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A technique based on the measurement o f  streaming potent ia ls  has 

been developed t o  eval date the e f fec ts  o f  h y d r o ~ h i  1 i c coatings on 

electroosmoti c flow. The apparatus and procedure are descri bed as we1 1 

as some resu l t s  concerning the e lec t rok ine t i c  ( 5 )  potent ia l  o f  glass 

c a p i l l a r i e s  as a funct ion o f  i o n i c  strenqth, pH, and temperature. The 

e f f e c t  t h ~ t  turbulence and entrance f low condit ions have on accurate 

streaming potent ia l  measurements i s  discussed. Various s i  lane adhesion 

promoters exh ib i ted  only  a s l i g h t  decrease i n  streaming potent ia l .  A 

coating u t i  1 i z i n g  a g l y c i  doxy s i  lane base upon which methylcel l  ulose i s  

applied affords a s i  x - fo ld  decrease over uncoated tubes. Hydronhi 1 i c  

methacrylate gels show s i m i l a r  streaming potent ia l  behavior, inde~endent  

of the water content o f  the gel. By in t roduc t ion  of posi t i v e  o r  neqative 

groups i n t o  the hydrophi 1 i c  methacrylate gels, a range of streaming poten- 

t i a l  values are obtained having absolute pos i t i ve  o r  negative siqns. 



This work has been conducted t o  support the free zone c e l l  

electrophoresis experiment performed during the Apol lo-So.yuz f l i g h t  

i n  July, 1975. I n  t h i s  experiment the electrophoresis apparatus 

u t i l i z e d  pyrex tubes which functioned as the c e l l  electronhoresis 

chamber. These tubes were s p l i t  i n  ha l f ,  lengthwise, and then re- 

jo ined using RTV s i l i cone  t o  seal the searns, reforming the tube 

fo r  be t te r  thermo-stress s t a b i l i t y .  For the experiment the tube 

contained aqueous buffer so lu t ion  and a zone o f  ce l l s .  When a 

po tent ia l  i s  appl ied a t  the ends o f  the tube, the c e l l s  migrate i n  

the b u f f e r  according t o  the charge associated w i t h  the p a r t i c u l a r  

c e l l .  

Pyrex glass, however, has a negative e l e c t r i  ca l  charge associ - 
ated w i th  i t s  surface due t o  s i  lanol  and boranol groups a t  the glass 

surface. The counter-ions t o  these surface charges are free t o  mig- 

r a t e  i n  the e l e c t r i c  f i e l d  resu l t i ng  i n  a back flow of charqe along 

the surface. Thi s phenomenon i s  cal l e d  electroosmosi s and resrrl t s  

i n  an unequal migrat ion o f  the c e l l s  character ized by a parabol ic- 

shaped flow p r o f i l e .  Since a uniform c e l l  migrat ion i s  h igh ly  desired, 

a modi f icat ion o f  the pyrex glass surface i s  necessar.y t o  decrease o r  

e l iminate electroosmosis. This can be done by e i t h e r  neu t ra l i za t i on  o f  

the glass surface charge o r  by coat ing the surface w i th  a polymer t o  

mask the charge. 

This repor t  describes and evaluates surfacc coatings f o r  reducinq 

or  e l  iminat ing electroosmosis. We used the str'eaming potent i  a1 method 
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t o  evaluate the surfaces prepared. The determinations are made by 

f lowing an e lec t ro ly te ,  usual ly  an aqueous buffer, thmugh a c a p i l l a r y  

tube and measuring the po tent ia l  generated between the ends of the 

capi l lary .  This po ten t ia l  i s  ca l l ed  the streaming po ten t i a l  and resu l t s  

because pa r t  o f  the counter i o n  l aye r  associated w i t h  the surface i s  

car r ied  along w i th  the flowing e lec t ro ly te .  

The f i r s t  h a l f  o f  t h i s  repor t  describes the design o f  the streaming 

potent ia l  a,. paratus, the variables involved i n  streaming po ten t i a l  measure- 

ment and the experimental prctocol.  The second ha l f  of t h i s  r e w r t  

describes surface modif icat ions of the pyrex glass and i t s  e f f e c t  on 

streaming potent ia l .  The surface modi f icat ions can be fur ther  d iv ided 

in to :  1 ) Silane surface treatments, 2) Polysacchari de surface t rea t -  

ments, and 3) Hydrophil i c  synthet ic  polymer surface treatments. 



I 1  I. DEVELOPMENT OF STREAMING POTENTIAL 

APPARATUS AND PROTOCOL 

A. In t roduct ion 

The i n i t i a l  ob jec t ive  o f  t h i s  research was t o  develop an apparatus 

and experimental technique which could d i r e c t l y  measure the e lec t ro -  

k i n e t i c  propert ies o f  c a p i l l a r y  surfaces. The approach chosen was based 

on the streaming potent ia l  phenomena org inal  l y  quant i ta ted by Helmholtz 

and Smoluchowski (1 ) and explained i n  some detai  1  by Davies and Rideal (2). 

The re la t ionsh ip  between the measured streaming potent ia l  and the 

po tent ia l  a t  the hydrodynamic shear plane, the zeta (5)-notent ial ,  i s  

given as 

where TI and E are v i scos i t y  and d i e l e c t r i c  constant, respect ively,  if 

the d i f f use  double layer,  Es t r  i s  the streaming po ten t i a l  measured across 

the streaming cap i l la ry ,  P i s  the pressure d i f ference across the cap i l -  

l a r y  responsible for  the f low o f  e lec t ro l y te ,  a i s  the radius o f  the 

cap i l la ry ,  and KB and KS are the spec i f i c  bulk and surface conduct iv i t ies.  

The zeta po tent ia l ,  5 ,  can be calculated from measurements o f  streaming 

potent ia l  and d r i v i n g  pressure i f  surface conductance i s  taken i n t o  account. 

This i s  accomplished by u t i l i z i n g  Equation 2: 

C i s  the predetermined system constant and R i s  the measured a.c. res i s -  

tance o f  the capi l l a r y - e l e c t r o l y t e  system. 

Normally Equation 2 i s  u t i l i z e d  when i o n i c  strength i s  so low tha t  

surface conductance comprises a s i g n i f i c a n t  propor t ion of the t o t a l  con- 

ductance, A t  h igh i o n i c  strengths, i .@. , physiological e l e c t r o l y t e  



concentrations, surface conductance i s  neg l i g ib le  com~ared t o  the 

t o t a l  conductance, and Equation 1 s imp l i f i es  t o  Equation 3: 

4nrl Kg Est r  
(3 < = -  E 

P .  

Kg can then be determined i n  a standard conduct iv i ty  c e l l  u t i  1 i z i n g  

p la t i n i zed  gray platinum electrodes. Viscosi ty  and d i e l e c t r i c  constant 

i n  the di f fuse layer  are assumed t o  be equal t o  bulk values; however, 

t h i s  i s  probably incor rec t  accordinq t o  Haydon ( 3 ) .  

Bal l  and Fuerstenau (4) have reviewed the streaming po ten t i a l  l i t -  

erature i n  regard t o  Estr/P data. They have concluded that,  due t o  as 

y e t  unexplained f low and asymmetry po ten t ia ls  common t o  a wide va r ie t y  

o f  electrode types, the slope o f  the l o c i  o f  Es t r  data a t  a number o f  

d r i v i ng  pressures i n  opposite f low d i  rect ions (AEstrlhP) should be u t i  1 i zed 

i n  Equations 1, 2, and 3. This has been the case i n  t h i s  research where 

the l o c i  o f  streaming potent ia l  data as a funct ion o f  d r i v i n g  pressure i n  

both f low d i rect ions has been f i t t e d  t o  a l i n e a r  regression best f i t  

s t ra igh t  l i n e  using a Hewlett Packard (Model 9820A) proqramable calculator .  

B. Apparatus 

The streaming potent ia l  apparatus i s  i l l u s t r a t e d  i n  Ffuure 1. I t  i s  

composed e n t i r e l y  of bo ros i l i ca te  (Corning 7740) glass w i th  the exception 

of two sections o f  S i l a s t i c  (Dow Corning, poly(dimethy1 s i  loxane) , medical 

grade) tubing (F )  used t o  connect the streaming c a p i l l a r y  ( E )  t o  the 

electrode chambers (C). The electrodes are o f  the s i l ve r ,  s i l v e r  ch lor ide 

type and are prepared by the anodic e l e c t r o l y t i c  deposit ion o f  an AgCl 

coating on a s i l v e r  wi re (A. D. MacKay, N. Y.). The wire electrodes are 

i n  the for9 of a sp i ra l  and are epoxied i n t o  7/15 5 glass j o i n t s  which mate 

w i th  the electrode chambers. Two 200 m l  reservoi rs  ( A )  serve as containers 
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f o r  the streaming f l u i d  and are connected t o  the  e lect rode chambers (C) 

and an N2 pressure source v i a  Section B. Sect ion 3 i s  a d i n  tube r x -  

tending t o  the bottom o f  each reservo i r .  Sections A, R,  C, and D are 

conner I .%I together v i a  7/15 a d  19/22 S glass j o i n t s  and were made small 

enough t o  be r a d i o  frequency glow discharged p r i o r  t o  each streaming 

experiment. 

The reservo i rs  a re  pos i t ioned  i n  a constant temperature bath and 

s t i r r i n g  can be accomplished w i t h  a magnetic s t i r r e r .  The system pH 

(Corning Node1 12 pH meter and glass e lect rode combination) and tempera- 

t u re  (0-100°C, accurate t o  + 1°C) can be monitored continuous1.y. Pu r i f i ed  

N2 gas (99.999% pure) serves as a pressure source u t i l i z e d  t o  d r i v e  the 

streaming f l u i d  through the cap i l l a r y .  The four-way b a l l  valve ( V )  

(Whitey Model B-43YF2) simul taneously exposes one reservo i  r t o  N2 d r i v i n g  

pressure and the o ther  t o  atmospheric pressure. A 90' r o t a t i o n  o f  the 

valve appl ies pressure t o  the opposi te r ese rvo i r  and reverses the e l ec t ro -  

l y t e  f low. Pressure i s  adjusted w i t h  a two-stage oxygen regu la to r  

(Matheson Gas Products Model 3104) w i t h  an adaptor f o r  N2 and a Tycos 

pressure gauge (T) (0-300 m Hg, accurate t o  1 m Hg). The components 

o f  the pressure d r i ve  system are connected t o  the  streaming amara tus  

v i a  S i l a s t i c  tubing. The streaming p o t e n t i a l  i s  measured w i t h  a h i s h  

i npu t  impedance d i g i t a l  e lect rometer  (Kei t h l e y  Model 616), and the r e s i s -  

tance of conductance o f  the streaming f l u i d  i s  measured w i t h  an a.c. 

br idge a t  a frequency o f  1 KHz (General Radio Model 16508). The stream- 

i n g  apparatus i s  e l e c t r i c a l l y  i s o l a t e d  from extraneous e l e c t r i c a l  s iqna ls  

by a Faraday cage (copper screen 50 mesh/i nch) (FC). 

