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COMPUTATIONAL ALTERNATIVES TO OBTAIN
TIME OPTIMAL JET ENGINE CONTROL

Abstract

This work ©presents two computational methods to
determine an open loop time optimal control sequence for
a simple single-gpool turbojet engine described by a set of
non-linear differential equations. Both methods are
modifications of widely accepted algorithms which can solve
fixed time unconstrained optimal control problems with a free
right end. Constrained problems to be considered have fixed
right ends and free time.

Dynamic Programming, originally formulated by Bellmaﬁ,
is defined oh a standard problem and it yields a successive
. approximation solution to the time optimal problem of interest.
A feedback control law is obtained and it is then used to
determine the corresponding open loop control sequence.

The Fletcher-Reeves Conjugate Gradient Method has been
selected for adaptation to solve a non-linear optimzl control
problem with state variable and control constraints. It
useg gradient information to improve the performance index
of a nominal trajectory toward the minimum value. The control
sequence which produces this minimum trajectory is the open
loop time optimal control sequence.

The two abvove methods are theoretically and computationally
extended to include the free time, fixed right end time optimal

control problem with state variable and control constraints.



Computer software is developed which can solve a general
class of constrained non-linear time optimal control
problems. It is shown that the two methods produce similar

solutions to the turbojet problem.
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PROBLEM DEFINITION

1.1 Introduction

This chapter describes the unconstrained fixed time
optimal control problem which well accepted computational
methods are able to solve. It is seen that the jet engine
presents a tougher problem due to state and control variable
constraints and due also to the fixed right end which is the
design objective. Initially an optimal control problem is
carefully defined and then extended so that the jet engine
problem is included in the new class of problems for which
the computational methods are to be adapted. Although the
jet engine is described by a continuous time model, discrete
time systems are studied here bécause the methods are
developed to find time optimal open loop control sequences
on a digital computer._

1.2 The Standard Discrete Optimal Control Problem
th

Consider the n order, time invariant discrete time
system

x(t+1) = x(t) + £ (x(t),u(t)) (1.2-1)
with starting time k and terminal time N. In the system
with m controls, x(t) is an n-dimensional state variable
vector and u{t) is an m-dimensional control vector defined.
at each sampling instant. In general, various starting times
and states are considered, but we always denote

x(k) = x (1.2-2)

as our inltial time and state of interest. The terminal time
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may be fixed or may be defined as the first instant at which
the system state reaches a designated target set S. A

performance index
N-1

I (x,u) = Y(x(N)) + EE? Lix(t),ult),t) (1.2—3)‘
t = k,k+1l,e00,N-1
ig to be minimized with u(t) € U, a control set, and u is
the control seguence
u = ulk),ulk+1), ... u(N-1) (1.2-4)
It is understood that in the function L(x(t),ult),%),
x{t) is dependent upon the u(t) choice.

- Although there are proven methods which can solve the
above problem, we actually wish to solve a class of problems
which include free time and Tixed right end conditions in
addition to state and control censtraints -of the form

Ax(t) +Bult) %2 ¢C (1.2-5)
It is this class in which the jet engine control problem lies.

1.3 Jet Engine Control Problem

From an accurate description of the Drone engine in [1] s
Brennan in [:2:] has derived a seventh order model and further
reduced it to a third order model for simulation on a TR-48
analogue ébmputer. The discretes time version, obtained from
the continuous time equations by Euler integration, is shown
below and the physical representations of the variables are
listed in figure 1.1. In this model, Pu(t+ggt) is understood
to be P&(t+1) and Pﬂ(t) is understood to be Py .



PHYSICAL REPRESENTATION OF VARIABLES
N = rotational speed
Pb = burner density

P& = burner pressure

ﬁf = fuel flow
ﬁB = compressor discharge mass flow
'I‘3 = compressor discharge temperature
Figure 1.1
| o B . :
Ph(t+1) = Py + at((.93586 ?; + 31.486)wf + 21.435w3m3
Pu2
- 53.86 57— ) (1.3-1)
b
P (t+1) = Py +-At(37.78ﬁ3 - 38.448P, + .66849i.)
(1.3-2)
p, 2 2
N(t+1) = N + at{(1.258/M)( 4 g ) (1.3-3)
wB = 1.3009N - .139825F; —
113982 [ 2,2 + .41688N% - .0899P,N (1.3-4)
T, = .6H212 + .35788N7 (1.3-5)

I'he two constraints are 1, the surge margin constraint

P, % 1.25N (1.3-6)
and 2, the turbine inlet temperature constraint .

Py, £ 1.25P (1.3-7)

The variables in the above equations are normalized in

[2] avout an equildbrium point (P, ,=1sP, _=1,N_=1) such that



£(B, 4P, N) = 0. The control objective is to find a
discrete open loop fuel seguence which takes the system from
an initial state x of windmill (P42.5384,Pb=1,??4,N=.5461)
to a final state xp of military thrust (P4=1,Pb=1,N=1) in
minimum time such that the surge margain and turbine inlet
temperature constraints are satisfied.

1.4 Reduction to Second Order Model

The effect of &f on the system occurs primarily in
equation (1.3-1); its effect on equation (1.3-2) is minor.
In addition the main single influence on eguation (1.3-2)
is ﬁf, so the assumption that Pu can be controlled almost
directly Dby ﬁf is made. Therefore, a reduction of the system
to a second order problem is made and it is expressed, in
the discrete state variable form of section 1.2, as

xl(t+1) =x + &tt3?.?8ﬁ3 - 38.448u1 + 66849)

(1.4—'1)

1]

_ 2
X, + st(1.258/x,) ( 21 - ﬁszz) (1.4-2)
1

Xo(t+1)

WB = 1.3009x2 - .139825111 -

.13982 \/ulz + .&I688x22 - .0899u1x; (1.4-3)

with the control constraints
v, £ 1.25 x, (1.4-1)
u; #1.25 x; (1.4~5)

In this second order model, Ph is now understood to be the

control variable with Pb = xi and N = Xo the state variables.
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Eguation (1.4-1) includes the constant term because at the
equilibrium condition where the constant term would have

its largest effect, ﬁf should have a value close to one.

The state variable constraints remain identical to the third
order model constraints bubt with the following subtle
difference; now, the control is constrained by its position
in the state sgpace.

1.5 Scope

Three accepted methods which can solve the unconstrained,
fixed time, free right end problem described in section 1.2
are Dynamic Prograuming, the Discrete Minimum Principle,
and ordinary mathematical programming which miniﬁizes a
function of many variables. In this thesis, two of these
methods are adapted to solve the general class of fixed right
end, time optimal control problems wifh state variable and
control constraints.

In Chapter II, a successive approximations technique
extends Dynamic Programming to produce a time optimal feedback
control law from which an cpen loop control sequeﬁce can be
detefminedo In Chapter III, non-linear programming is used
to solve the jet engine problem and produce an open loop control
sequence. Constraints are difficult to handle in the
Conjugate-Gradient approach, but a simple feasible directions
technique is used in conjunction with penalty functions to
givé satisfactory convergence without jammihg. Careful
inspection of the respective solutions shows that each method

yields the same time optimal control seguence.



CHAPTER IT
DYNAMIC PROGRAMMING

2.1 Motivation

Dynamic Programming is a method well suited.for solving
low order, fixed time, free right end optimal control problems
with state and control constraints. The feedback control
solution and the cost function are calculated in successive
steps as the state and control constraints actually reduce
the required number of computations per step. The main
difficulty is to include the fixed right end, free time
problems into the class of problemg which Dynamic Programming
can solve. The appropriate modification of the theory is
given below.

