FOR THE PB PRINTOUT
 
C
 

NSP=l
 
NEP=NPB
 

C
 
-C INITIALIZE THE PENALTY FUNCTION - MAKE AS LOW AS POSSIBLE
 
C
 

DO £0 I=,'NNEN
 
DO 10 J=INNPB
 

10 	VOLD(LJ)=i../DELTA
 
VOLC(NENi,'NPB1) O.
 
00 15' I=I,NPB
 

15 ALISTcI)=PBIC*IFLOAT(I'1))+PBFST+EP
 
C
 
C ITERATION INDEX
C
 DO 	20 N=,NITT
 

C
 
C STATE VARIABLE INDEX
 
C
 

00 	30 I=I,NEN
 
EN=ENINC*(FLOAT(I-1))+ENFST
 
DO 30' J=1,NPB
 
PB=PBINC*(FLOAT(J-1))+PBFST
 

OOF, 

http:P4FST='.75
http:PBINC:0.05
http:ENLST=1.05
http:ENFST=0.98
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NOT=O
 
VOTES=I./DELTA+1O.


C
 
C CONTROL INDEX
 
C, DISCARD UNALLOWABLE CONTROLS
 
C. 

.DO 40 K=I.,NP4
 
P4=P4INC*(FLOAT(K-i)+P4FST


C 
C THE CONTROL CONSTRAINTS ARE INDICATED HERE
 
C 

IF(P4.GT.1.25001*EN) GO TO 40
 
IF(P4.GT.1.25001*PB) GO TO-40
 

C
 
C CALCULATE THE NEXIT STATE AND DISCARD UNALLOWABLE CONTROLS
 
C THE STATE EQUATIONS HERE ARE FOR THE REDUCED JET ENGINE PROBLEM
 
C 

Z=SQRT(P4*P4+0.4-1688*EN*EN-O.0899*P4*EN)

W3DOT=1.3009*EN-O.139825*P4-0.13982*Z
 
PBT PB+DELIA*-(317*.78*W3DOT-38.44BP4+o .66849)
 
IF(PBT.GT.PBLST+EP) GO TO 40
 
IF(PBT.LT.PBFST-EP) GO TO 40
 
ENT=EN+DELIA*.*258/EN*(P4*P4/PB-W3DOT*EN*EN)
 
IF(*ENT.GT.ENLST+EP) GO T0 40
 
IF(ENT-.L[.ENFST-EP) GO TO 40
 
NOT=NOT+3
 

C
C INTERPOLATE TO FIND CORRESPONDING PENATY 
C
 

AI=(FLOAT(NEN-1}V*ENT-ENFST*FLOAT(PJEN)+ENLST)/(ENLST-ENFST)+EP

BJ=(FLOAT(NPB-I*PBT-PBFST*FLOAT(NPB)+PBLST)/(PSLST-PBFST)+EP
 
ICDR=A'I
 
JCOR=BU
 
A=AI-FLOAT(ICOR)
 
B=BJ-TILQAT(JCOR)

ONE=VOLD(.ICOR,JCOR')
 
TWO VOLD(-ICOR.JCOR+I)

THREE=VOLD (ICOR xlo C-OR:)
FOUR=VOLD(-ICOR+i ,JCOR+3)
V=(1.-A)*(1.-B-)*ONE+(I.-A)*B*TWO+A*(I.-B)*THREE4A*B*FOUR
 

C
 
C .DETERMINE IF THIS CONTROL IS BETTER'
 
C
 

VTEST=I.A-V
 
IF(VTEST.G.VOTES) Go TO 40
 
UOTES=P4 
VOTES=VTEST 

,40 CONTINUE
 
C
C FORM VNEW MATRIX FROM NEW DATA 
C 

IF(NOT)'31,32,31
31 IF.(VOTES.GT.I./DELTA-EP) GO TO 32 

UOPT(I. )=UOTES
VNEW(CJ)=VOTES 
GOTO 30, 

C NOTATION 'FOR THE UNCONTROLLABLE STATE AND- FEEDBACK CONTROL LAW 

32 UOPT(I.J)=O.
 
VNEW(IJ)=1./DELTA


30 CONTINUE
 
C
 
C RESET TARGET STATE PENALTY TO 0
 
C
 

VNEW(NEN1,NPBX =.
 