C. Procedure 

Streaming p o t e n t i a l  data was obtained by measuring streaming poten- 

t i a l s  a t  a d r i v i n g  pressure o f  2 cm Hg, then revers ing the f l ow  d i r e c t i o n  

- 7- 



and repeating the measurement. The d r i  v i  ng pressure was increased 

by 2 an Hg and streaming potent ia ls  were again measured i n  both f low 

direct ions, This process was repeated u n t i  1 the d r i  v ing pressure 

reached 12 t o  14 cm Hg. The slope, AEstrlAP, of the  best f i t  s t r a i g h t  

l i n e  was u t i l i z e d  i n  Equation 3, Solut ion spec i f i c  conduct iv i t ies  

were determined i n  a precal i b ra ted  c e l l  w i t h  p l  a t i n i  zed plat inum elec- 

trodes. The c e l l  constant, C, o f  the streaming c a p i l l a r y  and the 

conduct iv i ty  c e l l  were predetermined using a .1 N KC1 so lu t ion  o f  known 

spec i f i c  conduct iv i ty  (5). Following streaming masurements, the 

resistance o f  the c a p i l l a r y  electrode system was measured w i t h  the a.c. 

bridge. I n  most instances where i o n i c  strength was high, so lu t ion  

conduct iv i t ies masked surface conducti v i  t i e s  and kg could be determined 

i n  a conventional conduct iv i ty  c e l l .  Equation 3 was then u t i l i z e d .  

This was the case f o r  a1 1 data reported here. 

Radio frequency gl  ow discharge (RFGD) cleaning o f  the streaming 

c e l l  components was car r ied  out t o  e l iminate problems w i th  surface con- 

tamination which occasional l y  developed. RFGD (cornerci  a1 Plasmod sys tem, 

Tegal Corporation, Richmond, Ca l i fo rn ia )  i n  argon gas a t  100 umHg and an 

RF power density o f  50 watts f o r  5 minutes was h igh ly  e f fec t i ve  i n  removing 

surface contamination. 

Water used ir t h i s  study was twice d i s t i l l e d  over Pyrex Glass (Corning 

S t i  11 Model AG-11 ) and had a conduct iv i ty  of 1 + .1 umho/cm. Phosphate 

buffered sal ine (PBS) was made up as .I45 M NaC1, 2 x ir KH2P04, and 

8 x lom4 M Na2HP04 using twice d i s t i  l l e d  water. For the evaluat ion o f  s i lane 

and polymer coatings i n  pa r t  I V ,  a potassium ch lc r ide  b u f f e r  was used 

containing 0.01 M KC1 , 2 x 1 0 ' ~  M KH2P04, 8 x lo-' M Na2HP04. The pH 

measured 7.2 + 0.1. 
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D. Results and Discussion 

1. Tube dimensions, 

Prel iminary invest igat ions concerning the e f f e c t  of c a p i l l a r y  

geometry on measured streaming potent ia l  ind icated a  l i n e a r  decrease 

i n  AEstrlAP as the length o f  the c a p i l l a r y  decreased. This was a t  

odds w i th  the conclusion inherent i n  the der iva t ion  o f  the streaming 

potent ia l  equation i n  t ha t  c a p i l l a r y  geometry should no t  a f fec t  the 

streaming potent ia l .  An analysis o f  f low turbulence and entrance 

e f fec ts  on streaming potent ia l  was car r ied  out t o  determine the cause 

o f  the discrepancy. 

Figure 2 i s  an Es t r  vs. P p l o t  f o r  two streaming tubes. Tube A 

i s  600 pm I. D. and 30 cm i n  length, wh i le  Tube B i s  1250 vm I. D. and 

30 cm long. I n  the case o f  Tube A the data i s  l i n e a r  and the slope 

( ~ E s t r  vs. AP) i s  equal i n  both f low d imct ions .  Measured f low rates 

and subsequently ca lcu lated Reynolds numbers indicated laminar f low 

throughout the measured pressure range f o r  Tube A. I n  the case o f  the 

la rger  tube (B),  the data a t  low d r i v i n g  pressures i s  l i n e a r  and the 

slopes are equal i n  both f low d i rect ions;  however, a t  a  pressure o f  14 

cm Hg the f low becomes tu rbu len t  (R>2000) and the data becomes nor.1 ineas 

a t  higher d r i v i n g  pressures. This seems t o  ind ica te  a  marked deviat ion i n  

the AEstr/AP data obtained i f  the f low changes from laminar t o  turbulent .  

This i s  a t  odds w i  th  data published by others (5 )  f o r  turbulent  f low i n  

aqueous systems. One can a lso see a  d i f ference i n  AEstr/AP for Tubes A 

and B which would seem t o  ind ica te  tha t  tu rbu len t  f low i s  not  the only 

cause of deviat ions i n  the calculated <-potent ia l  f o r  tubes of various 

sizes. 
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Figure 2. AEstr/AP plot for 2 capillaries. Tube A is 600 pm I.D. and 30 cm 
long; Tube B is 1250 pm J.D. and 30 cm long. Refer to t , - x t  for 
discussion. 



The resu l ts  o f  streaming potent i  a1 studies on borosi 1 i c a t e  capi 1 - 
l a r i e s  as 2 funct ion o f  length and i n te rna l  diameter are shown ii lliqure 

3. Each tube was evaluated a t  i t s  greatest length and then successive 

por t ions were removed and i t  was reevaluated. This was continued u n t i l  

no tube remained. The only  var iable was AEstrlAP since rl and E are 

assumed constant and KB g rea t l y  predoninatea Jver KS a t  t h i s  U g h  i o n i c  

strength (.01 gm ions/L). Cap i l la r ies  6 (1284 A 34 pm I. D. ) and C 

(595 1 15 pm 1. D. ) were comnercial bo ros i l i ca te  (pyrex); there was no 

s i g n i f i c a n t  va r i a t i on  i n  I. D. along the length. Both c a p i l l a r i k s  ex- 

h i b i t e d  a constant AEstrlAP value u n t i l  a c r i t i c a l  length was reached 

where-upon there was a marked drop i n  AEstrlAP. The c r i t i c a l  lenqth (Le) 

a t  which t h i s  occurred was 58 cm f o r  Tube B and 20 cm f o r  Tube C. Capi l -  

l a r y  A was hand drawn f o r  a l a rge r  tube. Them were s i g n i f i c a n t  var iat ions 

i n  I. D. along i t s  length. Points 1 and 2 si~own i n  Figure 3 were obtained 

when the c a p i l l a r y  was 190 A 12 L;II I. D., whi le  equivalent lengths taken 

from the center o f  the tube gave lower AEstrIAP val ues and had an I. D. 

of 160 5 5 pm. This would seem t o  ind ica te  t h a t  a t  lenqths less than 

some c r i t i c u l  length the diameter o f  the streaming c a p i l l a r y  markedly 

a f fec ts  the measured streaming potent ia l ,  whi le  a t  lengths greater than 

Le minor var iat ions i n  diameter have no measurable e f fec t .  

The onset o f  turbulent  f low does not seen t o  cause t h i s  behavior 

since flow was laminar i n  a1 1 cases f o r  Tubes A and C and there seemed t o  

be no s ign i f i can t  e f f e c t  due t o  turbulent  f low f o r  Tube B. !f one compares 

the measured f low rates, Q,, i n  the three tubes w i th  the theore t ica l  f low 

rates, Qt, calculated using Po iseu i l le 's  law as expressed i n  Equation 4, 
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where r i s  the tube radius, q i s  the f l u i d  v iscosi ty ,  and dP i s  the 

pressure drop across the f low length dXy i t  i s  found t h a t  Qt and Qm are 

equal u n t i l  the c r i t i c a l  length, Ley i s  reached, i .e., 20 cm for Tube C 

and 58 an f o r  Tube 0. It can be concluded from t h i s  t h a t  the streaming 

data and .calculated zeta po tent ia l  are independent o f  capi l l a r y  geometry 

(the var ia t ion  i n  plateau values o f  AEstr/AP are expected since the tubes 

were from d i f f e r e n t  sources and most probably had d i f f e r e n t  surface h is-  

t o r i e s )  as long as Po iseu i l le  f low exis ts .  This i s  what Helmholtz 

predicted as Bocquet has pointed out (6) .  Poiseui l l e  f low ac tua l l y  

requires tha t  four  basic condit ions ex is t ,  i.e., the f low i s  s t e ~ d y ,  i n -  

cornpressi ble, laminar, and established. 

Many invest igators have simply ignored the establ ished f low c r i t e r i a .  

It takes a cer ta in  length, Ley past the entrance of a c y l i n d r i c a l  f low 

system, LO establ ish a parabol i c  ve loc i t y  p r o f i l e  during steady laminar 

flow o f  an incompressible f l u i d .  The value o f  Le has been found both 

experimentally (7) and theo re t i ca l l y  (8) t o  be given by Equation 5. 

(5) Le = 0.06 RD, 

where R i s  the Reynolds number, and D i s  the diameter. On the basis o f  

t h i s  analysis, i t  seem t h a t  i f  L, i s  greater than 10 t 1% o f  ths  t o t a l  

streaming tube length, the AEstr/AP r a t i o  and subsequently ca lcu lated 

5-potential w i l l  be anomalously low. 

2, Electrodes 

Electrode asymmetry a t  high i o n i c  strength can develop, p a r t i c u l a r l y  

if the electrodes have aged appreciably over the course o f  several month's 

use, and if they have been exposed t o  p ro te in  o r  o ther  adsorbable solutes. 