Pontryagin inj:B] has shown that time optimal control
problems very often tend to have bang-bang solutions. The
Dynamic Programming method is also well suited to the bang-
bang solution because the control is guantized and each
control candidate is tested at each point in the state space
to determine the optimal control. Therefore, regions of
similar controls are expected and boundaries separating these
regions are not surprising. Suggestions on accurately
representing these boundaries are presented later in this
chapter.

2.2 Theory

Let K denote the integers, R the real numbers, X an
arovitrary nonempty state set, and S ¢ XxK an arbitrary nonempty

target set. Suppose we also have a control constraint U{x) set



which depends on the state x and is such that controls in
U{x) guarantee that the next state is in the state set X.

Consider the discrete time system of section 1.2 and
the performance index Jk(x,g) in (1.2-3) to be minimized.
We assume that

min

Vk(x) = Jk(x,g) (2.2-1)

exists, where u denotes any admissible sequence ulk),u(k+1),
eev,u{N=-1) with values u(t)€ U{x(t)). Only the above

assumption is required to prove Bellman's Conditions (4] s [53 ,

and [6l

Vk(x) = ﬁi?UCx). L{x,u,k) + Vk+1(x+f(x,u))-x

(x,k) ¢S (2.2-2)
v, (x) = ¥(x)

(x,k)e S
which are necessary and sufficient for optimality. These
are the usual equations of Dynamic Programming. A particular
u = v(x,k) ¢ U(x) which minimizes the expression above can
be used to make up v(x,k) for all (x,k) € S and comprises an
optimal feedback control 1law.

The optimal open loop control sequence u can be determined
from v{(x,k) as follows. Let xv(t) be the optimal trajectory
obtained using v(x,k) as a feedback control law. Then '

ult) = vix (t),t) (2.2-3)
and
u = ulk),ulk+1),...,u(N-1) (2.2-4)

An alternative method for solving problems of this class



called "successive approximations”, was suggested by Bellman
[4] and later developed by'Leake, Liu, and Richardson in [6]
and [?] . .

Let an(x) be any function such that an(x) - Vk(x) and
let vn(x,k) be a control law which results when performing

the minimization
min n ]
ue U(x) [L(X’u’k) Vg (xtf(x,u)) (2.2-5)

(x,k)¢ S
Then it is shown in [ 6] that if an+1(x) is the performance
function resulting from v'(x,k), we have

Vv (x) £ v x) £ v ) (2.2-6)

k
and further an(x) converges monotonically to Vk(x) in a
finite number of steps although .each (x,k} may reguire a
different number of steps.

In the special case where Vk(x) is independent of k,
V, (x) = V(x), the approximating sequence an(x) may be taken
as independent of k also to yield an(x) = V?(x) and (2.2-5)
becomes

V) = B [Tk + v 0)]

(x,K)€ S (2.2-7)
Problem of Interest
Recall now that in the jet engine problem (sections 1.3

and 1.4) we wish to find the minimum number of steps {and

associated optimal controls) that it takes to drive the system

x(t+1) = x(t) + £(x(t),u(t)) , (2.2-8)



from x(k) = x to a fixed state xp with associated state and
control constraints x(t)¢ X and u(t) & U(x(t)). Note that the
minimum number of steps to reach the target state X does
not depend on the starting time k. Thus the minimum number
of steps can be expressed as

Vk(:k) = V(x) (2.2-9)

a function depending only on x. Similarly the control law
vix,k) = v(x).
Ordinary Dynamic Dynamic Programming Problem

We now define a standard Dynamic Programming problem
which yields a successive approximation solution to the time
optimal problem of interest. Simply let the system be the
same as before with target set

s =8,\US, (2.2-10)

where S is illustrated in figure 2.1 and

5, = {(x,k) : k=0, xex} (2.2-11)

S, = {(x,k) P k&0, x =Xy

Let X and U(x) be as above, let N=0, let L(x,u,k) = 1 %o
provide a time penalty to the system, andlet Y{(x) be chosen
such that
Y(x) 2 V(x) (2.2-12)
Y(xp) =0

Then Bellman's conditions are as in equation (2.2-2) and
the problem can be solved as an ordinary Dynamic Programming
problem. Keep in mind however, that (xF,k)é-S S0 we always

have

ORKHNAI;PAGE]S&
OF POOR QUALITY
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V, (xg) = 0 (2.2-13)
for any kK £ N = 0.
Succesgsive Approximation Solution
To show that the ordinary Dynamic Programming solution
above amounts to -a successive approximation solution to the
problem of interest, note that the actual target set of
interest is simply the set of all (x,k) where x = Xpe We

can establish a successive approximation of V(x) by choosing

v0(x) = ¥(x) (2.2-14)

Then, if we equate
Ve (x) = VEGx) k= 0,-1,-2,-3,... (2.2-15)

we see that Bellman's Conditions are equivalent to

yatt | Ei(-nU(x) [L(x,u,k) + Vn(x-f-f'(x,u))j (2.2-16)

(x,k)€ S
n=0,1,2,...
which is simply the successive approximation equation. This
establishes that the Dynamic Programming problem actually

gives a successive approximation solution, with

v {(x) ‘,/V(x) (2.2-17)

and associated feedback control law

v (%) ~— v (x) (2.2-18)

In practice, the state set is discretized and inter-

polation is used to get approximate solutions, but convergence

still occurs. Choosing some kT as a time when convergence is

adequate, we eguate

11
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k
v T

= V(x) (2.2-19)
where V(x) represents the number of time steps needed for

v(x,kT) = v(x) . {2.2-20)

to take the system from initial state x to final state Xpe
V(x) also reveals those initial states x foy which a cSntrol
sequence such that u(t)é U(x(t)) cannot be found to move the
system to ‘the final state Xpe The uncontrollable regions

are simply found by observing that U(x) = ¢§ for the states

in those regions. In the computer program, a penalty cost

ig arbitrarily assigned to fhose states and a suitable
representation is given to the corresponding feedback control
lawe to indicate that no admissible control exists.

2.3 State Variable Quantization

The first computational requirement in using a dynamic
program is to determine an adequate quantization, independent
of k, of the state variables and the control variables. In
the jet engine problem, the time constants of Pb and N,
obtained from linearizing the third order model about the
design objective, (see [2] or section 3.5) differ by an
order of magnitude. This difference implies that Pb will be
able to react more rapidly than N. To complicate matters, a
suitable choice for the time step size for the Euler
Integration must be made to restrict the motion of one time
step to one increment in each state variable.

Larson in [5] presents a relation which is useful for

determining a proper state variable quantization. If we let
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Flx(t),ul(t)) = £(x(t),u(t))/at (2.3-1)

th

and let Xi(t) represent the i~ component of x(t), let uj(t)

represent the jth component of u(t), and let Fi represent

th

the 1 discrete time function, then Larson's relation is

ot = min Xi(t) ' (2.3-2)

321,52, 400,10
j=1!23°-°,m ‘Fi(xl(t)!uj(t)) ‘

The above equation requires that Fi(xi(t),uj(t)) be scanned
over all possible states and controls to determine the maximum
motion of each state variable per time step. A short

computer program easily determines that F =P = L0

1 max b max

and F = 2 for the jet engine problem. From this

2 max Nmax
information, the values of 4t, an, and 4N are determined.