C
 
C MOVE VNEW INTO VOLO FOR NEXT ITERATION
 
C
 

DO 50 1=,NEN

00 50 J=INPB
 

~~ ,$15L 
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50 VOLD(I,J)=VNEW(IJ)
 
20 CONTINUE
 

C
 
C PRINT ROUTINE
 
C
 

WRITE(6,iOO)NITT

WRITE(6,101)(ALIST(I),I=NSP,NEP)
 
WRITE(6,10B)
 
DO 53 K=iNEN
 
KK=NEN+1-K

XO=ENLST-ENINC*FLOAT(K-i)
 
WRITE(6102)XDO(VOLD(KK,I),I=NSP,NEp)

WRITE(G.lOh)(UOPT(KK,I),I=NSP,wNp)
 
WRITE(6,103)


33 CONTINUE
 
WRITE(6,1O1)(ALIST(1),I=NSP,NEP)
 

100 FORMAT(5,'TIME STEP NUMBER',.Iq)
 
101 FORMAT(6X,19F6.s)

102 FORMAT(iX,F5,319FG.I)
 
103 FORMAT(IX,'-')


STOP
 
END 

http:NUMBER',.Iq
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APPENDIX B
 

This appendix contains detailed software of the
 

Modified Fletcher-Reeves Conjugate Gradient Method. A
 

chart showing the relation of the main program with seven
 

specialized subroutines is given below and the listings
 

and documentations of the actual software are given on
 

the following pages.
 

CNSTR ADJNT
 

TRAJ 14r - ]AIN PROGRAM 4[ 


PEEMHOALF LNSCR
 



58 
DIMENSION U(200.3),US(200.3),X(201-,4),XS(201,41)
 

?G(2OO,.5),GS(2OO,6)-,'O(2OO,3),ALIT-{(201)

COMMON PCON(4),t(4)',DELTA,KOUTINU.NCNXNPA


C
 
C READ IN INITIAL DATA
 
C CARD I - NC = NUMBER OF CONTROLS 
C NX = NUMBER OF STATE VARIABLES 
C NPA = NUMbER OF POINTS PER ARRAY 
C NOUT=MAXIMUM NUMBER<OF TOTAL ITERATIONS 
C CARD 2 - INITIAL CONDITIONS FOR EACH STATE VARIABLE 
C CARD 3 - PENALTY CONSTANT FOR EACH STATE VARIABLE 
C CARD 4 - DESIGN OBJECTI.VE FOR EACH STATE.VARIABLE 
C CARD. 5 - TIME STEP SIZE 
C
 

READ('5,)NCNXNPAiNOUT
READ(5,*)(X(l-,J),J=l-,NX)
 
READ(5t*)(PCON(J),J=I,NX)
 
REAU(5,*)(T(tJ),J=INX)
 
READ(-51*) DELTA
 
,DO 20 J=1,NX
 

20 XS(IJ)=X(IJ)

C
 
C INDEX IS THE .TOTAL ITERATION COUNTER
 
C KOUT IS THE OUTER ITLRAT-I'ON-COUNTER
 
C
 

INDEX=O
 
KOUT=O
 
PTEST=I.E1O
 
EP=IE'4
 

C
 
C ASSIGN A NOMINAL CONTROL
 
C 

DO I K=INC.
 
DO 1 J=ItNPA 

I U(J,K=0..7
2 CONTINUE
 

C 
C IND IS 1HE INNER. ITERATION COUNTER 
C 

INDEO-
KOUT=KOUTtl
 

C
 
C tCOMPUTE HE 'STATE VARIABLE.TRAJECTORY AND THE PERFORMANCE INDEX 
C 

CALL TRAJ(XU)
 
CALL PERFM(X',U,PERI


C
 
C COMPUTE THE GRADIENTS
 
C
 

CALL ADJNT(XiU.,G)

CALL PRIN(X,U,GPER',INOEX)
 

C
 
C DIRECTION IS THE NEGATIVE ,OF THE GRADIENT
 
C
 

DO 3 K=1,NC

DO 3 J=I,NPA
 

3 D(J,K)=-G(J,K)
 
4 CONTINUE
 

INDEX=INDEX+1
 
C
 
C LINE SEARCH TO FIND THE ALPHA .WHICH MINIMIZES
 
C H(ALPHA) = J(U.ALPHA*O)
 
C
 

CALL LNSCH(XU,D,G,ALPHAPER)
 