Since other experiments i n  our l a b  u t i l i z e d  the streaming po ten t i a l  atmaratus 



fo r  b io log ica l  evaluat ion (9),  the e f fec ts  of these experiments on the 

s i l ver ,  s i l v ~ r  ch lo r ide  electrodes had t o  be taken i n t o  account. This 

i s  i l l u s t r a t e d  i n  Figure 4. Curves 8B through 128 were obtained u t i l i -  

z ing s i l ve r ,  s i  1 ver ch lo r ide  electrodes which had previously been exnosed 

t o  a streaming c a p i l l a r y  w i t h  a surface o f  adsorbed f e t a l  c a l f  serum. 

The asymnetry developed a t  t ha t  time. It was absent i n  e a r l i e r  experi-  

ments a t  high i o n i c  s t rength (.I gm ions/L) where p ro te in  was not  present 

(not shown). The asymmetry diminished w i t h  continuous streaming of elec- 

t r o l y t e  i n  approximately 30 minutes (88 t o  10B). As long as streaming 

continued, the slope AEstrlAP (108 t o  128) remained constant. If f low 

ceased f o r  any length o f  time, asymnetry reappeared and i t  required another 

30 t o  40 minutes o f  streaming t o  obta in good l i n e a r i t y  and rep roduc ib i l i t y .  

A t  lower i o n i c  strength (.01 gm ions/L) the asymnetr.y was not evident (1B 

and 40, Figure 4 ) .  When f resh electrodes were prepared and p ro te in  con- 

tanimation was absent, there was no deviat ion from l i n e a r i  t.y a t  low i o n i c  

strength (.01 gm ions/L) o r  high i o n i c  s t rength (. l  gm i o n s j l ) .  

The asymnetry exh ib i ted  by aged s i l v e r ,  s i l v e r  ch lo r ide  electrodes 

a t  high i o n i c  strength may be due t o  p ro te in  adsorption i n  the pores o f  

the AgCl coating. Janz and Ives (10) maintain t h a t  s i l v e r  may form stable 

complexes w i th  animo and sulfhydryl  groups o f  organic molecules which can 

compete w i th  the i n s o l u b i l i t y  o f  the AgCl thus negating the proper 

functioning o f  the electrodes. It has a lso been suggested (10) t h a t  10-25% 

of the s i l v e r  should be ch lo r id ized t o  AgCl t o  produce electrodes having 

good rep roduc ib i l i t y  and s t a b i l i t y .  The electrodes exhi h i  t i n q  asymnetry 

problems had only 1% conversion (assuming 100% current  e f f i c i ency )  o f  Ag 

t o  AgC1. Srinivasan (11 ) has recornended t h a t  s i l v e r ,  s i l v e r  ch lo r ide  

electrodes be prepared i n  a slowly a1 te rna t ing  a.c. fashion u t i l i z i n g  anodic 





deposi t ion o f  AgCl and cathodic cur ren t  t o  decrease surface area by 

enhanced pore formation. The above recommendations were fol lowed. 

i l v e r ,  s i l v e r  ch lo r ide  electrodes were prepared e l e c t r o l y t i c a l l y  w i t h  

ii slow a l t e r n a t i n g  cur ren t  (5 minute anodic, 2 minute cathodic, etc.  ); 

2 
the gross surface area pe r  e lect rode was 1 cm and the  n e t  anodic cu r ren t  

2 
densi ty  t ime produced was 6.9 amp seclcm . There was a t heo re t i ca l  

conversion o f  s i l v e r  t o  s i l v e r  ch lo r i de  o f  16%. Electrodes f r e s h l y  

wepared i n  t h i s  fashion are s tab le  and have never shown prolonged 

,lsymmetry a t  h igh i o n i c  s t reng th  even upon p r o t e i n  adsorption. 

Figure 5 comprises f o u r  scanning e l ec t ron  micrographs (SEM) o f  

s i l v e r ,  s i l v e r  ch lo r ide  e lect rode surfaces. The general shape o f  the  

electrodes used i n  t h i s  study are shown i n  F igure 5a. They cons is t  o f  

s i l v e r  w i re  c o i l s  6 mn long and 3.8 mn 0. D. The gross surface area 

2 i s  1 cm . Figure 5b i l l u s t r a t e s  the AgCl surface o f  a f r e s h l y  prepared 

2 e lect rode (anodic 5 m l c m  for  4 min, 1% conversion of Ag t o  AgCl). A 

nuniber o f  . jres can be seen as w e l l  as some mic rogranu la r i t y  on a cob- 

blestone surface. Figure 5c i s  the same e lect rode a f t e r  apnroximately 

3 months use. This was the same e lect rode which developed asymmetry a t  

high i o n i c  s t rength and p r o t e i n  exposure. The cobblestone apnearance i s  

s t J l l  p a r t i a ' l y  evident; however, much o f  the pore s t r uc tu re  and a l l  o f  

the rnicro dxture are i o s t .  The pores between the cobblestones are now 

;rep1 x e d  by smal ler pores i n  an incomplete cobblestone s t ruc tu re .  Fiqure 

"'d i s  the surface o f  a f r esh l y  prepared e lect rode employing the a l t e r n a t i n g  

anotlic and cathodic deposi t ion o f  AgCl prev ious ly  described. The h i q h l y  

porous s t r uc tu re  obviously increases the  surface area avai  1 ab le  for  

cur ;,?ni t ranspor t .  Electrodes prepared i n  t h i s  manner have no t  exh ib i t ed  

asymmetry a t  high i o n i c  s t reng th  and exposure t o  p r o t e i n  so lu t ions  as lonq 

as the,v are equ i l i b ra ted  several hours p r i o r  t o  use. 

-1 6- 





3. Glass surfaces 

The calculated zeta po tent ia l  o f  bo ros i l i ca te  (pyrex) glass ds a funct ion 

o f  temperature indicated t h a t  there i s  no s t a t i s t i c a l l y  s i g n i f i c a n t  

var ia t ion  i n  <-potent ial  as a funct ion o f  temperature, a t  l eas t  i n  g.1 

M NaCl sol  ution. 

The var ia t ion  i n  zeta-potent ial  w i t h  pH f o r  bo ros i l i ca te  glass i s  

shown i n  Figure 6. The data ind icates t h a t  bo ros i l i ca te  has a pKa of - 5.7 

assuming t h a t  a l l  the surface charge i s  due t o  the i on i za t i on  o f  ionoqenic 

r Si-OH ( s i l a n o l )  groups i n  the hydrated region o f  the glass. This i s  a t  

variance w i th  the data o f  Hai r  and Her t l  (12) and Marshall - et.al.  (13) 

which suggests a pKa f o r  surface s i l ano l  groups o f  7.1 t o  7.2. However, 

i t  i s  qu i te  probable t h a t  high concentrations o f  hydronium ions e x i s t  i n  

the hydrated surface region of the glass due t o  cat ion exchange. If t h i s  

were the case, the <-potent ial  a t  ac id i c  pH could be considerably less than 

tha t  occurr ing as a r e s u l t  o f  charge generation p ~ r r e l y  by ionogenic s i l ano l  

groups. The r e s u l t  would be an apparent s h i f t  i n  pKa. A second cause o f  

the discrepancy may be due t o  the presence o f  boranol groups (E B-OH) i n  

s i g n i f i c a n t  numbers a t  the hydrated surface o f  borosi 1 i cate g l  ass. The 

proport ion o f  boron t o  s i l i c o n  i n  the porous surface may be as high as 1 : 3 

rather than 1 :18 as expected i n  the bulk (14). The pKa o f  boranol groups 

i s  5.1 and t h i s  would also tend t o  s h i f t  the resu l tan t  surface pKa t o  a 

more ac id ic  region. 

Figure 7 i 1 lus t ra tes  the increase i n  c-potent ia l  w i th  decreasing i o n i c  

strength (KC1) a t  constant pH (7.1) and temperature (26°C). The l i n e a r  

por t ion of the curve corresponds to  the expansion of the e l e c t r i c a l  double 

layer  as i on i c  s t ren th  decreases. A t  an i o n i c  strength o f  less than 
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3 x lom4 gm ions/L there  i s  a deviat ion from l i n e a r i t y  due t o  the onset 

o f  surface conductance which was not accounted f o r  i n  the ca lcu la t ion  o f  5 .  

This i s  i n  agreement wit: ,  the d e t a i l e d  analysis o f  surface conductance 

made by Rutgers and DeSmet (15)  and L i  and deBruyn : 16). 



I V .  EFFECTS OF VARIOUS COATINGS UPON STREAMING POTENTIAL 

A. Background 

For the  analys is  of var ious s i l a n e  adhesion promoters and hyd roph i l i c  

gels, comnercial l y  ava i lab le ,  pyrex, th ick-wal l e d  c a ~ i  l l a r i e s  (Corninq 

Glass Works, Corning, N.Y., 14830) were used. These tubes had the  

f o l l ow ing  dimensions: 0.1 mn I. D., 5-6 mn 0. D. 150 mn long).  The 

tubes were radio-frequency glow discharge cleaned before use. A1 1 tubes 

were measured th ree  times, unless repor ted otherwise. The clean, uncoated 

tubes had streaming p o t e n t i a l  measurements (AEstrIAP) o f  -0.357 (tubes 

1, 2, 3). 

B. E f f e c t  of S i lane Coatings 

A wide v a r i e t y  o f  s i l a n i z i n g  reagents were inves t iga ted  t o  determine 

t h e i r  e f f e c t  on AEstrIAF values on glass surfaces. It has been repor ted 

t h a t  1,1,1,3,3,3-hexamethyldisilazine (17) i s  a more reac t i ve  s i l a n i z i n q  

reagent than t r imethy lch lo ros i lane ,  because i t  i s  ab le  t o  redc t  w i t h  more 

hindered s i  l ano l  groups on the glass surface t o  form t r i m e t h y l s i  lane der iva-  

t i v e s  (18). To t e s t  i f  e i t h e r  o f  these s i l a n i z i n g  reagents a f f e c t  the 

streaming po ten t i a l ,  several o f  the mounted tubes were s i l a n i z e d  by the 

f o l l  owing procedure: 

The s i l ane  i s  mixed w i t h  an equal volume o f  t r ie thy lamine .  The 

so lu t i on  i s  r insed  through the tube, f i r s t  i n  one d i r ec t i on ,  then i n  the 

opposite d i rec t ion .  The tubes are then placed i n  vacuum a t  120°C c;erniqht. 