In problems with state yariable and control constraints,
each possible control must be‘in the set U(x) before it is
tested to find the best u(t). The quantization of these
problems should include a large number of state variable points
which land on the boundary of the constraints.and it is
necessary that those points in 82 be members of the quantized
grid. In the jet engine problem, the discrete quantization
must include the point (Pb=1,N=1) and several points which
satisfy constraints (1.4-4) and (1.4-5) with equality.

2.4 Initial Cost Function

The initial assigned cost function, Vo(x), is designed
to force the system to rapidly approach Xpe One approach is
to assign an arbitrary large constant to all x # Xp but it
is found to decrease the convergence rate of the succesgsive

approximations solution because the large initial constant
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introduces éignificant interpolation errors into the algorithm.
If V(x) denotes the minimum number of time steps required

for the feedback control law to take the system from an
initial state x to a final state x, equation (2.2~-12)
esféblishes a lower bound for the initial constant which is
the maximum time expected divided by fthe tiﬁe step size. A
lower constant function increases the convergence rate of

the succegsive approximations method and also reduces the
errors induced by interpolation. The lower bhound can be
found with a few trial Dynamic Programs or with preliminary
equation study. TFor the jet engine prbblem, the optimal time
required to move from windmill to military thrust is slightly
less than one second, or approximately .8 seconds.
Consequently the constant is set equal to 1/ gt.

2.5 Interpolation

Recall that V7 (x) will have numerical representations
stored on the computer only for those states x which lie on
the discrete quantization grid. If a particular control
u ¢ U{x) forces the motion

x' = x + f(x,u) (2.5~1)
to a state x' not defined on the discrete grid, interpolation

is required to approximate Vn+1(x').

Figure 2.2 illustrates
the general case and presents an interpolation formula which
produces good results for the jet engine probiem.

Early results have indicated a tendency for the cos@

function associated with the members of'Sz, V_k(xF) = Vk(xF,k),
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LA Vit j+1
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1
Vi, > Y141,
v, = (1'3)(1"b)vi,j + b(i—a)Vi;j+1 + a(l—b)Vi+1’j tabVs i, 41
Figure 2.2

to incur with each iteration small positive values which
propagate through the algorithm and grow larger. These
errors arise from quantizing and interpolating non-linear
system equations and cost functions. To minimize this effect,
Vn(xF) is reset to zero after each iteration.

In figure 2.3, a flow chart, describing the general
Dynamic Programming Method with the successive approximations
extension, is presented. The actual computer program, written
in FORTRAN IV for use on the FORTGI compiler in Notre Dame's
IBM 370/158 computer system, is listed and documented in
appendix A.

2.6 Control Regions for the Turbojet Engine

Recall the reduced jet engine problem of section 1.4
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which has one control variable P, (or ui) and two state

variables, Pb (or xi) and N {or x The control set U

2)e
consists of real numbers which lie in the interval (0.5,
1.25) and various state sets X are considered which have
members surrounding the design objective. Recall that the
quantization is independent of k so that the design objective
can loogely be referred to as the target. As the Dynamic
Programming Method is run, the successive approximation
solutions show that the controllable region of Pb gErows
quickly while the controllable region of N grows slowly.

This is due to the vast difference in the time constants of
Pb (TPb=°0309) and N fTN=.352). A state set X consisting of
a narrower range of N (0.8-1.1) and a wide range of Pb (0.5~
1.8) produces the most meaningful results. For greater
detail near control region boundaries, smaller quantization
increments and state sets X defining smaller regions can be
studied. They yield more information about the boundaries
and the feedback control regions are more clearly defined.

The time optimal feedback control éolution is illustrated
on a state variable map in which three distinet control regions
can be seen in figure 2.4. The sharp boundaries which are
examined closely in section 2.7 and which separate these
regions are indicated by s0lid lines while the motion of the
system, xv(x,kT), due to the feedback control law, v(x,kT),
i1s indicated by dotted lines for several starting states x.
The design objective Xp is denoted by a circle and every tenth

of a second along the trajectories is marked by crosses.
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State Variable Motion when Time Optimal Control is Applied
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Detail of Region 3
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In.région 1, the control variable rides the surge marga&n
constraint. This causes a rapid decrease in Pb with a little
increase in N. When the motion reaches the 1:2 boundary, the
control switches to ride the turbine inlet temperature
constraint. In region 2, all starting states have motions
which take the system to a common main path which does not
lie on a region boundary. Along this path, N increases t¢
its design objective-but only a small increase in Pb is
observed. -At a point determined by the 2:3 boundary, the
control jumps to its minimum value and the system motion
rapidly approaches the target where the control assumes a
value of one. It is. this rapid switching action which
Pontryagin refers to a8 a bang-bang control.

Begion 3'is-£he area in which the value of N is ﬁagher
than the military thrust value. Physically, this area is of
little interest, but it reveals an interesting control pattern
which has no cobvious analytic properties such as those in
regions 1 and 2. The results in figure 2.4-B are obtained
from a control set U& {.75-1.25), and state variable set
N¢& (.97-1.025) and Pﬁé‘(;6-1.5)o The time optimal feedback
solution reduces N rapidly by reducing the control variable
to its minimum value, however the low control simultaneously
increases the value of Pb above the design. objective. The
dotted line contours indicate when the control value is
continuously raised to cause the motion of the system to
move along the 1:3 boundary, where the control follows the

surge margin, directly to the target.
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2.7 Accurate Boundary Descriptions

At certain sectionsg in the state map, the time optimal
feedback control solution reveals the location of a boundary
where the trend of controls changes. DBetween regions 1 and
3, a line is implied for which states above have an optimal
feedback control value v(x) = 1.25N and for which states
below have feedback control values which satisfy the surge
margain constraint with equality. The exact boundary is the
trajectory which, formed by the motion of the system due to
controls lying on the surge margain constraint, proceeds
directly to the target. This is determined in figure 2.5 by
integrating the system forward with.a few selected states as
initial conditions. In the neighborhood 'of this boundary,
the control contour is continuous, or in other words, there
is a smooth transition of feedback control values from region
3 into the boundary.

The 2:3 boundary separates two regions having radically
different optimal control strategies. States x which lie
in region 2 have v(x) = 1.25P, and states x which lie on and” -
above this boundary in region 3 have corresponding minimum
feedback control values. PFigure 2.6 illustrates the resulting
boundary as a function of Pu min which can be chosen arbitrarily
in the reduced jet engine problem. Its most realistic value
depends upon how quickly Pu decreases when ﬁf in the third
order model is suddenly reduced to zero.

The boundary separating regions 1 and 2 is simply the

line Pb = N,
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Detail of 1:3 Boundary
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2.8 Summary of Second Order Model Controls

Figure 2.7 shows the optimal time plots of the reduced
jet engine problem to which the time optimal feedback control
laws obtained from the dynamic programming algorithm are
applied. Pq has three control rules. Initially, P@ follows
the:surge margin constraint until Pb is lowered sufficiently
to equal N, at which point P, will follow the turbine inlet
temperature constraint. Physically, these two rules represent
the maximum allowable throttle without stalling or overheating
the jet engine. At .79 seconds, N has a value slightly
above the design speed but P will have only 80% of its
design value. The point is determined by the 2:3 boundary
where P4 is dropped to Ph min for an instant and then returned
to a value of one. This diéscontinuous rapid switching action
is an example of a bang~bang contrel -and it .moves Pb directly
to the design value in only .01 seconds. Therefore, the jet
engine is controlled from windmill to military thrust in

.8 geconds.

