General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
System Design for a Nuclear Electric Spacecraft Utilizing Out-of-Core Thermionic Conversion
Technical Memorandum 33-791
System Design for a Nuclear Electric Spacecraft
Utilizing Out-of-Core Thermionic Conversion

W. C. Estabrook
W. M. Phillips
T. Hsieh

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

September 1, 1976
PREFACE

The work described in this report was performed by the Propulsion Division of Jet Propulsion Laboratory.
CONTENTS

I. Introduction .. 1
II. NEP Spacecraft .. 2
III. Design Parameters .. 3
 A. Shuttle Constraints 3
 B. Propulsion System 4
IV. Conclusions .. 10
References .. 12

TABLES
1. Design parameters for electrical system 13
2. Component mass ... 14
3. Thermionic conversion system parameters — 90 heat pipes,
 5.4 kWe/heat pipe .. 15

FIGURES
1. NEP spacecraft with thermionic conversion — deployed
 configuration .. 16
2. Proposed nuclear electric propulsion end thrust
 spacecraft configuration 17
3. Out-of-core thermionic reactor concept 18
4. System cross section 19
5. Electrical connection arrangement typical for one third of
 one layer .. 20
6. Reactor cross section 21
7. Series electrical connection layout 22
8. Connection scheme — 18 modules in series 23
9. Coolant channel arrangement and cross section 24
10. System efficiency .. 25

JPL Technical Memorandum 33-791
ABSTRACT

A nuclear power system under investigation at the Jet Propulsion Laboratory utilizes heat pipes to transport thermal power from a fast spectrum nuclear reactor to a thermionic converter array. Conversion of nuclear thermal power to electric power in quantities large enough to provide primary propulsion is of interest for advanced spacecraft. This effort at JPL with the cooperation of the Los Alamos Scientific Laboratory is directed toward determining the feasibility of a heat pipe reactor concept to transfer heat to out-of-core thermionics as an alternate to the in-core thermionics concept previously investigated by Gulf General Atomics. The principal advantage of this approach is to eliminate nuclear fuel burn-up interactions with the thermionic converters and also allow the thermionics to be removed from the hostile environment of the reactor.

The space shuttle, under current development, would be used as the primary launch vehicle for this nuclear electric spacecraft; thus the shuttle payload bay constraints dictate physical dimensions, layout configuration, maximum weight, and permissible center of gravity. Power levels between 400 kW and 1 MW would be required to perform far outer planet missions within a reasonable time frame. A 400-kWe power level system which would have a specific weight ≤20 kg/kW was selected for this study, because this size appears to be the largest (in both volume and weight) that is compatible with the shuttle payload bay, thus utilizing a single launch for a spacecraft that can accomplish the greatest number of missions.

This technical memorandum addresses the basic guidelines for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection system, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment.
I. INTRODUCTION

Mission studies have established the need for Advanced Propulsion Systems if far outer planet explorations are to be accomplished within a reasonable time frame (Ref. 1). Conclusions from previous studies by NASA and the Atomic Energy Commission (AEC, now ERDA) are that the ability to economically explore the far outer planets in any detail is predicated upon the development of low-cost high-power lightweight power sources that are independent of solar energy. The advanced propulsion comparison (APC) studies show nuclear electric propulsion (NEP) as a potentially versatile economical candidate for this role, based on the assumption that the needed long life and high reliability can be obtained using thermionic conversion of nuclear thermal to electrical energy (Ref. 2). Previous NEP work utilized high temperature (~1900°K) in-core thermionic conversion systems (Ref. 3). These systems appeared to have lifetimes limited to 10,000 to 20,000 full power hours inasmuch as the thermionic converter electrodes were subjected to physical damage by nuclear fuel swelling and were degraded by nuclear fuel diffusion. The high reliability requirement was jeopardized by a potential "single point" failure in the coolant system, since a single coolant loop was provided for all converters. In addition, the technology program was indicating problems that would force the specific weight for this in-core power subsystem into the 30 to 40 kg/kW range. This high weight rendered it less desirable for many deep space missions.