Tubes 4,  5, 6 and 7 were coated w i t h  1 ,I ,1,3,3,3-hexamethyldisilazine. 

Tubes 8, 9, 10 and 11 were t r ea ted  w i t h  t r imethy lch lo ros i lane .  The average 

AEstrlAP of the 1,1,1,3,3,3-hexamethyldisi l a z i ne  coated tubes i s  -0.242. The 

average of the t r ime thy l  ch lo ros i  lane tubes i s  -0.221. No s i g n i f i c a n t  d i  f- 

ference i s  noted between these two s i l a n i z i n g  reagents. 



Three other  s i l a n i z i n g  reagents were inves t iga ted  f o r  t h e i r  e f f e c t  

on AEstrIAP values on the  c a p i l l a r i e s :  dimethyl d i c h l o r o s i l  ane (17) 

(Tube 12 3 ,  y-methacryl oxypropyl t r imethoxys i  lane (19) (Tube 13) and y-q ly-  

cidoxypropyl t r f  msthoxysi 1  ane (1 9) (Tube 14). The s i  1  an i  z ing  procedure 

used i s  as described above using t r ie thy lamine  as ca ta l ys t .  Only tube 

14 shows any subs tan t ia l  decrease i n  streaming p ~ t e n t i a l .  A tube repeat ing 

the exact coat ing proceedure used on Tube 14 was prepared (Tube 15), and 

t h i s  t ime the AEstrlAP values was t y p i c a l  o f  t h a t  obtained w i t h  a l l  the  

s i  l a n i  z ing  reagents. 

For t r imethoxyal  k y l  s i  1  anes the  1 i t e ra tu re  repor ts  con t rad i c to r y  data 

for  the p re fe r red  procedure f o r  s i l a n i z a t i o n  o f  glass surfaces. One group 

repor ts  (20) b e t t e r  s i  l a n i z a t i o n  occurs w i t h  n-prnpyl amine ca ta l ys t .  Another 

r epo r t  (21 ) s ta tes  s i l a n i z a t i o n  occurs best  i n  pH 4 aqueous so lu t i on .  We 

f e e l  t h a t  the s i l a n i z a t i o n  process should be e i t h e r  ac i d  o r  base cata lyzed 

and used t r ie thy lamine,  a  s t ronger  n i t r ogen  base than n-propylamine, as a  

cont ro l .  As judged from the streaming p o t e n t i a l  r e s u l t s  i n  Tube 15, 16 and 

17, no d i f fe rence  i n  AElAP i s  found us ing the  th ree  d i f f e r e n t  ca ta l ys t s  

f o r  y-glycidoxypropyl tri methoxysi 1  ane (19). T r i  e t h y l  ami ne was used as 

ca ta l ys t  fo r  the remainder of the s i l ane  treatment. 

C. Ef fects  of Pol ysaccharide Coatings 

y-gl y c i  doxypropyl t r imethoxys i  lane was the s i  1  ane se lected upon 

which var ious polysaccharides were covalent1 y attached. Standard so lu t ions  

o f  various polysaccharides were prepared. The polysaccharide was d isso lved 

i n  e i t h e r  0.52 HC1 o r  0.5% KOH. I f  the polysaccharide forms a viscous 

so lu t ion,  the v i s c o s i t y  was regulated by a d d i t i o n  u f  the  polysaccharide t o  

the so lu t i on  u n t i l  i t  had the consistancy o f  t h i c k  syrup. Otherwise the 

polysaccharide was added t o  complete saturat ion.  A water asp i ra to r  was 



placed on one end o f  the  tube, and the polysaccharide s o l u t i o n  was n u l l e d  

through the tube. The asp i ra to r  was changed t o  the  o ther  end o f  the tube, 

and the polysaccharide so lu t i on  was p u l l e d  through i n  the opposi te d i rec -  

t ion.  The tubes were placed i n  vacuum a t  120°C f o r  cur ing, unless otherwise 

speci f ied. F i na l l y ,  t he  tubes were exhaust ive ly  r i nsed  w i t h  d i s t i l  l e d  

water before they were measured. 

Methylcel l u l ose  (Dow Methocel MC, premi um, 4000 cps), hydroxyplaopy"- 

methyl c e l l  ulose (Dcw Methocel 90H6, premi urn, 15000 cps) , d e x t r i n  ( 

JAGUAR (hydroxyethyl guar HE-L) (23) and agarose (24), were the po i  . ,+ -har ides 

invest igated. I n  t h i s  study, the methy lce l lu lose /ac id  t reatment o r  hy- 

droxypropylmethyl c e l l  u l  ose lac id  treatment was obv ious ly  super ior.  Tube 22, 

which was t rea ted  w i t h  d e x t r i n  i n  0.5% KOH, exh ib i t ed  a f a i r l y  low value 

f o r  streaming po ten t i a l ,  bu t  a dup l i ca te  experiment d i d  no t  reproauce t h i s  

observat ion (Tube 31). To see i f  a t h i c k e r  polysaccharide coa t ing  would 

lower the AEstrIbP values, these tubes were t r ea ted  w i  t h  a polysscchari  de 

conta in ing e i t h e r  formaldehyde o r  1,2,4,5,9,10-triepoxydecane (25) as 

cross l inker .  The tubes were then cured i n  vacuum a t  100" overnight.  

Although the AEstrIAP values were low, they showed no s i g n i f i c a n t  decrease 

from polysaccharide coat ings w i thou t  added cross1 i n k i n q  reagent. (See 

appendix B, tubes 18 t o  56). 

The ef fect  of s i  lane coat ing fol lowed by methy lce l l  u l  ose coat ing i s  

observed i n  the f o l  1 owing con t ro l  experiments. The uncoated th ick-wal  l e d  

c a p i l l a r i e s  (tubes 1, 2, and 3 )  had an average AEstrlAP o f  -0.357. 

These three capi 1 l a r i e s  (1,2,3) were coated w i t h  y-glycidoxyprop,yl- 

t r imethoxys i l  anel t r ie thy lamine;  111, and cured i n  vacuum a t  rocm temperature; 

the AEstrIAP dropped t o  -0.310 (tubes 57, 58 and 59). The tubes were then 

t rea ted  w i t h  methy lce l lu lose i n  0.5% HC1 and then heated t o  129" i n  vacuum 



o v ~ r n i g h t ,  the  AEstrlAP average value f e l l  t o  -0.083 (tubes 60, 61 and 62). 

To see i f  a f u r t h e r  coa t ing  o f  methy lce l lu lose  would lower the  streaminq 

po ten t i a l ,  t he  l a s t  three tubes were recoated w i t h  methy lce l lu lose  i n  0.5% 

HC1 conta in ing 5% 1,2,4,5,9,10-triepoxydecane (25) as c ross l inker ,  and then 

cured overn ight  a t  120' i n  vacuum. The stt-eami nq p o t e n t i a l  increased s l  i q h t l y ,  

w i t h  an average AEstrlAP o f  -0.103 (tubes 63, 64 and 65) .  These r e s u l t s  

are summarized i n  Table I below. 

TABLE I 

Six add i t i ona l  tubes (35-41) were t r ea ted  w i t h  the epoxysilane as 

described above. Th is  s i l a n e  treatment was then fol lowed by various 

polysaccharides i n  e i t h e r  0.5% HC1 o r  0.5% KOH, f i n a l l y  cu r i nq  the  tubes 

a t  120°C i n  vacuum, A l l  base t r ea ted  tubes (36, 38 and 41) had h igh 

AEstrIAP values. The tubes t r ea ted  w i t h  e i t h e r  m t h y l c e l l u l o s t  o r  hvdroxy- 

propy lmethy lce l lu lose i n  0.5% HC1 exh ib i t ed  low AEstr/AP values (35 a r u  37). 

The e f f ec t  of KOH on the streaming p o t e n t i a l  may n o t  be s u m r i s i n g  s ince 

s t rong  base i s  known t o  e tch  glass surfaces. 

Tube Treatment 

uncoated tube 
(tubes 1, 2, and 3) 

tube s i  l an ized  w i t h  y-glycidoxypropyl  t r imethoxy- 
s i l ane  (not  heated i n  oven) (tubes 57, 58, 
and 59) 

tube s i l an i zed  as above, recoated w i t h  methyl 
ce l l u l ose  i n  0.5% HS1 (heated i n  oven a t  
120°C overn igh t )  (tubes 60, 61 and 62) 

rnethy lce l lu lose coated tube above recoated w i t h  
methy lce l lu lose i n  0.5% HC1 con ta in ing  5% 
1,2,4,5,9,10-triepoxydecane as c ross l i nke r  
(tubes 63, 64, and 65) 

L 

AES t ~/AP--J 
-.C. 357 

-0.310 

-0.083 

-0.103 
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To t e s t  i f  the h igh temperature - KOH coa t ing  procedure had an 

adverse e f f e c t ,  an epoxys i l  ane-coated tube was recoated wi t h  methyl - 
ce l l u l ose  i n  0.5% KOH and then cured a t  63' i n  vacuum overn iqht .  Now 

the AEstrjAP value ( tube 52), (-0.087) was i n  t he  range t h a t  tubes 

t rea ted  w i t h  methy lce l lu lose i n  C.5% HC1 e x h i b i t .  S t i l l ,  t he  lowect 

streaming po ten t i a l  fo r  po lysacchar i  de t r e a t e d  tubes was obtained by 

f i r s t  the epoxysilane treatment fo l lowed by methy lce l lu lose  i n  0.5% 

HC1 ( tube 53, C .=,r/A? = -0.028). 

D. E f f e c t  o f  Hydrophi l i c  Pazryl a t e  and Methacrylate Coatings 

A coupl ing agent i s  requ i red  t o  cova len t l y  3ond a methacrylate 

( ac r y l a te )  polymer t o  a glass surface. For t h i s  reason, the glass sur-  

face was f i r s t  s i  l an ized  w i t h  y-methacryl oxypropyl t r ime thoxys i  l a n e l t r i e t h y -  

lamine; 1/1. Th is  s i l ane  treatment lowers t h e  AEstr/AP o f  t he  c a p i l l a r i e s  

t o  a value t y p i c a l  of s i l anes  i n  general. (Average AEstr/AP = -0.197, 

tubes (42, 43,44, 45). The monomers used i n  t h i s  study were hydroxyethyl  

methacrylate (26), methacryl i c  ac i d  ( 2 7 )  a c r y l  amide (17), and t r i e t h y l e n e -  

g lyco l  monomethacrylate (28). 