2.9 Application to Third Order System

From the reduced system information, the optimal time
responses for the third order description of the Drone engine
can be calculated. To determine the proper ﬁf, it is regquired
to find the desired Pu from the time optimal feedback control
law and calculate the value of ﬁf which will force P4 to
assume values which follow the time optimal control law.

When the trajectory reaches the 2:3 boundary, ﬁf ig suddenly

reduced to a2 zero value which causes P4 to decrease and Pb to
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increase to its design value. Then, ﬁf must be a positive
impulse to raise Ph to the target rapidly without changing
N or P . Once this is accomplished, ﬁf is set equal to one
and the system is in the military thrust state.

The time responses for the third order model are plotted

in figure 2.8. -The initial impulse of ﬁf forces P& up to

the N constraint in one time step.
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CHAPTER III
THE MODIFIED FLETCHER-REEVES CONJUGATE GRADIENT METHOD

3.1 Motivation

Ordinary non-linear matlematical programming is a well
known ﬁethod-which can solve an unconstfained optimal control
problem with fixed time and a free right end by minimizing
a performance index, J{u), which ig a function of several
variables. This method determines the optimal open loop
control. sequence and its computational requirements increase
only arithmetically with the order of the system under study.
In thig chapter, a feasible directions idea is presented in
conjunction with penalty functions to extend the general class
of problems which the Fletcher-Reeves Conjugate Gradient Method
can solve to that which includes a constrained time optimal
. control problem with a fixed right end. The developed
computer software is listed and documented in appendix B for
use to determine open loop time optimal control sequences for
the general class of non-linear free time, fixed right end
optimal control problems with state variable and control
congtraints.

3.2 The Fletcher-Beeveg Conjugate Gradient Method

Consider the nth order, time invariant discrete system
having m controls
x(b+1) = x() + £(x(t),u(t)) (3.2-1)
and
x(0) = x (3.2-2)
with starting time zero, terminal time N, and f{x(t),u(t))
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is continuously differentiable over the entire state space
and control domain. The performance index to be minimized
is
N-1
Ju) = K(x(W)) + F Lix(t),ult),t) . (3.2-3)
t=0
t = 0,1,2,00.,0H-1
which is a function only of u given a starting state x where

u denotes the control sequence

u = u(0),u{1),...,u(lN-1) (3.2-4)

and

il

u(i) = u (3),u(3),een,u (3) (3.2-5)
s0 that u is a sequence of Nm real numbers.

This general clasgs of unconstrained free right end fixed
time optimal control problems can be solved by the Fletcher-
Beeves method which uses a combination of steépest descent
and conjugate gradient techniques presented in [8] to minimize
a directionally convex multivariable function, J(u). In
figure 3.1, a flow chart for this algorithm is presented and
the appropriate equations are described below.

Suppose a2 nominal control sequence u with a resulting
state variable trajectory and .performance index is selected.
The gradient of the trajectory is calculated while the adjoint

system equations are solved in reverse time according to

y(t) = y(t+1) + y(t+1)'vxf(x(t),u(t)) +-UXL(x(t),u(t))
t = N-1,N-2,...,2,1
v(R) = viK(x(N)) (3.2-6)



The Fletcher-Reeves Conjugate Gradient Method

u; ot |
] x(o) |

J¢

Compute x,
J(u)

l

Compute adjoint
system and
gradient g

d& =g

g o g*

1;

Iine search to
nminimize

hief ) = Jluhe 4) -

*

U U*

e

_No -

1

uFe— u +¢/ a

el

More than
N iterations 7

Yes

l

Compute x¥*, J(u*),
ad joint system and
gradient g%

Ih

Cl‘ime to gtop ?) No

¢
Print and plot

ontimal traiectorvy

Figure 3.1

31



32

with y(£) an array of n length,x?xf(x(t),u(t)) is the Jacobian,

-

“ 2f, dfy L., 3%,
33{1 bx2 axn
af, 2%, .. 2%,
v flx(t),ult)) = | %1 I%2 d *n (3.2-7) .
afn afl’l o0 bfn
_axl axz Xy
and . - .-
o 33p ... 21
7L Llx(0),ule)) =558 35 . (3.2-8)

The gradient is the Nm length sequence

£ =[V2q(3) = o)) g gy "‘Uh(N-i)J(EJ]
(3.2-9)
and each component can be calculated from the relation

Vaug)d @ = y(+1) v o (x(e) ,ult)) + ¢, Lx(6),ult))

(3.2-10)
with Vuf(x(t),u(t)) and VﬁL(x(t),u(t)) gsimilarly defined.

It is incidental that the Fletcher-Reeves method under
appropriate convexity assumptions actually solves the discrete
minimum pringiple for the above class of problems. If the
Hamiltonian of the system is defined by

H(x{t),u(t),y(t+1)) = y{t+1)f{x(t),u(t)) + L{x(t),u(t))
(3.2-11)
then

Y o(g)S (@) = VUH(E),u(t),y(t+1)) (3.2-12)

which 18 zero along the optimal trajectory, corresponding to
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the Hamiltonian being minimized.

During each first inner iteration, a line search is
performed along the conjugate direction of the gradient
d = -g to find the best o such that

ntet #) = D0 J(u et @) (3.2-13)

For each successgive inner iteration, the direction of the
line search is

a' = g% + Bg (3.2-14)
a linear combination of the present gradient and previous

direction with

) "";g'ﬂ‘m gﬁ'
B =

(3.2-15)
gT ey

and g¥ is the present’ gradienf, .z the previous gradient, and
d is the previous direction. -After N immer- iterations, the
direction is again set equal to the conjugate direction of
the gradient and the present performance index is compared to
the previous one to determine if another set of inner
iterationg is required. If, during a set of inner iterations,
the line search produces an.«{* = 0, the perfiormance index
can not be improved with Turther inner iterations so the
algorithm skips to the next outer iteration. The control
gequence u which minimizes J{u) is the optimal open loop
control sequence.

3,3 The Extended General Clags of Problems

We actually wish to solve a constrained time optimal

control problem with a Tixed right end. Hecall the reduced
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jet engine problem of section 1.4 with control constraints

and a design objective Xp = (Pb=1,N=1). A combination of

a simple feasible directions idea used in conjunction with
penalty functionsg will extend the capabilities of the Fletcher-
Beevesd Conjugate Gradient Method to solve the general
congtrained time optimal control problem with a fixed right

end.

3.4 Feasible Directions Modification

Several barrier functions were tried which would heavily
penalize the system if a conbrol constraint is violated. 4ll
attempts to find a continuocusly differentiable function to
force the control wvariable, Ph’ to obey its consitraints failed,
-80 great is -the tendency of the -system to overshoot theme The
overshoot path alwdys yields 'a Tower performance index than

any legal control sesquence would yield. As the barrier
-functions are steepened, computer overflows appear when the
verformance index is differentiated, and therefore barrier
functions do not provide a solution to the overshoot problem
in the reduced jet engine model.

Hence, barrier functions are abandoned and a simple
feasible directions -idea '¥'s added to the algorithm. If a
member of a contrel sequence violates its constraints, the
control is reset at the nearest constraint boundary,
making it impossible for any control member to violate the
control constraints. This subroutine is called from all
trajectory calculations, and sspecially from those in the

line gearch. The.resbtricted -algorithm -still uses gradient
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information to compute the steepest direction, but it restricts
the magnitude of that direction which can be added to each
member of the nominal control sequence. It should be noted
that the gradients are no longer zero -along the optimal

path and also that a jamming possibility -exlists.