By removing the thermionic converters and related hardware from the reactor assembly (the out-of-core concept) and utilizing heat pipes to thermally couple the nuclear reactor with the thermionic converters, the many lifetime limiting problems of the in-core concept are apparently eliminated. The predicted lifetime can conceivably be extended up to 70,000 hours because out-of-core converters are not subjected to the hostile environment of nuclear fuel contamination and physical damage imposed on the electrodes by nuclear fuel swelling. High reliability is obtainable through full modular redundancy of all the systems that have been incorporated in the design to eliminate single-point failure. An additional advantage is that less complex fabrication procedures can be utilized, since individual thermionic converters can be assembled and tested independently of the reactor system.
Advanced technical studies for the development of NEP were initiated at JPL during FY 1975, (Ref. 4). These studies revealed that with the out-of-core concept a more compact reactor could be designed with a power subsystem specific weight that could approach 20 kg/kW. A specific weight of this order is dependent on improvements in the thermionic converters that would be required to have a barrier index of 1.6 eV (collector work function 1.5 eV and plasma arc drop of 0.1 eV). Recent work has indicated that these improvements can be realized in the near future (Ref. 5). The required barrier index will, in turn, theoretically provide converter efficiency on the order of 15% with emitter and collector temperatures of ~1650 and ~950 K, respectively. At this lower temperature the emitter and heat pipe components can be fabricated from molybdenum instead of the tungsten needed for the in-core emitter components that were supplied heat at ~1900 K (Ref. 3). Tungsten is heavy, expensive, brittle at room temperature, difficult to fabricate, and does not join well with any other material. In comparison to tungsten, molybdenum weighs ~50% less, costs ~75% less, and is much easier to fabricate and join with other materials.

This technical memorandum describes some of the mechanical design parameters for a nuclear-powered spacecraft system that have been developed during a current investigation at JPL, conducted with the cooperation of the Los Alamos Scientific Laboratory (LASL).

II. NEP SPACECRAFT

A conceptual drawing of a nuclear electric powered spacecraft is shown in Fig. 1. The nuclear reactor and the thermionic converter subassembly are located at the extreme right aft end of the vehicle. The next component forward of the reactor/converter assembly is the shadow shield, which is configured to provide a 23-deg cone angle of radiation protection to the spacecraft and which is comprised of two major subassemblies. The right-hand subassembly is a neutron shield fabricated from lithium hydride (LiH). The remaining portion is the gamma shield, which is mercury propellant in a suitable enclosure. Because the LiH shield material will dissociate, a radiator designed to reduce the LiH shield temperature is mounted between the main support boom and the
surface supports which also serve as electrical bus bar troughs. The coolant plumbing is routed from the thermionic converters to the main high-temperature radiator, passing over the shields in a biased configuration to minimize neutron streaming. This coolant plumbing is then routed through the hollow main support boom. The high-temperature radiator is a full spacecraft diameter, as shown in Fig. 1, and is located behind an ion thruster assembly. The NaK-78 liquid metal (LM) coolant is circulated through the multichannel system (radiator and thermonics) by a multiduct electromagnetic (EM) pump located inside the radiator shell. The ion thrusters are canted out at a 9-deg angle to reduce exhaust impingement on other spacecraft surfaces. Those surfaces are also covered with a sputter-resistant coating (possibly Kapton). The power conditioner and its radiator shown to the left of the main radiator was deployed from its stowed position inside this main radiator. The science payload package shown at the left end of the spacecraft was in turn deployed from the shell-type power conditioner/radiator assembly. The science antenna was deployed from the science package and remains within the 11.8-m-diam protective shield cone.

III. DESIGN PARAMETERS

A. SHUTTLE CONSTRAINTS

The shuttle under current development would be used as the primary launch vehicle for a nuclear electric spacecraft, and thus the shuttle payload bay constraints dictate physical dimensions, layout configuration, maximum weight, and permissible center of gravity. Based on the Advanced Planetary Mission Committee study, it appeared that power levels between 400 kW and 1 MW would be most desirable to perform large payload outer planet missions within a reasonable time frame (Ref. 6). A system with 400 kWe available for thrust was selected for this study because the volume and weight appear to be compatible with the shuttle payload bay constraints. This power level provides multimission capability with economical single-shuttle launches. Higher power levels may require two shuttle launches and space assembly or a heavy lift launch vehicle.
B. PROPULSION SYSTEM

Of prime importance is a space propulsion system which allows maximum utilization of the spacecraft and provides multimission flexibility. These requirements can be accomplished by providing an unencumbered end portion of the spacecraft without thermal sources that would provide greatest flexibility for the various science gathering payload packages. To provide a spacecraft with maximum payload and maximum payload versatility the propulsion system must be designed for minimum physical size and mass. To comply with this requirement the nuclear reactor and thermionic conversion components were configured through parametric evaluations with optimum parameters being selected for minimum weight. This effort is discussed in detail in Refs. 7 and 8.