A r ad i ca l  i n i t i a t o r  was added t o  the monomer. 2,2-Az~bis(methy; 

i sobu ty ra te )  (29) i s  r o u t i n e l y  used i n  our  labora to ry  t o  i n i t i a t e  r ad i ca l  

po lymer izat ion (34). Th is  compound ha1s very s i m i l a r  decomposition ra tes  

t o  azobis isobutyroni  t l - i l e  ( A I B N )  b u t  e x h i b i t s  much b e t t e r  so lub i  li t y  

p roper t ies  i n  the  hydrophi l  i c  monomers. I n  c e r t a i n  tubes the  c ross l i nk i ng  

agent, e thy l  eneglycol d imethacrylate (30), was added t o  t he  monomer. 

The tubes were s i  l an ized  and then heated t o  120°C. They were removed 

from the oven wh i le  s t i l l  hot. I n  theso experiments the methacrylates 

were prepqred as so lub le  so lu t ions  by r z d i c a l  i n i t i a i t o n  a t  low d i l u t i o n  

(1 t o  10, v/v)  i n  ethanol (31), (32), (33). The c a p i l l a r y  tube i s  then 



held i n  a v e r t i c a l  pos i t i on  and a small amount o f  the so lu t ion  i s  allowed 

t o  f low through the tube. The tubes were cured overnight a t  60°C and 

then re-equi l ibrated i n  d i s t i l l e d  water. I n  t h i s  manner, very th in ,  

uniform hydrogel coats were deposited on the i ns ide  of the cap i l la ry .  

Cap i l la ry  coatings o f  the fo l low ing polymers were prepared and 

measured: poly(methoxyethy1 methacry l a t e )  (PMEMA) , poly(hydroxyethy1 

methacryl a te  (PHEMA) and poly(methoxyethoxyethy1 methacryl a te)  (pMEEMA) . 
These polymers swell i n  water t o  incorporate 3.5%, 40% and 63% water, 

respect ive ly  (34). The AEstr/AP values f o r  these polymers are comparable 

t o  the best values obtained f o r  the methylcel lulose coatings. The la rge  

difference i n  degree o f  hydrat ion f o r  these polymers showed no s t a t i  s t i c a l  

difference i n  t h e i r  streaming potent ia l  values as shown i n  Table 11. 

TABLE I 1  

E. E f fec t  o f  Charge Group Incorporat ion i n t o  Hydrophil i c  
Methacryl a te Coatings 

For t h i s  study hydroxyethyl methacryl a te  (HEMA) was selected as 

the fundamental monomer. Posi t i  ve charge groups were incorporated i n t o  

the polymer backbone by copolymerization o f  HEMA w i  t h  dimethylami noethyl 

methacryl a te  (DMAEMA) . The copolymerization takes place i n  e thmo l  a t  

high d i l u t i o n  (1/10, v/v). Since the DMAEMA e x i s t s  as a uncharged species 

StD. Dev 

0.050 

0.029 

0.012 

AEstr/AP 

-0.058 

-0.046 

-0.038 

Coating 

poly (methoxyethyl methacryl a te)  

poly(hydroxyethy1 methacryl a te)  

poly(methoxyethoxyethy1 metha- 
cry1 a te  

'% Hydration 

3.5 

40 

6 3 



a t  the pH o f  the streaming f lu id ,  3 times molar excess o f  methyl iod ide 

was added a f t e r  polymerization. The methyl i o d i  de funct ions t o  quaternize 

the f ree amine forming a quaternary ammonium s a l t  (35). 

Negative charge groups were incorporated i n t o  the HEMA polymer by 

copolymerization w i t h  methacryl i c  ac id  (blAA) i n  h igh d i l u t i o n  i n  ethanol 

( 1 1 0  v v .  The WA residue ex i s t s  i n  i t s  i o n i c  form a t  the pH o f  the 

streaming f l u id .  The c a p i l l a r y  tubes are coated as described f o r  the 

hydruphi 1 i c  methacrylate polymers. The resu l t s  o f  the ex~er imen t  are 

shown i n  Table 111. 

TABLE I11 

Increased amounts o f  methacrylic ac id  i n  the polymer increases 

the streaming potent i  a1 i n  a negative d i rec t ion .  Quaterni  zed DHAEMA 

groups i n  the polymer decrease the streaming po ten t i a l  values g i v inq  

essent ia l l y  zero values a t  0.1 mole % incorporat ion. Further increases 

i n  the amount of quaternized DMAEMA g i  ves increasing posi t i v e  streaming 

-28- 

Coatings 

pHEMA 

pHEMA wi th  1% MAA 

pHEMA w i th  3% MAA 

pHEMA w i th  10% MAA 

pHEMA wi th  quaterni zed 0.1 % DMAEMA 

pHEMA wi th  quaternized 1% DMAENA 

pHEMA wi th  quaterni zed 3% DMAEF1A 

pHEMA wi th  quaternized 10% DMAEMA 

AEs t r / A P  

-0.046 

-0.080 

-0.100 

-0.113 

-0.015 

+0.070 

+0.974 

0.087 

StD. Dev 

0.029 

0.024 

0.024 

0.035 

0.024 

0.004 

0.014 

1 



potential  values. The streaming potent ia l  i s  not a l i n e a r  functicn 

of the mole Percent charge incorporated i n t o  the polymer but i s  highly 

affected by the f i r s t  mole percent o f  charge and i s  less sensit ive a t  

higher charge incorporation. This i s  shown i n  f igure 8. 





V . CONCLUSIONS AND RECOMMENDATIONS 

An apparatus and protocol i s  described f o r  streaming po ten t i a l  

determinations o f  c a p i l l a r y  tubes. The streaming po ten t i a l  technique 

i s  very dependent on c a p i l l a r y  size, i o n i c  strength, electrode weparat ion, 

f low turbulence and pH as shown i n  p a r t  I o f  the tex t .  Such effects 

had t o  be invest igated t o  assure re l i ab le ,  meaningful resul ts .  

The most important conclusions on the e f f e c t  o f  various coatings 

on glass c a p i l l a r i e s  are: 

1. A l l  s i l a n i z i n g  reagents gave s i m i l a r  AEstr/AP values, which i s  

approximately h a l f  the value o f  the uncoated tubes. 

2. y-g lyc idoxy~ropy l  tr imethoxy s i  lane treatment fol lowed by methyl 

ce l lu lose o r  hydroxypmpylmethyl ce l lu lose  i n  0.5% HC1 gave 

consi s t a n t l  y the lowest AEstrlAP val ues . The y-ql y c i  doxy- 

propyl tr imethoxy s i  lane/methylcell ulose was used i n  the zero 

g rav i t y  c e l l  electrophoresis experiment performed during the 

Appolo-Soyuz j o i n t  space f l i g h t ,  Ju l y  15, 1975. I n  t h i s  

experiment, the c e l l s  gave good migrat ion pro f i les .  

3. Coating o f  hydrophi 1 i c  methacrvlate gels gave low streaminq 

potent ia l  t o  values comparable t o  the y-pl.yci doxypropvl tr imethoxy 

s i  lane/methylcellulose treatment. No s t a t i s t i c a l  di f ference i s  

noted i n  streaming potent ia l  values between gels o f  d i f f e r e n t  

equi 1 i b r i  um water content. 

4. Charged groups incorporated i n t o  the hydrophi 1 i c  methacryl ate 

gels changed streaming potent ia l  values accordingly: negative 

charges increase streaming po ten t i a l  negat ively.  Pos i t i ve  

charge has the opposite ef fect .  Since the uncharged hydro- 

phi 1 i c  methacrylate gels e x h i b i t  s l  i g h t l v  negative streaminq 

,; l~pfl()~)uc~II,I'I'Y OF 'i i ' 
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potent ia l  value, a very small amount o f  posi t ive charge 

incorporation (% 0.1 mole percent) gives a gel coating havinq 

essenti a1 l y  zero streaming potenti  a1 . 
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APPENDIX A 
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STREAMING POTEtlTIAL STUDIES ON GEL-COATED GLASS CAPILLARIES 

Shao M. Ma, Donald E. Greqonis, Richard Van Waqenen 
Joseph D. Andrade 

Department o f  Mate r ia l s  Science & Enqineeri nq 
Un i ve r s i t y  o f  Utah 

S a l t  Lake C i ty ,  Utah 8d112 

The separat ion o f  1  i v i n q  c e l l  s  i n  zero g rav i  t.y environments 
appears t o  o f f e r  s i  q n i f i c a n t  advantaqes over  analoqous senarat ions 
on earth.  The zero g r a v i t y  environment e l  iminates sedimentation 
and dens i t y  f l u c t u a t i o n  problems. As denonstrated i n  Apol lo  16 
experiments (I), a r a j o r  problem w i t h  f r e e  zone e lec t rophores is  i n  
a  closed system i s  the  d i f f e r e n t i a l  f l u i d  movement due t o  the  
surface e l e c t r i c a l  p rope r t i es  o f  t he  conta iner  ( e l  ectrcosmosi s )  . 
As a  consequence, the r e s o l u t i o n  o f  the  separat ion and the 
ana lys is  invo lved a re  g ross ly  compromised by the resu l  t i n o  " b u l l e t "  
shape f low patterns.  A s o l u t i o n  t o  t h i s  problem i s  t o  produce 
surfaces which e x h i b i t  e s s e n t i a l l y  no e l e c t r o k i n e t i c  p roper t ies  
when i n  equ i l i b r i um  w i t h  t h e i r  environment. This can be achieved 
by n e u t r a l i z i n g  the  sur face charqe o r  by s h i f t i n q  the  hydrodynamic 
shear plane away from the  i n t e r f ace  by use o f  hyd roph i l i c  surface 
coat ings.  

I n  t h i s  study, g lass tubes were subjected t o  var ious coat inns 
and surface treatments. I n  p a r t i c u l a r ,  i t  was f e l t  t h a t  :incharged 
hydrophi l  i c  methacryl a t e  Folymer coat inqs should decrease t he  
electroosmosis. The o v e r a l l  e f f e c t s  of these treatments upon 
streaming p o t e n t i a l  i s  t i  scussed. 