C
 
cC- IF ALPHA IS VERY SMALL, PROCEED TO THE NEXT CUTER ITERATION
C 

IF(ALPHA.LT.I.E-12) INOEX=KOUT*NPA
 
IF(ALPHA.LT.I.E-12) IND=NPA
 

C
 
C US = U +ALPHA*D
 
C
 

00 5 K=INC
 
DO 5 J1i.NPA
 

5 US(J,K)=U(,K)+ALPHA*D(J,K)
 
C
 
C COMPUTE NEW TRAJECTORY AND PERFORMANCE INDEX
 
C
 CALL TRAJ(.XSUS)
 

CALL PERFM({XSUS.PER)
 

http:OBJECTI.VE
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WRITE(6,13) PER
 

6 CONTINUE
C
 
C COMPUTE NEW GRADIENTS
 
C
 

CALL ADJNT(XSUSGS)
C
 
C COMPUTE BETA
 
C
 

BN=O.
 
BD=O.
 
DO 7 K=,tNC

DO 7 J=1,NPA
 
BN=BN+GS(JK)*GS(J,K)
 

7 BD=BD+G(J,K)*G(J,K)

BETA=BN/BD


C
 
C ASSIGN NEW DIRECTION FOR LINE SEARCH
 
C
 

DO 8-,K1,NC
 
00 8 J=INPA
 

8 D(J,K)=-GS(J,K)+BETAtD(J,K)
 

C MORE THAN MAXIMUM NUMBER OF TOTAL ITERATIONS ?
 
C
 

IF(NOUT.LT.INDEX) GO TO 11
 

C MORE THAN MAXIMUM NUMBER OF INNER ITERATIONS ?
 

IFCNOUT.LT.NPA) GO TO 9.
 
C
C DOES PERFORMANCE INDEX IMPROVE 7
 

IF(P1EST-PER.LT.EP') GO TO 11
 
PTEST=PER
 
GO TO' 2
C
 

C MOVE NEW GRADIENT 'INTO OLD GRADIENT
 
C
 

9 00 10 K=l,'NC
 
DO 	10 J=I,NPA


10 	G(JK-)=GS(J,K.)
 
GO-TO'4
 

C
 
C PRINT AND PLOT OPTIMAL TRAUECTORY
 
C
 

11 	KOUT=O
 
CALL PRIN(XS,US,GSPERINDEX)

DO 12 J=1,NPA
 

12 ALIST(J)=FLOAT(J)

CALL PLOTA(2.ALISTUSNPANPANC)
 
N=NPA+1
 
CALL PLOTA(2,ALIST,XS,N,N,NX)
 

13 FORMAT('+',65X,'PERFORMANCE INDEX IS 

STOP
 
END
 

',F15.4)
 

0SA-GE 

http:IF(P1EST-PER.LT.EP
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SUBROUTINE ADJNT(X,UG)
 
DIMENSION X(20l,4),U(200,3)G(200,3),Y(4),YN(4),DLOX(4),DFX(4.t4)
 

?DFUC4,3)
 
COMMON PCON(4),T(4),DELTA,KOUT,INDNCNXNPA
 
N=NPA+1
 

C
 
c INITIALIZE Y(K)
 

DO I K=INX
 
I Y(K)=2.*PCON(K)*(X(N,K)-T(K))*FLOAT(iN)
 

c
 
C CALCULATE THE ADJOINT SYSTEM IN REVERSE TIME
 
C
 

DO 2 J=I1NPA
 
K=NPA+I-J
 

C
 
C DEFINE ALL DERIVATIVES OF THE FORM
 
C DFX(NX,NX) AND OFU(NXNC)
 
C 

FOLLOWING ARE DERIVATIVES FOR'THE SECOND ORDER JET ENGINE 
MODEL
 

C 

C DEN=SQRT{UK,i) *2+O.41688X(K,2)**2-0.0899*U(Ki)*X(K,2))
 

W=l.60O9*X(K,2).O.139825*U(K,1)-O.13982DEM

DWDU=O.139825-O.06691*(2o*U(,Kl)-O.0899*X (K,2))/DEN
 
DWDX2=I. 3 009-0.OSG9*(0.83376*X(K,2)-0.0899*U(Kl))/DEN
 
DFX('i,)=O.