1. Reactor/Thermionics Heat Pipes and Radiation Shield

Nuclear radiation shields contribute significantly to the power system mass and, therefore, must be located so that the least material provides the most shielding. With the shields properly dimensioned and located adjacent to the nuclear reactor/thermionic converter assembly a shadow cone is provided that can shield the sensitive electronic components. The neutron shield was designed to limit the dose level to \(10^{12}\) nvt \(E_n \geq 1.0\) Mev at the deployed power processor -17 m from the nuclear reactor. For this 400-kWe design the LiH neutron shield weighs \(\sim 2000\) kg, which is \(\sim 25\%\) of the power system mass. The gamma shield limits the dose level at the deployed power processor to \(10^6\) rads. Mercury propellant in excess of that required to accomplish the mission is provided to assure the required dose level protection until completion of science gathering.

A more detailed view of the interfaces between the major components of the out-of-core (nuclear reactor – thermionic conversion) power plant concept is shown in Fig. 3. The heat pipe is the "heart" of this out-of-core concept. As depicted in this center view, the nuclear fuel element of \(\text{UO}_2\) in molybdenum is nickel activated diffusion bonded to one end of the molybdenum heat pipe. This interface is sized so that the thermal transfer requirement does not exceed 100 W/cm\(^2\) for the fuel/heat pipe contact area. Also the heat pipe is sized so that the heat flux to be transported does not exceed 10 kW/cm\(^2\) of
vapor cross section area (15 kW/cm² has been demonstrated) (Ref. 4). Six thermionic converters are electrically insulated from and mounted on each heat pipe forward of the fuel.

The converter in the left view of Fig. 3 is cut away to show the layout of the various components around the heat pipe. Converter buildup will first require an insulator applied to a heat pipe. The remaining converter elements shown in this figure are the emitter, interelectrode space, collector, collector insulator and coolant passage. Spacers are required to maintain a uniform interelectrode gap. End seals and the cesium system plumbing details remain to be developed. The right-hand view of Fig. 3 shows the powerplant assembled with most of the hardware present. Components such as the support structure, control drum actuators, and the cesium system have been omitted. This out-of-core concept will simplify fabrication procedures, because the nuclear fuel and thermionic converter subassembly components can be fabricated, assembled, and tested simultaneously and independently of each other. This was not the case for the Gulf General Atomic (GGA) in-core design (Ref. 3).

The 400-kWe out-of-core thermionic reactor (Figs. 2 and 3) is approximately 2 m long by 0.82 m in diameter. Compared to the 120-kWe GGA in-core reactor (Ref. 3) (0.925 m long × 0.737 m in diameter) this out-of-core system provides almost four times the power for up to seven times the full power hours and is only about twice as large.

2. Electrical Connections

A cross section through the thermionic converters is shown in Fig. 4 with minimum detail. This arrangement is hexagonal to provide a uniform pattern for electrical bus bar connections and an electrically balanced system. The center heat pipe assembly was omitted for electrical symmetry and nuclear fuel power flattening. Higher temperatures are experienced in the center of a fuel pile with a temperature gradient radially to the reactor perimeter. Removing fuel from the center and adding fuel to the perimeter minimizes this temperature gradient. For electrical connections, the internal bus bars are molybdenum and the external bus bars are copper. These selections are based on material property compatibility with the environment and on space allocation.
As noted in Fig. 4 each layer of thermionic converters is separated into three modules each containing thirty converters. Connections are made in a series-parallel manner as shown schematically in Fig. 5. This connection scheme is intended to provide redundant reliability in the event of a converter failure. For example, in the event of a heat pipe failure, one of the 30 converters in each of six series-parallel connected modules would become inoperative, probably in an electrically open-circuit mode. System power would be shunted around the inoperative converter units with a total power loss of ~1%. This reliability through redundancy is also provided at the nuclear fuel/heat pipe interface. The reactor cooling scheme utilizing heat pipes is easily arranged so that each nuclear fuel element is cooled by several heat pipes. Thus, if one heat pipe fails, its heat-transfer load is shared by the adjacent heat pipes (Fig. 6). With the thermionic system operating at full power (~36 kWt/heat pipe), each heat pipe is transporting ~7.26 kWt/cm² of its vapor cross section area. The most severe condition occurs when there are only two adjacent pipes to share the load from an inoperative heat pipe. There are only six of these heat pipes in the system at the corners of the reactor. In this case the final loading on these two heat pipes that share the load would be <75% of their capability (Ref. 9). Out-of-core converters are not subjected to as hostile an environment of nuclear fuel swelling as was the case for the GGA in-core design (Ref. 3).