Recall in the reduced jet engine problem*ﬁhat there
are two control constraints. In addition we constrain the
value of Pq to be at least .5 to prevent negative values
which would increase Pb and N arbitrarily. This constraint
provides an equivalent problem to that solved by Dynamic
Programming in chapter II.

3.5 Performance Index Function

A performance index function is used to convert the
Fletcher-Reeves Method to solve a free time, fixed right end
optimal control. problem. Since, in the optimal time problen,
the state variables are desired to reach X in minimum time,
a performance index function, which penalizes the system for

not being at Xps takes the form

N=1 n >
s Lix{(t),ult)) = S z cj(xj(t) -.Tj) (3.5-1)
£=0 j=1 t=0

where xF = (Tl’T2’°“’T ) and ¢ = (cl,cz,.e.,c ) are selected
welghting constants. The squared criterion is chosen to
provide a symmetric convex penalty function about the state
Xp which is continuously differentiable. Initially the cj's
were assligned the same value but this choice is found to

produce an oscillating time optimal solution, a condition
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not suggested by the Dynamic Programming solution of chapter Il.
To remove the oscillation effect and obtain an accurate

time optimal open loop control sequence, the cj’s are

chosen go they are in proportion to the time constants of

the state variabvles, which can be obtained by linearizing the

system about Ype If we represent the A,B linear state

description of small deviations about the design objective ag

3;; afx+B§u (305-2)
with
A= §§ (g up) (3.5=3)

then the time constants are the inverse of the real parts of
the eigenvalues -of -the Jacobian evaluated at Xp and Upe In the
Jet engine problem, T,, = .352, T = ,0309, and T = 0123

N Pb P4

and the resuliving ¢, ratios become '1000:90:35., The slowest

state varisble, N, ghould have the higher penalty because it
requires the most time %o react. In the reduced problem,

PQ is the control and is not assigned a penalty to find a
time optimal control sequence for the problem.

A prior knowledge of the approximate optimal time is
needed to choose a good time step size and state variable
array length. Chapter 11 has already shown that the jet
engine can move from windmill to military thrust in .8 seconds
so a8 bt = .005 and an N = 200 are uged in the program.

For the optimal time prdblem, the early states in the

trajectory are given a small penalty with respect to that

given to later states. Thisg glves the system freedom to
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reach the design objective. If we let t be the time step of
interest and let N time steps exist, then the performance

index functions become

% n 2 '
L{x(t),ul{t)) = N(-ﬁ-)g gi cj(xj(t) - Tj) (3.5-4)

j=1

n
- : 2
K(x(N)) =N §§1 cj(xj(N) - Tj) (3.5=-5)

4 point 907 along the trajectory is given g éenalty only 38%
of that received by the endpoint. Computational experience
has revealed that for problems in which the time optimal
control sequence lies along the constéaint boundaries for
most of the state variable trajectory, s much lower exponeﬁt
must- be used in (3.5-%) *o prcvide higher earlier penalbies.
In run I of section 3.7, an original exponent of 9 produces . .
& solution in which the jet engine idles at windmill for most
of the allowed time and only approaches the design value
near the end. When the exponent is lowered to two, the
solution is a conirol sequence which rapidly accelerates

the engine.

3.6 Parameter Sengitive Cubic Fit Line Search

A quick, accurate line search to find
h(et #) = 30 J(y +« @) (3.6-1)

is a vital component of the modified Fletcher-Reeves method.
Lasdon in [ 9] has proposed a quadratic fit technigue to find
the best alpha. Also considered is a golden section line

gearch but neither approach simultaneously allows a wide



range of possible & * values and requires relatively few
trajectory calculationg to determine & test point h{a).
The line sear&h-proposed here fits a cubic polynomial
through three tegt points and with derivative information
algebraically solves for <% in one step.

Consider the general situation pictured in figure 3.2.

h(b) Conditions
n(0) 1) hia)< n(0)
nh(a) 2) h(bv) 7 n(o)
) 3) hi(0)<¢ O
. L) Oftac¢h
Suppose that h{et) can be described by
h(et) = h{0) + ht(0)et + Ak ® 4 Bat S (3.6-2)
and
2 hie )
T4 | =0 (3.6-3)
dog?

gives o ¥ in terms of A,B,h(0)}, and h'(0) from the solution

of the following equation.

h'(st ) = h'(0) + 246 + 3BKZ = 0 (3.6~)
The positive solution of the gquadratic formula solves the

above equation to give

-4 + J4% - 3Bnt(0)
3B
To find A4 and B, note that

A% = (306“5)
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n(a) = hio) + h'(0)a + Aa® + Ba’ (3.6-6)

n(b) = h(0) + h'(0)b + Ab® + Bbo (3.6-7)

i

and the expression for A is then obtained by multiplying
(a/b)3 to both sides of (3.6-7) and subtracting the result
from (3.6-6}.

A = h(a) --z% h{b} + h(0) (“‘?‘;5 - 1) + hc(e),(__zv_é - a)

(3.6-8)

B = h(a) - h(O) - h'(O)a -‘Aaz (306_9)

o3

The fiow chart for the parameter sensitive cubic fit
line search is illustrated in figure 3.3. The components
of the line search are ‘expl¥ained in the remainder of this
section. Recall from the Fletcher-Reeves flow chart that
1n{0) is alreedy known and h'(0) can be expressed as g?g.
1) Selection of "a' Value —

Ags an initial guess for "a'", let

2llafl = gl => = - o (3:6-10)
with || || denoting the usual norm of a vector. If the
resulting h{a) satisfies condition 1 of figure 3.2, let
b = 5a and proceed to find a suitable '"b" value; if not,
divide "a' by ten and try condition 1 again. Sometimes when
J(u) is very close to the minimum Valué, "al can get minutely
small with no decrease in h(a). If this happens, gset o %

to zero and coentinuve with the main program.
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A

2) Selection of “b" Value

If the resulting h{b) satisfies condition 2 and has
a reasonable value, use the cubic fit routine to find ol *
with equations (3.6-5),(3.6=8), and {3.6~9). If h(b) is
less than both h(0) and nh(a), move 'b* values into "s", let
b = 2b and try condition 2 again. This step mofésuthe value
of "a' closer to the minimum point and improves the accuracy
of the cubic fit. If condition 2 is not satisfied and h{b)
is greater than h{a), let &t % = a. Experience indicates that,
in this case, the function h{et ) has the shape indicated in

figure 3.4. Since much computer time is spent to find a

33

)

3
-

a b o{
Figure 3.4

"b" which will satisfy condition 2, and gince both of the
values of "a" and "b" are close to the minimum point, let
ot = a, It must be noted that in the jet engine problem,
this case only appears at the first iteration when the
trajectory approaches the control constraints. After the
cubic Tit, there is a final test to check that h{e#) ig
actually lower than h{a), which will be the usual cage.
In the jet engine problem, this line search works well

and always improves the:performance index with -each iteration.



There seem 50 be many tests in the line search of figure 3.3, .

however the answer is yes to all tests in the usual case and
only three or four trajectory calculations are required to
find an accurate & #, Another advantage is the wide range
of values which ¥ can assume. It ranges from 10"11 £0o
.0015 in the jet engine problem or eight orders of magnitude.

