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PREFACE 

The technical  program of the  13th Annual Meeting of the Society 
neering Science, Inc., consisted of 159 inv i ted  and contributed papers covering 
a wide va r i e ty  of research topics ,  a plenary session,  and the  Annual Society of 
Engineering Science Lecture. 
inv i ted  and/or contributed papers while two of the  sessions were conducted as 
panel discussions with audience par t ic ipa t ion .  

Thirty-three of the  technica l  sessions contained 

These Proceedings, which contain the  technical  program of the  meeting, are 
presented i n  four  volumes arranged by subject  material. 
science are contained i n  Volume I. Volume I1 contains t h e  scructures ,  dynamics, 
applied mathematics, and computer science papers. Volume I11 contain 
i n  the  areas of acoust ics ,  environmental modeling, and nergy. Paper 
area of f l i g h t  sciences are contained i n  Volume I V .  
and an Author Index are included i n  each volume. 

Papers i n  materials, 

A omplete Table of Contents 

We would l i k e  t o  express pa r t i cu la r  appreciation t o  the  members of the  

Our thanks are given t o  a l l  f acu l ty  and s t a f f  
Steer ing Committee and the  Technical Organizing Committee f o r  arranging an 
excel lent  technical  program. 
of t he  Jo in t  I n s t i t u t e  f o r  Advancement of Fl ight  ences (both NASA Langley 
Research Center and The George Washington University) who contributed t o  t h e  
organization of t he  Meeting. 
and t h i s  document of Sandra Jones, Virginia  Lazenby, and Mary Torian is  
g ra t e fu l ly  acknowledged. Our gra t i tude  t o  the  ScientPfic  and Technical 
Information Prgrams Division of the  NASA Langley Research Center f o r  pub- 
l i s h i n g  these  Proceedings is s incere ly  extended. 

The ass i s tance  i n  preparation f o r  t he  meeting 

Hampton, Virginia  1976 J, E. Duberg 

J. L, Whitesides 
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Introductoe Remarks For A Panel 
Discussion Session 

on 

COMPUTERIZED STRUCTURAL ANALYSIS 

AND DESIGN - FUTURE AND PROSPECTS 
Lucien A. Schmit, Jr. 

University of California, Los Angeles 

The renowned numerical analyst, Dr. Richard W. Hamming, has written "The 
Purpose of Computing Is Insight, Not Numbers". As we take a look at the past, 
present, and future prospects for computerized structural analysis and design, 
we would do well to keep this charge in mind. 

Huge strides have been made in the development of reliable structural 
analysis methods during the past thirty years. A vast array of powerful 
structural analysis tools has emerged and found widespread acceptance in 
engineering practice. The steady growth and availability of large scale 
general purpose digital computers has facilitated the development of rather 
general structural analysis capabilities, notably the various finite element 
programs. Also, as confidence has grown in our ability to predict the behavior 
of alternative designs, there has been a natural tendency to come to grips with 
the problems of wider scope that make up the structural design process. As 
one looks to the future and asks, what are the prospects, it appears that 
many of the new developments envisioned are characterized by an innate desire 
to strengthen creative control over the use of computers in structural 
analysis and design. 

The development of computer programs for structural analysis, particularly 
finite-element methods, has been motivated by the need for economical and 
reliable prediction of structural behavior. Over the past 15 years, workers 
in the finite-element field have given attention to improving the theoretical 
foundations and the numerical techniques used. However, even more emphasis 
has been placed on increasing problem size, improving generality of configur- 
ation and extending finite-element methods to deal with more complex structural 
behavior. Mature computer programs for linear static and dynamic analysis of 
a rather general class of structures are generally available and widely used 
today. Programs capable of handling buckling analysis as well as nonlinear 
static and dynamic response also exist, although they are somewhat less 
mature. In his remarks, Professor Wilson observes that "new computer programs 
with improved accuracy and efficiency will not necessarily be adopted by the 
profession unless they solve problems that existing programs cannot." As we 
look ahead, it is likely that the growing use of composite materials as well 
as the need to treat crack growth and fatigue failure modes will provide 
impetus for the development of new programs. Also, as Dr. Stanton suggests, 
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it is anticipated that computational models characterizing real composite 
materials will become a bridge that helps bring the technology of the materials 
scientist to the structural engineer. While large pipeline and parallel pro- 
cess computers have not yet had a significant impact on the solution of 
structural analysis problems, they are expected to find impartant application 
in large scale transient response problems, nonlinear analyses, and design 
optimization studies. 

The structural design problem is substantially more involved than the 
analysis problem, even if attention is restricted to simple proportioning. 
When configuration, material, and topological changes are considered, the 
structural design problem becomes very complex and it is not well understood. 
Dr. Berke traces the history of automated structural design beginning with the 
early structural index work, followed by: the advent of the general nonlinear 
programming formulation, the subsequent resurgence of the fully stressed 
design method, and the emergence of the discretized optimality criteria 
approach. As pointed out by Dr. Card, recent advances in the mathematical 
programming approach to structural design have been based on approximation 
concepts including design variable linking, deletion of redundant constraints, 
and design oriented structural analysis methods. 
programming methods cannot handle thousands of design variables and discretized 
optimality criteria techniques have difficulty identifying the set of critical 
constraints that will be active at the final optimum design. It is reasonable 
to expect that hybrid methods, which synergistically combine nonlinear 
mathematical programming methods with discretized optimality criteria techniques 
and design oriented structural analysis will emerge in the near future. Looking 
further ahead, it is likely that increased attention will be given to config- 
uration, material, and topological design changes. Efforts will be made to 
gain deeper understanding of the design problems formal structure. Also, as 
Dr. Berke suggests, it may be possible to bring artificial intelligence to 
besr an the structural design problem through the use of adaptive learning 
network ideas. 

Nonlinear mathematical 

As we look to the future, many of the developments projected by the panel 
seem to reflect a deep innate desire to strengthen creative control over the 
use of computers in structural analysis and design. 
access computing via simple problem oriented languages used in an interactive 
mode with graphic displays leads to greater involvement of the computer system 
user. As Dr. Hartung points out, structural engineers will spend more of 
their time as software synthesizers who select technical modules from program 
libraries and they will phase out of the ad hoc programming activities that 
have been so common during the last fifteen years. Software systems generated 
by computer specialists, numerical analysts and a few engineers with special 
training in modern programming techniques will have to be extremely well- 
documented, so that structural engineers will be able to use them while 
maintaining creative control. The pressing importance of solving the software 
dissemination, standardization, and accreditation problem is emphasized by 
Dr. Hartung and Dr. Card. Integrated procedures for interdisciplinary system 
design tend to focus attention on the importance of automated data management. 
It is interesting to note that many of the interdisciplinary system design 
procedures reflect the current in series design process that is commonplace 

The growth of easy 

362 



in industry today. 
the basic design process and the associated organizational structure, tends to 
preserve whatever creative control currently exists over the system design 
process. Finally, it would seem that the future prospects for minicomputers 
and microcomputers in structural analysis, touched on by Professor Wilson, 
Dr. Hartung and Dr. Stanton, may also enhance the structural engineer's 
opportunity to exercise more creative control over different analysis tasks, 
such as nonlinear dynamic response and characterization of actual composite 
materials. 
computerized structural design, so aptly set forth by Dr. Card, will in time 
be overcome. As we move forward in the area of computerized structural ' 

analysis and design it may be useful for us to ponder the cryptic words of the 

we have lost in knowledge? Where is the knowledge we have lost in information?" 

Emphasizing data management, while minimizing change in 

In closing, let me express my confidence that the barriers to 

poet T. S .  Eliot, who in a very different context wrote, Where is the wisdom > 

363 





AUTOMATED STRUCTURAL DESIGN - FUTURE AND PROSPECTS 

Laszlo Berke 
Air Force F l i g h t  Dynamics Laboratory 

S t r u c t u r a l  optimization has  been a n  active area of research  f o r  many decades 
and has aided generations of engineers t o  f ind  r a t i o n a l  so lu t ions  t o  s t r u c t u r a l  
design problems of ever increas ing  complexity. 
lessening of research  a c t i v i t y  i n  t h l s  f i e l d .  
unfavorably inf luence  t h e  f u t u r e  prospects of optimization. This w i l l  occur a t  
a t i m e  when needs f o r  optimization c a p a b i l i t i e s  w i l l  predicably increase  i n  t h e  
wake of ambitious developments i n  in tegra ted  procedures f o r  automated aerospace 
veh ic l e  design. 

There i s  now a no t i ceab le  
I f  t h i s  trend p e r s i s t s ,  it w i l l  

It i s  usua l ly  cons t ruc t ive  t o  recall  p a s t  achievements p r i o r  t o  assess ing  
f u t u r e  prospects.  New design challenges and new developments i n  computing 
c a p a b i l i t i e s  cont inua l ly  produce new t rends  which, however, tend t o  bui ld  on 
pas t  achievements. W e  can recall t h e  precomputer era when t h e  "in" thing w a s  t o  
perform optimization of compression panels with every conceivable geometry. 
Most of t h i s  work w a s  based on t h e  h e u r i s t i c  op t imal i ty  cri teria of simultaneous 
f a i l u r e  modes. Redundant s t r u c t u r e s  were analyzed a t  t h a t  t i m e  by var ious  
approximation methods, and t h e i r  members were manually s ized  t o  a t t a i n  t h e i r  
r e spec t ive  cr i t ical  stress l eve l s .  Repet i t ive  app l i ca t ion  of t h i s  procedure 
w a s  later formalized as t h e  " fu l ly  s t r e s sed  design method", FSD f o r  short .  
These two e a r l y  opt imal i ty  cri teria methods served t h e  des igners  w e l l  a t  t h a t  
t i m e ,  and i n  most p r a c t i c a l  s i t u a t i o n s  continue t o  do so,  even today. 

With t h e  e a r l y  appearance of computers, optimization methodology faced a 
new challenge. Relying on t h e  emerging computational c a p a b i l i t i e s ,  nonlinear 
mathematical programming w a s  introduced i n  t h e  la te  f i f t i e s  as the  proper 
general  framework f o r  a l l  s t r u c t u r a l  optimization problems. 
these  l i n e s  became t h e  new "in" th ing  during t h e  exc i t i ng  decade of t h e  s i x t i e s .  
Research money w a s  r e l a t i v e l y  abundant and a p r o l i f e r a t i o n  of r e s u l t s  followed. 
One of t h e  most important r e s u l t s  w a s  t o  r e th ink  t h e  bas i c  na tu re  of optimization 
problems and of t h e  methods which can successfu l ly  so lve  them. 
s i v e l y  shown t h a t ,  i n  general ,  ne i the r  t h e  simultaneous f a i l u r e  modes f o r  
components, nor FSD f o r  redundant s t ruc tu res ,  r e su l t ed  i n  an optimum design. 
A s  computing power increased and t h e  powerful f i n i t e  element methods became 
t h e  most popular a n a l y s i s  t o o l  f o r  redundant s t r u c t u r e s ,  an unfortunate but 
bas ic  shortcoming of nonlinear programming methods became apparent. 
increas ing  number of reana lyses  required as a func t ion  of t h e  number of design 
va r i ab le s  rendered them imprac t ica l  t o  f i n i t e  element models t h a t ,  by t h e  mid- 
s i x t i e s ,  rou t ine ly  cons is ted  of thousands of elements. The d i sc red i t ed  FSD 
had t o  be r e i n s t a t e d  f o r  s t r e n g t h  optimization of l a rge ,  redundant, f i n i t e  
element systems, and new, "exact", d i sc re t i zed ,  op t imal i ty  cr i ter ia  methods 
had t o  be introduced f o r  s t i f f n e s s  cons t ra in ts .  After a slow start i n  t h e  l a te  
s i x t i e s ,  these  s t i f  fness-related,  d i sc re t i zed ,  op t imal i ty  cri teria methods 
provided a new turn ing  poin t  once again. 
latest "in" th ing  f o r  such d ive r se  cons t r a in t s  as displacements, s tatic s t a b i l i t y ,  

Research along 

It w a s  conclu- 

The 

Now they are widely accepted as t h e  
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dynamic response, and f l u t t e r .  
t a i l o r i n g  and var ious  con t ro l  characteristics of f l e x i b l e ,  advanced-composite 
a i r c r a f t  are being considered. 

Even such e x o t i c  new requirements as a e r o e l a s t i c  

One can b r i e f l y  assess t h e  cu r ren t  state of t h e  a r t  by saying t h a t  e f f i c i e n t  

However, t h e  number of design v a r i a b l e s  must be kept reasonable, 
mathematical programming methods are a v a i l a b l e  f o r  design problems of v i r t u a l l y  
any complexity. 
e i t h e r  by appropr ia te  modeling o r  by t h e  na ture  of t h e  problem. 
d e t a i l e d  design t h e  problem is  not e n t i r e l y  under cont ro l .  
models u se  thousands of f i n i t e  elements, each wi th  more o r  less independent 
s i z e  var iab les .  Current p r a c t i c a l  c a p a b i l i t i e s  f o r  combined s t r eng th  and 
s t i f f n e s s  design are t h e o r e t i c a l l y  improper h e u r i s t i c  mixtures of t h e  "incorrect" 
FSD and t h e  "correct", s t i f fnes s - r e l a t ed ,  op t ima l i ty -c r i t e r i a  approaches. The 
recent  advocacy of advanced composites tends t o  f u r t h e r  aggravate t h e  s i t u a t i o n .  
While immediate needs f o r  optimization are f i l l e d  by t h e  design teams wi th  
var ious  pragmatic approaches of more o r  less parochia l  charac te r ,  genera l ly  
acceptable so lu t ions  are lacking f o r  many important problems. 

For f i na l  
Detailed s t r u c t u r a l  

The f u t u r e  holds many new a d d i t i o n a l  challenges. Optimization techniques 
i n  general ,  and nonlinear programming i n  p a r t i c u l a r ,  w i l l  continue t o  b e n e f i t  
from increas ing  computing c a p a b i l i t i e s  which w i l l  help them t o  permeate t h e  
design process deeper and deeper. 
veh ic l e  design technology, based on ambitiously defined executive d a t a  manage- 
ment systems, w i l l  underscore t h e  need f o r  f u r t h e r  automation. This automation 
must relate t o  both t h e  a n a l y s i s  and t h e  redesign process while r e ly ing  on 
e f f i c i e n t  optimization techniques. 

The emergence of in tegra ted  and automated 

In tegra ted  ana lys i s  and design c a p a b i l i t i e s ,  when f u l l y  developed, could 
r e s u l t  i n  such voluminous information that it would t a x  t h e  perceptive 
c a p a b i l i t i e s  of human designers d e s p i t e  g rea t  v e r s a t i l i t y  of information display. 
A higher form of optimization, enhanced with learn ing  c a p a b i l i t i e s ,  could be  a 
use fu l  t o o l  t o  d i g e s t  t h e  l a r g e  amounts of ana lys i s  information and "suggest" 
design changes. 
considerable p r a c t i c a l  software and hardware c a p a b i l i t i e s  have been developed 
i n  t h e  p a r t i c u l a r  f i e l d  of adapt ive  learn ing  networks. Once such a network is 
"trained" t o  approximate t h e  behavior of a real system, i t  can be in te r roga ted  
i n  a f r a c t i o n  of t h e  computer t i m e  necessary t o  query t h e  real system. 
experienced engineer acqui res  a "feel1' f o r  a p a r t i c u l a r  problem as i t  progresses, 
l earn ing  networks are conceived e s s e n t i a l l y  t o  do t h e  same. 
such machine i n t e l l i g e n c e  i n  f u t u r e  automated s t r u c t u r a l  design w i l l  enable t h e  
engineer of tomorrow t o  more adequately use h i s  unique human a b i l i t y  - c r e a t i v i t y .  

Within t h e  broad area of a r t i f i c i a l  i n t e l l i g e n c e  research, 

A s  an 

Incorporation of 
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OVERCOMING THE BARRIERS TO 

COMPUTER1 ZED STRUCTURAL DESIGN 

Michael F. Card 
Langley Research Center 

I NTRODU CT I O N  

From a research po in t  of view, the prospects for  computerized structural 
analysis and design appear t o  be excellent. 
integral part of a l l  major structural engineering projects. 
able ongoing research on advanced design techniques,, i n  b o t h  government and 
industry; recently NASA has taken a significant step towards enhancing the use 
of computers in design with initiation o f  the IPAD project (Refs 1 and 2 ) .  
However, the development of a major thrust t o  advance the design s ta te  of the 
a r t  by automation has been slow. For example, i t  has taken about  six years for 
a satisfactory arrangement t o  be negotiated between government and industry for 
IPAD. Thus ,  i t  would appear that there are some significant barriers t o  accep- 
tance o f  computerized design as a national goal. 

Computerized analysis is  now an 
There i s  consider- 

BARR1 ERS 

Some of the major barriers which I perceive are 

@ THE ALL KNOWING DESIGNER SYNDROME 

THE COOKBOOK ENGINEER 

@ MAN'S FASCINATION WITH MACHINES 

0 COSTS 

m STANDARDI ZATION/ACCREDITATION 

A facetious i l lustration of the first barrier i s  shown in figure 1 .  
the ghosts  of the past has been the perception t h a t  most of the really serious 
design work i s  done by a clever, experienced designer, a unique individual who 
through sheer physical insight i s  able t o  master a l l  problems. Unfortunately, 
as structural designs have become more and more complex, the single designer 
with complete mastery of his structure i s  a vanishing breed. 
complexity o f  major structural projects ,do  not permit any such seat-of-the- - 
pants designer t o  make a significant contribution, except i n  the very ear l ies t  
stage of design. 
he i s  hard pressed t o  make a convincing technical case for  the credibility of 
his ideas. 

One of 

The size and 

Even i n  the embryonic stages of design, w i t h  only his.insight, 
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A second b a r r i e r  t o  the acceptance o f  computerized design i s  a t  an opposite 

T-he re l iance on the computer t o  do design i s  a t e r r i b l e  temptation t o  

pole from the p r a c t i c a l  designer. The computer cookbook engineer (see f i g u r e  
2) can be viewed as a serious t h r e a t  t o  any engineering o r  research organiza- 
t i on .  
t ransfer engineering r e s p o n s i b i l i t y  and understanding t o  a machine. Methods -to 
discourage misappl icat ion and lack o f  proper so lu t i on  checking are a constant 
concern of most. organizations who perform computerized- design a c t i v i t i e s .  To 
reduce development cos.ts, there are tremendous pressures t o  r e l y  on computer- 
i z e d  analysis and design ,and t o  e l iminate q u a l i f i c a t i o n  test ing.  
ensure t h a t  computations are accurate and appropriate? 

f i g u r e  3, the exposure o f  engineers w i t h  good s t r u c t u r a l  i n s i g h t  t o  the compu- 
t e r  can be dangerous. The process o f  t r a n s i t i o n  o f  the structures engineer t o  
computer software s p e c i a l i s t  i s  suggested. While computer science may b e n e f i t  
by c r o s s - f e r t i l i z a t i o n ,  there must remain a hardcore group o f  s t r u c t u r a l  
spec ia l i s t s  who are able t o  i n t e r p r e t  and apply the r e s u l t s  o f  computerized 
designs and who may conceivably i nven t  new techniques. 

unknowns associated w i t h  costs. 
perform s t r u c t u r a l  design i n  the a i r c r a f t  indust ry  have been s tead i l y  increas- 
ing. The-hope o f  automated design i s  t h a t  the computer w i l l  reduce manhours 
expended i n  design and t h a t  computer hour costs w i l l  n o t  increase enough t o  
o f f s e t  the manhour cost  reduction. I f  the computer design process i s  too com- 
plex, however, a n e t  cost reduction w i l l  not  be real ized, even though the depth 
and accuracy i n  which real- t ime design cycles can be executed w i l l  be s i g n i f i -  
cant ly  increased 

But, how do we 

.A t h i r d  b a r r i e r  i s  man's fasc inat ion w i t h  machines. As i l l u s t r a t e d  i n  

A f o u r t h  b a r r i e r  (common t o  a l l  current advanced technologies) i s  the 
As i l l u s t r a t e d  i n  f i g u r e  4, the resources t o  

The cost b a r r i e r  i s  complicated by government experiences w i t h  computer- 
i zed  analysis development. 
suggests t h a t  the government must modify i t s  f u tu re  r o l e  i n  the support o f  
major computer code developments. As i l l u s t r a t e d  i n  f i g u r e  5, the pa t te rn  f o r  
development costs w i l l  inc lude government support o f  i n i t i a l  development costs 
inc lud ing software design, coding, e a r l y  debugging, t e s t i n g  and maintenance; 
however, a f t e r  the code i s  s u f f i c i e n t l y  matured, i t  w i l l  be up t o  a community 
o f  users t o  continue i t s  f i n a n c i a l  support. 
groups t o  assume t h i s  f i n a n c i a l  burden w i l l  necessar i ly  slow the pace 
o f  advanced computerized capabil i ty. 

member of the government, I recognize the need f o r  both elements, bu t  I am 
somewhat scept ica l  of the process (e.g. f ig.  6) by which i t  can be accomplished. 
Once i t  i s  admitted t h a t  such a process i s  needed, a tremendous power Struggle 
f o r  the r i g h t  t o  contro l  the process i s  created. 
industry, u n i v e r s i t y  and government. 
are f i g h t i n g  t o  r e t a i n  competit ive edges i n  computer hardware 'and software 
systems t o  the technical  soc iet ies and government agencies who are s t rugg l i ng  
t o  be recognized as the al l -powerful  c e r t i f y i n g  agent. 
a rd i za t i on  and c e r t i f i c a t i o n  requirements w i l l  o f  necessity r e t a r d  the 
development pace o f  automated design too ls .  

Recent NASA experience w i t h  NASTRAN and FLEXSTAB 

Lack o f  commitments by user 

The f i n a l  b a r r i e r  i s  the issue o f  standardizat ion and accredi tat ion.  As a 

The protagonists come from 
They range from the i n d u s t r i a l i s t s  who 

The add i t i on  o f  stand- 
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PROSPECTS 

I bel ieve t h a t  the b a r r i e r s  t o  era1 acceptance o f  automated s t r u c t u r a l  
designs can be overcome. d i n  f igure 7 ,  s i g n i f i c a n  
being made i n  aerospace appl icat ions o f  computerized s i z i n g  w i t h  
analysis becoming both feas ib le  and cost e f f e c t i v e .  

As i l l u s t r  

The keys t o  overcoming the b a r r i e r s  already mentioned are as fo l lows: 

FUTURE ATTRACTIONS 

0 DESIGNERS ON SCOPES RATHER THAN BOARDS 

0 BRAINWORK RATHER THAN DOGWORK 

PREREQUISITES 

0 DESIGN PROBLEMS OF SUFFICIENT COMPLEXITY 

NEED FOR REDESIGN SPEED 

CENTRAL STEPS 

@ COMPUTERIZED DESIGN TRAINING I N  UNIVERSITIES AND INDUSTRY 

0 SERIES OF STRUCTURAL TESTS TO DEMONSTRATE EFFECTIVENESS 
OF AUTOMATED DESIGN 

MOBILITY I N  TECHNOLOGY TRANSFER THROUGH STANDARDIZATION 

To a t t r a c t  young people t o  the s t r u c t u r a l  design profession, i t  seems 
l i k e l y  t h a t  man's fasc inat ion w i t h  machines can be exp lo i t ed  t o  e l iminate the 
d r a f t i n g  board. 
ever, there are two prerequis i tes.  Foremost i s  the challenge t o  design a s t r u c t -  
ure o r  vehic le o f  s u f f i c i e n t  complexity t o  warrant such techniques. 
example , development o f  advanced supersonic c ru i se  a i  r c r a f t  designs have o f f e r e d  
a greater st imulus t o  computerized design development than subsonic t ranspor t  
designs because o f  greater technical  complexit ies (especia l ly  i n  aeroelast ic  
design) and more demanding payload requirements. 
urgency f o r  speed i n  the design cycle. Generally design cycle speed require- 
ments are generated by competit ion, mission and market targets,  and design time 
costs; however, i n  economically depressed indust r ies,  the tendency i s  t o  
s t r e t c h  out vehic le development times. 

For the existence o f  such an advanced design capab i l i t y ,  how- 

As an 

A second p re requ is i t e  i s  the 

F ina l l y ,  I suggest three centra l  steps which might be taken t o  overcome 
resistance t o  computerized s t r u c t u r a l  design. F i r s t  , t o  e l  iminate the cook- 
book engineer, a serious attempt should be made t o  proper ly  t r a i n  engineers i n  
the use of the computer f o r  design. 
v e r s i t y  t r a i n i n g  where the e th i cs  o f  !using the computer can be taught. 
t o  address the fea r  o f  fa1 1 i b i  1 i ty o f  computer-generated desi gns, there should 

This i s  p a r t i c u l a r l y  important i n  un i -  
Second, 

371 



be a series of design and structural tes t  activit ies whose purpose i s  t o  vali- 
date the credi bi 1 i t y  of computer-generated designs. Finally , the 
effectiveness o f  computerized design systems can be achieved with 
of standardization t o  permit some technology transfer of structur 
techniques t o  a wider range o f  industries. 

1. 

2. 
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SUSTAINED SERIES OF BRILLIANT BUT SIMPLE I D E Y  

CALIBRATED RULE OF THU 

TRUSTY SL I  DERULE 
(GR UD GI NGLY CONVERT 1 N 

TO MINICALCULATOR) 
EDUCATED SEAT OF 

THE PANTS 

Figure 1.- The all-knowing designer syndrome. 

I 

Figure 2.- The computer cookbook engineer. 
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Figure 3.-  Man's fascination with machines. 
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Figure 4.- The increasing costs of aircraft design. 
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Figure 5.- Computer code development cost sharing. 
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Figure 6.- The process of standardization and accreditation of 
analysis and design codes. 
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LING OPTIMIZATION 
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Figure 7 . -  Progress i n  automated structural design. 
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COMPUTERIZED STRUCTURAL ANALYSIS AND DESIGN -- FUTURE AND PROSPECTS 

Richard F. Hartung 
Lockheed Research Laboratory 

OPENING REMARE(S 

The a n a l y s i s  and des ign  of s t r u c t u r e s  by computer methods w i l l  be i n f l u -  
enced i n  t h e  f u t u r e  by new developments i n  computer hardware and software and by 
t h e  development of  new ana lys i s  capab i l i t y .  These developments w i l l  tend to 
relieve t h e  engineer  of much of t h e  programming a c t i v i t y  i n  which he now en- 
gages and w i l l  provide him with a very powerful a r r a y  of ana lys i s  t o o l s  t h a t  
a l low him to so lve  a g r e a t e r  v a r i e t y  of problems. Much of t he  rou t ine  da t a  
handling a c t i v i t y  t h a t  now occupies the  engineer 's  t i m e  w i l l  be  taken c a r e  of 
by da ta  managers o r  e l iminated by compatible i n t e r d i s c i p l i n a r y  engineer ing 
ana lys i s  sof tware.  I n  s h o r t ,  engineers  w i l l  be ab le  to spend more t i m e  doing 
engineer ing work. 

Software technology is  changing rap id ly .  Ad hoc programing techniques 
t h a t  have been used i n  the  development of much of t h e  present-generation,struc- 
t u ra l - ana lys i s  software a r e  no longer s a t i s f a c t o r y  f o r  t h i s  purpose. More fo r -  
m a l  coding procedures and new programing languages w i l l  be used t o  f a c i l i t a t e  
program development, checkout, appl icat ion,and maintenance. Future sof tware 
w i l l  be systems or ien ted  with ex tens ive  l i b r a r i e s  of t echn ica l  modules, matrix 
u t i l i t i e s , a n d  d r i v e r  programs t h a t  communicate v i a  a common da ta  base o r  a 
super execut ive program. Data base management techniques s p e c i f i c a l l y  o r i en ted  
to t he  l a r g e  f i l e s  of numerical da t a  a r i s i n g  i n  s c i e n t i f i c  a n a l y s i s  w i l l  be i n  
common use. More a t t e n t i o n  w i l l  be given to program documentation and configu- 
r a t i o n  c o n t r o l  to i n su re  t h a t  sof tware w i l l  be perpetuated as  personnel changes 
occur. 

Most s t r u c t u r a l  engineers  w i l l  have n e i t h e r  t h e  i n c l i n a t i o n  nor t h e  necessary 
t r a i n i n g  to plan and program good sof tware systems. 
by computer s p e c i a l i s t s ,  numerical analysts ,and engineers  wi th  ex tens ive  t r a i n -  
ing and experience i n  t h e  use of modern programing techniques.  The s t r u c t u r a l  
engineer w i l l  no longer have to be a software developer;  i n s t ead  he w i l l  be a 
software syn thes i ze r  who selects modules from program l i b r a r i e s  and executes  
them as requi red  t o  so lve  t h e  problem at hand. 
about computer programming, he w i l l  have ava i l ab le  t o  him a very powerful com- 
pu te r  c a p a b i l i t y  t h a t  he can opera te  with a simple problem-oriented language. 
Furthermore, as var ious engineer ing organizat ions begin t o  share  the  same analy- 
sis  system t h e r e  w i l l  be much more i n t e r a c t i o n  between var ious  engineer ing 
organiza t ions  (e.g., s t r u c t u r e s ,  thermo, aero,  loads ,  e t c . )  during t h e  design 
process. 

These t a sks  w i l l  be done 

Although he may know very  l i t t l e  
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The problem of software disseminat ion has not  y e t  been s a t i s f a c t o r i l y  re- 
solved. While mi l l i ons  of d o l l a r s  i n  publ ic  funds have been spent  i n  recent  
years  on software development, r e l a t i v e l y  l i t t l e  of it is r e a d i l y  a v a i l a b l e  Yo 
t he  publ ic .  Several  ques t ions  need t o  be answered. (1) How can a s t r u c t u r a l  
engineer wi th  a problem determine what computer programs are ava i l ab le  t o  so lve  
h i s  problem? (2) How can the  appropr ia te  program be obtained o r  used? (3) Who 
w i l l  provide t echn ica l  a s s i s t a n c e  on the  use of t h e  program? ( 4 )  How w i l l  t he  
c o s t s  of t he  disseminat ion and consu l t a t ion  be  handled? New approaches t o  t h i s  
problem w i l l  be explored i n  the  fu tu re .  Some of t he  cu r ren t  s t r u c t u r a l  ana lys i s  
programs are ava i l ab le  from computer u t i l i t y  companies on a surcharge bas i s .  An 
increas ing  number of i n d u s t r i e s ,  t h a t  previously r e l i e d  on crude approximate 
techniques o r  simply ignored s t r u c t u r a l  ana lys i s  a l toge the r ,  are beginning t o  
use t h e s e  s t r u c t u r a l  a n a l y s i s  programs on a rou t ine  bas i s .  For example, one 
manufacturer of o f f i c e  reproducing machines has  begun t o  use  computer programs 
t o  perform dynamic ana lys i s  of i t s  machines i n  order  t o  reduce v i b r a t i o n s  and 
thus improve t h e  sharpness of the reproduct ions produced by the  machine. In  t h e  
f u t u r e ,  regula tory  agencies may r equ i r e  t h a t  s t r u c t u r e s  i n  which publ ic  s a f e t y  
is involved be designed and analyzed using computer programs t h a t  have been cer- 
t i f i e d .  This could have a s i g n i f i c a n t  a f f e c t  on design procedures. 

Minicomputers and microcomputers w i l l  cont inue t o  become more powerful and 
less expensive. 
many pre-and post-processing funct ions t h a t  are now done i n  a batch mode on t h e  
macrocomputers. One i n t e r e s t i n g  p o s s i b i l i t y  i s  t h a t  s p e c i a l  purpose minicompu- 
ters w i l l  be developed t o  execute  s p e c i f i c  s t r u c t u r a l  ana lys i s  programs. Under 
t h i s  scheme, one could obta in  a turn-key s t r u c t u r a l  ana lys i s  c a p a b i l i t y  includ-  
ing  software', hardware, and documentation. 

These machines w i l l  assume the  r o l e  of i n t e r a c t i v e l y  handling 

More powerful macrocomputers present ly  under development w i l l  make a v a i l -  
ab l e  t o  t h e  ana lys t  t he  low c o s t ,  high capac i ty ,  high speed computer needed t o  
conduct t rans ien t - response  and nonl inear  analyses  o r  t o  perform design and optimi- 
za t ion  s tud ie s .  
l a rge  number of t i m e s  i n  order  t o  obta in  a so lu t ion .  Current ly ,  t he  c o s t  of 
t hese  analyses  are p roh ib i t i ve  when appl ied t o  l a rge  s t r u c t u r a l  models needed 
t o  represent  r e a l  s t r u c t u r e s .  

Such problems r equ i r e  t h a t  t h e  governing equations be solved a 

A s  t h e  a n a l y s t ' s  c a p a b i l i t y  t o  so lve  complex problems (e.g., those involv- 
ing nonl inear  phenomena, t r a n s i e n t  response,or  buckling) i s  increased,  s o  w i l l  
be t h e  amount of  judgment t h a t  he is required t o  exercise. 
var ious s o l u t i o n  parameters,  s o l u t i o n  s t ra tegy,  and d i s c r e t i z e d  s t r u c t u r a l  model 
r equ i r e s  ex tens ive  experience.  
preprocessors  could be developed which, when given d a t a  t h a t  descr ibes  the  
s t r u c t u r e  and type of ana lys i s  t o  be performed, would provide t h e  ana lys t  with 
infqrmation t o  guide him i n  making a mathematical model and s e l e c t i n g  an appro-, 
p r i a t e  s o l u t i o n  s t r a t e g y .  The preprocessor could even au tomat ica l ly  set many 
of t he  s o l u t i o n  parameters i n  t h e  computer program i n  much the  same way t h a t  an 
automatic camera s e l e c t s  exposure parameters based on l i g h t  meter readings.  The 
experienced use r  could ove r r ide  t h e s e  s e t t i n g s ,  of course,  i f  he f e l t  i t  appropri-  
ate. 
sis i n  less t i m e  and wi th  lower cos t .  

Se l ec t ion  of t he  

To guide t h e  ana lys t  i n  t h i s  kind of problem, 

Such c a p a b i l i t y  would enable  t h e  ana lys t  t o  conduct a more accura te  analy- 
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To be prepared to function effectively in the environment of the future, 
engineering students will have to be given a balanced curricula that provides 
both a good background in fundamentals of mechanics and familiarity with cop- 
cepts such as discrete representation of structures, matrix algebra, andnumeri- 
cal analysis that are fundamental to computer analysis of structures. 

In summary, the structural analyst will surrender some autonomy in the 
area of software development and utilization. 
format procedures will be required. However, the analyst will have available 
to him powerfu1,system-oriented,engineering analysis programs that will enable 
him to solve complex interdisciplinary problems and relieve him of much of the 
routine noncreativs work with which he must now contend. 

More formal programming and data 

379 





COMPUTER SIMULATION O F  COMPOSITE MATERIALS 
FOR STRUCTURAL DESIGN 

Edward L. Stanton 
Prototype Development Associates, Inc. 

As almost anyone involved in structural design today will tell you, the use of 
composite materials for primary structure tends to make structural response more 
difficult to predict. The reasons for this increased difficulty range from problems in 
material characterization to problems in predicting the complex load interactions that 
can occur among constituents during failure. This is not to say that simple effective 
modulus methods should not be used when appropriate, obviously they should. How- 
ever, even in this situation it may require more than the rule of mixtures to determine 
the effective moduli for a representative volume element of the material. 

The point of this preamble is to indicate yet another role that the computer is 
assuming in structural design; namely; a bridge that helps bring the technology of the 
materials scientist to the structural engineer. This is an area of considerable activity 
at all levels, and it seems clear that the role of the computer will grow as computational 
models are developed that better characterize real composite materials. The models 
now available are typically used in a preprocessor mode to characterize statistically 
homogeneous stress-strain behavior, and in a postprocessor mode to predict margins 
of safety or survival probabilities. Also, computer data files are becoming the 
archive source for  materials test data as it is developed for many new composites thus 
replacing the traditional handbook. 

The mode in which the computer is used to f i l l  the roles just described will 
more than likely change with the new minicomputers and other hardware developments, 
Computational models in the future may use specially designed macroprocessors for 
digital simulation of constituents. There are several factors that make computer simu- 
lations of this type attractive: one, the rapid advances in electronic chip technology 
make it economically feasible, and two, the triaxial as well as statistical nature of the 
materials behavior make an all software simulation expensive. To illustrate this point, 
it currently requires almost as much computer time to calculate survival probabilities 
for some 3D materials given the state of stress and strain as it does to compute the 
effective modulus stress-strain solution for the structure. While this may appear 
excessive, it reflects the computational difficulty that can occur when material behavior 
is characterized by a complex microstructure. 
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THE FUTURE OF COMPUTERIZED STRUCTURE ANALYSIS 

Edward L. W i  1 son 
University o f  Cal i forn ia ,  Berkeley 

OPENING REMARKS 

The so lu t ion  o f  problems i n  t h e  f i e l d  of computational mechanics has pro- 
gressed t o  t h e  point  i n  time where general purpose computer programs are used 
f o r  t h e  majori ty  of problems. 
ment e f f o r t  and t h e  f ami l i a r i za t ion  o f  many use r s  with a p a r t i c u l a r  code, new 
computer programs f o r  t h e  so lu t ion  of l i nea r  s t r u c t u r a l  mechanics problems have 
not  emerged i n  t h e  pas t  few years.  However, it is  reasonable t o  s t a t e  t h a t  a 
la rge  por t ion  o f  every major computer program is  obsole te  and should be modi- 
f i e d  i f  optimum accuracy o r  e f f i c i ency  i s  t o  be rea l ized .  
several  reasons why these  general  purpose codes a r e  not being modified o r  
s i g n i f i c a n t l y  extended. F i r s t ,  some codes are operated on a roya l ty  bas i s ;  
therefore, t he re  is l i t t l e  motivation t o  increase t h e i r  e f f ic iency .  Second, 
many codes a r e  s o  l a rge  and have been developed over such a long period of  time 
t h a t  it is p r a c t i c a l l y  impossible t o  make bas i c  changes. 
a r ch i t ec tu re  of t h e  code w i l l  not  permit a change i n  t h e  bas ic  numerical ap- 
proach t o  a problem. 
w i l l  only be used i n  general  pmpose programs i f  a completely new program i s  
developed. I t  is  a l so  my opinion t h a t  new programs w i l l  not  necessar i ly  be 
adopted immediately by t h e  profession unless they solve problems t h a t  ex i s t ing  
programs cannot solve.  This i s  because t h e  u s e r ,  i n  general ,  w i l l  n o t  r i s k  
change t o  a new, unfamil iar  program f o r  t h e  sake of accuracy and ef f ic iency  
only. 

computer program, within t h e  next few years t h e  development of new, inexpensive 
computer hardware may be a compelling reason t o  change computer programs. 
development of  p a r a l l e l  and p ipe l ine  la rge  expensive computers has not  had a 
s i g n i f i c a n t  impact on t h e  so lu t ion  of problems i n  computational mechanics. 
However, minicomputers ( l e s s  than $50,000 with input ,  output and low speed 
storage) are cu r ren t ly  being used very e f f ec t ive ly  f o r  t h e  so lu t ion  of medium- 
s i ze  problem. I n  my opinion, t h e  most s i g n i f i c a n t  change is  ye t  t o  come. 
Within t h e  pas t  year severa l  d i f f e r e n t  types of  micro-computers (only 8 t o  16 
b i t s )  have been developed. The present p r i ces  of these  small programmable 
computers, complete with l o c a l  s torage  and input-output i n t e r f aces ,  range from 
$200 t o  $500. 
f o r  t h e  so lu t ion  o f  f i n i t e  element systems, it may be poss ib le  t o  so lve  l a rge  
dynamic nonlinear systems a t  a minimum of cost .  In  l i g h t  o f  t h e  new computer 
hardware developments t h e  purpose of my present research i s  t o  re-examine sev- 
eral t r a d i t i o n a l  numerical methods and t o  introduce some new numerical approaches 
f o r  both l i n e a r  and nonl inear  ana lys i s .  

As a r e s u l t  of t h e  l a rge  investment i n  develop- 

O f  course t h e r e  a r e  

Third,  t h e  b a s i c  

I t  is  my observation t h a t  major new numerical techniques 

While new capab i l i t y  is present ly  t h e  only reason f o r  t h e  use  of a new 

The 

If a system of these  micro-computers is s p e c i f i c a l l y  designed 
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ON THE STABILITY OF A CLASS OF IMPLICIT ALGORITHMS 
FOR NONLINEAR STRUCTURAL DYNAMICS 

Ted Belytschko 
University of Illinois at Chicago 

S U W R Y  

Stability in energy for the Newmark @-family of time integra- 
tion opepators for nonlinear material problems is examined. It 
is shown that the necessary and sufficient conditions for uncondi- 
tional stability are equivalent to those predicted by Fourier 
methods for linear problems. 

INTRODUCTION 

In this paper, stability in energy for the Newmark family 
(ref. 1) of time integration operators is examined. Stability for 
these operators was considered in the original paper of Newmark, 
who used essentially Fourier techniques which are strictly appli- 
cable only to linear problems. Belytschko and Schoeberle (ref. 2) 
have shown the unconditional stability of the particular form of 
the Newmark 6-operator that corcesponds to the trapezoidal rule 
(y=4, @=%) for nonlinear material problems by energy methods. 
Hughes (ref. 3)  extended this proof to the range of parameters 
(y=+, 6 2 % ) .  In this paper, it is shown by generalizing the defini- 
tion of discrete energy, sufficient conditions for unconditional 
stability in energy on both y and f3 can be obtained. These condi- 
tions are equivalent to the necessary conditions for the uncondi- 
tional stability of the Newmark operators in linear problems, so 
the conditions’ obtained herein are necessaryandsufficient for the 
unconditional stability for nonlinear material problems. 

PRELIMINARY EQUATIONS 

The equations will here be presented in the formalism of the 
finite element method. As indicated in Belytschko, et a1 (ref. 41, 
the spatial discretization in finite difference methods is ba- 
sically identical, so the choice of finite element notation is 
only a matter of convenience, not a restriction on the proof. The 
equations will only be outlined; details may be found in Zienkiew- 
icz (ref. 5). 

The fundamental step in any spatial discretization, which is 
often called the semidiscretization,is a separation of variables 
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in the form 

where x is the Cartesian coordinate, t the time, u the displace- 
ment fy&ild, & the shape functions, and d(e)the nods1 displacement 
of element e. The strains can then be related to the nodal dis- 
placements by 

(e) is where B consists of derivatives of ,he shape functions and L 
the connectivity matrix. 
then 

The discrete equations of motion %e 

where M is the mass matrix, a the nodal accelerations (second de- 
rivatives of d with respect t o  time), p the external nodal forces 
and - f the internal nodal forces, which-are given by 

(4) f =c L(e)Tf(e) = 2 & (e) T f BTa dV - - - - -  
e e V (e) 

Equations ( 3 )  and (4) can be derived from the principle of virtual 
work with the inertial forces included in a d'Alembert sense; see 
for example Belytschko, et a1 (ref. 6). 

We define a discrete internal energy by 

u1 = 0 

where upper case subscripts denote the time step and A denotes a 
forward difference 

AgI = E - E  (6a) -1+1 -1 

and 
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When p=+, eq. (5) represents a trapezoidal integration of the non- 
linear stress strain curve, while p=O corresponds to Eulerintegra- 
tion. 

By means of eqs. (2) and ( 4 ) ,  eq. (5 )  can also be 

T 
%+l E UI + % Ac1[(l-p)f -1 + pf -I+J (7) 

We require that the discrete internal energy be positive definite, 
so that 

J=l 

The kinetic energy T is given by 

where v are the nodal velocities (first derivative of - d with res- 
pect t E  time). 

The Newmark difference formulas are 

When B > 0, these equations are implicit, and hence for nonlinear 
materials, the solution of a nonlinear system of equation is 
necessary. The exact solution of the nonlinear system ofequations 
at each time step is not possible; at each time step there will be 
an error ferr given by -1 

ferr = PI - f -1 -1 --I - Ma 
We define an energy error criterion 

where E is a small constant and require that the solution of the 
nonlinear equations at each time step satisfy this criterion. 
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PROOF OF UNCONDITIONAL STABILITY 

We will now show that the error criterion, eq. (13), is a 
sufficient condition for the unconditional stability in energy of 
the Newmark integration formulas for ~ 2 % ~  @1y/2. Stability in 
energy is described in Richtmyer and Morton (ref. 7) and has pre- 
viously been used for the derivation of stability conditions f;or 
the solution of linear problems by the Newmark @-method by Fujii 
(ref. 8). 

that it be shown that a positive definite norm of the solution is 
bounded regardless of the size of the time step. As pointed out 
in reference 7, the norm need not be the physical energy, though 
in many cases it is. For the purposes of this proof, we define 
the norm by 

The demonstration of unconditional s t a b i l i t y i n e n e r g y r e q u i r e s  

Because of the requirement of eq. (8), UI is positive definite, 
whereas the positive definiteness of the mass matrix M assures the 
positiveness definiteness of the remaining two quantiEies if 

28 2 y 

Stability in energy is then assured if we can show that SI is 
always bounded, i.e. that 

sI+l L (l+&*)SI (16) 

where E *  is an arbitrarily small quantity. The interpretation of 
the condition of eqs. (14) and (16) is as follows. Provided that 
the discrete internal energy is a monotonically increasing func- 
tion of the displacements, the boundedness of SI implies that the 
velocities and displacements are bounded, which corresponds to the 
notion of stability. 

T h e p r o o f o f s t a b i l i t y t h e n c o n s i s t s o f d e d u c i n g e q .  (16) fromeqs. 
(7) to (11) and the homogeneous formof eq. ( 3 ) .  From eqs. (9) and (lo), 
it follows that 
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so 

TI+l = TI + [AdT -1 + At2(@-3Sy)a;+ At2(liy-@)aT+l] 

Thus if we let 

y = I J  

then eqs, (7) and (18) yield 

= TI + UI + AdT[(l-y) (EaI+ gI) TI+l + uI+l -1 

The second term on the right hand side of eq. (20) corresponds to 
the error in energy as defined by eq. (13), and the last term can 
be rearranged so that we obtain 

The last term on the right hand side of eq, (21) is negative semi- 
definite if 

or if both of the above inequalities are reversed. However, iftihe 
inequalities are reversed, as can be seen from eqs, (14) and (15), 
the norm SI is not positive definite. Hence, only the conditions 
given by eq. (22) are pertinent. Under these conditions, the in- 
equality of eq. (21) applies even if the last term is dropped, The 
remaining terms then yield eq. (16). 
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DISCUSSION AND CONCLUSIONS 

Several remarks should be noted in applying these results to 
computations, First, the stability hinges orr the achievement of a 
solution in each time step that satisfies eq. (13). The conver- 
gence of solution schemes, such as the modified Newton Raphson 
method, cannot be assured, and is therefore the primary obstacle 
in obtaining stable solutions. The difficulties are particularly 
severe in elastic-plastic problems if the tangential stiffness 
method is used whenever unloading takes place over a large part of 
the mesh, 

It is also not clear whether the form of the error criterion, 
eq. (13), is suitable for very fine meshes. Numerical experiments 
indicate that it becomes increasingly difficult to satisy eq. (13) 
for finer meshes, for although the criterion appears to be mesh- 
independent in that the right hand side increases with the size of 
the physical problem, the right hand side does not vary as a mesh 
is refined. Furthermore, in very large meshes there is a possi- 
bility of cancellation of errors, i.e. positive error energy 
transfer in one portion, with negative error energy transfer in 
another portion. This can be avoided by placing the absolute 
value within the summation. 

Results have been reported for a special caseofthbsoperator 
(y=4, f3=&) in reference 2 .  Both material and geometric nonlinear- 
ities were included in those problems. However, the proofs given 
here and in reference 2 require the absence of geometric nonlin- 
earities; if geometric nonlinearities are included, eq. (5) does 
not imply eq, ( 7 ) ,  for in geometrically nonlinear problems AB does 
not vanish. Hence, as shown in reference 9, in geometrically non- 
linear problems, energy transfer is associated with the rotation 
of a stressed member: this effect results in the generation of 
energy if the stress is tensile and is hence destabilizing under 
those conditions. In many structural dynamics problems, the total 
rigid body rotation that takes place is insufficient for this 
energy generation to be significant. However, test problems have 
been devised where the energy error is so large that for practical 
purposes the computation can be considered unstable. 

Finally, we comment on some experience with the requirement 
of eq. ( 8 ) .  This condition requires that the numerical integra- 
tion of the internal work always yield a positive quantity. In 
elastic-plastic materials and other strongly dissipative materials, 
this condition poses no problems. However, when the stress is a 
single-valued function of the strain, eq. (8) can easily be 
violated in cyclic load paths. However, numerical experiments do 
not indicate that violation of eq. (8) results in any catastrophic 
failure of the computation. 
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A REVIEW OF SUBSTRUCTURE COUPLING METHODS FOR DYNAMIC ANALYSIS* 

Roy R. Craig, Jr. and Ching-Jone Chang 
The University of Texas at Austin 

SUMMARY 

This paper assesses the state o f  the art in substructure coupling for 
dynamic analysis. A general formulation, which permits all previously de- 
scribed methods to be characterized by a few constituent matrices, is developed. 
Limited results comparing the accuracy of various methods are presented. 

INTRODUCTION 

Analysis of the response of a complex structure to dynamic excitation is 
usually accomplished by analyzing a finite element model of the structure. 
Since the finite element model may contain thousands of degrees of freedom, and 
since the structure may consist of several substructures which are designed and 
fabricated by different organizations, it is desirable to have a method of 
dynamic analysis which permits the number of degrees of freedom of the dynamic 
model to be reduced and which also allows as much independence as possible in 
the design and analysis of substructures-. The names substructure coupling and 
component mode synthesis have been applied to the process of partitioning a 
structure into substructures, or components, and describing the physical dis- 
placements of the substructures in terms of generalized coordinates which are 
the amp1 i tudes of predetermined substructure modes. A number of substructure 
coupling methods have been proposed. The goal of most of these has been to 
permit analytical determination of system natural modes and frequencies from 
given finite element models of the structure. To a lesser extent, the use of 
exper i menta 1 1 y -de termi ned substructure data to syn t hes i ze mat hema t i ca 1 model s 
of structures has been considered. 

One classification of substructure coupling methods is based on the condi- 
tions imposed at the interface between one substructure and the adjoining sub- 
structures when mode shapes are determined for the substructure. One class is 
called fixed-interface methods, and a second is called free-interface methods. 
Related to the latter is a class which may be called loaded-interface methods. 
Finally, some consideration has been given to permitting arbitrary interface 
conditions which may be a combination of the above three types. Such a method 
may be called a hybrid method. 

The following classes o f  modes are used in defining substructure general- 
ized coordinates: 
body modes. 
paper. 

normal modes, constraint modes, attachment modes, and.rigid- 
These are defined in greater detail in a later section of the 

*This work was supported by NASA Grant NSG 1268. 
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SYMBOLS 

The principal defining equations are given in parenthesis after the 
definition of each symbol. 

A 
B 
C 
f 
F 
G 
k 
K 
L 
m 
M 
P 
9 
R 
T 
T1 
T2 
U 

X 
ii 

interface equi 1 i brium matrix (29) 
displacement compatibility matrix (29) 
combination of A and B (33) 
substructure force vector (1 ) 
equivalent force vector (15) 
flexibility matrix (19) 
substructure stiffness matrix (1 ) 
system stiffness matrix (30, 37, 45) 
Lagrangian (26) 
substructure mass matrix (1 ) 
system mass matrix (30, 37, 45) 
substructure generalized coordinate vector (22 
system general ized coordinate vector (31 ) 
inertia relief matrix (14) 
substructure kinetic energy (21) 
substructure transformation matrix (22) 
system transformation matrix (31 , 36) 
substructure potential energy (21 ) 
substructure physical coordinate vector (1 ) 
Lagrange mu1 tipl ier vector (26) 
free-interface or  loaded-interface normal mode matrix (7) 
substructure generalized stiffness matrix (24, 25) 
substructure eigenvalue, eigenvalue matrix (2 , 3) 
substructure generalized mass matrix (24, 25) 
Lagrange mu1 tipl ier vector (26) 
general i zed coordinate (27) 
Lagrange multiplier vector (38) 
fixed-interface normal mode matrix (4) 
modified attachment mode matrix (20) 
unmodified attachment mode matrix (13, 17) 
constraint mode matrix (1 1 ) 

25) 

Subscripts and Superscripts: 

d - dependent coordinates (32) 
i non-interface (interior) coordinates (1) 
j interface (J-uncyion) coordinates (1 ) 
k - kept coordinates (18) 
R - 1 inearly-independent coordinates (32) 
r - rigid-body modes , temporary constraints (14, 15) 
u unrestrained coordinates (15) 
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HISTORICAL REVIEW 

The following i s  a brief review of  the development of a number of sub-  

Hurty (refs. 1 , Z )  developed the f i r s t  substructure coupl ing  method capable 

structure coupling methods: 

of analyzing substructures w i t h  redundant interface connection. 
face normal modes, rigid-body modes and redundant constraint modes are used 
t o  define substructure general ized coordinates. 

Fixed inter- 

Bamford (ref.  3) introduced attachment modes, and developed a hybrid 
substructure coup1 i n g  method. 

Craig and Bampton (ref. 4 )  and Bajan and Feng (refs. 5,6) modified Hurty's 
method by pointing out  t h a t  i t  i s  unnecessary t o  separate the set  of constraint 
modes in to  rigid-body modes and redundant constraint modes. 

Goldman (ref. 7) and Hou (ref. 8) developed methods which employ free- 
interface substructure normal modes. They differ in the technique used t o  
effect coupling of the substructures, as will be explained in a subsequent 
section. 

Benfield and Hruda (ref. 9)  introduced two new concepts: they employed 
Guyan reduction (ref.  10) t o  determine interface loading, and they used a 
coupling strategy which differs slightly from strategies used by previous 
authors. 
f ield and Hruda: 
constrained with interface loading. 

These features serve as the basis for four methods described by Ben- 
free-free, constrained, free-free with interface loading, and 

MacNeal (ref.  11)  developed a hybrid method which allows some substructure 
interface coordinates t o  be constrained while others are free. 
gested the use of statically derived modes t o  improve the representation of 
the substructure motion. 

provided for  arbitrary mass loading of interface poin ts .  

effects of modes truncated from the final, set  free-interface substructure 
normal modes. 

He also sug- 

Goldenberg and Shapiro (ref.  1 2 )  employed a method similar t o  H O U ' S ,  b u t  

Rubin  (ref.  13) extended MacNeal ' s  method t o  include second-order residual 

Kuhar and Stahle (ref.  14)  *introduced a dynamic transformation which 
approximates the effect of modes which are truncated from the final se t  of 
system generalized coordinates. 

face mode sets which he calls "the method o f  attachment modes" and "the method 
of constraint modes." The former se t  i s  combined w i t h  both free-interface 
normal modes and w i t h  fixed-interface normal modes t o  form system coordinates. 
The la t te r  i s  combined only w i t h  fixed-interface normal modes. 

In a recent paper Hintz (ref.  15) describes two statically complete inter- 

In reference 16 Craig and Chang describe three methods for reducing the 
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number of interface coordinates in the f i n a l  system equations obtained by the 
Hurty method o r  the Craig-Bampton method. 
provide examples of substructure coupling based on the methods of MacNeal and 
Rubin .  

In reference 17 Craig and Chang 

The previous references are primarily concerned w i t h  the use of substruc- 
ture coupling methods i n  the analytical determination of modes and frequencies 
of complex structures. 
tal data as i n p u t  t o  coupling procedures. 
nature: 

Several studies , however, explore the use of experimen- 
The following studies are of this  

Klosterman's thesis (ref.  18) provides a Comprehensive study of the exper- 
imental determination of modal representations of structures including the use 
of these models in substructure coupling. 
substructure coup1 ing by two methods which he cal ls  "component mode synthesis'' 
and ''general impedance method" respectively. The former closely para1 le l s  
Bamford's work. In reference 20 Klosterman and McClelland introduce "inertia 
restraint" and outline a coupling procedure that appears t o  be especially 
suited t o  coupling two substructures where one i s  represented by modes and the 
second by a finite-element model. 

In reference 19 Klosterman t reats  

Kana and Huzar (refs.  21 $22) developed a semi-empirical energy approach 
for predicting the damping of a structure in terms of damping of substructures. 

Hasselman (ref .  23)  employs a perturbation technique t o  describe substruc- 
ture damping and discusses, in a general way, coupling of substructures u s i n g  
either free-interface modes o r  fixed-interface modes. 

Two symposia on the topic of substructure coupling have been held (refs. 
24,25). 
symposia, are references 26 and 27. 

Survey papers of particular importance, which were presented a t  these 

A GENERAL FORMULATION OF SUBSTRUCTURE COUPLING FOR DYNAMIC ANALYSIS 

The substructure coupling methods mentioned in the preceding section may 
be described by a single comprehensive formulation. Differences i n  the methods 
result from the use o f  different mode sets t o  describe substructure generalized 
coordinates and different methods of enforcing compati b i  1 i t y  of substructure 
interfaces. We will first define the mode sets  used in representing the sub- 
structure physical displacements i n  terms of substructure generalized coordi - 
nates. Then, us ing  the Lagrange multiplier method, we will show how enforce- 
ment of compati bi 1 i t y  a t  substructure interfaces leads t o  system equations of 
motion. Finally, the vectors and matrices which define the various methods 
are tabulated. 

Definition of Mode Sets 

The physical displacements of each substructure are represented i n  terms 
of substructure general ized coordinates t h r o u g h  the use of various "assumed 
modes," including normal modes of the substructure and certain s t a t i c  deflec- 
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t ion modes. 

The equation of motion of  a substructure, when connected t o  other sub- 
structures and executing undamped free v i b r a t i o n ,  may be written i n  the form 

Fixed- Interjace Normal Modes 

Fixed-interface normal modes are obtained by setting x j  : 0 and solving 
for  the free-vibration modes of the substructure. 
eigenvalue probl em 

Equation (1 )  reduces t o  the 

( k i i  - A 2 m i i )  xi  = 0 (2 1 
The resulting substructure eigenvalues (frequencies) form a diagonal matrix 

(3 )  
2 A f d i a g  ( A i  A; . . .  AH^) 

and the corresponding normalized eigenvectors (mode shapes) form the modal 
matrix 

(4) 
@il  @ i 2  @ i N i  
0 0 . . .  0 
- --------- 

where N i  is the t o t a l  number of substructure interior coordinates. 

Free-Interface Normal Modes ; Loaded-Interface Normal Modes 

Free-interface normal modes are obtained by setting f .  E 0 i n  equation (1) 
T h u s ,  

J 
and so lv ing  for the resulting modes and frequencies of the Substructure. 

( k  - A 2 m )  x = 0 (5) 

The matrix of  eigenvalues i s  

A E d i a g  ( A i  A; ... A i )  
where N = N i  + N j  is the t o t a l  number of substructure degrees of freedom. 
Since the structure may be unrestrained, there may be Nr rigid-body modes. 
normalized eigenvectors form the modal matrix 

The 

(7) 

39 7 



Several methods (e.g., refs. 9,12) employ loaded-jnterface normal modes. 
These are obtained by augmenting the interface mass and/or stiffness in equa- 
tion (5) to give 

m.. 
(8) [~~ ki (kjj j + ~ j j ~  ~ : )  (qj + ~ j j ~ ]  {l;} = {I} 

- 
and  ti^ are the interface "loading" matrices. The symbol 0 will be used kj j j j  

for the modal matrix corresponding to equation (8). 

Constraint Modes 

To complement fixed-interface substructure normal modes a set of con- 
straint modes may be employed (e.g., refs. 2,4). A constraint mode is defined 
by imposing a unit displacement on one physical coordinate and zero displace- 
ment on the remainder of a specified subset of the substructure physical coor- 
dinates. 
applying a Guyan reduction to all interior coordinates; i.e., the mass is 
neglected in the top row-partition of equation (1) and unit displacements are 
imposed successively on all junction coordinates giving 

The procedure employed to obtain constraint modes is equivalent to 

Ckii k..] 1 J  [::;I = 0 (9) 

Thus, the N j  constraint modes which form the columns of the constraint mode 
matrix Y are obtained by solving the (multiple) static deflection problem 

k.. yij = -kij 
11 

Then, 

Y f [ ~ ~ ~ ]  
If the substructure is unrestrained, Y will contain Nr linearly indepen- 

dent rigid-body modes. 
interface normal modes are orthogonal with respect to the stiffness matrix k. 

As noted in reference 4, constraint modes and fixed- 

Attachment Modes 

Attachment modes are"static"modes which may be used to complement free- 
interface substructure normal modes (e.g., refs. 3,11,15,18). An attachment 
mode is defined by imposing a unit force on one physical coordinate and zero 
force on the remainder o f  a specified subset of substructurkphysical coordi- 
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nates. Attachment modes will be described first for restrained structures 
(for which k is non-singular) and then for unrestrained structures. 

Attachment modes for restrained substructures.-Attachment modes for a 
restrained substructure are obtained by solving the multiple static deflection 
problem 

Then the attachment mode matrix is defined by 

Attachment modes can be expressed as linear Combinations of free-interface 
normal modes. However, in a later section when the normal mode set is trun- 
cated, the attachment modes will be modified so that they are orthogonal to the 
kept normal' modes. The modified attachment mode set will be called X. 

Attachment modes for unrestrained substructures. -For an unrestrained sub- 
structure, attachment modes may be obtained by using rigid-body inertia forces 
to equilibrate applied forces and by temporarily imposing a set of Nr nonredun- 
dant constraints. Let 0, be the set of Nr (normalized) rigid-body modes of the 
substructure and let 

T 

R =  I -mo 0' r r  

be the inertia relief matrix (ref. 15). 
obtained from 

Then, the attachment modes may be 

where r stands for the Np restrained interior coordinates and u stands for the 
Nu = Ni - Nr unrestrained interior coordinates. From equation (15 )  
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~ u u  k j u  :y:l 
Final ly  , 

T Rigid-body modes may be removed from the X matrix by premultiplying i t  by R . 

Truncation of Mode Sets 

One of the most significant features of substructure coup1 i n g  techniques 
i s  tha t  they permit the number of degrees of freedom of a system t o  be reduced 
i n  a systematic manner through truncation of the mode sets which define the 
generalized coordinates of the system. Hin tz  ( re f .  15) has provided a compre- 
hensive discussion of truncation of  mode se t s .  Al though  truncation is  usually 
accomplished by elimination of some coordinates associated w i t h  substructure 
normal modes (e.g., re f .  26), truncation may also be associated w i t h  other 
coordinates such as constraint mode coordinates (e.g. , ref .  16). 
will be confined here t o  the former, i . e . ,  truncation of normal mode coordi- 
nates. The  subscript k will be used t o  denote the columns of Q, or 0 which are  
- kept. 

Attention 

For example, the Nk modes which are  kept  form the columns of @k,  where 

@i k - 1  'j k 

The diagonal matrix of corresponding 

As noted previously, attachment 

eigenvalues will be denoted by +&' 

modes can be expressed as l inear  combina- 
t ions of the free-interface normal modes. However, when the normal mode set is 
truncated, the attachment modes can no longer be represented i n  terms of 0 k .  On 
the contrary, i t  is  possible t o  modify the attachment modes so t h a t  they are 
orthogonal t o  the modes i n  0 k  (e.g., see refs. 13,17). T h i s  will be illus- 
t ra ted here for  attachment modes of  a restrained substructure. 

Note, i n  equation (12), t h a t  the columns of correspond t o  columns of the 
f l ex ib i l i t y  matrix k'l. 
f l e x i b i l i t y  matrix is  given by (see ref.  17) 

The contribution of the kept normal modes t o  this 
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The contribution o f  the modes in @k t o  can be removed from x leaving 

Energy Expressions for Substructures; Coordinate Transformation 

The derivation of system equations of motion will be based on Lagrange's 
equations of motion w i t h  undetermined multipliers. Expressions for kinetic 
energy and strain energy of the substructures are required. 
given f i r s t  for substructure physical coordinates and then i n  terms of sub- 
structure generalized coordinates. 

These will be 

The kinetic energy and potential energy of a substructure are given by 
T = g i T m i  , U = T X  1 T  k x  

respectively. The substructure physical coordinates, x ,  may be expressed i n  
terms of substructure generalized coordinates, p ,  by the coordinate transfor- 
mation 

When the above coordinate transfo.rmation i s  inserted i n t o  equations (21 ), the 
substructure generalized mass and stiffness matrices are obtained. 

x = T 1  p (22 1 

T h u s ,  

where 
1-1 = T1 T m T1 , h . = T ; k T 1  

Substructure Coupling; System Equations - o f  Motion 

To i l lustrate  coupling of substructures t o  form a system, two substruc- 
tures, a and 8,  will be employed. Let 

The substructure generalized coordinates are not a l l  independent b u t  are 
related by force equilibrium and displacement compatibility a t  substructure 
interfaces. These relationships may be expressed by the equations 

A p = O  , B p = O  

respectively. Then, a Lagrangian may be formed as follows: 

40 1 



The system equations may be obtained by applying Lagrange’s equation i n  the 
form 

where 5, can refer t o  pn,  qn or  vn. 
combined t o  give 

Then equations (26) and (27) may be 

p p + ~ p = A q + B v  T T 

together w i t h  the constraint  equations 

A p = O  , B p = O  

In the works c i ted  previously, two basic approaches have been employed fo r  
solving the coupled equations contained i n  equations (28) and (29).  
t o  system equations of the form 

Both lead 

M q + K q  = 0 (30) 

The method used by most authors will be referred t o  as the implicit  
method. I t  involves the use of a coordinate transformation T2 t o  replace the 
s e t  of dependent coordinates, p ,  by a set of l jnear ly  independent coordinates 
q .  T h u s ,  

P = T 2 q  (31 1 
Let p be parti t ioned into dependent 
coordinates , p~ , as fol 1 ows : 

p r  

coordinates , Pd , and l inear ly  independent 

PR pd I 
and l e t  the constraint  matrices A and B be combined t o  form the matrix C ,  i .e . ,  

c P ~ [ ~ ] p  = 0 (33) 

Since C will have fewer rows than columns, equations (32) and (33) may be 
combined and written i n  the form 
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where Cdd is  a non-singular square submatrix of C. Then 

Let q E pk. Then equations (31) and (35)  give 

as the general expression for transformation matrix T,. 
i n  equation (30)  are given by 

The matrices M and K 
L 

T K = T2 K T2 (37)  

Goldman (ref.  7) solved equations 
be referred t o  as the expl ic i t  method. 

Then equation (28) may be written 
.. r 

(28) and (29)  by an approach which will 
Let 

I J p + K p  = C ' O  (39)  

CT may be related t o  p by multiplying equation (39)  by C 1-1-l and incorporating 
equation (33 ) .  Then equation (39) may be written i n  the form 

Goldman's f inal  system equations are obtained by le t t ing 

9 -1/2 
P ' K  

Then equation (40) can be reduced t o  the form of  equation (30) w i t h  

M = I , K = K~~ u-l[I - CT ( c  u-' CT)'l c p-l] K''~ (42 1 

Since equation (41) implies no reduction. i n  number of coordinates, equation 
(30) leads t o  some extraneous frequencies and modes i n  the Goldman method. 
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Description of Various Coup1 i n g  Methods 

Table I shows the constituent vectors and matrices (i.e. , T1 p ,  T2, etc.) 
of a representative selection of the substructure coupling methods named 
e a r l i e r  i n  the his tor ical  review. In a l l  cases the methods f i t  in to  the 
general formulation just described. However, i n  a few cases the notation has 
been simplified by employing a parti t ioning of C (or 9) different  from tha t  
indicated i n  equations (34) and (36). 

CONVERGENCE PROPERTIES 

Desirable character is t ics  for substructure coupl ing  methods include 
(e.g. , see refs.  13,15): computational efficiency, interchangeability, compo- 
nent f l ex ib i l i t y ,  synthesis f l e x i b i l i t y ,  s t a t i c  completeness, and t e s t  compat- 
i b i l i t y .  Al though  i t  is no t  w i t h i n  the scope of this paper t o  make a detailed 
comparison of coupling techniques on the basis of the above c r i t e r i a ,  a few 
resul ts  concerning computational efficiency, i .e. , convergence, will be 
presented. Several authors have previously discussed convergence of system 
frequencies (e.g. refs .  13,16,26,27). Rubin  ( re f .  13) also considered con- 
vergence of mode shapes and shear and moment i n  beam elements. 

mode 3 of  a clamped-clamped uniform beam. 
Figure 1 shows frequency and RMS bending moment convergence properties of 

CONCLUDING REMARKS 

A general formulation has been presented which permits substructure 
coupling methods t o  be defined i n  terms of a few constituent matrices. 
A1 t h o u g h  a detailed comparison of various substructure coupl i n g  methods has 
not been w i t h i n  the scope of  this paper, i t  is hoped tha t  the presentation of 
this general formulation w i  11 faci l  i t a t e  future studies of substructure 
coupling methods. A t  the present time the use of substructure coupling as an 
analysis tool seems t o  be a well-developed subject. On the contrary, much 
remains to  be learned about effect ive ways t o  use substructure coupling i n  
conjunction w i t h  experimental studies. 
receive increased attention i n  the future. 

I t  i s  hoped tha t  this topic will 
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CORIOLIS EFFECTS ON NONLINEAR OSCILLATIONS OF 

ROTATING CYLINDERS AND RINGS 

Joseph Padovan 
University of Akron 

SUMMARY 

The effects which moderately large deflections have on the frequency 
spectrum of  rotating rings and cylinders are considered. To develop the 
requisite solution, a variationally constrained version of the Lindstedt- 
Poincare procedure is  employed. 
tion t o  considering the effects of displacement induced nonlinearity, the 
role of Coriolis forces i s  also given special consideration. 

Based on the solution developed, in addi- 

INTRODUCTION 

Numerous engineering applications ( t i res ,  turbines, satel l i tes ,  etc.) 
contain ro tor  systems which are essentially rings or shells of revolution 
ro t a t ing  about  their axes. 
design, a thorough dynamic analysis is necessary. 
papers have been published which deal w i t h  the free vibration properties 
of such systems. 
as can be seen from the excellent surveys by references 1 and 2. The effects 
of rotation, i n  particular Coriolis forces, have been discussed by references 
3 t o  7. With the exception of references 6 and 7 which treated small dynamic 
deformations superposed on large s ta t ic  deformations, the previous investiga- 
t ions  incorporating Coriolis acceleration forces have been limited t o  linear 
shell theories. 
satel l i tes ,  and turbines are flexible enough t o  undergo significant deflections 
i n  the form of moderately large rotat ions.  

I t  i s  the purpose of this paper t o  consider the effects which such 
moderately large rotations have on the frequency spectrum of r o t a t i n g  struc- 
tures. In particular, the analysis presented will consider the free 
vibration characteristics of rotating rings and cylinders wherein the deflec- 
tions involve moderately large rotations.  Since the analytical model used 
t o  characterize the stated problem involves nonlinear par t ia l  differential 
equations, a modified version of the renormalized perturbation procedure i s  
employed t o  evaluate the overall solution. This modification was undertaken 
since the usual renormalized procedure is  unwieldy for systems of equations 
involving a multitude of frequency eigenvalue branches and secondly yields 
steady s ta te  results which are irregular for the linearized case. The modi- 
fication employed involves prescribing the system energy i n  advance; hence, 
a hierarchy of energy states i s  obtained from which the strained parameter 
can be evaluated. 
regular, and thus, the proper limiting behavior is  obtained for the linearized 

Obviously, i n  order t o  properly influence their 
In this regard, numerous 

Most such work has centered on stationary configurations, 

T h i s  is  a shortcoming since numerous rotor systems, t i res ,  

The resulting solution employing this procedure i s  
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case. 
nonl inear i ty ,  special  emphasis i s  centered on determining the e f f e c t s  o f  
C o r i o l i s  forces i n  the range o f  deformations marked by moderately l a rge  rota-  
t ions.  Hence the effects on the backward and forward t r a v e l i n g  waves w i l l  be 
evaluated. 

Based on the solut ion,  i n  add i t i on  t o  considering the global e f f e c t s  of 

GOVERN I NG EQUATIONS 

Since the nonl inear o s c i l l a t i o n s  o f  ro ta t i ng ,  e l a s t i c a l l y  supported r i n g s  
and i n f i n i t e  cy1 inders undergoing def lect ions i nvo l v ing  moderately l a rge  rota-  
t i o n s  are considered herein, the governing displacement equations of motion 
employed t o  model the s tated problem are def ined by ( re fs .  2,4,6, and 7) 

(1 1 3 F ~ A  W,tW,ee+f  cos (me) cos (wt)+ph(W,tt-2fiV,t-a2W) = 0 
2 

A ( V  ,ee+W , e + ~ W  ,,W ,ee)-p h( V , tt+2~W, t- f i2V)  = 0 
2 

where 
Eh E1 

R4 R2 
, A = -  A = -  ( 3 )  

such t h a t  E = Wm/R and 0, t, ( ),e, ( ):t, W, V, W m y  E, I ,  h, R, p ,  P, K, w, and 
a respect ive ly  represent c i rcumferent ia l  space, time, space and t ime d i f -  
f e ren t i a t i on ,  r a d i a l  and c i rcumferent ia l  s h e l l  displacements, maximum r a d i a l  
displacement, Young's modulus, moment o f  i n e r t i a ,  s h e l l  thickness, radius and 
density, i n t e r n a l  pressure, foundation e l a s t i c i t y ,  e x c i t i n g  frequency, and 
l a s t l y ,  the r o t a t i o n a l  speed of t he  shel l .  Due t o  the inherent nature o f  the 
c i rcumferent ia l  coordinate space and the f a c t  t h a t  the steady s t a t e  response 
i s  being sought, i t  fo l lows t h a t  W and V are pe r iod i c  i n  both space and time. 
To round ou t  the r e q u i s i t e  f i e l d  equations, the fo l l ow ing  po ten t i a l  energy 
funct ional  i s  associated w i t h  equations (1 ) and ( 2 )  , namely 

T 2n 
Y = J J I A  1 W,t,+A 2 (V,g+2V,eW+W2)+~A 2 (VyeW,:+WW,i) + 

0 0  
* 2  1 P F ~ A  W,;+(K+?r)W2+2f cos (me) cos (wt)W-ph[a2(R +W) +W,t + 

fi2V2+V,;+2a( R*+W)V, t-2nW, tV] Idedt  

where T = - ' and R* = R/Wm. 2nw 

2 L 

(4) 
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SOLUT I ON 

As noted, earl ier ,  the standard renormal ized perturbation procedure has 

This difficulty is circumvented by pre- 

the twofold difficulty of yielding irregular results as e 0  and secondly, i s  
unwieldy when more than one equation of motion involving several frequency 
eigenvalue branches i s  considered. 
scribing the systems potential energy i n  advance such t h a t  ( W ;  V )  = (W(e,t ,f ,  
m,y); V(e,t,f,m,r)). Once the solution i s  obtained, the role o f  y and W are 
reversed t o  t h a t  employed i n  the traditional version of the renormalized pro- 
cedure. 
hence W ,  V , and w are expanded in the following perturbation series 

To ini t ia te  the solution, w is treated as  the strained parameter; 

co 
i <w; v; W> = c <wi ;  v i ;  W . > E  

1 i =O 
(5) 

such tha t  time is stretched so that T = u t .  