With these lifetime limiting problems eliminated, this out-of-core power system has the potential of being able to operate at full power for ~70,000 hours. The UO₂ fuel pellets loaded in a molybdenum matrix, based on calculations for fuel swelling and burnup, will be capable of providing the required thermal power for this 70,000 hours. The reactor design will permit the expected 1% fuel volume swelling (Ref. 7). The limiting factor is expected to be lack of control margin produced by the control drums. These converters are fabricated in 15-cm lengths for two reasons. First, the amount of electrical current which can be generated by and extracted from a cylindrical thermionic converter is limited by a tradeoff between the volume of electrode material (thickness and length) versus an acceptable value of I²R loss during this electrical power extraction. Second, the converter units must be electrically connected in series as a voltage-increasing mechanism which is needed to reduce...
the mass of the low-voltage cables and increase the efficiency of the power processor. (For a fixed power level, an increase in voltage permits a decrease in current, and thus smaller cross-sectional area cables can be used between the converters and the power processor. Also power processors are less complex and more efficient when input power is supplied at voltages ≥15.)

A thermal flux input temperature ≤1650 K to the thermionic permits emitters, heat pipes, and system internal electrical power extraction bus bars to be fabricated from molybdenum instead of tungsten which was required to withstand the higher temperature of ~1900 K used in the GGA in-core design (Ref. 3).

Figure 7 shows the series connections which are made with molybdenum links mounted on each end of each converter. These links are designed with a tension finger arrangement to provide proper alignment during heatup expansion. These bus bar links are designed so that when installed, the parallel electrical paths are established by an interlocking physical contact with the adjacent row of links. The cross-sectional areas of these links are such that the voltage drop will be less than 2% during full-power operation with a mean temperature of ~1100 K within the link. A thermal choke (an area of reduced cross section) is provided at each end of each converter emitter which limits thermal conduction through the series connection links without imposing a significant increase in voltage drop.

As previously stated and shown in Figs. 3 and 4, this nuclear reactor/thermionic converter powerplant is divided in thirds for electrical connection symmetry. Figure 8 shows the method employed to electrically connect the eighteen modules in series. The electrical paths through each module are shown schematically with arrows. The system modules and thirds are spread out to more readily display the connection scheme. The converter module layers are mounted on the heat pipes with a 30-mm space allowance on each end for electrical connections. The system thirds are separated by 20-mm gaps to provide space for the series connection molybdenum bus bars, loaded <150 A/cm², which complete the electrical circuit between modules. The system thirds are electrically connected in series with copper bus bars or cables sized to carry approximately 275 A/cm² that are mounted around the
outside perimeter of the system. The aluminum cables from the powerplant to the power processor carry $-174 \, A/cm^2$. I^2R loss incurred during transport of the power from the converter terminals to the power processor is -11.3% of converter terminal power. Design parameters for the electrical system are recorded in Table 1. The mass breakout for the power system as currently configured is shown in Table 2. The specific mass is $-21 \, kg/kW$, which is slightly above the desired goal.

3. **Ion Thrusters**

The shield shadow cone (Fig. 2) is 4.5 m in diameter (full spacecraft diameter) at 9 m from the aft end of the nuclear reactor. All thrusters are located within the shield cone shadow to minimize scatter of radiation with subsequent operational impairment of sensitive electronic components such as the thruster power processor. The ion thrusters are canted at 9 deg to minimize thruster material impingement on other components. This canted attitude results in a 1% loss in effective thrust (Ref. 10). However, canting does not fully eliminate back-sputtered material that could impair thruster operation. As stated in Section II, the support boom, the electrical cable channels, the electrical cables and the low-temperature LiI-IH shield radiator will be protected from thruster exhaust impingement with a thick coating of Kapton or similar sputter-resistant material in order to reduce the quantities of back-sputtered material to an acceptable level.