3.7 Second Order Jet Engine Study

In solving the jet engine problem and comparing the two
computational methods of this thesis, trajectories resulting
from two important sets of initial conditions are studied by
the Modified Fletcher-Reeves GConjugete Gradient Method. From
chapter 1II, itig already learned that the jet engine can be
controlled from windmill to military thrust in close to .8
"geconds, go for thig case, the gtate variable arrays will
have a length of 200 and a time step size of .005. Fromnm
figure 2.4-A4, an initial state (Pb=1,7?!+,N='o9) is-seen to
require about .3 seconds so a state variable array length of

200 is used with a time step of .002 for this problem.
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A poor nominal constant control of Pu = .6 which decreases

the rotational speed and increages the burnsr density is
used in the non-linear programs becausge this nominal control,
mnable to influence the solution, yieldsg a true‘test of the
feasiple directions modification and free time, fixed right
end extension. The number of inner iterations per outer
iteration is equal to the array size of the variables. Outer
iterations are run until the performance index no longer

decreases. 1f the line search produces an &% ¥ equal to zero,
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no further improvement can be made until a new gradient
direction is calculated. Therefore, sgignificant c.p.u. time
can be conserved by skipping the remaining inner iterstions
when an<t¥ equal to zero is produced. Table 3.1 tabulates
the action of the performance index as outer iteraticns of
the three significant programs are run. The vast lmprove.
ment in the first iteration represents the rapld action away
from the poor initial control .gzegquence toward a much improved
open loop control law. Further iterat;ons refine the optimal
golution and only slightly lower the performance index. A&n
illusbration of this is the bang-bang portion of run III, in
which the time plot of the control sequence agsumes a
rounded shape in the -earlier iterations and refines later
to a rectangular shape. : o T

Run I directly attacks the jet engine problem posed in
section 1.4 and produces very encouraging results. A close
inspection of the time response in figure 3.5 reveals that
the control sequence follows the control constraints through-
out most of the trajectory. Near the end, the control isg
reduced and increased but not with the rapid switching action
suggested by the dynamic programming solution. The author
hypothesizes that the algorithm has jammed here because the
optimal direction isg calculated with no awareness of the
control constraints and also the gradients along those
congtraints do not approach zero. However, a great part of
the solution has been calculated with run I and it agrees

Wwith that in chapter II. Figure 3.6 reveals that run-II

k3



OUTER ITERATION #

ITERATIONS REQUIRED AND RESULTIXNG

PERFORMANCE INDEX

PERFORMANCE INDEX

Run I x = (Pb=197?4;N=,5#6i) t = 005
0 2639895 +00
1 10'7942.56
2 107791.62
3 1067725.00
/13 107724 .44
5 no change

RBRun II x = (Pb=1.7?4,N=.9) t = .002
0 R2556673,00
1 333.52
2 328.07
3 327.53
L no change

Run ITI x = (P,=,7833,¥=.9853) t = .001
0 88460.69
i 101.49
2 90.17
3 89.22
L no change

Table 3.1

iy
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has produced a gimilar situation and has also defined a state
variable path which joins that formed in run I. This oc-
currence verifies the existence of the common trajectory of
Dynamic Programming'!s regicn 2 which is seen in figure 2. 4-A.
The initial conditions of run III are obtained by
agsuming that the portion of the solution, of which the control
values lie on the constraints, is valid and by choosing a
point near the end of the boundary as an initial condition for
another run. The new state variable array dimension is 100
and the time step size is .001. The time response plot in
figure 3.7 reveals a bang-bang control sequence which is
faster than that in figure 3.5 and 3.6 and is similar to the
solution of chapter II. It shows that P4 switches directly
to the P4 min constraint from the turbine inlet temperature
constraint. This later sequence added to the control sequence
obtained from the first part of run I produces an open loop
control sequence which is most similar to that of chapter II.
The methods and results of section 2.9 can again be
employed to calculate the third order time opbtimal control
sequence which is already graphed in figure 2.8. Since.the
reduced solutions are identical, so are the third order solutions.

In figure 3.8, the discontinuous control law for the

two methods is shown.
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CHAPTER IV
CONCLUSION
Two well known computational methods, Dynamic Programming
and the Fletcher-Beeves Conjugate Gradient Method, are
successfully adapted in this thesis to solve the general
¢lass of fixed right end, free time optimal control problems
with state variable and control constraints. Both methods
have determined similar time optimal open loop control
sequences for the discretized version of the reduced jet
engine problem. These solutions have bang-bang features
and also control values satisfying constraints with equality.
A successive approximations technique extends the
capabilities of Dynamic Programming ¥to 'produce a time optimal
feedback control law which hasg ‘described, in the ‘jJet engine
problem, several regions in the -state -space map for which the

controls follow a common rule. Separating these regions are

51

distinct boundaries whose locations are approximately indicated

on the discretized state variable grid. Unfortunately, the
number of required computations increases geometrically with
the order of the gystem and there is a problem with picturing
& mlti-dimensional feedback control law.

A feasible directions idea, used in conjunction with
prenalty functions, extends the Fletcher-Reeves Conjugate
Gradient Method to produce a time optimal open loop control
sequence for a fixed right end‘optimal control problem with
state variable and control constraints. The solution of the

reduced jet -engine problem again .shows the control values



lying on the control constraints fof most of the state
varisble -trajectory. Using a point near the end of the
constraint region as an initial condition, a discontinuous
bang-bang c¢ontrol sequence,identical to that suggested by
the feedback control law of Dynémic Programming, 1s-obtained¢
This method is well suited to higher order problems becsuse
the number of computations required to solve higher order
systems increasgs only arithmetically with the system order.
The computer software which produced the main results
of this thesis has been generalized to solve any general
problem in this class. In the appendix, the software programs
are listed and documented for general use to golve fixed
right end, free timeioptimal contirol problems with state

vari%ble and control constraints.
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APPENDIX A
This appendix lists and documents the software which
implements the succesgsive approximations technique to
Dynamic Programming. It is written with the reduced jet -
engine equations but it is carefully documented to describe
a straightforward extension to the general constrained
time optimal control problem. The flow chart appears in

figupes‘Z.BnA and 2.3=~B.
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TARTING POINT FOR THE PB_PRINTOUT
ND POINT FOR THE PB PRINTOUT

IZE THE PENALTY FUNCTION - MAKE AS LOW AS POSSIBLE

n=e Al
s
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?NP811=h.

(13 AN R« (FLOAT(I-1)14PBEST4EP
ITERATION INDEX

DO 20 N=1.NITT

STATE VARIABLE INDEX

ER= ngﬁgi(FEoAT(I 13 )+ENFST

DG 30 J=1.+NP
PB= PBINC*(FLOAT(J 11 ¥+PBFST
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=1./DELTA+10.