In order t o  obtain the zeroth order equations, E i s  set  to zero; this 
yi el ds 

+ ( A  +K$)W~+A V +ph(w6Wo,tt - 
2 0 , e  

A W  0,eeee 

2 w o n V o  -n2Wo)+f cos (m6) cos ( T )  = 0 
ST 

+W ) = ph(w2V + 2 ~  QW -Q2Vo) A2("o,eo o,e 0 0 , T T  0 0,T 

* 2 
2f cos (me) cos (T)Wo-ph[a2(R +Wo) + +o2V2+w2V2 + 

WOWO,r 0 0 0 , T  

* 
2 w o n ( R  +W 0 ) V  0,T - ~ W ~ Q W ~ , . ,  V 3 1ded-C (8) 

whereas w i t h  time, the potential energy space i s  stretched so t h a t  r = y/Q. 
Since the steady state solut ion i s  sought,  

where W 
t o  the Following matrix set of ordinary differential equations, namely 

are time dependent. Employing equations (9), (6), and (7 )  reduce 

w2[B ]Y +W [B ]Y +[B ]Y +f COS ( T )  = 0 (1 0) o i m  ,mo,-c.c o 2111 ,mop 3111 ,mo , , 

such tha t  
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Noting that [B2m] i s  skew symmetric while [B,,] and  [B,,] are purely sym- 
metric, the steady s ta te  form of Y i s  given by ,mo 

Y = Z cos ( T )  + Z sin ( T )  (1 2) ,mo ,mc -ms 

where Z and Z satisfy the matrix equation ,mc ,rns 

Noting that the pencil of equation (13) yields the characteristic equation 
of equation ( lo) ,  equation (12) becomes unbounded for wo equal t o  the natural 
frequency eigenvalues of the linear case. The properties of such eigenvalues 
can be ascertained by developing the appropriate Rayleigh quotient. 
possible by inserting.y dmejT intolequation (10) t o  yield a complex second 
order regular polynomi2y matrix problem. The inner product of this  expression 
and i$, yields a bilinear form from which the following modified version of 
Raylgigh’s quotient is  obtained, namely 

This is 

As can be seen from equation (14) ,  Coriolis forces cause a twofold bifurcation 
i n  the number of eigenvalue branches. 
relationship betweenr and q-,, Wo, and Vg must be evaluated by inserting equa- 
tions (9)  and (12) i n t o  equation (8); this yields 

Following the previous comments, the 

[A m4+A +K+- P - p h ( ~ ~ + w $ n ~ ) ]  ( W ~ c o + W ~ s o + W & o + W ~ s o )  + 
1 2 R  

[A m2-p h (  a2+m2wi)] ( V ~ c o + V ~ s o + V ~ c o + V ~ s o ) + 2 m A  ( VscoWcco + 
2 2 

-v w -v w )-zPhw,Qm(Wcco v - w v  cso cso cco + vssowcso cco sco cso sso 

wscovsso sso sco cco cso cso cco sco sso -w v -v w +v w -v w + 

I 

denote coefficients of the Wo and Vo solution, namely where Wcco,.. , V  sso 
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bJo ;Vo) = (Wcco ;Vcco)cos (me )cos (T)+. . . +( wss0 ;vss0) s i n  (me )sin (T ) 

As can be seen from equations (13). and (15), four potential energy resonances 
are initiated for uo-O(u,,,f) wherein %f are the frequency eigenvalues of the 
linear problem. 

derivative of equations (1), ( Z ) ,  and (4 )  with respect t o  E and then setting E 
t o  zero. This yields 

Hence equation (5) is  regular for E -t 0 (the linear case). 

The f i r s t  order set of field equations can be obtained by taking the f i r s t  

wowlw; ,r+W;Wo, TW 1, T +Q2VOV1+wOw~V~,+ + 

* * 
0 0 , T  1,T 9T yT 0 1 0,'C 

w2V V +fiwlR Vo +61wOR V, +Qw W V + 

"0 wov 1 , 'i: +Qw lWOV0, '1: - QWOWl , T vo-Qwowl , TV 1 - 

Noting the form of the inhomogeneities appearing in equations (16) and ( 1 7 ) ,  i t  
follows t h a t  W1 and VI can be taken i n  the form 

where the coefficients W , i Y .  . . are directly obtained upon inserting equation 
(19) into equations (16) and (17). Furthermore, employing equation (19) in 
conjunction w i t h  the f i r s t  order potential energy constraint, equation (18) 
the following functional relationship i s  obtained for w1 , namely 
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where D is the determinant of the pencil of equation (13). 
u1 is  bounded and positive definite. T h i s  follows since 1/D(2%,0),. ..'etc. 
remain bounded for WuO~fO,~). Therefore, unlike the zeroth order set, W1 and 
V1 remain bounded for Wq,. 

In order t o  obtain the second order field equations, equations (1), (2), and 
(4)  are differentiated twice and then E is  set t o  zero. T h i s  operation yields 

Hence fo r  uo-O((,,+,,f), 

28 28 
0 = J J 

{A1W:,ee+'A1Wo,eew2,ee+A1(Vl,e +w1)2 + 0 0  

2A2(Vo,e+Wo)(V23e+W2) + A2(2(V0,e +w o )w o,e w 1,e + 

+W )W2 ) +  - A  1 W4 + ( K + E ) ( W : + ~ W ~ W ~ )  P + 
%,e 1 0 3 e  4 2 o,e 

2f  cos (me) cos ( T )  W2-ph[2n2(R +Wo)W2+a2W: + 
* 

n2(2VoV2+V;)+w;(2V2 v +v2 )+4w w v v + 

2nw2(R +Wo)Vo,T+2~woW1V1 ,T+2~wlW1VoyT+2~woW2,T v -  

3T 0,T 1 , T  1 0 1 , T  OYT 

0 2,T 1 ¶T 

* * 
Pwow2V~,T+2nwo(R +W )V +2nwl(R +Wo)V + 

* 

(continued) 
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v -2Qw w v1-2Qw1w1,Tv0 - 
2Q~0w0,Tv2-2Q~0w2,T 0 1 0,T 

2Qw2w0,T V 0 ]}ded~ (23) 

As in the zeroth and first order cases, noting the inhomogeneities of 
equations (21) and (22), W2 and V2 take the form, namely 

(w2; v,) = (wc2; vc2) cos (2-c) + ... 
+ (wss2; vss2 ) sin (3me) cos (3-c) (24) 

Employing equations (24), (21) ,  and (22), it can be shown that the following 
proportionalities exist, that is 

Hence W and V2 become unbounded for w -O(u,,,f). 

functional , namely equation (23). 
yields the following proportionalities for 012, that is 

The requisite form of w2 can be 

After extensive manipulations, this operation 
obtaine ii by inserting equation (24) in?o the second order potential energy 

Thus for wo"O(wmf) , w2-0(l/D2(w0,m)) where, since D2(wmf,m) is singular, w 2  
is itself unbounded and negative definite. 
themselves unbounded at such values of w0. 

Additionally W2 and V2 are 

DISCUSSION 

Stopping the solution at this point, W, V, and w are given by 

(w; v; w)- (wo;  vo; wo) + (wl; VI; wl) E + 

(w2; v,; @,iE2 + 0(~3) (27) 

Due to the procedure employed, it follows that W and V are regular in E, 
including E E 0. This result is,in contrast to standard renormalized 
perturbation procedures which do not yield zeroth order solutions exhibit- 
ing the proper unbounded behavior for w on the order of the linear system 
frequencies. 

The softening behavior of the ring or infinite cylinder can be directly 
obtained by considering the fundamental relationship between w and r. 
Before doing this, the nature of the w0 dependency of w must be ascertained. 
In particular, for wo-O(wmf), 
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0 - W  + &0(1) * €20 ( )+ 0(&3) 
0 D 2 ( w o , m )  

where since ~2 is negative def ini te  and unbounded, w i s  i t s e l f  negative 
def ini te  and unbounded. 
values of the pencil of equation (13). Note a s  0 i s  set t o  zero, the t w o  pairs 
of eigenvalue branches merge back to  the two frequency branches of the station- 
ary state, and hence, the tradit ional frequencies a re  obtained. 

Such unboundedness occurs a t  each of the eigen- 

Eliminating o from equations (28) and (15), i t  follows tha t  since w is 
unbounded and negative def in i te  for  wo-O(q,,f), the overall steady s t a t e  harmonic 
behavior of the r i n g  or in f in i t e  cylinder i s  of the softening type. 
as .u is  raised o r  lowered, the usual softening type jump phenomenon is 
encountered. 

Hence, 

In the context of the foregoing, the resu l t s  can be summarized by the 
following remarks: 

(1 ) Coriolis forces induce bifurcations i n  the frequency spectrum; 
( 2 )  Such bifurcations extend i n t o  the range of deflections marked by 

moderately large rotations;  
(3) All branches exhibit  a softening type behavior; this applies t o  the 

branches associated w i t h  forward as we1 1 as backward traveling waves; 
(4) Driving frequencies i n  the neighborhood o f  the l inear  system 

frequency may induce jump phenomena; 
(5) S e t t i n g  Q-tO yields the resu l t s  for  stationary rings and cylinders. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
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ON THE EXPLICIT FINITE ELEMENT FORMULATION OF THI DYNAMIC 
CONTACT PROBLEM OF HYPERELASTIC MEMBRANES 

3 .  0. Hallquist and W. W. Feng 
Lawrence Livermore Laboratory, University of California 

Livermore, Cal ifornia 

<WARY 

Contact-Tmpact proijlems fnvolving f i n i t e  deformation axisymmetric membranes 
are solved 6y the f in i t e  element method w i t h  explicit  time integration. The 
formulation of the membrane element and the contact constraint conditions are 
discussed in this paper. The hyperelastic, compressible Blatz and KO material 
i s  used t o  model the material properties of the membrane. 
are presented. 

Two example problems 

INTRODUCTION 

The purpose of th is  paper i s  t o  present a method for the dynamic analysis 
of contact-impact problems involving hyperelastic compressible membranes, A 
s train energy functional developed by Blatz and KO (ref.  1 )  i s  used t o  charac- 
terize the material of the membrane. Thi3 element was added t o  HONDO (ref. 2 ) ,  
a f in i te  element code that explicitly integrates the equations o f  motion. The 
contact-impact algorithm, which was also added t o  HONDO, was recently developed 
by Hallquist (ref.  3)  and i s  briefly described here. 

Two examples are provided t o  demonstrate the capability o f  the method: in 
the f i r s t ,  a f l a t  circular membrane i s  inflated by a pressure loading in to  a 
thick-walled sphere; and i n  the second, the sphere is impacted i n t o  the mem- 
brane. 

FORMULATION 

Equation of Motion 
Since an explicit  time integration scheme i s  being considered, the equation 

of motion becomes .. 

where $i is t h  diagonal (lumped) mass 
% = L F  (1 ) 

a global vector o f  nodal ac- 
celerations, f i s  the applied load is  the s t ress  divergence vector. 
This equation i s  integrated by the veloci ty-centered central difference method. 

* 
Work was performed under the auspices o f  the United States finergy Research 

and Development Administration under contract No, W-74-05-eng-48. 
, 
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Material Properties 
The strain energy density per u n i t  undeformed volume us for a compressible 

hyperelastic material i s  expressed as 
V 

u s = y I 1  , 3 +  1 - V 2v (I 3 -l--=z_ 1)] [ (2) 

where 1-1 i s  the shear modulus, v i s  Poisson"~ ratio,  and I i  i s  the i th  strain 
invariant. 
ratios hl ,  A2, A3 i n  the meridional, circumferential , and transverse directions, 
respectively, as 

These invariants can be expressed i n  terms of the principal stretch 

2 2 2  

2 2 2  I3 = hl A2 A3 

I1 = hl + h2 + h3 
(3) 

For thin membranes, the stress component normal t o  the midsurface i s  assumed t o  
be zero; hence,X3 can be expressed i n  terms of  A1 and 12 

V 

and the strain energy density becomes a function o f  hi and 12. 

Membrane Element 
An isoparametric axisymmetric membrane element i s  shown in Figure 1 .  The 

R, Z ,  and meridional coordinates S o f  the undeformed configuration are related 
t o  the natural coordinate L through 

1 1 j z = T (1 - L ) Z i  + 7 (1 + L ) Z  

1 i 1  s = T (1 - L)S + 7 (1 + L)Sj  

and similarly for the displacement components Ur and uz  
= T 1 (1 - L ) u r  i 1  + 7 (1 + L ) u r  j 

u z  = 2 1 (1 - L ) U Z  i 1  + 7 (1 + L ) U Z  j 
. .  

'r 

In the deformed configuration, the r and z coordinates along the midsurface are 
given by 

r = u r + R  
(7 1 

z = u z + Z  
The principal sketch ratios A 1  and h 2  can be defined as 

4 18 



(8) 
- r 

A1 = [(g- + (gY]i’* x P  - fT: 
Substitution of equati’ons (5) and (6) into equation (7), p u t t i n g  the resu l t  
i n t o  equation (8), and applying the chain rule  leads t o  expressions for  A1 
and A2 i n  terms of the nodal point quantit ies 

l2 = 1 
(1 - LJu,  i + {l - L ) u m  j 

where R = S j  Sf.  

stratn energy stored wiifil’n tFie membrane element d u r i n g  deformation can be ex- 
pressed as the integral 

Since 11 and A 2  a r e  now functions of the natural coordinate L ,  the to ta l  

u = IThR I‘ us RdL (10) 
J-1 

i n  which h is the thickness o f  the undeformed membrane, 

nents yield nodal point forces tha t  are  subsequently accumulated into the s t r e s s  
divergence vector. 
calculated very easi ly .  
direction a t  the i t h  node l’s given by 

The par t ia l  derivatives o f  U w-t’th respect t o  the nodal displacement compo- 

In tfie promem nqder consi’deratfon tfiese derivatives can be 
For example, tfie nodal point force actl’ng i n  the r- 

I - \ 

I 

= ThR I1 (T1 7 + T 2  5 ) R d L  a u i  
a ur 

where Ti and T2 are Lagrange s t resses  i n  the  meridional and circumferential d i -  
rections, respectively, 
above integrations.  

The  lumped masses for  each element a re  found by the addition o f  the off-  
diagonal terms of the consistent mass matrix to  the diagonal term, Each mem- 
brane element yields the following contributions t o  the nodal point mass a t  
nodes i and j ,  respectively, 

A two point Gauss quadrature i s  used t o  perform the 

= 27rpRh (Ri/3 f Rj/6) 

m = 27rpRh (Rj/3 + Ri/6) 
(12) 

j 
where p i s  the mass density of the undeformed membrane. 

For s t a b i l i t y  the time step A t  is  res t r ic ted  such tha t  the inequality 
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2 4  A t  c 7 (1 3)  
+ +  + A' 

is sa t i s f i ed  where A2 is the maximum eigenvalue of M'lK i n  which K is  the s t i f f -  
ness matrix. 

of the smallest value is  then used. 
exactly from 

A time step A t  is  calculated fo r  every element i n  the mesh and 90 percent 
For the membrane element h2 i s  calculated 

h 2 = -+ a2u 4. -& a2u -qT a2u T) a2u 
Mi a u r  auz I Mj a u r  a u Z  

Contact-Constraint Condi tions 
Two e l a s t i c  bodies occupying regions B l  and B2 i n  the reference 2onfigura- 

tion a t  time t = 0 are shown i n  Figure 2, 
noted by as1 and as2, r specti8ely. 

2 as1 and as2. Whenever b1 and b a re  i n  contact, the nodal pol'nts on as7 i n  the 
contact region are  constrained to  s l i de  along ll'ne segments connected by nodal 
points lying on as2. 
ne at ive.  Impact and release conditions a re  appll'ed whenever nodal points on 

eral izat ion of those given by Hughes, e t  a l ,  ( re f .  4),conserve l inear  and angu- 
1 a r  momen t u m  . 

The boundaries o f  B l  and B are  de- 
After deformation a t  ti e t #= 0, these Y The boundaries of b1 and 6 a re  denot d by bodies occupy regions b 'i and b 

as ? come into contact w i t h  as2. These conditions, which a re  based on the gen- 

node of as yi in contact w i t h  a segment o f  3s , These conditions are  imposed 

of as 8 on which i t  r e s t s ,  Since no separation i s  permitted d u r i n g  the time s tep 

Separation is  permitted when the interface pressure i s  

Const a in t  conditions must be imposed $nto the equations o f  motion fo r  each 

through a transformation of displacements which i s  performed a t  the beginning o f  
each time step.  
ponents of  the node on as] are  transformed into a displacement component tangen- 
t i a l  

the displacement, velocity,  and acceleration o f  this l a t t e r  component a re  s e t  t o  
zero. A transformation matr ix  7 is constructed which re la tes  the vector of 
global displacements i?i t o  a vector 3' containing the transformed components 

Letting 7 remain constant throughout the time step and different ia t ing equation 
(15) w i t h  respect t o  time yields  

q - + . y t  U - T U  
Equation (16) is  Srbst i tuted into equation (1) and the resulting equation i s  
premultiplied by T i n  order t o  obtain the modified equations of motion 

which+$ontains the contact constraints.  
onal M is not. For computational efficiency the appropriate off-diagonal mass- 
es a re  summed to  the diagonal. 

After e uation (17) i s  olved fo r  8', the normal accelerations of the nodes 

In this transformati-on the radial and vertl'cal displacement com- 

o the segment and a re la t ive  displacement component normal to  the segment 

(1 5)  + + - + I  u = T u  

(1 6) 

f i 1  $ 1  = l't(7; c 7) (17) 
+t - Here fi' = T MT. Although fi i s  diag- 

of as1 on as B re la t ive  t o  as 3 are  set to  zero. The global accelerations then 
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follow d i rec t ly  from equation (16). 

EXAMPLES 

In the following examples, a l l  physical quantl’ttes are glven i n  nondimen- 
sional form. Any consistent u n i t s  may 6e assumed wttfioat a l ter ing the results. 

Inflation of a Membrane i n t o  a Thick-Walled Sphere 
A f l a t  unstretched circular  membrane w i t h  a thickness of 0,Ol and a radius 

of 2.0 is  positioned beneath a tfiick-walled sphere having an inner radius o f  
0.40 and an outer radius of 0,60. 
measured perpendicularly from the center o f  the membrane t o  the center.of the 
sphere is 1.20, The hyperelastic material descrifjed by equation (2) i s  used to  
model the material o f  both the membrane’and the sphere w i t h  ‘v and 3 s e t  t o  
0,463 and 150, Densities of 1.5 and 0.15 were assumed for the material of  the 
membrane and sphere, respectively, 

In the undeformed configuration, the distance 

The membrane i s  inflated by a pressure p defined by 
0 5 t 5 0.11 

0.11 < t 5 0.15 

p 1,250 
0.11 p 1,250 - 1.125 ( i.40 ) (18) 

t > 0.15 p = 0.125 
and is brought into contact w i t h  the sphere. 

In Figure 3 the deformed shapes a t  various times throughout  the deforma- 
t i o n  time history are shown. 
note the l a s t  frame) and the calculati’on ceases t o  be meanTngfu1, A to ta l  o f  
e igh ty  elements were used l’n the calculation, 
brane type. 

A t  l a t e  times some w r i n k l l n g  occurs (for example, 

Forty elements were o f  the mem- 

Thick-Walled Sphere Impacting a Membrane 
In th i s  example the thick-walled sphere impacts the f l a t  c i rcular  membrane 

w i t h  an i n i t i a l  velocity of 1.0. The dimensions and material properties o f  the 
membrane and sphere are  identical t o  those o f  the preceding example. In Figure 
4 the deformed shapes a t  various times are shown. Maximum deflection occurs a t  
the center of the membrane a t  approximately t = 0,90 a f t e r  which rebound begins, 
Separation of the sphere and membrane occurs a t  approximately t = 1.94. 

significantly a f t e r  the i n i t i a l  contact thereby providing-evidence that  a large 
amount of s l i d i n g  occurs d u r i n g  contact. 

In the above examples the stress a t  the center o f  the membrane increases 
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Figure 1.- Definition of membrane element. 

Figure 2.- Two bodies in the reEerence and 
deformed-contact configurations. 
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t = 0.0 t.0.045 t.0.088 

t = 0. I30 t =o. 171 t.0.202 

t = 0.264 

Figure 3.- I n f l a t i o n  of c i r c u l a r  membrane i n t o  
thick-walled sphere. 

t =O. 296 t = 0.233 

.t = 0.00 t.0.26 t.0.58 

t.0.89 t=1.21 t.1.52 

t.1.84 t=2.15 t = 2.47 

Figure 4.- Impact of thick-walled sphere i n t o  
c i r c u l a r  membrane. 
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FREE VIBRATIONS OF LAMINATED COMPOSITE ELLIPTIC PLATES 

C. M. Andersen 
College of William and Mary 

Ahmed K. Noor 
Joint Institute for Advancement of Flight Sciences 

The George Washington University 

SUMMARY 

A study is made of the free vibrations of laminated anisotropic elliptic 
The analytical formulation is based on a Mindlin- plates with clamped edges. 

Reissner type plate theory with the effects of transverse shear deformation, 
rotary inertia, and bending-extensional coupling included. The frequencies 
and mode shapes are obtained by using the Rayleigh-Ritz technique in conjunc- 
tion with Hamilton's principle. A computerized symbolic integration approach 
is used to develop analytic expressions for the stiffness and mass coefficients 
and is shown to be particularly useful in evaluating the derivatives of the 
eigenvalues with respect to certain geometric.and material parameters. 
Numerical results are presented for the case of angle-ply composite plates 
with skew-symmetric lamination. 

INTRODUCTION 

Although a number of studies have been devoted to the free-vibration 
analysis of isotropic elliptic plates (refs. 1 to 41, investigations of 
orthotropic plates are rather limited in extent (refs. 5 and 6), and to the 
authors' knowledge, no publications exist dealing with,the free vibration of 
laminated anisotropic elliptic plates. The present study focuses on this 
problem. More specifically, the objectives of this paper are (1) to present 
a computational procedure based on the use of computerized symbolic integration 
in conjunction with the Rayleigh-Ritz technique for the free-vibration analysis 
of laminated anisotropic elliptic plates and 12) to study the effect of vari- 
ations in the lamination and geometric parameters of the plate on its 
vibration characteristics. 

The analytical formulation is based on a form of the Mindlin-Reissner 
plate theory with the effects of transverse shear deformation, anisotropic 
material behavior, rotary inertia, and bending-extensional coupling included. 
The frequencies and mode shapes are obtained by using the Rayleigh-Ritz 
technique in conjunction with Hamilton's principle. 
coefficients are developed using the symbolic and algebraic manipulation 
language MACSYMA (refs. 7 and 8). Computerized algebraic manipulation, in 
addition to reducing the tedium of the analysis and the likelihood of errors, 

The stiffness and mass 
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was shown to be particularly useful in evaluating the derivatives of the 
eigenvalues with respect to certain geometric and material parameters. 
applications of computerized algebraic manipulation in structural mechdnics 
are reported in references 9 and 10. 

Other 

SYMBOLS 

al'a2 

a$yp %3$3 C 

D 
@SYP 

E~ f E ~  

F 
a 8YP 

G~~ G~~ 

h 

Ki j 

[MI 

ij M 

m ,m m 
0 1' 2 
T 

U 

LT v 

semimajor and semiminor axes of elliptic plate 

extensional and transverse shear stiffnesses of plate, 
respectively 

bending stiffnesses of plate 

elastic moduli in direction of fibers and normal to fibers, 
respectively 

stiffness interaction coefficients of plate 

shear moduli in plane of fibers and normal to plane of 
fibers, respectively 

plate thickness 

element stiffness matrix 

stiffness coefficients 

mass matrix 

mass coefficients 

density parameters of plate 

kinetic energy of plate 

strain energy of plate 

displacement components in coordinate directions 

fiber orientation angle of individual layers 

Poisson's ratio measuring strain in T-direction due to 
uniaxial normal stress in the L-direction 

functional defined in equation (1) 

material density of the plate 
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rotation components 
$8 

(9 1 

Jii 

52 plate domain 

w 

vector of undetermined parameters 

ith component of vector (9) 

circular frequency of vibration of the plate 

MATHEMATICAL FORMULATION 

The analytical formulation is based on a form of the Mindlin-Reissner 
plate theory with the effects of transverse shear deformation, anisotropic 
material behavior, rotary inertia, and bending-extensional coupling included. 
A displacement formulation is used with the fundamental unknowns consisting 
of the displacement and rotation components of the middle plane of the plate 
ua, w, and ,$a. (See fig. 1 for sign convention.) Throughout this paper, the 
range of the Greek indices is 1,2 and a term in which any Greek index appears 
twice is to be summed over that index. The fundamental unknowns are assumed 
to have a sinusoidal variation in time with angular velocity 
frequency of vibration of the plate). 
of the stiffness and mass matrices is given by 

w (the circular 
The functional used in the development 

where 

a u  a $  
aBYP 01 B Y P 

u='J[. a u  a u  + 2 ~  
2 asyp 01 B Y P 

T = 1 2 u2j[m 0 (u a a  u + ww) 4 2m l a a  u $ + m 2 a a  $ $ Id52 (3)  

In equations (2) and ( 3 ) ,  C D and F are extensional stiff- 
ClBYP' OlBYP' aBYP 

nesses, bending stiffnesses, and stiffness interaction coefficients of the 
plate ; are transverse shear stiffnesses of the plate; m m and 

%3B3 0' 1' 
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m2 are density parameters of the plate; Sl is the plate domain; and 

The displacement and rotation components are approximated by 
of the form 

expressions 

(4) 

where [k] is a matrix of a priori chosen approximation functions and {$I 
is a vector of Undetermined coefficients. 
in the matrix [k] are chosen to be polynomials in x and x 

In the present study the functions 

1 2' 

The stiffness and mass matrices of the plate are obtained by first 
replacing the generalized displacements in equations (2) and (3 )  by their 
expressions in terms of the approximation functions and then applying the 
stationary condition of the functional n, namely, 

6II = 0 (5) 

If the undetermined coefficients {$I  are varied independently and simultan- 
eously, one obtains the following set of equations for the plate: 

where [K] and [MI are the stiffness and mass matrices of the plate, res- 
pectively. The matrix [K] is symmetric and positive definite and the 
matrix [MI is symmetric. The eigenvalues and eigenvectors are obtained 
by using the technique described in reference 11. 

EVALUATION OF STIFFNESS AND MASS COEFFICIENTS 

The stiffness and mass coefficients were evaluated using the computerized 
symbolic and algebraic manipulation system MACSYMA. 
in evaluating these coefficients is given in the appendix. 
performed on MACSYMA are 

The MACSYMA program used 
The major tasks 

(1) Selecting approximation functions for each of the fundamental 
unknowns with undetermined coefficients ($1 in equation (4) and developing 
analytic expressions for the strain and kinetic energies as quadratic 
functions in I$) 

(2) Specifying a pattern-matching technique for evaluating the integrals 
over the elliptic domain (using the function INT(F) (see appendix)) 
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(3 )  Forming the stiffness and mass coefficients as second derivatives 
of the strain and kinetic energies with respect to the undetermined coef- 
ficients as 

2 a2T 
w Mij = (7) 

In view of the symmetry of Ki. and Mij, only the upper triangular portions 
are formed in a machine readable (LISP) format. These are subsequently 
converted using the MACSYMA system to-a form which closely resembles FORTRAN 
code (the MACSYMA program used in the conversion is not included in the 
appendix). Finally, a TECO program (DEC's editor for PDP-10 computers) is 
executed to produce the final code. 

The aforementioned computerized algebraic manipulation approach signifi- 
cantly reduced the tedium of the analysis and the lik'elihood of errors. 
Moreover, since analytic exact expressions are obtained for both the stiffness 
and mass coefficients, the- derivatives of the eigenvalues with respect to any 
of the material or geometric parameters can be readily computed by using the 
following formula (ref. 12) : 

2 aM -- ad - {$I;@] - (ai [.]3 {*I, , 

where d refers to any of the material or geometric parameters of the plate and 
subscript i refers to the ith eigenvalue and eigenvector. In equation (8), 
the eigenvectors are assumed to be [MI orthonormal, i.e., 

The two matrices [s] and 
system. 

[E] can be easily evaluated using the MACSYMA 

Equation (8) shows that the derivatives of the eigenvalues with respect 

These derivatives can be used to obtain an approxi- 
to any of the geometric and material parameters of the plate can be calculated 
with little extra work. 
mate estimate for the eigenvalues corresponding to a modified (new) value 
of the parameters without having to resolve the eigenvalue prodem, 
equation (6). To accomplish this, a first-order Taylor's series expansion 
of the eigenvalues in terms of the problem parameter is used (see ref. 12) 

where an asterisk refers to a modified (new) value. 
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NUMERICAL STUDIES 

Numerical studies were conducted to investigate the effects of variations 
in the plate geometry and lamination parameters on the vibration characteris- 
tics of elliptic plates with clamped edges. 
antisymmetric lamination with respect to the middle plane are considered. 
The material characteristics of the individual layers were taken to be those 
typical of high-modulus graphite-epoxy composites, namely, 

Angle-ply laminates having 

EL/ET=40 G /E =0.6 GTT/ET=0.5 vLT=0.25 LT T 

where subscript L refers to the direction of the fibers, subscript T refers 
to the transverse direction, and VLT is the major Poisson's ratio. The fiber 
orientation was taken to be +0/-8/+0/-9/..., (0<0<45). All numerical studies 
were obtained using the Rayleigh-Ritz technique wzth 10-term approximation 
functions for each of the fundamental unknowns. The special symmetries ex- 
hibited by the free-vibration modes of antisymmetric laminates were utilized 
in the analysis (see refs. 13 and 14). The four combinations of symmetry and 
antisymmetry with respect to the xi- and x2-axis have been considered. 
results are presented in figures 2 to 4 showing the effects of variations in 
each of the following parameters on the vibration frequencies: (1) the aspect 
ratio of the plate ai/a2, (2) the number of layers of the plate NL, and 
(3) the fiber orientation angle 8 of-the individual layers. 

Typical 

Figure 2 shows that for elliptic plates having the same h/a2, the fre- 
quencies of free vibration decrease with the increase in the aspect ratio 
al/a2. The differences between the frequency curves for thick and thin 
plates in figure 2 are mainly attributed to transverse shear deformation. As 
expected, these differences are more pronounced for the higher modes. Figure 
3 shows that the frequencies increase rapidly as the number of layers increases 
from 2 to 4. Further increase in the number of layers does not have signifi- 
cant effect on the lower frequencies. Figure 4 shows that the minimum 
frequency associated with each of the four basic symmetric-antisymmetric modes 
increases with the increase in the fiber orientation angle 8 from 5O to 45'. 
This is not true, in general, for the higher modes. 

CONCLUDING REMARKS 

The free-vibration response of anisotropic plates with clamped edges is 
studied. The analytical formulation is based on Mindlin-Reissner type 
theory with the effects of transverse shear deformation, rotary inertia, and 
bending-extensional coupling included. 
obtained by using the Rayleigh-Ritz technique in conjunction with Hamilton's 
principle. 
analytic exact expressions for the stiffness and mass coefficients and is 

The frequencies and mode shapes are 

A computerized symbolic integration approach is used to develop 
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shown to be particularly useful for evaluating the derivatives of the eigen- 
values with respect to certain geometric and material parameters. Numerical 
results are presented showing the effects of variation in the geometric and 
material parameters on the free-vibration response of composite elliptic 
plates with clamped edges. 
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Figure 2.- E f f e c t  of a l / a 2  on t h e  frequencies  of clamped e l l i p t i c  
p l a t e s  with antisymmetric lamination. Eight-layered p l a t e s  
wi th  f i b e r  o r i e n t a t i o n  45'/-45'/ 45°/-450/450/-450/ 4!jo/-45O. 
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Figure 3.- E f fec t  of number of 
l a y e r s  on the frequencies  of 
clamped e l l i p t i c  p l a t e s  w i t h  
antisymmetric lamination. 
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Figure 4.- E f fec t  of f i b e r  orien- 
t a t i o n  8 on t h e  frequencies  of 
clamped e l l i p t i c  p l a t e s  w i t h  
antisymmetric lamination. Eight- - 

h/a2 = 0.01; a /a 
f i b e r  o r i e n t a t i o n  45O/-45O/.. . = 1.5; layered p l a t e s ;  h/a2 = 0.01; 

a /a = 1.5; f i b e r  o r i e n t a t i o n  4 - 2  

d-f3h3/-s/e/-s/e/-e 
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SOME DYNAMIC PROBLEMS OF ROTATING WINDMILL SYSTEMS* 

John Dugund j i 
Massachusetts Institute of Technology 

SUMMARY 

The basic whirl stability of a rotating windmill on a flexible tower is 

Some experimental results on a small model windmill 
ceviewed. Effects of unbalance, gravity force, gyroscopic moments, and aero- 
lynamics are discussed. 
x e  given. 

INTRODUCTION 

There 
zenerating 
Lowers may 

has been a renewed interest in the use of large windmills for 
power. Such large, rotating structures mounted on tall flexible 
give rise to significant vibration and fatigue problems. A good 

leal of the experience and knowledge gained during the last few years in con- 
iection with helicopter rotors and tilt-wing proprotors can be applied to such 
Large windmill systems. 
their operating environment that will have to be explored individually. 

However, there are unique features of windmills and 

A basic description of general rotating machinery problems can be found in 
)en Hartog‘s book, (ref. 1). Loewy (ref. 2) presents a good review of rotary 
aing dynamic and aeroelastic problems. More recenkly, a NASA special publica- 
tion (ref. 3) gives a good sampling of current problems dealing with rotor 
lynamics. References 4 ,  5, 6 are typical of recent investigations of problems 
3f large windmill systems. The present article will first review some dynamic 
?roblems of a rotating windmill on a flexible tower, then present some pre- 
liminary experimental results on a small windmill model. 

REVIEW OF THEORY 

Figure 1 shows the model used Tor representing a windmill rotor mounted on 
3 flexible tower. There is an absolute axis system x, y, z fixed in space, 
m d  also an axis system xs, ys, z s  along the windmill shaft and having xs lie 
in the vertical plane (plane of xz). The ith blade rotates about the axis z s  
aith a constant speed 52, and can lag an angle r)i inasy,plane and flap an angle 
3i perpendicular to xsys plane. Any point,’E, on the blade can be expressed 
relative to the shaft axes xs, ys, z as 

S 

*The author would like to acknowledge the support of National Science 
Foundation Grant AER75-00826. 
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i x = e cos + + 5 cos (JIi + Gi) COS 6 

Y, = e sin JI i + 5 sin (Qi + 4,) cos Bi 
z = 5 sin 6 (1) 

S i 

S i 

In the above, +i represents the angular position of the ith blade and e is the 
hinge off-set. The origin of the shaft axis is assumed to translate fore-and- 
aft a distance qF and laterally a distance qL. 
tions are an angular rotation 8FqF about the ys axis, another possible rota- 
tion BLqL about the xs axis, and a vertical deflection hvqF in the s direction. 
The coefficients 8Fy 8L, can be obtained from the vibration modes of the 
tower (often, hv -h F). The shaft axes caixbe located relative to the fixed 
axes by performing a rigid body rotation about the ys axis and about the xs 
axis respectively. This gives the relation 

Associated with these deflec- 

[ .) - roS 'FqF sin OFqF sin eLqL 

-COS 8 q sin eLqL 

- COS e q L L  
cos e q cos e q F F  L L  F F  sin 8 q F F  

2 2  
Using the small angle approximation, sin 8FqF eFqF, cos 8FqF 4 1 - e qF/2 etc, 
in equation (2) and combining with equation (1) and the appropriate deglections 
gives , 

where xs, ys, zs  are given by equation (1). 
are obtained from equations (3)  by differentiation with respect to time t. 
Then, by forming the kinetic energy of the blades and tower, and placing into 
Lagrange's equations, one can obtain the equations of motion of the windmill 
system. To simplify the lengthy algebra involved, it was assumed the hinge 
offset e = 0 ,  and only those terms leading to linear terms in the final equa- 
tions of motion were retained. The following standard mass integrals were de- 
fined for the ith blade, 

The velocity components 2, 9 ,  k 

( 4 )  

In the development, a two-bladed rotor was assumed with slightly unequal 
masses, such that M1 = MB + Mu/2 and M;! = MB - Mu/2 where MB was the average 
mass and % the unbalance in mass of the blades. 
made for the average and unbalance in moment SB and Su, and in moment of 
inertia I and I,. 

Similar dafinitions were 

The vertical gravity loads were put in by writing the B 
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incremental work as, 

6 W = J[fx6x + f 6y + fz6y]dc = CQn6qn 
Y ( 5 )  

where 
and 6x, 6y, 6z are found by differentiatlag equation (3$. A similar procedure 
could be used for obtaining the aerodynamic forces acting on the blade. 
ever there, it is convenient to relate the air forces perpendicular and paral- 
lel to the blade axis 5;. 

fx = -mg, fy = f, = 0, 6qn represents 6qF.9 6q , SBi,S+i respectively, 

How- 

The final, linear equations of motion in terms of the six coordinates q ~ ,  
4Ll B 1 ,  62, ($1, $9 are, 

2 2 
V F B  

[M,.,,~ + 2M (1 + h ) + 2eFsu COS $l + 8 I (1 + COS 2$2]iiF - eF[sU sin $, 
+ 8 I sin Z$1]2QqF - OF Su cos I), SZ qp + cFqF + kFqF - BL[SU sin $, 

+ 8 I sin ~I.J.J,I<, - 8 [S  cos $l + e I (1 + cos 2~11)12~;~ + eLsU sin + G qL 

+ C(si + OFIi cos $i)Bi + COFIi cos $iQ B, - C(h S. sin $i)9i 
i 2 - Ch S.  cos $i 2Q4i + ihvSi sin qiSZ $i 

0 2 
B 

0 

2 
F B  

F B  1 .. i 
L u .  F B  

2 .. i 

v 1  
2 

B = hvSuSZ COS + g[-hv2M v 1  
i 

(6) 
2 + 8 s COS $l qF - eFeL Su sin $1 qL + ~e,siBi-l + QFA F u  

[si + eFIi cos $,IF, - e,zi sin 9-  1 2 ~ : ~  - Q L 1  I. sin 

t 1.6. 1 1  + IiQ Bi + cBBi f kBBi 

F, - eLIi cos qi 2ntL 
0 

( 8 )  
2 .. 

= g[eFsiqF + si cos $pi] + Q 8, A 
1. i = 1,2 

- hvSi sin$JiGF + Si cos 

t Si cos + Q 

+ IiOi + c ii + k 9 $i 4 = g[Si sin Jli 
(9) 4 iA i = 1,2 

n the above equatiens, the knq, and cnqn terms represent structural stiffness 
nd damping, the g terms represent the effect of gravity loads, and the 9, 
erms represent the aerodynamic forces. 
ower masses corresponding to qF and qL respectively. 

The MTF and MTL are the generalized 
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Some of the gravity loads act as stiffness terms in the equations. 
coordinates $1 = Qt and $2 = $1 + IT. 
convenient to introduce the symmetric and antisymmetric blade variables, 

The blade 
For the two-bladed case, it is sometimes 

to lessen the coupling between the degrees of freedom. Indeed, for a com- 
pletely balanced rotor without gravity effects, the @s would be uncoupled from 
the other equations. In general though, all six coordinates are involved. 

Equations (6) to (9) are a linear set of equations with periodic co- 
efficients, subjected t o  gravity, rotor unbalance s,, and aerodynamic wind 
forcing functions. 
balance loads shake the tower which in tturn couples into the blades. 
tion to forced response, the homogeneous equations themselves may have strong 
instabilities present. 
theory for these periodic coefficient equations. It should also be mentioned 
that for a three or more bladed rotor, the analysis is generally easier since 
one can eliminate the periodic coefficients by a suitable transformation of 
coordinates (at least for the balanced rotor, without gravity effects). 
for example reference 7. 

The gravity loads act directly on the blades while the un- 
In addi- 

These are generally investigated by the use of Floquet 

See 

Various investigators have examined different subcases of equations (6) to 

Strang mechanical 
(9). 
BL = 0 ,  with no gravity, unbalance, or aerodynamics present. 
instabilities of a whirling nature were found to be possible at certain rota- 
tional speeds, involving coupling of lateral motion qL 
This is the so-called "ground resonance" helicopter phenomenon. Reed (ref. 9) 
looked at the case 8-i = 0, @i = 0 with aerodynamics present. 
instabilities were found involving qL and the verti$al hvqF coupling through 
the mechanical and aerodynamic gyroscopic forces (nq~, Q ~ L  termsj . 
so-called "propellor whirl" flutter. 
case @i = 0 with aerodynamics present. 
with flapping. Johnson (ref. 11) has looked in detail at the whole coupled 
system, but without gravity and unbalance effects in connection with his studies 
of proprotors. 
Finally, it should be mentioned there is a whole series of detailed investiga- 
tions of rotors attached to fixed hubs (qF = 0 ,  qL = 0) which emphasize the 
aerodynamic interaction between blade flapping, lagging, pitching and nonlinear 
dynamic effects brought on by large initial coning angles for the blades. 
for example, references 4 ,  5, and 6. 

Coleman and Feingold (ref. 8 )  first looked at the case qF = 0 ,  6-i = 0, 

ith lag angle @A. 

Again, strong 

This is the 
Young and Lytwyn (ref. 10) looked at the 
This is essentially "propeller whirl" 

Equations very similar to the ones here are presented there. 

See 

EXPERIMENT 

Some preliminary tests were run on a small .915 m (3.0 ft) diameter wind- 
mill placed in a wind tunnel. 
windmill had generally 2 blades, cantilevered in both the flap and lag direc- 
tions. 
and could be set at any incidence angle. 

The general layout is shown in figure 2. The 

The approximately uniform, untwisted blades had a .0762 m ( 3  in) chord, 
For a few runs, 4 blades were 
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a t tached  t o  t h e  windmill. 

The weight of a t y p i c a l  b lade  w a s  .175 kg (.386 16s) .  The c a n t i l e v e r  
n a t u r a l  f requencies  of t h e  non-rotat ing blades were measured as 33, 93, 172, 
and 310 Hz f o r  t h e  1st f l a p  bending, 1st l a g  bending, 2nd f l a p  bending, and 
1st t o r s i o n  modes r e spec t ive ly .  
t he  s tandard manner, wR = CI.)& + LR2, t o  g ive  t h e  r o t a t i n g  n a t u r a l  f requencies  
shown i n  f i g u r e  3. The tower s tand  had n a t u r a l  f requencies  of 8.8, 16, 25 and 
75 Hz f o r  t h e  lateral  yawing, v e r t i c a l  p i t ch ing ,  la teral  t r a n s l a t i o n  and v e r t i -  
c a l  t r a n s l a t i o n  modes r e spec t ive ly .  The windmill w a s  instrumented t o  measure 
f l ap  and l a g  bending moments a t  t h e  b lade  roo t ,  and a l s o  lateral  and v e r t i c a l  
s cce l e ra t ions  of t h e  tower near  t h e  f r o n t  bearing. 

These w e r e  cor rec ted  f o r  r o t a t i o n a l  e f f e c t s  i n  
2 

The wind tunnel  w a s  run t o  about 18 m/sec (59.1 f t / s e c ) ,  and a f t e r  tak ing  
lata on windmill performance, t h e  wind w a s  turned o f f  and t h e  windmill would 
Zoast down t o  zero r o t a t i o n a l  speed. 
through a l l  t h e  resonances of t h e  system. Figures  4 ,  5, and 6 show t h e  
neasured bending moments and a c c e l e r a t i o n s  from such sweeps f o r  a b lade  s e t t i n g  
sngle 8 = 0". 
lending moments. 
:an be seen from f i g u r e  3. 
revolut ion f o r  both f l a p  and lag .  Indeed, l a g  moments near 10 t i m e s  t h e  s ta t ic  
gravi ty  moments are present  a t  50 Bz. The corresponding a c c e l e r a t i o n s  show a 
strong lateral resonance near  24 Hz. I n  these  tests t h e r e  w a s  a s m a l l  s t a t ic  
inbalance due t o  unequal b l ade  weights.  Subsequent tests wi th  another  set of 
) lades  having a g r e a t e r  unbalance showed t h e  same v i b r a t i o n  p a t t e r n s ,  but  
q i th  peak amplitudes increased  more than double. Also, tests run wi th  four  
) lades  on the r o t o r  showed s i m i l a r  s t rong  resonances a t  2 per r evd lu t ion .  The 
strong resonances i n  f i g u r e s  4 t o  6 seem then  t o  have been caused by t h e  
ro t a t ing  unbalance of t h e  b l ade  e x c i t i n g  tower s tand  f requencies  which i n  t u r n  
2xcite b lade  f requencies  superharmonically.  
:an be found i n  r e fe rence  1 2 .  

This  gave a continuous frequency record  

Many superharmonic resonances can b d ' s e e n  f o r  the f l a p  and l a g  
These occur near  i n t e g e r  o rde r s  of t h e  r o t a t i o n  frequency as 

P a r t i c u l a r l y  s t rong  v i b r a t i o n s  occured a t  2 per 

Fur ther  d e t a i l s  of t h e s e  tests 

CONCLUSIONS 

A b r i e f  review of some of t h e  dynamic problems a s soc ia t ed  wi th  l a r g e  
:otat ing windmills has been given, t oge the r  with some prel iminary experimental  
resu l t s .  T h e  importance of f l e x i b l e  towers and their  i n t e r a c t i o n  w i t h  t h e  
ro ta t ing  b l ade  dynamics has  been discussed.  
)een done i n  t h i s  area, many i n t e r e p t i n g  dynamic problems remain t o  be re- 
;olved, p a r t i c u l a r l y  those  involving r o t o r s  wi th  bu i l e - in  coning angles  where 
ionl inear  dynamics must b e  considered. 

Although much work has  a l ready  
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L O O K I N G  D O W N S T R E A M  S I D E  V I E W  