4. **High-Temperature Radiator**

The high-temperature radiator removes the excess heat from the thermionic converters and contains ~1000 heat pipes utilizing potassium (K) working fluid.

This radiator is fabricated from niobium (Nb), has an outer layer ~2.1 mm thick of beryllium (Be) for meteoroid protection, has an iron titinate coating for high thermal emissivity and is located behind the thrusters for the following reasons:

1. To utilize full spacecraft diameter to provide the required radiation surface area with a minimum length assembly.
(2) To eliminate damage to the required high emissivity coating from thruster material impingement.

(3) To provide an enclosure for the electromagnetic (EM) pump which circulates the NaK-78 liquid metal (LM) coolant. (The plumbing for this system passes through the support boom and therefore mounting the EM pump inside the radiator provides a straight through plumbing path.)

(4) This shell-type radiator assembly easily adapts as a stow area for other components such as the power processor and the science packages (payload) which are deployed in space.

The coolant passages around each converter will be ganged in the manifold configuration shown in Fig. 9. To maintain the required redundancy for reliability, eighteen individual coolant loops are provided. To insure that impaired coolant flow in one loop does not jeopardize the entire powerplant, these coolant manifolds are ganged with the series electrical connection pattern, and thus a single coolant loop failure will not initiate an electrical malfunction with a resultant electrically open-circuited system. The converter conversion efficiency determines the percentage of thermal power that must be removed from the thermionic converter and radiated to space. A 500-kWe gross system with a conversion efficiency of 15% would require a 3.33 MWe gross system source of which 2.83 MWe would be radiated to space. The space shuttle bay size and other constraints of the spacecraft concept place maximum dimensional limits on the radiator of 9 m in length and 4.5 m in diameter. The required radiator area is inversely proportional to the fourth power of the rejection temperature. Thus the temperature of the rejected thermal power must be high enough to allow for an acceptable radiator size. More details for this design based on thermionic converter design parameters are provided in Ref. 8.

5. Thermionic Conversion System Parameters

The thermionic conversion system parameters determined during this design study are listed in Table 3. Barrier index, a thermionic converter characteristic which opposes electrical output, is the sum of collector work function (ϕ_c) and plasma arc drop (V_d). These parameters are measured in
electron volts. Converter performance curves (efficiency versus collector
temperature) have been plotted for barrier indexes of 1.6 and 1.8 eV as shown
in Fig. 10. Other fixed parameters used in calculating these curves are also
shown in Fig. 10. The curve for 1.6-eV barrier index composed of 1.5-eV
collector work function and 0.1-eV plasma arc drop provides ~15\% converter
efficiency with a collector temperature of ~950 K. These parameters, which
represent a slight improvement over demonstrated converter performance
[existing laboratory devices have operated with a barrier index of 1.8 eV]
(Ref. 5), are needed for design of a spacecraft with 400 kWe available for
thrust (multimission capability) sized for an economical single-shuttle launch.

IV. CONCLUSIONS

This initial investigation into the out-of-core nuclear/thermionic power
system has revealed the following advantages as compared to the in-core sys-
tem extrapolated to the same power level:

(1) A single-shuttle launch will provide more power on station,
inasmuch as a smaller power source can be designed utilizing the
heat pipe cooled reactor with out-of-core thermionics. This
smaller nuclear reactor/thermionic conversion system, in turn,
scales down other components, such as the nuclear radiation shield
(a significant portion of the power system mass) and makes feasi-
ble a power subsystem with a specific weight on the order of
20 kg/kWe.

(2) The predicted lifetime for the thermionics can conceivably be
extended by up to a factor of ten, when partially removed from the
hostile nuclear fuel environment (fission product contamination and
particularly fuel swelling).

(3) High reliability can be attained through a modularly redundant sys-
tem that fully eliminates the otherwise possible single-point failure.
This inherent reliability of the thermionic power conversion system
is one of its major features.
(4) The selection of more fabricable materials (molybdenum in lieu of tungsten for the emitter and heat pipes) is permitted by the lower operating temperature ~1650 K instead of ~1900 K.