DFX(l,2)=37.78*DWDX2 2/X(K,2})
DFX(2,1)=-1.258*{{U(K,E)/X(K,I)} 


DFX(2,2)=-1.258*((U(Ktl)/X(K,2))**2/X(Ki)+W+X(K,2)*DWDX2)
 
DFU(I,.1=37.78*OWd-3S.448
 
DFU(2,1)=1.258*(2.*U(K.)/ X(Ki)*X(K,2))-X(K,2)*DWDU)
C
 

C CALCULATE DLX(NX)

C
 DO 3"I=INX
 

3 DLDX(I)=2.*PCON(I)*(X(K,I)-T())*FLOAT(NPA'*(FLOAT('K)/FLOAT(NPA)**
 
?9)
 

C CALCULATE PRESENT GRADIENT
 C
 

DO 4 I=NC
 
G(KI1)=O.

DO 4 M=I,NX
 

4 G(K,I=G(KiI)+Y(M)*DFU(M,I)*DELTA
 
C
 
C CALCULATE NEXT Y(K)
 
C
 

DO 5 M=1,NX
 
YN(M)=Y(M)
 
DO 5 I=,NX
 

5 YN(M)=YN(M)+Y(I)*DFX(IM)*DELTA

DO 6 I=INX
 
YN(I)=Yf4(I)+DLDX(I)+Y{I)
 

6 y(I)=YN(l)

2 CONTINUE
 

RETURN
 
'END
 

http:X(20l,4),U(200,3)G(200,3),Y(4),YN(4),DLOX(4),DFX(4.t4


Subroutine ADJ-NT computes the gradient arrays of a
 

nominal trajectory. The theory of the adjoint system
 

equations is presented in section 3.2. The user is
 

required to calculate and define in ADJNT all derivatives
 

of the form
 

DFX(J,K) J=1$21.o.,NX K=1,2,...,NX
 

DFU(J,K) J=1,2,.,NX K=1,2,.. NC
 

where
 

DFX(JK) _ ; DFU(J,K) =
 
xk u k
 

The derivatives must beexpressed in the form which is
 

illustrated by the jet engine problem example. The portion
 

of ADJNT whi-ch calcultes the adfjoint system and the gradients
 

is completely general and need not be altered by the user0
 

INPUTS:
 

U - the control arrays
 

X - the state variable arrays
 

OUTPUT:
 

G - the resulting gradient arrays
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SUBROUTINE CNSTR(X,UTRYU)

DIMENSION X(4),UTRY(3) U(3)

COMMON PCON(4.},T(lf,DELTA,KOUTINDNCNXNPA
 
IF(UTRY(1).GT.1.25*X(i)3 UTRY(1)=X(1)

IF(UTRT(i).GT.1.25 A(2)) UTRY(1)=X(2)

IF(UTRY(1).LT.O.5) UTRY(1)=0.5

U(1)=UTRY(1)

RETURN
 
END
 

Subroutine CNSTR tests a state variable n-tuple to
 

determine the legality of the control, which isreset at
 

the nearest legal boundary if the control is in an

unallowable region.
 

This is a-specialized subroutine which implements the
 

feasible directions modification. The user simply states
 

his linear constraints in a similar manner. CNSTR is
 

called only from the subroutine TRAI.
 

INPUTS:
 

UTRY - the present controls to be t etqd
 

X - the present state variable-n-tuple
 

OUTPUT:
 

U - the resulting allowable controls
 

http:IF(UTRT(i).GT.1.25
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SUBROUTINE HOALF(X,U,DALP)
 
DIMENSION Xc201.,4),U200,3 ,0(200,3),UTRY(200,3)
 
COMMON PCON(4) ,t(P),DELIA,KOUTINDNCNX,NPA
 
DO I K=1,NC
 
DO I J=INPA
 

I UTRY(J,K)=U(J,K)+ALP*D(J,K)
 
CALL TRAJ(X,UTRY)

CALL PERFM(X,UTRYH)
 
IF(KOUT.GT.1) GO TO 2
 
IF(IND.GT.5) GO TO 2
 
WRITE(b,3) ALP,H
 

2 CONTINUE
 
3 FORMAT(5XtALPHA = ',E15.5,' H(ALRHA) = ',F15.4) 

RETURN
 
END
 

Subroutine HOALF calculates h(a-) = J(u + ad). It is
 

called from LNSCH to determine the performance index
 

This subroutine
resulting from possible control arrays. 


is completely general and independent of the particular
 

problem to be solved. It need not be -altered by the user.
 