Figure 1.- Analytic model for windmill-tower systems. 

~~~~- 

Figure 2.- Experimental layout of windmill assembly. 
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DYNAMIC INELASTIC RESPONSE O F  THICK SHELLS USING ENDOCHRONIC THEORY 

AND THE METHOD OF NEARCHARACTERISTICS~ 

Hsuan-Chi Lin 
Argonne National Laboratory 

SUMMARY 

The endochronic theory of p l a s t i c i t y  or ig ina ted  by Valanis has  been 
applied t o  study t h e  a x i a l l y  symmetric motion of c i r c u l a r  c y l i n d r i c a l  t h i c k  
s h e l l s  subjected t o  an  a r b i t r a r y  pressure  t r a n s i e n t  applied a t  i t s  inner  
surface.  
The governing equations are then solved by means of t h e  n e a r c h a r a c t e r i s t i c s  
method. 

The c o n s t i t u t i v e  equations f o r  t h e  t h i c k  s h e l l s  have been obtained. 

INTRODUCTION 

The problem of dynamic p l a s t i c  response of s h e l l s  has received consider- 
Most 0% t h e  published works are based on t h e  a b l e  a t t e n t i o n  i n  recent  years.  

flow theory of p l a s t i c i t y  and usua l ly  l imi ted  t o  i s o t r o p i c  l i n e a r  work- 
hardening materials. 
of an i n i t i a l  y i e ld  su r face  coupled with an assumed hardening r u l e  t o  obta in  
subsequent y i e l d  sur faces ;  an ex tens ive  bookkeeping is  necessary t o  trace t h e  
evolution of t h e  y i e ld  su r face  which changes as deformation progresses.  The 
ana lys i s  of i n e l a s t i c  responses of t h e  bodies i s  the re fo re  complicated by pa th  
dependence and t h e  y i e l d  condition, which introduces d i f f e r e n t  governing 
equations i n  the  d i s t i n c t  regions - elastic and i n e l a s t i c .  Valanis (ref. 1) 
presented a new theory of p l a s t i c i t y  termed endochronic theory, which com- 
p l e t e l y  abandoned t h e  concept of a y i e l d  sur face  and i t s  subsequent hardening 
ru le .  

Theore t ica l ly ,  t h e  flow theory is based on t h e  ex is tence  

The endochronic theory of p l a s t i c i t y  is  based on thermodynamic theory of 
i n t e r n a l  v a r i a b l e s  and conforms t o  experimentally observed material behavior. 
The b a s i s  of t h e  endochronic theory i s  the  assumption t h a t  t h e  cu r ren t  state 
of stress is a func t iona l  of t he  entire h i s to ry  of defoymation. The inf luence  
of p a s t  deformation on t h e  cu r ren t  stress is measured i n  terms of a mono- 
t o n i c a l l y  increasing time scale of strain-defined ( r e f .  1 )  o r  stress-defined 
( r e f .  2) endochronic time. This theory has been applied t o  g i v e  a n a l y t i c  pre- 
d i c t i o n s  f o r  t h e  quas i - s t a t i c  mechanical response of engineering materials 
(metall ic ( r e f .  3) and non-metallic ( r e f .  4 ) ) ,  the dynamic response of a 

* 
This work w a s  performed under t h e  auspices of t h e  U. S. Energy Research and 
Development Administration. The author wishes t o  express h i s  g r a t i t u d e  t o  
D r s .  C. A. Kot and R. A. Valentin f o r  va luable  comments. 
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thin-walled tube  subjected t o  a combined long i tud ina l  and t o r s i o n a l  s t e p  
loading ( r e f s .  5,6), and t h e  dynamic p l a s t i c  response of c i r c u l a r  c y l i n d r i c a l  
t h i n  s h e l l s  ( r e f s .  7,  8 ) .  It has been shown t h a t  t h e  theory does indeed have 
t h e  c a p a b i l i t y  of explaining t h e  observed phenomena q u a n t i t a t i v e l y  with 
s u f f i c i e n t  accuracy. 

In  t h i s  paper, t h e  endochronic theory is applied t o  t h i c k  ax ia l ly -  
symmetric c y l i n d r i c a l  s h e l l  subjected t o  dynamic loading. 
t i o n s  are then solved by t h e  method of nea rcha rac t e r i s t i c s .  

The governing equa- 

FORMULATION OF THE PROBLEM 

Consider 
thickness H. 
states are 

c T =  
% 

E =  
'L 

a c i r c u l a r  c y l i n d r i c a l  t h i c k  s h e l l  with mean r ad ius  R and 
For t h e  axisymmetric motion of s h e l l ,  t h e  stress and s t r a i n  

0 

20 -0 -5 B x r  

where g, is t h e  Cauchy stress tensor ,  E, is s m a l l  s t r a i n  tensor ,  and E are 
t h e  d e v i a t o r i c  stress and s t r a i n  tensors ,  respec t ive ly ,  and subsc r ip t s  x, r ,  
8 refer t o  t h e  components i n  longi tudina l ,  r a d i a l ,  and c i rcumferent ia l  
d i r ec t ions ,  respec t ive ly ,  L e t  U and W denote t h e  displacements i n  t h e  a x i a l  
and r a d i a l  d i r e c t i o n s  r e spec t ive ly  a t  t l m e  t of t h e  c ros s  s e c t i o n  a d i s t ance  
x from a re ference  sec t ion ,  and u and w are t h e  correspohding ve loc i ty  
components. The equation of motion i n  t h e  x and r d i r e c t i o n s  have the  
following form: 

a 0  cT - a5x x r  au xr +-- p - =  - -  
ax ar a t  R (3) 

aw 5 8 - 0  r - aar + - - p a t =  aoxr R 
ar ax 

where p i s  t h e  dens i ty .  
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The strain-displacement r e l a t i o n s  and t h e  corresponding compat ib i l i ty  con- 
d i t i o n s  are 

au 
x ax 

& = -  

W 
0 r  

& = -  

aEx au 
a t  ax 
- -  - -  

w - = -  a t  r 

(5) 

For i s o t r o p i c  material under isothermal condi t ion  with t h e  assumption of 
elastic hydros t a t i c  response, t h e  c o n s t i t u t i v e  equations i n  t h e  endochronic 
theory can be found from reference  1 as follows: 

dC2 = K 1 de kk de RE + K2deijdeij 

where a, B, K1, K2 are t h e  material parameters, 1-1 i s  shear modulus, K i s  bulk 
modulus, kk, RR,  and i j  are subsc r ip t s  denoting coordinates,  d< is  the  
endochronic t i m e  measure wi th  t h e  r e s t r i c t i o n  t h a t  K 1  -t- K2/.3 ,> 0, K2 1 0 ,  
and K 1  and K2 may not both be zero. 
i n  t h i s  problem, it  i s  poss ib le  t o  express t h e  t i m e  measure approximately as 

From the  d e f i n i t i o n  of s and i; considered 
% 

where 61 = Et/oo, E is  t h e  asymptotic s lope  of t h e  u n i a x i a l  s t r e s s - s t r a i n  
curve f o r  l a r g e  s t r a i n ,  oo is t h e  i n t e r c e p t  of this s lope  wi th  t h e  stress 
axis, and t h e  p o s i t i v e  s ign  holds f o r  s t r a i n i n g  while t h e  negative s i g n  is f o r  
uns t ra in ing  of dee. 
conditions (5) t o  (8) r e s u l t s  i n  t h e  following: 

t 

Using (12), and equations (9), (10) and t h e  compat ib i l i ty  

aoO. 

a t  a t  a t  - -  v - - v - -  aor E - =  au a 
ax 1 

ao aa 

a t  a t  a t  + - =  v -  2 aOr ' a  X -v - 
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"e au aw + - -  3 K - -  3 K - =  a + -  aOr 
ao 

at at at ax 
X - 

ar 3 

where 
a (20 -br-O ) 

- 1  1 x e w  
a l = + 2  1 + $ <  r 

r 
1 + BT 

W a = 3 K ;  3 

a 0  _ _  2xr w - 
a4 +1+$<r 

2 112 

a 1 = k+(%)2+(%)] $,a 

and E is elastic modulus, v is Poisson's ratio. Equations ( 3 ) ,  (4), and (13) 
to (16) are the fundamental equations of the problem considered here. 

NEARCHARACTERISTIC SOLUTION 

The governing equations presented in the previous section together with 
the auxiliary equations can now be written in matrix form as follows: 

[ A l { X l  = {B) 

where 
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and 

ao ao aoO ao x r  

The above set of equations is of hyperbolic type; the conventional 
bicharacteristic method would be very tedious for six dependent variables. 
Using the method of nearcharacteristics firstproposedby Sauer (ref. 9),we look 
for characteristic-like lines in the coordinate planes along which the solu- 
tion can be extended. (Sauer called these lines nearcharacteristics.) The 
formulation and numerical technique in the nearcharacteristics resembles the 
one-dimensional approach except that those partial derivatives which do not 
lie in the plane of interest are considered of zeroth order in that particular. 
calculation. 
interest, then those terms in [A] containing partial derivative in r-direction 
are combined with terms in {B) in equation (17). 
procedures as described in reference 8 for one-dimensional case, the near- 
characteristics in the x-t and r-t planes, respectively, are obtained as follows: 

For example, when the bicharacteristics in the x-t plane are of 

Now following the same 

dx = dr = 0 , O  (18) 

- -I=-= dx dr rt ,/- 
'D dt dt (l+v) (1-2v) p 

The nearcharacteristics obtained here indicate that there are two character- 
istic cones existing in the present analysis; one of them (eq. (19)) corre- 
sponds to the longitudinal wave propagation while the other (eq. (20)) 
corresponds to shear wave. They are right circular cones with their center 
lines perpendicular to the x-r plane as shown in figure 1. This is an expected 
result, because the governing equations have constant coefficients for the 
highest order terms. There are no convected terms appearing in the present 
analysis. The compatibility equations along the nearcharacteristics can be 
found in the same way as in the one-dimensional case. In the x-t plane, we 
have : 

do = + pC du + Cldx + C2dt X - D  

do = + pCsdw + C3dx + C dt xr - 4 

dx along - = CD dt 
dx along - dt - - 2 'S 

v do + C5dt along dx = 0 

dox + C6dt along dx = 0 

- - -  
I-v x 
V = -  doe 1 - v  



where 

S i m i l a r l y  

where 

aoxr xr 5----- R ar 

o - 

+2 1 + B C  r 

aor - 0 r - -  
c3 - R ar 

- 2 xr w c4 - T-- I + B <  r + 

o - o  

a 0  

C5 = 2 {E (v 4 1 - v  

C6 - - -2- {E (; + 
2 1 - v  

a [ (l+v)o +(1-2v)or-(2-v)o 

r 
1 X 

1 + B i  

i n  t h e  r-t plane,  w e  have: 

dor = 2 pCDdw + C7dr + Cgdt d r  
d t  - 2 ‘D a long - - 

d r  
d t  - 2 ‘ S  along - - = + pCSdu + C d r  + C d t  d‘xr - 9 10 

dOx I - v  r 

doe = E dor + C12dt 

V = -  do + Clldt a long d r  = 0 

a long  d r  = 0 V 

aaxr o - 0  - e r - -  
c7 - R ax 

0 a 0  - xr  xr 
c 9 - - - - -  R ax 

Cl0 = + ~ - 
a 0  

+ u  - 2 x r w  
1 + B c  r 

aw 
ax 
- 

a [(2-v)ox-(l+v)or-(1-2v)ag1 

r 
1 1 

1+6C 1 - v  
a [ (2v-1) ox- (l+v) or+( 2-v) o - 

C12 - 1 - v  2 {E (; + v e) i 4 1 + B C  r 
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Note t h a t  each set of t h e  above c h a r a c t e r i s t i c s  lies e n t i r e l y  i n  planes para l -  
l e l  t o  one of coordinate planes. Equations (21) t o  (28) have t h e  appearanceof 
a one-dimensional method of c h a r a c t e r i s t i c s  formulation except t h a t  they con- 
t a i n  t h e  p a r t i a l  d e r i v a t i v e  terms i n  t h e  o ther  coord ina te  d i r ec t ion .  The 
n e a r c h a r a c t e r i s t i c s  equation derived here  can be solved numerically by the  one- 
dimensional technique. Two independent so lu t ions  can b e  obtained, each corre- 
sponding t o  one of t h e  coordinate planes.  

NUMERICAL EXAMPLE 

Consider a c e n t r a l  segment of t h e  Clinch River Breeder Reactor steam gen- 
e r a t o r  flow shroud wi th  length  2% = 1.0668 m, mean r ad ius  0.47 m y  and thickness 
0.0127 m. The material is  2.25 C r - 1  Mo a t  756 K. The pressure  input  func t ion  
w a s  generated by t h e  hydrodynamics module ( r e f .  10 ) .  A constant volume, s t e p  
pressure  pu l se  of 13.79 MPa w a s  taken as t h e  source pressure  p a t  t h e  center .  
This is t y p i c a l  of t h e  maxima observed i n  l a rge  sodium-water r eac t ion  experi- 
ments during t h e  t r a n s i e n t  period. 
be  symmetric wi th  respec t  t o  t h e  mid-span, only half-length of t h e  s h e l l  needed 
t o  be considered here.  

Since the  pressure  loading w a s  supposed t o  

The boundary conditions f o r  t h e  example are shown i n  
f i g u r e  2. as follows : 

u = O  and a = O  a t x  

u = O  and w = O  a t x =  

CI = 0 and a = -p(x , t )  

x r  

xr I: 

= o  

R 
a t r = O  

CI = O  and a = O  a t r = H  x r  r J 
It has been shown i n  re ference  11 t h a t  t h e  two independent so lu t ions ,  each 
based on one coordinate plane, are numerically uns tab le  while a ca l cu la t ion  
method obtained by averaging t h e  above mentioned independent s o l u t i o n  y i e l d s  a 
s t a b l e  so lu t ion .  I n  v i e w  of equations (21), (22) and t h e  boundary conditions 
(29), i t  appears t h a t  t h e  n e a r c h a r a c t e r i s t i c s  equations i n  x-t p lane  are not  a 
proper choice a t  r = 0 and r = H because CIr are being prescribed there .  
f o r e  a combination technique is proposed here: 
r = H t h e  so lu t ions  are obtained from r-t plane n e a r c h a r a c t e r i s t i c s  equations 
while a t  o ther  po in t s  t h e  so lu t ions  are obtained from t h e  x-t plane. 
numerical r e s u l t s  here  show t h a t  t h i s  leads  t o  a s t a b l e  so lu t ion .  The advan- 
t a g e  of t h i s  technique over t h e  averaging method is  a tremendous saving i n  
computation time. The r e s u l t i n g  pressure  h i s to ry  a t  t h e  midspan (x = 0) of t he  
middle su r face  of t h e  s h e l l  is  ghown i n  f i g u r e  3. 
response of r a d i a l  displacement and v e l o c i t y  as a func t ion  of t i m e  f o r  t h e  same 
center  po in t  of t h e  s h e l l  is  a>so shown i n  t h e  f igu re .  
displacement p r o f i l e s  are shown f o r  several t i m e s .  

There- 
on t h e  boundaries r = 0 and 

The 

The r e s u l t a n t  dynamic 

I n  f i g u r e  4 ,  s h e l l  

CONCLUDING REMARKS 

The endochronic theory of p l a s t i c i t y  or ig ina ted  by Valanis has been ap- 
p l ied  t o  study t h e  a x i a l l y  symmetric motion of c i r c u l y r  c y l i n d r i c a l  t h i c k  
s h e l l s  subjected t o  an a r b i t r a r y  pressure  t r a n s i e n t  applied a t  i t s  inner  
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surface. The cons t i t u t ive  equations f o r  t h e  th ick  s h e l l s  have been obtained. 
The governing equations a r e  then solved by means of t h e  nearcharac te r i s t ics  
method. It has been shown that a s t a b l e  so lu t ion  can be obtained by t r ea t ing  
the  r a d i a l  boundaries i n  one coordinate plane while a t  other points  the  solu- 
t i ons  obtain from the  other coordinate plane. 
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VIBRATIONS AND STRESSES I N  LAYERED ANISOTROPIC CYLINDERS 

G .  P .  Mulholland 
New Mexico S t a t e  University 

B. P. Gupta 
Fluor Engineers and Constructors, Inc. 

SUMMARY 

An equation describing t h e  r a d i a l  displacement i n  a k layered an i so t rop ic  
cy l inder  has been obtained. The cy l inders  a r e  i n i t i a l l y  unstressed but are 
subjected t o  e i t h e r  a time-dependent normal s t r e s s  o r  a displacement a t  t h e  
ex terna l  boundaries of t h e  laminate. The so lu t ion  is  obtained by u t i l i z i n g  
t h e  Vodicka orthogonalization technique. 
i l l u s t r a t e  the  procedure. 

Numerical examples are given t o  

INTRODUCTION 

The problems assoc ia ted  with t h e  v ib ra t ions  of p l a t e s  and s h e l l s  have been 
of concern t o  many i n v e s t i g a t o r s  over t he  years.  Most of these works f o r  a 
s i n g l e  layered homogeneous material a r e  summarized i n  two monographs by Leissa 
( r e f .  1 , 2 )  and the  reader  i s  r e f e r r e d  t h e r e  f o r  f u r t h e r  re ferences ,  Since 
composite mater ia l s  have become popular due t o  t h e i r  mechanical and thermal 
p r o p e r t i e s ,  it has become necessary t o  study t h e i r  behavior t o  determine t h e i r  
unique c h a r a c t e r i s t i c s  before they can be used e f f e c t i v e l y .  
( r e f .  3)  and Dong and Nelson ( r e f .  4)  considered t h e  v ib ra t ion  prablem i n  
laminated p l a t e s  and t h e  re ferences  contained i n  These papers summarize t h e  
work i n  t h i s  a r e a  q u i t e  w e l l .  
cy l inders ,  t h e  book of Ambartsumyan ( r e f .  5) and Hearmon ( r e f .  6) and t h e  
papers of Gula t i  and Essenburg ( r e f .  7 ) ,  Stavsky and Smolash (ref. 8) ,  Cheung 
and Wu ( r e f .  9), and Nelson e t  a l .  (ref. 10) are r ep resen ta t ive .  

Recently Cobble 

For works concerned with an i so t rop ic  and layered 

In t h i s  paper, t h e  r a d i a l  v ib ra t ions  of  a layered an i so t rop ic  cy l inder  
are considered. The cy l inders  are s o l i d l y  joined a t  t h e i r  i n t e r f a c e s ,  are 
i n i t i a l l y  unstressed, and can be subjected t o  e i t h e r  a r b i t r a r y  time-dependent 
normal stresses o r  displacements a t  t he  ex te rna l  boundaries of  t h e  system. 
The so lu t ion  i s  obtained by using a dependent va r i ab le  transformation i n  t h e  
displacement equation thereby obta in ing  a new p a r t i a l  d i f f e r e n t i a l  equation 
with homogeneous ex te rna l  boundary conditions;  t h e  Vodicka or thogonal i ty  
conditions are then appl ied  t o  t h i s  new system t o  ob ta in  t h e  f i n a l  so lu t ion .  
The plane s t r a i n  s i t u a t i o n  i s  considered f o r  t h i s  ana lys i s .  

To i l l u s t r a t e  t h e  e f f i c i e n t  and s t ra ight - forward  manner i n  which so lu t ions  
can be obtained with t h i s  method, numerical examples are given f o r  a two-layered 
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composite. 
tangential stress, and axial stress components at two interior positions. 

Results are presented for the displacement, normal stress, 

SYMBOLS 

t 

v 

constants, (eq. (1)) 

constants, (eq. (2)) 

Young’s modulus for r, 8,  and z directions, dyne/cm 

function of time, (eq. (5) )  

function o f  displacement and time, (eq. (10)) 

Bessel function of first kind of order D 

function of  r, (eq. (4)) 

constants, (eq. (23)) 

radial coordinate, cm 

time, seconds 

radial displacement, cm 

function of time, (eq. (11)) 

weighting function, (eq. (17)) 

eigenfunct ion 

Bessel function of the second kind of order D 

eigenvalues, l/sec 

constant 

Poisson’s ratio 

2 

i 

i 

normal stress in r, 6, and z directions, dyne/cm 

functions of time, (eq. (2)) 

functions of r ,  (eq. (9)) 
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PROBLEM 

The p a r t i a l  d i f f e r e n t i a l  equation descr ib ing  t h e  displacement u f o r  t h e  i i t h  l aye r  of a multi layered c y l i n d r i c a l  composite whose material p rope r t i e s  are 
constant f o r  each l aye r  is given by 

( r , t >  (1) 
i a 2~ 

- ( r , t )  + - - (r,t) - - u i ( r , t )  = - - 
ar 

a 2u 

r2 B~~ a t 2  

i 1 i  Di2 1 au 

2 r ar 

where 

31iv13i 

32iv23i 

1 -v  

1-v 
E2 i 

Eli 
Di2 = - 

32iv23i 1-v 
2 Eli B = -  

’i ‘i i 

The boundary and i n i t i a l  conditions associated with equation (1) a r e :  

e )  u.  ( r ,o)  = 0 
1 
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where 

(1-v 32iv23i) 
- Eli - -  

‘ill A~ 

+ v  Eli 
(‘21i 31iv23i) ‘i12 A~ 

= -  

The boundary and initial conditions given by equation ( 2 )  assume that either 
the radial stresses o r  displacements are known at the external boundaries 
and that the radial stresses and displacements are continuous at the interfaces. 

To obtain homogeneous external boundary conditions, let 
3 
I 

u. (r,t) = U. (r,t) + g L. .(r)F.(t) ( 3 )  
1 1 j-1 1~ J 

where 

F.(t) = $.(t), j=1,2 
7. J 

and 
D . 2  

L.. (r) = 0 v~L.. (r) - - -i 
1 J  r2 1J 

(4) 

(5) 

For a cylinder with r 
following form for i = 1: 

= 0 (solid cylinder) and D1~l, Eq. (4) and ( 6 )  take the 1 

and 

-A D lj 1 L (r) = V2L - - D12 

Ij r2 1j r2 

The functions L (r) satisfy the following boundary conditions: ij 
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i+l j (ri+l) c) L.  .(r ) = L 
ij i+l 

Substitution of  equation ( 3 )  into equations (1) and (2) yields the following 
partial differential equation with homogeneous external boundary conditions: 

a2ui 
(r,t> (8) 

aui Di2 1 
U.(r,t) = -- (r,t) + Hij 

i 1 . a2u 
(r,t) + - - (r,t) - - 

r2 1 Bi2 at2 r ar ar2 

with 
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aui 2 
f) - ( r ,o )  = - C L . .  (r) F. ’ (O)  = q2(r) at j=l 13 J 

and where 

2 
.C  L . .  (r)F.”(t) H. .(r,t) = - 1 

13 ~~2 J=1 13 J 

SOLUTION: Ui(r,t) 

The problem has now been sufficiently simplified so that a series 
solution for Ui(r,t) can be assumed where the orthogonality conditions developed 
by Vodicka (ref. 11) can be utilized. Let 

W 
U. (r,t) = C um(t)Xim(r) 

r . <  r < r  i = 1,2,3, ..., k,t - > 0 
(11) 1 m= 1 

1 -  - i+ly 

where the function u (t) is to be determined from the initial conditions and 
the functions Xim (r)mare eigenfunctions of the eigenvalue problem 

Bi2 Di2 

r2 
Xim(r) + cxm2Xim(r) = o r dr 

with 

= o  dXkm Xkm(rk+l) 
b, ‘kll dr (‘k+l) + ‘k12 rk+l 
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The solution of equation (12) is 

The eigenvalues, a are found by substituting equations (14) o r  (15) into the 
boundary conditions, (eq. (13)). The 2k linear homogeneous equations that 
result from this substitution are then solved for the constants A 
(ref. 12). 

m y  
and Bim im 

The orthogonality condition for the eigenfunctions is 

where 

wi2 = Cill/Bi2 = Pi (17) 

The functions L . . ( r )  and H..(r,t) will satisfy Dirichlet’s conditions so 
13 13 they can be expanded in an infinite series of the eigenfunctions 

(18) 
co 

L.  .(r) = C k .X. (r) ,  j = 1,2 1 3  m=l m j  i m  

and 

where 

i51 Pi (r) Xim(r) dry j = 1,2 (20) 
k 1 = -  

mj Nm 

and 

1 r 
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Substituting equations (ll), (18), and (19) into equation (S), we obtain the 
following relationship: 

The initial conditions asssociated with equation (28) are obtained in the 
following manner : 

co co 
Ui(r,o) = mgl um(o) Xim(r) = $,(r) = - C R .F . (o)  Xim(r) m = l  mj J 

and 

Thus 

a) um(o) = 2 C R F.(o)  = p, 

2 

2 

j=l m j  j 

b) urn' (0) = -jzl Rmj F j  ' (0) = % 

The solution of equation (22) subject to the initial conditions (eq. (23))  is 

2 R  
(24) 

qm 
a m m j=1 a j 

um(t) = - sin a t + p, cos a t - .C F."(t) * sin (amt) 
m m 

where the symbol * denotes convolution. Substitution of equation (24) into 
equation (11) and that result into equation (3) gives the desired relationship 
for the radial displacement of the composite cylinders: 

2 2 
u. (r,t) = C L.. (r) F .  (t) + mfl um(t) Xim(r) (3) 
1 j=l IJ J 

where the functions Lij (r), F j  (t), Xjm(r) and u (t) are given by equations ( 4 ) ,  
(5), (14) o r  (lS), and (24),  respectively. m 
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STRESS 

The stress i n  t h e  ith sec t ion  of t h e  composite i s  given by 

V E  23 3 vie 

i z  ir E2 . 

EXAMPLE 

Consider a two-layered composite with t h e  following p rope r t i e s :  

Layer 1 Layer 2 

p1 = 1.73 gm/cm3 3 
p 2  = 1.75 gm/cm 

= 0.11 V = v  = 0.14 

= 0.18 = 0.16 V 

= 0.1 V = v  = 0.22 

122  132 

212 - v312 

232 322 

131 

311 

32 1 

= v  v121 
- = v  211 

231 

V 

= v  V 

= 6.6 x l o5  newton/cm2 2 = 7.93 x 105 newton/cm2 

- = 1.14 x lo6  newton/cm2 EZ2 - - E32 = 8.76 x 105 newton/cm* E21 - E31 

The above p rope r t i e s  are t y p i c a l  of some of  t he  more common g raph i t e s  (ATJ and 
CHQ) ( r e f .  13).  Assume f u r t h e r  t h a t  t h e r e  i s  a normal stress applied a t  t h e  
ou te r  boundary of t h e  cy l inder .  

$ 2 ( t )  = 6895 s i n  ( l o t )  N/cm2 

and t h e  phys ica l  dimensions are 

r = 0; r = 2.54 cm; r = 5.08 cm 1 2 3 
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Following the procedures outlined in the text, the radial displacement and the 
radial and tangential stresses within the composite are obtained; values at 
two positions are shown in Figures 1 through 3. 

SUMMARY 

A closed-form solution for the radial displacement in layered orthotropic 
cylinders has been obtained. 
computer which enables one t o  calculate natural frequencies, displacements and 
stresses quite easily. 
directly by hand o r  a numerical integration subroutine can be written to perform 
the calculations. 

The solution can be programmed on a modern 

The functions hj and Nm can either be integrated 
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Figure 2 . -  Radial stress compared to external excitation. 
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INCREMENTAL ANALYSIS OF LARGE ELASTIC 

DEFORMATION OF A ROTATING CYLINDER 

George R. Buchanan 
Tennessee Technological University 

INTRODUCTION 

The effect of f i n i t e  deformation upon a ro t a t ing ,  orthotropic cylinder 

I n  
w a s  investigated by Sandman ( r e f .  1). 
f i n i t e  deformations and relate h i s  r e s u l t s  t o  the  degree of orthotropy. 
t h i s  study an attempt has been made t o  study the  same problem using a general  
incremental theory. 

H e  w a s  able  t o  predict  t he  influence of 

The incremental equations of motion are developed using the var ia t iona l  
pr inciple  discussed by Washizu ( r e f .  2 ) .  
the  governing equations has been given by At lur i  ( ref .  3 ) .  Although h i s  inten- 
t i on  is t o  implement a f i n i t e  element scheme t o  solve boundary value problems, 
the equations are given i n  general tensor  notation. Hofmeister, Greenbaum, and 
Evensen ( r e f .  4) have presented an excel lent  discussion of t he  use of an incre- 
mental analysis;  again, t h e i r  goal is  the  application of a f i n i t e  element anal- 
ys i s .  The governing equations ar.e a l s o  developed i n  the  treatise by Eiot (Pef. 
5 ) ,  using both a geometrical viewpoint and a var ia t iona l  method. The governing 
equations a re  rederived here ,  i n  somewhat less d e t a i l ,  using the pr inciple  of 
v i r t u a l  work for a body with i n i t i a l  stress (ref.  2 ) .  

A m o r e  than adequate development of 

The governing equations are reduced t o  those f o r  the t i t l e  problem and a 
numerical solut ion is  obtained using f i n i t e  difference approximations. Since 
the problem is defined i n  terms of one independent space coordinate, the  f i n i t e  
difference gr id  can be modified as the  incremental deformation occurs without 
serious numer ica l .d i f f icu l t ies .  The nonlinear problem is solved incrementally 
by to t a l ing  a series of l i n e a r  solut ions.  
same problem discussed i n  ref.  1 and gave iden t i ca l  r e su l t s .  

This method w a s  used t o  solve the  

GOVERNING EQUATIONS 

The derivation of the governing equations i s  based upon an incremental 
var ia t iona l  pr inciple  ( r e f .  2 ) .  The body is assumed t o  be i n  equilibrium a t  
some arb i t ra ry  reference state along the  load path. L e t  

+ + +  
x = a + u  

be the  transformation of a p a r t i c l e  a t  point: 2 t o  point 2 i n  t h e  same space, 
then $ is+the displacement of the  pa r t i c l e .  
of load, a is the  i n i t i a l  coordinate and is the  current coordinate, and the 

A t  the  beginning of some increment 
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two are ident ica l .  
i n i t i a l  body forces  ?O act on the  body beTore the  addition of the  load incre- 
ment. These stresses and loads are with respect  t o  the  i n i t i a l  coordinate ax i s  
and are referred t o  a un i t  area before the  loading increment is applied; hence, 
they are referred t o  an undeformed area and volume. 

L e t  i n i t i a l  stresses G O ,  i n i t i a l  surface t r ac t ions  zo, and 

Assuming the  i n i t i a l  stress system is i n  equilibrium, it follows t ha t ,  

(2) 
+- 

d iv  DO + fo = 0 - 

+- 
where n is a un i t  normal vector. If the  body is then loaded with some increment 
of surface t r ac t ion  or body force,  the  t o t a l  stresses a t  the  end of t h a t  incre- 
ment of load are the  sum of the  i n i t i a l  stresses and incremental stresses. 

In order t o  formulate the pr inciple  of v i r t u a l  work, first define a non- 
l i n e a r  s t r a i n  tensor ,  such as, 

D = E + N  - - -  (4)  

where 

T E = (Vu + Vu - - - 

-+ 
where u is the  displacement f i e l d  corresponding t o  D and D i s  referred t o  as 
Green's s t r a i n  tensor  ( r e f .  6 ) .  
used by Gurtin ( r e f .  7 ) ,  although some symbols are d i f fe ren t .  

The notation i s  bayica l ly  the d i r e c t  notation 

+ 
Introduce a v i r t u a l  displacement 6u and incremental stresses, body forces ,  

and surface t rac t ions ,  0 ,  ?, and ?, respectively.  
f o r  a body with i n i t i a l s t r e s s  may be wr i t ten ,  

The pr inciple  of virtualwork 

where Si corresponds t o  the surface on which stresses are specified.  Subst i tut-  
ing equations ( 5 )  and ( 6 )  i n t o  (7 )  and noting t h a t  - Go and - G are symmetric y ie lds  

T T 
({Bo * G V ~ + O O  Vu 6Vu+0* GVU+O*VU  VU 1dV-l (go &+Z- 8;f;)dv- 
v -  V 

-- - -- -I- - 
+ +  

($o-6u+t*6z)dS = 0 
61 

Making use of 18(1) ( r e f .  71, equation ( 8 )  can be rewri t ten as 
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According t o  equations (2)  and ( 3 )  the  righthand s ide  of equation ( 9 )  should be 
zero; therefore ,  the equations of equilibrium become 

T - ? -  d i v a  -t div[(oo + a)Vu 1 + f = 0 - - - -  
and the boundary condition is  

-?- 
The assumption t h a t  the  incremental s t r a i n s  are s m a l l  implies t h a t  u is small 
incrementally and 

- D = E , ,  i .e.  N = 0 i n  equation (4) .  (12) 

The i n i t i a l  s t r e s s  may not be small; hence, we r e t a i n  Go terms i n  equations (10)  
and (11). 
s t r a i n  r e l a t ion  t h e  incremental s t r e s s  w i l l  be small. 
-- oVuT can be neglected and the  governing equations become 

I t  follows from equation ( 1 2 )  t ha t  f o r  a lizear incremental s t r e s s -  
Therefore products of 

T div  CT f div(ooVu ) + 3 = 0 - - -  
.+ T T-?- -t 
on + (ooVu 1 n = t - - -  

Equations (23 and ( 3 )  serve as an e r ro r  check and car1 be used at  any increment 
t o  determine the equilibrium s t a tus  of the i n i t i a l  s t r e s s  system. 

(13) 

(14)  

The t o t a l  stress (5 a t  the end of any load inmement becomes the i n i t i a l  
stress oo fo r  the next-load increment. Then, o must be re fer red  t o  the i n i t i a l  
coordinates 2 and the deformed area i n  order to become G O .  

has been given by Fung ( r e f .  6)  and car1 be rewri t ten as- 
The transformation 

where p/po  is the  r a t i o  of f i n a l  mass t o  i n i t i a l  mass and Va indicates  t h a t  the 
operator is  with respect t o  the i n i t i a l  coordinates 3. 
(1) t h a t  

It follows from equation 

V x = va(a+u) - = - 6 + V u  (16) a- a- 

where - 6 is a un i t  tensor. For an incremental theory equation (16)  may bewri t ten  

6 + V u = 6 + Vu = J - -  a- - - (17) 

It follows t h a t  

p/po = detlVal = 1 - tr(Vu) - (18) 

where t r (  ) represents the t race  of a tensor. Combining equations (15) through 
(18) gives the  transformation 

(19) T 
(TO = [l - tr(Vu)]JoJ - e-... 

4 75 



where 

GOVERNING EQUATIONS FOR A ROTATING CYLINDER 

The general  equations can be reduced t o  plane cy l indr ica l  coordinates i n  
order t o  implement the  analysis  of a ro t a t ing  cylinder. The problem is  one of 
axisymmetric plane s t r a i n ;  hence, the  displacement vector ?i reduces t o  U r ,  the  
r a d i a l  component, which w i l l  be referred t o  as u. 

The numerical method w i l l  be applied t o  the  equation of equilibrium (131, 
which i n  plane cy l ind r i ca l  coordinates may be wri t ten 

0 1  + (or - ot ) ) / r  + (5;' u '  + P(U" + u ' / r )  - 0;; u/r2 + r 

pw2(r + u)  = o (21) 

where f = p(r+u)w2 the i n e r t i a  force,  sr and (50 are t h e  r a d i a l  and tangent ia l  
stresses, respect ively,  and the  prime denotes d i f fe ren t ia t ion  with respect  t o  r. 

Equation (12) is represented by the l i nea r  s t r a i n s  

Er = u '  and E0 = u / r  (22) 

\ Following Sandman ( re f .  1) w e  assume a l i n e a r  anisotropic s t r e s s - s t r a in  r e l a t i o n  

(5 = CX1 u1 + C12 u / r  (23) r 

(24) 

I 

o0 - - C22  u / r  + C12 u / r  

Substi tuting equations (23) and (24) i n t o  equation (21) y ie lds  the incremental 
governing equation 

u" + ut /r - au/r2 + (5; u"/cll + U J  (0;' + cr;/r)/Cll 

where 

a = c22/c11 and B = Cl2/Cl1 

The boundary condition, equation (141, becomes 

(26) 

u ' ( 1  + cP/Cl1) + B u / r  = 0 (27) 

The l inear ized incremental stress transformation, equation (191, becomes 

(5; = (5 (1 + u' - u / r )  (28) r 
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0: = a e ( l  - u'  t u / r )  (29) 

NUMERICAL ANALYSIS 

The governing equation (25) w a s  solved using a f i n i t e  difference technique. 
The primary constraint  t o  be dea l t  with is  the magnitude of each increment of 
s t r a in .  
After each increment of displacement is calculated,  the  f i n i t e  differen 
must be updated; hence, t he  f i n i t e  gifference equations must be reformulated 
after each incremental solution. 
follows 

It must be s m a l l  enough t o  insure t h a t  equation (12) i s  not violated.  

The difference operations may be derived as 

The first incremental solut ion is merely the  l i nea r  solut ion for the  first 
Before t h e  second incremental solut ion is  determined, increment of body force. 

the i n i t i a l  stresses are assumed t o  be equal t o  the s t r e s ses  obtained f o r  the 
first increinent. These stresses are transformed according t o  equations (28) and 
(29). The incremental displacement associated with each f i n i t e  difference node 
is  added t o  the  coordinate of t h a t  node-; hence, a new i n i t i a l  stress problem is 
formulated. The nonlinear analysis €or the  equation developed by Sandman ( r e f .  
1) was obtained by transposing a l l  nonlinear terms t o  the  r igh t .  The displace- 
ments f o r  the  previous analysis  were used t o  evaluate the rx i l i nea r  terms, and 
a solut ion f o r  u i s  obtained. The calculated displacements are then used t o  
calculate  new nonlinear terms, and the  solut ion is repeated. 
t inues u n t i l  the  two sets of displacements agree t o  within some tolerance. 
This method w a s  used t o  ver i fy  the r e s u l t s  obtained by Sandman ( r e f .  1) and 
appears t o  be accurate and e f f i c i en t .  

This process con- 

Equations (2) and ( 3 )  can be used a t  any increment t o  determine i f  the  
i n i t i a l  stress system is  s t i l l  i n  equilibrium. 
not i n  equilibrium, the  solut ion can be corrected by including equation ( 2 )  i n  
the  governing equation (25). 

If the  i n i t i a l  stress system is 

NUMERICAL RESULTS 

Solutions were obtained for three d i f f e ren t  materials. These material 
parameters were assumed t o  approximate the  behavior of s teel ,  aluminum, and a 
composite epoxy-fiber or thotropic  material. The maximum r a d i a l  and tangential  
s t r e s ses  are shown i n  f igure  1 as a function of u2. The cylinder was assumed 
t o  have an outside radius  of 0.127 m (5 inches) and inside radius of 0.254 m 
(10 inches). The maximum r a d i a l  stress occurs approximately halfway between 
the  inside and outside,  while o8 is maximum a t  the inside radius .  
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The percent deviation of t h e  nonlinear solutions-above the  l inear  is i l l u s -  
The increase i n  stress using the equations of refer- t r a t e d  i n  figures 2 and 3. 

ence 1 appear t o  be aLmost l i n e a r  i n  every case. 
using the  incremental theory, is s i m i l a r  f o r  both steel and aluminum and 
reflects a nonlinear behavior. 
constant. 
decrease for both i so t ropic  materials; however, t h i s  behavior is not demon- 
s t r a t e d  for t he  composite. 

The r a d i a l  stress increase, 

The increase for the  composite appears t o  become 
The nonlinear tangent ia l  stress deviation increases and then tends t o  

In a l l  cases the  increase i n  stress l e v e l  does not appear t o  be s ign i f icant  
for stresses i n  the  elastic range. 
extended t o  include nonlinear material behavior. 

The analysis  presented herein should be 
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VARIATIONAL THEOREMS FOR SUPERIMPOSED MOTIONS IN ELASTICITY, 

WITH APPLICATION TO BEAMS 

M. Cengiz DBkmeci 
Technical University of Istanbul 

SUMMARY 

This study presents variational theorems for a theory .of 
small motions superimposed on large static deformations and 
governing equations for prestressed beams on the basis of 3-D 
theory of elastodynamics. First, the principle of virtual work 
is modified through Friedrichs's transformation so as to describe 
the initial stress problem of elastodynamics. Next, the modified 
principle together with a chosen displacement field is used to 
derive a set of 1-D macroscopic governing equations of pre- 
stressed beams. The resulting equations describe all the types 
of superimposed motions in elastic beams, and they include all 
the effects of transverse shear and normal strains, and the 
rotatory inertia. The instability of the governing equations is 
discussed briefly. 

INTRODUCTION 

Small motions superimposed upon large static deformations 
have been tackled by a variety of investigators. And differential 
as well as variational formulations have been derived for both the 
so-called initial stress and initial strain problems (see, e.g., 
refs. 1-3, and references cited there). A classical variational 
formulation for the initial stress problem is deduced from a 
general principle of physics and has certain advantages over a 
differential formulation (see, e.g., ref. 3, where the principle 
of virtual work is taken as fundamental). This yields only the 
stress equations of motion and the natural boundary conditions. 
The remaining equations of the initial stress problem should be 
introduced as constraints. The constraints, however, can be 
removed through Friedrichs's transformation. This has been 
illustrated by de Veubeke (ref. 4) for classical elastodynamics. 

All the past efforts reveal how the static and dynamic 
behavior of structures may significantly change by the presence 
of initial stress o r  initial strain. Among those, we mention here 
references 5-8 and references 9-12 on initially stressed shells 
and plates, respectively. On initially stressed beams, the works 
of Brunelle (ref. 1 3 )  and Sun (ref. 14) are cited. Brunelle 
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derived the governing equations for a prestressed, transversely 
isotropic beam via the direct integration of 3-D field equations. 
Sun studied the equations for a Timoshenko beam having an initial, 
in-plane compressive stress by the use of both Trefftz's and 
Biot's formulations. 

The purpose of this investigation is twofold. The first aim 
is to modify the principle of virtual work, and then to obtain a 
generalized variational. theorem which describes a.n arbitrary state 
of initial stress. The procedure used in achieving this is 
analogous to the one used in reference 4. The second aim is to 
construct the governing equations of anisotropic beams under 
initial stress by the use of the generalized variational theorem 
together with an incremental displacement field chosen a priori. 
The displacement field allows to include all the effects of 
transverse shear and normal strains, and the rotatory inertia for 
the prestressed thick beam in which they are significant. The 
resulting equations describe all the types of superimposed 
extensional, flexura1,and torsional motions of thick anisotropic, 
elastic beam of uniform cross section. The dynamic instability 
of the prestressed beam is a l so  discussed. 

SYMBOLS 

In a Euclidaen 3-spaceY Cartesian tensors are used, and 
Einstein's summation convention is implied for all repeated Latin 
( 1 , 2 , 3 )  and' Greek (1,2) indices, unless indices are put within 
parantheses. 

L, A; C length and cross-seckJonal area of beam; Jordan curve 
which bounds A 

v, s entire volume of beam and its total boundary surface 

S ' ,  S" complementary subsurfaces of S, where stresses and 
displacements are,respectively,prescribed 

X ' X  a system of right-handed Cartesian convected coordi- 

Ui' ui myn 

iy et' x3 nates; lateral coordinates and beam axis 

components of displac%ment vector, displacement 
functions of order (m,n) 

P mass-density 

ni, vi components of unit outward vector normal to S and C 

S components of strain and symmetric stress tensors ij' ij & 

0 prescribed steady temperature field 
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'ijkl' a ij 

Imn 

'mn 

isothermal elastic stiffnesses and strain-temperature 
constants 

moment of inertia of order (m,n) 

components of acceleration and traction vectors 

stress resultants of order (m,n) 

body force and acceleration resultants of order (m,n) 

effective load and external force of order (m,n) 

partial differentiation with respect to time, t, and xi 

field quantities belong to the reference state and 
prescribed quantities 

functions with derivatives of order up to and including 
m and n with respect to space coordinates xi and time,t 

FUNDAMENTAL EQUATIONS 

Consider a simply connected elastic body V+S, with its 
boundary S, in a 3-D Euclidean space E. The elastic body is 
referred to a x -fixed system of Cartesian convected coordinates 
in this space. iWhen this body is prestressed, we distinguish two 
states of the body: its reference (or initial) and spatial (or 
final) state. The reference state is considered to be self- 
equilibrating following static loading in the natural (OP un- 
disturbed) state of the body at time, t = t o .  We may summarize, f o r  
ease of quick reference, the fundamental equations (s,ee, e.g*, 
ref. 2) in the form 

+ pof! = o in V 
J 

SO ij ,i 

n.so - t?+ = o on S'  , up - up* = o on S" ( 2 )  
1 ij J 
0 

si j E o  - 
- 'ijkl kl 

for this state. Here, p o  is the known mass density of the body 
material, s !  the symmetric stress tensor, f! the body force 
vector per ?dit mass in V, uo the displacemeht vector, n. the 
unit outward vector normal t& S, u!* and to* the prescrifjed 
displacement and traction vectors bn the chmplementary sub- 
surfaces S" and S '  of S ,  E O  

('ijkl - 'jikl 'klij 
the linear strain tensor, and Cijkl - - - ) the ij isothermal elastic stiffnesses. 

Now, suppose that an infinitesimal (or small) motion is 
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superimposed upon the reference state. For this motion, we have 
the following fundamental equations: 

O u ) + po(fj - a.) = o in V ('ij + 'ir j,r ,i J 

ni(sij + s o  u ) - t? = o on S '  

u - UT = 0 on S "  

ir j,r J 

i 

= 1 / 2 ( ~ , ~  + u ) in V 
'i j ,i 

( 4 )  

( 5 )  

( 7 )  

u - v ; = o  ti G - WT = o in V(to) i i (9) 

in the spatial stat'e. In these equations, si., u., ti and so on 
indicate small incremental quantities superim$ose?i upon those of 
the reference state (i.e., s o  
acceleration vector, v* and 
vectors. 
and a . . =  a. the strain-temperature coefficients at constant 
stresh? A l i d ,  V(to) is used to designate V at t= to .  

u!, t!). 
a+e the prescribed displacement 

And a.=Gi is the 

0 is an incrdmental prescribed steady temperature field 

Equations (1)-(9) describe completely the initial stress 
problem of interest. 

VARIATIONAL THEOREMS 

To begin with, we express a principle of virtual work as the 
assertation 

Iv'spj + s ij )Gy..dV IJ = Iv po(fl + fi)GuidV - Iv p0ai6uidV 

in the spatial state. 
tensor, and it is given by 

Here, yij denotes the Lagrangian strain 

Yi j = E ij + 1/2(ui,ruj,r) 

In equation (lo), through the use of equation (ll), we first carry 
out the indicated variations, apply Green -Gauss integral 
transforamations and combine the resulting surface and volume 
integrals. Next ,  we recall the usual arguments on incremental 
field quantities (see, e.$., ref. 2), take into account equations 
(1) and (2), and finally arrive at the variational equation of the 
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form: 

with 
6 J l l  = Iv(sij + s! ir u j ,r ) ,i .6uidV + Iv P o ( f i  - ai)6uidV 

- tS]Gu.dS ( 1 2  b) 6~~~ = IsC(sij + sqruj,,)ni 5 a  
The v a r i a t i o n s  of d i sp lacements  are a r b i t r a r y  and independent i n  
t h i s  equat ion .  Hence, equa t ion  ( 1 2 )  leads e v i d e n t l y  t o  t h e  stress 
equa t ions  of  motion (4) i n  V and t h e  n a t u r a l  boundary cond i t ions  
(5 )  on S ,  as t h e  a p p r o p r i a t e  Eu le r  equa t ions .  

V a r i a t i o n a l  Theorem: L e t  V+S denote  a r e g u l a r ,  f i n i t e  r e g i o n  

Then, of a l l  t h e  admissible  displacement  s ta tes  U . E C  2 3  i f  

3 f  space (see, e . g . ,  r e f .  1 5 )  i n  3, w i t h  its boundary S, and d e f i n e  
the f u n c t i o n a l  J whose t h e  f i r s t  v a r i a t i o n  i s  g iven  by equa t ion  
( 1 2 ) .  
2nd only if, t h e  one which s a t i s f i e s  t h e  stress equat ion& o$ motion 
(4) and t h e  n a t u r a l  boundary c o n d i t i o n s  ( 5 )  as t h e  a p p r o p r i a t e  
3uler  equa t ions ,  r e n d e r s  6 J  = 0 .  

T h i s  i s  a one- f ie ld  v a r i a t i o n a l  theorem i n  which equat ions  (6) 
- ( 9 )  of t he  i n i t i a l  s tress problem remain to be sa t i s f ied  as 
: o n s t r a i n t s .  

To i n c l u d e  t h e  res t  of equa t ions  of t h e  i n i t i a l  s tress problem 
-n t h e  v a r i a t i o n a l  fo rmula t ion ,  w e  i n t roduce  d i s l o c a t i o n  p o t e n t i a l s  
tnd use  F r i e d r i c h s f s  t r ans fo rma t ion ,  and w e  c l o s e l y  fo l low de 
Teubeke ( re f .  4 ) .  Thus, w e  o b t a i n  t h e  fo l lowing  theorem. 

General ized V a r i a t i o n a l  Theorem: L e t  V+S denote  a r e g u l a r ,  
' i n i t e  r e g i o n  of space i n  E ,  w i t h  i t s  boundary S (S1qS"=0 and 
; 'uS"=S),  and d e f i n e  t h e  f u n c t i o n a l  I whose f i r s t  v a r i a t i o n  i s  
; iven by 

6 1  = G I i i  + 6J l l  (13 4 
r i t h  

= Iv [c i j  - 1/2(uiYj + u ) ] G s i j d V  6133 5 , i  
t . E C  ,and E i j E c O O '  1 00 hen, of a l l  t h e  admissible  states of ui~C12, 
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s EC i f  and only i f ,  t h o s e  which s a t i s f y  t h e  stress equat ions 

f o r  displacements and t r a c t i o n s  on S” and S f ,  t h e  s t r a i n -  
displacement r e l a t i o n s  ( 7 )  i n  V, and the  c o n s t i t u t i v e  equat ions ( 8  
i n  V, as t h e  appropr i a t e  Euler  equat ions,  render  6 I = O .  

In t h e  genera l ized  v a r i a t i o n a l  equat ion (13), t h e  incremental  
f i e l d  q u a n t i t i e s  ( s . .  , u t., and E .  .)  a r e  var ied  independently.  
And t h i s  i s  a four-?’Peldi~arEationafJ theorem. 
s t a t e s  a r e  not requi red  to meet any of the  fundamental equat ions o 
t h e  i n i t i a l  s t r e s s  problem but  t h e  i n i t i a l  condi t ions  ( 9 )  only.  

o $3 mo 40’ i on  (4) i n  V, t h e  n a t u r a l  boundary condi t ions  ( 5 )  and ( 6 )  

The admiss ib le  

BEAMS UXDER INITIAL STRESS 

Geometry and Kinematics 

A s t r a i g h t  e l a s t i c  beam i s  embedded i n  t he  space E .  The beam 
i s  of uniform c ross  s e c t i o n ,  A ,  and i t  occupies a r e g u l a r ,  f i n i t e  
r eg ion  of  space V w i t h  i t s  boundary S i n  E .  The t o t a l  su r f ace  S 
c o n s i s t s  of two r i g h t  and l e f t  f a c e s ,  Ar and A , and a c y l i n d r i c a l  
l a t e r a l  su r f ace  S . The beam i s  r e f e r r e d  to t h e  x.-system of 
Car tes ian  convect&d coord ina tes  loca ted  at t h e  c e n h o i d  of A . The 
x -ax is  i s  chosen to be the  beam a x i s ,  and t h e  x -axes i n d i c k e  
t d e  p r i n c i p a l  axes of A which i s  bounded by a Joydan curve C .  The 
beam i s  under an i n i t i a l  s t r e s s  f i e l d  i n  t h e  r e fe rence  s t a t e .  

The  incremental  displacements of  t h e  p re s t r e s sed  e l a s t i c  beam 
are taken of t h e  form: 

Here, t h e  u .  ( m 9 n )  a r e  func t ions  of  x These 
terms r e a d i t y  accommodate low-frequsncy ex tens iona l ,  f l e x u r a l  and 
t o r s i o n a l  superimposed motions. However, it shou ld  be kept I n  
mind t h a t ,  i n  t h e  case of t o r s i o n ,  equat ion ( 1 4 )  can r ep resen t  
only t h e  displacements of beams o f  e l l i p t i c  and c i r c u l a r  cross-  
s e c t i o n s ,  and f o r  a l l  o the r  s ec t ions ,  more terms should be r e t a i n €  
i n  t h e  expansion. The displacement f i e l d  ( 1 4 )  i s  l i k e  t h e  one 
Mindlin ( r e f .  1 6 )  used i n  h i s  r ecen t  d e r i v a t i o n  of t h e  governing 
equat ions f o r  a n o n - i n i t i a l l y  stressed e l a s t i c  bar. 

and t i m e ,  t, only.  

Stress and Load Resul tan ts  

We de f ine  t h e  stress r e s u l t a n t s  of order  (m,n): 
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This represents the weighted, averaged values of stress tensor 
over a cross section of the prestressed beam in the reference 
state. 

load resultants, and the moment of inertia of order (m,n): 
In addition, we introduce the body force, acceleration and 

Prestressed Beam Equations -Instability 

Now, we shall derive the prestressed beam equations by the 
se of the generalized variational theorem (13) together with the 
ncremental displacement field (14). First, upon substituting 
he expansion ( 1 4 )  into equation (13 a), we find the variational 
quation (16). In this equation, the variations 6ui are 
rbitrary and independent for any choice of m(=0,1) and n(=Oyl), 
nd hence it evidently leads to the macroscopic equations of 
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motion (17) as follows: 

(myn)6upyn) dx3 = 0, m,n=O,l 
0 m,n=O 

Here, Q!(myn) is the effective initial load given by 

Similarly, we evaluate the variational equation (I3 b) and 
obtain the natural displacement and traction boundary conditions 
in the form 

Tf(myn) + n3(T3i + qi (myn)) = 0, m,n=O,lon Ar and A 

Here, S'=AruA1 and S"=S1, and n =+1 for AI, and n =-1 for Ala 

we have the strain distribution: 

3 3 
Upon using of equations (13 e) and (13 d) together with (14) 

(20 a' 

with 

and the macroscopic constitutive equations: 

where we take the temperature increment of the form: 
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M = l  

m,n=O 
@(Xi) = 1 

Lastly, the initial conditions, based on equations (9) and 
(141, 

:omplete the beam equations (cf., ref. 1 7 ,  where non-initially 
;tressed beams are treated) under an arbitrary state of initial 
;tress field. 

The beam equations of equilibrium may be derived similarly 
)n the basis of equations (l)-(3); they are not written out here 
-n order to conserve space. 

To examine the stability of the prestressed beam equations, 
re first consider the beam with a s e t  of initial forces x. Next, 
re replace x by a prescribed set x*. And, as usual, we arrive at 
t system of linear homogeneous differential equations which 
Lescribes the instability problem under consideration. The sets 
.re defined by 

in L, Fi o b,n> in L, Ti o(m,n) on A) 

here X is a monotonically increasing factor, and whenever it 
eaches certain values the equilibrating reference configuration 
ecomes unstable. The behavior of the eigenvalues of this factor 
s to be investigated in each particular case of interest. Some 
xamples of instability will be reported elsewhere. 
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RESPONSE OF LONG, FLEXIBLE CANTILEVER BEANS 

TO APPLIED ROOT MOTIONS 

Robert W. F r a l i c h  
NASA Langley Research Center 

SUMMARY 

Results are presented f o r  an a n a l y s i s  of t h e  response of long, f l e x i b l e  
can t i l eve r  beams t o  applied r o o t  r o t a t i o n a l  acce le ra t ions .  Maximum values of 
deformation, slope,  bending moment, and shear are found as a function of 
magnitude and du ra t ion  of acce le ra t ion  input.  
e c c e n t r i c i t y  and r o t a t o r y  i n e r t i a  on t h e  response are a l s o  inves t iga ted .  
It is shown t h a t  f l e x i b l e  beams can withstand l a r g e  r o o t  acce le ra t ions  pro- 
vided t h e  period of applied acce le ra t ion  can be kept small relative to  t h e  
beam fundamental period. 

E f f e c t s  of t i p  mass and i t s  

INTRODUCTION 

I n  t h e  design of l a r g e  space s t r u c t u r e s ,  i t  is  necessary t o  understand 
t h e  dynamic response of f l e x i b l e ,  low-frequency s t r u c t u r e s .  A t y p i c a l  design 
problem is  shown i n  f i g u r e  1, where a 100-meter beam is deployed from t h e  
space s h u t t l e  o r b i t e r  f o r  a proposed molecular vacuum f a c i l i t y .  
a l ightweight boom requ i r e s  a knoyledge of t he  motion caused by input accel- 
e r a t i o n s  produced by c o n t r o l  fo rces  applied a t  t h e  s h u t t l e  o r b i t e r .  
t i o n  of t hese  con t ro l  f o r c e s  is  a s m a l l  f r a c t i o n  of t h e  f i r s t  na tu ra l  period 
of the  boom. The purpose of t h i s  paper is  t o  present r e s u l t s  of an  ana lys i s  
of l igh tweight  f l e x i b l e  booms t o  short-duration a c c e l e r a t i o n  impulses and t o  
f ind  t h e  permissible va lues  of these  input  acce le ra t ions .  E f fec t s  of t i p  
mass magnitude, e c c e n t r i c i t y ,  and r o t a t o r y  i n e r t i a  are included i n  t h e  ana lys i s .  

The design of 

The dura- 

DESCRIPTION OF ANALYSIS 

The conf igura t ion  analyzed i n  t h i s  paper is t h e  can t i l eve r  beam shown i n  
f i g u r e  2. The beam of l eng th  L, depth D,  s t i f f n e s s  E I ,  and m a s s  p e r  u n i t  
l ength  p has a t i p  m a s s  'Fr with  a r o t a t o r y  i n e r t i a  IM and an  e c c e n t r i c i t y  
B. The ana lys i s  considers a cons tan t  r o t a t i o n a l  input acce le ra t ion  A which 
is  applied f o r  a time To and i s  then removed. The du ra t ion  of input 
varies over t h e  range from an impulsive input (To + 0) t o  a s t e p  input  
(To -+ a). 
given by t h e  r a t i o  TO/T where T i s  t h e  period of t h e  f i r s t  n a t u r a l  f r e -  
quency of t h e  can t i l eve r  beam. 
va lues  of T /T is of main i n t e r e s t .  

TO 

A nondimensional measure of t h e  du ra t ion  of input acce le ra t ion  is 

I n  t h e  present  study, t h e  region with low 

0 
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Simple beam theory is used t o  obta in  t h e  d i f f e r e n t i a l  equation of motion 

E1 a 4 Y(X,t) ax 4 + ~ ~ + x ~ ~ ] = o  a t  (1) 

where e ( t )  is  t h e  r i g i d  body r o t a t i o n  and Y(X,t) is t h e  elastic deformation 
of t h e  r o t a t i n g  beam. The d e f l e c t i o n  Y(X,t) s a t i s f i e s  t h e  boundary conditions 

d2e 2 a Y(L,t) + 

3 a Y(L’t) + E (B + L) 7 + [ d t  a t 2  ax a t 2  
- E1 

ax3 
l 

ax a t 2  
2 d2e 2 

ax2 
a Y(L,t) + BG (B + L) 2 - k  [ d t  a t 2  

] = o  

E1 

a t  
and t h e  i n i t i a l  conditions 

Y(X,O) = 0 

The r i g i d  body r o t a t i o n  i s  given by 

8 = -  A t 2  f o r  O < t < T o  

and 

f o r  t > To 1 
2 0  

e =  AT^ ( t  - --T 

I 

} ( 3 )  

} ( 4 )  

I n  t h e  ana lys i s  t h e  elastic deformation Y(X,t) i s  given by 

co 

where 
are generalized coordinates.  Resul t s  are obtained f o r  elastic beam d e f l e c t i o n  

Y(X,t>, s lope  

+,(X) are t h e  beam v i b r a t i o n  modes f o r  t h e  can t i l eve r  beam and a n ( t )  

ax t, , bending moment M(X, t )  , and shear r e s u l t a n t  Q(X, t) 
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Modal equat ions f o r  t hese  responses were programed on a d i g i t a l  computer and 
t h e  maximum va lue  of each w a s  found a t  s e v e r a l  s t a t i o n s  along t h e  beam. 

RESULTS AM) DISCUSSION 

The number of modes required f o r  convergence is indica ted  i n  f i g u r e  3 f o r  
a beam without a t i p  m a s s  subjected t o  inpu t  r o t a t i o n a l  acce le ra t ions  wi th  a 
l a r g e  enough variation of input  du ra t ions  t o  inc lude  a l l  p o s s i b l e  types of 
responses.  
t i p  m a s s  conf Igura t ions .  
s i o n a l  response parameters f o r  t he  d e f l e c t i o n  YT and s lope  aYT/aX a t  t h e  
beam t i p  and f o r  bending moment Mo and shear  r e s u l t a n t  Qb a t  t h e  beam r o o t .  
Accurate ca l cu la t ions  of t h e s e  response parameters are obtained by using only 
one mode f o r  t i p  d e f l e c t i o n ,  two modes f o r  t i p  s lope ,  and f i v e  modes f o r  r o o t  
bending moment and shear  r e s u l t a n t .  A six-mode s o l u t i o n  i s  used he re in  as a 
completely converged s tandard of comparison. 

Although notshown, s i m i l a r  curves  have been es tab l i shed  f o r  o the r  
These curves g i v e  t h e  maximum va lues  of nondimen- 

The curves of f i g u r e  3 ,  showing t h e  e f f e c t s  of du ra t ion  of acce le ra t ion  
input ,  can be divided i n t o  two reg ions  of response types.  For short-durat ion 
inputs  (To/T < 0.5) t h e  maximum responses always occur a f t e r  t h e  inpu t  r o o t  
acce le ra t ion  has  been removed. 
maximum responses  always occur while  t h e  input  a c c e l e r a t i o n  is being appl ied 
and approach t h e  va lues  f o r  a s t e p  input  (T /T -+ a) which have t h e  values  of 
two times t h e  va lues  f o r  t h e  quas i - s t a t i c  s o l u t i o n  f o r  r i g i d  body i n e r t i a  
loading. The near ly  h o r i z o n t a l  curves  f o r  TO/T > 0.5 show t h a t  i n  t h i s  
reg ion  t h e  maximum values  of beam responses cirn b e  ca l cu la t ed  by u s e  of t h e  
simple quasi-s ta  t i c  so lu t ion .  

For long-duration inpu t s  (TO/T > 0.5) t h e  

0 

When t h e  nondimensional parameters of f i g u r e  3 are used, t h e  r e s u l t s  f o r  
near ly  impulsive input  a c c e l e r a t i o n  (T /T -+ 0) are a l l  compressed near t h e  
o r ig in .  Inputs  i n  t h i s  reg ion  are of p a r t i c u l a r  i n t e r e s t  s i n c e  t y p i c a l  c o n t r o l  
i npu t s  are f o r  sho r t  intervals of t ime while  space booms have long periods.  
To overcome t h i s  d i f f i c u l t y ,  t h e  r e s u l t s  of f i g u r e  3 are repea ted  i n  f i g u r e  4 
by using a d i f f e r e n t  set of nondimensional parameters. These parameters have 
f i n i t e  nonzero values f o r  t h e  pure impulse and are i n  agreement wi th  calcu- 
l a t e d  va lues  from re fe rence  1, which cons iders  t h e  instantaneous arrest of a 
r o t a t i n g  c a n t i l e v e r  beam. These response parameters t h a t  have input  accelera-  
t i o n  impulse (T A) i n  t h e i r  nondimensionalizations , f o r  short-dvrat ion inpu t s  
(TO/T < 0.5) ,  do not  have t h e  l a r g e  v a r i a t i o n  wi th  t h a t  is obtained by 
using t h e  response parameters of f i g u r e  3 .  For t h i s  reason,  the nondimensional 
parameters of f i g u r e  4 are used throughout t h e  remainder of t h e  paper. 

0 

0 
TO/T 

Ef fec t  of t i p  mass on maximum response is  shown i n  f i g u r e  5 f o r  a pure 
impulsive input  (TO/T + 0) and f o r  a short-durat ion input  (TO/T = 0.1). 
are shown f o r  t h e  nondimensional parameters f o r  elastic t i p  d e f l e c t i o n  and 
r o o t  bending moment. For s h o r t  du ra t ion  of input  acce le ra t ion ,  t h e  e f f e c t  of 
du ra t ion  has very  l i t t le  e f f e c t  on t h e  e l a s t i c  t i p  d e f l e c t i o n  curve but  has 
some e f f e c t  on t h e  r o o t  bending-moment curve. Note t h a t  e f f e c t s  of t i p  mass 
are included not only i n  t h e  t i p  m a s s  parameter (%/pL) bu t  a l s o  i n  the per iod 
T. Even though t h e  nondimensional response is  shown t o  decrease  with t i p  m a s s ,  
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t he  physical q u a n t i t i e s  increase  as expected. For example, f o r  a t i p  mass 
equal t o  thebeam m a s s ,  t he  r o o t  bending moment increases  75 percent and t h e  
t i p  d e f l e c t i o n  100 percent. 

E f fec t s  of t i p  mass e c c e n t r i c i t y  and r o t a t o r y  i n e r t i a  are shown i n  
f i g u r e  6 f o r  a pure impulse (TO/T -f 0) and f o r  a s h o r t  du ra t ion  of input  
(TO/T = 0.1). 
shown as func t ions  of r o t a t o r y  inertja 
B/L 
i n e r t i a  and e c c e n t r i c i t y  a l s o  appear i n  two p a r t s  of t h i s  f i gu re ;  f i r s t ,  i n  
t h e  parameters I M / E L ~  and B/L and, second, i n  the  period T which is used 
i n  nondimensionalizing t h e  response parameters. Again, f o r  short-duration 
inputs ,  the  elastic t i p  d e f l e c t i o n  parameter is only s l i g h t l y  a f f ec t ed  by 
du ra t ion  of input  but t h e  r o o t  bending-moment parameter decreases appreciably 
with an  increase  i n  TO/T. 

l a t e d  va lues  of response, curves can be obtained t o  g ive  maximum permissible 
input acce le ra t ion  as a func t ion  of s t r u c t u r a l  parameters. For example, i f  
l i m i t i n g  va lues  are assigned t o  t h e  maximum bending s t r a i n  E a t  t h e  root  of 
a can t i l eve r  w i th  a symmetrical c ros s  sec t ion ,  t h e  curves of f i g u r e  7 are 
obtained which g ive  permissible nondimensional input acce le ra t ion  TTOA as a 
func t ion  of span t o  depth L/D. The E = 0.003 and 0.005 curves bound va lues  
of l i m i t i n g  bending s t r a i n  t h a t  are appropr ia te  f o r  most i s o t r o p i c  and compos- 
i t e  materials while t he  E = 8.001 
l i m i t i n g  bending s t r a i n  t h a t  has been reduced t o  take i n t o  account e f f e c t s  such 
as buckling. The curves,  shown f o r  no t i p  mass, show t h a t  f o r  given va lues  of 
L/D and E, a s l i g h t l y  higher va lue  of impulse T A is permitted i f  t h e  
impulse i s  applied over a longer du ra t ion  of t i m e  . 

H e r e  nondimensional t i p  d e f l e c t i o n  and r o o t  bending moment are 
I M / E L ~  f o r  two va lues  of e c c e n t r i c i t y  

which are chosen as rep resen ta t ive  extreme values.  E f f e c t s  of r o t a t o r y  

When a l i m i t i n g  design o r  maximum va lue  i s  assigned t o  any of t h e  calcu- 

curve represents  a p r a c t i c a l  va lue  of 

OTO 

Sample curves wi th  physical u n i t s  are given i n  f i g u r e  8 f o r  determining 
permissible input  acce le ra t ion  A .  
t i p  mass and f o r  t h e  reduced l i m i t i n g  s t r a i n  condition (E = 0.001). The curves 
show t h e  v a r i a t i o n  of permissible input r o t a t i o n a l  acce le ra t ion  with the  lowest 
n a t u r a l  frequency (l/T) and t h e  span-to-depth r a t i o  L/D f o r  two va lues  of 
input dura t ion  TO/T. The T /T = 0.5 va lue  r ep resen t s  t h e  most severe  case 
where t h e  response approaches t h a t  of t h e  s t e p  input and t h e  beam behavior can 
be estimated from a simple quas i - s t a t i c  so lu t ion .  The To/T = 0.001 va lue  
represents  a nea r ly  impulsive input .  A s  t h e  dura t ion  of input decreases,  t h e  
permissible magnitude of input  r o t a t i o n a l  acce le ra t ion  increases .  A s  i l l u s -  
t r a t e d  i n  f i g u r e  8, a hundred-fold increase  i n  permissible acce le ra t ion  can be 
achieved by applying very short-duration inputs .  

These curves are shown f o r  a beam with no 

0 

CONCLUDING REMARKS 

A modal s o l u t i o n  has been obtained t o  study t h e  response of long, f l e x i b l e  
can t i l eve r  beams t o  applied va lues  of r o o t  r o t a t i o n a l  acce lera t ion .  E f f e c t s  of 
t i p  m a s s  with var ious  e c c e n t r i c i t i e s  and r o t a t o r y  i n e r t i a s  have been included. 
Results w e r e  obtained f o r  du ra t ion  of input t h a t  cover t h e  range from near- 
impulsive t o  t h e  s t e p  function. 
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i d e n t i f i e d  t h a t  f a  near-impulsive type 
of input acce lera t ions .  than half the 
period of t h e  f i r s t  na tur  m response i s  
nea r ly  equal t o  t h a t  t o  be t w i c e  t h e  
response given by sim d body i n e r t i a  
loading. Examples ar Its t o  t h e  problem 
of determining max ues of maximum 
s t r a i n  are not exc i b l e  booms can 
experience high roo t  ng l a r g e  s t r a i n s  
provided t h e  du ra t ion  a l l  f r a c t i o n  of 
t h e  period of t he  f i r s  

1. Stowell, Elbridge Z. ;  Schwartz, Edward B.; and Houbolt, John C.: Bending 
and Shear S t r e s ses  Developed by t h e  Instantaneous Arrest of t he  Root of 
a Cantilever Beam Rotating With Constant Angular Velocity About a 
Transverse Axis Through t h e  Root. NACA W a r t i m e  Report L-27 (ARR 
No. L5E25) 1945. 
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Figure 1. Long, f l e x i b l e  boom f o r  molecular vacuum f a c i l i t y .  

Y 
BEAM CONFIGURATION 

COORD INATES 

T 
t, sec 

1 N P UT A C CE LERA T I ON 
Figure 2. F l ex ib l e  can t i l eve r  beam subjected t o  input  r o t a t i o n a l  acce le ra t ion .  
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Figure 3.  E f f e c t  of du ra t ion  (T /T) of input  r o t a t i o n a l  a c c e l e r a t i o n  
maximum response.' NO t i p  m a s s  ( M / ~ L  = 01. 

MAXIMUM 
RESPONSE 

X REFERENCE 1 

1.5 

1.0 

.5 

0 .2 .4 .6 .8 1.0 

T 
- TO 

on 

Figure  4 .  Response parameters appropr i a t e  f o r  nea r ly  impulsive input  
a c c e l e r a t i o n  (T'/T -t 0 ) .  NO t i p  m a s s  (MIPL = 0 ) .  
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t i p  m a s s  on maximum response of beam. M/pL = 1. 
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Adjutant 

OPTIMAL DESIGN AGAINST COLLAPSE AFTER BUCKLING 

E .  F. Masur 
Univers i ty  of I l l i n o i s  a t  Chicago Circle 

-SUMMARY 

After buckling, s t a t i c a l l y  indeterminate  t r u s s e s ,  beams, and o the r  
" s t r i c t l y  symmetric" s t r u c t u r e s  may co l l apse  under loads which reach l i m i t i n g  
magnitudes. The cu r ren t  paper d i scusses  optimal des ign  f o r  prescr ibed  va lues  
of t hese  c o l l a p s e  loads .  

INTRODUCTION 

The p r i n c i p l e s  and techniques of op t imal ly  designing s t r u c t u r a l  elements 
aga ins t  buckling have been widely inves t iga t ed .  
ex tens ive  l i t e r a t u r e  on t h e  problem of f ind ing  t h e  least weight design f o r  a 
column of prescr ibed  Euler  buckling s t r e n g t h  ( see ,  f o r  example, r e f .  1 ,2 ,3 ) ,  
and two recen t  pub l i ca t ions  ( r e f .  4 ,S) 'dea l  with t h e  analogous problem of f ind -  
ing  t h e  l i g h t e s t  beam t o  resist  la te ra l  buckling under prescr ibed  loads.  
common f e a t u r e  of t h e s e  problems i s  t h e  fact  t h a t  t h e  s t r u c t c r e s  considered are 
s t a t i c a l l y  determinate  i n  t h e  sense t h a t  t h e  prebuckling stresses themselves 
are independent of t h e  design.  

For  example, t h e r e  e x i s t s  an 

The 

If t h e  s t r u c t u r e  i s  indeterminate ,  and i f  t h e  prebuckling stresses them- 
s e l v e s  are the re fo re  a f f ec t ed  by des ign  changes, t h e  problem becomes v a s t l y  
more complicated and no genera l  op t ima l i ty  p r i n c i p l e s  appear t o  have been 
developed. On t h e  o t h e r  hand, i t  i s  l i k e l y  t h a t  i n  cases of t h i s  type t h e  
buckling load i t s e l f  does n o t  r ep resen t  an important design c r i t e r i o n .  
s t r u c t u r e s  buckle under decreasing loads and a r e  t h e r e f o r e  imperfection- 
s e n s i t i v e .  Others may buckle  under increas ing  loads ,  and t h e i r  a c t u a l  s t r e n g t h  
i s  again governed by f a c t o r s  o the r  than t h e  c r i t i c a l  buckling load. 

Some 

I t  has  been shown t h a t  c e r t a i n  " s t r i c t l y  symmetric" types of s t r u c t u r e s  
n e c e s s a r i l y  buckle under increas ing  loads,  and t h a t  t h e s e  loads o f t e n  approach 
l i m i t i n g  va lues  as buckling deformations inc rease  i n d e f i n i t e l y .  
s t r u c t u r e s  of t h i s  kind are s t a t i c a l l y  indeterminate  t r u s s e s  ( r e f .  6) o r  beams 
buckling l a t e r a l l y  ( r e f .  7 ) ,  and r ecen t  numerical ( r e f .  8,s) and experimental  
( r e f .  10) r e s u l t s  have confirmed t h e  genera l  theory  ( r e f .  11 ) .  I t  may the re -  
f o r e  be r ea l i s t i c  t o  s tudy  t h e  optimal design of such structures as t h e i r  
co l l apse  s t r e n g t h ,  r a t h e r  than  t h e i r  buckling s t r e n g t h ,  i s  prescr ibed .  The 
ob jec t  of t h i s  paper is t o  in t roduce  a general  d i scuss ion  of t h i s  problem and 
t o  i n d i c a t e  a method of so lu t ion .  

Examples of 
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POSTBUCKLING MODEL 

The postbuckling behavior of s t r i c t l y  symmetric s t r u c t u r e s  has been 

(say, 

then t h e  "critical" load value is  

described i n  t o t a l  g e n e r a l i t y  i n  reference 11. 
by means of a simple model cons is t ing  of a p in- jo in ted  t r u s s  of 
n = 2 )  degrees of indeterminacy. If the  ex te rna l  loads are increased by 
increas ing  a common load parameter 
reached when t h e  compressive f o r c e  i n  one of t h e  bars  (say, bar  1) reaches 
t h e  Euler va lue  f o r  t h a t  bar .  Nevertheless, t h e  load-carrying capacity of 
t h e  t r u s s  i s  obviously not ye t  exhausted. 
s ens ib ly  constant compressive fo rce ,  
s i m i l a r l y  starts t o  buckle. 
A = A  then remains cons tan t .  

I t  can e a s i l y  be v i sua l i zed  
n 

A, 

While member 1 buckles under 
A i c o n t i n u e s  t o  increase  u n t i l  member 2 

Collapse occurs when member 3 a l s o  buckles, and 

C 

This simple process can be v isua l ized  wi th in  a format t h a t  i s  app l i cab le  
t o  a l l  s t r i c t l y  symmetric s t r u c t u r e s .  Let S, t h e  vec tor  of a l l  bar  forces ,  
be of t h e  form 

- 

S = A S  + a s  .., -0 r -r ' 

i n  which, f o r  s impl i c i ty ,  t h e  se l f - equ i l ib ra t ed  bar  fo rce  systems 
se l ec t ed  so as t o  s a t i s f y  t h e  orthonormality condition 

Sr a r e  

where t h e  summation extends over a l l  t h e  bars  and 
respec t ive ly ,  t h e  length, c ross -sec t iona l  a rea ,  and Young's modulus of t h e  
ith bar .  Moreover, if So i s  t h e  ac tua l  f o r c e  system i n  t h e  unbuckled 
s t r u c t u r e ,  (ar= 0 ) ,  then 

t i ,  A i ,  E i  r epresent ,  

s " 0  . S r = 0  ( r =  1,2) . (3) 

In  t h e  absence of any l imi t a t ions  on t h e  t e n s i l e  s t r eng th  of any member, 
t h e  condition of " s t a t i c a l  admiss ib i l i ty"  is  given by 

(Ni > 0 = Euler force)  , (4) 
i i S 2 - N  

which, i n  view of equation ( l ) ,  becomes 

( i  = 1 , 2 , .  . . ,n) (5) 

For given value of A equations (5) de f ine  a s t a t i c a l l y  admissible region i n  
t h e  ar 
vectors  a r e  proportional t o  S; ( f i g .  1 ) .  The region so defined need not be 
closed. For de f in i t eness  w e  assume A > 0 and SA < 0 ( i  = 1,2 ,3 , .  . . ,p  s n ) ;  i n  
t h a t  case t h e  reg ion  "shrinks" f o r  increasing values of 

space, whose convex boundary c o n s i s t s  of hyperplanes whose normal 

A. 
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For t h e  sake of b r e v i t y  w e  r u l e  out t h e  p o s s i b i l i t y  of mul t ip l e  buckling 
modes; then t h e  c r i t i c a l  value A = A 1  i s  reached when 

1 1 A S  = - N  ; 1 0  
i i h S > - N  1 0  ( i  = 2 , 3 , .  . . ,n) . 

A s  bar 1 buckles under constant compressive Euler f o r c e  t h e  f i r s t  
equations (S), i n  view of equation ( 6 ) ,  becomes 

( i = 1 )  of 

17) 
1 1 

r r  1 0 -  
a s = - ( h - h ) S  

A t  t h e  same time t h e  changes i n  t h e  bar  chord lengths a r e  given by 

si Ri 
6 .  = - ( i  = 2 , 3 , .  . . ,n) 
1 A i E i  

i n  which Si.> 0 represents  t h e  nonlinear e f f e c t  of t h e  curvature.  Hence 

i 1 1 y i = s  -r 0s - - s r 1  6 '  = 0 C r = 1 , 2 )  Y 

i 

or ,  with equations ( l ) ,  (2),  and ( 3 ) ,  

( r = 1 , 2 )  . 
Fina l ly ,  when equation (10) i s  subs t i t u t ed  i n t o  equation (7), 

(9) 

confirming, once again, t h a t  s t r i c t l y  symmetric s t r u c t u r e s  have s t a b l e  po in t s  
of  b i fu rca t ion .  ' 

For X < A 1  t h e  o r i g i n  0 of t h e  coordinate system i n  f i g u r e  1 i s  i n  
t h e  s t a t i c a l l y  admissible region and the re fo re  r ep resen t s  t h e  actual stress 
point.  A t  b i fu rca t ion  (X=X1) t h e  hyperplane B 1  passes through t h e  o r i g i n  
and, f o r  increas ing  values of A ,  t h e  o r i g i n  moves outs ide  of t h e  s t a t i c a l l y  
admissible region, while t h e  - stress poin t  P moves with B 1 .  According t o  
equation (10) t h e  vec tor  OP i s  p a r a l l e l  t o  t h e  normal t o  B 1  and, because 
3f t h e  convexity of t h e  s t a b l e  region, P i s  the re fo re  c lose r  t o  0 than any 
s the r  s t a t i c a l l y  admissible po in t .  
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After bar 2 also buckles, point P lies on the intersection of two 
hyperplanes, and 

Finally, collapse is reached, for A =Ac, when the statically admissible 
region has shrunk to the point Pc 
hyperplanes. In that case the constant values of ar are given by 

representing the intersection of three 

(13) 
1 2 3 

a c = s  r r 1  6 ' + S  r 2  6 ' + S  r 3  6' (r=1,2) Y 

and as collapse proceeds accordihg to 

the collapse mechanism satisfies 

1 c  2 c  3 c  
r 1  r 2  s 6 + s  6 + s p 3 = 0  (r = 1,2) . 

We also note that, in general, this mode as well as the value of  
independent of initial imperfections. 

Xc is 

OPTIMAL 1 TY 

For the more general case we may identify the major state of stress by 
means of 

The equations of compatibility are given by 

(r = 1,2,. . . ,n) (17) 

in which C is the compliance density with respect to o ,  &2 is the 
quadratic contribution to the major strain associated wiih the buckling mode 
v, - and the notation implies an integral or  a summation over the entire 
structure. 

The condition of equilibrium is given in variational form by 

T T k ... (v) - Kk(6v)  .-..., - - 2 lLll(y6y) = 0 
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where k i s  t h e  l i n e a r  buckling s t r a i n  tensor  
with reGpect t o  k. We note  t h a t  both K and 
of t he  design va r l ab le  h. 

F o r  op t imal i ty  w e  vary t h e  design by r e p  
t h e  condition of constant volume 

and t h e  s t i f fness  dens i ty  
C are, i n  genera l ,  functions 

acing h by h + h ,  subjec t  t o  

(19) 

Since t h e  load is  prescribed it folldws t h a t  h = 0 ;  never the less ,  t h e  major 
stress system ( i d e n t i f i e d  by ar)  and t h e  buckling mode v may change. 
Variation of equations (17)  and (18) then leads t o  

- 

dC oh + c u  4 - !Lll(")] = 0 or [Z - - - s  s (r = 1 , 2 , .  . . ,n) (20) 