(5) A less complex fabrication procedure can be utilized, since individual thermionic converters can be assembled and tested simultaneously and independently of the reactor system.
REFERENCES

Table 1. Design parameters for electrical system

<table>
<thead>
<tr>
<th>Material</th>
<th>Conductor length, cm</th>
<th>Area, cm²</th>
<th>Load amperes</th>
<th>Current density, A/cm²</th>
<th>Mean temperature, °K</th>
<th>I²R loss, %</th>
<th>Total component weight, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main links</td>
<td>Mo</td>
<td>13</td>
<td>.4</td>
<td>745</td>
<td>138</td>
<td>1100</td>
<td>1.24 315.7</td>
</tr>
<tr>
<td>End links</td>
<td>Mo</td>
<td>5.25</td>
<td>5.07</td>
<td>745</td>
<td>147</td>
<td>1100</td>
<td>0.43 59.8</td>
</tr>
<tr>
<td>Inside plates</td>
<td>Mo</td>
<td>40/4</td>
<td>31</td>
<td>4470</td>
<td>144</td>
<td>1100</td>
<td>4.41 125.5</td>
</tr>
<tr>
<td>Subtotal (molybdenum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.08 501.0</td>
</tr>
<tr>
<td>Outside plates</td>
<td>Cu</td>
<td>40/4</td>
<td>31</td>
<td>4470</td>
<td>144</td>
<td>700</td>
<td>0.95 121.3</td>
</tr>
<tr>
<td>Outside jumpers</td>
<td>Cu</td>
<td>65</td>
<td>32.5</td>
<td>8940</td>
<td>275</td>
<td>700</td>
<td>0.30 37.6</td>
</tr>
<tr>
<td>Cables to</td>
<td>Al</td>
<td>3200</td>
<td>51.4</td>
<td>8940</td>
<td>174</td>
<td>400</td>
<td>3.99 444.1</td>
</tr>
<tr>
<td>power processors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (copper and aluminum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.24 603.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.3 1104.0</td>
</tr>
</tbody>
</table>

*a Electrical current path length.
*b Predicted conductor operating temperature used in I²R loss calculation.
*c Weight for component in 540 converter (527 kWe gross) system.
<table>
<thead>
<tr>
<th>Component</th>
<th>Weight, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor core (L/D = 1)</td>
<td>932</td>
</tr>
<tr>
<td>Reactor reflectors and control</td>
<td>773</td>
</tr>
<tr>
<td>LiH shield</td>
<td>2030</td>
</tr>
<tr>
<td>Heat pipes</td>
<td>364</td>
</tr>
<tr>
<td>Thermionic converters</td>
<td>805</td>
</tr>
<tr>
<td>Molybdenum bus bars</td>
<td>501</td>
</tr>
<tr>
<td>Copper bus bars</td>
<td>159</td>
</tr>
<tr>
<td>Aluminum cables to power processor</td>
<td>444</td>
</tr>
<tr>
<td>Coolant plumbing</td>
<td>430</td>
</tr>
<tr>
<td>Coolant (NaK 78)</td>
<td>498</td>
</tr>
<tr>
<td>EM pumps</td>
<td>~200</td>
</tr>
<tr>
<td>Primary radiator</td>
<td>793</td>
</tr>
<tr>
<td>Support structure (5%)</td>
<td>400</td>
</tr>
<tr>
<td>Total mass, kg</td>
<td>8329</td>
</tr>
<tr>
<td>kg/kWe (400-kWe system)</td>
<td>20.82</td>
</tr>
</tbody>
</table>
Table 3. Thermionic conversion system parameters — 90 heat pipes, 5.4 kWe/heat pipe