Apparatus 

The streaming p o t e n t i a l  apparatus has been descr ibed i n  
d e t a i l  (2,3). - It i s  an a l l - a l a s s  system u t i l i z i n q  Aq/AaCl e lec-  
trodes. Streaming f l u i d  i s  forced back and f o r t h  from one 
rese rvo i r  t o  the  o ther  throuqh a  glass tube us inq pressur ized pure 
n i t rogen  qas. A g lass pH e lect rode and a thermometer a re  pos i -  
t i oned  i n  one o f  the  reservo i rs .  A Kei t h l e y  model 616 d i n i  t a l  
e lectrometer measures streaming p o t e n t i a l  o r  s t r ~ a m i n a  cur ren t .  

A l l  new and l a r g e  glassware a re  cleaned i n i t i a l l y  i n  chromic 
s u l f u r i c  acid,  t h o r o u ~ h l y  r i nsed  i n  running, d i s t i l  l e d  water, 
soaked i n  doubly d i s t i l l e d  water, r e r i nsed  i n  double d i s t i l l e d  
water and then a i r  d r i e d  i n  a  dus t - f ree  environment. Small 
glassware i s  cleaned by radiofrequency slow d i  scharqe ( 4 ) .  
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To c a r r y  ou t  the  streaming p o t e n t i a l  measurement each reser-  
I v o i r  i s  f i l l e d  w i t h  about 500 ml o f  phosphate bu f fe r  a t  pH 7.2 ; 

a con ta in ing  0.01 M KC1. The e lect rodes a re  inser ted.  The poten- I 
; t i a l  i s  then measured as a f unc t i on  o f  d r i v i n p  pressure. The I 

I 

: Streaming po ten t i a l ,  E i s  1 i n e a r l y  dependent on t h e  pressure ! 
i drop, P, across the  tuh f r ' as  - given by (5)  - 

where 5 i s  the  zeta p o t e n t i a l ,  rl and D are the  v i s c o s i t y  and 
d i e l e c t r i c  constant, respec t i ve ly ,  i n  t h e  d i f f u s e  p o r t i o n  of t he  
e l e c t r i c a l  double layer ,  and K i s  the  bu lk  spec i f i c  conduc t i v i t y  

I : of the  e l e c t r o l y t e  (assuming sur face conductance i s  negl i n i  b l e  
r e l a t i v e  t o  bu lk  conductance). . 1 B a l l  and Fuerstenau (6) have reviewed the  streamina p o t e n t i a l  ' 
ii t e r a t u r e  i n  reqard t o  streamina p o t e n t i a l  data. They have 

, . concluded tha t ,  due t o  as y e t  unexplained f low and symmetry 
p o t e n t i a l s  common t o  a wide v a r i e t y  o f  e lec t rode types, the 
slope o f  the l o c i  o f  Estr data a t  a number o f  d r i v i n q  pressllres, I 

' P, i n  opposi te f l o w  d i r ec t i ons ,  AE /AP, should be u t i l i z e d  i n  
the above equation. Th is  has beenSEfie case i n  t h i s  study. 
Streaming p o t e n t i a l  data was obtained by measurina streamina 

, p o t e n t i a l s  a t  a d r i v i n g  pressure o f  2cm Hq, then revers inq  the  
f low d i r e c t i o n  and repeat inq the  measurement. The d r i  v i  nri pres- 

, '  sure was increased by 2cm Hg and streaming p o t e n t i a l s  were aqain 
,' measured i n  both f l ow  d i r ec t i ons .  This process was repeated 
' u n t i l  t he  d r i v i n q  pressure reached 12cm Hg. The l o c i  of stream- 

. . i n g  p o t e n t i a l  data as a funct ion o f  d r i v i n q  pressure were then 
f i t t e d  t o  a l i n e a r  regress ion bes t  f i t  s t r a i a h t  l i n e  us inq a 
Hew1 e t t  Pac kard (Model 9820A) proqramnabl e ca l  cu l  a t o r .  

Absolute values of zeta p o t e n t i a l  ca lcu la ted  from the  above 
I 

equation may be erroneous due t o  assumptions concerninq values 
f o r  double l a y e r  v i s cos i t y ,  d i e l e c t r i c  constant, and entrance 

' f low e f f ec t s  r e s u l t i n g  from the  l a rge  ID o f  the  tubes u t i l i z e d  
n t h i s  study (2,3). - 

[ Mater ia l  s 
I I 

Thick-wal l e d  "Pyrex" c a p i l l a r y  tubes, approximately 0.2cm 
I D  and 15cm long, were used. Uncoated c a p i l l a r i e s  had AEstr/AP 
o f  -0.357 mV/cm Hq. 

Dif ferent  s i  lane adhesion promoters ( 7 )  were used t o  p r e t r e a t  
the g lass surfaces p r i o r  t o  qel coat ina.  An i n v e s t i q a t i o n  o f  
several s i  l a n i z i n g  reagents us inq d i f f e r e n t  procedures showed a 
s l i g h t  decrease i n  AE , . IAP for  a l l  the s i l ane  coat inqs.  The 

/AP values were 8bt sens i t i ve  t o  the ornanic funct iona l  i t y  
:Fs&e s i  lane. 

A v a r i e t y  of hyd roph i l i c  polymers were used as coa t ina  
mate r ia l s  i nc l ud ing  methy lce l lu lose  (Dow Methocel MC, premium, 



4000 cps ); hydroxypropy lmthy l  c e l l  u l  ose (Dow Methocel , 90Hg, 
premium, 15000 cps); d e x t r i n  (Matheson, Coleman and B e l l )  and 
agarose (Biorad Labs ). Hydroxyethyl methacryl a t e  was donated 
by Hydro Med Sciences , Inc. Methoxyethyl methacryl a t e  and 
methoxyethoxyethyl methacrylate were prepared i n  our l abo ra to r i es  
by base catalyzed t r a n s e s t e r i f i c a t i o n  o f  methyl methacrylate 
w i t h  the corresponding a1 coho1 (8). 
Methods and Results 

The s i  lane compounds were appl i e d  us izg  standard procedures 
(6). A s i l a n e  s o l u t i o n  was r i nsed  through the  tubes, f i r s t  i n  
one d i r ec t i on ,  then i n  the other,  and the  tubes were vacuum 
d r i e d  overnight.  The s i l a n e  compounds used and t he  AEStr/BP 
values are given i n  Table I. 

TABLE I. 

bEs t r  /AP Values f o r  S i lane Coatings 

Coating 

1,1,1,3,3,3-hexamethyldisi1azine:triethylamine -0.242 
Chlorotrimethylsi1ane:triethylamine ( 1  :1) -0.221 
Dichlorodimethyl  s i l  ane: t r i e t hy l am ine  ( 1  : 1 ) -0.253 
y-methacryloxypropyltrimethoxysi1tine:triethylamine ( 1 : l )  -0.234 
y -g l yc i  doxypropyl t r imethoxys i  lane: t r i e thy la rn ine  (1  : 1 ) -0.229 
y-glycidoxypropyl  t r ime thoxys i1ane :n -p rop lane  (1 : 1 ) -0.230 
y-glycidoxypropyl  t r imethoxys i  1ane:pH 4 aq. ace t i c  ac i d  -0.241 

The y-g l jc idoxypropy l  t r ime thoxys i l  ane: t r i e t hy l am ine  (1  : 1 ) 
s i l a n e  coa t ing  was se lected f o r  f u r t h e r  t reatment w i t h  the 
neu t ra l  polysaccharides. It was thought t h a t  coat ing the  po ly-  
saccharides upon the epoxy-si lanized glass was e i t h e r  an ac i d  o r  
base cbtalyzed process r e s u l t i n g  i n  cc i rA le i ; t  attachment o f  the 
p ~ l y s a c c h a r i d e  t o  the strrface (F igure 1 ). 

Standard so lu t i ons  o f  var ious polysaccharides were prepared 
by d i sso l v i ng  i n  e i t h e r  0.5% HC1 o r  0.5% KOH. If the polysac- 
char ide was soluble,  the v i s c o s i t y  o f  t he  s o l u t i o n  was " regula ted"  
by the add i t i on  o f  polysaccharide u n t i l  i t  had t he  consistency of 
a t h i c k  syrup. Otherwise the  polysaccharide was added t o  complete 
saturat ion.  The polysaccharide s o l u t i o n  was p u l l e d  ttirouqh the 
tubes i n  each d i r e c t i o n  by a water-aspi r a t o r  p a r t i a l  vacuum. 
The tubes were then placed i n  a vacuum oven a t  120°C f o r  12 hours, 
unless otherwise spec i f ied.  The tubes were exhaust ive ly  r insed  
w i t h  d i s t i l  l e d  water and the AEstr/AP values were obtained. 

Cons is ten t l y  lower AEstrlAP val ues were obtained when the  
polysaccharides were app l ied  i n  a c i d i c  s o l u t i o n  as compared t o  



basic solut ion;  however, when methylcel lulose i n  d i s t i l l e d  water 
was appl ied t o  ciie epoxy-silanized glass, a AE ,/AP value was 
obtained comparablc t o  the resu l t s  obtained w i  methyl c e l l  u l  ose 
i n  ac id solut ion. A t  the mment the mechanism tha t  governs 
attachment of methylcel l  ulose t o  the epoxy-si l a n i  zed glass i s  i n  
doubt. The treatment o f  glass surfaces w i t h  j u s t  methylcel lu lose  
o r  y-glycidoxypropyl t r imethoxysi lane does not g i  ve the low 
A E s t  /AP values. This phenomenon i s  s t i l l  being invest igated. 

burther coatin! o f  methyl ce l lu lose  onto a methylcel lu lose  
coating showed no change i n  AES r/Al" The use o f  1,2,4,5,9,10- 
triepoxydecane (TED) as a cross f inker  i n  the methylcel lulose 
solut ions (5% TED i n  0.5% HC1-methylcell ulose) was invest igated. 
Curing was accomplished by heat ing overnight a t  120°C i n  vacuum. 
No s t a t i s t i c a l  change was noted f o r  t h i s  treatment over normal 
methylcel lu lose  tubes (Table I 1  ). 

TABLE 11. 