T o  T * T  k .., (v) - K ..,- k(6v) - - 0 - R -11 (c - 6v) - = asaSRll (y 6y) 

i n  which R 2  
equation (19). Equation (18) r e p r e s e n t s - a  homogeneous eigenvalue problem, and 
equation (21) has therefore  no so lu t ion  unless  t h e  condition of i n t e g r a b i l i t y  

has been introduced as Lagrangian m u l t i p l i e r  t o  account f o r  

9 T  dK 
a s - s - 2  o R (v) - - y(y) -& k(y) - A 2  $331 = 0 

i s  s a t i s f i e d .  We note t h a t  equations (20) and (22) a r e  similar t o  the  equa- 
t i o n s  derived f o r  the  i n i t i a l  buckling case i n  re ference  4,  except f o r  t h e  
las t  term i n  equation (20) representing t h e  cont r ibu t ion  of t h e  postbuckling 
condition. 

Le t t ing  once again 

v - = wv R = w h  (w -+ m, - C  C 

md assuming co l lapse  under f i n i t e  load and s t r e s s  conditions we obtain 

T 
0 R ( v ) = O  - r - 2  -c (r = 1 , 2 , .  . . ,n) 

T T k (v,) Kk(6v) - cs R (V 6 ~ )  = 0 - - ..,- - -c-11 -e - 

T dK 2 dA k (yc) k(v ) = A - dh - - C  dh 
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of which t h e  first two equations represent  t h e  co l lapse  condition, and t h e  
last c o n s t i t u t e s  t h e  condition of  op t imal i ty .  I t  is  noted t h a t  once again 
t h i s  op t imal i ty  condition r equ i r e s  constant s t r a i n  energy dens i ty  i n  t h e  
design f i b e r s .  I t  is  a l s o  noted t h a t  f o r  co l l apse  ( i n  con t r a s t  t o  i n i t i a l  
buckling) t h e  d i r e c t  effect of a design changeonthe  co l l apse  mode v i a  t h e  
compat ib i l i ty  conditions has disappearea. 
a p a r a l l e l  behavior p a t t e r n  between co l lapse  through buckling and co l lapse  
through p e r f e c t  p l a s t i c i t y .  

In o ther  words, w e  see once again 

EXAMPLE 

A s  an example t o  i l l u s t r a t e  t h e  theory,we consider a beam of length 
which i s  f ixed  i n  i t s  own major plane a t  t h e  r i g h t  end and subjected t o  a 
bending moment A a t  t h e  simply supported l e f t  end. Collapse OCCUFS when 

R 

X 
0 = A  1 - - -  + a  

C C ( X) C R '  

while t h e  equations of equilibrium (25) assume t h e  form 

K U" - IS B = 0 (K28A) + a ut' = 0 (0 x R )  (28) 1 c  c c  c c  

where u and B represent  t h e  lateral  displacement and r o t a t i o n ,  respec- 
t i v e l y ,  with assoc ia ted  bending and to r s iona l  s t i f f n e s s e s  K I  and K2. I n  
t h e  development of equations (28) ,  it i s  assumed t h a t  a t  both 
ends and t h a t  t h e  e f f e c t  of  warping can be neglected. In  terms of B alone 
equations (28) reduce t o  

u = u " =  B = 0 

2 
0 

C (K2BL)' + - Bc = 0 
K1 

The co l lapse  condition equation 

R 

xu''BC dx =d 
K1 

(0 2 x 2 a )  

(24) becomes 

ac 6: dx = 0 , 

while t h e  opt imal i ty  c r i t e r i o n  equation (26) assumes t h e  form 

(O_IXSR) . 

3 K 1  = b  h/12, For t h e  s p e c i f i c  case of a t h i n  rec tangular  beam, i n  which 
K2=b3h/3, and A=bh ,  and i n  view of equation (29), equation (31) can be 
wr i t t en  i n  t h e  form 
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which lends i tself  well t o  an i t e r a t i v e  s o l u t i o n  scheme. I t  i s  a l s o  
i n t e r e s t i n g  t o  note  t h a t  equat ion (32) is  s a t i s f i e d  f o r  cons tan t  value of h 
provided 6 =s innx /R;  t h i s  confirms t h e  cur ious  conclusion a r r ived  a t  re- 
c e n t l y  by Popelar ( r e f .  4) t h a t  t h e  p r i sma t i c  design r ep resen t s  an optimum 
f o r  simply supported beams under cons tan t  bending moment. 

Numerical r e s u l t s  covering equat ions (29), (30) and (32) f o r  t h e  case 
under cons idera t ion  are c u r r e n t l y  being developed. 
i n  t h e  major bending moment, it i s  expected t h a t  i n  t h i s  case t h e  p r i sma t i c  
beam i s  not  optimum, and t h a t  optimal design f o r  co l l apse  may lead  t o  a 
no t i ceab le  reduct ion  i n  weight. 

Because of t h e  v a r i a t i o n  
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OPTIMUM VIBRATING BEAMS WITH STRESS AND DEFLECTION CONSTRAINTS 

Manohar P. K a m a t  
Virginia Polytechnic I n s t i t u t e  and S t a t e  University 

SUMMARY 

The fundamental frequency of v ib ra t ion  of an  Euler-Bernoulli o r  a Timo- 
shenko beam of a spec i f i ed  constant volume i s  maximized sub jec t  t o  t h e  con- 
s t r a i n t  t h a t  under a prescribed loading the  maximum stress o r  maximum deflec- 
t i o n  a t  any poin t  along t h e  beam a x i s  w i l l  no t  exceed a spec i f i ed  value. I n  
con t r a s t  w i th  t h e  inequa l i ty  cons t r a in t  which cont ro ls  t he  minimum cross- 
sec t ion ,  t h e  present  i nequa l i ty  cons t r a in t s  lead t o  more meaningful designs. 
The inequa l i ty  cons t r a in t  on stresses i s  as e a s i l y  implemented as the minimum 
cross-section cons t r a in t  bu t  t h e  inequa l i ty  c o n s t r a i n t  on de f l ec t ion  uses a 
treatment which i s  an extension of t he  matrix p a r t i t i o n i n g  technique of pre- 
s c r ib ing  displacements i n  f in i te -e lement  ana lys i s .  

INTRODUCTION 

The problem of maximizing the  fundamental frequency of v ib ra t ion  of beams 
of a f ixed ,  prescribed volume and l ikewise  i ts  dual problem have been inves t i -  
gated by a g rea t  many inves t iga to r s  (see reference 1). 
consensus has been reached however, on the  existence of non- t r iv i a l  so lu t ions  
f o r  beams wi th  ce r t a in  types of boundary conditions. While the  numerical 
experiments do s t rongly  emphasize t h e  ex is tence  of such so lu t ions  (see r e f s .  
2 and 3 ) ,  mathematical proofs have been constructed (see r e f .  4) t o  prove 
otherwise. This s i t u a t i o n  i s  r a t h e r  unique s i n c e  more o f t en  than not i t  is  
the  dismal f a i l u r e  of t h e  numerical techniques i n  obta in ing  a so lu t ion ,  which 
i s  only presumed t o  e x i s t ,  t h a t  c a l l s  upon mathematics t o  e s t a b l i s h  i t s  exis- 
tence o r  non-existence. 

It appears t ha t  no 

The d i f f i c u l t y  stems from s i n g u l a r i t i e s  which r e s u l t  from vanishing s t i f f -  
ness a t  some poin ts  along t h e  beam axis. Although a t  such poin ts  the curvature 
w , ~  assumes an i n f i n i t e  value,the products I ( X ) W , ~ ~  and I(x)w,& are nonethe- 
less f i n i t e  a t  such poin ts .  Furthermore, t he  function I(x)w,& i s  required t o  
be in t eg rab le  over t h e  length of the beam. Fallacies of the  mathematical 
proofs, i f  any, could w e l l  r e s u l t  from a f a i l u r e  t o  take  proper account of 
these  p rope r t i e s  f o r  t he  functions I(x) and w(x). 

Finite-element so lu t ions  of re ference  3, which inc ident ly  emphasize 
existence even i n  the  absence of any inequa l i ty  cons t r a in t s  appear t o  have 
very l imi ted  p r a c t i c a l  value because t h e  r e s u l t i n g  designs are f a  from being 
use fu l  as load-carrying members. Cont ro l l ing  t h e  minimum cross  sec t ion  of the 
beam does not  appear t o  be  t h e  answer. 
loading, presumably the  worst loading, without exceeding a prescribed level of 

The optimized beammust s u s t a i n  a given 
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stress o r  a prescribed value f o r  t h e  maximum def lec t ion .  I n  general, t he  
cross sec t ion  with the  least area is  not  necessa r i ly  t h e  c r i t i c a l  s e c t i o n  i n  
terms of stress nor  are t h e  cons t r a in t s  on def lec t ions  m e t  i n  a r a t i o n a l  and 
an expeditious manner simply by con t ro l l i ng  the minimum cross-sectional area 
of t he  beam. 

To generate more p r a c t i c a l  des igns , i t  is deemed appropr ia te  t o  r equ i r e  
t h a t  t h e  optimum beam shall not  ( i )  be s t r e s s e d  t o  more than a spec i f i ed  m u l t i -  
p l e  of t he  maximum stress o r  ( i i )  d e f l e c t  more than a spec i f i ed  mul t ip l e  of 
the  maximum de f l ec t ion  of t he  corresponding uniform beam of the same volume. 
The present  formulation allows the  spec i f i ca t ion  of an a r b i t r a r y  vec tor  of 
stresses o r  of de f l ec t ions ,  with those corresponding t o  the  uniform beam case 
being spec ia l i za t ions  of t he  a r b i t r a r i l y  s p e c i f i e d  vectors.  

PROBLEM FORMULATION 

The formulation is  r e s t r i c t e d  t o  d i s c r e t i z e d  f in i te -e lement  models of 
beams. 
case of a Timoshenko beam, t h e  l a t te r  w i l l  be implied i n  t h e  formulation. 

Since the  case of an Euler-Bernoulli beam can be obtained as a special 

The approach i s  exac t ly  s i m i l a r  t o  the  one used i n  r e f .  3.  It cons is t s  
of maximizing t h e  minimum value of the  Rayleigh quot ien t ,  u2, f o r  a Timoshenko 
beam sub jec t  t o  the  equa l i ty  and the  inequa l i ty  cons t ra in ts .  For a d i s c r e t i -  
zed finite-element model 

where [K] and [MI are, respectively, the  assembled s t i f f n e s s  and m a s s  matrices 
derived on the  b a s i s  of a uniform cross-section beam element and {q) i s  the  
mode shape of f r e e  v ib ra t ion .  In  the  case of a Timoshenko beam the  s t i f f n e s s  
matrix accounts f o r  t h e  e f f e c t s  of shear deformations and the  m a s s  matrix 
accounts f o r  t he  e f f e c t s  of ro ta ry  i n e r t i a .  Furthermore, f o r  a general  case, 
the  s t i f f n e s s  mat r ix  may include t h e  e f f e c t  of a spec i f i ed  d i s t r i b u t i o n  of 
a x i a l  loading and e l a s t i c  foundation and l ikewise the  mass matrix may include 
the e f f e c t s  of a spec i f i ed  d i s t r i b u t i o n  of non-s t r u c t u r a l  mass. 

The optimization is  t o  be ca r r i ed  out sub jec t  t o  t h e  equal i ty  cons t r a in t  
of a f ixed ,  given t o t a l  volume V which f o r  a beam with elements each of 
length R i  and cross-sectional area A i ,  i=1,2 ... m,reduces t o  

m 
C A R = V  i i  i= 1 

The required r e l a t i o n  between the  cross-sectional area and t h e  moment of i n e r t i a  
i s  provided by a consideration of cross-sectional shapes f o r  which 

(3)  
n 

Ii = pAi 
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p>O and n being appropriate constants depending upon t h e  type of cross sec t ion .  

Stress Constraint  

It is required t h a t  f o r  a beam s a t i s f y i n g  eqs. (1) through (3), t h e  Ray- 
l e igh  quot ien t  of eq. (1) be maximized sub jec t  t o  the  cons t r a in t  t h a t  

ea1 - < k; ea1 (4) 

where { 0 3  is  the  vectGr of nodal stresses f o r  t he  optimum beam under a pre- 
sc r ibed  loading and {a) is  the vec tor  of prescribed stresses. Since stress a t  
an i n t e r n a l  node is discontinuous, t he  vec tors  {a1 and {a) are assumed t o  be ,of 
s i z e  2m by one. 

A beam element wi th  a cubic t ransverse  displacement f i e l d  has a l i n e a r  
va r i a t ion  of bending moment wi th in  an element. 
moment wi th in  an element can occur only a t  the  two nodes and hence,as i n  
eq. (4),only the nodal stresses need be monitored f o r  t he  purposes of imple- 
menting the  stress cons t r a in t s .  

Thus, t h e  maximum bending 

The stress cli due t o  a bending moment Mli a t  node 1 of element i is 

For cross-sections spec i f i ed  by eq. (3), i t  can be e a s i l y  v e r i f i e d  t h a t  

where q u a n t i t i e s  with supe r sc r ip t  0 p e r t a i n  t o  t h e  uniform beam of t o t a l  
volume V. Equations (5) and (6) together imply t h a t  

ea1 = e- M I  
( 1 ) K  

n+l 

Accordingly, eq. ( 4 )  can be  w r i t t e n  as 
.., 

ea 1 

(7) 

The inequa l i ty  c o n s t r a i n t ,  eq. ( 8 ) ,  can be transformed i n t o  an equivalent 
equa l i ty  cons t r a in t  by Valentine's  p r inc ip l e .  
is  the  o r i g i n a l  func t iona l  of eq. (1) modified by the  two equal i ty  cons t r a in t s  
with the a i d  of undetermined Lagrange mul t ip l i e r s  is constructed. I n  terms of 

An a u x i l i a r y  func t iona l  which 
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non-dimensional quantities this functional can be shown to be 

where 

(a2) * = square of the non-dimensional fundamental frequency 

= -  y A0R4u2 

EIo 

A* = non-dimensional cross-sectional area 

I* = non-dimensional cross-sectional noment of inertia 

I 

I 
= -  

0 

M* = non-dimensional bending moment 

M R  

E1 
= -  

0 

-. 
ai* = non-dimensional stress 

.., 
ai& 

= -  
0 Ec 
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0 0  0 where 2 ,  A , I, and c a re , respec t ive ly , the  length ,  the  cross-sectional area, 
moment of i n e r t i a  and d is tance  of t h e  extreme f i b e r  from the  cen t ro ida l  axis 
of t he  cross-section of t he  equivalent uniform beam of volume V. 
are the  non-dimensional a u x i l i a r y  functions 
form t h e  inequal i ty  cons t r a in t s  i n t o  equivalent equa l i ty  cons t ra in ts .  

$? and $$ 
of C=x/2, which trans- 

The requirement of t he  vanishing of t h e  v a r i a t i o n  of (w2)* with respect 
and $* y i e l d s  t h e  necessary opt imal i ty  conditions. Based on t h e  t o  {q*}, 

work of r e f .  3, these  conditions can be shown t o  be t h e  following: 

I n  those  portions of t he  beam where the inequa l i ty  cons t r a in t  is  not 
e f fec t ive ,  t h e  conditions 

(nuti + UZi - T t i  - nT* )/V = constant,  i = 1 , 2 . .  .m (11) r i  i 

hold t rue ;  while i n  o ther  por t ions  the  stress cons t r a in t  is  e f f e c t i v e .  
eq. (11) U*. and U*. denote non-dimensional s t r a i n  energies due t o  pure 
bending an9lshear 
s i o n a l  k i n e t i c  energy d e n s i t i e s  due t o  t r a n s l a t i o n a l  
resPectively,and Vi denotes the  volume of the  i- th element. 

I n  

S1 deformations, respec t ive ly ;  T*. and ’E*. denote non-dimen- 
t l  an3‘rotax-y i n e r t i a ,  

Implementation of the  stress inequa l i ty  cons t r a in t  i n  t h e  optimization 
procedure proceeds i n  a manner very similar ‘to t he  one used f o r  t h e  minimum 
cross-section inequa l i ty  cons t r a in t  of r e f .  3. The moments of i n e r t i a  of 
elements leading t o  improved designs are determined by recurrence r e l a t i o n s  
designed t o  force  the  s p e c i f i c  energy density of eq. (11) t o  b e  a constant 
f o r  a l l  elements assuming i n i t i a l l y  that none of t h e  elements are governed 
by any inequa l i ty  cons t ra in t .  (See re ference  3 f o r  d e t a i l s  of these recurrence 
re la t ions . )  
i s  e f f e c t i v e  o r  not requi res  a complete s t a t i c  stress ana lys is  of the  beam 
t o  obta in  t h e  vector of nodal stresses. 
those elements which v i o l a t e  t h e  cons t r a in t  are then set  equal t o  

I n  each i t e r a t i o n ,  however, determining i f  t h e  stress cons t ra in t  

The cross-sectional i n e r t i a s  of 

The cross-sectional i n e r t i a s  of t h e  o ther  elements which do not v i o l a t e  t he  
inequa l i ty  cons t r a in t  a r e  adjusted t o  m e e t  the  volume equa l i ty  cons t ra in t ,  
eq. (2). 

Although f o r  s t a t i c a l l y  determinate beams eq. (12) guarantees the  
s a t i s f a c t i o n  of the stress cons t r a in t  i n  any given i t e r a t i o n  of t h e  frequency 
optimization the  same is no t  t r u e  of s t a t i c a l l y  indeterminate beams. For t h e  
la t ter ,  one could conceivably i terate within the  s t a t i c  stress ana lys is  t o  
determine the  appropr ia te  element s t i f f n e s s e s  s o  as t o  s a t i s f y  the  stress 
cons t r a in t s  t o  within a 
na ture  of t h e  frequency 
warranted e spec ia l ly  i f  
small enough. 

des i red  tolerance.  However, i n  view of t h e  i terative 
optimization procedure, such a d d i t i o n a l  e f f o r t  is not  
s t i f f n e s s  changes i n  successive i t e r a t i o n s  are kept  
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I n  v i e w  of t h e  equa l i ty  cons t r a in t ,  eq. (Z), i t  is obvious t h a t  t he  
maximum number of elements which may be governed by t h i s  cons t ra in t  is  a t  
most n r l  f o r  a cons i s t en t  constrained optimization. 

Deflection Constraint  

In  t h i s  case i t  is required that f o r  a beam s a t i s f y i n g  eqs. (1) through 
( 3 ) ,  t h e  Rayleigh quot ien t  of eq. (1) be maximized sub jec t  t o  the  cons t r a in t  
that 

where (r} i s  the  vector of nodal displacements f o r  t h e  optimum beam under a 
prescribed loading and (rl i s  the  vector of prescribed displacements. Both 
vec tors  are of s i z e  (Zm4-2) by one. A s  with t h e  stress cons t r a in t  t h e  maximum 
number of elements whose cross-sectional moment of i n e r t i a  can be a r b i t r a r i l y  
spec i f i ed  i s  a t  most m-1. Hence, under the  l i m i t i n g  case of a s t r i c t  equa l i ty  
i n  eq. (13), t he  number of equations which imply prescribed displacements can- 
not exceed m-1 f o r  a cons is ten t  constrained optimization. 

I n  t h i s  case,  the  aux i l i a ry  func t iona l  i n  terms of non-dimensional quan- 
t i t i e s  i s  

where 

re = ri/& 

= r  

fo r  t r a n s l a t i o n a l  degree of freedom 

fo r  r o t a t i o n a l  degree of freedom 

1 

i 

Proceeding as before t h e  opt imal i ty  conditions can be shown t o  be eq. (11) i n  
those portions of t h e  beam f o r  which the  de f l ec t ion  cons t r a in t  is  no t  e f f e c t i v e ;  
while i n  o ther  por t ions  the de f l ec t ion  cons t r a in t  i s  e f f e c t i v e .  Since the  
t ransverse  displacement f i e l d  varies cubica l ly  over t he  length of t he  element, 
s a t i s f a c t i o n  of t he  cons t r a in t  a t  the  two nodes of the  element does no t  
guarantee t h a t  t he  cons t r a in t  is  not  v io l a t ed  i n  the  i n t e r i o r ,  e spec ia l ly  i f  
l a rge  changes i n  curvatures take place wi th in  the  element. This is circumvented 
by r e f i n i n g  the  d i s c r e t i z a t i o n  s u f f i c i e n t l y .  

S t r i c t l y  speaking, the  implementation of t h e  stress cons t r a in t  is, i n  
genera l ,  an i m p l i c i t ,  nonlinear phenomenon which i s  rendered e x p l i c i t  by the  use 
of a very simple and approximate r e l a t i o n ,  eq. (12). No such approximations 
are necessary f o r  t he  implementation of de f l ec t ion  cons t r a in t s .  The problem 
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i n  t h i s  case reduces t o  determing element s t i f  fnesses which guarantee 
prescribed displacements under prescribed loads. 
matrix of t he  supported beam and l e t  {r*) denote those nodal displacements which L3 v i o l a t e  t he  cons t r a in t s ,  eqg(13). 
placement and load vec tors  are accordingly p a r t i t i o n e d  as 

L e t  [Kg]  denote the  assembled 

The matrix [K*] and t h e  corresponding dis- 

where {Q*) and {Q*) are the  vec tors  of externa 
l a t t e r  bging associated wi th  those degrees of freedom which v i o l a t e  t he  
d&splacement cons t r a in t s  and are accordingly prescribed as being equal t o  
trE3. Equations (16) y i e l d  

y prescribed loads w-th the  

Simultaneous so lu t ion  of equations (17 a )  and (17 .b) y i e l d s  

I f  the elements of t h e  matrix [K* ] are assumed t o  be functions of moments of 
i n e r t i a  of as many beam elements as the  number of prescribed displacements 
{;*.),then the  system of equations (18) can be uniquely solved f o r  t he  unknown 
mokents of i n e r t i a  which guarantee t h e  s a t i s f a c t i o n  of t he  de f l ec t ion  cons t r a in t ,  
eq. (13). 

B B  

Those displacements which v i o l a t e  t h e  cons t r a in t s  are prescribed as being 
equal t o  t h e  spec i f i ed  values.  
e x i s t  f o r  t h e  spec i f i ca t ion  of s t i f f n e s s e s  with prescr ibed  displacements. I f  
both the  degrees of freedom of a j o i n t  are prescribed,then the  moments of 
i n e r t i a  of both elements common t o  the  j o i n t  must be prescribed. However, i f  
a s i n g l e  degree of freedom is prescribed a t  a j o i n t s t h e n  i t  is  no t  obvious 
which of t h e  two elements should have a prescr ibed  s t i f f n e s s .  Herein may l i e  
the  nonuniqueness of t he  r e s u l t i n g  so lu t ion  f o r  beams wi th  c e r t a i n  boundary 
conditions with c e r t a i n  loadings. 
decision should be based on the  magnitudes of displacements of one j o i n t  
r e l a t i v e  t o  t h e  o ther ,  s ince  such relative displacements are functions of the 
proper t ies  of t h e  element alone. Accordingly, relative displacements of j o i n t s ,  
on e i t h e r  s i d e  of t he  j o i n t  whose displacement is prescribed, are determined. 
The element with t h e  j o i n t  which has a higher relative displacement is se- 
l ec t ed  f o r  t h e  purposes of prescr ib ing  t h e  moment of i n e r t i a .  

Invar iab ly ,  more than one alternative w i l l  

A r a t i o n a l  c r i t e r i o n  f o r  making such a 

The procedure i s  s t ra ight forward  from t h i s  po in t  onwards. The moments of 
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i n e r t i a  of t h e  cons t r a ined  elements which guarantee the s a t i s f a c t i o n  of t h e  
d e f l e c t i o n  c o n s t r a i n t s  are obta ined  by t h e  s o l u t i o n  of eq. (18). 
of t h e  remaining elements i n i t i a l l y  obta ined  through t h e  use  of energy based 
recur rence  r e l a t i o n  of r e fe rence  3 are f i n a l l y  ad jus t ed  t o  s a t i s f y  t h e  
e q u a l i t y  volume c o n s t r a i n t ,  eq.  (2 ) .  

The i n e r t i a s  

RESULTS AND DISCUSSION 

I n  gene ra l ,  because of t h e  n e c e s s i t y  of s a t i s f y i n g  t h e  e q u a l i t y  c o n s t r a i n t ,  
eqs .  (12) and (18) do n o t  guarantee t h e  s a t i s f a c t i o n  of t h e  stress and def lec-  
t i o n  c o n s t r a i n t s  exac t ly .  This  causes t h e  opt imiza t ion  procedure t o  f a i l  t o  
converge o r  converge extremely s lowly t o  t h e  optimum s o l u t i o n .  This is avoided 
by modifying t h e  i n e q u a l i t y  c o n s t r a i n t s  w i t h  a m u l t i p l i c a t i v e  c o n s t r a i n t  
f a c t o r ,  Rf3, which tends t o  un i ty  w i t h  convergence t o  t h e  optimum s o l u t i o n .  The 
parameter R i s  chosen t o  be t h e  least of t h e  r a t i o s  of t h e  p re sc r ibed  dis-  
placements t o  t h e  a c t u a l  displacements i n  t h e  case of displacement c o n s t r a i n t s  
o r  t o  be  t h e  maximum of t h e  r a t i o s  of t h e  a c t u a l  stress t o  t h e  p re sc r ibed  
stress i n  t h e  case of stress c o n s t r a i n t s .  f3 is  chosen t o  be  g r e a t e r  than 
uni ty .  Inc reas ing ly  h ighe r  va lues  of f3 imply inc reas ing ly  s t i f f e r  designs.  

F igures  1 and 2 po r t r ay  t h e  e f f e c t s  of t h e  implementation of t h e  stress 
c o n s t r a i n t s  on t h e  optimum design of v i b r a t i n g  beams w i t h  two d i f f e r e n t  suppor t  
condi t ions .  F igure  3 illustrates t h e  e f f e c t  of implementing t h e  d e f l e c t i o n  
c o n s t r a i n t  on t h e  optimum design of a v i b r a t i n g  c a n t i l e v e r  beam. 

F igure  1 cons iders  t h e  case of  a c a n t i l e v e r  beam sub jec t ed  t o  two 
d i f f e r e n t  types of loading  f o r  t h e  implementation of stress c o n s t r a i n t s  i n  
the  opt imiza t ion  of i t s  fundamental frequency of f r e e  v ib ra t ion .  
t h e  loading c o n s i s t s  of a concent ra ted  load a t  t h e  t i p  wi th  kg=5 and (a)= 
(‘Jmax)yoad (1). 
bending moment a t  the  t i p  w i t h  kz=5 and {d=(amax) toad  (1). 
c o n s t r a i n t  corresponding t o  t h e  moment loading  i s  much more severe and 
accordingly l eads  t o  a d r a s t i c  reduct ion  of t h e  optimized fundamental frequency. 
A comparison of t h e s e  designs wi th  t h e  optimized beam wi thout  t hese  c o n s t r a i n t s  
emphasizes t h e  importance of such c o n s t r a i n t s  i n  opt imal  design. 

I n  one case  

I n  t h e  o t h e r  case t h e  loading  c o n s i s t s  of a concent ra ted  
A s  expected,  the 

cen 
kz . 

Figure  2 cons iders  t h e  case of-a  clamped-clamped beam sub jec t ed  to. a con- 
t r a t e d  load a t  t h e  c e n t e r  w i th  { a } = ( ~ ~ ~ , ) ~ { l )  f o r  two d i s t i n c t  va lues  of 

I f  i t  w e r e  n o t  f o r  t h e  stress c o n s t r a i n t s , t h e  moment of i n e r t i a  would 
a iproach  ze ro  a t  t h e  c e n t e r  of t h e  beam as i n  r e fe rence  3. Sever i ty  of  t h e  
stress c o n s t r a i n t s  b r ings  about  increased  q u a n t i t i e s  of material t o  be  disposed 
around t h e  c e n t e r  of t h e  beam. 

F igure  3 i l l u s t r a t e s  t h e  material d i s t r i b u t i o n  of an  o timum c a n t i l e v e r  
beam s u b j e c t  t o  t h e  d e f l e c t i o n  i n e q u a l i t y  c o n s t r a i n t  w i t h  k6=5 9 and (r)={r}’load 
under a concent ra ted  load a t  t h e  f r e e  end of t h e  beam. S ince  no  s i n g u l a r i t y  
e x i s t s  w i t h  i n e q u a l i t y  c o n s t r a i n t s  of e i t h e r  t h e  displacement o r  stress type  
and s i n c e  t h e  d e f l e c t e d  shape of t h e  beam under a concent ra ted  end load  o r  a 
moment involves  no change of curva ture ,  i t  can b e  expected t h a t  t h e  s o l u t i o n  
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obta ined  using only t e n  elements f o r  t h e  cantilever beam model is a good 
approximation t o  t h e  optimum continuous model. 

I n  conclusion,  i t  may b e  remarked t h a t  w i t h  only a minor change of t h e  
computer l o g i c  t h e  formula t ion  extends q u i t e  e a s i l y  t o  cases wherein both  
d e f l e c t i o n  and stress c o n s t r a i n t s  are s p e c i f i e d  s imultaneously.  

REFERENCES 

1. Olszowski, B. ,: Some Problems of Optimum Design Problems of Vib ra t ing  
Systems. Archives of Mechanics, Vol. 27, No. 4 ,  1975, pp. 605-616. 

2. Karihaloo,  B. L. and Niordson, F. I.: Optimum Design of V ib ra t ing  
Can t i l eve r s .  J. Optimizat ion Theory AppL,  Vol. 11, 1973, pp. 638-654. 

3. K a m a t ,  M. P.: E f f e c t  o f  Shear Deformations and Rotary Inertia on Optimum 
Beam Frequencies .  I n t .  J. Num. Meth. Engrg., Yol. 9', 1975, pp. 51-62. 

4 .  Vepa, K.:  On t h e  Exis tence  of So lu t ions  t o  Optimizat ion Problems w i t h  
Eigenvalue Cons t r a in t s .  Quart. Appl. Math., Vol. 31, No. 3, 1973, 
pp. 329-341. 

517 
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Figure  1.- Optimum area d i s t r i b u t i o n  f o r  a beam clamped a t  x=O and 
free a t  x=R under stress c o n s t r a i n t s ;  n=2. 
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Figure  2.- Optimum area d i s t r i b u t i o n  f o r  a beam clamped a t  bo th  
ends under stress c o n s t r a i n t s ;  n-2. 
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Figure 3.-  Optimum area distribution for a beam clamped at x=O and 
free at x=R under a deflection'constraint; n=2. 
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AN OPTIMAL STRUCTURAL DESIGN ALGORITHM USING OPTIMALITY CRITERIA 

John E. Taylor 
Un ive r s i ty  of Michigan 

Mark P. Rossow 
Washington Un ive r s i ty ,  S t .  Louis ,  Missouri  

SUMMARY 

An a lgor i thm f o r  op t imal  des ign  is  given which inco rpora t e s  several of t h e  
d e s i r a b l e  f e a t u r e s  of bo th  mathematical  programming and o p t i m a l i t y  c r i t e r i a ,  
w h i l e  avoid ing  some of the undes i r ab le  f e a t u r e s .  
approaching t h e  opt imal  s o l u t i o n  through t h e  s o l u t i o n s  of a n  a s s o c i a t e d  set of 
cons t r a ined  opt imal  des ign  problems. The s o l u t i o n s  of t h e  cons t ra ined  problems 
are recognized a t  each s t a g e  through t h e  a p p l i c a t i o n  of o p t i m a l i t y  c r i te r ia  
based on energy concepts.  
member s i z e  and layout  of a t r u s s  i s  p red ic t ed ,  given t h e  j o i n t  l o c a t i o n s  and 
loads .  

The a lgo r i thm proceeds by 

Two examples are descr ibed  i n  which t h e  opt imal  

INTRODUCTION 

I n  t h e  f i e l d  of op t imal  s t r u c t u r a l  design,  two gene ra l  t echniques  f o r  
f i n d i n g  t h e  optimum des ign  may be  d i s t ingu i shed :  mathematical  programming 
methods and t h e  use  of o p t i m a l i t y  cri teria.  In  t h e  p re sen t  paper ,  an a lgo r i thm 
i s  given which resembles a technique of mathematical  programming i n  t h a t  i t  
proceeds by s t a g e s ,  w i t h  a n  improved des ign  gene ra t ed la t  each s t age .  However, 
i n  c o n t r a s t  t o  most mathematical  programming methods, t h e  improved design is 
i d e n t i f i e d  a t  each s t a g e  by t h e  a p p l i c a t i o n  of o p t i m a l i t y  cr i ter ia ,  r a t h e r  than  
by a sea rch  technique.  I n  t h i s  way, the computat ional ly  expensive sea rch  pro- 
cedure i s  avo ided , ’ye t  t h e  p r i n c i p l e  of approaching t h e  optimum through a suc- 
c e s s i o n  of s m a l l  changes i s  preserved.  The a lgor i thm i s  explained and i l l u s -  
t r a t e d  by a p p l i c a t i o n  t o  t h e  opt imal  des ign  of a t r u s s ,  where member cross-  
s e c t i o n a l  areas are taken  as t h e  des ign  v a r i a b l e s .  

SYMBOLS 

A c ross - sec t iona l  area of t r u s s  member i 

3 s l a c k  f u n c t i o n  

l(p,S*) t r i a l  des ign  corresponding t o  p and S* 

i 

r 
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E 

F 
j 

L 

% 
m 

n 

P 

S 

V 

6 
j 

E i 

i 
A 

A 

elastic modulus 

x and y components of e x t e r n a l  l o a d s  app l i ed  a t  nodes and 
numbered consecut ive ly  

augmented f u n c t i o n  

l e n g t h  of member i 

t o t a l  number of nodes 

t o t a l  number of t r u s s  members, assuming each node connected t o  
every o t h e r  node by a member 

p o t e n t i a l  energy 

v a l u e  of lower bound c o n s t r a i n t  

s p e c i f i e d  volume of material 

nodal  displacements ,  numbered corresponding t o  F 

s t r a i n  of  member i 
j 

Lagrange m u l t i p l i e r s  f o r  area c o n s t r a i n t s  

Lagrange m u l t i p l i e r  f o r  volume c o n s t r a i n t  ( a l s o  equa l  t o  s p e c i f i c  
s t r a i n  energy of f u l l y - s t r e s s e d  members) 

qkYqk(P,’) s p e c i f i c  s t r a i n  energy of member k, corresponding t o  
f u l l y - s t r e s s e d  set p and c o n s t r a i n t  va lue  S 

ENERGY FORMULATION 

Consider the problem of f i n d i n g  t h e  m a x i m u m  s t i f f n e s s  des ign  of a p l ana r  
t r u s s ,  given a s p e c i f i e d  t o t a l  volume of material t o  be a l l o c a t e d  t o  t h e  v a r i o u s  
members of t h e  t r u s s ,  and spec i fy ing  i n e q u a l i t y  c o n s t r a i n t s  on t h e  t r u s s  members’ 
c ros s - sec t iona l  areas. The connec t iv i ty  of t h e  t r u s s  i s  u n r e s t r i c t e d ;  however, 
l o c a t i o n s  of nodes are s p e c i f i e d  beforehand, and t h e  p o s s i b i l i t y  of member 
buckl ing is  ignored. Taylor ( r e f .  1 )  and Hiley ( r e f .  2) have shown how a 
problem of t h e  t y p e  j u s t  descr ibed  may be formulated by t h e  use  of t h e  p o t e n t i a l  
energy f u n c t i o n  of t h e  s t r u c t u r e .  
mulat ion w i l l  be  used. 

I n  t h e  p r e s e n t  paper a similar energy fo r -  
The p o t e n t i a l  energy of t h e  t r u s s  may be w r i t t e n  

n 

P = x B . A q  i i i  - 5 F.6 J j  (1) 
i=l j =1 

(See t h e  list of symbols f o r  d e f i n i t i o n s  of t h e  parameters.)  
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The s p e c i f i c  s t r a i n  energy n is  r e l a t e d  t o  t h e  s t r a i n  E by i i 

where E is  t h e  elastic modulus. 

The volume c o n s t r a i n t  i s  

n c Ail i  = V (3) 
i= 1 

where V i s  the s p e c i f i e d  volume of material. The i n e q u a l i t y  c o n s t r a i n t s  are 

Ai 2 S ( 4 )  

where S i s  t h e  s p e c i f i e d  lower bound c o n s t r a i n t .  

It can  be shown t h a t  t h e  problem of maximum s t i f f n e s s  des ign  is  equ iva len t  
t o  t h a t  of maximizing t h e  p o t e n t i a l  energy P ( r e f s .  l y 3 ) .  

The c o n s t r a i n t s  may b e  introduced d i r e c t l y  i n t o  t h e  problem formulat ion by 
de f in ing  t h e  s l a c k  f u n c t i o n s  a by r 

r = 1 y 2 y . . . y n  (5) 
2 

r r A - a  = S ,  

and in t roduc ing  Lagrange m u l t i p l i e r s  X and A t o  form the augmented func t ion  i 

n 

(6) 
2 ni(s - + ai> 

i=l 
L = P + X(V - 2 Aili) + 

i=l 

Ary and a t o  k’ r Requir ing t h e  f i r s t  d e r i v a t i v e s  of  L w i t h  r e s p e c t  t o  6 
van i sh  g i v e s  

n 

Fk = 0 (7) 
i- 1 
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= o  'rar 

whi l e  a p p l i c a t i o n  of t h e  Kuhn-Tucker theorem of  non-l inear  programming g ives  

These equat ions  can be shown t o  be  both necessary  and s u f f i c i e n t  f o r  
o p t i m a l i t y  ( r e f s .  1 , 4 , 5 ) .  

A b a s i c  assumption about t h e  opt imal  des ign  problem formulated above w i l l  
now be  made. It is  assumed t h a t  f o r  every v a l u e  of S i n  t h e  i n t e r v a l  ' 

O < S < V / ( z  - ti) an opt imal  des ign  e x i s t s .  
i= 1 

t o  be  a func t ion  of S. Furthermore, t h i s  f u n c t i o n  i s  assumed cont inuous.  

n 

That is, t h e  opt imal  des ign  is  assumed 

It i s  of i n t e r e s t  t o  n o t e  t h a t  a t  least one opt imal  des ign  can always be 
found e a s i l y  f o r  t h e  va lue  of t h e  lower bound c o n s t r a i n t  given by 

n 

i= 1 

For by equat ion  (4) a l l  admiss ib le  des igns  must s a t i s f y  

However t h e  str ict  i n e q u a l i t y  i n  equat ion  (12) cannot apply f o r  any j s i n c e  
t h i s  would v i o l a t e  t h e  volume c o n s t r a i n t  i n  equa t ion  ( 3 ) .  Thus t h e  opt imal  
des ign  f o r  t h e  va lue  of S i n  equat ion  (11) must be t h e  "equally-sized" des ign  

A = V / ( c  ti), n 

j = 1 ,2 , . . . , n  
i=l j 

OBSERVATIONS ON GOVERNING EQUATIONS 

Inspec t ion  of t h e  preceding set of governing equat ions  (3)-(10) l e a d s  t o  
several obse rva t ions  of  later u s e  i n  t h i s  paper.  
area A i n  t h e  opt imal  des ign  i s  s t r i c t l y  g r e a t e r  than  t h e  lower bound con- 
s t r a i d  v a l u e  s, then  t h e  corresponding slack f u n c t i o n  a # 0 by equat ion  (5) 
and hr = 0 

F i r s t  no te  t h a t  when a member 

r by equat ion  ( 9 ) ,  bu t  t hen  equat ion  (8) y i e l d s  
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= A  (13) "r 

Thus a l l  members w i t h  areas g r e a t e r  than  S are s t r e s s e d  t o  t h e  same level. 

Note that by equat ion  (2), equat ion  (13) may be w r i t t e n  as a l i n e a r  equa- 
t i o n  i n  t h e  s t r a i n  

Next cons ider  

E and hence l i n e a r  i n  t h e  nodal  r 

E = f d 2 X f E  r 

a member  t i n  t h e  opt imal  des ign  

displacements:  

(14) 

which i s  s t r e s s e d  below t h e  
level X (eqs. (8) and (10) exclude the p o s s i b i l i t y  t h a t  an element i n  t h e  
opt imal  des ign  is s t r e s s e d  above the level A . ) :  

< A  (15) rlt 

Then by equat ion  (8) A # 0 and so equat ions  (9) and (5) imply t 

At = S (16) 

The i m p l i c a t i o n  of equa t ions  (14) and (16) may be summarized by say ing  t h a t  
t h e  members of t h e  opt imal  des ign  may be divided i n t o  two groups: f u l l y -  
s t r e s s e d  members (" = X and A > S) and members a t  t h e  c o n s t r a i n t  (n  < A and 
At = S ) .  
b o r d e r l i n e  cases exist where a member i s  both f u l l y - s t r e s s e d  and a t  t h e  con- 
s t r a i n t .  

t A s  s h a l l  6e d i scussez  la ter  i n  t h i s  paper ,  under c e r t a i n  cond i t ions  

A second obse rva t ion  about  the governing equa t ions  f o r  t h e  opt imal  des ign  
problem can be made w i t h  t h e  he lp  of t h e  f u l l y - s t r e s s e d  cond i t ion ,  equat ion  
(14).  In t roduc ing  equa t ions  (14) and (2)  i n t o  the equ i l ib r ium r e l a t i o n s  (equa- 
t i o n  7)  y i e l d s  

Fk = 0 l / G x e & A  - a 
k t r r r a 6  r 

where t h e  f i r s t  summation is  over  t h e  set of f u l l y - s t r e s s e d  members, and t h e  
second summation is over  t h e  set of members a t  t h e  c o n s t r a i n t  (hence areas equal  
S) .  e i s  the s i g n  a s s o c i a t e d  w i t h  member r (compression o r  t e n s i o n ) .  r 

Equat ions (14) and (17) have been formulated f o r  t h e  problem of maximum 
s t i f f n e s s  des ign  f o r  a f i x e d  volume of material V. 
energy h i s  found as p a r t  of t h e  s o l u t i o n .  However, t h i s  problem may be shown 

The maximum s p e c i f i c  s t r a i n  
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( r e f .  6) t o  be equ iva len t  t o  the problem of minimum volume des ign  f o r  s p e c i f i e d  
A.  From now on i n  t h i s  paper  it w i l l  be assumed t h a t  a va lue  of A is  s p e c i f i e d .  
The s o l u t i o n  corresponding t o  th i s  v a l u e  of A may later be made t o  correspond t o  
some s p e c i f i e d  volume of material by mul t ip ly ing  a l l  r e s u l t s  by a common f a c t o r .  

With X s p e c i f i e d ,  equat ions  (14) and (17) become linear equat ions  i n  t h e  
remaining unknowns 6 and A . Thus once. i t  has  been determined which members 
are t o  be f u l l y - s t r e s s e d  i n  t h e  opt imal  design,  t h e  areas and nodal  d i sp l ace -  
ments may be c a l c u l a t e d  by so lv ing  a l i n e a r  system of equat ions .  

k r 

FULLY-STRESSED SET AND TRIAL DESIGN 

Suppose t h a t  a subse t  of the n members of t h e  t r u s s  have s p e c i f i c  s t r a i n  
energy A ,  as w e l l  as s p e c i f i e d  s i g n s ,  and do n o t  v i o l a t e  nodal  displacement 
compa t ib i l i t y .  These members w i l l  be  c a l l e d  a " fu l ly - s t r e s sed  set". 

Suppose t h a t  a f u l l y - s t r e s s e d  set p has  been des igna ted  and a va lue  of t h e  
lower bound c o n s t r a i n t  s p e c i f i e d ,  S = S*. I n  gene ra l ,  i t  is  not  known before-  
hand i f  p corresponds t o  a n  opt imal  des ign  f o r  S = S*. However, knowing p and 
S*, w e  can  n e v e r t h e l e s s  determine a corresponding set of areas and d i sp lace -  
ments by w r i t i n g  equa t ions  (17)  and (14) f o r  t h e  f u l l y - s t r e s s e d  set p and then  
so lv ing  t h e s e  equat ions .  

The set of areas and displacements  found i n  t h i s  way w i l l  be w r i t t e n  
D(p,S*) and w i l l  b e  c a l l e d  t h e  " t r ia l  des ign  corresponding t o  p and S*," 
t h a t  by assumption the t r i a l  des ign  i s  a continuous func t ion  of t h e  lower bound 
c o n s t r a i n t ,  f o r  f i x e d  p. 

Note 

Once a t r i a l  des ign  D(p,S*) has  been c a l c u l a t e d ,  equat ions  (10) and ( 4 )  
may be used t o  determine if t h e  t r i a l  des ign  i s  a l s o  an  opt imal  design.  I f  
D(p,S*) i s  opt imal ,  then  p w i l l  be  c a l l e d  t h e  "optimal f u l l y - s t r e s s e d  set cor- 
responding t o  S*. '' 

BASIS FOR ALGORITHM 

Using t h e  d e f i n i t i o n s  j u s t  introduced,  we can now d i s c u s s  t h e  b a s i s  f o r  an  
a lgor i thm f o r  f i n d i n g  t h e  opt imal  design.  

S t a r t i n g  w i t h  a f u l l y - s t r e s s e d  set r and a va lue  of S = S* such t h a t  
D(r,S*) i s  opt imal  ( f i n d i n g  such a s t a r t i n g  des ign  p r e s e n t s  no d i f f i c u l t i e s ,  as 
w a s  observed earlier), S i s  repea ted ly  reduced and D(r,S) r e c a l c u l a t e d  u n t i l  a 
va lue  of S i s  found f o r  which D(r,S) i s  non-optimal. Since t h e  cause of t h e  
non-optimality must l i e  i n  t h e  i n c o r r e c t  choice  of f u l l y - s t r e s s e d  members, a 
method is  needed f o r  i d e n t i f y i n g  those  members which must be added t o  o r  
de l e t ed  from t h e  opt imal  f u l l y - s t r e s s e d  set as S decreases .  Such a method may 
be  der ived  from a c l o s e  examination of t h e  opt imal  des igns  i n  t h e  neighborhood 
of a p o i n t  where t h e  opt imal  f u l l y - s t r e s s e d  set changes. 
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Consider t he  p a r t i c u l a r  case where a s i n g l e  member, f o r  example, j, is t o  
be added t o  t h e  optimal fu l ly-s t ressed  set. 
the  lower bound cons t r a in t  f o r  which ?7j f i r s t  equals t h e  cons t r a in t  value 
is  decreased from a va lue  S2 s l i g h t l y  above Sc t o  a va lue  S i  s l i g h t l y  below Sc. 
Note that, f o r  S = Scy member j is  an  example of a "borderline" case r e f e r r e d  
t o  earlier (A = Sc and q = A ) .  

S2 > S > S , then D(p,S) is non-optimal f o r  S 
la& tge fu l ly - s t r e s sed  member j. 

I n  f i g u r e  1, S = S, is t h e  value of 
as S 

j j 

If p denotes t h e  fu l ly-s t ressed  set f o r  which D(p,S) is  optimal f o r  
> S > Sly s ince  by hypothesis p - C 

Denote by q t h e  fu l ly-s t ressed  set obtained from p by adding member j 
and consider a member, f o r  example, k ,  which belongs t o  n e i t h e r  p nor q.  By 
hypothesis, 

Furthermore s i n c e  rl (p,S) and rl (q,S) are continuous functions of S, i t  k k follows t h a t  

nk(pYs) < A and nk(qYS) < 

f o r  S1 - < S < Sc. For t h e  same range of S, it must a l s o  be t r u e  t h a t  

s ince  D(p,S) has b e e l  assumed t o  be non-optimal. 
t o  t h e  fu l ly - s t r e s sed  set p t o  form t h e  optimal fu l ly-s t ressed  set q ( f o r  
S < S < S ) may be determined by examining t h e  non-optimal design D(p,S 1 - 1 tke-membercto be added i s  t h a t  member wi th  s p e c i f i c  s t r a i n  energy exceeding A .  
The s ign  associated with t h e  member j t o  be added is  i d e n t i c a l  t o  t h e  s ign  of 
member j i n  D(q,S ), as may be e s t ab l i shed  by a con t inu i ty  argument similar t o  
t h a t  given above. 

Thus t h e  member t o  be added 

1 

The preceding d iscuss ion  d e a l t  with t h e  procedure f o r  i den t i fy ing  t h e  
member t o  be added t o  t h e  optimal fu l ly - s t r e s sed  set as S decreases. An anal- 
ogous procedure can be developed f o r  i den t i fy ing  t h e  member t o  be de le ted  from 
t h e  optimal fu l ly - s t r e s sed  set. Proceeding as i n  t h e  previous paragraphs, i t  
can be shown t h a t  t h e  members of t h e  optimal fu l ly-s t ressed  set can be iden- 
t i f i e d  by inspec t ion  of a non-optimal design D(p,S ) - t h e  c r i t e r i o n  being t h a t  
t h e  member i n  p whose area i s  less than S i s  t o  &e de le ted  from p t o  form the  
optimal fu l ly - s t r e s sed  set. 1' 

A f i n a l  remark on t h e  algorithm should be added here. I n  developing t h e  
method f o r  adding o r  de l e t ing  fu l ly-s t ressed  members, t h e  assumption w a s  made 
t h a t  only one element a t  a t i m e  could be both fu l ly - s t r e s sed  and have area equal 
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t o  t h e  c o n s t r a i n t  va lue .  I n  c e r t a i n  problems, e s p e c i a l l y  where a h igh  degree 
of symmetry i s  p r e s e n t ,  t h i s  assumption may be v i o l a t e d .  
sen ted  above f o r  i d e n t i f y i n g  a d d i t i o n s  o r  d e l e t i o n s  t o  t h e  opt imal  f u l l y -  
s t r e s s e d  set i s  no longer  gene ra l ly  v a l i d .  
course  of t h i s  s tudy ,  several in s t ances  w e r e  observed where more than  one mem- 
b e r  w a s  f u l l y - s t r e s s e d  and a l s o  a t  t h e  c o n s t r a i n t  f o r  t h e  same va lue  of S. 
However, t h e  a lgo r i thm had no d i f f i c u l t y  i n  t h e s e  i n s t a n c e s  and found t h e  
opt imal  f u l l y - s t r e s s e d  set. The information gained by examining t h e  non- 
opt imal  des ign  i n  t h e  v i c i n i t y  of a change i n  t h e  f u l l y - s t r e s s e d  set w a s  a 
r e l i a b l e  guide  i n  determining t h e  elements t o  be  added o r  de l e t ed .  
l a c k  of t h e o r e t i c a l  j u s t i f i c a t i o n  f o r  t h e  a lgo r i thm i n  t h i s  s i t u a t i o n  does not  
appear t o  be s e r i o u s .  

The argument pre- 

In t h e  examples considered i n  t h e  

Thus t h e  

EXAMPLE PROBLEMS 

I n  f i g u r e  2 a n  example i s  p resen ted ,  involv ing  sixteen i n t e r i o r  nodes 
loaded as shown and a l s o  two support  nodes l o c a t e d  f a r  from t h e  i n t e r i o r  nodes 
and no t  shown i n  t h e  f i g u r e .  The opt imal  des ign  (shown i n  t h e  f i g u r e )  is  s e l f -  
e q u i l i b r a t e d .  I n  t h i s  example, t h e  a lgor i thm w a s  a b l e  t o  select t h e  appro- 
p r i a t e  s i x t e e n  members comprising t h e  opt imal  des ign  from among a l l  p o s s i b l e  
members. I n  achiev ing  t h i s  r e s u l t ,  no advantage w a s  taken of t h e  symmetry of 
t h e  problem. 

I n  f i g u r e  3 ,  seven i n t e r n a l  and f o u r  support  nodes are  s p e c i f i e d ,  and a 
s i n g l e  app l i ed  load  i s  t o  be c a r r i e d  by t h e  t r u s s .  The optimum des ign  is found 
t o  con ta in  t e n  members and i s  reminiscent  of 
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p-FULLY-STRESSED SET OPTIMAL FOR S,_<S_<S, 

9- FUL LY-STRESSED SET OPTIMAL FOR Si IS -< Sc 

LOWER BOUND CONSTRAINT VALUE, S 

Figure 1.- Spec i f i c  energies near point where member j is  t o  be 
added t o  optimal fu l ly-s t ressed  set. 

Figure 2.- Optimal t r u s s ,  with s ix t een  i n t e r i o r  nodes. 
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Figure 3.- Optimal truss, with seven interior nodes and 
€our support nodes. 
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A RAYLEIGH-RITZ APPROACH TO THE SYNTHESIS OF LARGE STRUCTURES 

WITH ROTATING FLEXIBLE COMPONENTS* 
** *** 

L.  Meirovitch and A. L. Hale 
Department o f  Engineering Science and Mechanics 

Virginia Polytechnic Ins t i t u t e  and State  University 

SUMMARY 

The equations of motion for  large structures w i t h  rotating f lexible  com- 
ponents a re  derived by regarding the s t ructure  as  an assemblage o f  substruc- 
tures. Based on a s ta t ionar i ty  principle for rotating structures, i t  i s  shown 
that each continuous or discrete  substructure can be simulated by a sui table  
set o f  admissible functions or admissible vectors. 
sis approach provides a rational basis for truncating the number o f  degrees of 
freedom b o t h  of each substructure and o f  the assembled structure.  

This substructure synthe- 

INTRODUCTION 

The methodology for analyzing large complex structures has developed along 
different  l ines.  One approach represents a natural extension of methods de- 
veloped originally fo r  c iv i l  and a i r c r a f t  structures,  culminating i n  the f i -  
nite-element method (ref .  1 )  and the component-mode synthesis ( re fs .  2,3). Al- 
though rotation o f  the s t ructure  could be accounted for thraugh rigid-body 
modes, work u s i n g  the approach of references 1-3 has been concerned mainly 
w i t h  n o n s p i n n i n g  structures.  On the other hand, an ent i re ly  different approach 
was developed in conjunction w i t h  s p i n n i n g  and nonspinning spacecraft struc- 
tures.  T h i s  approach was dominated by the f a c t  tha t  early spacecraft could be 
treated as en t i re ly  r i g i d .  Hence, i n  the ear ly  stages o f  development, struc- 
tures were assumed t o  consist  of  point-connected r i g i d  bodies arranged i n  " to-  
pological trees" (refs. 4,5). W i t h  time, the r ig id i ty  assumption was relaxed 
gradually by f i r s t  allowing for  f lex ib le  "terminal bodies" ( re fs .  6,7) and 
then f ina l ly  for a l l  f lex ib le  bodies ( r e f .  8).  A t h i r d  approach t o  the prob- 
lem of s p i n n i n g  f lex ib le  spacecraft was concerned w i t h  spacecraft consisting 
o f  a r i g i d  body w i t h  f l ex ib le  appendages (ref. 9,lO). 
can be regarded as an early application o f  the component-mode synthesis to  
spinning structures.  

Most papers concerned w i t h  s tructures simulated by point-connected r i g i d  
bodies, such as references 4, 5, proposed t o  derive the equations of motion by 

T h i s  l a t t e r  approach 

* 
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** *** 
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the Newtonian approach, on the assumption tha t  such a derivation was more suit- 
able fo r  d ig i ta l  computation. O f  course, an ear ly  d i f f i cu l ty  became immediate- 
ly apparent i n  the form of the handling of interbody constraints,  a major c r i t -  
icism of the Newtonian approach i n  most circumstances. Another d i f f icu l ty  was 
the relat ively large number of degrees of freedom involved, a d i f f icu l ty  only 
compounded by permitting various bodies t o  be f lex ib le .  As a r e su l t ,  there 
are no meaningful ways of truncating the problem. 

T h i s  paper i s  concerned w i t h  the mathematical simulation of large struc- 
tures,  where the s t ructure  i s  regarded as an assemblage of substructures. 
deed, the mathematical model i s  assumed to  consist  of a central substructure 
w i t h  a number of appended substructures, where some of the l a t t e r  can ro ta te  
re la t ive  t o  the central substructure. To ensure tha t  the various substructures 
ac t  as  parts of a whole s t ructure ,  an orderly kinematical procedure i s  used 
which takes i n t o  account automatically the superposition of motion of the cen- 
t r a l  substructure on the motion of the interconnected substructures. The sys- 
tem equations of  motion a re  derived by means o f  the Lagrangian approach, which, 
when used in conjunction w i t h  the kinematical procedure just described, does 
away w i t h  the question o f  constraints.  
from scalar  functions, namely, the kinetic and potential energy, where the 
f i r s t  requires the calculation of velocit ies only. In addition, discretiza- 
tion of the kinetic and potential energy i n  conjunction w i t h  l inearization 
ensures proper symmetry and skew symmetry of the coeff ic ient  matrices i n  the 
final equations of motion. Using  a Rayleigh-Ritz approach, the motion of each 
continuous (discrete)  substructure can be represented by a 1 inear combination 
of admissible functions (vectors) rather than substructure natural modes. 
T h i s  approach i s  based on a s ta t ionar i ty  principle for  rotating s t ructures  de- 
veloped recently by the f i rs t  author ( re f .  l l ) .  Finally, the truncation prob- 
lem can be handled much more e f f i c i en t ly  by the substructiire synthesis ap- 
proach, as the possibi l i ty  of truncating the number of degrees of freedom b o t h  
of the individual substructures and of the assembled s t ructure  provides a much 
more rational basis for  an overall truncation decision. 

In- 

The equations of motion a re  derived 

KINEMATICAL CONSIDERATIONS 

Let us consider a general s t ructure  consisting of a central substructure 
C and a given number of appended substructures (see f ig .  1 ) ,  where the l a t t e r  
are of three types: r i g i d  and rotating re la t ive  to  the central substructure 
(type R ) ,  e l a s t i c  and nonrotating re la t ive  t o  the central substructure (type 
E ) ,  and e l a s t i c  and rotating re la t ive  to  the central substructure (type A ) .  
Clearly, there can be more than one appendage of a given type, b u t  we shall  
confine our discussion t o  a representative one of each type, w i t h  summation i m -  
plied over the en t i r e  number of substructures. Although we consider here only 
peripheral substructures, the formulation can be easi ly  extended t o  chains of 
substructures, as discussed 1 a t e r .  

Let us introduce the ine r t i a l  system of axes XYZ w i t h  the origin a t  0 and 
identify a system of axes x yczc w i t h  the origin a t  an arbi t rary point C of 
the central substructure. $hen, denoting by wo the radius vector from 0 to  C ,  
by ]cc the position vector of  any mass point in !he substructure, and by LIC the 
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e la s t i c  displacement of  t ha t  p o i n t  measured relat ive t o  xcyczc, and 
t h a t  woc i s  i n  terms of components along X Y Z  and rC and uc are  i n  t e  
ponenfs along xcy ZC, the absolute position of t h e  mass b o i n t  i n  question i n  

trix of direction cosines between X Y Z  and xcyczc. Moreover, i f  61 i s  the angu- 
l a r  velocity of the frame xCyczc re la t ive  t o  XYZ, the absolute veiocity of the 
mass p o i n t  is  

terms of componen E s along xcyczc is  VJC = Tocwoc + rc + uC, where TaC is  the ma- 

- .., 

where rC + uc i s  a skew symmetric matrix associated w i t h  rc + uc - and i c  is  the 
e l a s t i c  velocity of the p o i n t  re la t ive  t o  axes xCyczc. 

To calculate the absolute velocity of a point i n  the substructure R, we; 
must f i rs t  obtain the velocity of p o i n t  R as well as  the angular velocity o f  
a reference frame XCRYCRZCR attached t o  the central substructure a t  R and w i t h  
axes parallel  t o  the rotor axes XRYRZR when a t  rest and when the central sub- 
structure is undeformed. Due t o  geometry alone the orientation o f  axes XCRYCR 
ZCR re lat ive t o  xcyczc is  given by the constant matrix of direction cosines 
LGR. Denoting by ~ C R  the e l a s t i c  deformation vector a t  p o i n t  R of the central 
substructure and assuming tha t  the components U C R ~ !  UCR!, UCR?, of ~ C R  are small, 
the rotation vector of axes XCRYCRZCR due t o  e l a s t i c  de ormation can be writ- 
ten i n  the form 

a 'CRx a u C R z  
a 'CR a XcR a 'CR aYCR 

(2 )  
a 'CRx - - -  -la?!.------ I T  a u  

Y 

where V ~ R  is a skew symmetric different ia l  operator matrix corresponding t o  the 
curl operator. 
before and a f t e r  deformation i s  - Hence, the matrix of direction cosines between axes XCRYCRZCR 

a u  auCRx auCRx a 'CRz 
axCR aYCR 

- - - -  
aXCR 

CRy--- 

1 auCRz '%Ry - -  
a 'CR a 'CR 

( 3 )  

Moreover, l e t t i ng  LR b e  the matrix o f  direction cosines between axes XRYRZR 
avd XCRYCRZCR; ;heLtransformation matrix between axes X R J ~ R Z R  and XCYCZC i s  

ZCR, the absolute-angular velocity of XRYRZR i n  terms of components along 
XRYRZR i s  

simply TCR - R CR GR- 
Denoting by WR the angular velocity of  the ro to r  re la t ive t o  axes XCRYCR 

- 
(4) GR = TcR CC + LR vCR(LGR + WR 
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where the second term i n  equation (4) is  the angular'velocity of axes XCRYCRZCR 
due t o  the e l a s t i c  motion of the central substru ure. Because the rotor i s  
r i g i d ,  the position of a mass point relative to  R is simply rR. Hence, the 
absolute velocity o f  the p o i n t  i n  question i s  simply 

where ~ C R  is the velocity o f  p o i n t  R obtained from Gc by s u b s t i t u t i n g  the coor- 
dinate: of the point R for those o f  an a rb i t ra ry  polnt. 

Next, l e t  us turn our a t tent ion to  the substructure E and denote by XEYEZE 
any convenient s e t  o f  axes w i t h  the origin a t  E and attached t o  the substruc- 
ture. Using the analogy w i t h  equation (4), the angular velocity of XEYEZE is 

= LCELGE. Moreover, by analogy w i t h  equation (5), the absolute ve- 
where loc i ty  TcF o a mass p o i n t  i n  the substructure i s  

where i~ i s  the e l a s t i c  displacement re la t ive  to  axes XEYEZE. 

The  extension t o  e l a s t i c  substructures rotating re la t ive  to  the central 
substructure i s  quite obvious. 
s t ructure  A re la t ive  to  a s e t  o f  axes XCAYC ZCA attached t o  the central body 

L e t t i n g  LOA be the angular velocity of the sub-  

a t  point A ,  the absolute angular velocity o 9 XAYAZA ?:s simply 

where TCA = LALCALGA, and the absolute velocity o f  an arb i t ra ry  point i n  A i s  

Finally, l e t  us consider chains of substructures. First, we note tha t  
the angular velocity of a peripheral substructure and the absolute velocity o f  
an arb i t ra ry  point i n  a peripheral substructure a re  written i n  terms o f  the 
angular velocity o f  a set o f  axes attached to  the central  substructure and 
w i t h  o r i g i n  a t  the interconnecting point and the translational velocity o f  the 
interconnecting point. As an example, see equations (4)  and (5 ) .  To write 
the angular velocity and absolute velocity o f  an arb i t ra ry  point o f  a sub- 
structure i n  a chain, we simply replace guantit ies-pertaining t o  the central 
substructures, such as TCR, CC, VCR(LGR IJCR), and w R i n  equations (4) and (5) 
by analogous quanti t i e s  pertaining to the irnmediat& preceding substructure 
i n  the chain. 
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SYSTEM DISCRETIZATION AND/OR TRUNCATION 

In general, each elastic substructure possesses a large number o 
of freedom. In f a c t ,  i f  the substructure is  continuous, then i t s  num 
degrees of freedom i s  infinite. For practical reasons, we must limit the for- 
mulation not only t o  a f ini te  number of degrees of freedom b u t  also t o  as small 
a number as possible consistent with a good simulation of the system dynamic 
characteristics. In this regard, we wish t o  use a Rayleigh-Ritz approach and 
represent the elastic displacements of a continuous substructure by a linear 
combination of space-dependent admissible functions mu1 tiplied by time-depen- 
dent generalized coordinates of the substructure. 
crete, then instead of  a ssible functions we must use admissible vectors. 
Note t h a t  i t  i s  common practice t o  use a s  admissible functions and admissible 
vectors the eigenfunctions and eigenvectors of the substructure. In  view of 
the stationarity principle for  gyroscopic systems developed in reference 11,  
however, this i s  not really necessary, and a reasonable set of admissible func- 
tions o r  admissible vectors shou ld  suffice. 
zation and/or truncation scheme 

If the substructure is dis- 

Hence, we shall use the discreti- 

where gC, zE, and T-IA are time-dependent vectors of generalized displacements 
w i t h  dimensions nc; nE, and nA,, respectively, and @c,  , and @A are 3 x nc,  
sible vectors, as the case may be. 
depends on continuous space variables and for a discrete substructure i t  de- 
pends on discrete space variables. In the la t ter  case, the t ia l  derivatives 
involved in the quantity V U  - are t o  be replaced by corresponding slopes. 

the above, we have made no attempt t o  make clear distinction between the two 
types o f  mathematical models. Neither have we elaborated on the various types 
3f  discrete models, such as lumped models, finite-element models, etc. 
:ourse, the mathematical model used depends on the substructure mass and s t i f f -  
less distributions, b u t  this i s  of no particular concern here. The reason for  
t h i s  i s  t h a t ,  independently o f  the mathematical model postulated for the sub- 
itructure, the general idea i s  the same, namely, t o  eliminate the spatial de- 
Iendence by the use of admissible functions or admissible vectors and t o  trun- 
:ate the problem by limiting the number of these functions or vectors. 

3 x nE, and 3 x qA space-dependent matrices admissib @f e functions or admis- 
Note t h a t  for a continuous substructure y 

Although we have mentioned bo th  continuous and discrete substructures i n  

Of 

LAGRANGE ’ S EQUATIONS OF MOTION 

To derive Lagrange’s equations of motion i t  i s  necessary t o  produce f i r s t  
lxpressions for the kinetic energy, potential energy, and nonconservative vir- 
ual work. Assuming t h a t  in equilibrium the central substructure C ,  substruc- 
ure R ,  and substructure A rotate with the uniform angular velocities $c about  
c ,  cR about  Z R ,  and QA aboutlzA, respectively, while any other motion i s  zero, 
le can write ~c = QC Z, + OC ! c ,  YR = QR ;R + OR HR, = QA !A + OA ;A, where 
A i s  the vector o f  direction cosines between zc and X Z ,  &R i s  the vector o f  
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direction cosines between ZR and XCRYCRZCR, 

depending on osci l la t ion of the axes xcyczc etc .  Using equa- 

vector of direction 
cosines between ZA and XCAYCAZCA. are  3 x 3 matrices 

tions (10) and retaining only l inear  terms, the absolute ve c i t i e s  of typical 
points i n  the various substructures become 

Moreover, o 

i C  = c1 4 C  + c2 9C i R  = R1 $R + R2 9 R  

f!E = $E + E2 QE 9 !?A $A + A2 9 A  

9 

(11 1 
= 

where 

1 + - q  ii =‘ \  G T G  dm - 1 4T ii T 
TA 2 -A -A A - 2 -A 11 !A + !A ’12 !A 2 -A 22 !A 

mA 

i n  which 

T - 
R .  R .  dmR T 

C .  C .  dmC , R i j  = 1 J 1  J 1  

E .  E i  dmE , rij - 

- 

mR 

“A 

c i j  = \ 
mC 

mE 

T 
- J A j  A i  dmA 

T 
J 

- 
E i j  = I (14 

- Note tha t  the square matrices Ti , Ri j , E i  j , and Ai 
w i t h  many of the off-diagonal sudmatrices equal to  ?ero. 
dimensional configuration vector fo r  the en t i r e  system i n  the form g = 

have parti t ioned forms, 
Introducing the n- 

[!!OC gg ’ !?R ’ ’ !?A ’ 1 QC I I g E  I ’, where n i s  the number of degrees o f  
the sys em, the kifietic energy can be written i n  the general form 

freedom of 
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where M and KT a r e  symmetric matrices. 
the en t i re  system i s  

Similarly, the potential energy fo r  

where Kv i s  a symmetric matrix, and-the nonconservative 
form 

T 
= 9 q 

0 6) 

vir tual  work has the 

where Q .., i s  the nonconservative generalized force vector. 

der certain circumstances, such as when the substructures R and A are  symmet- 
r i c ,  the time dependence disappears. A helicopter w i t h  a symmetric rotor ro- 
ta t ing re la t ive  to  an airframe while i n  hover is  an example, where the en t i r e  
rotor is  considered as a substructure. Another poss ib i l i ty  i s  t o  consider 
each rotor blade as a separate substructure. 
substructures forms a symmetric rotor and M and F will once again be constant 
natrices. 

In general, the matrices M and F depend expl ic i t ly  on time. However, un- 

In this case, a’ combination of 

Lagrange’s equations can be written i n  the symbolic form 

vhere L = T - V i s  the system Lagrangian. 
introducing equations (15) and (16)  i n t o  the Lagrangian L ,  and using equation 
:18), we obtain the Lagrange’s equations of  motion 

Assuming t ha t  M and F are constant, 

rhere FT - F is  a skew symmetric matrix. Hence, e,quation (19) represents a 
iypical gyroscopic system. The natural frequencies and natural modes of the 
omplete s t ructure  and the closed-form solution of  equation (19) can be ob- 
.ained by the methods developed i n  references 1 2  and 13. The in te res t  here 
s not so much i n  the response as i n  the dynamic character is t ics  of the sys- 
em, and i n  par t icular ,  the truncation e f fec t  on these character is t ics .  

THE EIGENVALUE PROBLEM AND TRUNCATION IMPLICATIONS 

Introducing the 2n-dimensional s t a t e  vector x ( t )  and the associated 2n- 
imensional force vector X ( t )  i n  the form 
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where 0 is the n-dimensional null vector, as well as the 2n x 2n matrices 

where 0 is  the null matrix of order n ,  the n second-order different ia l  equa- 
t ions of motion, equation (191, can be replaced by the 2n f i r s t -order  d i f fe r -  
ent ia l  equations i n  the s t a t e  space x ( t ) ,  where the equations have the eigen- 
Val ue problem 

XIx - + Gx = 0 (22) 

I t  is shown i n  reference 12 t h a t  the eigenvalue problem (22) can be reduced t o  
the real symmetric form 

2 2 w I Y = K ~  , W I Z = K Z  

where K = GTI'1G is a real symmetric matrix. The eigenvalue problem (23)  is  
i n  terms of two real symmetric matrices and i s  known to  possess real eigen- 
values. Assuming t ha t  I i s  posit ive def in i te ,  i t  follows tha t  K i s  posit ive 
def in i te ,  so t h a t  the e'genvalues are  not only real b u t  a lso positive. 

each w belong the eigenvectors and Zr. Because I and K are  positive defi-  

respect to  the matrix I .  

LLT, w ere L i s  a lower tr iangular matrix. 

More- over, ghe eigenvalues w r  3 (r  = l , 2 , . . . y n )  have multiplicity two, so that  t o  

nite a'il the .eigenvectors a re  i n  !ir ependent. In f ac t ,  they a re  orthogonal w i t h  

gr 1 -  - L P Z r y  ( r  = l , 2 , . . . y n ) ,  the eigenvalue problem (23)  becomes 
Next, l e t  us use the Cholesky decomposition and write I i n  the form I = 

Introducing the notation 1;. = LTyr! 

where K '  = L-1KL-T i s  a real symmetric posit ive def ini te  matrix, i n  which 
L-T = ( ~ - 1 j T .  

Denoting by v an a rb i t ra ry  2n-vector, Rayleigh's quotient associated 
w i t h  the eigenvalie problem (24) can be written i n  the form ( r e f .  11 )  

T v K'v 

v v  
R ( v )  = 

-, 

Because K '  i s  real and symmetric, i t  i s  well known tha t  Rayleigh's quotient 
has a stationary value i n  the neighborhood of an eigenvalue. Note tha t  the 
symmetric formulation (24)  permits us to  conclude tha t  a s ta t ionar i ty  prin- 
c iple  ex is t s  a lso fo r  gyroscopic systems. 
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Next, we wish t o  examine the truncation effect on the system characteris- 
t ics.  To this end, l e t  us examine the eigenvalue problem Av = A V ,  where A i s  
a real symmetric matrix of order N ,  and assume t h a t  the eigenvaliies of  A are 
ordered so t h a t  AI  5 h2  < ... < A N .  Now, l e t  us form the matrix B by deleting 
the las t  row and column cf A aKd write the eigenvalue problem Bu = y u ,  where 
the eigenvalues y .  (j = 1 ,2 ,  ..., N-1) are ordered so t h a t  y l  ~ y ;  5 ... L Y N - ~ .  
The question arisgs as  t o  how the eigenvalues yj relate t o  the eigenvalues h i .  
To this end, one can use the Courant's maximum-minimum theorem (ref. 14)  and 
prove that 

We shall refer t o  inequalities (26) as the inclusion principle. 

Now, l e t  us return t o  the truncation problem. The 2n x 2n matrix K '  was 
obtained as the result of representing the spinning structure by an n-degree- 
of-freedom system. Note t h a t  the rotational coordinates are also included in 
these degrees o f  freedom. 
of a given number of constraints on the original structure. For example, the 
f i r s t  of equations (10) can be written i n  the form 

This representation is  tantamount t o  the imposition 

- - - so t h a t  the constraints imposed on the system are nC,nC+l - 
Truncating the series ( 2 7 )  by assuming t h a t  q C , n C  = 0,  we obtain a matrix K" 
obtained from K '  by deleting two rows and the c rresponding two columns. If 
the eigenvalues of K' are such t h a t  w12 5 < < wn2 and the eigen- 
values 

... = 0. 

- of K" are such t h a t  e12 82 2 L . . . < 6;-i2; Then we have 

Note t h a t  the fact  t h a t  the eigenvalues o f  K '  and  K" have multiplicity two i s  
automatically taken into account in inequalities (28) .  On the other hand,  by 
relaxing one constraint, i .e.,  by adding one term t o  the series (27), we ob- 
tain a (2n  + 2 )  x (2n  + 2 )  matrix K"' which i s  obtained by adding  two rows 
and columns t o  K ' .  The eigenvalues C? of K" '  are such t h a t  

2 2 2  
n+ 1 < ... < a < wn L a  

2 2 2 2  
1 -  1 -  2 -  2 -  - n -  a < w  < a  < w  

The above developments permit us t o  conclude t h a t  the system estimated natural 
frequencies tend t o  decrease monotonically with each additional degree of 
freedom. A t  the same time there i s  a new frequency added which i s  higher 
than any of the previous ones. 

The question remains a s  t o  how t o  select the admissible functions or ad- 
missible vectors. The f i r s t  t h i n g  t h a t  comes t o  mind i s  t o  take them as the 
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eigenfunctions and eigenvectors of the various substructures. 
the solution of the eigenvalue problem fo r  a substructure can be qui te  a 
task i n  i t s e l f ,  so t ha t  i n  such cases one may wish to  use deformation patterns 
only approximating the actual modes. T h i s  can be regarded as imposing addi- 
tional constraints on the system, which tends to  ra i se  the natural frequencies 
of the system, b u t  this may be considered as  a viable a l te rna t ive ,  particular-  
ly  when the val idi ty  of the solution of the eigenvalue problem i s  question- 
able. Experience w i t h  the Rayleigh-Ritz approach shows tha t  the system natu- 
ral  frequencies a re  not very sensitive to  the admissible functions used, which 
can be traced to  the s ta t ionar i ty  principle.  
exists also f o r  discrete  systems, so tha t  the same conclusion can be extended 
to admissible vectors. 

In many cases, 

B u t  a s ta t ionar i ty  principle 

The truncation by substructures has a c lear  advantage over truncation 
of the s t ructure  as a whole. 
judgement based on the substructure properties, such as  the mass and s t i f fnes s  
dis t r ibut ions.  
modes o f  the complete structure.  
i s  l ike ly  to  have less  e f fec t  on the modes of the complete structure than a 
f lexible  heavy substructure. 
t h a n  the second. 
natural frequencies of the substructures. 
need solve the eigenvalue problem fo r  the substructures exactly. 
u s i n g  a Rayleigh-Ritz procedure fo r  continuous or discrete  systems, in con- 
junction w i t h  a preselected s e t  of admissible functions or  admissible vectors, 
i t  i s  possible to  obtain a reasonable estimate of  the lower frequencies of 
each substructure. Note tha t  the Rayleigh-Ritz method can be used to  produce 
and solve an eigenvalue problem of considerably lower dimension than t h a t  of 
the fu l l  eigenvalue problem fo r  the substructure. The! estimated lower natural 
frequencies o f  the substructure, when compared to  those of other substructures, 
can be used merely as a guide for  truncation purposes. In f ac t ,  the eigen- 
vectors serve no useful purpose and need n o t  be calculated, as the same ad- 
missible functions o r  vectors can be used to  represent the substructure i n  
the generation of the eigenvalue problem for  the complete assembled struc- 
ture.  T h i s  conclusion i s  based on resu l t s  shown i n  reference 11.  

The  reason i s  t h a t  i t  permits a more rational 

Generally one is  interested i n  only a limited number of lower 

Hence, one can truncate the f i r s t  more severely 
Some ideas for  truncation can be obtained by estimating the 

Hence, a very s t i f f  and l i gh t  substructure 

This by no means implies that  one 
Indeed, 

If  the dimension of the eigenvalue problem for  the complete assembled 
structure i s  s t i l l  too large,  and the higher modes a re  not rea l ly  necessary, 
then one can solve only fo r  a given number of lower modes by using such tech- 
niques as subspace i te ra t ion .  

CONCLUDING REMARKS 

A procedure has been shown whereby the equations of motion f o r  large 
structures w i t h  rotating f lex ib le  components can be derived by the Lagrangian 
approach. 
t ions i s  the superposition of substructure motions by means of an orderly 
kinematical procedure, which automatically eliminates the problem of con- 
s t r a in t s .  
o r  discrete  f lex ib le  substructure can be simulated by a f i n i t e  number of ad- 

A fundamental consideration i n  the derivation of Lagrange's equa- 

Using a Rayleigh-Ritz approach, i t  is  shown that  each continuous 
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missible functions o r  admissible vectors and exact substructure modes a r e  
not r ea l ly  necessary. T h i s  conclusion i s  based on a s t a t i o n a r i t y  pr inciple  
for ro ta t ing  s t ruc tures  developed recent ly  by the f i r s t  au r (ref.  11). F i -  
nal ly ,  the substructure synthesis approach provides a r a t i  1 basis f o r  t r u n -  
cating the number of degrees of freedom both of each individual substructure 
and of the assembled substructure.  
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THE STAGING SYSTEM: 

DISPLAY AND EDIT MODULE 

Ed Edwards 
Battelle Columbus Laboratories 
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A i r  Force F l i g h t  Dynamics Laboratory 

SUMMARY 

The Display and Edi t  (DfiE) Module, described i n  t h i s  paper, is  one of s i x  
major modules being developed f o r  t h e  STAGING (STructural Analysis through 
- Generalized INteractive Graphics) System. 
cerning t h e  computer envTronment and t h e  a r c h i t e c t u r e  of t h e  da t a  base. 
t h e  t h r u s t  of t h e  paper is, c l e a r l y ,  t o  provide an understanding of t h e  u t i l i t y  
of t h i s  module. 
d e t a i l ,  t h e  more prominent f e a t u r e s  of D&E. 

S e v e E l  r e m a r k s a r e  included con- 
But 

This i s  accomplished by def in ing ,  t o  a reasonable level of 

INTRODUCTION 

To a s su re  an adequate apprec ia t ion  f o r  t he  D&E capab i i i c i e s ,  i t  i s  impor- 
t a n t  t o  have a good conceptual understanding of STAGING and of t he  need f o r  
STAGING. Over recent  years ,  t he  f i n i t e  element technology has l i t e r a l l y  
"burst" onto t h e  scene, becoming one of t he  most powerful and popular ana ly t i -  
cal methods a v a i l a b l e  today. Qxle r e s u l t  of t h i s  popular i ty  has  been a p ro l i -  
f e r a t i o n  of computer programs, a l l  claiming t o  be  unique o r  b e t t e r  than o t h e r  
similar programs. In some cases, t h e  claim i s  simply untrue. I n  more cases, 
c a p a b i l i t i e s  do overlap,  bu t  t h e  programs are s t i l l  unique enough t o  j u s t i f y  
t h e i r  existence. I n  a l l  cases, t h e  programs cannot communicate e a s i l y  with 
one another and are cumbersome t o  use. The net r e s u l t  i s  t h a t  we have less 
capab i l i t y  than we need, but more than we can use  e f f e c t i v e l y .  
t h i s  problem, e f f o r t s  are underway t o  develop STAGING. 

To cope with 

STAGING is  a highly interactive capab i l i t y  intended to: (a) synthes ize  
t h e  f i n i t e  element methodology i n t o  a ,cohesive, user-oriented capab i l i t y ,  and 
(b) r a d i c a l l y  reduce t h e  t i m e  requi red  t o  conduct a f i n i t e  element ana lys i s .  
The system w i l l  allow p o t e n t i a l  users  t o  rap id ly  genera te  f i n i t e  element models 