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of converters</td>
<td>540</td>
</tr>
<tr>
<td>Converter barrier index</td>
<td>1.6 eV</td>
</tr>
<tr>
<td>Converter ϕ_c</td>
<td>1.5 eV</td>
</tr>
<tr>
<td>Converter V_d</td>
<td>0.1 eV</td>
</tr>
<tr>
<td>Percent of converter efficiency η</td>
<td>15</td>
</tr>
<tr>
<td>Converter emitter power density</td>
<td>6.0 W/cm2</td>
</tr>
<tr>
<td>Converter volts at 10 A/cm2</td>
<td>0.6 V</td>
</tr>
<tr>
<td>Emitter area/convertera</td>
<td>176.7 cm2</td>
</tr>
<tr>
<td>Collector area/convertera</td>
<td>193.5 cm2</td>
</tr>
<tr>
<td>Converter length</td>
<td>150.0 mm</td>
</tr>
<tr>
<td>Heat pipe OD</td>
<td>28.0 mm</td>
</tr>
<tr>
<td>Heat pipe length</td>
<td>1920 mm</td>
</tr>
<tr>
<td>Emitter diameter</td>
<td>37.5 mm</td>
</tr>
<tr>
<td>Reactor diameter</td>
<td>621 mm</td>
</tr>
<tr>
<td>Reactor length including reflector</td>
<td>760 mm</td>
</tr>
<tr>
<td>Overall length — reactor and heat pipes</td>
<td>2020 mm</td>
</tr>
<tr>
<td>Emitter temperature T_E</td>
<td>1650 K</td>
</tr>
<tr>
<td>Collector temperature T_c</td>
<td>950 K</td>
</tr>
<tr>
<td>Radiator temperature mean T_R</td>
<td>925 K</td>
</tr>
<tr>
<td>Radiator areab</td>
<td>82 m2</td>
</tr>
<tr>
<td>Radiator length at 4.5 m dia.b</td>
<td>5.8 m</td>
</tr>
<tr>
<td>Gross output (BOL)</td>
<td>9760 A</td>
</tr>
<tr>
<td>Gross output (BOL)</td>
<td>54 V</td>
</tr>
<tr>
<td>Gross output (BOL)</td>
<td>527 kWe</td>
</tr>
<tr>
<td>Nominal operating power</td>
<td>483 kWe</td>
</tr>
<tr>
<td>Rejected power</td>
<td>2737 kWt</td>
</tr>
<tr>
<td>Reactor thermal power</td>
<td>3220 kWt</td>
</tr>
<tr>
<td>LiH shield</td>
<td>2030 kg</td>
</tr>
</tbody>
</table>

11.3 cable losses — 55 kW = 472 kWe
28 kW for coolant pumps and hotel power = 444 kWe
10% degradation during lifetime yields 400 kWe (BOL) input to thrust system

aIncludes ~8.7% excess area for converter end thermal degradation
bContains 10% safety margin

BOL = beginning of life; EOL = end of life
Fig. 1. NEP spacecraft with thermionic conversion—deployed configuration
Fig. 2. Proposed nuclear electric propulsion end thrust spacecraft configuration
Fig. 3. Out-of-core thermionic reactor concept
Fig. 4. System cross section

MOLYBDENUM BUS BARS
3 EACH INTERNAL SHOWN

LINES REPRESENT SERIES
ELECTRICAL CONNECTIONS

COOLANT IN
COOLANT OUT

COPPER BUS BARS
3 EACH EXTERNAL SHOWN

CROSS SECTION OF
CONVERTERS AND HEAT PIPES
Fig. 5. Electrical connection arrangement typical for one-third of one layer.

Emitter-Bus at System Perimeter

Collector Bus within 20-mm Gap

Parallel Connections (20 Places) for Redundant Reliability

Simulated Converters (30 Places)

Emitter-Collector Orientation Reverse at Each Succeeding Layer to Provide a Series Electrical Path
Fig. 6. Reactor cross section

BeO REFLECTOR

THERMAL NEUTRON ABSORBER

THERMAL RADIATION HEAT SHIELD

FUEL ELEMENT

HEAT PIPE
Fig. 7. Series electrical connection layout

- Series connection plate: 4 cm x 31 cm x 1 cm
- Converter connection plate: 40 cm x 31 cm x 1 cm
- Collector
- Emitter
- Heat pipe

Dimensions:
- 40 cm
- 4 cm
Fig. 9. Coolant channel arrangement and cross section
\[T_E = 1650^\circ K \]
\[T_C = \text{VARIABLE} \]
\[d/\lambda = 1 \]
\[J = 10 \text{ A/cm}^2 \]
\[\Delta V = 0.076 \text{ V} \]

Fig. 10. System efficiency

<table>
<thead>
<tr>
<th>CURVE NUMBER</th>
<th>COLLECTOR WORK FUNCTION</th>
<th>ARC DROP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>1.3</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>1.1</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>1.7</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>0.3</td>
</tr>
<tr>
<td>6</td>
<td>1.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

JPL Technical Memorandum 33-791

NASA-JPL-Com. L.A. Calif