INPUTS:
 

U - the nominal cont-ol array 

X - the nominal state variable-arrays 

D - the direction along which the line search is made 

ALP - the present distance tested along D 

OUTPUT:
 

H - the resulting performance index
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SUBROUTINE LNSCH(XUDGALPHA,PER)
 

C LNSCH IS A LINE SEARCH SUBROUTINE WHICH UTILIZES A CUBIC POLYNOMIAL
 
C FIT TECHNIQUE TO DETERMINE A MINIMUM POINT.
 
C IN ADDITION, IT IS SENSITIVE TO INFORMATION CBTAINED FROM
 
C CALCULATING THE PARAMETERS NEEDED FOR THE CUEIC FIT
 
C DIMENSION X(201,4)hU(200,3),D(200,5-}tG(200,3)
 

COMMON PCONU4),T(4),DELTAKOUT,IND,NC,NXNPA
 
IND=1ND+i
 

C
 'A,' GUESS
C DETERMINE THE DERIVATIVE (H'(O)) AND THE INITIAL 

C
 

HPO=O.
 
AN=O
 
AD=O.
 
DO 1 K=I,NC
 
00 1 J=INPA
 
HPO=HPO+G(JUK)*D(JK)

AN=AN+U(JK)*U(J,K)
 

I AD=AD+D(JK*D(JK)

A=SQRT(AN/AD)/la.

HO=PER
 

2 CONTINUE
 
CALL HOALF(X,UDAHA)


C 
C TEST THE RELATIONSHIP BETWEEN H(A) AND H(O)
 

IF(HO.GT.HA) GO TO 4
 
C
 
C MAKE A BETTER GUESS FOR 'A'
 
C
 

A=A/O.

IF(A.LT.1.E-12) GO TO 3
 
GO TO 2
 

3 ALPHA=O.
 
GO TO 8
 

4 B=S.*A
 
5 CONTINUE
 

CALL HOALF(XUDiB.HB)
 
C 

TEST FOR RELATIONSHIP BETWEEN H-(B) AND H(0, vALSO H(S) AND H(A)
C 

IF(HB.GT.HO) GO TO 6
 
IF(HB+O.I.GT.HA) GO TO 7
 

C 
 MOVE 'B' INTO 'A' AND MAKE A BETTER GUESS FOR 'B'
 
C
 

A=B
 
HA=HB
 
8=2.*B
 
GO TO 5
 

C
 
C IF 'B' IS A REASONABLE VALUE. USE THE CUBIC FIT TECHNIQUE
 
C TO FIND THE MINIMUM ALPHA
 
C
 

6 IF(HB.GT..EO) GO TO 7 % 
AC=HA-HB*(A/B)*5+HO*( (A/B-)**5-1.)+HPO*(A*(AfB)**2-A)
 
AC=AC/(A**2-A*3/B)

BI=(HA-HM-HPO*A-ACEA*AB/A**3
ALPHA=(SURT(AC*AC-5.*BC*HPO)-AC)/-(5. BC)
 

ALPHA
TEST TO DETERMINE IF PERFORMANCE INDEX IS IMPROVED BY 

C 

CALL HOALF(XvU,DALPHAiHS)
 
IF(HS.LTHA) GO TO B
 

7 ALPhA=A
 
6 CONTINUE 

C
 ITERATION
C PRINT RESULTS OF LNSCH DURING THE FIRST OUTER 

C
 

IF(KOUT.GT.1) GO TO 9
 
WRITE(6,10) IND
 
WRITE(6,11) ALPHA.HPO
 

9 CONTINUE
 
10 FORMAT(5X,'IND= ',Iq)
 
11 FORMAT(SX,VTHE CHOSEN ALPHA IS ',FlO.9,' HPO = ',E15.5) 

RETURN
 
END
 

ORIGINAL PAGE IS 
oF' POOr QUALITY 

http:IF(HB.GT
http:IF(HB+O.I.GT.HA
http:IF(HB.GT.HO
http:HOALF(XUDiB.HB
http:IF(HO.GT.HA
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SUBROUTINE PERFM(X.U*PER)

DIMENSION X(201,4),U(200,3)

COMMON PCON(4),T(4),OELTA,KOUTINDNCNXNPA

WGHTKN)=FLOAT(N)*(FLOAT,(K)/FLOAT(N))**9

N=NPA+1
 
PER=O.
 