and i n t e r p r e t  ana lys i s  r e s u l t s  independent of t h e  ana lys i s  program chosen t o  
conduct t h e  ana lys i s .  
f i n i t e  element methodology, e a r l y  consideration i s  being given f o r  its eventual 
extension t o  o ther  t echn ica l  d i s c i p l i n e s .  

Although STAGING is s p e c i f i c a l l y  being aimed a t  t h e  

STAGING ( f ig .  1) c o n s i s t s  of s ix  major modules; (a) Executive Monitor, 
(b) Preprocessor, (c) Display and Edi t ,  (d) Postprocessor, (e) Analysis 
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Programs, and (f) Generalized Data Base. The Executive Monitor will serve as a 
"traffic cop" to help a user find and use a particular capability, and to 
ensure the proper flow of information between modules. The Preprocessor will 
be used to generate bulk information for the analysis codes. D&E will provide 
a host of interactive graphic utilities to assist in "fine tuning" previously 
generated data, and effectively display the analysis results. The Postproces- 
sor will allow easy generation of additional engineering information from the 
basic output files of the analysis codes. The Analysis Module will simply be 
a file of available design and analysis computer programs. And, finally, the 
Generalized Data Base will provide efficient storage for all geometric and non- 
geometric information associated with a particular analysis. 

A number of general purpose subroutines are provided to facilitate the 
transfer of information to and from the data base. Conversion programs are 
written, using these subroutines, to allow each of the major system modules 
to communicate with the data base through the Executive Monitor. 

COMPUTER ENVIRONMENT 

Hardwar e 

The major hardware components include: a CDC 6000 series computer, the 
CDC CYBER Graphics terminal (ref. l), and the CDC System 17 mini-computer. The 
System 17 mini-computer is being used to perform a limited amount of local 
processing (e.g. continuous 3-D rotation) , while the CYBER Graphics terminal is 
being used as the primary interface between the host computer and the user. 
Within the year, D&E will also be accessible from a Tekronix 4014 scope. 

In the more distant future, networking techniques will be used to make D&E 
available to the user community. A part, or all, of D&E will be downloaded 
from a central host computer to a mini-computer and used in a local mode. 
current feeling is that networking can provide an effective answer to maintain- 
ing large software systems, reduce the time required to streamline these same 
systems, and consequently, provide more time for implementing new features. 

The 

Software 

The code for most routines is FORTRAN, with the exception of a few spe- 
cialized routines for character manipulation and permanent file management 
which are written in 6000 assembly language. These routines are isolated in 
the code and clearly identified. 
(ref. 2) and operates in less than 60K octal words of core memory on the CDC 
6600. 
reduce the amount of frustration for future implementations of D&E on other 
graphics devices. And finally, the DTNSRDC data handler routines (ref. 3) are 
being used to manage the data base. 

The program uses the CDC segmentation loader 

Also, a strong emphasis is placed on isolating the graphics code to 
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DATA BASE 

The data base provides a convenient mechanism for stor 
model and all related information, including the analysis r 
ally, the data base is composed of the following four levels: 
substructures, elements and nodes (fig. 2). This hierarchical concept is 
important and is used extensively by D&E. 
items within a level is an attribute list that contains 
about each particular entity. are used to allow 
a user to interrogate and modify the data base efficient f f ectively . An 
understanding of these basic concepts *is all that is required to use DSrE effec- 
tively. 

st 

Associated with the in 

The data base handler rout 

DISPLAY AND EDIT FEATURES 

The power and flexibility of D&E can best be characterized by simply 
defining the discrete capabilities of the module. To put some order into the 
litany of features that is about to follow, they will be grouped into these 
broader categories: (a) Substructure Definition, (b) Displaying the Input 
Model, (c) Picture Manipulation, (d) Displaying the Results, (e3 Editing, and 
(f) Global Commands. 
tained in a command tree (ref. 4 ) .  The comiiand tree structures the user's 
options, and allows the user to systematically progress through the D&E capa- 
bilities. Examples of these capabilities'are illustrated in figure 3. 

The actual mechanics of the interactive process are con- 

Substructure Definition 

A substructure is defined as any arbitrary collection of nodes and ele- 
ments that are present in the data base. The actual definition of a particular 
substructure is left completely to the user, and is used by him to improve his 
visual interpretation, and interaction, with that portion of the model in which 
he is most interested. A substructure can be defined using one, or more, of 
the following features: 

a. Specifying a range of element/node numbers. 

b. Specifying individual elements/nodes. 

c. 

d. 

Specifying a range of values for any attribute. 

Merging two or more substructures to form a new substructure. 

e. Identifying geometric bounds. 

Geometric specified bounds are defined using keyboard entries to specify an 
area or volume in either rectangular, cylindrical, or spherical coordinates. 
In a more limited sense, the lightpen can also be used to define the desired 
area or volume. 
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Displaying the Input Model 

The input model can be viewed in one of three ways: in 
three-space rotatable (3DR), or in three-space non-rotatable ( 
tinction between 2D and 3D is obvious. However, a 3D 
a 2D model and vice versa. If the third coordinate i 
be ignored, and if absent in 3D, it will be given a default value of zero. 
and 3DNR present a more subtle distinction. 
the 30 to 2D projection is carried out. The CYBER Graphic 
software (ref. 5) that will project a model using its mini 
to describe the picture. 
limits the size of the display. In the 3DNR mode the same projection is 
carried out on the host computer. 
approximately twice the information in 3DNR as it is in 3DR. The tradeoff is 
that it takes longer to generate the picture in the 3DNR mode. 
3DNR mode is used only when the 3DR mode would generate too much infotmation. 

3DR 
The basic difference lies in where 

The small core memory of the co 

Consequently, it is possible to display 

Therefore, the 

In addition to displaying the actual geometry, all of the attributes asso- 
ciated with each entity can be displayed as alphameric or vector quantities 
superimposed on the geometric model. Examples of alphameric quantities include 
geometric and material properties. 
forces, moments and constraints. 

Examples of vector quantities include 

Picture Manipulation 

Picture manipulation varies from 2D to 3D. The base capabilities of 2D 
do, however, apply in exactly the same way for both 3D and 3DNR modes. These 
cap abilities include : 

a. picture zooming and recentering. These functions are performed 
through software in the controller and are considered LOCAL to the CYBER 
Graphics terminal. 

b. generating a split screen view (fig. 3a). Up to four views can be 
generated simultaneously using the split screen option. Either a "free" (in 
which rotation can still occur) or "freeze" left side can be generated. In 
either case, only the main picture can be zoomed or used for lightpen selec- 
tion. 

c. shrinking elements (fig. 3b). Each element on the screen can be 
reduced about its center to 80% of its original size. 

d. rescaling the picture. A new scale can be applied to the picture, or 
the picture can be scaled to fill the entire screen. 

e. 
split screening and shrunk members, and restores the original picture 
re-centered. 

restoring the original picture. This option removes the effects of 

It should be noted that 3DNR and 3DR have provisions for two more capabilities: 
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f .  displaying of an X-Y-Z a x i s  system. The axis system is  centered i n  
t h e  middle of t h e  p i c t u r e  and po in t s  along the X, Y, Z axes of t h e  model. 

g. generating a perspec t ive  view. 

F ina l ly ,  3DR adds a f e a t u r e  i t s  name implies: 
any of t h e  t h r e e  screen coordinate axes i n  a continuous o r  d i s c r e t e  mode. Con- 
tinuous mode provides f o r  automatic updating of t h e  ro t a t ion .  
mode allows t h e  user  t o  r o t a t e  the  model quickly, bu t  i n  f ixed  s teps .  

a c a p a b i l i t y  t o  r o t a t e  around 

The d i s c r e t e  

Displaying*the Resul t s  

Af te r  conducting t h e  ana lys i s ,  t h e  answers are s to red  i n  t h e  da ta  base i n  
t h e  co r rec t  a t t r i b u t e  a r rays .  
t h e  user review h i s  r e s u l t s .  They inc lude  X-Y p l o t s ,  contour p l o t s ,  deformed 
p l o t s ,  and dynamic p l o t s .  Of course, t h e  e n t i r e  complement of p i c t u r e  manipu- 
l a t i o n  c a p a b i l i t i e s  is s t i l l  a v a i l a b l e  t o  help t h e  use r  improve h i s  v i s u a l  in- 
t e r p r e t a t i o n  of t he  r e s u l t s .  
need not  pre-select  t h e  r e s u l t s  d i sp lays  he may wish t o  use. 

Four bas i c  c a p a b i l i t i e s  are a v a i l a b l e  t o  help 

A s  wi th  the  input  model d i sp lay  sec t ion ,  t h e  user  

The X-Y p l o t t i n g  c a p a b i l i t y  ( f ig .  3c) i s  very f l e x i b l e .  The user may 
i n t e r a c t i v e l y  a c t i v a t e  t h e  following options: 

a. l i n e  s t y l e  c. graph s t y l e  

1. poin ts  1. l i n e a r  X/linear Y 

2. connected po in t s  2. log  Xjiirrear Y 

3. s o l i d  l i n e s  3. linear X/log Y 

4. s h o r t  dashed l i n e s  4. log  X/log Y 

5. long dashed l i n e s  d. t i t l i n g  

b. g r i d  1. X-axis 

1. f u l l  g r i d  2. Y-axis 

2. t i c  marks 3. graph t i t l e  

A s  many as t e n  curves can be  generated on each p lo t .  
any a t t r i b u t e  i n  the  d a t a  base  against' any o ther  a t t r i b u t e .  
provisions have been made f o r  automatic r e sca l ing  t o  ensure a reasonable pic- 
t u r e  every t i m e .  

The user  may a l s o  p l o t  
And, f i n a l l y ,  

Contour p l o t s  are a v a i l a b l e  f o r  2-D disp lays  only. A s  w i th  t h e  X-Y p lo t -  

The user  can 
t i n g  capab i l i t y ,  t he  user  has con t ro l  over t h e  d a t a  t o  be p l o t t e d  and the 
l a b e l l i n g  of t h e  graph. 
select the d is tance  between contours, o r  use a va lue  supplied by t h e  system, 
t o  generate t h e  contour intervals. 

Scaling is performed automatically.  
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Deformed p l o t s  ( f ig .  3d) can be displayed alone, o r  superimposed on an 
undeformed p l o t .  
from t h e  undeformed p l o t .  
placements t o  improve t h e i r  v i s u a l  appearance. 

Dashed l i n e s  are used t o  e a s i l y  d i s t ingu i sh  t h e  deformed p l o t  
A magnification f a c t o r  can be  applied t o  the  dis- 

The dynamic p l o t  c a p a b i l i t y  i s  provided t o  f a c i l i t a t e  f i l m  s t r i p  genera- 
t i on .  I n  operation, t h e  user  need only spec i fy  t h e  number of ana lys i s  t i m e  
s t e p s  he  wishes t o  process and t h e  time-length of t h e  f i l m  s t r i p .  The remain- 
i ng  process is  automatic. 
t i o n  on t h e  graphics scope o r  disposing it d i r e c t l y  t o  an o f f - l i ne  p l o t t i n g  
device. 

The user  has t h e  opt ion  of previewing t h e  informa- 

w 

Edi t ing  

Provisions are a v a i l a b l e  t o  allow a use r  t o  e a s i l y  a l ter  t h e  contents of 
t h e  d a t a  base. Spec i f i ca l ly ,  i t  is  poss ib l e  t o  add, d e l e t e ,  o r  modify any 
value of any a t t r i b u t e  l ist  i n  t h e  da t a  using keyboard e n t r i e s  and l igh tpen  
in t e rac t ion .  I n  a s i m i l a r  fashion, i t  i s  a l s o  poss ib le  t o  add o r  d e l e t e  sub- 
s t r u c t u r e s ,  elements and nodes from the  s a m e  d a t a  base. 

Cer ta in  convenience f ea tu res  have been added t o  accelerate t h e  e d i t i n g  
process. For example, a user  wishing t o  make t h e  same changes t o  several d i f -  
f e r e n t  elements can a c t i v a t e  t h e  a t t r i b u t e  l ists  of these  elements by "picking" 
them from the  graphics scope using t h e  l ightpen. Then, using the  keyboard, t h e  
user  can e n t e r  t h e  new value f o r  t h e  p a r t i c u l a r  a t t r i b u t e  he  wishes t o  change. 
The system w i l l  process t h i s  information and ensure t h a t  t h e  change i s  reflec- 
t ed  i n  each of t h e  ac t iva t ed  a t t r i b u t e  lists. 

Another u se fu l  f e a t u r e  is  t h a t  t h e  use r  can search a p a r t ,  o r  a l l ,  of t h e  
d a t a  base f o r  a p a r t i c u l a r  value,  o r  range of values,  and rep lace  them with a 
new one. A f i n a l  example is  t h a t  node po in t s  can be e a s i l y  moved about i n  2-D 
space. This f e a t u r e  is  p a r t i c u l a r l y  he lp fu l  f o r  moving t h e  i n t e r i o r  po in t s  of 
a model. An app l i ca t ion  of t h i s  f e a t u r e  could be t o  improve the  aspec t  r a t i o  
of c e r t a i n  elements i n  a 2-D model. 

GLOBAL Commands 

GLOBAL commands i n i t i a l i z e  f ea tu res  t h a t  are access ib l e  t o  t h e  user  any 
t i m e  during h i s  session. Because these  f e a t u r e s  w i l l  be made ava i l ab le  t o  t h e  
user  i n  o the r  STAGING modules, they w i l l  eventually be included as f e a t u r e s  of 
t h e  Executive Monitor. GLOBAL f e a t u r e s  t h a t  are cu r ren t ly  ava i l ab le  include: 

a. STOP - t h e  s top  opt ion  ends execution of t h e  user  session, The op t ion  
must be "picked" t w i c e  t o  a c t u a l l y  stop. 
t h a t  the, new d a t a  base has no t  been automatically catalogued. 

The f i r s t  "pick" reminds t h e  user  

b. SAVE DATA BASE - t h e  cu r ren t  d a t a  base can be saved i n  one of two 
ways. F i r s t ,  it i s  poss ib l e  t o  overwrite t h e  o r i g i n a l  copy of t h e  da t a  base. 
I n  t h i s  case, t h e  contents of t h e  o ld  f i l e  w i l l  be purged automatically and t h e  
new d a t a  base w i l l  be catalogued with t h e  same f i l e  name. The second option is 
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t o  e n t e r  a new copy of t h e  f i l e  name by en te r ing  a new permanent f i l e  name, o r  
cyc le  number. This new name w i l l  then become t h e  cu r ren t  permanent f i l e  name. 

c. CLOCK - t h i s  f e a t u r e  allows t h e  user  t o  check on how much t i m e  he  has  
l e f t  i n  h i s  cur ren t  session. 

d. STATISTICS - t h i s  feature provides information t o  t h e  user  t o  he lp  him 
t r a c k  t h e  s i z e  of h i s  model. 
be r  of nodes, elements, and subs t ruc tures ,  and t h e  l i m i t  values of t h e  display. 

The information inc ludes  such th ings  as t h e  num- 

e. HELP - t h i s  f e a t u r e  can be used t o  provide f u r t h e r  d e f i n i t i o n  of t h e  
It can a l s o  be used t o  d isp lay  t h e  "pickable" options a v a i l a b l e  t o  t h e  user. 

options a t  t h e  next level up and t h e  next level down i n  t h e  command tree. And 
f i n a l l y ,  t h e  HELP f e a t u r e  can be used t o  d i sp l ay  t h e  h i s t o r y  of "picks" a user  
has made t o  g e t  from t h e  top of t h e  command tree down t o  h i s  cu r ren t  level. 

f .  
b i l i t y  because i t  is  a r e f r e s h  terminal. 
process t h e  cur ren t  d i sp l ay  t o  a s u i t a b l e  hardcopy device. 

HARDCOPY - t h e  CYBER Graphics terminal has no inherent  hardcopy capa- 
Consequently, software i s  provided t o  

g. SKIP - t h i s  command is  intended f o r  experienced users  who know t h e i r  
It allows t h e  user t o  sk ip  up as many l e v e l s  as way around t h e  command tree. 

t h e  user  has t rave led  through. The user  is cautioned t h a t  subroutines normally 
ca l l ed ,  as he progresses through t h e  normal RETURN mechanism, are not c a l l e d  i n  
t h e  SKIP mode. Consequently, t h i s  f e a t u r e  can cause problems f o r  t h e  inexperi-  
enced user  la ter  i n  t h e  session. 

h. COMMENT - t h e  comment log  i s  provided t o  improve communication between 
t h e  program developers and t h e  program users .  Users are encouraged t o  use t h e  
log  t o  a sk  questions,  c r i t i c i z e ,  o r  make general  comments. The comment log i s  
pe r iod ica l ly  reviewed by t h e  program developer and has proved t o  be an effec- 
t i ve  mechanism f o r  debugging, and streamlining, t h e  D&E capab i l i t y .  

i. RETURN - t h i s  op t ion  re-activates t h e  menu f o r  t he  module the  user  w a s  
The only exception i s  

I n  t h i s  case, RETURN must be "picked" and 
working i n  before  a c t i v a t i n g  t h e  GLOBAL command fea tu re .  
when input  i s  r e w i r e d  f o r  type-ins. 
t he  segment re-entered, 

j. Erro r  Recovery - occas iona l ly  an e r r o r  w i l l  occur t h a t  causes the  pro- 

I f  t h e  user  says  yes,  t h e  screen  w i l l  erase 
gram t o  abor t  on the  hos t  computer. 
t h e  user i f  he  wishes t o  continue. 
and con t ro l  w i l l  be t r ans fe r r ed  t o  t h a t  menu from which the abor t  w a s  i n i t i a -  
ted. 

The hos t  w i l l  recover t h e  e r r o r  and ask 

CONCLUDING REMARKS 

The D&E module r ep resen t s  an important f i r s t  s t e p  toward a much more ambi- 
:ious goal,  t h a t  goa l  being t o  i n t e g r a t e  t h e  e n t i r e  spectrum of design and 
ma lys i s  computer programs, while maximizing t h e  u t i l i t y  and e f f i c i ency  of 
:hese same programs. E f f o r t s  w i l l  continue t o  be made t o  streamline the  D&E 
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module and to add new features to it. But even in this unpolished state, user 
reaction has been surprisingly good. This reaction tends to lend Xurther cre- 
dence to the old adage that a picture, in the right place and at the right 
time, is still worth a thousand words. 

The remaining five major STAGING modules are being developed concurrent 
with D&E. It is estimated that, within this calendar year, the six major 
system modules will be integrated to form the first tangible version of 
STAGING. 
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ANALYSIS PROGRAMS 
NASTRAN 

ASOP 

PREPROCESSORS 

qJ 

EDIT & DISPLAY POST PROCESSORS 

Figure  1.- STAGING modules. 

STRUCTURES 
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ELEMENTS 

I 2 3 4  

X = 7.62 m 
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Y = 3.81 m 
Z = 1.90 m 

Fx = 13.34 kN 

Figure 2.- Conceptual view of the d a t a  base ,  
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(a) An 80-percent shrink shows rod eleme 

E- 
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4 

(b) 4-wa3 split screen w i t h  top,  s i d e ,  f r o n t ,  and 
perspect ive  views. 

Figure 3.- Four examples of D&E d i s p l a y  c a p a b i l i t i e s .  
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SOME CONVERGENCE PROPERTIES OF FINITE ELEMENT APPROXIMATIONS OF 

PROBLEMS IN NONLINEAR ELASTICITY WITH MULTI-VALUED SOLUTIONS* 

J. T. Oden 
Texas I n s t i t u t e  f o r  Computational Mechanics 

The Univers i ty  of Texas 

SUMMARY 

Some r e s u l t s  of s t u d i e s  of convergence and accuracy of f i n i t e  element ap- 
proximations of  certain non l inea r  problems encountered i n  f i n i t e  e l a s t i c i t y  
are presented.  A gene ra l  technique f o r  ob ta in ing  e r r o r  bounds is a l s o  de- 
s c r i b e d  toge the r  w i t h  an  e x i s t e n c e  theorem. Numerical r e s u l t s  ob ta ined  by 
so lv ing  a r e p r e s e n t a t i v e  problem are a l s o  included.  

INTRODUCTION 

I n  t h i s  n o t e  I summarize some r e c e n t  r e s u l t s  ob ta ined  on f i n i t e  element 
approximations of c e r t a i n  non l inea r  e l l ipt ic-boundary-value problems i n  f i n i t e  
e l a s t i c i t y .  The r e s u l t s  I quo te  h e r e  are given i n  a more e l a b o r a t e  form else- 
where. I n  r e f e r e n c e  1, Ricardo Nicolau and I repor t ed  some r e s u l t s  on a class 
of problems i n  which b i f u r c a t i o n s  occur .  There we cons ider  cases i n  which, 
f o r  a g iven  set  of e x t e r n a l  f o r c e s ,  no t  only can m u l t i p l e  s o l u t i o n s  occur ,  
b u t  a l o s s  of r e g u l a r i t y  can appa ren t ly  r e s u l t  on c e r t a i n  s o l u t i o n  pa ths .  A 
complete account of t h e s e  r e s u l t s  i s  t o  be publ ished i n  a l e n g t h i e r  ar t ic le .  

The p r i n c i p a l  f e a t u r e s  of t h i s  work are (1) a p r i o r i  e r r o r  estimates and 
proofs  of convergence of f i n i t e  element approximations of h igh ly  nonl inear  
e l a s t i c i t y  problems ( t h e s e  estimates are opt imal)  , (2) e r r o r  estimates f o r  
m u l t i p l e  s o l u t i o n s  of a non l inea r  e l l i p t i c  problem ( t h e s e  estimates are a l s o  
opt imal ,  b u t  t h e  p red ica t ed  bounds are d i f f e r e n t  f o r  d i f f e r e n t  s o l u t i o n  p a t h s ) ,  
(3) a d i scuss ion  of s p e c i f i c  numerical  r e s u l t s  and c e r t a i n  s p e c i a l  problems 
connected wi th  t h e  numerical  a n a l y s i s  of  t h i s  class of problems. 

NOTATION AND PRELIMINARIES 

W e  shall  employ the fo l lowing  n o t a t i o n s  and conventions: 

w = (u,v,w) = displacement  v e c t o r  i n  a material body 13, u,  v, and w be ing  che 
Car t e s i an  components of displacement i n  the material d i r e c t i o n s  
x, Y, z. 

N 

* This  work w a s  supported by t h e  Nat iona l  Science Foundation under Grant ENG- 
75-07846. 
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Vw = grad ien t  of w -- - 
W = s t r a i n  energy p e r  u n i t  volume of t h e  body i n  a r e fe rence  conf igu ra t ion ,  W 

be ing  a n  a p p r o p r i a t e l y  i n v a r i a n t  twice-continuously d i f f e r e n t i a b l e  func- 
t i o n  of Vw. 

Y 

V = V(!,p) = p o t e n t i a l  of t h e  e x t e r n a l  f o r c e s  p e r  u n i t  r e f e r e n c e  volume, p 
being a real loading  parameter.  

C = aw/aVw = stress t e n s o r  E C(w) 

U = , s p a c e  of admiss ib le  displacements  = { w: I (W f V)dXdYdZ < a; w = 0 on 352) 

- - Y Y  

Y -  n -., 
8 6  

(Here 52 is a bounded open set of p a r t i c l e s  composing t h e  i n t e r i o r  of t h e  
body 13 and 8R is  i t s  boundary) 

To i n d i c a t e  va r ious  dependences, w e  a l s o  use  such n o t a t i o n s  as C(w), 
VV(w,p) , etc. 

-.,- - 
The p o t e n t i a l  V(w,p) is  assumed t o  b e  of  t h e  form - 

where pf  i s  a body f o r c e  t e r m  and V (w,p) i s  non l inea r  i n  w. 
n o t a t i o n s ,  w e  a l s o  in t roduce  t h e  ope ra to r  

To s impl i fy  - 0 ,  .., 

Then, formal ly ,  A i s  g iven  by 

avo(w,P> - 
A(w,p) = -DivC(w) - - - aw - 

W e  are concerned wi th  non l inea r  boundary-value problems of t h e  fo l lowing  
type: f i n d  w Lf such t h a t  - 

We are p a r t i c u l a r l y  concerned w i t h  Ga le rk in  approximations of ( 3 ) .  W e  
i n t roduce  a real  parameter h ,  O <  h < 1, which, of course ,  corresponds t o  t h e  
mesh parameter i n  f i n i t e  element approximations , and denote  { Uh) 

fami ly  of f in i te -d imens iona l  subspaces of U such t h a t  (J U is dense i n  u .  
= a  

O<hLl 

O<h<l 

556 



The Galerkin approximation of (3)  t hen  amounts t o  r e so lv ing  t h e  fo l lowing  
problem: f i n d  w Uh such t h a t  -h 

Upon s u b t r a c t i n g  ( 4 )  from (3)  evalua ted  on q = q we o b t a i n  t h e  or tho-  - -hy  g o n a l i t y  condi t ion :  

SOME HYPOTEHSES ON THE STRESS AND POTENTIAL OPERATORS 

I n  many problems i n  f i n i t e  e l a s t i c i t y ,  i t  appears  t o  be  j u s t i f i e d  t o  
make hypotheses of t h e  fol lowing type  concerning t h e  ope ra to r  A and t h e  space  
U :  

I. The ope ra to r  A of (1) maps U i n t o  its t o p o l o g i c a l  d u a l  U'; LI is a 
r e f l e x i v e  Banach space w i t h  norm I Iwl I - U' 

11. The displacemgnt f i e l d  i n  t h e  body correspondi%g t o  a given load  p 
is contained i n  a space  U w i t h  s t r o n g e r  topology than  U, U being  densely and 
cont inuously imbedded i n  U .  

111. The ope ra to r  A is weakly cont inuous;  i .e. i f  ( w  1 is any sequence n 
converging weakly t o  w then  A(wn,p) converges weakly t o  A(w ,p ) .  

-0 .., -0 , 
I V .  The ope ra to r  A i s  coe rc ive ;  i.e. 

V. A s u f f i c i e n t  cond i t ion  t h a t  I1 holds  is t h a t  A b e  a p o t e n t i a l  opera- 
t o r  w i th  a Gateaux d i f f e r e n t i a l  DA such t h a t  (DA(w + O(w - w ) )  * q,w - w ) = 0 
as n + U. 

YO -n -0 -n -0 
f o r  any sequence { w 1 converging weakly t o  w , V q -ll -0 .., 

V I .  A s u f f i c i e n t  cond i t ion  f o r  coerc iveness  i s  t h a t  t h e r e  e x i s t s  a 
cons tan t  1-1 > 0 such t h a t  

(A(~J,P) - A(y2,P), yl - W2') 2 Y o /  - -2 1 1 '  u - 1-I (7) 

where y is a p o s i t i v e  cons t an t  and p > 1. 
0 
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V I I .  There e x i s t  func t ions  B: X U +lR and C: U X +By B weakly con- 
t inuous,  such t h a t  V w ,w ,w < U, -1 -2 -3 

where y is a p o s i t i v e  constant and p > 0. 

Theorem 1 (Existence). L e t  e i t h e r  of t h e  following hold: 

( i )  Conditions I, 111, and I V  above, o r  

( i i )  Conditions I, I V Y  and V, or 

( i i i )  Conditions I, 111, and V I ,  o r  

( i v )  Conditions I, I V Y  and V I .  

Then t h e r e  e x i s t s  a t  least one vec tor  w U t h a t  s a t i s f i e s  (3) f o r  each - p,f E U’.. 

W e  emphasize t h a t  t h e  operator A is not  necessar i ly  monotone. 

FINITE ELEMENT APPROXIMATIONS AND ERROR BOUNDS 

The subspaces U i n  ( 4 )  are assumed t o  be constructed using f i n i t e  ele- 
h 

ment methods. Thus, the  so lu t ion  domain R is pa r t i t i oned  i n t o  E subdomains 
R over which i s  approximated by piecewise polynomials of degree - < k. If 
w - -h 
U 

e . .  
U n U and w is  i t s  p ro jec t ion  i n t o  U h ,  i t  i s  w e l l  known tha t  t he  subspace 

can be designed s o  t h a t  t h e  following hold: 
h 

h being the  mesh parameter and cf a p o s i t i v e  number. 

( i i )  
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I n  (10) and ( l l ) ,  C and C1 are cons tan ts  independent of h. 
0 

W e  proceed t o  determine e r r o r  bounds as follows: 

1. The approximation e r r o r  is e = w - w - - - 

2. 

3. For s u f f i c i e n t l y  s m a l l  h, w e  assume t h a t  

owing t o  t h e  cont inui ty  of B(  ,* ) Thus 

1.1’0 

by v i r t u e  of (10) , wherein B(w) = B(w‘,w). 

4 .  

v Y -  

Combining t h e  r e s u l t  1 wi th  (13 ) ,  w e  see t h a t  as h -f 0, a pos i t i ve  
constant C e x i s t s  such t h a t  2 
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Thus, f o r  s u f f i c i e n t l y  smooth w, 
gence f o r  t h e  non l inea r  problem so l o  

h e  opt imal  -- rate of conver- 

Theorem 2. 
t o  t h e  non l inea r  
approximation of 

L e t  (8),  (9 ) ,  and (13) ho ld  and l e t  t h e r e  e x i s t  s o l u t i o n s  
boundary-value problem ( 3 ) .  L e t  w U b e  a f i n i t e  element 
w i n  a subspace Uh i n  possess ing  p r o p e r t i e s  (10) and (11). 

h h  
-- 

Then t h e  approximation e r r o r  e = w - w s a t i s f i e s  t h e  bound (14) as h -t 0. 
Moreover, i f  V > 0 and w is s u f f i c i e n t l y  smooth, t h e  opt imal  rate of conver- 
gence is  obtain<d f o r  t h e  non l inea r  problem. 

- - -h 

AN EXAMPLE AND NUMERICAL EXPERIMENTS 

The fol lowing example i s  descr ibed  i n  [ l ] :  

where h = 1 + u' (u = u(x ) ,  v = v ( x ) ) ,  E 0 , * * - , E 4 ,  K 
In t h i s  case, 

are cons tan t s ,  and p - > 0, 
0 

"1 
-4 W (I) = Ref lex ive  Sobolev space = { (u ,v)  : (1.' I + Iv' I 4)dx < 03, 

u(0)  = u(L) = v(0 )  = v(L)  = 01. 



The func t ions  B(y,y) and C(z,y) are complicated func t ions  of t h e  c 
nen t s  u and v and are g iven  i n  [l]. In  t h i s  case, t h e  ope ra to r  A is  n o t  mono- 
tone. 

T e s t  problems were so lved  us ing  piecewise linear f i n i t e  element (k = 1). 
The problem does n o t  ve unique s o l u t i o n s  f o r  p p cr ' 
computed s o l u t i o n s  f a r i o u s  va lues  of p f o r  t h e  case 
E2 = 0.8, E3 = 0.5, E 3 
is reached a t  p = 0.5.  

= -0.1, E4 = -0.2, KO = 1.0. Obse 

F igure  2 shows t h e  rate of convergence a c t u a l l y  ob ta  
computed by comparing t h e  s o l u t i o n  f o r  coa r se  meshes wi th  t h a t  obtained f o r  
100 elements.  A s  p red ic t ed ,  t h e  rate of convergence is 

O(h' + h'+') = O(h + h 5'2) = O(h) 
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ELBSTO-PLASTIC IMPACT OF HEMISPHERICAL SHELL 

IMF'ACTING ON HARD RIGID SPHERE 

D. D. Raftopoulos 
Professor of Mechanical Engineering 

The University of Toledo 

A. L. Spicer 
Research Engineer, New Departure-Hyatt 

Division of General Motors Corp. 

ABSTRACT 

This paper extends an analysis of plastic stress waves, originated by G. 
I. T a y l o r  in reference 1, for  cylindrical metallic projectile in impact to an 
analysis of a hemispherical shell suffering plastic deformation during the 
process of impact. In that, it is assumed that the hemispherical shell with a 
prescribed launch velocity impinges a fixed rigid sphere of diameter equal to 
the internal diameter of the shell. Particularly this study is directed in 
order to investigate the dynamic biaxial state of stress present in the shell 
during deformation. 

The results of this analysis are compared with Taylor's reference 1 and it 
has been found that this analysis is an extension of the one-bimensional 
analyses of references 1, 2, 3, and 4, t o  spherical coordhates. 
for studying the state of stress during large plastic-deformation of a hemi- 
spherical shell. 

It is valuable 

INTRODUCTION 

The object of this paper is to develop an analysis of plastic hemispheri- 
cal stress-wave propagation and to use this analysis for determining the 
dynamic biaxial yield stress. 
condition. 
analysis is valid for large deformations. 

The.Tresca yield criteria is used as the yield 
Higher order terms are included in the derivations; thus, this 

G. I. Taylor in reference 1 used the governing physical laws and the 
geometry during plastic deformation of the cylindrical projectile to formulate 
differential equations which are solved in order to determine the dynamic yield 
stress in impact. 
rigid sphere, of diameter equal to the internal diameter of the shell, is 
similar to the analysis of a cylindrical projectile impacting a rigid target of 
references 1, 2, 3,  and 4. 
assumed that when the stress rise exceeds the elastic limit of the material, 

This analysis of a hemispherical shell impacting a fixed 

In fact, in all these cases during impact it is 
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two waves are generated. The first of these is the elastic wave, which travels 
with a velocity c. It is followed by the plastic stress wave which travels 
with a slower velocity v. 
stress waves, a method is formed which can be used to determine the dynamic 
yield stress of the material of a hemispherical shell. 
the time increment, dt, simplifies the analysis greatly. The choice is to make 
the time increment equal to the length of time required for the elastic wave to 
complete a double passage of the elastic zone. If the difference equations are 
derived by utilizing this time increment, which is eliminated by combining the 
derived difference equations, the governing equations which are derived are 
free of this time increment. This mathematical approach, for the biaxial state 
of stress of the hemispherical shell, closely parallels Taylor's analysis of 
the cylindrical projectile. 

Through an analysis of the propagation of these two 

The proper choice of 

AO 
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a 

b 

C 

dh 

dr 

dt 
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NOIYENCLATURF: 

Projection at the elastic-plastic boundary undeformed area at time t 

Projection at the elastic-plastic boundary deformed area at time t + dt 

Initial inside radius 

Initial outside radius 

Elastic wave velocity 

Incremental plastic radius 

Incremental elastic radius 

Time f o r  a double passage of elastic region by elastic wave 

Young's modulus 

Thickness of plastic region at time t 

Initial elastic length of shell in the radial direction = b - a 
Final total length of shell in the radial direction 

Thickness of shell in the elastic zone at time t 

Final thickness of the elastic region 

Dyhamic yield stress - calculated by the approximate method 
Dynamic yield stress - calculated by the exact method 
Time 



U 

U 

V 

Y 

1 E 

E 

P 

V 

I n i t i a l  radial velocity due t o  launch velocity 

Par t ic le  velocity i n  the  

Absolute velocity of the  

Yield stress i n  uniaxial  

I n i t i a l  radial s t r a i n  

Radial s t r a i n  a t  t i m e  t 

Density 

Poisson’s r a t i o  

e l a s t i c  region 

p l a s t i c  wave front  

tension 

ANALYSIS 

Problem Description 

A hemispherical metall ic she l l  s t r i kes  with a prescribed velocity a r ig id  
sphere (of diameter equal t o  the in te rna l  diameter of the s h e l l )  which i s  
permanently fixed a t  a base retaining zero velocity during the  process of 
impact. During t h i s  impact, a r ad ia l  motion i s  directed from the internal  sur- 
face of the she l l  toward the  external surface of the same: The rad ia l  pa r t i c l e  
velocity of the  in te rna l  surface of the  she l l  i s  i n i t i a l l y  the  same as the 
impact velocity and i s  denoted by U, If the b iax ia l  stress exceeds the  e l a s t i c  
l i m i t ,  two waves a re  generated a t  the  in te rna l  surface of the  she l l .  The first 
wave is  the  e l a s t i c  wave which t rave ls  with velocity c. The second i s  the 
p las t ic  wave which t rave ls  w i t h  velocity v. The e l a s t i c  compressive s t r e s s  
wave, which propagates rad ia l ly  outward i n  the e l a s t i c  region w i t h  velocity c ,  
will’reduce the impact velocity U t o  U-(S/pc). 
reaches the elasti’c l i m i t .  This e l a s t i c  wave will r e f l ec t  a t  the external 
surface of the sphere, resul t ing i n  an e l a s t i c  t e n s i l e  wave being superposed on 
the compressive e l a s t i c  wave. 
f lected e l a s t i c  wave i s  s t r e s s  f ree  and has a velocity equal t o  U-(2S/pc). 
the  par t icular  time when t h i s  wave reaches the elast ic-plast ic  boundary, the 

. s h e l l  is  i n  a condition similar t o  the i n i t i a l  impact, except t ha t  i t s  speed 
i s  equal t o  U-(2S/pc) and i t s  e l a s t i c  thickness i s  less  than the  or iginal  value. 
A t  t h i s  time, it is assumed that the  p l a s t i ca l ly  deformed material w i l l  be 
attached t o  the  sphere and ac t s  on the  e l a s t i c  par t  of the shell as a r ig id  
material. This continues u n t i l  the  speed of the she l l  becomes equal t o  zero. 

During this time, the  stress 

The material which has been passed by t h i s  re- 
A t  
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Assutnpt ions 

In order to work out the mathematical analysis of this problem, several 
basic assumptions are needed. 

First, for axially symmetrical analysis, the shell must be symmetric with 
respect to its axis of symmetry and maintain this symmetry during the process 
of impact. The second assumption is that the elastic strain 
This assumption is valid if the plastic strain is large, thu 
tic strain very small in comparison with the plastic strain. 
lines as the previous assumption, the third assumption is that the material is 
taken to be perfectly plastic. Although no material behaves exactly in a 
perfectly plastic manner, some materials approach this type of behavior at high 
strain rates. This dynamic-plastic stress-wave analysis is for extremely high 
strain rates. 
plastic without the l o s s  of 
assumption, which is usual 
of the shell material remains constant. The fifth and final assumption is 
that the material in the plastic region, after being deformed, does not possess 
elastic properties; thus it behaves as a rigid material with zero velocity. 

Along the same 

Thus it is possible to assume that the material is perfectly 
ch generality in the solution. The fourth 
de in plasticity problems, is that the density 

Physical Laws 

By considering the problem description, and assumptions, the governing 
physical laws can be formulated. 

Choose the time increment, dt, to be equal to the time required for a 
complete double passage of the elastic wave through the elastic region. 
the length of material in the elastic zone is defined as r and the elastic wave 
velocity is c, it follows that 

Since 

dt = 2r/c (1) 

where 

1/2 c = {E (1 - v ) /  { p ( l  + v)(l - 2~))) 
dh = v (2r/c) (2) 

dr = -(u + v) (2r/c) ( 3 )  

du = - 2S/(p~) ( 4 )  

Using equation (1) to eliminate c from equations (2), ( 3 ) ,  and (4) results in 

( 5 )  

dr 
dt 
- -  - -(u + v) 
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for conservation of mass 

A v =  ( u + v )  A 
0 

The momentum equation reduces to 

S (A - Ao) = 1 / 2 ( A  + Ao) (u + v)  u P ( 9 )  

The radial strain is defined, at the plastic boundary, by 

E = 1 - A ~ / A  (10) 

Combining equations ( 8 )  , (91 ,  and (10) 

pu2/s = 2 &(2 - E )  (11) 

- -  dr - p u r / @ € )  
du 

Integrating equation (12) 

Log,(r2) = s./. d{c2/(1 - ~/2)1 
= 4 / ( 2  - E) - 2 Log, (1 - ~ / 2 )  + Constant (13) 

At time t = 0 ,  u = U, r = r 
(13) become, respectively 

and E = E ~ ;  thus equation (11) and equation 
0’ 

pu2/s = 2 E2 /(2 - E ) 
1 1 

Loge(r/ro)2 = 4/(2 - E )  - 2 Log, (1 - ~/2) 4/(2 - E ) 
1 

+ 2 Log, (1 - E / 2 )  (15) 
1 

When all motion has ceased, r = R, /and E = 0, and R can be measured. 

Loge(R/r,)2 = 2 - 4/(2 - E ) $. 2 Log (1 - E /2) (16) 
1 e. 1 

Combining equations (51, ( 6 ) ,  (8) and (10) 

h = = -Jrr (1,- E). dr (17) 

0 
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Combining equations (7)  ( 11) , and (14) 

U t / r o  = E 1 (1 - E 1 /2)-1/2SE1r/ro (1 - &/)+)/(I - ~ / 2 ) ~ / 2 d ~  (IS) 
E 

If uniformly spaced values of 
pU2/S vs R / r  can be plotted.  Evaluation of equation (17) fo r  h i s  accomp- 
l i shed  by Simpzon's rule integrat ion.  
p lo t ted  i n  Figure 1. 

a re  placed i n  equations (14)  and (1.61, 

Results of these calculations a r e  

Two d i f fe ren t  methods of integrat ion were employed t o  evaluate the  in te -  
g r a l  equations (17) and (18). The first method used was  a Simpson's rule 
integration. Results fo r  various a re  p lo t ted  i n  Figure 2. 

The second method of  integrat ion w a s  using the  asymptotic expansion of 
t he  integrals .  
power-series expansions. Values obtained by asymptotic expansion agreed w e l l  
with those obtained by Simpson's ru l e  integrat ion.  

References 5 ,  6, and 7 provide information on asymp$otic 

To develop a simple formula f o r  calculat ing the  dynamic y ie ld  s t r e s s  from 
measurements made before and after the  impact, it w i l l  be addi t ional ly  assumed 
t h a t  the  p l a s t i c  boundary propagates at  a constant velocity from the  inside 
radius a t o  i t s  f i n a l  posit ion.  The veloci ty  of the p l a s t i c  boundary equals C.  

Combining equations (6)  and ( 7 )  

- S/(pr(u + c ) )  (19) du 
dr  
- -  

Integrating equation ( 1 9 )  r e su l t s  i n  

s / p  Loge (r/ro) = 1/2u2 + c u - 1 / 2 ~ 2  - c u (20) 

When u = 0, r = R and equation (20) becomes 

S/p Log, ( R / r o )  = - 1/2U2 - C U (21) 

A t  t i m e  t = 0,  u = U. Assuming u decreases t o  zero uniformly with time, 
i n  a t i m e  equal t o  T 

T = ( r  - R ) / C  = 2(r0 - r ) / U  
1 1 

Rearranging C/U = 1/2 ( r  - R ) / ( r o  - r ) 
1 1 

Therefore equation ( 21) becomes 

The f ac t  t h a t  t h e  decrease i n  u i s  not uniform r e s u l t s  i n  an e r ror  which 
can be calculated.  Combining equations ( 3 )  and (20) 
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When a l l  motion has ceased, u = 0, r = R,  and E = 0. 
becomes 

Therefore, equation (21) 

2S/p Log, ( R / r o )  = C2 - (U + C l 2  

Lett ing 
2s/p = a2 
K = (U + C ) / a  
R 1  = r/ro 

tl = a t / r o  

T1 = aT/ ro  

where T i s  t h e  t i m e  from t h e  i n i t i a l  impact u n t i l  t h e  p l a s t i c  zone ve loc i ty  
equals zero 

s o  tha t  1 * 

Lett ing 
Z2 = K2 i- Loge R 1  

K results i n  

-K2 r eZ2 dZ 
T 1 = 2 e  

J 
- C / a  

22 Values of F ( K )  = emK2 e dZ have been tabulated i n  references 5 and 

6. Equation (26) can be expanded using t h i s  function, F(K), t o  give 

Previously it w a s  assumed t h a t  t he  p l a s t i c  boundary moves with a constant 
ve loc i ty  C ,  or 

C T = r l - R  
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or in dimensionless form 

C / a  T1 = rl/ro - R/ro 

Rearranging, equation (24) becomes 

Log, (ro/R) = K2 - (C /a )2  (29) 

Since R / r  and rl/ro can be measured, C l a y  U / a ,  K and T Can be ev&~~,ted 
from equations 927) , (281, (29) , and 

K = U / a  + C / a  (30) 

Combining equations (27) , (28) , and (29) 

r /ro = 2 C/a F(K) - ( 2  C/a F(C/a) - 1) R / r o  (31) 
1 

Since 

2S/pU2 = a2/U2 = 1 / ( K  - C/a)2 
dividing this equation by equation (22) therefore results in 

Due to the complexity of these equations, the correction factor, S/S1, 
To determine S/S1 given R / r o  and rl/ro it is cannot be determined directly. 

easiest to first form the curves of S/S1 vs rl/ro witn contours of equal h/r . 
Values for this curve can be obtained by taking a value of R/r 
C/a which cover the desired range. 
(31) and (32) can be evaluated, 

and values OF 
Therefore, using equation p29) , equations 

The asymptotic expansion of F(K) is 

F(K) = 1/(2K) + 1/(4K3) + 3/(8K5) + 15/(16K7) + ... (33) 

Through some complex manipulations, it can be shown, although it will not 
be presented here, that as C/a -t 

rl/ro -t 1.0 (34)  

and 

S/S1 = 2 {1/(1 - R/ro) - l/(Loge(ro/R))} (35) 
I 

From this equation, the limiting values of S/S1 can be determined as 
rl/ro -t 1.0. 

This completes the analysis of the problem. 
and h are given, the dynamic yield stress can be calculated for the hemispheri- 
cal shell. 

Thus, if values of ro, rl, 
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DISCUSSION AND CONCLUDING REMARKS 

In t h i s  paper, a method i s  developed t o  invest igate  the  propagation of 
p l a s t i c  s t r e s s  waves i n  a hemispherical she l l .  
investigates the  dynamic y i e ld  s t r e s s  due t o  the  impulsive loading i n i t i a t e d  
a t  the in te r face  of t he  she l l .  This mathematical approach, f o r  determining 
the  b i ax ia l  s t a t e  of s t r e s s  of the hemispherical she l l ,  c losely para l le l s  
Taylor's analysis of t he  cyl indrical  p ro jec t i le .  It is  in te res t ing  t o  note 
t h a t  i f  a l l  higher order terms were dropped from t h i s  analysis,  the  r e su l t s  
would be the  same as those of reference 1 except t h a t  t he  components are 
defined d i f fe ren t ly .  Graphs which are drawn from t h i s  analysis i n  Figures 1 
and 2 a re  similar t o  Figures 2 and 3 of reference 1. I n  addition, comparison 
between the  r e su l t s  of t h i s  analysis and the  analysis of reference 1 i s  
possible. In  f a c t ,  when these two analyses a re  compared, one can observe t h a t  
t h e  r e s u l t s  of the  present work pa ra l l e l  the  experimental data more closely 
than the  r e s u l t s  of reference 1. This i s  due t o  the  f ac t  t ha t  one-dimensional 
analysis may not possibly explain the  spreading out of t he  p ro jec t i l e  near the  
ta rge t .  This phenomenon requires taking i n t o  account t he  i n e r t i a  i n  the  r ad ia l  
direction. 

I n  par t icu lar ,  t h i s  study 

The derivation of the  y ie ld  s t r e s s  correction factor  i s  almost i den t i ca l  
with the  r e su l t s  of reference 1 on page 297. 
which were not discussed i n  reference 1. The discont inui t ies  occurred j u s t  
before 'rl/r -+ 1.0. 
t o  those of reference 1. 

Singular i t ies  were observed 

I f  t he  discontinuity i s  ignored, t he  r e su l t s  a re  similar 
0 

A method has been presented by which the  dynamic y ie ld  s t r e s s  can be 
calculated,  using the  Tresca yield c r i t e r i a ,  from the  r ad ia l  expansion of a 
hemispherical she l l .  The approximate y i e ld  s t r e s s  can be calculated from 
equation (22)  , i f  the  i n i t i a l  conditions, f i n a l  conditions, U, and p a re  
specified.  
Thus, the  dynamic y i e ld  s t r e s s  can be determined i f  cer ta in  i n i t i a l  and f i n a l  
experimental conditions a re  specif ied,  including the  launch velocity,  density, 
and geometrical considerations of t he  s h e l l .  
boundary, as shown i n  Figure 2, i s  s i m i l a r  t o  t he  results obtained i n  Figure 4 
of reference 8. 
many of t h e  differences between the  shape of t h e i r  curve and of Figure 2. 

The dynamic y ie ld  s t r e s s  could also be calculated from Figure 1. 

The motion of t he  P las t ic  

Their choice of coordinates is  d i f fe rey t ,  which accounts for  

571 



REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Taylor, G. I., "The Use of Flat-ended Projectiles for Determining Dynamic 
Yield Stress", I: Theoretical Considerations, Proceedings of the 
Royal Society, London, England, Series A., Vol. 194. 

Raftopoulos, D. and Davids N., "Elasto-Plastic Impact on Rigid Targets" 
AIM Journal, July 5, 1967, pp. 2254-2260. 

Raftopoulos, D. "Longitudinal Impact of Two Mutually Plastically-Deformable 
Missiles", Int. Journal of Solids and Structures - Vol. 5, No. 4, 
pp. 399-412, 1969. 

Raftopoulos, D. and Al-Salihi, M. "Direct Analysis of Elasto-Plastic Wave 
Interaction in Impact", Proceeding of the 11th Midwstern Mechanics 
Conference, V O ~ .  5, 1969. 

Jeffreys, Harold and Jeffreys, Bertha Swirles, Methods of Mathematical 
Physics, University Press, Cambridge, 1950, pp. 498-528. 

Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical 
Tables, edited by Milton Abramowitz and Irene A. Stegun, United 
States Department of Commerce, 1964, pp. 319-320. 

Wosow, Wolfgang, Asymptotic Exp ansions for Ordinary Differential Equations , 
New York - John Wiley & Sons, Inc. , 1965, p. 31. 

Davids, N., Mehta, P. K., and Johnson, 0. T., "Spherical Elasto-Plastic 
Waves in Materials". 
Dynmic Loading", ASME Winter Annual Meeting, Chicago, November 9, 
1965, pp. 125-137. 

Colloquium on "Behavior of Materials Under 

572 



5 73 





LARGE DEFLECTIONS OF A SHALLOW CONICAL MEMBRANE 

Wen-Hu Chang and John Peddieson, Jr. 
Tennessee Technological University 

SUMMARY 

This work is concerned with large def lect ions of a shallow elastit! conical 
membrane fixed a t  t he  outer edge and loaded by e i t h e r  uniform or hydrostatic 
pressure. 
t o t i c  expansions and by a f ini te-difference method. 
methods w a s  excel lent  f o r  t he  s m a l l  values of t h e  perturbation parameter. 

The governing equations were solved by the  method of matched asymp-. 
Agreement between the two 

INTRODUCTION 

This paper is  concerned with the  moderately la rge  axisymmetric deformation 
of a shallow. e l a s t i c  conical membrane. 
invest igate  the  application of the method of matched asymptotic expansions (see 
Van Dyke, reference 1) t o  the  solut ion of membrane-shell problems involving 
large deflections.  
small loads the  l i n e a r  membrane solut ion is  a good approximation t o  the  actual 
solut ion everywhere except i n  the immediate v i c in i ty  of boundaries. In  these 
regions t h i n  boundary layers  exist: where the var iables  unGergo rapid changes t o  
accommodate themselves t o  the  boundary conditions t h a t  cannot be s a t i s f i e d  by 
the  l i n e a r  membrane solution. In  the  method of matched asymptotic expansions 
separate perturbation expansions me found i n  the  i n t e r i o r  and boundary-layer 
regions and matched i n  an appropriate way t o  insure t h a t  they jo in  smoothly. 

The purpose of t h i s  work is  t o  fur ther  

The success of t h i s  method is based on the  fact t h a t  for 

Bromberg and Stoker ( r e f .  2 )  i n i t i a t e d  t h i s  type of analysis of membrane 
s h e l l s  when they found one term of both the  i n t e r i o r  and boundary-layer expan- 
sions f o r  a uniformly pressurized shallow spherical  she l l .  The next two terms 
i n  the  i n t e r i o r  and boundary-layer expansions were found by Smith, Peddieson, 
and Chung ( re f .  3 )  and used by them t o  invest igate  the  accuracy of f i n i t e -  
difference solut ions of the  same problem. 
layer  expansions f o r  deep membranes of a rb i t r a ry  shape 
Rossettos ( r e f .  4) .  
l i s t e d  i n  reference 4. 

One t e r m  of t he  i n t e r i o r  andboundary- 
has been given by 

This work generalizes the r e s u l t s  given i n  t he  references 

I n  the  present paper’ th ree  terms of the i n t e r i o r  and boundary-layer expan- 

If i s  found tba? complications arise which do 
sions are found for the  case of a shallow conical membrane loaded by e i t h e r  
uniform OF hydrostat ic  pressure. 
not appear i n  the  so lu t ion  of the  corresponding sphere problem. 
method is  modified somewhat t o  account for t h i s .  
sented t o  i l lus t ra te  some of the  in t e re s t ing  features of the solution. 

The solut ion 
Numerical r e s u l t s  are pre- 
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GOVERNING EQUATIONS 

Consider a shallow conical membrane (opening upward) with base radius  a,  
thickness h ,  and i n i t i a l  angle @o with the horizontal  made of a l i n e a r l y e l a s t i c  
material with modulus of e l a s t i c i t y  E and Poisson's r a t i o  v. The equations gov- 
erning moderately large axisymmetric def lect ions of such a s t ruc ture  can be 
obtained from t h e  work of Reissner ( re f .  5 ) .  
dimensionless form) 

?he resu l t ing  equations are ( i n  

where ar is  the r a d i a l  coordinate, V0a$/@, is a stress function (Vo being a 
cha rac t e r i s t i c  v e r t i c a l  force r e su l t an t ) ,  VoV is the v e r t i c a l  force r e su l t an t ,  
VoNp/$o i s  the r a d i a l  stress re su l t an t ,  VoN~/$, i s  the  transverse stress resul-  
t a n t ,  E is a load parameter, 
the vept ica l  displacement, $ o ~ 2 B  is  the ro t a t ion ,  and a prime denotes differen- 
t i a t i o n  with respect t o  r. 

is the  horizontal  displacement, a@os2w is 

In the present paper a uniform pressure po and a hydrostat ic  loading 
Yo@oa(l-r) are considered. I t  can be shown by 
librium of the membrane centered on the vertex 

v = r / 2  - j r2 /3  

where j 0 f o r  the uniform pressure and j = 1 
The cha rac t e r i s t i c  v e r t i c a l  force resu l tan t  is  

The load parameter E is defined t o  be 

considering the v e r t i c a l  equi- 
and having radius r t h a t  

f o r  the  hydrostat ic  pressure. 
given by 

In  the  present work it is desired t o  solve equations (1) subject  t o  the 
boundary conditions 

u(1)  = w(1) = 0 (5)  

Special  a t ten t ion  w i l l  be given t o  s i tua t ions  where E << 1. 
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STRAIGHTFORWARD SOLUTION 

To begin the so lu t ion  process a straightforward perturbation 
equations (1) is sought for E << 1. 
equations ( l a )  and (lb) t o  y ie ld  

To do t h i s  it is convenient t o  rearrange 

E ~ ( * T '  + q ' / r  - Q/r2) - (1 - ( r ~ / ~ / . ~ ) 2 > / ( 2 r )  = o 

B = (rv/* - L ) / E ~  ( 6 )  

A straightforward perturbation solut ion f o r  E << 1 has the form 

where the  subscr ipt  s indic'ates t he  straightforward solution. Subst i tut ing 
equation ( 7 )  i n t o  equation ( 6 a ) ,  expanding for E << 1, s e t t i n g  the coeff ic ient  
of each power of E equal t o  zero i n  the  usual way, and solving the  r e su l t i ng  
algebvai c e quat ions y ie Ids 

% ( r 2 / 2  - j r 3 / 3 )  + ~ 2 ( r 2 / 2  - j r 3 / 3 > ( 3 r / 2  
$S 

- 8 j r 2 / 3 )  + d + ( r 2 / 2  - j r3 /3 ) (75 r2 /8  

- j (79r3 /2  - 32r4 ) )  + . . ( 8 )  

From equations (1) and (6b) it can then be shown t h a t  

Nrs 'L ( r / 2  - j r 2 / 3 )  + ~ ~ ( r / 2  - j r 2 / 3 ) ( 3 r / 2  

- 8 j r 2 / 3 )  + ~ ~ ( r / 2  - j r2 /3 ) (75 r2 /8  

- j (79 r3 /2  - 32r4 ) )  + . . . 
+ (r - j r 2 )  + ~ ~ ( 9 r ' / 4  - j (22 r3 /3  - 40r4/9) )  

+ C4(75r3/4 - j(915r'/8 - 175r  

f 224r6/3))  + . . . 

0s 
5 

BS - (3 r /2  - 8 j r 2 / 3 )  - E2(57r2/8 

- j (63 r3 /2  - 224r4/9))  + . . . 
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w 'L -3(r - 1) /4  + j 8 ( r 3  - 1)/9 - tz2(19(r3 - 1 ) / 8  S 

- j(63(r4 - 1)/8 - 224(r4  - 1)/45))  + . . . (9)  

where equation (5b) has been used t o  determine the  constants of i n t  
equation (9c). By comparison with the r e s u l t s  given i n  Kraus 
be seen t h a t  t he  first term i n  each series expansion is the 1 
solution. 
(9e) are due t o  the  second term i n  equation (8).  
0(c2) it is necessary t o  f ind  9, t o  O b 4 ) .  
by equation (5a) cannot be s a t i s f i e d  by equation (9d). 
expansion is needed i n  the v i c i n i t y  of r = 1. 

I t  should a l so  be noted t h a t  t he  first terms i n  equations (9d) and 
Thus t o  obtain Bs and ws t o  

Thus a boundary-layer 
The boundary condition represented 

BOUNDARY-LAYER SOLUTION 

There are several ways t o  carry out the  boundary-layer analysis i n  t h i s  
problem. One is t o  work i n  terms of the  o r ig ina l  stress function +. If t h i s  
is  done the  d i f f e r e n t i a l  equation f o r  the first boundary-layer approximation 
turns  out t o  be nonlinear. 
l i n e a r  equation could be obtained i n  the first approximation f o r  a spherical  
membixaae by a method which is equivalent t o  working with a dependent var iable  
which is the  difference between the  actual  and the  l i nea r  stress functions. 
This w a s  t r i e d  i n  the present problem but matching d i f f i c u l t i e s  wereencountered. 
These were due t o  the f a c t  t h a t  equations ( 8 )  and (9)  do not terminate with one 
term f o r  the  cone as the  corresponding straightforward expansions do fo r  a 
sphere. I t  w a s ,  therefore ,  decided t o  use the  difference between the  ac tua l  
stress function and the  s t ra ightfornard stress function as the dependent vari-  
able. 
be zero. 

Bromberg and Stoker ( r e f .  2 )  discovered t h a t  a 

This guarantees t h a t  the  outer expansion f o r  t h i s  dependent var iable  w i l l  
Thus it is necessary t o  f ind only the inner expansion. 

Subst i tut ing 

@ = 9, + $b (10) 

(where t h e  subscr ipt  b denotes the boundary-layer solut ion)  i n t o  equation 
(61, defining the  boundary-layer variables F and 6 by the equations 

= EF, r = 1 - €6, 

expanding F as 

and carrying out the usual perturbation analysis  y ie lds  
.. 
F,, - S2Fo = 0 

and two other  equations governing F1 and F where 2 
% S = (6/(3 - 2 j ) )  
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13 = Bs + Bb/E, u = u + l”b, w = ws + Wb (15) 

Now expand as follows 

” A b o  + E%1 + E2%2 + * . (16) 

where Ab is  any one of the  boundary-layer variables.  
(101, (11) , (121, (15 , and (16) i n t o  equations (1) expanding fo r  E << 1, and 
equating the  coef f ic ien ts  of l i k e  powers of 

Subst i tut ing equations 

E t o  zero one obtains 

= -s2F 
0 ’  ’bo 0 

= -F - 
Nrbo - Fo’ Nebo 

and two s i m i l a r  sets of equations r e l a t ing  Abl and A 
s i m i l a r  procedure applied t o  equation (5a) leads t o  boundary condition 

t o  Fo ,  F1, and F,. A 

F,(o) = 1 - j - ( 1 / 2  - j /3)v (18) 

and boundary conditions f o r  I?,(O) and ?,(O). 

To i l l u s t r a t e  the  solut ion procedure the first approximation w i l l  now be 
carr ied out i n  de t a i l .  The solut ion of equation (13) is  eas i ly  seen t o  be 

F, = c 1 exp(S5) + c2 exp(-SS) (19) 

Since the  outer expansion has been forced t o  vanish because of equation (10) 
the  matching process (see Van Dyke, reference 1) i s  equivalent i n  t h i s  case t o  
a statement t h a t  pos i t ive  exponential terms must vanish. Thus 

c = o  1 

Subst i tut ing equations ( 1 9 )  ani! (20) i n t o  equation (18) yie lds  

Thus 

Fo = -(1 - j -(l/2 - j/3)v)exp(-Sf)/S (22) 

Subst i tut ing equation (22) i n t o  equations (17) one obtains 

Nrbo = -(I - j - ( U p  - j / 3 ) v ) e x p ( - ~ < ) / ~  

Neb0 - (1 - j - (1 /2  - j / 3 ) v ) e x p ( - ~ ~ )  - 
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ub0 = -(1 - j - (1 /2  - j/3)v)exp(-S<) 

w = -(1 - j - (1/2 - j / 3 ) v ) ( l  - exp(-SS)) (23) 

The r e s u l t s  f o r  higher approximations are found i n  a similar way but  the  calcu- 
l a t ions  are qui te  lengthy. 

bo 

For t he  sake of brevi ty  t h i s  work is omitted. 

To f ind the  complete so lu t ion  t h e  boundary-layer expansions must be added 
t o  the  corresponding straightforward expansions. 
these express: ~ o n s  are 

The f irst  approximations t o  

$, = r 2 / 2  - jr.3/3 - ~ ( 1  - j - (1/2 - j / 3 ) v ) e x p ( - ~ ( 1  - r ) / E ) / S  

= r / 2  - j r2 /3  - ~ ( 1  - j - (1/2 - j / 3 ) v ) e x p ( - ~ ( 1  - r ) / E ) / S  N r o  
N~~ = r - j r 2  t (1 - j - (1/2 - j / 3 ) v ) e x p ( - ~ ( l  - r ) / E )  

B O  = (1 - j - (1/2 - j /3)v)S exp(-S(1 - r ) / E ) / E  

= (1 - v/2)r2 - j ( 1  - v/3)r3 - (1 - j u 
0 

- (1/2 - j/3)v)exp(-S(1 - T I / & )  

w = 3 ( 1  - r 2 ) / 4  - 8 j ( l  - r3)/9 - (1 - j 
0 

- (1/2 - - j / 3 ) v ) ( ~  - exp(-S(l - r ) / E ) )  (24) 

In wri t ing equations (24) the  boundary-layer solut ion w a s  t rea ted  as the  funda- 
mental expansion. A l l  terms i n  the straightforwardexpansion with magnitude 
equal t o  or grea ter  than the  first term i n  the boundary-layer expansion were 
added t o  t h i s  t e r m  t o  form the  first approximation. 
t o  obtain the second and t h i r d  approximations. 

The same method w a s  used 

RESULTS AND DISCUSSION 

Numerical r e s u l t s  were computed f o r  t he  first, second, and t h i r d  approxi- 
mations t o  the var iables  $, N p ,  N e ,  8 ,  u, and w. These calculat ions were made 
f o r  a var ie ty  of values of the  load parameter E and Poisson's r a t i o  v. To 
evaluate the  accuracy of t h e  perturbation method, selected cases were compared 
with numerical solut ions t o  equation (6a) obtained by the  f ini te-difference 
method discussed by Smith, Peddieson, and Chung ( r e f .  3 ) .  It  w a s  found t h a t  
the  t h i r d  approximation t o  the  perturbation solut ion agreed with the  f i n i t e -  
difference r e s u l t s  up t o  E = 0.1. 
values of 
s t e p  s i z e  must be used near t he  edge and the  optimum arrangement of s t ep  s i z e s  
can only be approached by t r i a l  and error .  
the present work are much eas ie r  t o  use for E << 1. 

It should be pointed out t h a t  f o r  s m a l l  
E , ~  the  numerical method is d i f f i c u l t  t o  apply because a var iable  

The exp l i c i t  formulas obtained i n  
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To i l l u s t r a t e  t he  behavior of the  solut ion some of the  computed r e s u l t s  
are shorwn i n  f igures  I. -- 4. For the  sake of brev i ty ,  da ta  are presented 
fo r  only the  r a d i a l  stress resu l tan t  Nr, the  transverse stress re su l t an t  Ne, 
and the v e r t i c a l  def lect ion w. The s o l i d  l i nes  represent the  three-term per- 
turbat ion solut ion while the dashed l i n e s  represent t he  l i n e a r  membrane solu- 
t ion.  
from the perturbation solut ion.  

The l i nea r  membrane solut ion is shown only when it d i f f e r s  s ign i f icant ly  

Figures 1 and 2 present r e s u l t s  for uniform pressurizat ion (j = 0) .  
Figure 1 shows 
while Nr does not exhib i t  boundary-layer behavior. A s  E increases the  bound- 
a r y  layers  become wider f o r  a l l  variables.  
Figures 3 and 4 contain r e s u l t s  €or hydrostat ic  loading ( j  = 1). The para- 
metric t rends i l l u s t r a t e d  by these r e s u l t s  are  iden t i ca l  t o  those discussed 
above but t he  behavior of t he  solut ion variables is  more complicated. 
r e s u l t s  i l l u s t r a t e  t he  u t i l i t y  of the perturbation method. 
t i ons  of t h i s  type can be represented numerically only if extreme care is  used. 

t h a t  t h i n  boundary layers  e x i s t  f o r  Ne and w f o r  E = 0.01 

This is i l l u s t r a t e d  by f igure  2, 

These 
Complicated func- 

Results were also computed f o r  several  other values of v .  It w a s  found 
t h a t  the  qua l i ta t ive  behavior of the solut ion is not  s ign i f icant ly  influenced 
by t h i s  parameter. 

CONCLUSION 

In  t h i s  paper, the  ro ta t iona l ly  symmetric moderately large deformation of 
a l i nea r ly  e l a s t i c  shallow conical membrane subjected t o  e i t h e r  uniform or 
hydrostatic pressure w a s  investigated.  A s ingle  d i f f e r e n t i a l  equation having 
a stress function as dependent var iable  w a s  solved by the  method of matched 
asymptotic expansions. The accuracy of the  solut ion was ve r i f i ed  by compari- 
son with a f ini te-difference numerical solut ion of t h e  governing equation for 
the  stress function. Selected r e s u l t s  were presented graphically t o  i l l u s t r a t e  
in te res t ing  features  of t he  solut ions.  
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A PLANE STRAIN ANALYSIS OF THE BLUNTED CRACK TIP USING 

SMALL STRAIN DEFORMATION PLASTICITY THEORY* 

J. J. McGowan and C. W. Smith 
Virg in ia  Polytechnic I n s t i t u t e  and S t a t e  University 

SUMMARY 

This paper presents  a deformation p l a s t i c i t y  a n a l y s i s  of t h e  t i p  region 
of a blunted crack i n  plane s t r a i n .  
s i b l e  both e l a s t i c a l l y  and p l a s t i c a l l y ,  i n  order t o  simulate behavior of a 
stress f reez ing  material above c r i t i c a l  temperature. 
f u l l  f i e l d ,  f i n i t e  d i f f e rence  so lu t ion  t o  t h e  Mode I problem. S t r e s s  and d i s -  
placement f i e l d s  surrounding t h e  c rack  t i p  are presented. The r e s u l t s  of t h i s  
study ind ica t e  t h a t  t h e  maximum stress seen a t  t h e  crack t i p  i s  indeed l imi ted  
and i s  determined by t h e  t e n s i l e  p rope r t i e s ;  however, t h e  s c a l e  over which t h e  
stresses act i s  dependent on t h e  loading. 
forward crack t i p  displacement and micro-fractographic measurements of 

The power hardening material is  incompres- 

The study represents  a 

Comparisons are good between the  

s t r e t ch"  zones observed i n  plane s t r a i n  f r a c t u r e  toughness tests. I I  

INTRODUCTION 

I n  recent  years  Cherepanov ( r e f .  l), Rice ( r e f .  2 ,3) ,  Hutchinson ( r e f .  4 ,  
5) ,  and R i c e  and Rosengren ( r e f .  6)  have shown t h e  asymptotic behavior of 
stress and s t r a i n  f i e l d s  surrounding sharp crack t i p s  i n  plane s t r a i n .  Using 
these  s t u d i e s  as a guide, f u l l  f i e l d  so lu t ions  with f i n i t e  elements have been 
obtained by Levy, Marcal, Ostergren and R i c e  ( r e f .  7) and Hilton and Hutchinson 
( r e f .  8 ) .  These two s t u d i e s  g ive  accura te  near and f a r  f i e l d  behavior due t o  
t h e  inc lus ion  o€ s ingular  elements r e f l e c t i n g  p l a s t i c i t y  a t  t h e  crack t i p .  
Other numerical so lu t ions  by Marcal and King ( re f .  9 ) ,  Mendelson ( r e f .  lo), 
Swedlow and coworkers ( r e f .  11,12) and Tuba ( re f .  13) show q u a l i t a t i v e  f e a t u r e s  
of t he  near f i e l d ,  bu t  may not  y i e ld  accura te  stress f i e l d  d e f i n i t i o n  due t o  
the  l a r g e  g rad ien t s  there .  

In order t o  have an accura te  desc r ip t ion  of t h e  near f i e l d  surrounding 
crack t i p s ,  and hence a good understanding of t h e  mechanisms of f a i l u r e ,  
Rice and Johnson ( r e f .  14) have pointed ou t  t h a t  c rack  t i p  b lunt ing  must a l s o  
b e  included. Their ana lys i s  accounted i n  an  approximate manner f o r  t h e  
blunting a t  t h e  crack t i p  and f o r  s t r a i n  hardening i n  t h e  p l a s t i c  zone. A s  a 
re su l t  they showed t h a t  t h e  stresses near t h e  crack t i p  are indeed f i n i t e  and 
that the  maximum oyy 
:rack t i p .  A f i n i t e  deformation ana lys i s  by McGowan and Smith ( r e f .  15) of 
3lunted cracks i n  a linear ( s t r e s s - s t r a in )  incompressible material shows t h e  
same general  behavior. 
:rack t i p  and t h e  magnitude i s  independent of t he  remote loading. 

stress occurred a t  some s m a l l  d i s t ance  from the  deformed 

The maximum oyy stress occurs i n  f r o n t  of t he  blunted 

CThis work w a s  supported by t h e  National Science Foundation Engineering 
Mechanics Program under Grant No. GK-39922 
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The purpose of the present study is to gain a full field solution around 
a blunted crack tip in a strain hardening incompressible material under Mode I 
loading. This work will provide an accurate description of the stress and de- 
formation fields immediately surrounding the blunted tip, and thereby gain 
insight to fracture behavior. 
yield condition is used. The resulting set of equations is solved for the 
blunted crack tip in the deformed state under load by finite differences. 
The linear theory of Inglis (ref. 16) gives the necessary asymptotic boundary 
conditions. 

Deformation theory of plasticity with a Mises 

An initial goal of the present study was to gain a more complete under- 
standing of the near field behavior of stress freezing photoelastic materials 
above critical temperature; however, this study should also give considerable 
insight to the general behavior of engineering materials under Mode I loading. 

SYMBOLS 

C 

E 

K 

n 

r,@ 

T 

U i 

U 

X 

Y 

ij 
E 

(V" 

-. 

One-half crack length 

Young's Modulus 

Stress intensity factor 

Strain hardening exponent 

Cylindrical coordinates measured from 
crack tip 

Secant modulus = 

Displacement vector 

Strain energy density 

Distance in front of deformed crack 
tip 

Distance perpendicular to deformed 
crack tip 

Strain tensor 

E 
0 

E 
P 

T E 

P 

V 

' ij 
YY 
0 

'e 

'0 

@ 

a 

Initial yield strain 

Effective plastic strain 

Effective total strain = 
E + 5e/E 
Deformed crack root radiur 
P 

Poisson's ratio 

Stress tensor 

Hoop stress 

Effective stress 

Tensile yield stress 

Airy stress function 

Constant in eq. (2) 

FORMULATION OF THE PROBLEM 

Using small strain deformation theory of plasticity for an incompressible 
112) material the governing equation for the field can be shown to be: 

I 1 
T (@,2222 + @,I111 2@,1122 + 2(T),l(@,lll + @,122) 
- 
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1 
+ 4 (TIyl2 @,12 = 0 

(The d e t a i l s  of t h i s  a n a l y s i s  are given i n  
For t h i s  study a Ramberg-Osgood material w 

1 
w , 2 2  - 

r e f .  17) 
11 be usel 

- oo/oeI E (1-n) /n o r  - = 1 + ba[(oe/ao) T 

where b = 0 i f  o < o e 0 

b = l i f c s e > o o  - . 

1 
(TI ,111 

Thus t h e  governing equation (1) w i l l  be solved sub jec t  t o  t h e  c o n s t i t u t i v e  
l a w s  (eq. (2 ) ) .  

The -geometry of t h e  blunted cracks i n  t h e  deformed s ta te  under Mode I 
loading w i l l  resemble s m a l l  e l l i p t i c a l  per fora t ions  as shown i n  f i g u r e  1. 
The s i z e  of t h e  deformed crack t i p  r o o t  r ad ius  w i l l  be determined through 
in t eg ra t ion  of t h e  s t r a i n  displacement r e l a t ionsh ips  

u + u = 2.E.. 
i , j  j , i  1J 

The a f f ec t ed  s t r a i n  hardening region w i l l  be divided i n t o  a small g r i d  
u t i l i z i n g  e l l i p t i c a l  coordinates and the  governing set of equations w i l l  be 
solved through t h e  method of f i n i t e  d i f fe rences .  A t  some d i s t ance  from the  
deformed crack t i p  t h e  l i n e a r  so lu t ion  of I n g l i s  ( r e f .  16) w i l l  apply. The 
stress a t  t h e  outer  boundary of t h e  inner  s t r a i n  hardening region w i l l  be then 
matched t o  t h e  I n g l i s  so lu t ion .  
t he re  i s  no change i n  t h e  inner  stress f i e l d .  
so lu t ion  procedure i s  given i n  r e f .  18.) 

The ou te r  boundary w i l l  be enlarged u n t i l  
(A d e t a i l e d  desc r ip t ion  of t h e  

PRESENTATION OF RESULTS 

The stress and displacement f i e l d s  i n  t h e  f i e l d  surrounding a deformed 
crack t i p  i n  a s t r a i n  hardening material which is incompressible i n  both t h e  
e l a s t i c  and p las t ic  regions are examined. S t r a i n  hardening exponents of 0.2 
through 0.01 are presented. 
0.01 through 0.0001. 
r e l a t ionsh ip ,  equation (2),  i s  taken t o  be 1.0 i n  t h i s  study. (The authors 
have found t h a t  small changes i n  a and v do not in f luence  t h e  so lu t ion  s i g n i f i -  
cantly.)  The "linear" r e s u l t s  reported here  are those  of I n g l i s  ( r e f .  16) f o r  
a deformed crack t i p  i n  a l i n e a r  material. 
corresponding t o  a crack which has no r o o t  r ad ius  i n  a l i n e a r  material. 

The range of i n i t i a l  y i e l d  s t r a i n  va lues  i s  from 
The va lue  of a i n  t h e  e f f e c t i v e  s t r e s s -e f f ec t ive  s t r a i n  

The "singular" r e s u l t s  are those 

The p l a s t i c  zone shape f o r  t h e  smallest e l l i p s e  inves t iga ted  (p = 0.0018 
(K/o ) 2  ) is shown i n  f i g u r e  2. Note t h a t  with decreasing hardening (n + 0) 

0 
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the  p l a s t i c  zone grows i n  maximum ex ten t  and l eans  progressively i n  t h e  direc- 
t i o n  of crack propagation. 
McClintock and Irwin ( r e f .  19) and t h a t  of Levy e t  a1 ( r e f .  7) f o r  a non- 
hardening (n = 0) material are a l s o  shown. A s  shown by f i g u r e  2 ,  t h e  p l a s t i c  
zone shape predicted by McClintock and Irwin ( r e f .  19) i s  approached by the  
present study as n -t 0 0 .  The d i f f e rence  between t h e  p l a s t i c  zone shape pre- 
d ic ted  by Levy e t  a1 ( r e f .  7) and the  present study f o r  n = 0.01 is  pr imar i ly  
due t o  the  inc lus ion  of b lunt ing  e f f e c t s  and use of v of 0.5 i n  t h e  lat ter;  
the  d i f f e rence  should be neg l ig ib l e  as E -t 0. 

For comparison, t h e  s ingular  p l a s t i c  zone from 

0 

The e f f e c t i v e  stress Q is shown versus t h e  d i s t ance  ahead of t h e  de- e formed crack t i p  i n  f i g u r e  3.  This f i g u r e  shows t h a t  t h e  e f f e c t i v e  stress 
v a r i e s  as (rn/n+l)-l  i n  the  p l a s t i c  zone ahead of the  t i p .  
o ther  values of 8 i s  s i m i l a r ) .  It can be shown t h a t  t h e  s t r a i n  energy has t h e  

(The behavior f o r  

( l + d  /n 
form : 

2 a b [ [:] - l] f o r  a power hardening material 
0 
0 

Therefore, t he  s t r a i n  energy v a r i e s  approximately as l / r  i n  the  p l a s t i c  zone. 
This w a s  a key assumption i n  t h e  ana lys i s  of R i c e  and Rosengren ( r e f .  6) and 
Hutchinson ( r e f .  4 ) .  

The 0 stress i n  f r o n t  of t he  crack t i p  is  shown f o r  various values of 
A s  shown i n  t h i s  f i gu re ,  t h i s  stress YY y i e ld  s t r a i n  f o r  n = 0.01 i n  f i g u r e  4 .  

i s  s u b s t a n t i a l l y  reduced near t h e  crack t i p  because of blunting and s t r a i n  
hardening, with the  maximum value developed a t  some d i s t ance  forward of t he  
crack t i p .  

t a t i v e  behavior; t h e  c o r r e l a t i o n  i s  believed t o  be q u i t e  reasonable i n  view 
of the  seve ra l  approximations involved. For a non-hardening material Rice 
( r e f .  2) has shown t h a t  t h e  maximum oyy stress is  2.97 o0. This stress, as 
predicted by Levy e t  a1 ( r e f .  7) ,  approaches t h i s  l i m i t  a t  t h e  crack t i p  as 
shown i n  f i g u r e  4 .  
f i g u r e  r e f l e c t s  t he  presence of b lunt ing  and should coincide with t h e  work of 
Levy e t  a1 ( r e f .  7) as -+ 0 .  

stress d i s t r i b u t i o n s  f o r  o ther  values of n i s  q u i t e  
analogous.) of Rice and Johnson ( r e f .  1 4 )  gives the  same quali-  

The oyy stress d i s t r i b u t i o n  of t he  present study i n  t h i s  

Figure 5 shows t h e  v a r i a t i o n  of maximum ayy stress with i n i t i a l  y i e ld  
A s  shown i n  t h e  f igu re ,  blunting alone ( the  s t r a i n  f o r  varying hardening. 

" l inear"  curve) fo rces  the  peak 
f i n i t e  deformations ( r e f .  15) reduces t h e  magnitude somewhat. However, the  
e f f e c t s  of blunting and p l a s t i c i t y  taken together are s i g n i f i c a n t :  

stress is reduced by a f a c t o r  of 10  from t h a t  with blunting alone. 
f i g u r e  5, one observes t h e  peak 
and ao/E. The peak ayy 
l a r g e  value of peak oyy 
believed due t o  t h e  presence of t r i a x i a l i t y  i n  t h e  crack t i p  region.) 

oyy stress t o  be f i n i t e  and t h e  inc lus ion  of 

t h e  peak 
From 

t o  70  depending upon n 
stress increases  with n and decreases with ao/E. (The 
stress compared t o  t h e  un iax ia l  y i e ld  stress, cro, is  

"YY ayy stress t o  be 30 
0 0 

The crack t i p  displacement i n  the  d i r e c t i o n  of propagation (which is  a l s o  

The present  study p red ic t s  t h a t  t h e  for -  
t he  deformed crack r o o t  rad ius ,  p )  is  shown i n  f i g u r e  6 f o r  varying i n i t i a l  
y i e l d  s t r a i n  and hardening exponent. 
ward crack t i p  displacement increases  with oo/E and decreases with n. For 
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comparison one-half t h e  crack t i p  opening displacement ca lcu la ted  by Levy ( r e f .  
7) is shown. 
study and t h e  work of Levy et  a1 ( r e f .  7) show p a r a l l e l  behavior, although they 
are separated by some d is tance .  This disagreement is  believed due t o  t h e  shape 
of t he  crack t i p  being e l l i p t i c a l  i n  t h e  present study ins tead  of cy l ind r i ca l .  