OL INDEX

RD UNnLLONABLE CONTROLS
40 K=1,NP4
=P4IUC*(FLUAT(K =1 +PUuFST

THE CONTROL CONSTRAINTS ARE INODICATED HERES

4,6T«1.25001%EN) GO TO 40
+BTe1,25001%P8B) GO TO- 40

TE THE NEXT STATE AND DISCA
E EQUATIONS HERE ARE FOR

T
*P4+0. qleaa*EN*EN 0.0899%
U9*tN «139825%xP4-0,1398
A*13J.?O*N3DOT-38 QQB*P
BLST+EP) GO TO 40

BFST-EP) sU TO 40

3 PaxP4/PEB-W3DOT*EN*EN}
NLST+EP) GO 10 &40
TO 40

UNALLOWABLE CONTROLS
REDUCED JET ENGINE PROBLEHM
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INTERPOLATE TO FIND CORRESPONPING PENATY

AI=(FLOAT-(NEN~L*ENT-ENFST*FLOAT (NEN) +ENLST) / (
%gaéﬁh?AT(NPB-I}*PBT-PBFST*FLOAI(NPB)+PBLST]/(

'DETERMINE IF THIS CONTROL IS BETTER

VIEST=1.4V
IF(UTEST GT.VOTES) GO TO 40
UOTES=PY

VOTESZVIEST

CONT INUE

FORM VNEW MATRIX FROM NEW DATA -

IF(NOT)31 52431
Lvo TES-GT.l /DELTA-EP)} GO TO 32

NOTATION FOR THE UNCONTROLLABLE STATE AND FEEDBACK CONTROL LAW
UOPT(I«J)=0. .
VNEW({I«J)=1./DELTA
CONTINUE

RESET TARGET STATE PENALTY TO 0
VNEW(NENLNPBL)}=0,

MOVE VNEW INTO VOLD FOR NEXT ITERATION

DO 50 I=1.NEN
DO 50 J=14NPB
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APPENDIX B
This appendix contains detalled software of the
Modified Pletcher-~Reeves Conjugate Gradient Method. A
chart showing the relation of the main program with seven
specialized subroutines is given below and the listings
and documentetions of the actual software are given on

the following pages.

'CNSTR  ADINT |
——
TRAJ S/  MAIN PROGRAM FRIN l
PERFY HOALF ¥——  LNSCH
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UT . 1Y 6
(B PER
NUE
COMPUTE NEW GRADIENTS
CALL ADJUNT(XS1US.:GS)

COMPUTE BETA

F{KOUT«GT,
RITE(6+13)
QNTINU

]

L
L]

Qoo

N
0
O
0

~=O0

@I

K ¥
J [)
BN=BN+ (
BD=RD+G(J
BETA=BN/B

ASSIGN NEW DIRECTION FOR LINE SEARCH
8-KS1sNC ’

Do
BC 8 J=1:NPA _
DiJeK}==~GS (1) +BETA*D(J1K)

1e¢NC
1 +NPA
S{JdsKI%GS(JeK)
(JeKI®RG(JsK)

D= LZ=s

MORE THAN MAXIMUM NUMBER OF TOTAL ITERATIONS 7

IF(NOUT.LT.INDEX) GO TO 11

MORE THAN MAXIMUM NUMBER OF INNER ITERATIOGNS 7

IF{NOUT.LT.NPA) GO TO 9.

DOES PERFORMANCE INDEX IMPROVE 7
IF(PIEST-PER.LT.EP) GO TO 11
PTEST=PER
GO TO 2

MOVE NEW GRADIENT 'INTO QLD GRADIENT

TMOZOProOX
orrilero>0

X)
RMANCE INDEX IS *+F15.4)
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SUBROUTINE ADJNT(X+U16G)
B%ﬁ%&sé?w %1201 ¢4) s 0200437 96(200+3)+Y (43 YNCH) +DLOX (4} «DFX (ol
COMMON PCON (%) +T (%) yDELTA+KOUT ¢ IND+NC+ NX1+NPA
N=NPA+1
INITIALIZE Y(K)
DO 1 K=1:NX
Y IKT=2+%xPCON (K # (X {N+K)=T(K) )%FLOAT (W)

CALCULATE THE ADJOINT SYSTEM IN REVERSE TIME
DO 2 J=1:+NPA
K=NPA+L~J

DEFINE ALL DERIVATIVES OF THE FORM

OEX(NX1NX) AND DFU(NX¢NC)

FOLLOWING ARE DERIVATIVES FOR THE SECOND ORDER JET ENGINE MODEL
DENZSQRT (U(K11)5%2+0 H1688%X (K12)4#2-040899%U (K11} *X(Ks2))
WE1.5009%X (Ky2)=0,139825%U(Ky1}=0,23982%DEw
DHDU= =0 139825=0,06631%({2,¥U(Ks+1)-0,0899%X (K22} )/DEN
DWOX2=1+3009=0,06691%(0,63376*X{K12)~0.08995U(K+1))/DEN
DFX{1+¢1)=0,

DFX(1¢2)537,784DWDX2

DFX(2+135~1+258%{ TU{K+1}/X{K2s1) ) 222/X(Ke2))
DFX(2+2)==1.258% ((U(Ke1)/X(K12) )22/ X{Ky 1} +U+X K +2) *DHDX2)
DFU(L+1}=37.78%DWDU=38.448
DFU{2+1)21.258%(2.%U K11}/ {X{K+1}xX(Ke2) }=x(K12)*DWDU)

CALCULATE DLX(NX)

DO 3 'I=1sNX )
g%DX(1):2.*PCUN(I)*(X(K:I)-T(I))*FLOAT{NPAT*(FLOﬂTCK)/FLOAT(NPA)**

CALCULATE PRESENT GRADIENT
DO 4 I=14NC
GI(K+I)=0.

DO & M=1eNX
GUKs1)=C(KTI)+Y (M) *xDFU{M, 11 %DELTA
CALCULATE NEXT Y(K)
DO 5 MziiNX
YRN(M)I=Y (M)
DO 5 I=1vNX
YNCMIEYN () +Y (I %OFX (T+M)*DELTA
DO 6 I=13NX
YN(IISYRCIT+DLDX(IV+Y (D)
Y(I)SYN(L)
CONT INUE
RETURN
‘END
1B
ot 208
ORIG Q0% QuAb
of ®
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http:X(20l,4),U(200,3)G(200,3),Y(4),YN(4),DLOX(4),DFX(4.t4

Subroutine ADINT computes the gradient arrays of a
nominal trajectory. The theory of the adjoint system
equations is presented in section 3.2. The user is

required to calculate and define in ADJNT 8ll derivatbives

of the form
DFX(J,K) J=142,.04,NX K=1,2,...,8X
DFU(JT,K)  J=1,2,400,NX K=1,2,.,.;NC
where
DFX(J,K) --aij-; DFU(J,K) = )%
%% d Yk

The derivatives must be-expressed in the form which is
illustrated by the jét engine problem example. The portion
of ADJNT which ‘calculdtes the adjoint system and the gradients

is5 completely general and need ncot be altered by the usger.

INPUTS:
U = the control arrays

X - the state variable arrays

OUTPUT:

G = the resulting gradient arrays
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Subroutine CNSTR tests a state varisble n-tuple to

determine the legality of the control, which is reset at

the nearest legal boundary if the control 1s-in an .

unallowable region.

Phis is & specialized subroubtine which implements the

feasible directions modification. The user gimply states

his linear constraints in a similar mammen.

called only from the subroutine TRAT.