Effects of Silane and Polysaccharide Coatings Upon AEstrlAP Values 

Coating 

1 Uncoated 
\2 1 y-glycidoxypropyl tr im th- 

oxysi1ane:triethylamine (1 : l )  
(3) Procedure 2, then 0.5% HC1 
(4 )  Procedure 2, then 0.5% KOH 
(5) Methylcel lulose i n  d i s t i l l e d  H 0 
(6) Procedure 2, then methylcel lu l8se  

i n  0.5% KOH 
(7) Procedure 2, then methyl c e l l  u l  ose 

i n  0.5% HC1 
(8) Froce.lure 2, then methylcel l  ulose 

i n  d i s t i l l e d  H20 
(9) Methyl c e l l  u l  ose coated tubes 

(Procedure 7) recoated w i th  
methyl ce l lu lose  w i th  5% 
1,2,4,5,9,10-triepoxydecane on 
0.5% HC1 

(10) Procedure 2, then hydroxypropyl- 
methylcel lulose i n  0.5% HC1 

(11 ) Procedure 2, then dex t r in  i n  
0.5% HC1 

(12) Procedure 2, then agzrose i n  
0.5% HC1 

Standard 
Deviat ion 



A simp1 e water-poly f l  uorocarbon surface contact annl e t e s t  
was used t o  detect surface-active extractables (9) from the 
coated cap i l l a r i es .  High contact angles were noted w i t h  a l l  
tubes. No s i g n i f i c a n t  change i n  the contact anqle was evident 
w i th  the methylcellulose-coated tubes, i nd i ca t i nq  t h a t  the 
methylcel l  ulose i s  not r e a d i l y  extracted from the surface. 

To obta in c a p i l l a r y  tubes coated w i t h  methacrylate hydroaels, 
f i r s t  so luble polymers were prepared. This wa; accompl ished by 
i-adical i n i t i a t i o n  o f  the desired monomer a t  low d i l u t i o n  (1 
t o  10, v/v) i n  ethanol. A small amount o f  t h i s  polymer s o l u t ~ o n  
i s  allowed t o  f low through the  g lass  c a p i l l s r y ,  and w i t h  a l i t t l e  
care and patience, a very uniform coat o f  the polymer could be 
deposited on the ins ide  o f  the capi l lary.The v i scos i t y  o f  the 
polymer so lu t ion  was regulated by the addi t i u n  o r  evaporation o f  
solvent. The tubes were cured overnight a t  60°C and then allowcd 
t o  equ i l i b ra te  i n  d i s t i l l e d  water. 

The monomers tb -  t were invest iqa ted were methoxyethyl 
methacrylate (MEMA), hydroxyethyl methacryl a te (HEM) and meth- 
oxyethoxyethyl methacryl a te  (NEEMA). It has been deterrni ned 
tha t  these polymers swell i n  water t o  in. .)rporate 3.5%, 40% and 
63% water, respect ive ly  (9) .  The correspondins AE /AP vclues 
are comparable t o  the bes f  methylcei lulose values f f r b l e  111). 

TABLE 111. 

Effects of Hydrophi l ic Methacrylate Coatings Up011 Y L S t r ~ l i P  Values 

AEStr/AP 
Standard 

(mV/cmHg) Dlviat ion 

(1) Uncoated tubes -0,290 
( 2 )  Hydroxyetnyl methacrylate (HEMA) -0.046 
(3)  Methoxyethyl methacrylate (MEM) -0.058 
( 4 )  Methoxyethoxyethyl me thacry l  a te  

(MEEMA) -0.038 
( 5 )  HEMA w i t h  1% methacrylic ac id 

(MAA ) -0.080 
(6 )  HEMA w i t h  3% MAA -0.100 
( 7 )  HEMA w i th  10% MAA -0.1 1 3  
( 8 )  HEMA w i t h  quaternized 1% dimethyl- 

aminoethyl methacryl a t e  (DMAEMA) +O. 070 
(9) HEMA w i t h  quaternized 3% DMAEMA +O.n74 

(10) HEMA w i th  quaternized 10% DMAEM +0.087 



To observe the e f f e c t  t ha t  charged groups i n  the hydrophi l ic  
polymers had upon AE l A P  values, HEW was polymerized a t  low 
d i l u t i o n  w i t h  varioultSmounts o f  methdcrylic ac id  (MAA) and 
dimethyl ami tioethyl methacryl a te  (DMEMA) . 

I n  the stream:ng so lu t ion  buffered t o  pH 7.2, methacryl ic 
ac id ex i s t s  as the charged sa l t ,  but  dimethylaminoethyl rnetha- 
c ry la te  ex i s t s  as an uncharged species. A f te r  polymerization of 
the HEMA-OMAEW copolymer, methyl iod ide was added t o  the polymer 
so lu t ion  t o  react  w i th  the f ree  amino groups forminq quaternary 
amnonium iodides (Figure 2). The c a p i l l a r y  tubes were coated as 
described f o r  the other methacrylate polymers, cured a t  6Q°C 
overnight and then a1 lowed t o  swell t o  equ i l ib r ium i n  e i t h e r  
d i s t i l l e d  water o r  streaming p t e n t i a l  buffer.  

The M-HEM copolymer coatings exhib i ted averase AE /AP 
values which increased negat ively w i t h  increasing o f  
methacryl i c  ac id i n  the polymer: -0.080 f o r  1% MA, -0.100 
for 3% MAA, and -0.1 13 f o r  10% MA. The quarternary DMAEMA-HEM 
copolymer coatings produced a ne t  pos i t i ve  e lec t rok ine t i c  surface 
as indicated by increasingly p c s i t i v e  AE /AP values w i t h  
increasing percentage o f  OMAEMA; t0.070 fbF 1% DMAEM, 
t0.074 f o r  3% WEMA, and t0.087 f o r  10% DMAEMA (Tab1 e I I I ) . 
Discussion -- 

According t o  Brook's model (10) the zeta po tent ia l  i n  the 
presence o f  adsorbed polymer (hydrophi 1 i c, uncharqed) could be 
higher or  lower than tha t  i n  the absence o f  p3lymer. The effect 
depends on the r e l a t i v e  magnitude o f  the thickness o f  the ad- 
sorbed polymer layer, d, and the thickness, d , wi th in  which 
nonzero f l u i d  f low occurs during an s1ectroki f ;et ic experiment. 
Three areas have been c i ted:  

1. For a t o t a l l y  f ree dra in ing adsorbed layer,  the loca t ion  
o f  the shear pla:~e i s  unaffected by the presence of the 
adsorbed layer, i .e. d = df. I n  t h i s  case, polymer adsnrp- 
t i o n  causes an increase i n  zeta po tent ia l .  

2. For a p a r t i a l l y  f ree dra in ing adsorbed layer,  the shear plane 
i s  sh i f t ed  t o  a pos i t ion  w i th in  the adsorbed polymer layer  
(0 < di c d). I n  t h i s  case polymer adsorption may cause 
e i t he r  an increase o r  a decrease i n  zeta po tent ia l .  

3. When f low i s  t o t a l l y  excluded from the adsorbed layer,  i .e., 
the shear plane i s  sh i f t ed  outside the adsorbed layer  
(d  = 0,, polymer adsorption causes a decrease i n  zeta 
p o t n t i a l .  

Our data was obtained from a large var ie ty  o f  neutral  poly- 
mer coatings; a1 1 show a decrease i n  L!E A .  Our neutra l  
polymer coatings were cast on glass c a p f t f a r j  surfaces and are 
th icker  than those obtained by adsorption. A1 thouqh one cannot 
d i r e c t l y  compare our coatings w i th  the three cases presented by 



Brook's (10) i t  does appear tha t  i n  our case the shear plane has 
been s h i f E d  f a r  away from the in ter face.  Consider the AEstr/AP 
values given i n  Table III f o r  p o s i t i v e  o r  negative grouos co- 
polymerized w i th  HEMA. A t  low streaming po ten t i a l  values, 
increased experimental e r r o r  i s  introduced i n t o  the measurements. 
A t  a given P, Estr changes w i t h  time, p a r t l y  due t o  a change i n  
the r e l a t i v e  f l u i d  leve ls  i n  the two reservoi rs  which causes a 
change i n  P and p a r t l y  due t o  electrode d r i f t  w i th  time o f  
unknown cause (2-3). - It was observed tha t  the AE, readi nqs were 
more stable for surfaces w i t h  high streaming poten I i a l s .  As a 
consequence, the e r r o r  i s  l a rge r  when the absolute AEStrlAP 
value i s  small. Although d i f f e r e n t  samples o f  s im i l a r  coat ing o r  
the same sample measured on d i f ferent  days do show la rge  var ia-  
t ions i n  t h e i r  AEstr/AP values, when the same samole was 
measured three times w i t h i n  a shor t  period, i t s  AEstr/AP value was 
qu i te  consistent. Also, i n  each series o f  measurements, the 
AEs ,/AP value f o r  samples 5-10 f c l  lowed the same trend as given 
i n  fab le  111. Therefore, we would l i k e  t o  a t t r i b u t e  the la rge  
standard deviat ion values t o  the var ia t ions  i n  experimental 
condit ions , surface roughness, uneven coatinqs , etc. , and consider 
the e f fec t  of increasing absolute streaming potent ia l  values w i t h  
increasing charge as real.  

Conclusions 

A decrease i n  AEstr/AP occurs when the glass surface i s  

s i lan ized or  coated w i th  a neutra l  polysaccharide such as 
methylcel lulose. S i  l an i za t i on  fol!owed by methylcel lu lose  
;. eatment gives an almost ten- fo ld decrease i n  AEStr/AP over 

uncoated "Pyrex" glass. Both ac id  and neutra l  methylcel l  ulose 
solut ions coated upon a y-~lycidoxy~ronyltrimethoxysilane base 
gives the lowest AEstrlAP values f o r  the polysacchari des 

examined. Base-containing methylcel l  u l  ose deposi ted on a 
y-glycidoxypropyl tr imethoxysi lane surface gives s l  i g h t l v  hiqher 
AEStr/AP values, perhaps due t o  the corrosive act ion o f  the base. 

No addi t ional  improvement i n  AEStr/AP values was obtained when 
the methylcel lu lose  tubes are recoated w i th  meth.ylcellulose 
containing a cross1 inker.  

Hydrophi 1 i c  methacrylate polymer coatings a1 so lower 

AEs tr /AP values ab,ut ten- fo ld over untreated glass cap i l l a r i es .  