The forward crack t i p  displacement as predicted by the  present 

Included a l s o  on f i g u r e  6 is  t h e  width of t h e  " t r ans i t i on"  o r  "stretch" 
zone which e x i s t s  on t h e  f r a c t u r e  sur face  between t h e  cracked and t h e  overload 
regions i n  f a t igue .  A s  Broek ( r e f .  2 0 )  has discussed, t h e  depth of t h i s  tran- 
s i t i o n  zone is  t h e  crack t i p  opening displacement, and, t he re fo re  t h e  width is  
the  t i p  forward displacement. 

Examination of t h e  f i g u r e  shows t h e  co r re l a t ion  between the forward t i p  
drsplacement and f a i l u r e .  The measurements of t h e  s t r e t c h  zone f a l l  c lo se  t o  
n = 0.2.  For the  steels and aluminums shown values of n around 0.05 have been 
reported i n  references 20,  2 1  and 22 .  However, i t  is  known t h a t  f o r  t h i s  class 
of materials the  value of n v a r i e s  wi th  p l a s t i c  s t r a i n  ( r e f .  23).  For l a r g e  
p l a s t i c  s t r a i n  (E 

shown by Jones an8 Brown ( re f .  2 4 )  f o r  4340 steel. 
region are c l e a r l y  g rea t e r  than 10% so t h a t  t h e  agreement between t h e  measure- 
ments and t h e  ana lys i s  appears q u i t e  reasonable. 
the  f i g u r e  i s  an ind ica t ion  of t he  span of a c t u a l  measurements (authors typi-  
c a l l y  r epor t  a 40% v a r i a t i o n ) .  

> l o % ) ,  t h e  s t r a i n  hardening exponent is  c l o s e  t o  0.2 as 
The s t r a i n s  i n  t h e  t i p  

The scatter band shown on 

DISCUSSION 

Previously McGowan and Smith ( r e f .  15) performed a f i n i t e  deformation 
ana lys i s  of t h e  region surrounding deformed crack t i p s  f o r  a l i n e a r  ( s t r e s s -  
s t r a i n )  material. The r e s u l t s  of t h e  f i n i t e  deformation work showed t h a t  t h e  
maximum oyy stress occurred i n  f r o n t  of t he  deformed crack t i p .  It w a s  de te r -  
mined t h a t  t h e  stress d i s t r i b u t i o n  around the  crack t i p  was "similar", i n  t h e  
sense t h a t  one stress d i s t r i b u t i o n  could be used t o  descr ibe  the  response of 
t he  material under load. The s i z e  of t he  a f f ec t ed  zone would depend upon 
the  load and crack length  through K. 
w a s  a d i r e c t  r e s u l t  of t he  b lunt ing  process, and would be expected t o  remain 
as long as t h e  a f f ec t ed  zone stayed small with respec t  t o  the  crack length,  
thickness,  o r  any o the r  in-plane dimension. 

The se l f - s imi l a r i t y  of t h e  stress f i e l d  

P 

The behavior i s  q u i t e  similar f o r  a power hardening material. The stress 
f i e l d  is se l f - s imi la r  with t h e  s i z e  of t he  a f f ec t ed  zone varying with K. The 
maximum a stress w f l l  only then be a function of t h e  material p rope r t i e s  
E,  n, and o0. 
upon K as w e l l  as t h e  o the r  material proper t ies .  
f a i l u r e  would depend upon t h e  growth i n  s i z e  of a cr i t ical  dimension, such as 
p las t ic  zone s i z e ,  which increases  with K. 

YY The s t r e t c h i n g  of t h e  similar stress d i s t r i b u t i o n  w i l l  depend 
One may conjec ture  t h a t  

Wells ( r e f .  2 5 )  and o the r s  have used the  crack opening displacement as a 
f r a c t u r e  c r i t e r i o n .  Broek ( r e f .  2 0 )  has used t h i s  concept t o  c o r r e l a t e  t h e  
depth of t r a n s i t i o n  zones i n  aluminum with f r a c t u r e  toughness. The present 
study shows good c o r r e l a t i o n  of f r a c t u r e  toughness and t r a n s i t i o n  zone width. 
Kraf f t  ( r e f .  2 6 ) ,  Hahn and Rosenfield ( r e f .  2 7 )  and R i c e  and Johnson (ref. 14) 
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have all shown good correlation of plane strain fracture toughness with some 
minute particle size or process zone size for specific cases. 

SUMMARY AND RECOMMENDATIONS 

Following the pioneering studies of Hutchinson (ref. 4), Rice and Rosen- 
gren (ref. 6), Levy et a1 (ref. 7) and Hilton and Hutchinson (ref. 8), the 
authors have obtained a full field deformation plasticity finite difference 
solution to the Mode I plane strain problem including the effects of blunting. 
The material was incompressible in both the elastic and plastic regions, and 
followed a power hardening rule. Stress and displacement fields surrounding 
the deformed crack tip are presented, and are found to compare favorably both 
with the analysis of other investigators as well as experimental results. 
cause of the improved accuracy expected from a full field solution, it would 
be appropriate to incorporate such a solution into theories concerning void 
coalescence and final instability. 
such an approach. 

Be- 

Efforts are currently being devoted to 
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Figure 1.- Problem geometry. 

(ref. 7) 

Figure 2.- P l a s t i c  zone shape. 
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Figure 3.- Effec t ive  stress d i s t r i b u t i o n  forward of t he  
blunted c rack  t i p .  
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GAUSSIAN IDEAL IMPULSIVE LOADING OF R I G I D  VISCOPLASTIC PLATES 

Robert J. Hayduk 
NASA Langley Research Center 

ABSTRACT 

The response of a th in ,  r i g i d  v i s c o p l a s t i c  p l a t e  subjected t o  a s p a t i a l l y  
axisymmetric Gaussian i d e a l  impulse loading w a s  s tud ied  a n a l y t i c a l l y .  
Gaussian i d e a l  impulse d i s t r i b u t i o n  instantaneously imparts a Gaussian i n i t i a l  
ve loc i ty  d i s t r i b u t i o n  t o  the  p l a t e ,  except a t  t h e  f ixed  boundary. The p l a t e  
deforms with monotonically increas ing  de f l ec t ions  u n t i l  t h e  i n i t i a l  dynamic 
energy i s  completely d i s s ipa t ed  i n  p l a s t i c  work. The simply supported p l a t e  of 
uniform thickness obeys t h e  von Mises y ie ld  c r i t e r i o n  and a generalized consti-  
t u t i v e  equation f o r  r i g i d ,  v i s c o p l a s t i c  materials. For the  s m a l l  d e f l e c t i o n  
bending response of t h e  p l a t e ,  neglecting t h e  t r ansve r se  shear stress i n  t h e  
y i e ld  condition and r o t a r y  i n e r t i a  i n  t h e  equations of dynamic equilibrium, t h e  
governing system of equations is e s s e n t i a l l y  nonlinear.  A propor t iona l  loading 
technique, known t o  g ive  exce l l en t  approximations of t h e  exact so lu t ion  f o r  t he  
uniform load case,  w a s  used t o  l i n e a r i z e  t h e  problem and ob ta in  a n a l y t i c a l  
so lu t ions .  i n  t h e  form of eigenvalue expansions. The l i nea r i zed  governing equa- 
t i o n  required t h e  knowledge of t h e  co l lapse  load of t h e  corresponding s ta t ic  
problem . 

The 

The e f f e c t s  of load concentration and an order  of magnitude change i n  t h e  
v i s c o s i t y  of t h e  p l a t e  material w e r e  examined whi le  holding t h e  t o t a l  impulse 
constant.  I n  general ,  as t h e  load became more concentrated,  t h e  peak c e n t r a l  
ve loc i ty  increased and the  time f o r  p l a t e  motion t o  cease increased. For t h e  
less viscous p l a t e ,  these  increases  of ve loc i ty  and t i m e  were more pronounced. 
The f i n a l  p l a t e  p r o f i l e  became more conica l  as t h e  load concentration increased, 
but did not approach t h e  purely con ica l  shape predic ted  f o r  t h e  poin t  impulse by 
t h e  r i g i d ,  p e r f e c t l y  p l a s t i c  a n a l y s i s  with the  T r e s c a  y i e l d  criteria. 
of the  less viscous p l a t e  w e r e  influenced more by t h e  load concentration. 

P r o f i l e s  

SYMBOLS 

series c o e f f i c i e n t  , equation (A6) I 
An 

a Gaussian d i s t r i b u t i o n  parameter 

B =  p l a t e  geometry and material cons tan t  

cons tan ts  defined by equation (A5) 

2h - -  
c2 

2 J? p: R 
F' = nondimensional co l l apse  load amplitude 

Mo 
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F y i e l d  func t ion  

p l a t e  half-thickness 

impulse per u n i t  area amplitude a t  t h e  p l a t e  center  

h 

I 

IR2 I' = - 
'0 

impulse parameter, see 

Bessel func t ion  of t h e  f i r s t  kind of real and imaginary 
arguments, r e spec t ive ly  

second inva r i an t  of t h e  dev ia to r i c  stress tensor 

@ 
kr, Ti r a d i a l  and c i rcumferent ia l  curvature rates 

k y ie ld  stress i n  s i m p l e  shear 

r a d i a l  and c i rcumferent ia l  bending-moment r e s u l t a n t s  

r a d i a l  and c i rcumferent ia l  bending-moment r e s u l t a n t s  a t  
i n i t i a l  y i e ld  

2 M o = a  h 
0 

y ie ld  moment of t he  p l a t e  

'r 

MO 

m = -  nondimensional r a d i a l  bending-moment r e s u l t a n t  

n =  3 
MO 

nondimensional c i rcumferent ia l  bending-moment r e s u l t a n t  

p:, 
pressure  amplitude a t  t h e  p l a t e  center  a t  co l l apse  

2 - P:, R 
P:, = nondimensional pressure  amplitude a t  t h e  p l a t e  center  a t  

co l l apse  

Q shear stress r e s u l t a n t  

-RQ 4 -  
MO 

nondimensional shear stress r e s u l t a n t  

p l a t e  r ad ius  

r a d i a l  coordinate 

devia tor  stress tens  o r  

R 

r 

'ij 
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dev ia to r  stress tensor a t  i n i t i a l  y i e l d  

t i m e  

time f o r  motion t o  cease 

dynamic component of v e l o c i t y  

steady component of v e l o c i t y  

i n i t i a l  v e l o c i t y  

nondimensional p l a t e  v e l o c i t y  

t ransverse  d e f l e c t i o n  of t h e  p l a t e  

t r ansv'er s e co ord i n a  t e 

p l a t e  geometry and material cons tan t ,  sec 1-1 BR4 
J =--- 

MO 

nondimensional Gaussian 2 2  3 = a R  

f, YO material cons tan ts  

72, v4 harmonic and biharmonic 

j f i n a l  cen ter  d e f l e c t i o n  

s t r a i n  rate tensor ' i j  

n 

i j  

shape parameter 

opera tors  i n  c y l i n d r i c a l  coordinates 

eigenvalues determined from equation (A7) 

mass d e n s i t y  per u n i t  area of t h e  p l a t e  

nondimensional radial coordinate 

stress tensor  

y i e ld  stress i n  simple tens ion  

func t ion  defined by equation ( 3 )  

c i rcumferent ia l  coordinate 

func t ion  defined by equation (A13) 

func t ion  defined by equation (A12) 
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INTRODUCTION 

This paper presents  t h e  r e s u l t s  of an ana lys i s  of t h e  small-deflection 
bending response of a simply supported c i r c u l a r  p l a t e  of r i g i d ,  v i s c o p l a s t i c  
material subjected t o  a s p a t i a l l y  axisymmetric Gaussian i d e a l  impulse. The 
e f f e c t s  of load concentration and an order  of magnitude change i n  the  viscosit 
of t h e  p l a t e  material are examined while holding t h e  t o t a l  impulse constant.  
Approximate expressions are developed f o r  t h e  time a t  which p l a t e  motion 
ceases, t h e  f i n a l  shape of t h e  p l a t e ,  and t h e  f i n a l  c e n t r a l  displacement. 

Although t h e r e  have been a number of papers ( r e f s .  1, 2, 3) which permit 
a time v a r i a t i o n  of t h e  load, t h e r e  have been few papers which consider a 
r a d i a l  v a r i a t i o n  o ther  than l i n e a r  ( r e f s .  3,  4 ) .  The only general  s p a t i a l  
d i s t r i b u t i o n  of load which has received s i g n i f i c a n t  a n a l y t i c a l  a t t e n t i o n  is  t€ 
Gaussian d i s t r i b u t i o n .  By varying a s i n g l e  parameter , t h i s  genera l  d i s t r i b u -  
t i o n  can span t h e  extremes from t h e  po in t  load t o  t h e  uniformly d i s t r i b u t e d  
load. This v e r s a t i l i t y  w a s  recognized by Sneddon ( r e f .  5) who approximated 
t h e  dynamic loading of a p r o j e c t i l e  on a t h i n ,  i n f i n i t e  e l a s t i c  p l a t e  by a 
Gaussian d i s t r i b u t i o n  of pressure.  Madden ( r e f .  6), i n  h i s  study of shieldin1 
of space v e h i c l e  s t r u c t u r e s  aga ins t  meteoroid pene t ra t ion ,  r e l a t e d  the  
meteoroid-shield d e b r i s  loading of t h e  main v e h i c l e  w a l l  t o  a Gaussian i n i t i a :  
v e l o c i t y  d i s t r i b u t i o n .  The f i r s t  study of t h i s  loading on a p l a s t i c  p l a t e  wa! 
by Thomson ( r e f .  7). H e  obtained t h e  s o l u t i o n  of a r i g i d ,  pe r f ec t ly  p l a s t i c  
p l a t e  of material obeying t h e  Tresca y i e l d  condition subjected t o  an i n i t i a l  
impulse of Gaussian d i s t r i b u t i o n .  Weidman ( re f  2 ) ,  in/considering the  
response of simply supported c i r c u l a r  p l a s t i c  p l a t e s  t o  d i s t r i b u t e d  t i m e -  
varying loadings, presented an example case of a r a d i a l  Gaussian d i s t r i b u t i o n  
of pressure  with a n  exponential decay. 
p e r f e c t l y  p las t ic  obeying the  Tresca y ie ld  conditions.  

The p l a t e  material w a s  a l s o  r i g i d ,  

A generalized c o n s t i t u t i v e  equation f o r  r i g i d ,  v i s c o p l a s t i c  materials is  
presented i n  t h e  next sec t ion .  Material e l a s t i c i t y  i s  neglected i n  order t o  
s impl i fy  t h e  ana lys i s ,  as is  f requent ly  done i n  t h e o r e t i c a l  i nves t iga t ions  of 
dynamic p l a s t i c  response of s t r u c t u r e s .  Rigid-plastic analyses are genera l ly  
believed t o  be  v a l i d  when t h e  dynamic energy i s  considerably l a r g e r  than t h e  
maximum energy which could be absorbed i n  a wholly elastic manner and t h e  
du ra t ion  of loading is  s h o r t  compared with t h e  fundamental period of v i b r a t i o  

LINEARIZATION OF THE GENERALIZED CONSTITUTIVE EQUATIONS 

FOR R I G I D ,  VISCOPLASTIC MATERIUS 

Perzyna ( r e f .  8) developed a generalized c o n s t i t u t i v e  equation f o r  rate 
s e n s i t i v e  p l a s t i c  materials by incorporating a general  func t ion  i n  t h e  
r e l a t i o n s h i p  t o  take  t h e  p lace  of t h e  y i e l d  func t ion  as used by previous 
researchers  (Hohenemser and Prager, r e f .  9; and Prager, r e f .  10). U t i l i z i n g  

t h e  d e f i n i t i o n  of t h e  second inva r i an t  of t he  stress devia tor ,  J; = 
t h e  y i e ld  func t ion  is expressed as 

S . .S 2 IJ i j ’  
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where S i j  is t h e  stress devia tor  tensor  and k is t h e  y i e ld  stress. The 
generalized c o n s t i t u t i v e  equation proposed by Perzyna is 

where E is  t h e  s t r a i n  rate tensor ,  i j  

@(F) = 0 i f  F 5 0 

@(F) # 0 i f  F > 0 

and yo denotes a phys ica l  cons tan t  of t h e  material. 

(3)  

Perzyna ( r e f .  11) has shown t h a t  t h e  generalized c o n s t i t u t i v e  equation 
f o r  v i s c o p l a s t i c  ma te r i a l s  reduces t o  the  c o n s t i t u t i v e  equations of an incom- 
p res s ib l e ,  p e r f e c t l y  p l a s t i c  material f i r s t  considered by von Mises and t o  t h e  
flow l a w  of pe r f ec t  p l a s t i c i t y  theory. A s  i n  t h e  theory of p e r f e c t l y  p l a s t i c  
s o l i d s ,  convexity of t h e  subsequent dynamic loading sur f  aces and orthogonality 
of t h e  i n e l a s t i c  s t r a i n - r a t e  vec tor  t o  t h e  y i e ld  su r face  follow from Drucker's 
pos tu l a t e s  def in ing  a s t a b l e ,  i n e l a s t i c  material  wi th  inc lus ion  of time- 
dependent t e r m s  (Perzyna, r e f .  8). 

A method of l i n e a r i z i n g  boundary-value problems i n  t h e  theory of visco- 
p l a s t i c  s o l i d s  is  described by Wierzbicki i n  re ference  12. I n  t h i s  method, as 
shown graphica l ly  i n  f i g u r e  1, t h e  concept o f  propor t iona l  loading i s  used t o  
relate t h e  state of stress S i -  on t h e  i n i t i a l  y i e l d  su r face  F = 0 t o  sub- 
sequent states of stress, nameiy, p ropor t iona l  loading r equ i r e s  t h e  d i r e c t i o n  
cosine tensor of t he  state of stress i n  dev ia to r i c  space t o  be independent of 
time: 

- 

Ilhis is  a reasonable approximation f o r  axisymmetrically loaded simply supported 
Zircular p l a t e s  because t h e  p l a t e -cen te r  and boundary are automatically pro- 
l o r t i ona l ly  loaded, t h a t  is, t h e  bending moments must always be equal a t  t h e  
ilate center  and t h e  c i rcumferent ia l  bending moment must always be  zero a t  t h e  
)late boundary. 

U t i l i z i n g  equation ( 4 ) ,  t h e  generalized c o n s t i t u t i v e  equation (2) 
jecomes 
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where t h e  v i s c o s i t y  constant Y = y0/2k. For t h i s  ana lys i s ,  t h e  l i n e a r  form 

@(F) = F ( 6  

is chosen. This s impl i f ied  c o n s t i t u t i v e  equation s t i l l  is nonlinear i n  stress1 
However, i n  t h e  so lu t ion  of dynamical p l a t e  and r o t a t i o n a l l y  symmetric s h e l l  
problems, t h e  c o n s t i t u t i v e  equation (5) w i t h  the l i n e a r  func t ion  
produces f u l l  l i n e a r i z a t i o n  of t h e  governing equations. 

@(I?) = F 

For t h e  problem of a uniformly loaded, simply supported c i r c u l a r  p l a t e  
with @(F) = F, Wierzbicki ( r e f .  1 2 )  has shown t h a t  t h e  approximate so lu t ion  
obtained using t h e  propor t iona l  loading hypothesis agrees  very w e l l  with a 
numerical f i n i t e -d i f f e rence  s o l u t i o n  of t h e  exact equations. The so lu t ion  of 
t h e  l i nea r i zed  problem a l s o  agrees  w e l l  with experimental d a t a  on impulsively 
loaded p l a t e s  by Florence ( r e f .  13) .  

For t h e  l i n e a r  func t ion  equation c5) becomes 

i j  

where equation (7) i s  r e a l l y  a flow r e l a t i o n  f o r  a given s t r u c t u r e  r a t h e r  
than a c o n s t i t u t i v e  equation descr ib ing  a given material ( r e f .  1 4 ) .  

GOVERNING EQUATIONS, BOUNDARY AND INITIAL CONDITIONS 

A Gaussian i d e a l  impulse is  suddenly applied t o  t h e  e n t i r e  su r face  of a 
r i g i d ,  v i s c o p l a s t i c  p l a t e  of r ad ius  R and thickness 2h r e s u l t i n g  i n  a n  
i n i t i a l  v e l o c i t y  d i s t r i b u t i o n  described by 

2 2  I -a r 
1-( 

V(r, 0) = - e 

where I is  t h e  impulse per u n i t  area a t  t h e  center  of t h e  p l a t e  and 1-1 is 
t h e  m a s s  dens i ty  per u n i t  area of t h e  p l a t e  middle sur face .  The boundary of 
t h e  p l a t e  a t  r = R i s  simply supported. The geometry of t he  p l a t e  and 
i n i t i a l  v e l o c i t y  are shown i n  f i g u r e  2. 

(7 

The parameter a i n  t h e  d i s t r i b u t i o n  func t ion  is a shape parameter whicl 
con t ro l s  t h e  d i s t r i b u t i o n  of t h e  impulse. For a = 0 equation (8) descr ibes  
a uniform impulse; and as a + a, I +  03 equation (8) descr ibes  a poin t  
impulse a t  t h e  p l a t e  center .  

600 



The i n t e r n a l  fo rces  and moments ac t ing  on a t y p i c a l  p l a t e  element are 
shown i n  f i g u r e  3.  I f  r o t a r y  i n e r t i a  is neglected, but t r ansve r se  inertia 
taken i n t o  account, t h e  equations of motion are 

2 a a w  
a t 2  

- (rQ) = pr - ar 

(9) 
a 
ar - (rMr) - M4 = r Q  

U t i l i z i n g  t h e  Love-Kirchoff hypotheses, t h e  curvature-rate-moment rela- 
t ions ,  derived from the  l i nea r i zed  c o n s t i t u t i v e  equation, equation (7) , are 

where B = & y/2h. % and %+ are moments s a t i s f y i n g  f o r  any r t h e  
equation of t h e  i n i t i a l  y i e ld  su r face  

Mo = Ooh2 
stress i n  simple tension. 

is t h e  y i e ld  moment of t h e  p l a t e  material and ‘5, is  t h e  y i e ld  

For s m a l l  de f l ec t ions  of t he  p l a t e  t h e  curvature rates kr and i(ls are 
r e l a t e d  t o  t h e  d e f l e c t i o n  rate & by 

Equations ( 9 ) ,  (lo), and (12) form a l i n e a r  parabol ic  system of par f i ia l  
t i f f e r e n t i a l  equations with s i x  unknown funct ions  - - $, M$,-Q, w, &, and 
K+ - plus  t h e  unknown s ta t ic  moment d i s t r i b u t i o n  Mr and M+. 

By eliminating a l l  unknowns except G, t h e  system of governing equations 
can be reduced t o  t h e  s i n g l e ,  fourth-order equation 

where 
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The right-hand s i d e  of equation (13) r ep resen t s  the i n t e r n a l  f o r c e  d i s t r ibu -  
t i o n  a t  t h e  i n i t i a t i o n  of co l l apse  i n  t h e  s ta t ic  case. 

L e t  p; denote t h e  s ta t ic  load-carrying capacity of t he  p l a t e ,  then t h e  
- 9  

right-hand s i d e  of equation (13) can be replaced by 
governing equation becomes 

2 2  2Mo 4 ac -a r - V i + u - = - p A e  
3 B  a t  

This method of so lu t ion ,  proposed 
t a n t  property of rep lac ing  t h e  unknown 

by Wierzbicki 
s ta t ic  moment 

and t h e  -a+' 
-P; e 

( r e f .  12), has t h e  impor- 
d i s t r i b u t i o n  & and Ed, 

whose e x p l i c i t  formulas are not known f o r  t he  von Mises y ie ld  condition, by 
t h e  static load-carrying capac i ty  p:. 
has been reduced t o  f ind ing  t h e  va lue  of a cons tan t ,  p:, corresponding t o  a 
p a r t i c u l a r  va lue  of t h e  shape parameter, a. The determination of t h e  load- 
carrying capac i ty ,  p:, of a c i r c u l a r  p l a t e  under a Gaussian d i s t r i b u t i o n  of 
pressure  is presented i n  re ference  15. 

' 

Thus, t h e  need f o r  e x p l i c i t  formulas 

Define t h e  dimensionless q u a n t i t i e s  

a 2  1 a 
a P 2  

+ --. Then t h e  f i n a l  form of the  governing equation, and l e t  V2=-  
P aP 

equation (14), is  

2 
'Y 4 v + T a - = - 2 h ~ ' e  3 av -PP 

a t  
4 where a = uBR /Mo. 

The boundary conditions of t h e  simply supported p l a t e  are 
m = n ,  q = O  at p = O  

v = m = O  at p = l  
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Using equations (lo), (12), and (91, equations (17), i n  terms of 
rate of d e f l e c t i o n  become 

For the  Gaussian i d e a l  impulsive loading t h e  p l a t e  is  i n i t i a l l y  f l a t  and t h e  
i n i t i a l  v e l o c i t y  has a Gaussian d i s t r i b u t i o n  

I’ -BpL w(p, 0) = 0; v ( p ,  0) = - e a 

IR2 where I’ =-. 
MO 

RESULTS AND DISCUSSION 

The so lu t ion  t o  t h e  governing equation, equation (16) , with assoc ia ted  
boundary and i n i t i a l  condi t ions ,  equations (18) and (19) are presented i n  
t h e  Appendix. The e f f e c t s  of load d i s t r i b u t i o n  and p l a t e  v i s c o s i t y  on p l a t e  
response are examined i n  t h i s  s ec t ion  while holding t h e  t o t a l  impulse constant.  

2 The impulse amplitude, I’ = I R  /Mo, sec, a t  t h e  p l a t e  center  is  r e l a t e d  
t o  t h e  t o t a l  impulse, IT, and d i s t r i b u t i o n  parameter, 8 ,  by t h e  r e l a t i o n  

For comparison purposes t h e  t o t a l  impulse is  held constant a t  - - 
sec. The impulse becomes more concentrated a t  t h e  center  of t h e  p l a t e  as 6 
is increased and t h e  amplitude grows almost l i n e a r l y  as 6 becomes la rge .  
For 8 = 0, t h e  impulse has  a uniform d i s t r i b u t i o n .  

The graphica l  r e s u l t s  w e r e  obtained by programing t h e  so lu t ion  (equations 
(A14) and (A15)) and summin t h e  series term-by-term. The r ap id ly  convergent 

: u l t i e s ;  however, t h e  l a s t  series i n  t h e  ve loc i ty  expression equation ( A l 4 )  
;eries with l / A z  and l / A n  8 f a c t o r s  d i d  not  present  any computational d i f f i -  
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has a 
f o r  s m a l l  f3 and t. For t = 0 t h e  series i s  slowly convergent. 

l / A n  f a c t o r  and prohibited t h e  c a l c u l a t i o n  of velocity-time h i s t o r i e s  

A r ep resen ta t ive  p l o t  of t h e  p l a t e  c e n t r a l  v e l o c i t y  i s  shown i n  f i g u r e  4 
f o r  B = 10 and v i s c o s i t y  parameter a = 1 x sec. The i n i t i a l  c e n t r a l  
v e l o c i t y  is  seen t o  r ap id ly  d e c l i n e  during t h e  f i r s t  0.025 m s e c  a f t e r  which 
t h e  v e l o c i t y  more slowly tends to  zero. 

The p l a t e  is seen t o  deform monotonically with increasing d e f l e c t i o n  u n t i l  
t h e  i n i t i a l  dynamic energy i s  completely d i s s ipa t ed  i n  p l a s t i c  work and t h e  
p l a t e  comes t o  rest. The deformed p r o f i l e s  of t h e  p l a t e  a t  rest are shown i n  
f i g u r e  5 f o r  two va lues  o f  a (1 x 1 x and var ious  va lues  of B= 
The p r o f i l e  becomes more con ica l  as t h e  impulse becomes more concentrated and 
t h e  p r o f i l e s  of t h e  less viscous p l a t e  (a = 1 x 10-2 sec) exh ib i t  a wider 
v a r i a t i o n ,  thus are influenced more by t h e  shape parameter f3 than are those  
f o r  t h e  a = 1 x sec  case. 

Approximations 

An approximation t o  the  d e f l e c t i o n  of t h e  p l a t e  is obtained from equation 
(A15) by r e t a in ing  only the  f i r s t  t e r m s  of series and using t h e  approximation 

1 A 

The r e s u l t  is  

2 00 
p 2 1  + -  e-’’ + ($ + p2> 1 2 w(p,t) = - 

n = l  28 
1 

BR 

(21) 

An approximate expression f o r  t h e  time f o r  motion t o  cease can be obtained by 
s e t t i n g  t h e  d e r i v a t i v e  of t h e  approximate displacement expression t o  zero, 

= 0, i s  

tf  

= -  
2 f i  F’a tf 

a w  t h a t  is; - a t  
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Equation (22) is  p lo t t ed  i n  r i g u r e  6 f o r  0 C B < 100 and several va lues  of 
a. Equation (22) is  a n  i m p l i c i t  func t ion  of- f3 -since I' and F' vary with 
6.  The e f f e c t  of f3 diminishes a f t e r  a n  i n i t i a l  r ap id  rise of tf wi th  
increasing 6 .  
equation f o r  t h e  ve loc i ty ,  equation (Al4). Equation (22) i s  a very good 
approximation f o r  t h e  case a I= 1 x 10-3 see. 
of 6 ,  t h e  approximation is poor f o r  t h e  a = 1 x sec case. 

The symboled po in t s  represent  computed t i m e s  using t h e  complete 

However, except f o r  small values  

For a -f ~0 equation (22) limits t o  

I = -  

and represents  t h e  r i g i d ,  pe r f ec t ly  p l a s t i c  case (y -t m) with t h e  von Mises 
y ie ld  condition. Equation (23) has t h e  same form as Wang's ( r e f .  16) r e s u l t  
f o r  t h e  uniform i d e a l  impulse problem using the  Tresca y i e ld  condition f o r  a 
r i g i d  p e r f e c t l y  p l a s t i c  material. - 
smaller va lues  of tf s ince  p; = 6.51 f o r  t he  von Mises y ie ld  condition 
r a t h e r  than 6 i n  t h e  case of t h e  Tresca y ie ld  condition. 

However , equation (23) g ives  s l i g h t l y  

The curve labe led  Tresca, r .p.p.  w a s  obtained from t h e  r e s u l t s  of r e f e r -  
ence 7 where a simply supported c i r c u l a r  p l a t e  of r i g i d ,  p e r f e c t l y  p l a s t i c  
material obeying the  Tresca y ie ld  condition and assoc ia ted  flow r u l e  w a s  
analyzed f o r  a genera l  Gaussian i d e a l  impulse loading. For s m a l l  f3 t h e  two 
curves d i f f e r  only s l i g h t l y ,  but as 6 grows l a r g e r  and t h e  impulse becomes 
more concentrated, t h e  two analyses p red ic t  d r a s t i c a l l y  d i f f e r e n t  times €or t h e  
p l a t e  motion t o  cease. The Tresca y ie ld  condition p r e d c i t s  very l a r g e  t i m e s  
f o r  p l a t e  motion t o  cease,  whereas t h e  von Mises y ie ld  condition p r e d i c t s  more 
realist ic t i m e s  f o r  concentrated loads. 

The s u b s t i t u t i o n  of equation (22) f o r  t f _  i n t o  equation (21) provides 
an approximate expression f o r  t h e  f i n a l  p l a t e  displacements: 

2 w ( p , t )  1 = - - J? F' [ E ~  + e2p 
48 26 BR 

and f o r  t h e  f i n a l  cen ter  displacement 6(O,tf)  = w(0 , t f ) :  
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f 

- URL 6 ( 0 , t f )  = 

aMO 

Equation (25) is  p lo t t ed  as a func t ion  of B f o r  t h e  two va lues  of a i n  
f i g u r e  7. 
computed from t h e  exact equations f o r  both 
even though t h e  tf-approximations f o r  t h e  l a r g e r  a w e r e  poor f o r  l a r g e  f3 
as shown i n  f i g u r e  6. 
smaller f o r  t h e  a = 1 x sec case when, i n  r e a l i t y  t h e  real displacements 
are l a r g e r  than f o r  t h e  a = 1 x 10-3 sec case. This is  caused by a being 
i n  t h e  denominator of t h e  expression f o r  t h e  nondimensional c e n t r a l  displacement. 

The approximations are i n  exce l l en t  agreement with t h e  po in t s  
a = 1 x sec and 1 x 10" sec, 

The nondimensional central displacements are shown 

P r o f i l e s  obtained from t h e  approximation, equation ( 2 4 ) ,  were compared 
with p r o f i l e s  obtained from t h e  exact equation. For a = 1 x sec, t h e  
d i f f e rences  between t h e  approximate and exact p r o f i l e s  w e r e  neg l ig ib ly  small 
f o r  t h e  e n t i r e  range of 6 considered, t o  10,000. However, f o r  t h e  less 
viscous p l a t e s ,  a = 1 x see, t h e  d i f f e rences  w e r e  not neg l ig ib l e  and t h e  
approximation, equation (23) ,  should the re fo re  be r e s t r i c t e d  accordingly. 

CONCLUDING REMARKS 

A t h in ,  simply supported r i g i d ,  v i s c o p l a s t i c  p l a t e  subjected t o  a Gaussian 
i d e a l  impulse has been analyzed wi th in  t h e  realm of small d e f l e c t i o n  bending 
theory. The p l a t e  material obeys t h e  von Mises y ie ld  cri teria and c o n s t i t u t i v e  
equations due t o  Perzyna ( r e f .  11). These considerations lead ,  e s s e n t i a l l y ,  t o  
nonlinear equations governing t h e  dynamic response of t h e  t h i n  p l a t e .  A pro- 
por t iona l  loading hypothesis,  proposed by Wierzbicki ( r e f .  12) and shown t o  be 
an exce l l en t  approximation of t h e  exact so lu t ion  f o r  t h e  uniform load case, 
w a s  used t o  l i n e a r i z e  the  problem and obta in  a n a l y t i c a l  so lu t ions  i n  t h e  form 
of eigenvalue expansions. 
of t h e  p l a t e  required t h e  knowledge of t h e  co l l apse  load of t h e  corresponding 
s ta t ic  problem, t h a t  is, t h e  co l l apse  load f o r  t h e  s p e c i f i c  load d i s t r i b u t i o n  
parameter, 6. 

The l i nea r i zed  governing equation on t h e  v e l o c i t y  

The e f f e c t s  of impulse concentration and an order of magnitude change i n  
t h e  v i s c o s i t y  of t h e  p l a t e  material w e r e  examined while holding t h e  t o t a l  
impulse constant.  I n  general ,  as t h e  impulse became more concentrated, t he  
peak c e n t r a l  v e l o c i t y  increased and t h e  t i m e  f o r  p l a t e  motion t o  cease 
increased. For t h e  less viscous p l a t e  material, t hese  increases  of ve loc i ty  
and t i m e ,  t f ,  f o r  p l a t e  motion t o  cease are more pronounced. 
p r o f i l e  became more conica l  as t h e  load concentration increased, bu t  d id  not 
approach t h e  purely conica l  shape predicted by t h e  r i g i d ,  pe r f ec t ly  p l a s t i c  
ana lys i s  with t h e  Tresca y i e ld  condition f o r  a point impulse. A s  t h e  viscos- 
i t y  of t h e  p l a t e  decreases,  t h e  shape parameter has more e f f e c t  on t h e  f i n a l  
deformed p l a t e  p r o f i l e s .  

The f i n a l  p l a t e  
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Approximate expressions w e r e  developed f o r  t h e  time at  which p l a t e  motion 
ceases, t f ,  t h e  f i n a l  shape of t h e  p l a t e ,  and t h e  f i n a l  central displacement. 
Comparisons with the  series s o l u t i o n  indicated t h a t  t h e  approximations w e r e  
exce l len t  f o r  t he  a = 1 x sec case. The approximation f o r  t h e  f i n a l  
c e n t r a l  d e f l e c t i o n  w a s  good f o r  t h e  e n t i r e  range of shape parameter 6, t h e  
o ther  approximations w e r e  l imi ted  i n  usefulness. 
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APPENDIX 

SOLUTION OF EQUATION (16) BY EIGENVALUE EXPANSION* 

Since t h e  right-hand s i d e  of equation (16) is  not a func t ion  of t i m e ,  i t  
can be solved by means of an  eigenvalue expansion method. Subs t i t u t ion  of 

i n t o  equation (16) r e s u l t s  i n  

which separa tes  i n t o  

4 3 au V u + - - a - = O  2 a t  

and 

2 v 4 u = - ZJ? F' e-" 

Equation (A3) is t h e  same as equation (16) except f o r  t h e  absence of t h e  
i n e r t i a  t e r m .  Thus, U(p) is an equilibrium so lu t ion  of equation (16) with t h e  
s a m e  boundary condi t ions ,  equations (17). ' 

The so lu t ion  t o  equation (A3) s a t i s f y i n g  the  boundary conditions,  equa- 
t i o n s  (18), is  

where - 1 7 2 1 
'1 66 6 38 

= - - - - -  

* 
'!?or more d e t a i l s ,  t h e  reader  can consul t  "Gaussian Impulsive Loading of 

Rigid Viscoplas t ic  P la tes , "  by R. J. Hayduk, Ph. D.  Thesis, Vi rg in ia  Polytech- 
n i c  I n s t i t u t e  and S t a t e  University,  Blacksburg, Vi rg in ia ,  1972. 
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and 

A general  s o l u t i o n  due t o  Wierzbicki ( r e f .  12) s a t i s f y i n g  equation (A2) 
and a l l  prescribed boundary conditions can be w r i t t e n  i n  t h e  form 

where Jo(x) and 
and imaginary arguments. The s o l u t i o n  (A6) i d e n t i c a l l y  s a t i s f i e s  boundary con- 
d i t i o n s  (18 a, b, and d ) .  The eigenvalues, An, are roo t s  of t h e  following 
transcendental  equation stemming from t h e  boundary condi t ion  (18e) o f  zero  
bending moment a t  t h e  p l a t e  edge 

Io(x) denote t h e  Bessel func t ions  of t h e  f i r s t  kind of real 

___ 

The only remaining unknowns i n  t h e  so lu t ion  are t h e  series c o e f f i c i e n t s  
These c o e f f i c i e n t s  are evaluated from t h e  i n i t i a l  condition (19), t h a t  A i .  

is, 
2 

I' -BP 
v(p,O) = U(PY0) + U(P) = &- e 

Thus, 

and a f t e r  s u b s t i t u t i n g  equation (A6) f o r  u(p,O) t h e r e  r e s u l t s  

The c o e f f i c i e n t s  can be determined from (A9) by v i r t u e  of t he  orthogonal- 
i t y  of t h e  system [Io(An)Jo(Anp) - Jo(An)Io(Anp)] on t h e  i n t e r v a l  [O,l] where 
p i s  used as a weighting function. Therefore, c o e f f i c i e n t s  A i  can be 
determined as 

where U(p) i s  defined by equation (A4). The r e s u l t i n g  c o e f f i c i e n t s  are 
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where t h e  func t ions  +(Xn,p,b) are defined by t h e  r e l a t i o n  

with 

r- -l 

When equations (A4) and (A6) are summed and equation (All) is used, t h e  
complete so lu t ion  becomes 

The displacement of t h e  p l a t e  is determined by i n t e g r a t i n g  (A14) with 
r e spec t  t o  time. Taking t h e  i n i t i a l  condition of zero displacement i n t o  
account, t h e  displacement becomes 
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1 T W ( P , t )  1 = -@ F't [El + e2p 
W 

(-1 )" ( Bo2 ) 
(2n) n! n=l  

BR 26 

W 

Equations (A14) and (A15) r ep resen t  t h e  complete s o l u t i o n  f o r  t h e  v e l o c i t y  
and displacement of t h e  p l a t e .  I n  t h e  l i m i t  as P -+ 0, t h e  Gaussian i d e a l  
impulse becomes t h e  uniform i d e a l  impulse and t h i s  s o l u t i o n  reduces t o  t h e  
s o l u t i o n  presented by Wierzbicki  ( r e f .  12 ) .  
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Figure 1.- Representation of pro- 
por t iona l  loading i n  devia tor ic  
space. 

2 

Figure 2 .- Simply supported c i r c u l a r  
p l a t e  with Gaussian d i s t r i b u t i o n  
of i n i t i a l  veloci ty .  
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Figure 3.- Element of t h e  c i r c u l a r  
p l a t e  with i n t e r n a l  forces  and 
moments. 

-2 a =  1 x 10 sec 
p=10  

Figure 4.- Representative time 
h i s t o r y  of p l a t e  central 
ve loc i ty  for  t h e  Gaussian 
ideal impulse loading. 
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Figure 6.-  Comparison of approximate 
expression (eq. (22))  for motion' 
to cease, t f ,  and points deter- 
mined from the complete equations 
for the ideal impulse loading. 
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Figure 7 . -  Comparison of approximate 
expression (eq. (25))  for the 
f inal  central deflection and points 
determined from the complete equa- 
tions for the ideal impulse loading. 
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RECENT ADVANCES IN SHELL THEORY 

James G. Simmonds 
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University of Virginia 

INTRODUCTION 

The results to be reviewed are divided into two categories: those thatre- 
late two-dimensional shell theory to three-dimensional elasticity theory and 
those concerned with shell theory per se. In the second category I further dis- 
tinquish between results for general elastic systems that carry over, by spe- 
cialization or analogy, to shells and results that are unique to shell theory 
itself. 
tion multilayered or sandwich shells. 
ample list of references may be found in Librescu's book El]. 
the excellent review articles by Stein [2] and Hutchinson and Koiter [31, I 
have not attempted to review the enormous literature on shell buckling. 

Because of the limitations of space and my interests, I do not men- 

Also, in viewof 
A good discussion of these with an 

TWO APPROACHES TO SHELL THEORY 
Most texts derive shell theory by a mixture of two-and three-dimensional 

considerations. However, a number of recent papers have adopted one of the 
following two extreme approaches: 

A. A shell is idealized as a material surface in three-dimensional Eu- 
clidean space capable of transmitting forces and moments. The physical laws 
for this two-dimensional continuum are postulated in analogy with those for a 
three-dimensional one. Stress-strain laws and even failure criteria are for- 
mulated in terms of two-dimensional variables and may be deduced directly from 
experiments on the shell material. The papers by Sanders [4], Ericksen, and 
Truesdell [51 , Serbin 161, Budiansky [ 71 , Simonds and Danielson 181 , and 
Reissner [ g ] ,  t o  mention but a few, as well as much of the monumental treatise 
by Naghdi [lo] are written in this spirit. 

B. No matter how thin, a shell must be regarded as a three-dimensional con- 
tinuum. However, the governing equations can be enormously simplified by con- 
sidering various formal asymptotic expansions of the unknowns in terms of ap- 
propiate "thinness" parameters. In the interior of the shell (i.e. away from 
edges, concentrated loads or geometric discontinuities of one sort or another) 
the leading terms of the expansions satisfy various sets of two-dimensional 
equations that we call, collectively, the shell equations. Among those who 
have contributed recently to this second approach are Green [ll], Johnson and 
Reissner [12] , Cicala 1131 , Van der Heijden [14] , and especially Goldenveiser 
(see the references cited in [15].) 
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The virtue of the first approach is also its shortcoming: there is no way 
to estimate intrinsically the errors made by neglecting three-dimensional ef- 
fects. Or, from another viewpoint, there is no systematic way to construct a 
refined shell theory. 

A drawback of the second approach, aside from its tediousness, is that it 
requires a knowledge at the edges of the shell of the distribution in the 
thickness direction of the applied stresses or displacements. As Koiter has 
emphasized [16], we never know these distributions precisely, except at a free 
edge. Another drawback of the second approach is that, because the thickness 
of the shell is always incorporated in the expansion parameters, one set of 
uniformly valid interior (i.e. shell) equations does not emerge. Rather there 
is one set of equations for a "membrane" state, another for an "inextensional 
'bending" state, another for a "simple edge effect", another for a "degenerate 
edge effect", and,if one is dealing, for example, with an infinite cylindrical 
shell subject to self-equilibrating edge loads, still another set of equations 
is needed to recover the "semi-membrane" theory of Vlasov [17, p. 2541. 

THE ASYMPTOTIC APPROACH 

The goal here is to provide a systematic method of refining the analysis 
of thin-walled bodies. One important consequence of the asymptotic approach 
is the verification and refinement of the classical Kirchhoff boundary condi- 
tions. Another useful result is that it gives a method for computing the do- 
minant stresses in the immediate vicfnity of an edge without the need of 
solving a full three-dimensional problem. We shall first illustrate the es- 
sence of the asymptotic method by means of a simple example drawn from the 
work of Goldenveiser and Van der Heijden. Then we shall indicate the implica- 
tion of the results for nonlinear shell theory. 

Let (r,e,z) denote a set of cylindrical coordinates and consider a homo- 
geneous, elastically isotropic plate that occupies the region OSrCR, -H<zCH. 
Let the plate be free of body forces and edge tractions but subject to self- 
equilibrating normal tractions on its upper and lower faces. The linear 
equations of elasticity may be expressed as three equilibrium equations for 
the six independent components ( G  T, G T ,T 0 )  of the symmetric stress 
tensor plus six stress-strain relgEions !it5 tf!; strains expressed in terms of 
the components (u,v,w) of the displacement vector. Let p=r/R and <=z/H. Then 
the boundary conditions read 

or (1, e , 5 )=T (1 , e , )=T (1, e , r )=o , ( 3 . 2 )  r 

where G is a reference stress chosen so that lp]C 1. The boundary conditions 
induce a state of pure bending in which ( 0  ,T,G ,o,u,v) are odd in 5 and 
(T~,T~,w) are even. 

Goldenveiser's approach, following earlier work by Friedrichs andDressler 
[181 and Green [ll] , is to express each unknown as the sum of a "basic" or in- 
terior contribution plus two distinct "auxiliary" or edge zone contributions. 

0 

r e  
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The edge zone contributions a re  expressed i n  terms of t h e  scaled var iable  
G=(R-r)/H%-’(l-p) so t h a t ,  fo r  example, 

For a t r a c t i o n  f r e e  edge, Goldenveiser E191 assumes t h e  following formal as- 
ymptotic expansions 

(3 .3)  

(3.4) 

(3.5) 

,a n -n -n -n -n -n -n 2- 2- (3r,.*.,t7) CE (Eff ,T ,EOo,&Tr,T ,EO ,E U,E?,E w )  
0 r e 

The edge zone contributions are assumed t o  van9sh exponentially as C-. 

When these representations are subst i tuted i n t o  t h e  e l a s t i c i t y  equatiofis 
and t h e i r  assumed asymptotic character accounted f o r ,  t he re  r e s u l t s  an i n f i -  
n i t e  sequence of d i f f e r e n t i a l  equations f o r  each i n f i n i t e  sequence of coeff i -  

$1 , G; , * * . , Gn3 , {e:, . . ,W 1.  c ien t s  {Er ,. . . , 
di t ions  (3.1) and (3.2) imply t h a t  f o r  <=+1, - 

*n Furthermore , t h e  boundary con- n 

(3 .6)  0 (f+l n n c =+’Ip, yTr >=o 

and t h a t  f o r  p = l  and 5=0: 

(3 .8)  0 o -0 1-1 n+l  n n -n+2 n -n 
(c,,T +T ,T +T ,zr +z +e T~+*+T +P,T +r + ~ ) = o  r r, r r r  

where n=0,1,2,... . 
The equations for  t h e  i n t e r i o r  coef f ic ien ts  may be integrated systemati- 

ca l ly  with respect t o  c: Application of t h e  face boundary conditions (3.6) 
leads,  i n  t h e  f i rs t  instance,  t o  t h e  c l a s s i c a l  equation of p l a t e  bending 

A l l  of the remaining lowest order i n t e r i o r  coef f ic ien ts  are expressible i n  
terms of wO; i n  pa r t i cu la r  
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(3.11) To=( l+v)-'<[ p -2 W , e - p - y p e  0 ]-2/3<Ho( P ,8 

The f i rs t  of t h e  edge boundary conditions i n  (368), namely Co=O, y ie lds  only 
one of the two boundary conditions needed f o r  W To obtainrthe second, the 
edge zone solut ions must be considered. 

The i n f i n i t e  sequence of d i f f e r e n t i a l  equations fo r  the  set of edge zone 
coef f ic ien ts  (3 r,...,w) can be grouped i n t o  sets which resemble the nonho- 
mogeneous St.-Venant equations f o r  the to r s ion  of a prism whose cross-section 
i s  the  semi-infinite s t r i p  510, I<  IGl. 
the coef f ic ien ts  (8  ...,e) can be grouped i n t o  sets which resemble the  non- 
homogeneous equations of plane s t r a i n  f o r  the  same semi-infinite s t r i p .  The 
solut ions of the  tors ion  and plane s t r a i n  problems are coupled through the  non- 
homogeneous t e r m s  i n  the d i f f e r e n t i a l  equations as w e l l  as through the  boundary 
conditions (3.7) and (3.8) which a l so  l i n k  these  solut ions w i t h  t he  i n t e r i o r  
solutions.  It should be noted t h a t  i n  the edge zone d i f f e r e n t i a l  equations, 8 
appears only as a parameter. 

'v 

Likewise the d i f f e r e n t i a l  equations f o r  

r' 

I n  order tha t  t h e  edge zone solut ions decay as <*, it i s  necessary tha t  
t h e  forces  and moments applied t o  t h e  boundary of t h e  semi-infinite s t r i p  be 
equi l ibrated by the non-homogeneous terms i n  the tors ion  and plane s t r a i n  
equilibrium equations. These in t eg ra l  conditions y i e ld ,  ul t imately,  the addi- 
t i o n a l  boundary conditions needed f o r  the  various i n t e r i o r  solutions.  For ex- 
ample, the  Kirchhoff boundary condition t h a t  r e l a t e s  t h e  shear stress resgl-  
t a n t  QZ and t h e  der ivat ive along t h e  edge of the  twist ing stress couple H i s  
obtained as follows. 

The solut ion of t b e  lowest order to rs ion  problem may be expressed i n  terms 
of a s t r e s s  function $ , where 

(3.13) 

The lowest order equation f o r  equilibrium i n  t h e  <-direction f o r  the plane 
s t r a i n  problem i p  

From the last of t h e  boundary conditions (3.7) and (3.8), t h e  condition that 
the  net  forces in  the <-direction add t o  zero, t o  lowest order,  i s  

[Tz(l ,e ,<)  + lt R;(<,e,<)d<ldg=O. (3.16) 

With the a i d  of (3.12) and (3.13) t o  (3.15), (3.16) reduces t o  

(3.17) 
0 0 Qr + H,e= 0 at  p=1, 
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0 which is  t h e  second boundary condition for W . It i s  important t o  note t h a t  
one never needs t o  ac tua l ly  solve f o r  t o  obtain t h i s  r e su l t .  

GOLDEMVEISER'S EXTENSIOEJ AND KOITER'S SIMPLIFICATION OF TKE PRECEDING RESULTS 

1 The solut ion f o r  (C,, ... , $) reduces t o  t h e  solut ion of a biharmonic 
equation f o r  W1, 
i n t eg ra l  conditions of ove ra l l  equilibrium necessary t o  guarantee decaying 
edge zone solutions.  
(which is  e a s i l y  done) but needs only t o  consider t h e  form of t h e  solut ion of 
t h e  lowest order plane s t r a i n  problem. 
analysis ,  t he re  results t h e  ref ined boundary conditions of Goldenveiser 1191 : 

To obtain boundary conditions f o r  k one again considers the 

To evaluate these,  one must solve e x p l i c i t l y  fo r  q0 

A f t e r  a straightforward but tedious 

0 1  1 0 d- r = m,e, Q~ + H , ~  + AH,,=o, (4 .1)  
0 where ~=1.260...is computed from t h e  solut ion f o r  $J . 

culat ions leading t o  (4.1) may be found i n  a report  by Van der Heijden [20]. 
The details of t h e  cal- 

Goldenveiser's r e s u l t s  may be r e s t a t ed  i n  t h e  following useful  way. Con- 
s ider  a p l a t e  of rad ius  R and thickness 2H subject  t o  a self-equilibrated nor- 
m a l  pressure p but otherwise f r e e  of surface and edge t rac t ions .  Solve t h e  
c l a s s i c a l  equation of p l a t e  bending subject t o  t h e  ref ined boundary conditions. 

Then t h e  stresses i n  t h e  i n t e r i o r  of t h e  
O(H2/R2), are given by t h e  formulas f o r  C , T , e tc .  but with W 
W. Moreover, i n  t h e  edge zone o f  t h e  plage, t h e  dominant stresses, 'to within a 
r e l a t i v e  error of O(H/R)  
replaced by To+?', and T* is  replaced by ?:, where yo and 're are given by 6.14) 

These r e s u l t s  a r e  simple and sat isfying.  Though derived f o r ,  perhaps, the 

latg,  t o  within a re1 t i v e  e r r o r  of 8 8 replaced by 

a re  given by these same formulas except t h a t  To i s  
-0 

0 

simplest, non-trivial  problem imaginable, t h e i r  _qualitative implications f o r  
s h e l l s  with free edges undergoing l a rge  deformations i s  c l ea r ,  namely 1) , t h e  
most importnat refinement of the  c l a s s i c a l  s h e l l  equations are i n  the  boundary 
conditions and 2 ) ,  t h e  dominant s t r e s ses  near a free edge can be inferred from 
the  solut ion of t he  shell equations and t h e  solut ion of a tors ion  problem fo r  
a semi-infinite s t r i p .  To give these  statements a quant i ta t ive  form v i a  an 
asymptotic analysis  would s e e m  t o  be a formidable task.  

The problem of re f in ing  t h e  Kirchhoff boundary Conditions at a free edge 
has, fortunately,been solved by Koiter [l5] i n  an a l t e rna te  way, using an in- 
genious energy argument. 
three-dimensional tangent ia l  shear stress predicted by s h e l l  theory .a t  a f r ee  
edge dQes not vanish, even though t h e  Kirchhoff boundary conditions are satis- 
f ied  exactly. Thus t h e  conventional s t r a i n  energy expression of s h e l l  theory 
overestimates t h e  to r s iona l  energy i n  t h e  neighborhood of a f r e e  edge. To as- 
sess t h i s  e r ro r ,  Koiter considers t h e  tors iona l  r i g i d i t y  of a f l a t  striQ whose 
thickness i s  equal t o  t h a t  of t h e  she l l .  By comparing t h i s  expression with 
t h a t  given by c l a s s i c a l  p l a t e  theory he is  able t o  iden t i fy  an edge zone cor- 
rec t ion  f ac to r  which i s  proportional t o  t h e  t w i s t  per  un i t  length of t he  edge 
of t he  s t r i p .  

A s  Danielson [21], and Koiter [22] have shown, t h e  

The to r s iona l  energy associated with t h i s  t e r m  i s  therefore  
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expressible as a l i n e  in tegra l .  
curve Koiter argues t h a t  one merely needs t o  i n s e r t  an appropiate expression 
fo r  t h e  edge twis t ing  per  un i t  length for  t h e  s h e l l  i n to  t h i s  l i n e  in t eg ra l and  
then subtract  t h i s  expression from t h e  conventional surface in t eg ra l  f o r  t h e  
s h e l l  energy. 

For an a r b i t r a r y  s h e l l  with a smooth edge 

Koiter 's  r e s u l t  may be of l imi ted  p rac t i ca l  value. If t h e  s h e l l  has other 
edges t h a t  are not free of stress, it i s  most l i k e l y  t h a t  t h e  associated s h e l l  
boundary conditions cannot be ref ined because t h e  corresponding boundary con- 
d i t i ons  of e l a s t i c i t y  theory cannot be determined precisely.  The s h e l l  equa- 
t i ons  are e l l i p t i c ,  hence t h e  influence of boundary conditions extend every- 
where, and it would be inconsis tent  t o  use ref ined boundary conditions a t  a 
free edge but unrefined ones at another edge. 

The r e s u l t s  of t h i s  sect ion a l so  imply t h a t  so-called th i ck  s h e l l  theories 
are meaningless i f  applied t o  homogeneous s h e l l s  with edges. W e  should note,  
however, t h a t  Van der Heijden has shown t h a t  Reissner's latest th i ck  p l a t e  
theory [ 2 3 ]  does give f a i r l y  good numerical r e s u l t s  fo r  stress concentration 
fac tors  fo r  c i r cu la r  holes i n  i n f i n i t e  p la tes .  

THE DIRECT APPROACH TO SHELL THEORY 

Here and i n  the  following sect ion we mention b r i e f l y  - space l imi t a t ions  
permit no more - some recent work concerning d i f fe ren t  formulations, implica- 
t i ons ,  s implif icat ions and the  reduction of ce r t a in  problems of t he  now gen- 
e r a l l y  accepted equations of first-approximation s h e l l  theory. 

Formulations of t h e  Nonlinear Theory 

A s t r i c t l y  mechanical theory of shells may be expressed e n t i r e l y  i n  terms 
of t h e  midsurface displacement components [51. If dynamic e f f ec t s  a r eac luded ,  
a l t e rna te  formulations are possible i n  terms of t h e  components- of a stress 
function and ro t a t ion  vector [8 ] ,  or i n  t e r m s  of s t r e s s  r e su l t an t s  and bending 
s t r a i n s  [151. 
be reformulated i n  terms of s t r a i n s  [24,25]. 
fo r  it automatically leads t o  t h e  boundary conditions fo r  inextensional defor- 
mation and, i n  t h e  l i n e a r  theory, it gives boundary conditions t h a t  a re  t h e  
geometric analogues of t h e  Kirchhoff conditions. 

In  t h e  las t  case, any displacement boundary conditions need t o  
This i n  i tsel f  has advantages, 

Thermodynamic Considerations 

These are important for  at least three  reasons. 1) heating a s h e l l  may 
cause it t o  f a i l ,  buckle, or vibra te ;  2 )  t h e  best j u s t i f i c a t i o n  of t h e  s ta t ic  
approach t o  s t a b i l i t y  f o r  a continuous body i s  a thermodynamic one; and 3) t h e  
coupling of mechanical and thermal e f f e c t s  produces damping. 

There i s  a plethora of papers on 1) t h a t  we s h a l l  not attempt t o  review; 
The thermodynamic as- a few t e x t s  give a discussion of  t h e  underlying ideas. 

pects of s t a b i l i t y  i n  general e l a s t i c  systems are discussed i n  [26,27,28]. 
These r e s u l t s  are d i r e c t l y  t ransferab le  t o  s h e l l  theory. The spec i f ic  form 
and r o l e  of t h e  l a w s  of thermodynamics i n  s h e l l  theory are discussed i n  [ lo ] .  
The e f f ec t  of thermal damping on t h e  f r e e  v ibra t ions  of s h e l l s  i s  considered 
i n  [29] where it i s  a l s o  shown t h a t ,  because t h e  damping i s  l i g h t ,  perturbation 
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methods may be used t o  advantage. 

Variational Pr inciples  

A problem of long standing i n  nonlinear e l a s t i c i t y  has been t o  formulate 
a pr inc ip le  of complementary energy. 
conditions under which t h i s  is  possible.  
these results have been applied t o  t h e  nonlinear von Karman p la t e  equations 
and Marguerre shallow s h e l l  equations t o  obtain upper and lower bounds on an 
associated energy functional.  

Recent work [ 30,31,32] has es tabl ished 
In  pa r t i cu la r ,  i n  1331 and [34], 

SOME NEW RESULTS I N  L I N W  SHELL THEORY 

Shel ls  A s  Beams 

For general cy l indr ica l  s h e l l s  and she l l s  of revolution, one .may consider 
special  c lasses  of  solut ions t h a t ,  i n  a St.  Venant sense, correspond t o  t h e  
s t re tching,  bending, twist ing,  and f lexure of a beam. In many cases t h e  re- 
su l t i ng  equations can be solved e m l i c i t l y .  See [ 35,361. 

Redxction of t h e  Governing Equations 

The s h e l l  equations cons t i t u t e  a system of e ighth order. For analy t ica l  
purposes, espec ia l ly  fo r  t h e  appl icat ion of per turbat ion methods, it i s  of t& 
convenient t o  attempt t o  express these  equations as two coupled fourth order 
equations. ( A  s ing le  eighth order equation destroys the  very useful  s t a t i c -  
geometric dua l i t y ) ,  
cy l indr ica l ,  and m i n i m a l  s h e l l s  as wel l  as f o r  s h e l l s  of revolution. A reduc- 
t i o n  f o r  a rb i t r a ry ,  non-developable s h e l l s  i s  a l s o  possible ,  but does involve 
some loss  of accuracy. 

Such reductions have been found f o r  spherical ,  general  

See [37] where other references are ci ted.  

Membrane Theory 

It i s  w e l l  known t h a t  s h e l l s  with t h e  proper shape and boundary support 
can be analyzed with good accuracy by membrane theory. 
an approach are  spel led out i n  a very general but useful  way i n  [38]. 

The d e t a i l s  of such 

Cracks and Cutouts 

Shel l s  may contain cutouts by design and cracks by accident. In  prac t ice  
the  dimensions of these  cracks and cutouts i s  apt t o  be s m a l l  compared t o  some 
cha rac t e r i s t i c  geometric dimension of t h e  s h e l l ,  p e r m i t t h g  shallow s h e l l t h e -  
ory t o  be applied. 
solut ion of coupled s ingular  i n t e g r a l  equations [39] 
numerically fo r  severa l  important problems. 
there.  

The calculat ion of t h e  stresses has been reduced t o  t h e  
t h a t  have been solved 

See [40] and t h e  references c i t e d  

Pointwise E s t i m a t e s  For Approximate Solutions 

The Prager-Synge hypercircle method i s  usefu l  f o r  constructing approxi- 
mate solut ions t o  l i n e a r  s h e l l  problems, and provides mean square e r r o r  es- 
timates f o r  t h e  approximate s t r e s s  f i e ld .  More desirable  are pointwise es- 
timates f o r  both the  approximate stress f i e l d  and t h e  approximate displace- 
ment f ie ld .  For recent work on t h i s  problem see [41] and t h e  references c i t e d  
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therein. 

Wave Propagation, Asymptotics, and St-Venant's Principle 

These are three additional areas in which there has been significant re- 
cent progress but which cannot be reviewed for lack of space. 
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FLUID-PLASTICITY OF THIN CYLINDRICAL SHELLS* 

Dusan K r a j  cinovic 
University of I l l i n o i s  a t  Chicago Circle 

M. G. S r in ivasan  and Richard A. Valentin 
Argonne National Laboratory 

SUMMARY 

The paper considers dynamic p l a s t i c  response of a t h i n  c y l i n d r i c a l  s h e l l ,  
immersed i n  a p o t e n t i a l  f l u i d  i n i t i a l l y  a t  rest, subjected t o  i n t e r n a l  
pressure  pu l se  of a r b i t r a r y  shape and duration. 
spond as a r ig id -pe r fec t ly  p l a s t i c  material whi le  t h e  f l u i d  i s  taken as 
inv isc id  and incompressible. The f l u i d  back pressure  i s  incorporated i n t o  
t h e  equation of motion of t h e  s h e l l  as an added m a s s  term. Since a r b i t r a r y  
pulses can be reduced t o  equivalent rec tangular  pu l se s ,  t h e  equation of mo- 
t i o n  i s  solved only f o r  a rec tangular  pulse.  The inf luence  of t h e  f l u i d  i n  
reducing t h e  f i n a l  p l a s t i c  deformation i s  demonstrated by a numerical example. 

The s h e l l  i s  assumed t o  re- 

FORMULATION OF THE PROBLEM 

Consider a r ig id - idea l ly  p l a s t i c ,  thin-walled, c i r c u l a r ,  c y l i n d r i c a l  s h e l l  
of i n f i n i t e  length. The s h e l l  i s  surrounded by a pool of p o t e n t i a l  ( i nv i sc id  
and incompressible) f l u i d  i n f i n i t e l y  extended i n  a l l  d i r e c t i o n s .  The s h e l l  
i s  subjected t o  an i n t e r n a l  pressure  pulse  P ( z , t ) ,  varying both  along t h e  a x i s  
and with t i m e .  P ( z , t )  is  f u r t h e r  assumed t o  be  axisymmetric and symmetric i n  
z with respec t  t o  z = 0 ( f i g .  1 ) .  

This paper  examines t h e  inf luence  of t h e  f l u i d  i n  reducing t h e  p l a s t i c  
( res idua l )  deformation of t h e  s h e l l .  
which p o t e n t i a l  f l u i d  resists t h e  motion of a deforming s o l i d  can be con- 
sidered as an increase  i n  t h e  i n e r t i a  of the  s o l i d .  Therefore i n  order t o  
so lve  t h e  problem it is necessary t o  e s t a b l i s h  t h e  so-called e f f e c t i v e  m a s s  
cons is t ing  of t h e  a c t u a l  m a s s  of t h e  s h e l l  and t h e  added ( v i r t u a l )  m a s s  
r e f l e c t i n g  t h e  f l u i d  r e s i s t ance .  Then t h e  problem i s  reduced t o  t h e  ana lys i s  
of a s h e l l  deforming i n  vacuum. 
t h e  no ta t ion  introduced i n  re ference  1. 

It is known t h a t  t h e  p re s su re  wi th  

For t h e  sake of con t inu i ty ,  w e  w i l l  adopt 

GOVERNING EQUATIONS 

The equation of motion of t h e  s h e l l  is: 

Research performed under t h e  auspices of t h e  U. S. Energy Research and 
Development Administration 

* 
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- -  N av a2M 
az 

- P - Pf - - -  pH at 2 R 

where M is t h e  axial bending moment, N t h e  c i rcumferent ia l  (hoop) normal 
force ,  R, H and p t h e  rad ius ,  t h e  w a l l  thickness and t h e  m a s s  dens i ty  of t h e  
s h e l l  r e spec t ive ly ,  V t h e  r a d i a l  ve loc i ty  of t h e  po in t s  on t h e  middle su r face  
of t h e  s h e l l ,  and P(z , t )  and P f ( z , t )  are t h e  ex te rna l ly  applied pressure  pulse  
and t h e  back pressure  of t h e  f l u i d  r e s i s t i n g  t h e  motion of t h e  s h e l l  
respec t ive ly .  

W e  assume t h a t  the y ie ld  condition i n  t h e  M,N space i s  defined by the  
l imi ted  i n t e r a c t i o n  curve of f i g .  2 .  The implications of t h i s  assumption are 
discussed i n  d e t a i l  by Drucker ( r e f .  2) and Hodge ( r e f .  3). The y i e l d  values 

and N are given by Y 
1 M = - H R P  

Y 4  0 
where 

H 
= 

0 
N = R P  

Y 

( 3 )  

with  ay being t h e  y i e l d  stress. 

It i s  known (see,  f o r  example, r e f .  1) t h a t  four d i f f e r e n t  phases (modes) 
of p l a s t i c  deformation may occur during t h e  motion. 
only one of these  phases which occurs f o r  a l l  poss ib l e  types of loading, 
though t h i s  restricts t h e  magnitude of t h e  loading t o  a c e r t a i n  l i m i t .  
t h e  considered phase t h e  deformation i s  charac te r ized  by a s t a t i o n a r y  p l a s t i c  
hinge circle a t  z = 0 and two moving hinge c i r c l e s  a t  z = -t < ( t ) .  

We w i l l  consider here in  

I n  

It can be shown (see,  f o r  example, Eason and Shield ( r e f .  4 ) )  t h a t  the  
p l a s t i c  regimes (see f i g .  2) are as follows: 

Y N = N  Regime A 

Y N = N  Regime B 
Y 

Y 

z = 0 :  M =  -M 
Y 

z = < :  M = M  
Y 

O < Z < < :  -M < M < M  N = N  Regime AB 
Y Y 3  Y 

Thus, from t h e  normality of t h e  s t r a i n - r a t e  vec tor  t o  t h e  y i e ld  sur face ,  

(4) 

For t h i s  deformation mode t h e  ve loc i ty ,  V(z , t ) ,  i s  the re fo re  a l i n e a r  function 
of 2, i .e . ,  
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I n  t h e  above equations and i n  t h e  sequel because of symmetry i t  is enough t o  
consider only ha l f  of t h e  s h e l l  z 2 0. 

DETERMINATION OF THE ADDED MASS 

Before attempting t o  so lve  equation (11, t h e  backpressure P f ( z , t )  should 
be determined as a func t ion  of V(z,t) and i t s  de r iva t ives .  
governing t h e  flow of t h e  p o t e n t i a l  f l u i d  i s  i n  po la r  coordinates 

The equation 

n n 

1 aF 3°F L 
- a F + - -  + - = O  i n  r > R  2 r ar a z  2 a r  

(7) 

where F ( r , z , t )  is  t h e  f l u i d  v e l o c i t y  p o t e n t i a l .  

As t h e  s h e l l  is  impermeable, t h e  v e l o c i t i e s  of t h e  f l u i d  and t h e  s h e l l  
a t  t h e  po in t s  of contac t  must be i d e n t i c a l ,  i .e . ,  

- -  a F - ~  a t  r = ~  
3 r  

Furthermore, from t h e  r a d i a t i o n  p r i n c i p l e ,  

aF - 3 0 as max(r,z) -+ m 
aF v - t o  , - + o  y ar az (9) 

Once t h e  f l u i d  v e l o c i t y  p o t e n t i a l - i s  determined from the  Laplace equa- 
t i o n  (7), subjec t  t o  t h e  boundary conditions (eqs. (8) and (9) )  t h e  pressure  
exerted by t h e  f l u i d  on t h e  s h e l l  can be computed from the  Cauchy i n t e g r a l ,  

where p f  is  t h e  mass dens i ty  of t h e  f l u i d .  

The equations (7)  and (10) imply t h e  assumption t h a t  t h e  per turba t ions  
about average va lues  can be neglected. 

A s  a f u r t h e r  approximation, w e  w i l l  assume t h a t  t h e  func t iona l  r e l a t i o n  
between P f ( z , t )  and 5 i s  not s e n s i t i v e  t o  the  t i m e  dependence of 5 ,  and hence 
5 may be t r e a t e d  as a constant f o r  t h e  determination of t h i s  r e l a t i o n .  Then 
i n  view of equations (6) ,  (7) ai.d (81, w e  may w r i t e  

F ( r , z , t )  = Vo(t) f ( r , z )  (11) 

P f ( Z Y t )  = --Pff(R,Z) dt 

and from equation (10) , 

(12) 
0 

dV 

where -pff(R,z) i s  t h e  added ( v i r t u a l )  mass a r i s i n g  due t o  t h e  r e s i s t a n c e  of 
t h e  f l u i d  being displaced by t h e  s h e l l .  

Subs t i t u t ing  equations (11) and ( 6 ) ,  (with 5 being constant)  i n t o  equa- 
t i ons  (7) t o  (9) ,  i t  follows 
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a2f + - - + - =  1 af a2f 0 
2 r ar az  2 
- 
ar 

s u b j e c t  t o  

and 

as max(r,z) -t m (15) a f  af - + o  y a r  a Z  
- + o  f + O  y 

The d e t a i l s  of the s o l u t i o n  of equat ion  (13) are omit ted h e r e i n  f o r  t h e  
sake of b r e v i t y .  
ducing t h e  F o u r i e r  cos ine  t r ans fo rm.  The argument of t h i s  i n t e g r a l  is 
r a t h e r  complicated and t h e  i n t e g r a t i o n  is performed i n  t h r e e  s t a g e s  us ing  
asymptot ic  formulae and F i l o n ' s  method, s u b j e c t  t o  the r e s t r i c t i o n ,  5 L R 
which i s  subsequent ly  seen  t o  be  n o t  severe. In o r d e r  t o  make t h i s  numerical  
s o l u t i o n  amenable f o r  s u b s t i t u t i o n  i n t o  equat ion  (11, the r e s u l t  is  sub jec t ed  
t o  a series of polynomial r e g r e s s i o n  ana lyses .  

A c losed  form i n t e g r a l  s o l u t i o n  is obta ined  a f t e r  i n t r o -  

F i n a l l y  w e  o b t a i n  

where 

and 

2 3 
go(x) = Bo + B1x + B 2 x + B 3 x 

3 g,(x) = a  + a x + a x 2 + a x  2 3 0 1  

a = .004994512 Bo = .02050149 0 w i t h  

a = -.5420473 El  = 1.664447 
1 

2 

3 

= -.lo58701 B 2  = -1.105309 

a = .1627719 B3 = .4096600 

Note a i  and Bi are dimensionless  cons t an t s  t h a t  do not  depend on t h e  s h e l l /  
f l u i d  parameters .  

PLASTIC DEFORMATION OF THE SHELL 

Equation (1) now becomes, i n  view of equat ions  (2 ) ,  ( 6 ) ,  (12) and (16) ,  
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I n  equation (20), 5 = z;(t). For a r b i t r a r y  P (z , t )  t h e  above equation may only 
be solved by numericalmethods. A s  a f i r s t  s t e p  i n  simplifying t h e  work, t h e  
approach introduced by Youngdahl ( r e f .  1) w i l l  be used t o  approximate a com- 
plex loadiag func t ion  by (i.e., c o r r e l a t e  i t  to )  a simple rec tangular  pulse.  
Since t h e  standard l i m i t  ana lys i s  of t h e  s h e l l  is independent of any sur- 
rounding medium, t h e  method given by Youngdahl ( r e f .  1) t o  determine t h e  
equivalent rec tangular  pu lse  does not need any modification i n  t h i s  case. 
Thus co r re l a t ed ,  P ( z , t )  can be  expressed as 

P (z , t )  = P 121 5 Le and 0 5 t 5 te e 

P ( z , t )  = 0 IzI > L~ o r  t > te 

where Pe is  t h e  magnitude, te t h e  dura t ion  and 2Le t h e  length  of t he  loaded 
area of t h e  equivalent rec tangular  pu lse  (see r e f .  1 f o r  t h e i r  de r iva t ion ) .  

For p l a s t i c  deformation t o  occur, Pe must be  g r e a t e r  than the  l i m i t  load. 
This condition is  expressed by (see  r e f .  1) 

For t h e  deformation t o  take  p lace  i n  t h e  assumed phase, t h e  following 
boundary conditions must be  s a t i s f i e d  

M = -M _ -  a M - ~  a t  Z = O  
Y Y  az 

M = M  - =  aM 0 a t  z = z ;  Y Y  a Z  

Further,  t h e  condition t h a t  t h e  bending moment does not exceed a t  t h e  
hinge c i r c l e  a t  z = 5 implies 

f i < o  2 a t  z = s  (24) 
az 

I n  add i t ion  t h e  condition t h a t  t h e  bending moment cannot be less than -Mu a t  
t h e  hinge circle a t  z = 0 implies 

a Z "  

For t h e  i n t e r v a l  0 5 t 5 te, a t r ia l  so lu t ion  as i n  t h e  case of a s h e l l  
leforming i n  vacuum is  assumed. This is taken i n  t h e  form 

O 5 t s t e  

2nd Vo(t) = - K1 t 
PH 

There z 1  and K1 are constants.  
md in t eg ra t ing  t w i c e  sub jec t  t o  t h e  boundary conditions (23) y i e l d s  i n  t h e  

Subs t i t u t ing  equation (26) i n t o  equation (20) 
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end two equations f o r  z l  and K1.  These two can be reduced to :  

and 
6pH(PeLez1 - PeLe 2 - Porn) 

- - 
K1 z: {PH - P f  Rgl (:)} 

where 

The i n e q u a l i t i e s  ( 2 4 )  and (25) can be w r i t t e n  i n  the  form 

2 
e e  and 4PeLez1 - Pezi - 3P L - 3P0RH < 0 

From equations (17), (18) and (19) i t  i s  e a s i l y  v e r i f i e d  t h a t  i nequa l i ty  
(30) is  always s a t i s f i e d .  I f  i nequa l i ty  (31) is not s a t i s f i e d  motion cannot 
start  i n  t h e  phase assumed. 
t h e  bounding value. 
equations (27) and (31) should be solved simultaneously. This is done 
numerically. 
e q u a l i t i e s  (22) and (31) and hence g ives  rise t o  deformation i n  t h e  assumed 
mode. For a Pe belonging t o  t h i s  range, t h e  non-linear equation (27) may be 
solved numerically. Also it may be v e r i f i e d  t h a t  t h e  r e s t r i c t i o n  z1  < R is 
always s a t i s f i e d  i f  Le < R. 
v a l i d  f o r  Le < R and Pe s a t i s f y i n g  i n e q u a l i t i e s  (22) and (31). 

When t h e  inequa l i ty  becomes an equa l i ty ,  Pe takes  
To determine t h e  bounding value of Pey t h e  non-linear 

Figure 3 shows t h e  range of va lues  of Pe t h a t  s a t i s f i e s  in- 

Thus, t h e  s o l u t i o n  discussed i n  t h i s  paper is 

For t > te, t h e r e  is  no i n t e r n a l  pressure .  Le t t ing  P ( z , t )  = 0 i n  equa- 
t i o n  (20), i n t e g r a t i n g  i t  t w i c e  with respec t  t o  z and s u b s t i t u t i n g  t h e  r e s u l t  
i n t o  t h e  boundary conditions (23), w e  arrive a t  t h e  following equations 

Equations (32) and (33) c o n s t i t u t e  a system of non-linear f i r s t  order d i f f e r -  
e n t i a l  equations f o r  Vo and 5 ,  t h e  i n i t i a l  conditions being given by 
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K t  l e  Vo(te) = pH ( 3 5 )  

The above d i f f e r e n t i a l  equations are v a l i d  only f o r  t 
defined by 

I t I t e f )  where tf is 

V0(tf) = 0 ( 3 6 )  

W e  w i l l  denote 
5f E 5 ( t f >  ( 3 7 )  

From equations ( 3 2 )  and ( 3 3 ) ,  we can express V as, 
0 

From (36) and ( 3 7 ) ,  w e  see t h a t  G f  can be obtained from t h e  equation, 
9 

3 m  + 5; 
- = o  6RH 

( 3 9 )  

Equation ( 3 9 )  can be solved numerically t o  ob ta in  S f .  It is  noted t h a t  
cf depends only on t h e  s h e l l  parameters H and R and t h e  dens i ty  r a t i o  p f / P .  
Since 5f is t h e  quant i ty  t h a t  i s  known and not t f ,  t h e  equations (32) and 
( 3 3 )  are now reformulated wi th  5 being t h e  independent v a r i a b l e  and t ( C )  and 
V (<) being t h e  dependent var iab les .  Thus, 
0 

The new i n i t i a l  conditions are 

Equations ( 4 0 )  and (41) are solved numerically. F ina l ly ,  t h e  maximum 
p l a s t i c  deformation U ( t )  can be obtained as, 

0 

( 4 4 )  
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o r  (45) 

The i n t e g r a l  i n  equation (45) can be numerically evaluated a f t e r  t h e  numeri- 
cal so lu t ions  Vo(<) and t ( < )  have been obtained. 

For t h e  s p e c i a l  case i n  which z 1  coincides with < f ,  t h e  s o l u t i o n  f o r  
t > te discussed above i s  not  v a l i d .  
wi th  (35) y i e l d ,  

For t h i s  case, equations (32) and (33) 

< = z  - 1 - <f 

where @(<) is defined i n  equation (32). Note Q , ( z l )  < 0. From equation (47) 
w e  see 

t f  - - t e  (1 pHi:zl)} 

From equations (47) and (44) w e  can show t h a t  

F ina l ly  w e  have, f o r  t h e  maximum p l a s t i c  deformation i n  t h i s  s p e c i a l  case 
0 

NUMERICAL EXAMPLE 

For a s h e l l  with H/R = 1/36, Le/R = 1 / 4  surrounded by a f l u i d  of 
p f / p  = 1/10, t h e  complete numerical s o l u t i o n  i s  determined f o r  t h e  admissible 
range of loads Pe. 
g ive  rise t o  motion i n  t h e  assumed phase is  between: 1.33 and 2.97. The 
same range f o r  a s h e l l  i n  vacuum is 1.33 t o  2.19. Figure 4 shows the  f i n a l  
maximum p l a s t i c  deformation, Uo( t f ) ,  (non-dimensionalized as pHUo/Pot$ ) as a 
func t ion  of Pe/Po. 
s h e l l  deforming i n  vacuum is a l s o  shown i n  t h e  same f igure .  

A s  is  seen from f i g u r e  3, t h e  range of Pe/Po t h a t  w i l l  

For t h e  sake of comparison t h e  corresponding curve f o r  a 

I n  t h e  numerical methods used, non-linear a lgebra ic  equations such as 
(27) and (39) w e r e  solved by Newton's i t e r a t i o n  method and t h e  system of 
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d i f f e r e n t i a l  equat ions  (40) ,  (41) by a method us ing  automatic  s t e p  change 
( r e f .  5).  
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F i g u r e  1.- C i r c u l a r  c y l i n d r i c a l  s h e l l  
immersed i n  f l u i d  and loaded by 
i n t e r n a l  p r e s s u r e  pulse .  

N 

3 Y  B 

D C 

Figure  2.- Yield cond i t ion .  
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THERMAL STRESSES IN A SPHERICAL PRESSURE VESSEL HAVING 

TEMPERATURE-DEPENDENT, TRANSVERSELY ISOTROPIC, ELASTIC PROPERTIES 

T. R. Tauchert 
University of Kentucky 

SUMMARY 

Rayleigh-Ritz and modified Rayleigh-Ritz procedures are used to construct 
approximate solutions for the response of a thick-walled sphere to uniform pres- 
sure loads and an arbitrary radial temperature distribution. The thermoelastic 
properties of the sphere are assumed to be transversely isotropic and nonhomo- 
geneous; variations in the elastic stiffness and thermal expansion coefficients 
are taken to be an arbitrary function of the radial coordinate and temperature. 
Numerical examples are presented which illustrate the effect of the temperature- 
dependence upon the thermal stress field. A comparison of the approximate solu- 
tions with a finite element analysis indicates that Ritz methods offer a simple, 
efficient, and relatively accurate approach to the problem. 

INTRODUCTION 

Modern engineering structures are often subject to thermal environments in 
which the temperature causes significant variations in the thermal and mechani- 
cal properties of the material. Over certain temperature ranges the material 
may behave elastically, but have variable stiffness and thermal expansion char- 
acteristics. In addition, modern materials of construction (e.g. composites) 
often possess anisotropy and nonhomogeneity. While most classical thermoelas- 
tic solutions are not applicable to situations involving temperaixre-dependent 
anisotropic behavior, some progress has been made in this direction. 
ple, the problem of a hollow sphere with temperature-sensitive isotropic elas- 
tic properties has been studied by Nowinski (ref. 1) and Stanisic and McKinley 
(ref. 2). More recently Hata and Atsumi (ref. 3) investigated the response of 
a transversely isotropic sphere exposed to a sudden temperature rise on its in- 