‘INPUTS:

UTRY - the present controls td be tested
_X - the present gtate vafiable~n-tuple
OUTFUT:

U - the resulting aliowable controls

CHNSTR is


http:IF(UTRT(i).GT.1.25

L)

SUBROUTINE HOALF (X+Uy¢D1ALP ¢H}

DIMENSION X(20Ly4)+U{20045}30(200¢3) UTRY (20043}
COMMON PCON{+) v T4} sDELTAYKOUT + IND s NC o NX s NPA

DO 1 K=1«NC

D0 1 J=L1+NPA

UTRY (JeK)=UCJ e K)+ALP*D (JeK)

CALL TRAJ(X UTRY)

CALL PERFMUXsUTRYsH)

IF (KOUT.6T.1) 60 _TO 2

IF(IND.GI.5) 60 TO 2

WRITE (B3} ALP+H

CONT 1NUE )
FORMAT{SXe "ALPHA = 14E15,54+' HIALRHA] = "4F15.4)
EEBURN ;

Subroutine HOALF calculates ha) = J(u + ad). It is
éalled from LNSCH to determine the performance index
resulting from pessible control arrays. This subroutine
is completely general and independent of the particular

problem to be solved. It need not be -altered by the user.

INFUTS:

U -~ the nominal cont ol array

X ~ the nominal state variable arrays

D - the direction along which the line search ig made
ALP - the present distance tested along D

OUTPUT:

H - the resulting performance infex

63
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SUBROUTINE LNSCH{X+U:1DsGsALPHAPER)
C LNSCH IS A LINE SEARCH SUBROUTINE WHICH UTILIZES A CUBIC POLYNOMIAL
C FiT TECHNIGQUE TO DETERMINE A MINIMUM POINT.
C IN ADDITION: IT IS SENSITIVE T0 INFORMATION CBTAINED FROM
E CALCULATING THE PARAMETERS NEECED FOR THE CUgIC FIT
DIMENSION X{201+4)U(200+¢3)+0(2004312G(20043)
COMMON PCON{G4)}+T{4)+DELTA+KOUT+INDNC+NXINPA
IND=IND+] .
C DETERMINE THE DERIVATIVE (H'(0)) AND THE INITIAL *A' GUESS
HPO=0,
AN=0., .
AD=0.,
DO 1 K=1:NC
DO 1 J=1+NPA
HPO=HPO+G{JsK}*xD{JeK}
AN=AN+U(JR)}*U{JeK)
1 AD=AD+D(J+KID[JeK}
A=SQRT(AN/AD) /10,
HO=PER
2 CONTINUL
c CALL HOALF(X+UtDsAHA)
E TEST THE RELATIONSHIP BETWEEN H{A) AND H(CG)
c IF{H3.GT«HAY GO TO &
E MAKE A BETTER GUESS FOR 'A!
A=A/10.
IF(ALT.1:E~12} GO TO 3
G0 70 2
3 ALPHA=0.
GO 70 8
4 B=5,%A
5 CONTINUE
¢ CALL HOALF(X+UsDaBHB}
E TEST FOR RCLATIONSHIP BETWEEN H{B)} AND H(0J)s ALSO Hi{B)Y AND H(A)
IF(HBsGT,HO) GO TO &
c IF(HB+0.2.56T.HA)Y GO TO 7
E MOVE 'B* INTO 'A' AND MAKE A BETTER GUESS FOR 'B*
A=B
HA=HB
B=2,.*B
¢ G0 TO 5 .
C IFf 'B* IS A REASONABLE VALUE, USE THE CuUBIC FIT TECHNIQUE
E TO FIND THE MINIMUM ALPHA
6 IF(HB.GT+1.E10) GO TO 7 e
ACZRHAHBX* (A/B)*%3+HO* { (A/BI¥%x3~1,.) tHHPO* (Ax (A/B)**2-A)
AC=AC/{Ax¥2=R%¥x3/8)
BC= (HA-HO-HPOxA-AC=AxA) /A
c ALPHA=(SWRT(ACKAC~ o.*BC*HPOJ AC) /{3.%BC)
E TEST TO DETERMINE IF PERFORMANCE INDEX IS IMFROVED BY ALPHA
CALL HOALF({XsUsD2 ALPHA!HS)
IF(HS.LT+HA) GO TO
T ALPHA=A
c 8 CONTINUE
c PRINT RESULTS OF LNSCH DURING THE FIRST OUTER ITERATION
IF(KOUT.GT.1) GO TO 9
WRITE(6e410) IND
WRITE(6411} ALPHAHPO
9 CONTINUE
10 FORMATI{(SX+*IND= ',I4}
11 FORMAT(5X.*THE CHOSEN ALPHA IS ':F10.9+¢* HPQ = '"4E13.5)

ORIGINAL PAGE IS
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DZ2T2RE
CHHIMN =L T-Z2MT
DUTY O Orr~CED
Z2TMXs Ce = X000
[T = I B ]

FE s

MOV OVTOUDUZE0TN
AZFE

2mmmmcgom It HOWC
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Subroutine PERFM calculates the performance index for
state variable and control arrays. This subroutine is
completely general in nature and need not be altered by

the user.

INPUTS:

U - the control arrays

X =« the state variable arrays
ﬁﬂ?&h

PER - the resulting performance index
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Subroutine PRIN prints the state variable and control

arrays, and also any other desired information.

INPUTS:

U ~ the control arrays

X = the state variatle arrays

G - the gradient arrays

PER - the performance index )
INDEX -~ the total number of iterations thus far
OUTPUT

literal computer printout
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OF POOR QUALITY"

66



SUBROUTINE TRAJ(XeU)
DIMENSION X{202 4} +U0200¢3) vUA(SI 1 UTL3) v XT(H)
c COMMON PCONTH) s T(U4) +UELTAWKOUTsINUINCNXsNPA
8 ENTER THE SYSTEM EQUATIONS HERE IN THE FORM
E Fl(xl‘t--|XNXIU1|..|0!UNC)
¢ FXTXLaoas tXNK1 ULt e e UNCE
C THE FOLLOWING EQUATIONS ARE EXAMPLES FROM THE
E SECOND ORDER JET ENGINE MODEL
FI(X1eX20UleWI=37,78%W-38,448%U1+0.,66849
F2{XLyX22vUlsW}=1. 258*(U1*U1/!K1*X2)—N+X2}
VI(ULX2)=1,3009%X2=04139825%U1
V2{UL¢+X2)=SGRTIUIHUL+0G168B*X2%X2=0,08994X2%U1 )
D0 1 J=1+NPA
c KaJd+1
C CHOOSE STATE VARIABLE N-TUPLES AND CONTROLS. TO BE TESTED
E FOR THE FEASIBLE DIRECTIONS MOBIFICATION
DO 2 M=L1eNX
2 XT{HMI=X{JsM}
DO 3 m=1«NC
3 UT(H)Y=U(J«M)
¢ CALL CNSTR(XT.UT+UA)
E THE RESULTING ALLOWABLE CONTROLS
DO 4 M=1yNC
c 4 U{Jg«M)=UA(M)
E EULER INTEGRATION
WaVi{U{Jsd ) oX(J02) )20 T3982:2Y2 (UYL )X (Jv2) )
XAKo L1EX(Ja L) +ELECK (S0l b {du 200U (JeT ) U +DEL TA,
X{K2 2 y=X{Jda2)+F2 (X ( Jaded oS0 Ja2) o (T 02 Vs W= DELTA
1 CONTINUE
RETURN
END
Subroutine TRAJ computes the state variable trajectory
regulting from the control arrays and a set of .initial
conditions. The user enters the non-linear differential
equations which describe the motion of the system.
Subroutine CNSTR is-called to: insure that the controls
lie in an allowable region.
INPUTS;
U - the nominal control arrays
X(1,) -~ a set -of initial conditions
OUTPUT:
U - the allowable control arrays
X - the resulting state variable trajectory
GEIS.
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