DO 1 J=IN
 
PEN=O.
 
DO 2 K=1,NX
 

2 PEN=PEN+PCON(K)*(X(J,K)-TCK))**2

PEN=PEN*WGIIT(J,K)
 

1 PER=PLR+PEN
 
RETURN
 
END
 

Subroutine PERFM calculates the performance index for
 

state variable and control arrays. This subroutine is
 

completely general in nature and need not be altered by
 

the user.
 

INPUTS:
 

U - the control arrays
 

X - the state variable arrays
 

OUTPUT: 

PER - the resulting performance index
 

OV% 13X
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SUBROUTINE PRIN(XU,GPERINDEX)

DIMENSION X(201,4),U(200t3),G(200,3)

COMMON PCON(4),T(4),DELTA,KOUT.INDNCNXNPA

WRITE(6,2) PERINDEX
 
IF(KOUT.GT.1) GO TO 4
 
DO I J=INPA
 

I WRITE(6,3)J,(X(J,K,K1,NX),(U(JI(),K1INX),(Gh.,K),K=1,NX)
 
4 CONTINUE
 
2 FORMAT(/,5X,IPERFORMANCE INDEX IS 1,F15.5,' ITERATION NUMBER',15)
 
3 FORMAT(I1O1,UF1O.4)
 
RETURN
 
END
 

Subroutine PRIN prints the state variable and control
 

arrays, and also any other desired. information.
 

INPUTS:
 

U - the control arrays
 

X - the state variable arrays
 

G - the gradient arrays
 

PER - the performance index
 

INDEX - the total number of iterations thus far
 

OUTPUT:
 

literal computer printout
 

ORIGINAL PAGE IS 
0Ik, POOR QUALITY' 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 

C 
C 
C 

C 
C 

SUBROUTINE TRAJCX6U) 
DIMENSION X(201,4})U('200,3) 'UA(3),UT(3),XT(4)
COMMON PCON'(4) T(4) DELTA,KOUTINUiNC,NX,NPA 

ENTER THE SYSTEM'EQUATIONS HERE IN THE FORM 

F1(XI....XNX.U1,....,UNC) 
... 

FNX(X1,..,XXNXU1,... UNC) 

THE FOLLOWING EQUATIONS ARE EXAMPLES FROM THE 
SECOND ORDER JET ENGINE MODEL 

F1(X1,X2,tU1,W)=37.78*W-38.448*Ul+0.66849 
F2(XI.X2,U1tW)=1,258* CU1*U1/(Xl*X2)'-W*X2)
VI(UIX2)1.3UO9*X2-O-,139825*U1
V2(U1,X2)=SaRT(Ui*U1+O.41688*X2*X2-O.089,9*X2*U1)
DO 1 J=flNPA 
K=J+1 

CHOOSE STATE VARIABLE N-TUPLES AND CONTROLS. TO BE TESTED 
FOR THE FEAS-IBLE DIRECTIONS MOD:IFICATION 

DO 2 M i.NX 
2 YT(M)=X(J,M) 

D0 3 M=1,NC 
3 UT()=U(JM)

CALL CNSTR(XTUTUA) 

THE RESULTING ALLOWABLE CONTROLS' 

DO 4 M=INC 
4 U(J,M)=UA(M) 

EULER INTEGRATION 
W=Vi(U(Jt1) -X(J9'2)) O-I3 8*V2U(-U,X1),,-X(-J 2)
X(K.].1) X (J 1) +FflUX (J ~t~I~;tt(4IK tl)'*DELrA,
X (K-, 2 )yX(.J,2')+VF2(.X(J.4 X){JU.)-.U ., )'- DELfT 

1 CONTINUE 
RETURN 
END 

67 

Subroutine TRAJ computes the state variable trajectory' 

resulting from the control arrays and a set of initia:l 

conditions. The user enters the non-linear differential 

equations which describe the motion of the-system. 

Subroutine ONSTR is-called to,insure that the controls 

lie in an allowable region. 

INPUTS: 

LU - the nominal control arrays 

X(1,) - a set of initial conditions 

OUTPUT: 

U - the allowable control arrays 

X - the resulting state variable trajectory 

ORIGNM PAGE. IS 

op-POOR QUALITY
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