ternal surface. 

For exam- 

In the present paper a transversely isotropic hollow sphere having temper- 
ature sensitivity and/or initial nonhomogeneity is considered. The variability 
of the thermoelastic properties may result from manufacturing processes, in 
which case the properties depend upon position but not temperature, or the non- 
homogeneity may be a consequence of the materials’ temperature sensitivity. 
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FORMULATION OF THE PROBLEM 

Consider a hollow elastic sphere 

exposed to a temperature distribution 
and p respectively. pressures, pI 11’ 

2’ of inner radius r and outer radius r 

T(r) in addition to internal and external 
Owing to the spherical symmetry of the 

1 

problem, the nonvanishing strain components depend upon the radial displacement 
u according to the relations 

Assuming transverse isotropy, the thermal stresses are related to the strains 
and temperature rise by 

in which A..(T,r) denote the elastic stiffnesses and Bi(T,r) are the stress- 
temperature coefficients. Alternatively, the strains may be expressed in terms 
of the stresses and temperature as 

1J 

where a (T,r) and a.(T,r) are the compliances and the coefficients of thermal ij 1 
expansion, respectively. 

For convenience in later operations the following dimensionless quantities 
are introduced : \ 
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in which (3 

T represents some reference temperature. 
denotes an arbitrary reference stress-temperature coefficient and 

0 

0 

In formulating the problem through the use of energy principles, we re- 
quire specification of the total potential energy of the sphere. 
of quasi-static loading, the total  potential energy II consists of the strain 
energy U plus the potential V 
the strain energy in anisotropic, temperature-sensitive, elastic bodies are 
given in reference 4. Based upon these expressions the total potential energy 
for a transversely isotropic sphere with strains given by equation (1) is 

For the case 

of the external forces. General expressions for E 

in which the integral expressions constitute the strain energy, and the terms 
involving qI and qII represent the potential of the pressure loads. 

rather than displacements represent the varied quantities, involves the total  
conrplementary energy. When tractions are specified over the entire boundary 
of the body, the total complementary energy lI* is equal to the complementary 
strain energy U*. 
shown that for the sphere 

A complementary variational approach to the problem, in which stresses 

From the general results given in reference 4 it can be 

+b t t + t  
0 23 @@ 80 PP 

Before developing approximate solutions to the problem, it is noted that 
the governing differential equation and natural boundary conditions can be de- 
rived through direct application of the principZe ofmin<mwn potential energy. 
Requiring that the first variation of the total potential energy be equal to 
zero ( 6 I T = O ) ,  and performing integration by parts, one obtains the displacement 
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equation of equilibrium 

+-- 2 dv -2(B22+B23-B12) -+--+2 V dBll dv -- dB12 v 
dP dP dp P '11[3 P dP] P2 

and the natural boundary conditions 

( 8 )  

dv(P1) V(P,) @(P1) 
+2B12(P1) -- .f Yl(@,Pl)d@= -qI 

P1 0 B1l(P1) dp 

@ (1) 
Bl1(1) dvO+ 2B12(1) v(1) - yl(O,l)dO= -qII 

0 dP 

Finding an exact solution to these equations does not appear possible for a 
sphere of general nonhomogeneity. 

RAYLEIGH-RITZ METHOD 

In the Rayleigh-Ritz method a kinematically admissible displacement field 
is assumed, and the principle of minimum potential energy is used to determine 
unknown coefficients in the assumed solution. Here we shall represent the rad- 
ial displacement v(p) by the power series 

i -m n n 

i=-m 
v= 1 aip = a-mp -t . . . + ao+ . . . + anp 

in which the number of nonzero coefficients a is arbitrary. Although it is. 
only necessary to satisfy displacement boundary conditions when applying the 
Rayleigh-Ritz method, generally it is desirable to satisfy traction conditions 
as well. Relations (8) will be satisfied identically by the displacement field 
( 9 )  if the coefficients ai satisfy 

i 

@(P1) 
i- 1 i- 1 

fl(ai) = B ~ ~ ( P ~ >  1 i ai p1 +2B12(P1) aiP - .f Y1(O,Pl)dO+ ql= 0 
i 0 

f (a)= Bll(l> 1 i ai+2B12(1) 1 a -1  yl(O,l)dO+qII=O 
i i i o  J 
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i These equations can be used in order to eliminate two of the coefficients a 

from the assumed solution. Alternatively, equation (9) can be retained in its 
original form and conditions (10) satisfied by the method of Lagrange multi- 
pliers, as described in reference 4. In this case the restrictions (10) are 
written in terms of Lagrange multipliers A and X as 1 2 

Necessary conditions for a minimum value of the total potential energy 11, sub- 
ject to the subsidiary conditions (ll), then are given by 

where 

0 ( s =  1,Z) all -=0 (j=-m, ..., n), -= 
S 

aa ax 
j 

-.. 
I I = I I + x  f +X2f2 1 1  

Substituting the assumed solution (9) into the potential 
and differentiating if with respect to a as indicated in 

j 

energy expression (S) , 
equation (12), gives 

n 2 
=H. (j=-m y...,n) 1 G * *  ai+ C gjs s 

J i=-m J 1  s=l 

in which 

= ~ l ~ B l l +  2(i+j)B12+ 2(BZ2+ Bz3) piSSdp 
Gji P, 3 

The Ritz coefficients ai are then found by solving the algebraic equations.(14) 
together with the constraint equations (10). 

MODIFIED UYLEIGH-RITZ METHOD 

The modified Rayleigh-Ritz method consists of assuming a state of stress 
which satisfies equilibrium and traction boundary conditions, and then deter- 
mining unknown coefficients in the assumed solution by applying the principle 
of m i n i m  complementary energy. 
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It is easily verified that equilibrium is satisfied if the dimensionless 
stress components are expressed in terms of a stress function J, as 

In this case the total complementary energy becomes 

We choose to represent the stress function J, by the power series 

n i -m n 
$ =  1 a2p =a* p +...+ a*+ ...+ a:p i=-m -m 0 

in which the number of nonzero coefficients a* is arbitrary. i pression (18) yields stresses which satisfy the traction boundary conditions (8), 
the coefficients ai must satisfy the relations 

In order that ex- 

* 

Proceeding as in the standard Rayleigh-Ritz technique outlined earlier, condi- 
tions (19) are next written in terms of the Lagrange multipliers X.f and 
Application of the principle of minimum complementary energy then leads to the 
set of equations 

. 

where 

G* = 1' Fll+ (2+i+j)b12+ 3 (l+i) (l+j) (b22+ b23 
ji 

P1 
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The coef f ic ien ts  a i  and the  Lagrange mul t ip l ie rs  A" then are found by solving 
equations (19) and (20). 

S 

FINITE ELEMENT TECHNIQUE 

The energy formulation developed earlier a l s o  provides a convenient bas i s  
f o r  constructing a f i n i t e  element so lu t ion  t o  the  problem. 
sphere is idealized as a series of N hollow spher ica l  subregions. 
element j has an inner radius  p 
i a l  displacement components are denoted by vi and v 
are taken t o  be (t ) .  and (t ) respectively.  

I n  t h i s  case the  
A t yp ica l  

and an outer radius  p the  corresponding rad- i 
l i d  t he  r ad ia l  stresses 

j '  

PP 1 PP j '  

It is  assumed t h a t  the displacement var ies  l i nea r ly  with p within each 
element, so tha t  

The thermoelastic proper t ies  are 
which case the  following average 

taken t o  be constant over each element, i n  
values w i l l  be used 

(23) 

0 

W P j )  - E k =  %[\ ck(Q,pj)dQ+ 

By analogy wieh equation (5), t h e  t o t a l  po ten t i a l  energy fo r  element j is  

Subst i tut ing equation (22) i n t o  ( 2 4 ) ,  and minimizing II(j) with respect t o  .vs 
and v gives 

2 
j 

- -Pi ( tPPI i  
2 3  

(Pi3 -3PiPi +2Pi 1 
3 (Pj-Pi) 
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3 2 3  (Pi -3PiPj +2Pj - (Pi -Pi - 3 3  
=k v +k v~ (25b) r2 12 i 22 j 

r +  2 
Pj ( W j +  3(pj-pij 1 3(Pj-Pi) 

where the element stiffness coefficients k are 
ij 

\ 

u p  'P 1 3 2 3  
U P j  -3PIPi +ai 1 (Pj -Pi - 3 3  

ii +a (ii22+ii23) 
kll = 3 (P j -Pi> 2 B1l- 3 (P j-Pi) 2 12 3 

(P -P ) - 3 3  
(Pj  -Pi 1 

3 (Pj--Pi> 
% +- (B22+x23- B12) 

2 11 3 
k12 =- 

Application of equations (25) to each of the N elements provides a system of 
2N linear equations for the N+l displacement components and the N-1 interface 
stresses. 
equations for the unknown displacement components. 

The interface stresses can be eleminated, resulting in a set of N+1 

NUMERICAL EXAMPLES 

To illustrate the influence of temperature-dependent material properties 
upon the thermoelastic response, and at the same time to demonstrate the appli- 
cability of Ritz methods in thermal stress problems, numerical results are pre- 
sented for a sphere subject to various temperature and pressure conditions. 
The ratio of the sphere's inner and outer radii is taken to be p =0.8. It is 
assumed that the body is initially homogeneous, and that the thermal expansion 
coefficients vary linearly with temperature, while the elastic stiffnesses ex-' 
hibit a quadratic variation. 

1 

In particular we let 

E = E  0 (l+bO), B =B.. 0 (I-& 2 ) 
i i  ij 1 3  

in which b and c are constants. 
coefficients are taken to be 

The initial (zero-temperature) thermoelastic 

= 31.0~ 10 0 4 0 4 0 0 
B22 +B23 B12 =1.0 x 10 Bll =3.0 x 10 

0 0 y1 =1.0 y2 =1.5 
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These values are representative of certain fiber reinforced composite materials, 
reinforced in the circumferential ((I and 0 )  directions. 

A s  a first example let us consider a sphere subject to a uniform tempera- 
ture rise 0 = 1  and zero internal and external pressure. Values of the thermal 
displacements and stresses found using the Rayleigh-Ritz and the modified Ray- 
leigh-Ritz methods are compared with the exact solution (ref. 5 )  for the limit- 
ing case of temperature-independent properties (b=c=O) in Table I. It is evi- 
dent that the accuracy of the approximate solutions generally improves as addi- 
tional terms are included in the assumed solution. When the Rayleigh-Ritz ap- 
proximation contains 3 independent coefficients (i.e., a total of the 5 coeffi- 
cients a,2,a,l, ao,al,a2 of which 2 may be eliminated using the boundary condi- 
tions), the value of the maximum stress amplitude 1 t+(1(0.8) 1 exceeds the exact 
value by 0.9%. For 5 independent coefficients the error is reduced to 0.3%. On 
the other hand the maximum stresses predicted by the modified Rayleigh-Ritz pro- 
cedure using 3 and 5 independent coefficients are 2.3% and 1.6% smaller than the 
exact value. 
Ritz approximation are taken to be -5, 4 ,  and 1, the computed values of the dis- 
placements and stresses are exact, since the assumed solution then has precisely 
the form of the exact solution. 

When the powers of p in either the standard or modified Rayleigh- 

Results of finite element analyses are compared with the exact solution. to 
this same problem in Table 11. 
solutions improves as the number of independent displacement components is in- 
creased. 
nent components (2 elements), the maximum stress It +(0.8) I exceeds the exact 
value by 2.6%. Thk error is reduced to 0.7% when 1 s displacement components 
(12 elements) are used. However for this problem it was found that the compu- 
tations required to achieve a given level of accuracy were less time consuming 
#hen one of the Ritz methods was used than when the finite element technique 
#as applied. 

To demonstrate the inf hence of temperature-dependent behavior upon the 

Naturally the accuracy of the finite element 

When the finite element solution is based upon 3 independent displace 

Zircumferential stress in the sphere, Ritz solutions based upon 5 independent 
:oefficients are plotted in figures 1-3. 
listributions associated with various values of the temperature-dependent pa- 
-ameters b and c for temperature alone and for combined temperature plus inter- 
tal pressure. 
-ise 0-1. 
cnd 0=-4+5p are given in figure 2 and 3,  respectively. Each of the Ritz solu- 
.ions plotted in the figures was compared with a finite element solution based 
ipon a 12-element model. Agreement between the values of the maximum absolute 
,tress predicted by the two methods varied between 0.1% and 1.6%, with one ex- 
eption. 
iaximum stress was relatively small, and the discrepancy was nearly 5.0%. 

Each of the figures shows 'the stress 

Figure 1 shows the stresses induced by a uniform temperature 
Results for the linearly varying temperature distributions 0=5-5p 

In the case of 0=-4+5p and zero internal pressure 41'0 (fig. 3) the 

As would be expected for the purely temperature loadings (qI=qII=O), the 
aximum stresses diminish with increasing values of c(i.e., with decreasing 
tiffness), whereas they become larger with increasing values of b (increasing 
hermal expansion). The influence of temperature sensitivity is less predict- 
ble in the case of combined temperature and pressure, since both the pressure- 
nduced and temperature-induced stresses are affected by the nonhomogeneity. 
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Table I. Ritz approximations for the thermal displacements and 
stresses caused by a uniform temperature rise 0 = 1  when b -  c=O. 

Powers of p 

No. of indep. coefs. 

v(0.8) Radial displ. 
107 v(O.9) 

v(1.0) 

t (0.8) 

Radial stress t (0.9) 
t (1.0) 

PP 

PP 

t (0.8) 

Circumf. stress t (0.9) 
@@ 
@$ 

(1.0) 

Ray leigh-Rit z Modified Rayleigh-Ritz Exact 

-2,-1,0,1,2 -3,-2,-1, -2,-1,0,1,2 -3,-2,-1, -5,4,1 
0,19293 0,1,2,3 

3 5 3 5 3 

.058 .059 .066 .064 .060 

I355 * 355 .354 .354 .354 
.636 .634 .633 .632 634 

0 0 0 0 

-. 084 -. 091 -. 092 - 4 2  -. 091 
0 0 0 0 0 

-. 948 -.943 -. 918 -.925 -. 940 
.001 - .001 - ,006 -. 003 -. 003 
.762 .757 .755 .750 .758 

Table 11. Finite element solutions f o r  the thermal displacements and 
stresses caused by a uniform temperature rise 0 = 1  when b =  c =  0. 

No. elements 

No. indep. displ. 
comps. 

v(0.8) 
v(O.9) 
v(1.0) 

Radial displ. 
107 

t (0.8) 

Radial stress t (0.9) 
PP 

PP 
tpp (1.0) 

t (0.8) 
Circumf. stress t (0.9) 

to$ (1.0) 

$4 
$4 

F 1 1 
Finite Element Exact 

2 4 6 12 - 

3 5 7 13 - 
.062 .060 .060 .060 ,060 
.356 ,355 .355 .355 .354 
.636 ,635 .635 .635 .634 

-. 10s -. 064 -. 046 -. 025 0 
-. 073 -.092 -.092 -. 091 -.091 
-. 033 -. 022 -. 016 - .008 0 

-. 965 -.959 -. 954 -. 947 - .940 
.012 . 001 -. 001 - .001 -. 003 
.750 ,752 m 753 .756 .758 
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ANALYSIS OF PANEL DENT RESISTANCE 

Chi-Mou N i  
General Motors Research Laboratories 

SUMMARY 

An a n a l y t i c a l  technique f o r  e l a s t i c - p l a s t i c  deformation of panels has 
been developed, which may be employed t o  analyze t h e  denting mechanisms of 
panels r e s u l t i n g  from poin t  p r o j e c t i l e  impacts and impulsive loadings. 
c o r r e l a t i o n s  of a n a l y t i c a l  r e s u l t s  with t h e  experimental measur ments are 
considered q u i t e  s a t i s f a c t o r y .  

The 

e 
The e f f e c t  of elastic springback on t h e  dent-resistance ana lys i s  i s  found 

t o  be very s i g n i f i c a n t  f o r  t h e  panel (122 c m  x 60.9 c m  x 0.076 cm) subjected 
t o  a poin t  p r o j e c t i l e  impact a t  16.45 m/sec. While the  amount of springback 
decreases as t h e  loading speed increases ,  the  e f f e c t  due t o  the  s t r a i n - r a t e  
hardening of material, such as low-carbon steel, becomes more dominant and 
has been demonstrated i n  the  ana lys i s  of dent r e s i s t ance  of a rectangular 
s teel  p l a t e  impulsively loaded. 

INTR@DUCTION 

One of t he  primary concerns i n  exposed panels of automotive vehic les  and 
a i r c r a f t  i s  t h e i r  a b i l i t y  t o  resist damage by denting during f ab r i ca t ion  and 
i n  serv ice .  Generally speaking, t he  mechanical p rope r t i e s  of the  material, 
panel geometry, and loading conditions are the  primary f a c t o r s  i n  determining 
panel dent res i s tance .  These f a c t o r s  are r e l a t e d  i n  a complicated way, 
however; therefore ,  i t  i s  not easy t o  use an i n t u i t i v e  approach t o  develop 
t h e i r  mathematical r e l a t ionsh ip ,  and w e  must r e s o r t  t o  an a n a l y t i c a l  approach 
ins tead .  

Generally speaking, t he  loadings which dent t he  panel are somewhat random 
i n  nature.  Dents may be produced i n  automotive panels during f ab r i ca t ion ,  f o r  
example, by t h e  i m p a c t  of one panel on another and by dropping t; panel onto a 
holder o r  conveyor pro jec t ion .  I n  serv ice ,  dents are commonly produced by 
f l y i n g  s tones ,  door impact i n  a parking l o t ,  and even h a i l .  For aerospace 
s t ruc fu res ,  q u i t e  o f t e n  t h e  exposed a i r c r a f t  components are subjected t o  
impact loadings,  including h a i l  and runway s tones ,  etc. Nevertheless, i n  t h i s  
study i t  i s  assumed t h a t  t he  loading conditions may be charac te r ized  with 
(a) p r o j e c t i l e  impact over a period of t i m e ;  and (b) an impulse having a very 
sho r t  duration. 

I n  t h i s  study, an a n a l y t i c a l  approach is  developed t o  analyze the  denting 
mechanism of panels under impact and impulsive loadings. 
usually t h e  consequence of d u c t i l e  p l a s t i c  flow. The dent r e s i s t a n c e  i s  

Panel denting i s  
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r e f e r r e d  t o  as t h e  panel-dent s t r eng th ,  measured i n  t e r m s  of permanent p las t ic  
deformation (not t h e  deformation r e s u l t i n g  from any elastic buckling). 
t h e  p a s t  few years ,  t h e  ana lys i s  and p red ic t ion  of l a r g e  dynamic and permanent 
deformations of s t r u c t u r e s  caused by impact and impulsive loadings have 
received increas ing  i n t e r e s t  ( r e f s .  1 t o  6 ) .  

Over 

Three a n a l y t i c a l  approaches t o  these  problems are commonly used. The 
r i g i d - p l a s t i c  i d e a l i z a t i o n  ( r e f s .  1 t o  2) has  been f requent ly  applied t o  analyze 
impulsively loaded beams, r ings ,  f l a t  p l a t e s ,  and axisymmetric c y l i n d r i c a l  
s h e l l s .  There are l i m i t a t i o n s  t o  t h i s  i dea l i za t ion ,  however. For ins tance ,  
once t h e  l a r g e  d e f l e c t i o n  o r  geometry change is  taken i n t o  account, a r ig id-  
p l a s t i c  ana lys i s  may be too complicated t o  use ( r e f .  2).  Furthermore, t h e  
r i g i d - p l a s t i c  ana lys i s  is appl icable  only t o  problems f o r  which t h e  i n i t i a l  
k i n e t i c  energy is  much l a r g e r  than t h e  maximum elastic s t r a i n  energy. 
approach o f t e n  employed f o r  s t r u c t u r a l  problems i s  the  energy method ( r e f .  6 )  
i n  which t h e  energy input t o  t h e  s t r u c t u r e  is  equated t o  the  p l a s t i c  work 
done. The success of t h i s  method depends on how reasonable an estimate i s  
made of t h e  primary mode of deformation. 
a r b i t r a r y  t r a n s i e n t  loading, i t  can be d i f f i c u l t  t o  make such an estimate. 

Another 

For a complex s t r u c t u r e  under 

The de f i c i enc ie s  i n  t h e  two a n a l y t i c a l  methods can be s k i r t e d  by various 
numerical methods, such as t h e  f i n i t e  d i f f e rence  method ( r e f s .  3 t o  5) and t h e  
f i n i t e  element method ( r e f .  5).  I n  t h i s  paper, a numerical scheme extended 
from Reference 4 i s  employed t o  analyze the  panel denting as a r e s u l t  of being 
subjected t o  impact and impulsive loadings. 

THEORETICAL FORMULATIONS 

Minimum P r i n c i p l e  

Consider a body of a continuum occupying i n  i t s  n a t u r a l  state a region 
V, and bounded by a piecewise smooth sur face ,  A . The body is  subjected t o  

time-dependent body force ,  Fm (per  u n i t  mass) and Lagranian sur face  t r a c t i o n  
(per  u n i t  a rea)  Tm over t h a t  p a r t  of t h e  i n i t i a l  sur face  area AT . A t  t i m e  
t , l e t  {Uk) be the  displacement vector of a p a r t i c l e  of t h e  body which has an 
i n i t i a l  pos i t i on  of {Xk) i n  a cu rv i l i nea r  coordinate system. The displacements 
are prescribed over t h a t  p a r t  of t h e  boundary sur face ,  A, . The deformation . 
of t h e  body may be described i n  terms of t h e  covariant components of t he  
Lagrangian s t r a i n  tensor,  E u  , defined by 

(1) 
1 

* EkL = 2 ('k;L -t- 'L;k 

Herein, a covariant de r iva t ive  of a va r i ab le  with respect t o  xk is  
designated by t h e  semicolon i n  t h e  subsc r ip t  pos i t ion ,  as 
r e p e t i t i o n  of an index i n  a t e r m  i nd ica t e s  summation. The Lagrangian s t r a i n  
may be  expressed as t h e  sum of two pa r t s :  e l a s t i c  s t r a i n ,  E& and p l a s t i c  
s t r a i n  EEL . It i s  pos tu la ted  t h a t  t h e  c o n s t i t u t i v e  r e l a t ionsh ips ,  i n  

( ) ; k  , and the  
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terms of the symmetric Kirchhoff stress tensor 
velocity dependent but are not influenced by strain accelerations. 
words, it is sssumed that 

SkL , may be plastic-strain 
In other 

in which 0 is the temperature and % is the velocity rate of plastic 
straining. The contravariant components of the Kirchhoff stress tensor, 
satisfy the boundary conditions 

SkL , 

in which Nk is the covariant outward unit normal to A , and g m  is the 
metric tensor. 

.. It has been shown (ref. 7) that the time acceleration field, 
UM = D2uM/Dt2, of the body, which has known or predetermined displacement and 
velocity fields at time t, is distinguished from all kinematically admissi- 
ble ones by having the minimum value of the following functional: 

( 4 )  
I = 1 SkLE dV + y & dV - JT% M dA - f poF%NdVo 

% VO 
kL o '4'0 M o 

vO 0 

in which po is the initial mass density. 
continuous as well as sectionally discontinuous acceleration fields. Ordinari- 
ly, it is sufficient to use the first variation with respect to the accelera- 
tion? 6accI = 0 ,  to establish governing equations or to solve a problem by a 
direct method of variational calculus. 

The minimum principle is valid for 

Kinematics 

Consider a cylindrical-shell panel of mean radius R , thickness h , 
axial length L , and arc width RB. Let (x,y,z) be the axial, circumferential 
and (outward) normal coordinates, and (Ux,Uy,U,) be the corresponding , 
physical components of the displacement vector of a point in the shell, 
respectively. Then, by utilizing the Love-Kirchhoff assumption for thin 
shells and by neglecting wave propagation through the thickness, the displace- 
ment components of a particle can be expressed in terms of the corresponding 
displacement (and its derivatives) of the middle surface as 

where u, v, and w denote the axial, tangential, and (outward) normal dis- 
placement components of a point on the mid-surface. 
components, the strain accelerations can then be defined as 

Having the displacement 
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.. 
E = ( 1  + u,  X )Cy, + v y x V Y x  + wyxWYx - ZW, xx + ;fx ;Zx G?, 
xx 

.. 
Y E ='[ u,  ii, + (1+ v, - W)V, + (v + w, )WYX + (1 + UYx)iiY 

XY 2 Y X  Y X Y . .  
+ VYx(V, - S )  + Wyx(ii + w, ) - Z(2WY + v, ) + UYxU,  Y Y X y  X Y 

E = u,  ti, + (1 + v, - W)(VYy - 23) + (v + w, )(W, + V) 
YY Y Y  Y Y Y  

- Z(W, + v, ) + L: + ( G Y Y  - ; ) 2  + (G + WYY)2 
YY Y Y 

C o n s t i t u t i v e  Re la t ionsh ip  

For an  i s o t r o p i c  and homogeneous material, t h e  e las t ic  s t r e s s - s t r a i n  rela- 
t i o n s h i p  may b e  reasonably expressed by 

= - 1 [ ( 1  + v) 8, - v6kLim] 
'EL E (7) 

where v is  Po i s son ' s  r a t i o  and 6kL i s  t h e  Kronecker symbol. The p l a s t i c  
s t r e s s - s t r a i n  r e l a t i o n s h i p  based on t h e  i so thermal ,  incrementa l  t h e o r i e s  of 
p l a s t i c i t y  may b e  der ived  from Drucker 's  p o s t u l a t e  of p o s i t i v e  work i n  p l a s t i c  
deformation. Drucker 's  p o s t u l a t e  e s t a b l i s h e s  two requirements:  

(a )  
s u r f a c e ,  t h e  p l a s t i c  s t r a i n  rate vec tor  is always d i r e c t e d  along t h e  normal 
t o  t h e  loading  s u r f a c e  o r  

The loading  s u r f a c e  is convex and (b) a t  a smooth p o i n t  of t h e  y i e l d  

where G 
material and may b e  determined, based on t h e  concept of i s o t r o p i c  hardening, as 
( r e f .  4 )  

i s  a scalar p r o p o r t i o n a l i f y  func t ion  depending on t h e  s ta te  of t h e  

G = -(it 3 - E 1 ) f o r  f = 0 and - af 
452 asm 'mi ' O 

o r  - sm L 0 

e 

af f o r  f < 0 
a sm 1 
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in which 
from the uniaxial Kirchhoff stress vs Lagrangian strain curve of the material. 
Herein, a generalized J2  
employed for the shell problem as 

Et , a function of J2 , is the tangent modulus which may be obtained 

criterion based on the Mises yield function is 

where K is the strain-hardening parameter. 

It has been long recognized that the strain-rate sensitivity of material 
may be one of the important factors affecting the dynamic responses of elastic- 
plastic structures. A generalized formula which accounts approximately for 
the multiaxial behavior of a strain-rate sensitive material is employed and 
expressed as 1 ,. . -  

{ cr 
- 0 e = I +  (%)p 
0 

6 .  .0 
1 where 0 (effective stress) = (; - yj)+, S . . S  "1 = cr - - e ij 3 XJ kk 

. 
E (effective strain rate) = e 

D and p = material constants 

Finite-Difference Energy Method 

A numerical approach based on the finite-difference direct method in 
conjunction with the minimum principle (as shown in Eq. ( 4 ) )  is developed to 
analyze the large dynamic responses of cylindrical shell panel under impact 
and impulsive loadings. 
idealized sandwich shell having a number of discrete, thin load-carrying 
sheets made of a work-hardening material is employed. The indices 5 ,  j, 
and k are introduced to indicate the spatial position of a point in the 
shell as follows: x = iAx, i = 1 ,... m; y = jay, j = l,...n; z = kAz, k = 
0 ,  r t l ,  . . .+R; where Ax, Ay, and Az are chosen spacings of coordinates x, y, and 
z, respectively. The spatial derivatives of accelerations and displacements 
are replaced by discrete values of accelerations and displacements through a 
central finiteddifference scheme. The functional I , by Equation ( 4 ) ,  may be 
replaced by a finite summation through using the trapezoidal rule for the 
integration. The explicit expressions for accelerations at any time 
step t = qat may be obtained by minimizing the functional 19 with respect to 
the discrete accelerations as follows: 

To make the amount of computation tenable, an 
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The d i s c r e t e  acce le ra t ions  must a l s o  s a t i s f y  t h e  boundary conditions f o r  
t h e  clamped c y l i n d r i c a l  s h e l l  panels which r equ i r e  t h a t  t h ree  displacement 
components and t h e i r  slopes a l l  have a value of zero. 

It is  assumed t h a t  a t  t i m e  t = qAt, t h e  displacements, v e l o c i t i e s ,  s t r a i n s  
and stresses, have been previously determined a t  a l l  nodal po in ts  of t h e  
domain. 

124 Subsequently, t he  displacements a t  t i m e  t + A t  may be 
obtained i y  the  c e n t r a l  d i f f e rence  approximation. 
t + A t ,  t h e  s t r a i n  increments t h a t  occurred i n  t h e  t i m e  i n t e r v a l  ( t  + A t  - t) 
may a l s o  be determined by using t h e  c e n t r a l  d i f f e rence  scheme. 
t h e  corresponding stress increments may be obtained by the  c o n s t i t u t i v e  rela- 
t ionships  provided t h a t  the  condition of loading o r  unloading is  known. 
This may be accomplish'ed by f i r s t  ca l cu la t ing  a set of stress increments 
corresponding t o  G = 0. 
and t h e  appropr ia te  value of G i n  Equation (9) i s  used i n  t h e  ca l cu la t ion  of 
t h e  co r rec t  stress increments. By repeating t h e  foregoing s t e p s  f o r  each 
subsequent t i m e  increment, t h e  e n t i r e  h i s t o r y  of deformation of t he  s h e l l  
panel may be obtained. 

, j y  
Then Equation (12) may be used t o  determine t h e  acce le ra t ions  ti8 

, %?, - a t  t i m e  t. 
Knowing t h e  displacements a t  

Furthermore, 

Then the  loading c r i t e r i o n ,  df 3 0, may be checked 

Impact and Impulsive Loadings 

I n  t h e  case of p r o j e c t i l e  impac t ,  t h e  a c t u a l  s i t u a t i o n  could be very 
complex and not  amenable t o  ana lys i s  due t o  t h e  i r r e g u l a r  shapes of t h e  panels 
and t h e  indentors and t h e i r  i n t e rac t ions  during deformations. However, f o r  
s impl i c i ty  t h e  p r o j e c t i l e  is considered here  t o  be r i g i d  and s m a l l  i n  s i z e  
compared with t h e  dimensions of t h e  panel. I n  engineering ana lys i s ,  t h e r e  are, 
i n  general ,  two approximate methods t o  incorporate t h e  impact loadings by t h e  
p r o j e c t i l e  i n t o  t h e  mathematical system: one i s  termed "Collision-Imparted 
Velocity Method" ( r e f .  8) and t h e  o ther ,  t h e  "Collision-Force Method" ( r e f .  8). 
For t h e  "Collision-Force Method," t h e  contact fo rce  is included i n  the  
ana lys i s ;  t h e  contac t  fo rce  is  neglected i n  t h e  "Collision-Imparted Velocity 
Method," which makes i t  much simpler t o  implement. 
shown t h a t  i n  cases of s m a l l  r a t i o  of beam m a s s  t o  impactor mass, these  two 
methods may o f f e r  t h e  same degree of accuracy i n  so lu t ions  of a simply sup- 
ported beam under c e n t r a l  impact. I n  t h i s  study of panel dent r e s i s t ance ,  a 
point-projectile-impact loading is assumed i n  the  ana lys i s .  Furthermore, t h e  
impactor mass i s  considered as r i g i d  and attached t o  t h e  panel a t  the  impact  
po in t  and then an i n i t i a l  ve loc i ty  equal t o  t h e  o r i g i n a l  impactor ve loc i ty  is 
assumed a t  t h e  panel impact point.  Subsequently, t h e  motion of t h e  panel i s  
then analyzed. 

I n  Reference 9 i t  has been 

I n  t h e  low-speed impac t  s i t u a t i o n ,  t h e  stress due t o  t h e  impactor is  
dispersed continuously throughout t h e  panel. A s  impact speed increases ,  
t h e  regions not i n  t h e  immediate v i c i n i t y  of t h e  impact po in t  w i l l  not 
immediately f e e l  a stress, and it  w i l l  cause more loca l ized  deformation a t  t he  
impact po in t .  
as a r e s u l t  of very high speed impact, a s m a l l  por t ion  of t h e  panel around 
t h e  impact po in t  under high-intensity impulse is analyzed. 
s o l i d  under an impulsive loading of very s h o r t  dura t ion  may be considered t o  
be equivalent t o  a s o l i d  moving with a prescribed i n i t i a l  ve loc i ty .  

I n  order t o  simplify the  ana lys i s  f o r  t h e  very loca l i zed  dents 

I n  general ,  a 
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RESULTS AND DISCUSSION 

Since t h e  primary concern i n  t h e  ana lys i s  of panel dent r e s i s t ance  is t h e  
dent s i z e ,  which is, i n  general ,  inverse ly  propor t iona l  t o  panel r e s i s t ance  t o  
loading, t h e  dent s i z e  (or  permanent set) of t he  impacted panel i s  here used 
as an index t o  c a l i b r a t e  its re s i s t ance  t o  denting. A s  mentioned previously, 
t h e  a c t u a l  loading condi t ions  are usua l ly  not  de t e rmin i s t i c  and vary widely 
with t h e  manufacturing and s e r v i c e  environments of t h e  panel. I n  any event,  
t h e  a n a l y t i c a l  technique presented here in  may be employed t o  analyze t h e  panel 
dent  s i z e s  r e s u l t i n g  from poin t  p r o j e c t i l e  impacts and impulses, which should 
Grovide some fundamental understandings of panel dent res i s tance .  

I n  order t o  v a l i d a t e  t h e  present  a n a l y t i c a l  technique, numerical r e s u l t s  
have been obtained f o r  t h e  dynamic responses of a c y l i n d r i c a l  s h e l l  panel 
subjected t o  a poin t  p r o j e c t i l e  impact and of a rec tangular  p l a t e  subjected t o  
impulsive loading: 

The .cy l indr ica1  s h e l l  panel clamped on i t s  boundaries is  made of aluminum 
a l l o y  6061-T6 and has t h e  geometric p rope r t i e s  as shown i n  Figure 1. 
material has a mass dens i ty  of 2750 kg/m3 and a Poisson's r a t i o  of 1/3. 
un iax ia l  s t r e s s - s t r a i n  r e l a t ionsh ip  may be approximated as a b i l i n e a r  rela- 
t ionship  wi th  E(Young's modulus) = 8 x 1010N/m2, Et(tangent modulus) = 
10.7 x 107N/m2 and o , ( i n i t i a l  y i e l d  s t r e s s )  = 27 x 107N/m2. 
impacted by a 0.45 kg steel b a l l  (0.79 mm i n  diameter) a t  16.5 mlsec. Figure 1 
i l l u s t r a t e s  t he  a n a l y t i c a l  r e s u l t s  of t h e  c e n t r a l  deflection-time r e l a t ionsh ips  
of t h e  impacted panel, and t h e  measured maximum d e f l e c t i o n  and permanent 
d e f l e c t i o n  i n  experiment. It should be noted t h a t  t he  maximum de f l ec t ion  and 
t h e  permanent d e f l e c t i o n  predicted are l a r g e r  than those determined experi- 
mentally. The reason f o r  t h i s  overestimation of de f l ec t ions  a t  t h e  impacted 
poin t  may be  t h a t  i n  t h i s  ana lys i s ,  t he  p r o j e c t i l e  is  assumed t o  be a poin t  
s o  t h a t  t h e  predicted deformed p r o f i l e s  around t h e  impact po in t  are deeper than 
those  observed i n  experiment. 
improved by matching t h e  contac t  sur face  ins tead  of t h e  po in t  i n  t h e  ana lys i s .  
A s  one can see i n  Figure 1, however, t h e  a n a l y t i c a l  r e s u l t s  obtained can s t i l l  
be  reasonable enough t o  provide understanding of t h e  panel dent res i s tance .  
Indicated i n  Figure 1, t h e  impacted po in t  of panel wi th  t h e  p r o j e c t i l e  reaches 
i t s  peak d e f l e c t i o n  by e l a s t i c - p l a s t i c  deformation, and then spr ings  back t o  
i t s  saddle po in t ,  a t  which t i m e  t he  p r o j e c t i l e  and t h e  impacted po in t  of panel 
separa te ,  and f i n a l l y  i t  o s c i l l a t e s  about its permanent deformation; t h e  
permanent deformation is defined as t h e  dent. 
de f l ec t ion ,  t h e  k i n e t i c  energy of t h e  p r o j e c t i l e  before  impact is  trans- 
formed wi th in  t h e  panel i n  two p a r t s ,  elastic s t r a i n  energy and t h e  work of 
p l a s t i c  s t r a i n .  Since t h e  elastic deformation is  assumed t o  be r eve r s ib l e ,  
t h e  panel sp r ings  back, causing rebound of t h e  p r o j e c t i l e .  
energy re leased  is  r e l a t e d  t o  t h e  elastic s t i f f n e s s  of t h e  panel, which 
depends on t h e  Young's modulus, panel geometry, and on t h e  impact speed. 
Evidently, f o r  t h i s  case, t h e  elastic springback p lays  an important r o l e  i n  
determining t h e  degree of dent  r e s i s t ance .  

The 
The 

The panel is 

It i s  believed t h a t  t h e  co r re l a t ions  can be 

When t h e  panel reaches peak 

The elastic s t r a i n  
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Furthermore, under certain circumstances, the impact speed can be so high 
that only a very localized dent occurs, with insignificant springback 
(Ref. 10). This phenomenon may be analyzed and reproduced by only treating the 
immediate impacted area being subjected to high intensity of impulse, which 
would simplify the analysis and still provide enough insight of the panel dent- 
resistance. Also, in some other circumstances, the loading conditions may be 
explicitly characterized as impulsive loadings with relatively short durations. 
To understand the denting mechanisms of panel resulting from impulsive load- 
ings, the present analytical technique has been applied to analyze the dynamic 
responses of a rectangular plate subjected to a uniform impulse with equivalent 
initial velocity of 91.4 m/sec. 
shown in Figure 2 and the material is aluminum alloy 6061-T6, whose mechanical 
properties are described previously. Presented in Figure 2 are the analytical 
results of the central deflection-time history and the experimentally measured 
permanent set (Ref. 11) for comparison. It is evident that the predicted dent 
depth of the center agrees very well with the test data. Note that the spring- 
back is insignificant compared with the previous case. The amount of spring-bac 
back generally depends on the Young's modulus, panel geometry, and the impact 
speed. As the springback effect decreases as the impact speed increases, the 
strain-rate hardening of material may become dominant when deformation rate 
increases. 
temper condition. For example, low-carbon mild steel generally has greater 
strain-rate hardening than aluminum alloy and high-strength steel. 

The geometric dimensions of this plate are 

The degree of strain-rate hardening can vary with material and 

Finally, to quantify the effect of strain-rate hardening of steel on the 
panel dent-resistance, the central deflection-time relationships of a rectan- 
gular steel plate (as shown in Fig. 3) subjected to a uniform impulse of 
61.32 m/sec have been obtained by using the present analysis with three sets 
of strain-rate coefficients of Equation 11, and the test data (Ref. 11) for 
comparison. 
of 0.28. The uniaxial stress-strain relation may be approximated as a 
bilinear relationship with E = 21 x 10 'ON/m2, Et = 103N/m2 and (ro = 
21.7 x 107N/m2. 
sets) vary significantly with the degree of strain-rate hardening. 

The steel has a mass density of 7830 kg/m3, and a Poisson's ratio 

As one can see in Figure 3, the dent depths (or permanent 

From the aforementioned two loading conditions under which dents of panels 
occur, it is quite evident that how two important factors--panel elastic 
springback and strain-rate hardening of material--influence the panel dent- 
resistance. In addition to these two factors, other factors such as strain- 
hardening, material density, and yield stress could be important. 

CONCLUDING REMARKS 

An analytical technique for elastic-plastic deformation of panels has 
been developed, which may be employed to analyze the denting mechanisms of 
panels resulting from point projectile impacts and impulsive loadings. 
correlations of analytical results with the experimental measurements are 
considered quite satisfactory. 

The 
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The e f f e c t  of elastic springback on the  dent-resistance ana lys i s  is found 
t o  be very s i g n i f i c a n t  f o r  t h e  panel (122 c m  x 60.9 c m  x 0.076 cm) subjected 
t o  a poin t  p r o j e c t i l e  impact a t  16.45 mfsec. While t h e  springback decreases 
as t h e  loading speed increases ,  t h e  amount due t o  t h e  s t r a i n - r a t e  hardening of 
material, such as low-carbon steel, becomes more dominant, which has been 
demonstrated i n  t h e  ana lys i s  of dent r e s i s t ance  of a rec tangular  steel p l a t e  
impulsively loaded. 
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Figure 2.- Predicted deflection history of the center of a rectangular 
plate subjected to a uniform initial velocity of 121.9 m/sec. 
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NEUTRAL ELASTIC DEFORMATIONS 

Metin M. Durum 
Roy C. Ingersoll Research Center, Borg-Warner Corp. 

ABSTRACT 

Elastic bodies o r  systems may no t  require external energy for certain 
f in i t e  and continuous deformations. 
effortless, or  neutral, deformations are the subject o f  this paper. 

Conditions providing these kinds of 

INTRODUCTION 

If the total strain energy in a solid body o r  system remains constant 
during i t s  elastic deformation, a neutral equilibrium state  i s  obtained. 
No external effort then i s  needed for this deformation assuming the 
supports  or guides are frictionless. 
such a deformation, then the losses due t o  fr iction would introduce the 
only demand for external effort. Although an elasticity approach t o  
determine the strain energy level'would be extremely diff icul t  for 
large deformations, simplified approaches such as beam or shell theories 
offer practical solutions. 

If friction is considered during 

Time independent stress o r  strain fields in Eulerian coordinazes may 
be the simplest form of neutral deformation. In this  special case, a 
stress or strain dependent boundary also remains fixed, and the de- 
formation takes place in a rigid envelope similar t o  a steady fluid 
flow. 
as illustrated i n  the following examples. 
t o  determine whether or  no t  the macroscopic condition of a system,and 
consequently i t s  stress field, are time independent. 

These non-apparent deformations can be identified by inspection 
I t  i s  generally no t  difficult  

PRACTICAL EXAMPLES FOR NEUTRAL DEFORMATIONS 

Flexible Shaft and a Spinor Problem 

An in i t ia l ly  straight,flexible shaft or rod having cross sections of 
equal principal moments of inertia and being guided o r  supported along 
a fixed curve can be rotated freely about  i t s  deformed axis (fig. 1). 
During this  deformation, the stress distribution in the rod (not  nec- 
essarily prismatic) i s  generally time dependent. However, since the 
bending stiffness around any cross section is constant, the deformed 
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rod axis (e las t ica)  and, consequently, the to ta l  strain energy remain time 
independent w i t h i n  the approximations of beam theory. The stress dis- 
tri b u t i o n  also becomes time independent If the rod is axisymmetrical. 
A steady torque transmission through a guided flexible shaf t  does not 
change the foregoing discussion,and the deformation s t i l l  remains neutral. 

As an aside, i t  can be noted tha t  if the angular velocity vectors a t  A 
and B ends a re  coll inear and i n  opposite direction ( --W ) and if the 

bA=O and fl '-2uA'2+. T h i s  spinor lroblem (ref.  1)  was employed t o  pro- 
vide a dirgct  connection between a rotating and a fixed platform which 
was patented i n  1971 (ref.  2) .  

supports '  frame is rotated by nF=-U then the absolut 3- ve 4 oc i t ies  become 

Free Invertible Rings 

If the free ends A and B of a f lexible  rod are bonded together, a f ree  
invertible r i n g  is  obtained. 
c i rcular  ( f i g .  2). 

Withou t  the guides, the r i n g  becomes 

A f ree  invert ible  r i n g  can also be obtained by bonding two molded rings 
of certain cross sections (such as semi circular  sections) a f t e r  invert- 
i n g  one through 180" ( f i g .  3 ) .  The spli t  r i n g  idea was applied t o  rol- 
lable belts and patented i n  1928 (ref .  3 ) .  

In general, the uniform inversion of a non-strained slender r i n g  about 
a g iven  c i rcular  axis requires a uniformly distributed torque and a 
uniformly distributed radial load. The torque is  a sum of the f i r s t  
and second harmonic functions of toroidal displacement (0)  while the 
radial load i s  a f i r s t  harmonic function of toroidal displacement (ref. 
4 and author 's  disclosure, Oct. 1973). When two bonded rings are being 
inverted about their common circular  axis , the second harmonic torques 
can be eliminated by a suitable choice of cross sections. Also, the 
sum of the f i rs t  harmonic torques on the radial loads can be eliminated 
by introducing a difference of 180' between the inversion phases of 
the two rings. 

Belt and Pulleys 

During a steady load transmission, the stress d i s t r i b u t i o n  i n  a uniform 
bel t  ( f ig .  4)  remains the same, ignoring non-elastic properties of con- 
ventional bel t  materials. The deformation of this belt can, therefore, 
be called neutral. In this system, load transmission requires f r i c t ion  
between the be l t  and pulleys, b u t  then the microslips a t  t he i r  contacts 
produce an unavoi dab1 e sma 1 1 res i stance . 
If  a bel t  of non-uniform s t i f fness  is  considered, i t s  deformation will 
no longer be neutral. 
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Rolamite ( re f .  5) 

Two ro l l e r s  wrapped by a f l a t  band move almost f reely between parallel  
guides  ( f i g .  5). 
and s t ra in  energy level i n  the s t ra ight  portions (AB f CD)  and time i n -  
dependent s t ress  d i s t r i b u t i o n  i n  the wrapped portion ( B C ) .  

The pretensioned e l a s t i c  band presents constant stress 

Rol l ing  Elements 

Stress d i s t r i b u t i o n  i n  load-carrying roll ing elements such as locomotive 
wheels remains constant i n  a transported frame. A small r o l l i n g  resist- 
ance accompanies their neutral deformation, b u t  this is  mainly due to  
microslips a t  wheel-track contacts ( re f .  6 ) .  

Some common load-carrying elements , e.g. radial ball bearings, undergo 
a non-neutral deformation because of a cyclic load and stress variation 
a t  ball-race contacts. 

CONCLUSION 

A neutral deformation concept is defined,and two basic rules are employed 
t o  identify a large deformation of this kind w i t h  o r  w i t h o u t  help o f  addition- 
a l  assumptions. Some practical applications have been presented. I t  i s  hoped 
tha t  fur ther  investigations i n  this f i e ld  may lead t o  new developments. 
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Figure 1.- Flexible shaft.  

Figure 2,- Ring made of rod. 
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Figure 4,- B e l t  and pulleys. 

Figure 5 . -  Rolamite. 
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A STUDY ON THE FORCED VIBRATION 

OF A TIMOSHENKO BEAM 

Bucur Zainea 

SUMMARY 

By using Galerkin's  v a r i a t i o n a l  method w e  b u i l d  up an approximate s o l u t i o n  

f o r  a system of two d i f f e r e n t i a l  equations with l i n e a r  p a r t i a l  de r iva t ives  of 

t h e  second order. 

physical  model, known i n  t h e  l i t e r a t u r e  as the  Timoshenko Beam. The r e s u l t s  

obtained can be  f i n a l l y  applied t o  two p a r t i c u l a r  cases represent ing  respec t ive ly :  

t h e  case of a beam with a rec tangular  s ec t ion ,  w i t h  a cons tan t  height and a b a s i s  

wi th  a l inear va r i a t ion :  

t h e  case of a beam with a constant b a s i s  and a he ight  wi th  cubic  va r i a t ion .  

This system of d i f f e r e n t i a l  equations corresponds t o  the  

INTRODUCTION 

We are taking i n t o  consideration a heterogenous e l a s t i c  s t r a i g h t  beam pos- 

s e s s ing  v a r i a b l e  geometrical and mechanical c h a r a c t e r i s t i c s  a l l  along the  beam. 

We are considering the  s m a l l ,  cross-cut non-damping forced o s c i l l a t i o n s .  

The mathematical model chosen t o  be  subjected t o  ana lys i s  c o n s i s t s  i n  a system 

of two l i n e a r  equations with p a r t i a l  de r iva t ives  of second order ,  corresponding 

t o  the phys ica l  model known i n  t h e  l i t e r a t u r e  under t h e  name of Timoshenko Beam. 

This model is more exac t  than t h e  classical one usua l ly  employed i n  the  engineer- 

ing  ca l cu la t ions ,  t h a t  i s  t h e  Euler-Bernoulli model. The d i f f e rence  between them 

cons i s t s  i n  t h e  f a c t  t h a t  while f o r  t h e  Euler-Bernoulli model only the  deforma- 

t i o n s  given by t h e  bending moment o r  by t h e  t r a n s l a t i o n  i n e r t i a  are taken i n t o  
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account, i n  the  Timoshenko model t h e  t ransverse  shear  and the  r o t a t i o n a l  i n e r t i a  

are a l s o  taken i n t o  consideration. A s  a r e s u l t  t h e  Timoshenko model r e f l e c t s  

more exac t ly  t h e  phys ica l  r e a l i t y .  It is  well-known t h a t  (ref.  1) t h e  d i f f e r -  

ences between t h e  two theo r i e s  become s i g n i f i c a n t  i n  the  case of ( r e l a t i v e l y )  

s h o r t  beams and t h i s  cannot be neglected any longer. 

Although the  l i t e r a t u r e  r e f e r r i n g  t o  the  dynamics of t he  Timoshenko Beam 

is  abundant enough, t h e  matter of t he  non-damping beam has been i n s u f f i c i e n t l y  

t r ea t ed .  

I n  t h e  present  paper w e  t r y  t o  determine the  approximate so lu t ions  of t h e  

phenomenon by means of the  Galerkin v a r i a t i o n a l  method. W e  are of t h e  opinion 

t h a t  the  above mentioned method is  most s u i t a b l e  i n  so lv ing  t h e  sub jec t  consid- 

ered. The choosing of t he  system of coordinates required by t h e  Galerkin method 

assures  the  convergence of the  obtained so lu t ions .  

SYMBOLS 

K 

G 

P 

E 

A b )  

Dirac function 

1 
Euler 's  Beta function: B(p,g) =l xp-l(l-x)g-ldx 

c o e f f i c i e n t  of t h e  form of t h e  sec t ion  

cross-cut modulus of e l a s t i c i t y  

dens i ty  of material 

long i tud ina l  modulus of e l a s t i c i t y  (Young) 

area of cross-cut s ec t ion  
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c;[o,11 

moment of inertia of cross-cut section 

cross-cut displacement 

rotation angle 

1 
scalar product: (f,gj = f f(x)g(x)dx 

length of beam 

time-independent cross-cut displacement 

time-independent rotation angle 

cross-sectional area parameters 

moment of inertia parameter 

class of functions defined on 0 to 1 

THE DIFFERENTIAL EQUATIONS OF THE PHENOMENON 

The differential equations for the phenomenon are as follows: (ref, 2) 

Solutions for the differential equations are determined as follows: 
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f o r  boundary conditions 

and f ( x , t )  is a perturbance fo rce ,  a mobile, bu t  concentrated fo rce  f o r  a unit  

magnitude: 
LWt q@,Q = Lc?--=QL 

By considering equation (2) t h e  system of equation (1) becomes two d i f f e r -  

e n t i a l  equations of t h e  fou r th  order f o r  V(x) and U(x) as follows: 

The d i f f e r e n t i a l  equations (4) and (5) f o r  t h e  following two cases are as 

follows : 
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THE APPROXIMATE SOLUTION 

W e  shall i n t e g r a t e  the  d i f f e r e n t i a l  equations (6), (7), ( 8 ) ,  and (9) by 

m e a n s  of the Galerkin method. 

I n  the  case of boundary conditions of equation (3) w e  shall consider Z=unit 

which is always poss ib l e  by 

-= x. x : 0&3c& => 0 5  x&\ 
-49 

Using t h e  Galerkin method, we  s h a l l  determine an approximate so lu t ion  f o r  

equation (6) as follows: 

"rl - 

We choose $,(x) of t h e  form ( re f .  3) 
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The system of coordinate functions $(x) has to satisfy the boundary 

conditions of equation (3) which become equivalent with the following 

conditions: 

The approximate solution (10) becomes: 

The % constants are determined out of the following algebraic system: 

where L is the left part of equation ( 6 ) ,  and g is the right part of the 
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The system of equation (11) is a non-damped algebraic system of n equa- 

tions with n indeterminates. This system is compatible because the determi- 

nant formed with the coefficients of the undeterminants is a Gramm determinant 

of a linear independent system of functions. For the calculation of the scalar 

product (L$,$Ij) and (g,$Ij), we have kept in view the following points: 

We have used the Euler's Beta function 

We have used the following formula (ref. 4) in calculating the scalat 

product : 
then 

For equation (7) with the boundary conditions of equation (3) which mean . 

V(o)=V(l)=o we are going to give an approximate solution of the following form: 
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where t h e  constant 8, is drawn from the  following a lgeb ra i c  system: 

where L is  t h e  l e f t  s i d e  of equation (7) and g i s  t h e  right: s i d e  of t he  

same equation. 

Analogous t o  equation (8) we bu i ld  up an approximate s o l u t i o n  of t h e  follow- 

ing  form: 

where the yk cons tan ts  are determined from the  following a lgebra ic  system: 

where L is  t h e  l e f t  s i d e  of equation (8) and g t h e  r i g h t  s i d e  of t h e  same 

equation 

F ina l ly ,  f o r  equation (9) we bu i ld  up a s o l u t i o n  of t he  following form: 

where t h e  6, cons tan ts  are determined from t h e  following a lgeb ra i c  system: 

where L and g are the  l e f t  s i d e  and r i g h t  s i d e  of equation (9). 
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As a conclusion t o  case 1 t h e  approximate solutions b u i l t  up by the Galerkin 

method are t h e  following: 

and, f o r  case 2 t he  approximate so lu t ions  are t h e  following 

PECULIAR CASES 

I n  the  following l i n e s  w e  s h a l l  use  t h e  obtained so lu t ion  f o r  two pa r t i cu la r  

cases, which w i l l  be a l s o  an i n d i r e c t  checking of the  accuracy of t h e  obtained 

r e s u l t s .  

W e  bu i ld  up the  f i r s t  two approximations Ql; Q2 and r e spec t ive ly  W1; 

W2 f o r  t he  following s i t u a t i o n s :  

They represent  respec t ive ly  t h e  case of a beam wi th  a rec tangular  s ec t ion ,  hav- 

ing  a constant he ight  and a base with a l i n e a r  v a r i a t i o n ,  and t h e  case of a 

beam with a constant base and a he ight  with a cubic v a r i a t i o n  and t h i s  because, 

from an app l i ca t ive  po in t  of view t h e  beam sec t ions  are i n  many cases considered 
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rectangular. Case (a) The equation (6), if we consider (14) is reduced t o  the 

following equation 

The f i r s t  and second approximations are respectively: 

If w e  compare $J with q2 f o r  a rectangular beam made of steel we come 1 
t o  the conclusion tha t  the two approximations are comparable: 

ce r t a in  A values and f o r  ce r t a in  x values 

$, = q2 f o r  

This conclusion r e s u l t s  from the  following calculation: 
f 

The al,a2 constants are determined from the following algebraic  system:. 
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where 

and f o r  the steel in S.I. units 

Equation (7) then becomes : 
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The first and second approximations are 

here 
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is  made t h a t  the  two approximations are comparable f o r  c e r t a i n  X values and 

f o r  c e r t a i n  x values such as 

CONCLUSIONS TO THESE PECULIAR CASES 

For equations (8) and (9) w e  come t o  the  same r e s u l t ,  t h a t  is: the  f i r s t  

two approximate so lu t ions  are equal f o r  the given values  of 

value of x :0,5: 0 I x I 1 t h a t  is, the approximate solut ions are comparable 

among themselves i n  the  v i c i n i t y  of where the concentrated perturbance f o r c e  is  

applied: when x = < = -. 

X f o r  the  same 

1 
2 
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ENVIRONMENTAL EFFECTS ON POLYMERIC 

MATRIX COMPOSITES 

J. M. Whitney and G. E. Husman 
Air F o r c e  Mater ia ls  Laboratory 

SUMMARY 

Current  epoxy r e s ins  utilized in high performance s t ruc tura l  composites 
absorb  mois ture  f rom high humidity environments. 
tion causes  plasticization of the r e s in  to occur with concurrent swelling and 
lowering of the glass transit ion temperature .  
composites.  
Hercules  AS/3501- 5 graphite/epoxy composites.  Predict ion of mois ture  
content and distribution in composites, along with reduction in mechanical 
proper  t i e s, a r e  dis  cus s ed . 

Such mois ture  absorp-  

Similar  effects are observed in 
Data a re  presented showing the effects of absorbed mois ture  on 

INTRODUCTION 

The  g l a s s  transit ion temperature,  T g ,  of a polymer i s  defined as the 
tempera ture  above which the polymer is soft and below which it i s  hard .  
epoxy r e s ins  the T 
glassy solid to a rubbery solid. 
p r ia te  to d iscuss  a g lass  transit ion tempera ture  region r a the r  than a single 
glass  transit ion temperature ,  as the change f rom a ha rd  polymeric ma te r i a l  
to a soft ma te r i a l  takes  place over a tempera ture  range. The concept of a T g  
is for convenience and refers to the tempera ture  at which there  i s  a ve ry  

g' rapid change in physical p roper t ies .  

F o r  
i s  the tempera ture  a t  which the polymer goes f rom a g 

F r o m  a prac t ica l  standpoint i t  i s  m o r e  appro- 

A s  a resul t ,  there  i s  no p rec i se  T 

It is well recognized (ref. 1) that the T of a polymer can be lowered by 

tempera ture  than the polymer.  This process  i s  r e fe r r ed  to  as plasticization. 
Thus, mois ture  ac t s  as a diluent in cu r ren t  r e s ins  being utilized in high per- 
formance s t ruc tura l  composites,  result ing in a lowering of the T 
a r e  indications ( r e f .  2) that s imi l a r  effects occur in epoxy ma t r ix  composites. 
Data  (ref. 2) a l so  indicates that the lowering of the Tg in both neat r e s ins  and 

mixing with it a miscible  liquid (diluent) that a as a lower g lass  transit ion 

There  
g' 
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derived composites can be estimated f r o m  the Kelley- Bueche plasticization 
theory (ref.  3 ) .  Thus, absorbed moisture  reduces the temperature  range 
over which ma t r ix  dominated composite propert ies  remain  stable.  F r o m  a 
pract ical  standpoint, change of failure mode due to plasticization i s  of pr i -  
m a r y  concern. 

In the present  paper ,  the prediction of mois ture  content in conjunction 
In addition, data i s  with laboratory characterization i s  discussed in detail.  

presented which shows the effect of absorbed mois ture  on the flexure 
strength of unidirectional Hercules  AS/3501- 5 graphite/epoxy composites. 
The flexure tes t  i s  an excellent example of absorbed moisture  inducing a 
change in failure mode. 

PREDICTION O F  MOISTURE DIFFUSION 

Fick 's  Law 

It h a s  been shown ( r e f .  4) that mois ture  diffusion in laminated compo- 
s i tes  can be predicted by Fick's second law. 
nes s  of an  infinite plate, the diffusion equation i s  given by 

F o r  diffusion through the thick- 

where m i s  the percent  mois ture  gain per  unit thickness, D, is the diffusivity 
through the thickness, t denotes t ime, and z i s  the thickness coordinate. 
Consider the following boundary and initial conditions for a plate of thickness 
h 

m(0, t) = m ( h , t )  = m = constant ( 3) 1 

where m i  i s  the initial moisture  distribution in the materia1,and m l  i s  the 
surface moisture  concentration, which i s  a function of the relative humidity. 
A solution to equation (1) which satisfies the conditions of equations (2)  and 
(3) can be obtained by classical  separation of variables with the resul t  
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where 

00 
4 1 C (2n- 11 n= 1 

m ( z ,  t) = ml - n (ml -  mi) 

x [sin (2n- 1 ) n z  exp [-(2n- 1) x tg: I] 

8 

The total weight gain of mois ture  in the plate i s  given by 

M = ( m d z  

0 

(4 )  

Integration of equation (4)  yields 

Appli cat  ion to Char  ac te r i za  t i  on 

Consider an experiment  where an  initially d r y  specimen is  exposed to 
a constant environment ( t empera tu re  and humidity) f o r  a given period of t ime 

t l .  It i s  then put in a d r y  environment and the tempera ture  ramped a t  a con- 
stant r a t e  to a given level  a t  t ime tz .  A t es t  i s  then per formed on the speci- 
men  over some period of t ime. 
character izat ion of mois ture  effects on the mechanical behavior of laminates .  
It i s  often desirable  to control both the mois ture  content and distribution 
during such a characterization. 
a purpose. 

Such a procedure i s  used during laboratory 

Equations (41 and ( 7 )  can be modified for  such 

F o r  the interval 0 & t L t l ,  equations (4)  and (7)  can be  used direct ly  
with m. = M. = 0 and D, = D,(T1), where  T 
this time interval.  
pera ture .  
and as a resul t ,  Dz will  va ry  with t ime. 
ing t:k in the following manner  ( r e f .  5\ 

denotes the tempera ture  during 
1 1 1 

It should be noted that the diffusivity i s  a function of tem- 
In the interval tl4kGt2 the tempera ture  will be varying with t ime 

This can  be  accounted for  by defin- 
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Note that in the derivation of equation (8) it is assumed that the temperature 
gradient has negligible effect on diffusivity, as the heat diffusivity is several 
orders of magnitude greater than moisture diffusivity. For this interval the 
initial distribution can be obtained from equation (4). with the result 

where 

In addition, 

D, = D,(T) = D,(t) (12) 

If equation (9) is expressed a s  a Fourier series,  then the moisture profile 
for this time interval becomes 

4 , 1  

n= 1 
m(z, t) = n 

(2n- 1 ) n z  
- exp [-(2n-1) h 
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I 
2 (2n- 1) 

For the interval t L t  
2- 

4 m  

x mi(a) = - 
n= 1 

(2n- 1 ) ~  z 
h x exp [-[zn-l)  2 2  tz 1 sin 

where 

D (s )  ds 1 
- Z 

5 
The boundary conditions a r e  those of equation { 11). 
the form of a Fourier ser ies ,  the moisture proEile for this time interval 
becomes 

Since equation (14) is in 

(2n- 1) n z  
- exp [-(zn-ll tf  h 

I 

2 2  

and the total. moisture gain is given 

8M1 M(t) = - 
n= 1 2 

R 
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where 

CHANGE IN FAILURE MODES 

Filament Dominated Laminates 

In most engineering usage of fiber reinforced composites, laminate 
stacking geometry is  chosen such that stiffness and strength a re  controlled 
by fiber modulus and strength, respectively. Thus, sorne matrix softening 
can be accommodated in such applications without serious consequences. If 
considerable matrix softening occurs, however, the ability of the resin to 
support the fiber is severely reduced, along with the ability to transfer load 
through the matrix to the fibers. The result is a change in failure mode from 
filament dominated to matrix dominated. 
unidirectional compression, where a significant loss in matrix stiffness leads 
to local instabilities and a reduction in compression strength. Thus, any loss 
in resin Tg due to moisture absorption can lead to a reduction in the useful 
temperature range of the composite laminate. 

The classical example is  that of 

Flexure Strength 

Unidirectional flexure tests a r e  commonly used for quality control, and 
0 degree flex strength is considered to be a filament dominated property. F o r  
state-of-the-art high-performance epoxy resins, 0 degree dry flex strength is  
relatively insensitive to temperatures below 300°F. With increasing moisture 
content, however, measurable strength degradation can occur a t  temperatures 
considerably below 300OF. This is  illustrated in Table I, where 0 degree flex 
strengths a r e  shown for Hercules AS/3501- 5 graphite/epoxy composites. 
These results were obtained on eight-ply composites subjected to a standard 
four-point bend test with a 32:l span-to-depth ratio. A cursory examination 
of these results reveals that a severe loss in 0 degree flex strength occurs at 
a tempkrature as low as  Z O O O F  after exposure to equilibrium moisture content 
in a 95% relative humidity environment. The Tg of this material under these 
conditions has been shown to be approximately 2100F (ref.  2) .  
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Under dry conditions the shear strength of the matrix, for temperatures 
less than 300°F, is high enough to prevent interlaminar shear failure and 
assure that the flex strength is governed by fiber breakage. A s  moisture 
induces matrix softening below 300oF, the high temperature flex strength 
becomes dominated by interlaminar shear yielding. This conclusion can be 
supported by examining failed specimens and noting that the 3000F wet com- 
posites did not display fiber breakage as  the mode of failure, but were per- 
manently deformed near the load noses where the shear stress was largest. 
Furthermore, the load deflection curves for these cases produced a classic 
example of an elastic-plastic material. 
failure was induced, fiber breakage occured between the loading pins where 
the interlaminar shear stress vanishes. 
another classic example of a change in failure mode induced by matrix 
softening . 

For conditions under which brittle 

Thus, the 0 degree flex strength is 

Interlaminar shear stress- strain behavior relative to  the 0 degree flex 
test is illustrated in figure 1 .  
from a f 45 degree tensile test as described by Rosen (ref. 6). 
stress-strain curve is not shown, but is terminated at  the stress level where 
the maximum interlaminar shear s t ress  occurs in the 0 degree flex test, 
This value can be calculated from classical beam theory with the following 
result for quarter-point loading. 

These 0 degree shear results were obtained 
The entire 

U f 
- s  - -  t max 

where t 
the flex E%, up is the flex strength, and S is the span-to-depth ratio of the 
test specimen. 
stress- strain behavior is observed. 
ior occurs at very low s t ress  levels. 

is  the maximum value of the interlaminar stress obtained during 

For the high temperature tests considerable non-linear shear 
For the wet tests, the non-linear behav- 

To further illustrate the change in failure mode, 0 degree flex strength 

This plot resembles typical log modulus versus temperature 

for composites o r  f o r  assessing the useful 

is plotted on a log scale in figure 2 as  a function of temperature for wet and 
Iry conditions. 
x r v e s  found in classical viscoelastic polymeric materials. Thus, the flex 
:est may be useful in assessing T 
:emperature range of the materia f for various moisture contents. 
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CONCLUDING REMARKS 

It has been shown that a solution to Fick's law can be obtained which is 
relavent to laboratory characterization of composite materials containing 
moisture. 
determining total weight gain due to moisture absorption. Data presented 
also indicates that the widely utilized unidirectional flexure test can be a 
valuable tool in assessing the useful temperature range of composite laminate: 
for various moisture contents. 

This solution provides a detailed moisture profile in addition to 
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T A B L E  I. - UNIDIRECTIONAL F L E X  STRENGTH,  
AS13501- 5 GRAPHITE/EPOXY 

TEMPERATURE 

R T  

Z O O 0  F 

25c0 F 

300° F 

D (WET - 1 e 7 %) ** f D (WET-l. lYo)* Df(DRP) f 

259 KSI 265 KSI 252 KSI 

259 KSI 210 KSI 180 KSI 

242 KSI 166 KSI 135  KSI 

233  KSI 125 KSI 90 KSI 

:k EXPOSED T O  EQUILIBRIUM AT 757'0 RELATIVE HUMIDITY AND 

160°F, % WT. GAIN = 1.1%. 

*:: EXPOSED T O  EQUILIBRIUM A T  9 5 %  RELATIVE HUMIDITY AND 

160°F, % WT. GAIN = 1.7%. 
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Figure 1,- Shear stress-strain curves for unidirectional 

composites, 
75% relative humidity and 1600F. 

Wet = 1.1% equilibrium weight gain at 

( O )*T A S / 3 5 0 1 - 5  

V+ 63 '10 

DRY 

\ EQUILIBRIUM AT 75% RH, 160°F 

A EQUILIBRIUM AT 95% RH, 160°F 
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0 
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Figure 2.- Unidirectional flex strength as a 
function of temperature. 
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INTERLAYER DELAMINATION I N  FIBER REINFORCED 

COMPOSITES WITH AND WITHOUT SURFACE D W G E  

S. S. Wang 
Department of Materials Science and Engineering 

Massachusekts I n s t i t u t e  of Technplogy 
Cambridge, Massachusetts 

ABSTRACT 

Fracture problems of in te r layer  delamination i n  f ibe r  reinforced con- 
posi tes  with and without surface damage are studied i n  t h i s  paper. 
s ingular  hybrid-stress f i n i t e  element method employing a crack t i p  super- 
element based on a complex var iable  formulation is used. 
are e i the r  uniform stretching o r  pure bending as i n  standard experimental 
t ens i l e  and interlaminar tests. Combined fracture modes aqd the corresponding 
s t r e s s  in tens i ty  factors  are  obtained for d i f f e ren t  ply or ientat ions and 
stacking sequences fo r  a qraphite/epoxy system, 
%lucidate the interlaminar stress t ransfer  mechanism fo r  t h i s  type of f rac ture  
?roblem. Using Erdogan-Sih's b r i t t l e  f rac ture  c r i t e r ion ,  the i n i t i a t i o n  and 
j i rec t ion  of growth from the  delaminationcrack are calculated.  

The 

The applied loads 

The r e s u l t s  a l so  serve t o  
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STRESS INTENSITY AT A CRACK 

BETWEEN BONDED DISSIMILAR MATERIALS' 

Morris Stern and Chen-Chin Hong 
The University of Texas at Austin 

INTRODUCTION 

The nature of the stress field in front of a crack lying in 
the surface between bonded dissimilar materials was first investi- 
gated by Williams (ref. 1). He observed that not only do the 
stresses grow at a rate inversely proportional to the square root 
of distance from the crack tip, they also exhibit an oscillatory 
singularity with wave length inversely proportional to the absolute 
value of'the logrithm of distance from the crack tip. The problem 
of calculating stress intensity factors for various special load- 
ings and geometries has been treated by other authors, among them 
Erdogan (ref. 2 and 3 ) ,  England (ref. 4 ) ,  Rice and Sih (ref. 5 ) ,  
and Erdogan and Gupta (ref. 6). In all cases for which results 
are given the region is unbounded and the loads are uniform. 

For more general boundary value problems involving imperfect 
bonding of dissimilar materials numerical methods must be resorted 
to, and both the growth and oscillatory nature of the singularity 
can be expected to cause numerical difficulties. In addition, be- 
cause the elastic moduli of the materials are generally different, 
discontinuities in components of stress and strain develop nat- 
urally on the bond., 
method to problems of this type. It turns out that the nature of 
the loading and restraints, even on remote edges, can have a sig- 
nificant effect on the stress intensity. 
some example problems to illustrate this. 

Recently we extended the contour integral 

In this paper we treat 

'This work was supported in part by a grant from the National 
Science Foundation. 
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CONTOUR INTEGRAL METHOD 

The basic boundary value problem is illustrated in Fig. 1. 
Two dissimilar materials are joined along a straight edge with one 
or more cracks present. The composite is loaded or restrained on 
the remote boundary,and the crack faces are free of load. Local 
Cartesian and polar coordinates are introduced with origin at a 
crack tip and the negative x-axis ( 0  = k T) along the crack edges. 
The subscript 1 is arbitrarily assigned to material below the axis 
( - T  < 0 < 0), and the subscript 2 is used for  the other material 
(0 - x-0 - <-T). Also introduced is the so-called bimaterial constant 

1- l l  + 1.12% 
1-12 + %"2 

Y =  

weere 111' P2 are the respective shear moduli and K = 3-4v for plane 
strain, or K = ( 3 - 4 w ) ( l + v )  fo r  plane stress, v being Poisson's Ratic 

Notation for complex displacement and stress fields in terms 
of components referred to the local polar coordinate system are 
introduced as follows: 

0 u =  u + iu r 

- i- i ' c r8  'r - 'rr 

% - e 0  re CJ -i'c - 
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Then the displacement and stress fields in the neighborhood of the 
crack tip in each material are of the form? 

\ 

2Except for notational differences these results were also obtained 
in references 3 ,  4 and 5. 
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where 

In y) X = - + - l n y  - - + + € ( E = -  
2 2T 2 2T 
1 i  - 1 

and K = KoeiB is a complex stress intensity factor with the 
following “physical” interpretation: 

lim ae 
r+O 

I 

= aim (a - i-c + YY e=o x-to 

= Kr 1-1 - - Kor-&ei(~ln r + 8 )  

hence on the bond immediately in front of the crack tip we have 

cos(~ln r + 8 )  + remainder - - -  a 
YY Jr 

= -  sin(Eln r + 8 )  + remainder 
XY E- 

‘c 

(5 )  

Thus KO governs the amplitude growth rate of both the normal stress 
and shear stress while 8 determines a nonsignificant phase shift. 
The complex crack opening displacement is also governed by the 
stress intensity factor: 

The amplitude of the complex crack opening displacement can be put 
in the form 

A contour integral representation for the stress intensity 
factor is obtained from the reciprocal work identity by introduc- 
ing a suitable artificial singular elastic state. Briefly, 
we observe that for arbitrary values of the complex constant C ,  
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a singular elastic state corresponding to zero body force and with 
no traction on the lines 8 = 5 1~ is defined in the bimaterial 
region by 

1 i (1-1) e - e  -A (A+l) e * 
2p1u1 = EAr 

1 i ( A - 1 )  8 - e  * -A lei ( h + l )  8 2p2u2 = EAyr 

1 i ( A - 1 )  8 - e  * 2 - A - 1  ( A + l )  e oe1 = EX r 

* 
= CYA 2 r - A - 1  [ei ( A + l )  e - e  i (1-1) e l  

e2 cr 

This elastic state has the further property that on the contour 
CE (a circle of radius E centered on the origin) we calculate a 
finite contribution from the reciprocal work as the contocr 
shrinks to a point: 
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* 
= 1imJ (u*=t Y Y  - u-t Y . - ,  Ids 

'tip €+Oc 
E 

Upon noting that the reciprocal work vanishes on the complete 
+ contour CouC uCELk- indicated in Fig. 1 as a consequence of Betti's 

theorem, and on the crack edges C'UC- since the tractions in any 
case vanish there, we obtain the representation 

* * {;: E] = 1 (99: - u * Y  *t)ds (9) 

cO 

in Eq. ( 7 )  in calcu- 1-111-12 where fqr Re K we choose C = - T(l- l l  + 1-12K1) 

lating t and u , whereas for Im K we take C = -i 
Y Y T(1-11 UzK1) 

The values of 9 and $ on the contour Co are obtained numerically. 
For the results given in this paper we used code TEXGAP (ref. 7 )  
which performs isotropic linearly elastic plane analyses using 
conventional quadratic displacement triangles and isoparametric 
quadrilaterals. 

* * 1-111-12 

NUMERICAL RESULTS 

The four cases treated involve a finite bimaterial strip 
loaded in tension and are sketched in Fig. 2. From symmetry cQn- 
siderations we need to consider only the shaded region, and in 
Fig. 3 we show a typical grid (symmetrically defined in each half 
region) for the finite element analyses. Half the contour used 
for evaluation of the stress intensity factors is shown in dashed 
line in Fig. 3 .  We note that the four distinct problems con- 
sidered are obtained from the same grid and boundary conditions 
on the edges parallel to the crack, but with the following boun- 