EIy-added qua ternary amoni um groups t o  these polvmer coat i  nos, 
the sign of AEStr lAP i s  changed from negative t o  pnsi t i v e .  It 

i s  f e l t  tha t  by adjust ing the amount of charged co-monomers, a 
zero AEStr/AP value could be obtained. 
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Abstract 

Streaming potential  techniques were used t o  measure the 
inter facia l  e lec t r i ca l  potential  o f  glass capi l lar ies.  Different 
s i lan iz ing reagents were used t o  coat the glass cap i l l a r ies  and 
decrease the streaming potential  values by a comparable amount, 
i.e., about ha l f  that  o f  the uncoated glass cap i l la r ies .  A 
ten-fold decrease i n  streaming potential  i s  observed when methyl- 
cel lulose i s  coated onto a y-glycidoxypropyl s i  l an i  zed glzss 
cap i l l  ary. A comparable decrease i s  noted when hydroxyethyl 
methacrylate (HEMA), methoxyethyl methacrylate (MEMA) and 
methoxyethoxyethyl methacrylate (MEEMA) polymers are coated on 
the glass capi l lary.  By adding anionic o r  cat ionic charged 
groups t o  the poly-HEMA coating, streaminq potential  values of 
opposite sign are obtained. 

Increasing the amount o f  methacryl i c  acid copolymerized 
wi th the HEMA monomer negatively increases the average AE l A P  
values. Increasing the amount o f  quaternized dimethylani8&6thyl 
methacrylate i n  the copolymer pos i t ive ly  increases the average 
AEstrlAP val ues. 
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a. Ac id  Catalyzed Process 
. .+ + 
H -CH2-0-CH2-CH-CH2 - -CH2-0-CH2-CH-CH2 + HO-Cel 1 u l  ose 

\ / I 

0-Cel 1 u l  ose + H ~ ! ~ e ~  I u l  ose 
I -H 

-CH2-0-CH2- CH-CH2-OH +--- 
I 

-CH2-0-CH2-CH-CH2-OH 

b. Base Catalyzed Process 

HO- + HO-Cellulose + HOH + 0-Cel 1 u l  ose 
- 

-CH2-0-CH2-CH-CH2 + -0-Cell u l  ose -+ -CH2-0-CH2-CH-CH2-0-Cel 1 u l  ose 
\ I I 

0 -0 

F igure 1. Reaction schemes f o r  the attachment o f  polysaccharides 
t o  epoxy-si lane surfaces: a )  ac i d  catalyzed; and b)  
base catalyzed. 





Tube # 

1  

2  

APPENDIX B: COMPLETE TABLE OF AEstr/AP VALUES 

AEs t r/AP 

-0.352) 

Treatment 

Uncoated tube 

-0,259 Tube t rea ted  w i t h  1,1,1,3,3,3-hexa- 
methy ld is i  l a z i n e / t r i e t h y l  amine; 1/1. 

-0.259 Tube t rea ted  w i t h  ch lo ro t r imethy l  s i  lane! 
t r i e t h y l  ami ne; 1/1. 

-0.253 Tube t rea ted  w i t h  dichlordimethvl  s i  1 anel  
t r ie thy lamine;  111. 

-0.234 Tube t rea ted  w i t h  y-methacr~yloxyorop.yl- 
t r imethoxysi  lane/ t r ie thy lamine:  1/1. 

-0.128 Tube t rea ted  w i  t h  y -q lyc i  doxypronyl- 
t r imethoxysi  l a n e l t r i e t h y l  amine; 1  11. 

-0.230 Tube t rea ted  w i  t h  y -g lyc i  doxvp ro~y l  tri - 
methoxysi lane n-oronyl ami ne: 111 . 

-0.241 Tube t rea ted  w i  t h  y-q lyc i  d0~yDroDyl tri - 
methoxysilane pH. 4 aq. ac id i c  acid: 111. 

-0.230 Tube t rea ted  as #14, then methyl c e l l  u l  nse 
i n  0.5% KI'IH. 

-0.055 Tube t rea ted  as #14, then methylcel lu lose  
i n  0.5% HC1. 



Appendix B (cont. ) 

Tube # AEst r/AP 

20 -0.248 

Treatment 

Tube t rea ted  as #14, then hydroxypropyl- 
methylcel lulose i n  0.5% KOH. 

Tube t rea ted  as #14, then agarose i n  
0.5% KOH 

Tube t rea ted  as #14, then dex t r i n  i n  
0.5% KOH 

Tube t rea ted  as #19, res i lan ized as 
tube 14, followed as methylcel lulose 
i n  0.5% KOH. 

Tube t rea ted  as #19, ret reated w i t h  
methylcel l  ulose i n  0.5% formaldehyde 
i n  0.5% HC1. 

Tube t rea ted  as #19, ret reated w i t h  
hydroxypropylmethyl ce l  lu lose  i n  5% 
formaldehyde -0.5% H C l  . 
Tube t rea ted  as #19, ret reated w i t h  
JAGUAR i n  5% formaldehyde - 0.5% HC1 

Tube t rea ted  as #19, ret reated w i t h  hy- 
droxypropylmethylcellulose i n  1,2,4,5,9,10- 
triepoxydecane - 0.5% tiC1. 

Tube t rea ted  as #19, ret reated w i t h  
methylcel lulose i n  5% 1,2,(1,5,9,10- 
triepoxydecane - 0.5% HC1. 

Tube t rea ted  as #19, ret reated w i th  JAGUAR 
i n  5% 1,2,4,5,9,10-triepoxydecane i n  
Q.5% HC1. 

Same as tube 22 

Tube t rea ted  w i th  y -g l  yc i  doxypropyl- 
t r imethoxysi lanel t r ie thy lamine:  1/1. 

Tube t rea ted  as #32, then r insed w i  t h  
0.5% HC1 

Tube t rea ted  as #32, then r insed w i th  
0.5% KOH 

Tube t rea ted  as #32, then methylcel lulose 
i n  0.5% HC1 

Tube t rea ted  as X32, then methyl c e l l  u l  ose 
i n  0.5% KOH 



Appendix B (cont. ) 

Tube # AEstr/AP 

37 -0.096 

38 -0.270 

39 -0.245 

40 -0.250 

41 -0.284 

42 -0.195 

43 -0.148 

44 -0.252 

45 -0.237 

46 -0.222 

Treatment 

Tube t rea ted  as #32, then hydroxypropyl- 
methylcel lulose i n  0.5% HC1 

Tube t rea ted  as #32, then hydroxypropyl- 
methylcel lulose i n  0.5% KOH 

Tube t rea ted  as #32, then dex t r i n  i n  
0.5% HC1 

Tube t rea ted  as #32, then aqarose i n  
0.5% HC1 

Tube t rea ted  as #32, then agarose i n  
0.5% KOH 

Tube t rea ted  w i  t h  y-methacryl oxypropyl- 
t r imethoxysi 1 a n e l t r i e t h y l  amine: 111. 

Treated as tube 42, fol lowed w i t h  HEMA 
containing 0.2% azobi s (methyl i sobutyrate) 

Treated as tube 44, followed by recoat ing 
of H E M  containing 6% azobis (meth,yl 
i sobutyrate) 

Treated as tube 42, fol lowed by metha- 
cry1 i c ac id  w i t h  5% ethylene g lyco l  
dimethacrylate containing 2.5% azobis (methyl 
isobutyrate)  

Treated as tube 42, fol lowed by acrylamide/ 
H z 0  w i  t h  5% ethylene g lycol  dimethacryl a te 
containing 2.5% azobis(mthy1 isobutyrate)  

Treated as tube 42, fol lowed by HEMA w i t h  
5% ethylene g lycol  dimethacr.ylate, 2.5% 
azobis(methy1 i sobutyrate) 

Treated as tube 42, f o l  lowed by t r i e thy lene  
g lyco l  monomethacryl ate w i t h  5% ethylene 
g lyco l  dimethacryl ate, 2.5% azobi s (methyl 
i sobutyrate) 

Treated as tube 32, followed by meth,ylcell ulose 
i n  0.5% KOH, heated a t  60°C f o r  12 hours 



Appendix B (cont. ) 

Tube # AEs t r /AP  

53 -0.028 

Treatment 

Treated as tube 32, fol lowed by methyl - 
ce l l u lose  i n  0.5% HC1 

Treated as tube 32 

Treated as tube 32, fol lowed by agarose 
i n  0.5% HC1 

Methylcel lulose w i th  5% - 1,2,4,5,3 ,lo- 
triepoxydecane i n  0.5% HC1 

Tube 1 t reated w i t h  y-qlycidoxyprooyl- 
tr imeth~xysilane/tr iethylarnine: 1/1 
(not heated i n  oven) 

Tube 2 t reated as tube 57 

Tube 3 t reated as tube 57 

Tube 57 t rea ted  w i t h  methylcel lulose 
i n  0.5% HC1 

Tube 58 t rea ted  w i t h  methylcel l  ulose 
i n  0.5% HC1 

Tube 59 t rea ted  w i t h  methylcel lulose i n  
0.5% HC1 

Tube 60 t reated w i th  methylcel l  ulose 
w i  t h  5% 1,2,4,5,9 , lo-tr ie~oxydecane 
i n  0.5% HC1 

Tube 61 t rea ted  w i t h  methylcel lu lose  
w i t h  5% 1,2,4,5,9,10-triepoxydecane i n  
0.5% HC1 

Tube 62 t reated w i  t h  methyl c e l l  u l  ose 
w i  t h  5% 1,2,4,5,9,10-triepoxydecane 
i n  0.5% HC1 

Uncoated tube 

I 1  

I 1  

Tube coated w i t h  soluble PHEMA 

I 1  

11 

II 



Appendix B (cont. ) 

AEst r l  AP Treatment 

i1 

75 -0.039) Tube coated with soluble PMEMA 

78 -0.032 Tube coated with soluble PMEEMA 

79 11 

81 -0.064 Tube coated with soluble PHEMA containing 
1% MA 

82 -0.1 19 11 

87 -0.1 31 Tube coated with soluble PHEMA containing 
3% MA 

93 -0.120 Tube coated with soluble PHEMA containing I 

10% MAA 

94 -0.129 ~t 



Appendix B (cont. ) 

Tube 1Y AEst r/AP 

99 -0.01 3 

Treatment 

Tube coated w i th  soluble PHEW containing 
0.1 % quaterni  zed DMAEMA 

Tube coated w i th  soluble PHMA containing 
1 % quaterni  zed DMAEMA 

Tube coated w i th  soluble PHEMA containing 
3% quaterni  zed DMAEMA 

Tube coated w i th  sol uble PHEMA containing 
10% quaterni  zed DHAEMA 
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