dary conditions on the vertical edges: 
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i) Central crack - free edges: AB restrained, CD un- 

ii) Central crack - fixed edges: AB and CD restrained 

iv) Double edge crack: AB unrestrained, CD restrained. 

Two Sets  of results are plotted in Fig, 4 and 5. The first 
shows the effect of different crack sizes in a given strip for 
each case; the second shows’ the effect of changing the relative 
dimensions of the strip for a fixed crack length to width ratio. 
In each case the results are normalized using the stress intensity 
factor for an infinite region loaded uniformly in tension normal 
to the crack and restrained from motion parallel to the ‘crack on 
the remote boundary. This case is equivalent to an infinite bi- 
material plate with vanishing stresses at infinity and a uniformly 
pressurized crack on the bond, for which analytical results are 
given in references ( 4 )  and (5) : 

restrained 

iii) Single edge crack: AB and CD unrestrained 

i l o )  

It is interesting to note that for real materials the bimaterial 
constant y is restricted to values between 1 and 3;consequently, 
the maximum variation in K, that can be achieved by varying the 
properties of the two materials (this enters only through the 
parameter E )  is less than six percent, thus the isotropic case 
furnishes an excellent (lower bound) estimate for Koa. The data 
plotted in Fig. 4 and 5 are ba,sed on material properties 

which yields the value y = 1.5. 
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Material 1 

Figure  1.- Basic boundary va lue  problem. 
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i )  Cent ra l  c r ack  - f r e e  edges. i i )  
4 4  

T 
2L 

1 
i f i )  Single  edge crack. 

Central c rack  - r e s t r a i n e d  

i v )  Double edge crack. 

F igure  2.- The fou r  cases considered. 
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edges. 

F igure  3. -  F i n i t e  element g r id .  
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Figure  4 . -  Effec t  of crack length-  

c H 

II) 

S t r i p  Length t o  Width, L/w 

Figure  5.- Ef fec t  of s t r i p  length. 
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STJBSS CONCENTRATION FACTORS AROUND A CIRCULAR 

HOLE IN LAMINATED COMPOSITES 

C. E. S. Ueng 
Georgia Institute of Technology 

SUMMARY 

This paper deals with the determination of stress concentration factors 
around a circular hole in a composite laminate. 
is a four layer (-45O/450/450/-45O) graphite epoxy laminate. The factors are 
determined experimentally by means of electrical resistance strain gages, and 
analytically by using a hybrid finite-element analysis. 

The specific case investigated 

I INTRODUCTION 

In thfs study, the laminar stress concentrations around a circular hole in 
an angle-ply composite laminate are determined for the axial tension loading 
case. Of particular interest is the largest value of 08 present at the peri- 
meter of the hole. This study proposes to determine these stresses experimen- 
tally and analytically. For the experimental analysis, electrical resistance 
strain gages are used. The analytic procedure uses the finite-element method 
of a two-dimensional hybrid model with an assumed stress field within the ele- 
ment and assumed displacements at the element interfaces, 

The stress concentration factors around a circular hole in an infinite, 
isotropic sheet have been determined analytically through various approaches 
and confirmed experimentally. For an infinite plate, the stress components 
around the hole are (ref. 1) 

Q ~ ( 1  .. %)(I 2 + %) 2 sin 28 
1: r 2 T&= 

rhere b is the radius of the hole and CT, is the applied load. The ratio of 
re/oo along the hole is plbtted as shown in figure 1. Obviously, the.maximum 
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o f  00 i s  t h r e e  t i m e s  
diameter perpendicular t o  t h e  d i r e c t i o n  of tension. 

o0, and occurs a t  0 = +, 90°, i .e . ,  a t  t h e  ends of t h e  

Due t o  t h e  increas ing  use of advanced laminated composites i n  f l i g h t  
s t r u c t u r e s  and o the r  p o t e n t i a l  appl ica t ions ,  t h e  stress concentration around a 
cutout i n  a f iber - re inforced  laminate has been t h e  subjec t  of research by 
seve ra l  i nves t iga to r s  i n  recent  years. Daniel and Rowland ( r e f .  2) used an 
experimental approach - t h e  Moiie technique, and determined t h e  s t r a i n  ( s t r e s s )  
concentration around a c i r c u l a r  hole i n  a tens ion  loaded an iso t ropic  p l a t e .  
Hyman e t  al .  ( r e f .  3) ca r r i ed  some exploratory tests on t h e  same problem. 
Franklin ( r e f .  4 )  a l s o  inves t iga ted  t h e  hole  stress concentrations i n  f i l a -  
mentary s t ruc tu res .  
help of finite-element method, Rybicki and Hooper ( r e f .  5) s tud ied  and obtained 
r e s u l t s  f o r  boron-epoxy lamina. In a reviewing a r t i c l e  ( r e f .  6 ) ,  G r i m e s  and 
Greimann gave an up-to-date o v e r a l l  p i c t u r e  about t h e  stress concentration 
around a c i r c u l a r  ho le  i n  a f iber - re inforced  composite. 
references are c i t e d  i n  t h i s  a r t i c l e .  

By using l i n e a r  e l a s t i c  plane stress conditions with t h e  

Several add i t iona l  

I n  an experimental study of or thot ropic  composite materials, Kulkarni, 
Rosen,and Zweben ( r e f .  7) have found t h a t  t h e  stress concentration f ac to r s  are 
a function of t he  hole diameter, up t o  a diameter of 2.54 cm (1 in . ) .  They 
observed t h a t  t h e  a c t u a l  number of fi laments severed by t h e  hole  determined 
t h e  s t r eng th  of t h e  specimen. 

The present problem of a general  angle-ply composite laminate with a 
c i r c u l a r  hole i s  f u r t h e r  complicated by t h e  i n t e r a c t i o n  of the  ind iv idua l  
layers .  

EXPERIMENTAL WORK 

Equipment 

The o r i e n t a t i o n  of t he  s t r a i n  gages around the  holes i s  shown f o r  each of 
t h e  four  specimens i n  f igu re  2. The gages w e r e  mounted adjacent t o  t h e  hole  
and w e r e  4 . 8  mm (3/16 in . )  wide, 120 ohm standard f o i l  gages. The specimens 
were mounted i n  clamp g r ips  and attached t o  a 90,000 N (20,000 l b . )  capac i ty  
load c e l l  through t h e  use of swivel bearings.  The gages were wired i n t o  t h e  
d i g i t a l  s t r a i n  ind ica to r  with the  ind ica to r  providing t h r e e  arms of t h e  Wheat- 
s tone  bridge required i n  t h e  electrical c i r c u i t .  The load ce l l  w a s  wired i n t o  
an e l e c t r i c a l  transducer and ca l ib ra t ed  t o  measure t h e  a x i a l  tension applied t o  
t h e  specimens. 

The s t r a i n  gages w e r e  applied t o  t h e  specimens using Eastman 910 adhesive, 
following standard prepara t ion  of t he  surfaces.  

T e s t  Specimen Data 

The four  t e s t i n g  specimens were provided by Lockheed-Geo’rgia A i r c r a f t  
Company. Their a s s i s t ance  i s  g r e a t l y  appreciated. 
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Material: graphi te  epoxy (Narmco 5209/T300) 

65% graph i t e  f i b e r ,  35% epoxy matrix 

Four l aye r  angle-ply ( -45°/450/450-450) 

Grip tabs  of f i b e r g l a s s  epoxy molded i n t e g r a l l y  wi th  specimens. 

For a un id i r ec t iona l  s i n g l e  l a y e r  t h e  macroscopic p rope r t i e s  are 

2 6 EoO = 137900 - 144795 MN/m (20 - 21(10) ps i )  

EgOO = 8274- 9653 MN/m (1 .2 -  1.4(10) p s i )  

G = 4.55 MN/m (0.66(10) ps i )  

2 6 

2 6 

The thickness of t h e  four specimens around t h e  hole  w a s  also c a r e f u l l y  
measured. Data w e r e  taken a t  e ight  s t a t i o n s ,  t h e  end po in t s  of  a hor izonta l  
diameter, a v e r t i c a l  diameter, and two more diameters which b i s e c t  t h e  hor i -  
zontal  and v e r t i c a l  d i r ec t ions .  The r e s u l t s  are shown i n  t a b l e  1. 

It can therefore  be concluded t h a t  t h e  assumed thickness 0.6350 nnn 
(0.0250 i n )  i s  q u i t e  reasonable. 

Testing Procedure 

F i r s t ,  t he  t e s t i n g  specimen was mounted i n  t h e  upper g r ips  of t h e  loading 
device. The loading i n d i c a t o r  and t h e  s t r a i n  ind ica to r  were zeroed and cal i -  
brated.  Then t h e  o the r  end of t h e  specimen was mounted i n  t h e  lower g r ips  of 
t h e  loading device. 
o r  500 l b ) ,  t h e  load w a s  then released. This w a s  repeated s i x  t i m e s  i n  order 
t o  eliminate t h e  s t r a i n  gage e r r o r  due t o  s t r a i n  hardening. 
20% of t h e  maximum load was  used each t i m e ,  and t h e  corresponding s t r a i n  read- 
ing  w a s  then taken. 

Af te r  t h e  specimen w a s  loaded up t o  t h e  100% load (2224 N 

An increment of 

The same s t eps  w e r e  followed f o r  t h e  o the r  t h ree  specimens 

Testing Results 

The data obtained from t h e  s t r a i n  gage t e s t i n g  was  t he  values f o r  €8 a t  
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four  d i f f e r e n t  l oca t ions  around t h e  hole.  
and displayed graphica l ly  i n  f igu re  3. 

These values are given i n  table 2,  

The s t r a i n  gage r e s u l t s  can be e a s i l y  repeated 
s t a b i l i t y  with repeated loadings. The values obtained a t  444.8 N (100 lb)  of 
load are not as r e l i a b l e  as t h e  incremental changes i n  s t r a i n  f o r  each incre- 
mental change i n  load. 
mens r e su l t ed  i n  an i n i t i a l  s t r a i n  of  some s igni f icance .  

and showed very good 

Normally,the t igh ten ing  of t h e  end clamps on t h e  speci-  

The a s s i s t ance  of M r .  W. H. Taylor i n  carrying out t h e  t e s t i n g  program i s  
acknowledged here.  

S t r e s ses  

Based upon t h e  ava i l ab le  mechanical p rope r t i e s  as previously mentioned, 
t he  stresses w e r e  ca lcu la ted  from the  s t r e s s - s t r a i n  r e l a t i o n  and t h e  t rans-  
formation r e l a t ions .  
corded s t r a i n s  are p lo t t ed  i n  f igu re  4 .  

The t angen t i a l  stress component 00 obtained from the  re- 

FINITE ELEMENT ANALYSIS 

The finite-element method used here i s  a two-dimensional hybrid approach. 
The v a r i a t i o n a l  p r i n c i p l e  used i s  t h a t  of minimum complementary energy with 
t h e  interelement stress con t inu i ty  enforced bymeans Of theLagrangemul t ip l i e r s .  
The elements used are shown i n  f igu re  5. 

The formulation of t he  problem a t  t h i s  s tage  follows a r a t h e r  standard 
fash ion  as t h i s  method i s  t y p i c a l l y  applied t o  many stress ana lys i s  problems. 

The stress function polynomial used 

3 2 $ = a x  + b x y +  

which r e s u l t s  i n  the  following stresses: 

It can be e a s i l y  v e r i f i e d  
t h e  equilibrium equations 

CT = 2 c x  xx 

CT = 6 a x  
YY 

i n  t h e  computer program i s  

2 3 
Cxy + d Y  

+ 6 dy 

+ 2 by 

T = -2 bx - 
XY 

t h a t  t hese  stress 
i n  the  absence of 

(3) 

components automatically s a t i s f y  
body forces .  
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Arranged i n  mat r ix  form, equations (3) become 

Col = [QI [a1 
where 

By Cauchy's r e l a t i o n  Ti = CT ,n one has 
i j  j '  

T 0 

T 
Y 

o r  

where 

(5) 

Following a somewhat standard fashion, t he  c i rcumferent ia l  stress around 
t h e  hole  i s  obtained and p l o t t e d  a l s o  i n  f igu re  4 f o r  t h e  comparison purpose. 

DISCUSSION OF RESULTS 

The r e s u l t s  presented i n  t h i s  paper represent an attempt t o  understand 
and p r e d i c t  t h e  stress concentration around a c i r c u l a r  ho le  i n  an angle-ply 
laminate. A s  shown i n  f i g u r e  4 ,  t h e  c i rcumferent ia l  stresses,based upon t h e  
finite-element method and t h e  one computed from t h e  recorded s t r a i n  da ta ,  are 
p lo t t ed  toge ther  f o r  comparison purpose. These two curves c ros s  each o the r  at 
a few p laces ,  but t h e  discrepancy at  some p laces  i s  up t o  35%. This degree of 
devia t ion  i s  not  hoped f o r ,  but it i s  to l e rab le .  Similar experience ind ica t e s  
t h a t  such a d i f f e rence  i s  by a l l  means possible.  

The stress concentration f a c t o r  a t  b / r  = 1 and 8 = t 900 i s  about 5.8 
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which is considerably higher than the classical factor 3 for an infinite, 
isotropic plate. 
stress concentration around such a circular hole. One possible reason for 
having such a high stress concentration factor is that a number of fibers were 
cut at the location of the hole. 
ments for transmitting the stresses. From an intuitive point of view, if 
the location of the hole is known in advance, then rerouting the fibers 
around the hole may cut down the high stress concentration factor. 

Therefore, special attention must be paid for the local 

This weakens the ability of the fiber ele- 
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TABLE 1.- TEST SPECIMEN DATA 

TABLE 2.- TEST RESULTS 
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Figure  1.- I s o t r o p i c  case, Oe/a0. 

x 

Specimen #l 

Specimen #3 

X 

Specimen 1 2  

Specimen #4 

Figure  2.- Locat ion of s t r a i n  gages. 
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Figure 3 . -  Strain curve, (So = 6895 kN/m2 (1 ksi). 

0 From strain data 
@ Finite-element result 

Figure 4.- Stress concentration factors. 
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Figure 5.- Element assignment. 
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TRANSFER MATRIX APPROACH TO 

LAYERED SYSTEMS WITH AXIAL SYMMETRY 

Leon Y. Bahar 

Department of Mechanical Engineering and Mechanics 
Drexel University 

Philadelphia,  Pennsylvania 19104 

SUMMARY 

The stress and displacement d i s t r i b u t i o n  i n  a layered medium is  
found by means of t r a n s f e r  matrices. 
symmetry, and each l a y e r  is  of i n f i n i t e  ex ten t  i n  t h e  ho r i zon ta l  d i r ec t ion ,  
of constant depth, and i s  considered t o  be l i n e a r l y  elastic, homogeneous, 
and i so t rop ic .  
ing  i n t e r f a c e  cont inui ty  conditions automatically.  Its app l i ca t ion  t o  
layered composites shows t h e  f l e x i b i l i t y  with which i t  p r e d i c t s  t h e  l o c a l  
as w e l l  as the  g loba l  response of t h e  medium. 

The su r face  loading e x h i b i t s  axial 

The method developed has the b u i l t - i n  advantage of enforc- 

INTRODUCTION 

Recently, t h i s  w r i t e r  developed a t r a n s f e r  matrix approach t o  various 
problems i n  mechanics by combining the  method of i n i t i a l  functions due t o  
Vlasov ( r e f .  l ) ,  with the  i n t e g r a l  transform method developed by Sneddon 
( r e f .  2) .  

The method employed by t h i s  w r i t e r  cons i s t s  i n  applying t h e  state 
space approach, which has been used extensively t o  analyze l i n e a r  systems 
i n  var ious  areas of systems engineering, such as modern c o n t r o l  theory 
( r e f .  3 ) ,  t o  t he  f i e l d  of elastomechanics. 

The top ic s  so  f a r  analyzed through t h i s  approach cover two-dimensional 
e l a s t o s t a t i c s  ( r e f .  4 ) ,  one-dimensional elastodynamics ( r e f .  5 ) ,  applica- 
t i o n  t o  a t y p i c a l  e l a s t i c i t y  problem ( re f .  6 ) ,  examination of t h e  b a s i c  
foundation of t he  theory ( r e f .  7 ) ,  appl ica t ion  t o  numerical i n t e g r a t i o n  of 
equations of motion t o  p red ic t  dynamic response ( r e f .  8), h e a t  conduction 
( re f .  9 ) ,  boundary value problems ( r e f .  10) and earthquake engineering with 
emphasis on s o i l - s t r u c t u r e  i n t e r a c t i o n  ( r e f .  11). Additional re ferences  
per ta in ing  t o  each top ic  considered w i l l  be found i n  the  re ferences  c i t e d  
above and w i l l  no t  be repeated here.  
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This paper extends the  work described i n  ( r e f .  4) which w a s  r e s t r i c t e d  
t o  a plane stress (o r  plane s t r a i n )  problem, t o  a three-dimensional one with 
a x i a l l y  symmetric loading. 
approach is t o  develop a f l e x i b l e  method f o r  t h e  ana lys i s  of layered media 
subjected f o r  ins tance  t o  concentrated loads, ranging from classical problems 
i n  s o i l  mechanics, t o  t he  p red ic t ion  of impulsive rqsponse of laminated com- 
pos i t e s .  

The motivation f o r  considering t h e  present  

In  t he  lat ter case i n e r t i a l  e f f e c t s  m u s t  be included. 

The main advantage of t h e  method is due t o  the  f a c t  t h a t  cont inui ty  
of stresses and displacements a t  i n t e r f a c e s  i s  automatically s a t i s f i e d .  
Therefore, upon determination of t h e  missing i n i t i a l  displacements from 
boundary conditions,  t he  f i e l d  q u a n t i t i e s  can be  determined upon m u l t i p l i -  
c a t ion  of t h e  i n i t i a l  s tate vec tor  by the  chain of l a y e r  t r a n s f e r  matrices 
by t h e  f i e l d  matrix of t h e  l a y e r  of i n t e r e s t .  A Hankel inversion gives the  
a c t u a l  f i e l d  q u a n t i t i e s .  

I n  con t r a s t ,  t h e  classical formulation requi res  the  construction of a 
transformed Airy stress funct ion  t h a t  contains four a r b i t r a r y  parameters 
pe r  l aye r ,  thus producing a t o t a l  of 4n equations i n  4n unknowns f o r  a 
medium of n layers .  These are determined by enforcing t h e  cont inui ty  of 
stresses and displacements across  each i n t e r f a c e ,  which y i e l d s  4(n-1) con- 
d i t i o n s  t o  which the  four boundary conditions are added. 

DERIVATION OF THE TRANSFER MATRIX 

The equations governing the  s ta te  of stress of an a x i a l l y  symmetric, 
homogeneous, i s o t r o p i c ,  l i n e a r l y  e l a s t i c  s o l i d ,  are given by t h e  equi- 
l ib r ium equations 

5 -5 r B  +- = o  a T r z  
ar az r 

a 5  r +-  - 

T 
z r z  a 5  

+ -  + -  = o  a T r z  
ar az r 

i n  t h e  absence of body forces  aud i n e r t i a l  e f f e c t s .  
be adjoined by the  c o n s t i t u t i v e  r e l a t i o n s  

These equations must 

5 = ( A  + 21.1) ar au + A ( f +  E) r 

aw 5 = A:% + ") + ( A  + 21.1) 
z { a r  r 

r z  
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The four  stresses given by equations (2) are func t ions  of t he  pa r t i a l  
der iva t ives  of two displacements only: it follows t h a t  two of these stresses 
can be eliminated. 

For reasons of convenience, 0 8  and crr are chosen f o r  t h i s  purpose. 
Upon s u b s t i t u t i o n  of equations (2a) and (2b) i n t o  equation ( l a ) ,  t h e  la t ter  
can be rewr i t ten  as 

Di f f e ren t i a t ion  of equation (2c) with respect t o  r y i e l d s  

Elimination of t he  mixed de r iva t ive  between equations (3) and ( 4 )  
r e s u l t s  i n  t h e  r e l a t i o n  

Consider a semi- inf in i te  e las t ic  medium which extends t o  i n f i n i t y  i n  

Under t h e  circumstances,taking Hankel Transforms 
the  r -d i rec t ion  as shown i n  f igu re  1. 
symmetric load as shown. 
of order one of equations (5) and (2d), and of order  zero  of equations (2c) 
and ( l b ) , r e s u l t s  i n  t h e  system of equations cast fn matrix form as follows: 

The medium is loaded by an a x i a l l y  

where the  subsc r ip t s  i n d i c a t e  t h e  order of t h e  Hankel transform. Equation 
(6) can be in t eg ra t ed  by considering the  column-vector of transformed 
stresses and displacements as the  state vec tor  X(c,z), and rewr i t ing  i t  as 

A s  shown i n  ( r e f .  4 ) ,  equation (7) can be in t eg ra t ed  t o  y i e l d  

{?(T,z) 1 = exp[zA(S) I { x ( O )  3 ( 8) 

where t h e  matrix exponential  has t o  be evaluated e x p l i c i t l y .  
acterist ic roots of t h e  determinant assoc ia ted  wi th  t h e  matrix A t e )  are t h e  

The char- 
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double roo t s  2 5 ,  i d e n t i c a l  t o  the r e s u l t  obtained i n  r e f .  4 . Therefore, 
t he  r e s u l t s  are analogous t o  those obtained i n  t h a t  paper, i n  which i t  is 
shown t h a t  

where 
(9) 

2 3 + 
a3A exp(zA) = aoI + a A + a A 

a = cosh 5 z  - (52/2) s i n h  5z 

a = [ 3  s inh  t z  - Sz cosh 52]/25 

a = [ z  s inh  5z]/25 

1 2 

0 

1 

2 
(10) 

3 
= [ s z  cosh Cz - s inh  52]/25 a3 

Upon s u b s t i t u t i o n  of t hese  values i n t o  equation ( 9 ) ,  t he  t r a n s f e r  
matrix i s  obtained, and equation (8) gives, i n  turn, t he  state vec tor  which 
cons i s t s  of t h e  transformed stresses and displacements a t  an a r b i t r a r y  depth 
i n  the  f i e l d .  The d e t a i l s  per ta in ing  t o  the  evaluation of t h e  t r a n s f e r  
matrix are given i n  the  Appendix. 
form as 

The r e s u l t s  can be summarized i n  matrix 

where t h e  inf luence  functions mapping the  i n i t i a l  f i e l d  q u a n t i t i e s  i n t o  
those a t  an a r b i t r a r y  depth i n  the  f i e l d  are given by 

I Ll1 = L44 = cosh Z S  + [(A+p)/(A+2p)]z5 s inh  z5 

= [p s inh  Z S  + (A+p)z< cosh zS]/(A+2p) 34 

L13 24 
L14 = [1/2(X+2p)E][(A+3y) s inh  z5 + (A+p)zS cosh 2.61 

L12 = -L 

= -L = [(A+p)/(A+2p)]z s inh  z5 

- = cosh z< - [ (X+p)/(X+2p)]z5 s inh  z5 L22 - L33 

= [1/2(X+2y)5][(A+3p) s i n h  25 - (A+p)zS cosh 

- 2 
L23 

Ljl - -L42 = -225 s inh  z5 

L32 = [2(A+y)5/(A+2p)][sinh z5 - z5 cosh 251 

L41 = [2(X+p)~/(X+2p)][sinh z5 + z5 cosh 253 
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The a c t u a l  physical  q u a n t i t i e s  are then recovered through t h e  inverse  
Wankel transform. 

APPLICATION TO LAYERED SYSTEM 

Consider a layered medium with p e r f e c t  bo.ndding along a l l  i n t e r f a c e s  
as shown i n  f igu re  2. This implies t h e  cont inui ty  of transformed stresses 
and displacements across each in t e r f ace .  I n  order  t o  enforce t h i s  condi- 
t i ons  the  f i r s t  two e n t r i e s  of t he  state vec tor  which appear i n  equation 
(11) are divided by t h e  shear  nodulus, t o  produce a new state vec tor  con- 
s i s t i n g  of transformed stresses and displacements. The elements of t h e  new 
matrix G become G13 = L13,’g; G 1 4  = L14/V; G23 = L23/v; G24 = L 2 4 / ~ ;  
G31 = s”L31; G32 = ’ - L L ~ ~ ;  G41 = and G - - s”L42. The remaining elements 
of the  G matrix are i d e n t i c a l  t o  t h e  corresponding elements of t he  L matrix. 

42 

The modified equation (11) can now be  w r i t t e n  i n  contracted form as 

{ P ( S , z ) l  = [G(A,?J,z,S)I ( Y ( S , O ) )  (13) 
Applying equation (13) t o  each i n t e r f a c e  i n  turn ,  i n  t h e  sequence shown i n  
f i g u r e  2, l eads  t o  

i n  which the  missing i n i t i a l  conditions are determined from boundary con- 
d i t i ons .  Equation (14) then describes t h e  o v e r a l l  response of t he  layered 
system. 

Local information cons i s t ing  of state vec tors  a t  i n t e r f a c e s  can now be  
obtained by terminating t h e  matrix m d t i p l i c a t i o n  ind ica ted  by equation (14) 
a t  t h e  appropr ia te  i n t e r f a c e .  These r e l a t i o n s  are shown by t h e  block 
diagrams shown i n  f igu res  3 and 4. 

The s ta te  vector i n  any a r b i t r a r y  l aye r  m can now be found by t h e  
r e l a t i o n  

m-1 

i= 1 
{?(E, z )  = [G(Am, zs SI 71 G(A. 1 vi,hi, 6 )  I c y ( S , O )  1 (15) 

i n  which t h e  z coordinate i s  the  l o c a l  depth wi th in  t h e  l aye r  m, ranging 
from zero t o  h The a c t u a l  stresses and displacements are given by t h e  
inverse Hankel transformation of t h e  state vector.  m’ 

CONCLUDING REMARKS 

I n  t h i s  paper, a t r a n s f e r  mat r ix  method t o  determine the  response of 
a layered medium subjec ted  t o  an a x i a l l y  symmetric loading has  been 
presented. 

The matrix formulation shows t h a t  t h e  need f o r  matching i n t e r f a c e  
conditions e x p l i c i t l y  i s  avoided by imposing the  cont inui ty  of t he  s ta te  
vec tor  across  each i n t e r f a c e .  This i s  accomplished through t h e  continued 

725 



mul t ip l i ca t ion  of l a y e r  t r a n s f e r  matrices. 
fer matrix remains four  by four,  and is  independent of t he  number of l aye r s  
contained i n  t h e  medium. This is the  main conceptual as w e l l  as computa- 
t i o n a l  advantage of t he  proposed method. 

Therefore, t h e  s i z e  of t h e  trans- 

APPENDIX 

The t r a n s f e r  matrix is  given by t h e  expression exp(zA) = aoI + a A + 
+ a A , i n  which the  matrices A,A , and A _are given by 

1 2 3 2 3 
a2A 3 

and the  c o e f f i c i e n t s  ao,ala2, and a3 are given by the  set of 
r e l a t i o n s  (10). The elements of t he  matrix exponential  are given 
e x p l i c i t l y  by the  expressions (12). 
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Figure 1.- Semi-inf ini te  elastic medium. 

F igure  2.- Axia l ly  symmetric layered  medium. 
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APPLIED GROUP THEORY 

APPLICATIONS I N  THE ENGINEERING (PHYSICAL, CHEMICAL, AND 

MEDICAL), BIOLOGICAL, SOCIAL, AND BEHAVIORAL SCIENCES 

AND I N  THE FINE ARTS 

S.F. Borg 
Stevens Ins t i t u t e  of Technology 

SUMMARY 

A generalized "applied group theoTyJ' is developed and it i s  shown tha t  
phenomena from a number o f  d i m m e  discipl ines  may be included under the urn- 
bre l l a  of a s ingle  theoret ical  fomulat ion based upon the concept of a ltgrouptt 
consistent with tke usual def ini t lon of  t h i s  term. 

rNTRODUCTION 

The essence of the t f g r o ~ p l t  concept as used herein is contained i n  the 
three terms, element, transfomation and i m r i a n c e ,  and it may be shown tha t  
they are  i n c l m  the' vari-ws' analyses' d'iscuksed i n  t h i s  paper. More f o r -  
mally, the mathematical definit ion of a group generally includes the f'inverse" 
operation (however defined) and also an "identity" operation (also variously 
though consistently defined). 
t h i s  report without d i f f i cu l ty ,  as w i l l  be shown, although the main emphasis 
w i l l  be placed upon the element, transformation and invariance properties of 
the groups being considered. 

These may be brought i n to  the discussion of 

It must be noted a t  the outset  t ha t  the various terms, quantit ies and 
operations w i l l  have d i f fe ren t  forms for the different  discipl ines  considered. 
In some cases they take a mathematical form; i n  others they appear as curves, 
o r  as sounds o r  as visual e n t i t i e s .  
w i l l  be shown tha t  the requirements of the llgrouptf representation w i l l  be 
sa t i s f i ed  i n  each case and i n  t h i s  sense a l l  of the discipl ines  discussed f a l l  
within the overall  province of the group concept. 

However, despite these differences, it 

The following manner of presentation w i l l  be u t i l i zed ,  In the next sec- 
t ion a Table w i l l  be presented i n  which the en t i re  theory w i l l  be summarized. 
411 of the group requirements w i l l  be l i s t e d  f o r  the different  discipl ines  
considered i n  t h i s  paper. 
Jesired. 

Others may be included, without d i f f icu l ty ,  i f  

After t h i s  an example from each discipl ine w i l l  be discussed i n  greater 
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detail. 

THE GROUPS 

A concise, detailed general classification scheme for the underlying 
theory is contained in Table 1. 

Note especially how all of the formal requirements of group representa- 
tion are satisfied - although these vary from group to group. 

In particular two distinct typical types of group elements are shown: (I) 
tensor  o r  (2) events. There appears t o  be a connection between these seemingly 
separate group types in that many "event" groups may, in fact, be "tensors". 
A discussion of this point in connection with ''Behavior" is presented later 
in the paper and current continuing analyses indicate that this duality may 
be a general property of many event phenomena. 

The transformation corresponding to the tensors is a rotation of axes. 
The transformation corresponding to an event is an alteration o r  change of the 
phenomenon caused by a change in the particular activity variable involved in 
the phenomenon. The invariants (which imply conservation of the structure of 
the element during the transformation) are the tensor invariants for tensor and 
the single equation or  curve or other phenomenon representing events. 
above will be explained in greater detail in the next section. 

All of the 

DISCUSSION OF TYPICAL GROUPS IN THE VARIOUS DISCIPLINES 

In this section, one typical group from each of the disciplines will be 
described in more detail than given in Table 1. 
subject in even greater detail. 

The references cover the 

Engineering-Physics Groups 

A typical group element of many engineering-physical problems is  t h e  
tensor - zero, first and second order (ref.. 1). Zero order tensors are 
scalars, first order tensors are vectors and second order tensors are usually 
called "tensors". 

Some typical familiar examples of tensors are the stress tensor and the 
inertia tensor. 
3x3 matric form, with each term of the matrix representing either a stress 
component or  a moment of inertia with respect to x-y-z axes. 

In three dimensional x-y-z space these may be shown i n  a 

These tensors may be transformed by rotating the x-y-z axes arbitrarily 
about the origin of the axial system. If this is done, then it can be shown 
there are three invariants, that is, quantities whose values are not changed 
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by t h i s  ro ta t ion .  
can be expressed without regard t o  axial or ientat ion.  Furthermore, the inverse 
operation and the iden t i ty  (unit)  tensor may be defined and we have, therefore,  
a l l  second order tensors as elements of the group. 

In addition, the tensor i t s e l f  i s  an invariant  since it 

In an analogous manner, we may discuss a par t icu lar  physical event ( re f .  
2)  - an i n f i n i t e  s t ra ight-s ided wedge impacting with constant veloci ty  on an 
i n f i n i t e  ocean, with time t = O  the ins tan t  the point of the wedge touches the  
surface. A t  any time t > O ,  the  wedge and water surface w i l l  be a t  par t icu lar  
locations,  and each of these w i l l  be d i f fe ren t  f o r  d i f fe ren t  times. The 
representation of the wedge and ocean, a t  any time t-t, corresponds t o  the  
element of the group. If,  i n t o  t h i s  phenomenon, we introduce a change of 
coordinates, E; = - x , 

shown on a s ing le  map (the invariant)  i n  the  6 , ~  plane. The time, t ,  is  the 
transformation coordinate, since f o r  each d i f f e ren t  value of t the event 
transforms t o  new wedge and water posi t ions.  

17 = - y , then the e n t i r e  phenomenon, f o r  a l l  t > O ,  may be 
t t 

The fundamental behavior i n  the above group is  the collapsing of multi- 
cume data (the elements) by a su i tab le  change i n  coordinates t o  a s ingle  
curve (the invariant)  va l id  f o r  a l l  the separate elements f o r  a l l  values of 
t h e  t ransformation coordinate ,  t. This  concept is t h e  b a s i s  f o r  many of t h e  
group r ep resen ta t ions  considered i n  the present  paper. 

We may define as a group, a s e t  of objects,  quant i t ies ,  happenings o r  
other 
s ing le  event, t h i s  being the invariant representation o f  the separate items o r  
phenomena. 
variable which transforms or  a l t e r s  the  event i s  cal led the ac t iv i ty  variable 
and the s ing le  equation or  visual  representation of the event i s  called the 
invariant of the group. 

items which, by means of a mathematical r e l a t ion  i s  transformed in to  a 

The separate items are  cal led the elements of the group. The 

The ident i ty  r e l a t ion  fo r  these phenomena is  e i ther  

1) unity, a mult ipl ier  of the mathematical equation, 

o r  
2) a transparent sheet placed over the curve such tha t  the curve 

shows through unchanged. 

The inverse r e l a t ion  f o r  these phenomena i s  e i the r  

1) the negative equation, which when added t o  the or ig ina l  
equation gives zero,  

o r  
2) an obl i te ra t ing  cover sheet which annihi la tes  the given 

curve, resu l t ing  i n  a blank sheet.  
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Chemical Groups 

In reference 3 an experimental study is reported of the sensitivity of 
the DNA-RNA hybrid obtained from the CSCI  density gradient to ribonuclease A 
and to fraction A {the transformation variables). 
(elements) were drawn corresponding to six different sets of transformation 
variables. 

Six different curves 

As shown in reference 4 all six curves can be collapsed to a single 
curve (and mathematical equation), the invariant, in terms of a suitable 
change of variables. The details are presented in the reference. 

The unity and inverse statements are as in the engineering-physical 
groups, case b. 

Biological-Medical Groups 

OTentreich and Selmanowitz, (ref. 5) discuss results of experiments 
dealing with healing of wounds in dogs and men. 
healing of originally 40 sq cm wounds on men of 20, 30 and 40 years indicating 
wound healing in relation to age (the activity variable). 

Their report shows curves of 

In reference 3 it is shown that all three curves (the elements) can be 
collapsed into a single equation o r  curve (the invariant) by means of a suit- 
able change of coordinates. 
inverse and identity statements are equivalent to those of case b, engineering- 
physical groups. 

The details are given in reference 3.  The 

Social Groups 

A social application occurs in connection with a study reported by 
Sherman (ref. 6), dealing with total food intake of children from birth to age 
13-15. His results are presented in a chart showing the food allowances (in 
calories) for children of about average weight for their age. 
given separately for girls and for boys (the activity variables), these being 
the group elements. By means of a suitable change of  variables (as shown in 
ref. 3) it is possible to collapse both sets of data to a single mathematical 
equation and curve - the invariant. The identity and inverse statements are 
again as in case b, engineering-physical groups. 

The data is 

Behavior Groups 

Just as in the case of engineering-physical applications, in the area of 
behavior there appear to be two different types of group representation - the 
'Yensorallf and the "event" forms. . 

As an example of the "tensoral" behavior group, the author (in an as yet 
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unpublished report)  developed a theory i n  which it was hypothesized tha t  
cer ta in  variables re la ted  t o  behavior may be interpreted as tensors, s a t i s -  
fying the same transformation and other re la t ions tha t  engineering-physical 
tensors s a t i s fy .  

As a check against the hypothesis experimental data  presented i n  a 
report  ( ref .  7) was used, dealing with a number of subjects who imagined 
happy, sad and angry s i tua t ions .  
were produced (the elements) and these were measured by electromyography. 
The fac ia l  expressions were recorded f o r  depressed and f o r  non-depressed 
subjects and, sui tably calibrated,  were presented i n  bar  graph form. The 
subjects were tes ted on the Zung Self Rating Depression Scale and scored 
accordingly. These scores corresponded t o  the transformation variable.  
Complete de t a i l s  are given i n  the unpublished report .  

Different patterns of f ac i a l  muscle ac t iv i ty  

I t  was shown tha t  quant i t ies  sat isfying the tensor transformations could 
be established f o r  t h i s  one test ,  a t  least. 
was obtained and, subject to  further Verification, i t  seems possible that many 
of the phenomena i n  the f i e l d  of behavior may be t reated u t i l i z ing  tensor 
theory. If t h i s  i s  i n  f ac t  t rue ,  it w i l l  permit one to  predict  by extra- 
polation various new re la t ions  i n  behavior theory which themselves may be 
capable of experimental ver i f icat ion.  
tensoral equations one may be able t o  correlate  measured behavior quant i t ies  
with fundamental measurable central  nervous system responses. 

A fair  check on the hypothesis 

Also by modelling sui table  mathematical 

A typical ''event" type of behavior group occurred ( re f .  8 )  i n  an experi- 
mental study of the swimming a b i l i t y  of new-born r a t s  t reated with hormones, 
the ac t iv i ty  variable.  Three d i f fe ren t  groups of r a t s  were studied and three 
separate curves were obtained. As shown, ( ref .  3)  i t  i s  possible, by means of 
a sui table  change of coordinates, t o  collapse a l l  three curves, the elements, 
t o  a single curve, the invariant.  
similar t o  the ones shown for  case b,  engineering-physical groups. 

The ident i ty  and inverse statements are  

Music Groups 

Several d i f fe ren t  types of music groups may occur. A par t icu lar  arrange- 
ment of notes (as f o r  example Ravel's "Bolero" o r  the Schbberg "twelve tone 
music") is a typical element. 
composition, as it re l a t e s  t o  ''groups" including such factors  as pi tch,  
repet i t ion,  sequential treatment, counterpoint, loudness, e t c . ,  is clearly 
beyond the l i m i t s  of t h i s  paper. One may, however, consider Ravel's Bolero as 
an example. In t h i s  composition we have the repe t i t ion  of a s ingle  theme (the 
element), representable by means of a musical equation (the notes), being 
transformed while being performed by means of a continuing gradual crescendo 
in to  a composition (the invariant)  a l l  shown as a symbolic mathematical equa- 
t ion.  
The ident i ty  and inverse statements may be taken as shown i n  Table 1. Refer- 
ence 9 lists a number of additional s tudies  i n  t h i s  area. 

A discussion of the en t i r e  range of music 

I t  is  also possible t o  represent musical forms i n  matrix equations. 
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Art-Architectural Groups 

In the art-architectural field one may think of piastre band treatments 
as being typical of group phenomena. 
ttfigurestt (gargoyles OT Saints or Kings or windows for example) in a %andtt 
going along one side of the building, or completely 
These may be identical (as in the case of windows and possibly the human or 
other figures) o r  they may vary from one to the other as in the case of human 
and gargoyle figures. 

In these cases one may have a series of 

around the building. 

It is possible to reduce these band figures, the elements, to a single 
mathematical equation or to collapse the different figures to a single visual 
quantity, as follows: 

For, say, the identical windows, we have 

(window)x(function of spacing) = n (identical windows) 

For, say, the figures, we have (with a suitable definition of the 
summation process) 

Cclothes)n = n(identica1 figures)o (face) n CCfigureAx - (face 1 . . . .x (clothes):' 
in which all figures are transformed to an identical figure by means of the 
alterations noted. 
identical figure - may be determined. 

From these equations the invariant - identical window or 

A somewhat different approach is presented in reference 9. 

Poetry Groups 

In the case of poetry (reference 10 f o r  example) one deals with terms such 
as metre, rhyme, image, texture,  t r i o l e t ,  stanza, ete. It i s  possible to  
jindicate rhyming schemes by means of letters. 
rondeau which may consist of ten lines has a rhyming scheme as follows: 

A s  a typical  example, the 

abbaabRabbaR 

In this, R, the re f ra in ,  is frequently simply a t a i l  and may be the first word 
of the opening stanza. 

The above scheme may be put in a rather more symmetrical matrix form 
(symmetry is desirable in some theories of composition), 
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i n  which t h e  usual rules o f  matr ix-mult ipl icat ion are used and "rondeau" i s  
the invariant .  One may, conceivably, invent new poet ic  forms by performing 
various matrix operations - an "inverse rondeau", for example. A much more 
elaborate treatment of t h i s  top ic  is  presented i n  reference 9 with particular 
emphasis on i t s  appl icat ion t o  Russian literature. 

CONCLUDING REMARKS 

I t  was shown t h a t  t he  general mathematical de f in i t i on  of "group1' may be 
applied t o  phenomena occurring i n  many d i f f e ren t  d i sc ip l ines .  
of the theory - element, invar ian t ,  i den t i ty ,  transformation and inverse - 
a l l  have counterparts i n  the  d i f f e ren t  f i e l d s  considered, subject  t o  su i t ab le  
a l t e r a t ions  as required,  for example, with.visua1 o r  tonal  o r  other  charac- 
t e r i s t ic  phenomena. 

The bas ic  terms 

In some of the  d i sc ip l ines  discussed, by using the  group concept and 
developing the  group invar ian t ,  new re l a t ions  a r e  obtained which permit one 
t o  predict  new engineering, b io logica l ,  etc. phenomena t h a t  are capable of 
experimental ve r i f i ca t ion .  

Final ly ,  it i s  conceivable t h a t  some of the general theorems and prop- 
ert ies of Ihathematical group theory" may - by s u i t a b l e  modification - be 
applicable t o  the d i f fe ren t  d i sc ip l ines  considered, thereby permitt ing one t o  
obtain new fundamental ins ights  and knowledge i n  these f i e l d s .  
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RESPONSE OF LINEAR DYNAMIC SYSTEMS 

WITH RANDOM COEFFICIENTS 

John Dickerson 
University of South Carolina 

INTRODUCTION 

Numerous models of phys ica l  systems contain parameters whose values are 
not known exactly.  This paper attempts t o  address some of t h e  physical and 
mathematical complexities a r r i s i n g  i n  t h e  p red ic t ion  of t h e  s ta t i s t ica l  be- 
havior of such systems. Although the  discussions i n  t h e  paper a r e  f a r  from 
providing a s a t i s f a c t o r y  so lu t ion  t o  such problems, they perhaps, by u t i l i z a -  
t i o n  of simple examples, w i l l  c r ea t e  a g r e a t e r  awareness of t h e  s t a t i s t i c a l  
e f f e c t  of random parameters. 

PROBLEM FOWLATION 

Consider t h e  problem of determining t h e  s t a t i s t i c a l  p rope r t i e s  of t h e  re- 
sponse of 
(constant 

m a t  i cal ly 

a f i n i t e  dimensional l i n e a r  dynamical system with random c o e f f i c i e n t s  
with respect t o  time) and subjected t o  s t o c h a s t i c  fo rces .  Mathe- 
the problem is  represented by the  following equation: 

dx(t) = h ( t )  + f ( t )  ozt d t  

x(0)  = x 
0 

where x ( t )  , f (t) , and x are n-dimensional random vec to r s ,  A i s  an nxn random 
matrix. 
variance,  co r re l a t ion  func t ion ,  s p e c t r a l  dens i ty ,  d i s t r i b u t i o n ,  e t c . )  of x ( t )  
knowing the  s t a t i s t i c a l  p rope r t i e s  of x 

The problem is'to determine s t a t i s t i ca l  p rope r t i e s  (mean value, 

0' 
f ( t ) ,  and A. 

EXISTENCE OF SOLUTION 

If  t h e  de r iva t ive  i n  equation (1) i s  in t e rp re t ed  i n  t h e  almost s u r e  sense  
then ex is tence  and uniqueness of a so lu t ion  follows from appropr ia te  r e s u l t s  
i n  Rn and i f  f ( t )  is almost s u r e l y  contfnuous then a so lu t ion  i n  t h i s  sense 
would e x i s t  and be given by: 
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f (.r)d.r A t  x ( t )  = e x + lo e 
0 

However,since t h e  discussions i n  t h i s  paper w i l l  be concerned with second 
moments of t h e  so lu t ion ,  i t  would s e e m  appropr ia te  t o  r equ i r e  t h e  de r iva t ive  
i n  (1) t o  be a mean square de r iva t ive  and t o  consider t h e  d i f f e r e n t i a l  equa- 
t i o n  (1) over t h e  Hi lber t  space Zn where Z denotes t h e  Space of second order 
random var iab les .  
requi r ing  A t o  be almost su re ly  bounded) then the  theory of ordinary d i f f e r -  
e n t i a l  equations would y i e l d  a unique so lu t ion  given by (2), where t h e  in t e -  
g r a l  w a s  a mean square i n t e g r a l ,  provided f ( t )  i s  mean square continuous. I n  
genera l ,  however, A may no t  be bounded, i .e. t he  product of two second order 
random va r i ab le s  w i l l  not be  a second order random va r i ab le  and then the  
appropr ia te  theory discussing ex is tence  of a so lu t ion  t o  (1) would l i k e l y  be 
a requirement t h a t  t h e  so lu t ion  be t h e  ac t ion  of a semigroup on t h e  i n i t i a l  
condition. For example, i f  t h e r e  e x i s t s  a real  number A such t h a t :  

I f  A is  a bounded operator over Zn (probably equivalent t o  

0 

-1 I lXIX+Xo - AI I I C y  f o r  a l l  complex X with Re A > O ,  - 1  C a real 

n number and I I 1 I denoting t h e  norm over R , then t h e r e  w i l l  be a so lu t ion  i n  
the mean square sense  t o  (1) and f u r t h e r :  

In  p a r t i c u l a r  i f  X 
asymptotically stagle. 
the  only s t i p u l a t i o n s  t h a t  x &Zn and f ( t )  be mean square continuous. 
approach t o  f ind ing  a mean square so lu t ion  t o  (1) would be t o  r equ i r e  condi- 
t i ons  on xo, A, f ( t )  such t h a t  (2)  is  a so lu t ion  t o  (1).  If xo, A, and f ( t )  
are mutually independent, then requi r ing  eAt and AeAt t o  have second moments 
would in su re  t h a t  (2) s a t i s f i e s  (1) .  The following elementary examples attempt 
t o  i l l u s t r a t e  t h e  above discussion. 

can be chosen t o  be nega t ive  then t h e  so lu t ion  w i l l  be 
This approach t o  t h e  problem exh ib i t s  a so lu t ion  with 

Another 
0 

EXAMPLES 

Example 1 

Consider t h e  f i r s t  order homogeneous equation (n = 1 ) .  

- _  dx - ax d t  x(0) = x 
0 
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with a uniformly d i s t r i b u t e d  between a and 6. 
over Z thus ,  f o r  example, i f  xo is independent 

Clear ly  a is a bounded opera tor  
of a it follows tha t :  

I f  P O  then E[x( t ) ]  becomes a r b i t r a r i l y  l a rge  even i f  t h e  mean of a is  nega- 
t ive . 
Example 2 P 

Consider t h e  above problem with t h e  dens i ty  of a given by: f 
shown: Pa(a) = ae  

< C i f  Ao>$ x 
I h+Xo-a I - Although a i s  no t  a bounded opera tor  over Z c l e a r l y  

f o r  a l l  Re X>O. Thus a s o l u t i o n  exists. 
can be shown t h a t  

I f  xo i s  independent of a then it 

f3t 
E[x ( t ) ]  = - E[xol. 

ae 
t+a 

Note again t h a t  i f  B>O E[x(t)]  becomes a r b i t r a r i l y  la rge .  

Example 3 
I 

Consider t h e  above example wi th  a Gaussian with mean 11 and variance (3. 

Clearly a is  not bounded and-fur ther  no Xo can be chosen t o  make X I c, I,+, -a - 
However i f  a is  independent of x then 
it follows t h a t  : 0 

2 4  2 
1 t (T + 2pto 

E[x ( t ) l  = exp C 
(3 

0 a t  a t  ae and e do have second moments and 

E[xol 

However, regard less  of (3 and p, E[x( t ) ]  becomes a r b i t r a r i l y  l a rge .  

Example 4 

Consider t h e  above example with t h e  dens i ty  of a given by: 
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Again t is  not  poss ib l e  t o  pick a A such tha : 
0 

and even i f  x is  independent of a i t  can be demon- A 
IA+Ao-a l  5 c 0 

s t r a t e d  t h a t  x ( t )  does not have a f i r s t  moment f o r  t>a. Thus i t  makes no 
sense  i n  t h i s  problem t o  attempt t o  ca l cu la t e  E[x( t ) ] .  

STATIONARY RESPONSE AND SPECTRAL DENSITY 

Assume t h a t  the ex is tence  of t h e  so lu t ion  i n  t h e  mean square sense t o  (1) 
is  known and is  express ib le  as: 

x ( t >  = eAtx t J e f (.c)d-c 
0 0  

I f  A, xo, and f ( t )  are mutually independent and f u r t h e r  i f  f ( t )  is  s t a t i o n a r y  
with co r re l a t ion  matrix Rf then it follows t h a t :  

t + A  t A( t+A-ql)  
E[(x(t+A) - E[x(t+A)l) ( x ( t )  - E [ ~ ( t ) l ) ~ ]  = lo lo E[e 

I f  i t  can f u r t h e r  be shown t h a t  I leAt I I < CeBt with B<O, then it  follows i n  
the usua l  way t h a t  as t goes t o  m x ( t )  becomes s t a t iona ry  with: 

By taking t h e  Fourier transform of Rx(A) it  is  e a s i l y  shown t h a t  t h e  spectral  
dens i ty  of x ( t )  is given by: 

7 44 



Example 5 

Of t h e  previous examples only Example 1 w i t h  f3<0 and Example 2 with f3<0 
eventually have s t a t i o n a r y  so lu t ions .  I n  example 1 (with B<O) i t  i s  e a s i l y  
seen tha t :  

-1 M, E -  t a n  - 1 sf(w) 1 Sx(w) = - [ t an  w w w 

I f  Sf(w) = 1 (white noise)  then a p l o t  of Sx(w) follows: + 

I f  a was not  a random v a r i a b l e  then S (w) = - and a p l o t  of t h i s  follows: X 2 2  a +w 

SUMMARY 

Those readers  who have gotten t o  t h i s  point i n  t h e  paper recognize 
it as a fraud. 
ca l cu la t e  t he  s ta t i s t ica l  proper t ies  of t h e  response of dynamical systems 
which have random parameters, (2) p resents  poss ib l e  mathematical models t h a t  
pe r t a in  t o  t h e  physical problem and (3) presen t s ,  via simple examples, where 
t h e  problems are i n  t ry ing  t o  so lve  t h e  problem. The r e s u l t  i n  example 3 ,  
where a i s  Gaussian, shows t h a t  regard less  of how negative t h e  mean value and 
how s m a l l  t h e  variance of a, t h e  mean va lue  of the  so lu t ion  goes t o  m as t i m e  
goes t o  0 0 .  

o f  the so lu t ion .  

The paper (1) presents  a phys ica l  problem, i.e.: how do you 

In  p a r t i c u l a r ,  i t  makes no sense t o  t a l k  about t h e  s p e c t r a l  dens i ty  

I n  t h e  opinion of t he  author closed form so lu t ions  t o  problems beyond n= l  
are not f e a s i b l e  and cur ren t  work cen te r s  around t h e  study of t he  accuracy of 
approximate methods t h a t  have been proposed i n  t h e  l i t e r a t u r e .  
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APPLICATIONS OF CATASTROPHE THEORY I N  MECHANICS 

Martin Buoncristiani and George R. Webb 
Christopher Newport College 

INTRODUCTION 

Consider a system under the  influence o f  control parameters c. I t  may hap- 
pen tha t  f o r  some values of c the system has more than one s t a b l e  equilibrium 
state and consequently a continuous change i n  control  may cause a discontinuous 
change from one equilibrium state t o  another. This occurs, f o r  example, i n  t he  
"snap-through" of  a compressed beam under transverse loading. 
abrupt t r ans i t i on  between s t a b l e  equilibrium states - a branching or  bifurcat ion - has been the  subject  of much study ( r e f .  1 t o  4) and recent ly  the  French top- 
o logis t  Ren6 Thom developed a theory which presents seven standard types of d i s -  
continuous behavior (ref. 5 t o  6 ) ,  ca l led  elementary catastrophes, and proved 
t h a t  any discontinuous behavior i n  systems controlled by not more than four  var- 
i ab le s  is one of these seven elementary catastrophes.  Thorn's theorem i s  remark- 
able  f o r  providing a c l a s s i f i ca t ion  of discontinuous behavior but it i s  a l so  
useful as an a id  t o  visual iz ing phenomena of t h i s  s o r t .  The proof of t h e  theor- 
em is d i f f i c u l t  but  i t s  r e s u l t s  are easy t o  understand and t o  use i n  problems 
involving bifurcat ion.  

This kind of 

Applications of Thorn's theory t o  problems i n  mechanics a re  j u s t  beginning 
The first problem solved appears t o  have been an example by Zeeman t o  appear. 

(ref. 7) and his co-workers. This example has recent ly  been generalized by 
Woodcock and Poston so t h a t  i t  can describe higher order catastrophes. 

The most extensive s tudies  come from the  group of researchers t ha t  work 
with J .  M. T. Thompson of University College, London. Thompson and H u n t  ( ref .  
8) cor re la te  t h e i r  own theories  of elastic s t a b i l i t y  f o r  d i sc re t e  systems with 
the work o f  Thom and suggest possible  f i e l d s  i n  which the  theory w i l l  give s ig -  
n i f i can t  ins ights .  Troger ( r e f .  9) suggests the nature  of such ins ights  i n  h i s  
study of von Mises t rus s  and a shallow arch from the  point  of view of catastro-  
phe theory, and Fowler ( r e f .  10) i n  h i s  paper on t h e  Riemann-Hugoniot shock does 
the  same. 

Chillingworth and Guckenheimer apply the  theory t o  continuous systems. 
Chillingworth (ref. 11) uses a generalization of Morse's Lemma t o  Hilber t  spaces 
t o  reduce the  study of the  buckling of  a beam t o  a problem i n  f i n i t e  dimensions; 
Guckenheimer (ref. 12) discusses catastrophes and Hamiltonian systems. 

The papers by Schulman (ref .  13) on phase t r ans i t i ons ,  Kozak and Benham 
(ref. 14) on denaturation, and Mehra and B l u m  ( re f .  15) on t h e  ign i t i on  of paper 
provide examples i n  t h e  realm of thermodynamics. Detailed bibliographies of ca-. 
tastrophe theory and i ts  appl icat ions t o  problems i n  o ther  areas can be found i n  
reference 16 . 
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STRUCTURAL STABILITY OF POTENTIAL FUNCTIONS 

In t h i s  paper w e  w i l l  describe a method, using Thorn's c l a s s i f i ca t ion  of 

Examination of the  s t a b i l i t y  of s ingular  
catastrophes, fo r  the analysis of s t a b i l i t y  of systems whose s ta t ic  behavior i s  
derived from a poten t ia l  function. 
points  of po ten t i a l  functions w i l l  serve t o  i l lus t ra te  the  nature of the  elemen- 
t a ry  catastrophes, which can a l so  a r i s e  i n  non-conservative dynamical systems 
as well as i n  the  s ta t ic  case of po ten t ia l  theory. 

The f i rs t  s tep i n  examining the  s t a b i l i t y  of systems admitting discontinu- 
ous t r ans i t i ons  i s  t o  c l a r i f y  t h e  notion of s t a b l e  s t a t e .  Early work of Poin- 
car6 (ref. 17), and Pontryagin and Andronov (ref. 18) developed the notion of 
s t ruc tu ra l  s t a b i l i t y  which expresses two key ideas.  First, equilibrium states 
of  a system are characterized by t h e i r  topological type; it i s  the  general shape 
of a s t a t e  which i s  important and not numerical values which it might take on. 
In the  case of po ten t ia l  functions the  topological type i s  given by the  number 
of s ingular  points .  
( c r i t i c a l )  values of control parameters a t  which the  equilibrium state changes 
i t s  topological type. 
the state space. The poten t ia l  function i s  a smooth map, V(x,c), V:X x Rp +. R. 
A point x 
points  ana t h e i r  associated s ingular  ( s ta te )  points  form a manifold, ca l led  the  
catastrophe manifold, 

Second, discontinuous behavior of a system occurs for  those 

Let C(=RP) be the  space of control var iables  c, and X(=R) 

The col lect ion of control is  a s ingular  point  of V i f  DxV(xo,c) = 0. 

M = {(x,c) E X x Rp [ DxV(x,c) = 03. (1) 

"he dimension of M i s  p. 
a f ixed value of c, there  i s  a f ixed poten t ia l  function Vc(x) with a f ixed num- 
ber u f  s ingular  points .  
divides) the control space i n t o  open and dense regions i n  which t h i s  number is  
constant, separated by boundaries across which it changes. Such a change w i l l  
occur whenever the  manifold M has a tangent p a r a l l e l  t o  X,  i .e .  when D$V(x) = 0. 
A s ingular  point xo i s  sa id  t o  be s t ruc tu ra l ly  s t ab le  when D2V(xo) f 0.  The s e t  
of points  which are not s t ruc tu ra l ly  s tab le  appears as  a f o l 3  F i n  the  manifold 
M. 

Figure 1 i l l u s t r a t e s  M f o r  a qua r t i c  po ten t ia l .  For 

A s  t h i s  number changes with c i t  s t r a t i f i e s  ( o r  sub- 

F = {(x,c) E X x Rp I D$V(x,c) = 03 (2) 

These are points  a t  which the  map project ing M onto C is  singular.  
cr i t ical  control var iables  a t  which the  number of s ingular  points  changes (or 
equivalently which have s t ruc tu ra l ly  unstable singula; points) i s  ca l led  the b i -  
furcat ion set B. This set i s  given by eliminating x from (1) and (2) : 

The s e t  of 

B = M n F  

In Figure 1, B appears as the  cusp i n  the  c-plane. 

In the neighborhood of a s t ruc tu ra l ly  s t a b l e  point xo(D~V(xo) f 0) the  PO- 
t e n t i a l  i s  quadratic,  t h a t  i s  there  i s  a curvi l inear  coordinate system T i n  
which V(x) - V(x,) = 3. To invest igate  the  behavior of the  poten t ia l  i n  a 

748 



neighborhood of a s t r u c t u r a l l y  unstable point Thorn developed t h e  notion of a 
universal  unfolding of a s ingular i ty .  
V + V + 6V where 6V and a l l  o f  i t s  der ivat ives  are small. Two p o s s i b i l i t i e s  
arise - e i t h e r  the per turbat ion gives rise t o  an i n f i n i t e  number of d i f f e ren t  
topological types of t he  poten t ia l  o r  only a f i n i t e  number. 
the  var ia t ion  of V can be parameterized by a f i n i t e  number of var iables  which 
can be iden t i f i ed  with the  control var iables ,  as 

Consider a per turbat ion of t h e  poten t ia l  

In  the la t ter  case 

bV = clhl (x) + c2h2(x) + . . . (3) 

This var ia t ion  i s  universal  i n  the sense tha t  any var ia t ion  of V depending on 
p-parameters can be obtained by a transformation of (3 ) .  
begin with a cubic po ten t i a l  V(x) = x3, s o  tha t  0 i s  a s t ruc tura l ly  unstable 
point.  
V + 6V i s  described by the  value of the  parameter a as follows: 
has one root ,  an in f l ec t ion  point ,  and f o r  a < 0, V has 3 roots ,  thus one maxi- 
mum and one minimum, c.f. Figure 2. The importance of t h i s  resul t  of Thorn's 
work i s  t h a t  f o r  a l l  po ten t i a l s  with the  same s ingular i ty  type,perturbations 
need depend on only one parameter,and t h e i r  behavior i s  of the  fold type i l l u s -  
t r a t ed  i n  the following examples. 
i a t ion  of V is  ca l led  t h e  codimension of the  s ingular i ty .  A l l  s ingu la r i t i e s  of 
codimension 54 have been analyzed by Thom. There are four poten t ia l s  depending 
on one state var iable  and these have the following form: 

For example suppose we 

If t h i s  po ten t ia l  i s  perturbed by 6V = ax the  topological character  of 
f o r  a 2 0, V 

The number of parameters involved i n  t h e  var- 

We now summarize these r e s u l t s  by s t a t ing  a version of Thorn's Theorem t h a t  
we w i l l  use i n  the  examples of t he  next section. 
Hale and Mallet-Paret i n  reference 4 . 

This version is given by Chow, 

Thorn's Transversali ty Theorem and Catastrophes 

Let V(x,c) : X x Rp -f R and f(x,c)  
V are given by f(x,c)  = 0. 
ed i n  the form , 

dV/dx, s o  t h a t  the s ingular  points  of 
If x = 0 i s  a s ingular  point  of V,  f can be expand- 

k+l)  f(x,O) = Axk + 0 ({XI 

where A f 0 and k gives the  order of t h e  singular point .  
of f with respect t o  the  parameters: 

Expand t h e  der ivat ives  

- af  (x,O) = 1 A . .  - X j + 01x1 k- 1 
k-2 

a ci j =O 1J j !  i = 1 , 2 ,  . . .p 

Then when p ,< k-1 and . 

rank (A . . )  = k-1 
1J 

there  exis ts  a smooth transformation o f  coordinates 
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- 
“PI 

cP) 

Ai = hi(cl..  . 
x = hO(x,c  ,... - 

i = 1, ...p 

such t h a t  
-k -- --- 

f(X,A) = x + I-, + A2x + ... Xk$-* 

APPLICATION OF CATASTROPHE THEORY TO DISCRETE SYSTEMS 
WITH ONE STATE VARIABLE 

In t h i s  sec t ion  w e  w i l l  concentrate on t h e  simple case of p o t e n t i a l s  de- 
pending upon one state var iab le  and two control  parameters; problems of more 
genera l i ty  are approached i n  a similar manner. The physical problems w e  have 
studied are t r a d i t i o n a l  i n  e l a s t i c  s t a b i l i t y :  an imperfection-senstive strut 
and a t r u s s  t h a t  can experience snap-through. These two problems contain many 
of the  fea tures  of more general  problems, and t h e  r e s u l t s  obtained can be d is -  
played c l e a r l y  i n  a graphical form. 
ter ,  Thompson and Hunt, Sewell and Ziegler.  

Similar problems have been t r e a t e d  by Koi- 

Application 1: A S t r u t  With Imperfection S e n s i t i v i t y  

Consider t h e  r i g i d  hinged bar  of length 1 t h a t  i s  held i n  a ver t ical  posi-  
t i o n  by a l i n e a r  spring, with spr ing constant k ,  t h a t  i s  loaded by a vertical  
force P with an e c c e n t r i c i t y  e = vd (see f i g .  3). The spr ing is  attached t o  
the  strut at a dis tance h from the  base and i s  supported on i t s  other  end so 
t h a t  the  spring remains horizontal .  
a v e r t i c a l  l i n e  and t h e  ax is  of t h e  b a q s p e c i f i e s  the  s t a t e  of the  system. 

The coordinate &, which is  measured between 
The 

dimensionless parameters PR and 1-1 -are t h e  controls .  
h = w  

The force function f is  the  gradient of the i n t e r n a l  and external  poten- 
t i a l s  : 

f = f(0;A,v) = - kh2 [sinecose-X(sine+1-Icose) 1 
2 

We begin by f inding t h e  surface f = 0, which i s  t h e  catastrophe manifold, and 
t h e  points  of s t r u c t u r a l  i n s t a b i l i t y  Se= 0. 
i n  three  unknowns w e  f i n d  

Upon solving these two equations 

where t h e  subscr ipt  c denotes the  cr i t ical  condition of s t r u c t u r a l  i n s t a b i l i t y .  

Next we prepare t o  use Thorn’s Theorem. We expand f about the  cr i t ical  val-  
ue of the  state var iab le  and note  the leading term. Here w e  see t h a t  i n  the  
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case where p f 0, f (expanded as  required) is of t he  order  two i n  the  var iable  
x = 0-8,. 

The index k equals 
2 and n, the  number of control  parameters, i s  a l s o  two. Therefore the  inequali-  
t y  i n  t h e  theorem i s  s a t i s f i e d .  We note  a l so  t h a t  f evaluated a t  the  cr i t ical  
point vanishes, a fu r the r  preliminary of the theorem. In order t o  determine the  
nature of t he  catastrophe manifold along t h i s  port ion of  the bifurcat ion set, we 
must f ind  the  rank of t h e  matrix A which is  defined i n  the  theorem. Let f *  be 
f expanded about the  cri t ical  point i n  terms of x. 

If p = 0, f expanded i s  of  order three.  

Let us first consider the  case where f is  of order two. 

Now 

f;A(x;hc,v) = ~kh2[(sinec+~cosec)+(cosec-~sinec)x 1 

f;p(x;Xc,v) = $h 1 2  [ Xccosec+A sinecx + . . . I  
+ . . .] 

and therefore  

The rank of A i s  one; the  conditions of the  theorem are s a t i s f i e d .  The 
s ingu la r i t i e s  are loca l ly  equivalent t o  a fold a t  points  along the  b i furca t ion  
set away from (6,=0; X =1, v=O). 
i c  poten t ia l  discussed e a r l i e r .  

If w e  consider t h i s  la t ter  case of e =0, w e  f i nd  t h a t  t h e  function f i s  lo- 
ca l ly  equivalent t o  some form of a cusp, $he case where k=3 i n  Thorn's Theorem. 
In order t o  iden t i fy  the  normal and s p l i t t i n g  f ac to r s  fo r  the  manifold (see f i g .  
1 f o r  t he  meaning of these terms), and t o  display the  canonical form of t h e  pol- 
ynomial, w e  expand f about t h e  point (O=O; h = l ,  u=O). We need only r e t a i n  terms 
t o  the  t h i r d  order s ince the  manifold i s  a cusp i n  t h i s  neighborhood. 

This behavior i s  iden t i ca l  t o  t h a t  of t h e  cub- 
C 

f = -[-e3 kh2 + 2(1-x)e + 2 ~ ~ 1  
4 

If we place t h i s  expansion i n  t h e  canonical form 

we  f ind t h a t  xl = -2hu i s  t h e  normal f a c t o r  and x2 =-2(1-A) is the  s p l i t t i n g  
fac tor .  
as a cusp but  t h e  negative mul t ip l ie r  causes the  l o c i  of maxima and minima for  
the r e l a t ed  po ten t i a l  function t o  be interchanged. 
i s  the  dual cusp and t h e  behavior of the  system on t h e  catastrophe manifold i s  
al together  d i f f e ren t  from t h a t  on the  manifold of a regular  cusp (fig.  1). 

The force function f o r  t h i s  example is of  the same d i f f e r e n t i a l  type 

This type of force function 
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The b i furca t ion  set  i n  the  control plane is  described by 27y = 47;. 
r e l a t ion  is  an imperfection-sensit ivity curve and has the familiar two-thirds 
power form. 
1. 
which i n s t a b i l i t y  occurs. The area of the catastrophe manifold where xl > 0 i s  
composed e n t i r e l y  of unstable points ;  it is  not accessible t o  the system. 
bifurcat ion set  and a v isua l iza t ion  of the equilibrium surface can a l so  be pre- 
sented as i n  Figure 4. This presentation i s  possible  because the  equilibrium 
surface i s  a ruled surface: f o r  each value of the  state var iable  vector,  the 
equilibrium equation i s  an a f f ine  equation i n  the  control parameters. 
furcat ion set  i s  the  envelope of t he  project ion o f  these l i nes  onto the  control 
space. 
graphic technique t h a t  is  described i n  Woodcock and Poston ( re f .  19).  

This 

The equilibrium surface and the  bifurcat ion se t  a re  shown i n  Figure 
Notice the effect of t he  imperfection. I t  lowers the  value of the  load a t  

The 

The b i -  

The three-dimensionality of these f igures  can be enhanced by a s tereo-  

Application 2 :  An Essent ia l  Modification of the  S t ru t  
With Imperfection Sens i t i v i ty  

We w i l l .  now modify the s t ruc tu re  i n  Figure 3 so tha t  t h e  spring is  attached 
t o  a fixed point a t  a distance h from the  level  of the pivot and i s  fastened t o  
the r i g i d  bar with a sleeve t h a t  allows the spring t o  remain horizontal .  The 
catastrophe manifold near the  s t ruc tu ra l ly  unstable point (6=0; h = l ,  v=O) has 
the form 

In t h i s  case the catastrophe manifold is loca l ly  equivalent t o  a cusp with nor- 
mal fac tor  
behavior between t r a j ec to r i e s  along t h i s  cusp and those along the  dual cusp. 

= -$AD and s p l i t t i n g  factor x2 = +(l-h). Note the  difference i n  

Application 3:  A Symmetric Truss With Moveable Supports 

In t h i s  example w e  consider a modificaTion of the well-studied symmetric 
s t ruc tu re  t h a t  exhib i t s  snap-buckling (f ig .  5 ) .  The s t ruc ture  consis ts  of two 
linear-spring elements of unstretched length R, and spring constant k t h a t  have 
a horizontal  project ion of 2x and t h a t  a re  subjected t o  a downward load P. The 
location of the  t i p  of the  t ru s s  with respect t o  a horizontal  l i n e  through i ts  
end points  is  denoted by y. We w i l l  analyze the behavior of t h i s  s t ruc tu re  i n  
much the  same manner as w e  did i n  example 1. 

The force function f i s  

f = f(z;a,b) = z(1 - 1/ (z2+a2) 112) + b 

where b = P/kR, 
a = x/ to  

and z = y/R, 

The solut ion f o r  the  s t ruc tu ra l ly  unstable points  o f  the  mapping y ie lds  the  
cr i t ical  set  of points  whose project ion on t h e  control space i s  the bifurcat ion 
set. An invest igat ion of  the behavior of t h e  system on the  bifurcat ion set 
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away from the spec ia l  point  (z=O; a=1, b=O) shows t h a t  the  s ingu la r i t i e s  are 
folds  loca l ly ,  
indicates  t he  expected cusp there.  

A similar invest igat ion i n  the  neighborhood of t he  spec ia l  point 

In order t o  determine precisely the  normal and s p l i t t i n g  factors  i n  the  
neighborhood of the  cusp, w e  expand the  force function about the t i p  of t he  cusp 
re ta in ing  only terms as high as  cubic. 
rewri t ten i n  the  canonical form 

We find t h a t  the  force function can be 

-- 
2f = 2 + TI + h,u 

i f  

- 
h ,  = 2(a-1) 
- 

Therefore near the  cusp t i p  (T1=O, X,=O)x, =2b is  the  normal fac tor  and 
A, = 2(a-1) i s  the s p l i t t i n g  factor .  
- 

In  t h i s  example the  port ion of t he  equilibrium surface behind the  cusp is  
accessible t o  the system. Deformations of the system can occur t h a t  w i l l  take 
the  state var iable  from values on the  top of the  cusp surface t o  values on the  
bottom without the occurrence of a jump.- 

CONCLUSION 

I t  i s  c l ea r  from these examples tha t  catastrophe theory and the  methods of 
adjacent equilibrium and energy [given dynamical s ignif icance by t h e i r  embedding 
i n  the  theory of Lyapunov) lead t o  similar resul ts  and require  many of the  same 
calculat ions.  Qual i ta t ive features  of the s ingular  behavior of  systems, includ- 
ing a unique v isua l iza t ion  of discontinuous processes, can be gained quickly 
from the  representation of  t he  catastrophe manifold. Catastrophe theory pro- 
vides an exhaustive c l a s s i f i ca t ion  of s t r u c t u r a l  i n s t a b i l i t i e s  i n  systems with 
as  many as four  control var iables  and c l a r i f i e s  t he  nature of t he  controls.  A 
consistent set of controls must s a t i s f y  the  rank condition of the t ransversa l i ty  
theorem. 
the  need f o r  addi t ional  ones; f o r  example, it would haveAforced the  introduction 
of the imperfection parameter i n  application 1 had it been omitted. There s t i l l  
remains a good deal of work t o  be done before a uni f ied  theory of b i furca t ion  i s  
developed and Thorn's theory provides a useful se t  of ideas i n  t h i s  direct ion.  

This requirement pinpoints controls t h a t  are redundant and suggests 
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Figure 1.- Quartic potential: 
cusp (dual cusp). 

Figure 2.- Cubic potential. 

Figure 3.- Imperfection-sensitive bar. 
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Figure 4 . -  Ruled surface 
projections (cusp) . 

Figure 5.- Snap-through structure (symmetric). 
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STABILITY OF NEUTRAL EQUATIm 

WITH COWTANT TlME DEIAYS 

L. Keith Barker 
NASA Langley Research Center 

John L. Whitesides ’ 

Joint  I n s t i t u t e  for  Advancement of Flight Sciences 
The George Washington University 

A method has been developed for  determining t h e  s t a b i l i t y  of a scalar 
neutral  equation w i t h  constant coefficients and constant time delays. 
neutral  equation i s  basical ly  a d i f fe ren t ia l  equation i n  which the  highest 
derivative appears both w i t h  and without a time delay. 
also i n  the lower derivatives or the independent variable i t s e l f .  
i s  easi ly  implemented and an i l l u s t r a t i v e  example i s  presented. 

A 

Time delays may appear 
The method 

Ordinary d i f f e ren t i a l  equations with time delays a r e  cal led d i f fe ren t ia l -  
difference equations (ref. 1). Two basic types of differential-difference 
equations a r e  retarded and neutral  equations. The s t a b i l i t y  of the  solutions of 
these equations is  re la ted  t o  t h e  roots of a character is t ic  equation. Generally 
t h i s  character is t ic  equation i s  transcendental and thus has an in f in i t e  number 
of roots. 

A convenient method i s  developed i n  reference 2 for  exadning the  
s t a b i l i t y  of retarded equations with many time delays (not necessarily d i s t i n c t )  
and a scalar neut ra l  equation with one delay. 
is  t o  develop the’bas ic  method of reference 2 for  neut ra l  equations with rzany 
t i m e  delays. 

The purpose of t h e  present paper 

SYMBOIS 

a b c , d  r e a l  constants 

%CS 1 function of s i n  equation (11) 
j’ jy 

i imaginary unit ,  fi 
function of s i n  equation (1.2) 

integer 
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K refers t o  zK 

L(s )  = 0 

L o b )  resulting polynomial with zero delays in  L(s )  

N 

character i s t i c  equation 

highest derivative i n  neutral equation 

p(s 1 function of s i n  equation (20) 

P integer 

Q ( S )  function of s i n  equation (21) 

S 

Isl, 

t 

Q 

*, 

K z 

Lu 

u) m 

complex variable, e + icu 

an upper bound on magnitude of s which sat isf ies  
s = -!J + 5x1 4 L ( s )  = 0, where 

time 

testing function defined in  equation (17) 

scalar flmction of time 

r e a l  numbers 

small positive number 

positive r e a l  number 

specified value of !J 

r e a l  gain constant 

r e a l  part of s 

asymptote of r e a l  part of large modulus roots 

constant r e a l  time delays 

f i n a l  desired value of -rGK 

yaw angle, radians 

imaginary part of s 

an upper bound on u) i n  L(s) = 0, where s = -!J + irU A 
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Mathematical notations: 

I I  absolute vab-e or magnitude 

argument 

O+ a rb i t r a r i l y  small posit ive values 

Dots over a symbol denote derivatives with respect t o  time. 

ANALYSIS 

A method is  developed herein for determining the  s t a b i l i t y  of t heneu t r a l  
equation 

N 
c [a .  x(’)(t) + b .  x ( j ) ( t  - z.)]  = 0 

J . j = O  J J 

where 

and x ( j ) ( t )  denotes the  

an # 0, % + 0, O <  2. s~~~ for j = 0,. 17.@. , N - 1, 
J -  

j t h  derivative of x(t ) .  

The character is t ic  equation associated with equation (1) i s  

j= 0 J J 

It has been shown (ref. 3) that i f  a l l  the roots  
iquation (2)  satisf‘y the  property 

s = Q -f- icu of 

lrhere 
?xponential order as t 4 t ha t  is  

P is  8 posit ive constant, then the  solution of equation (1) is of 

rhere d > 0 i s  a constant r e a l  number and c i s  a rb i t ra ry  on the  
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in te rva l  (0, 1). 
parts and are  not asymptotic t o  the  imaginary axis, then x ( t )  3 0 
(asymptotically s table) .  

Hence, i f  a l l  the  character is t ic  roots have negative real  
as t 3 m 

If there is  a root of L(s) with positive r e a l  part, then equation (1) 
has a divergent mode and i s  said t o  be unstable. 

Relative S tab i l i t y  

If it can be determined tha t  there a re  no roots of the  character is t ic  
equation with r e a l  parts greater than a specified negative r e a l  number, then 
the solution t o  the  neutral  equation i s  asymptotically stable. 

Relative s t a b i l i t y  for a specified value lu^ of p i n  equation (3)  i s  
indicated herein by the  number of roots of the  character is t ic  equation with 
Q > -!?. 
w2en a l l  the  roots satisfy q < -M < 0, than when there is a root w i t h  
-1-1 < q < 0. Relative s t a b i l i t y  boundaries i n  t‘ne plane of two system pa;nameters 
a re  boundaries corresponding t o  a root w i t h  a = -0. 

For example, the neutralnsystem i s  said t o  be re la t ive ly  more s table  

The s t a b i l i t y  method t o  be presented is  based on determining the  number of 
roots of the  character is t ic  equation w i t h  r e a l  parts greater than a specified 
negative r e a l  number -1-1. The method i s  convenient for determining the  number 
of roots of the character is t ic  equation w i t h  r e a l  parts located between specifie 
negative r e a l  numbers. The approach consists of  separately examining the  
a rb i t r a r i l y  large modulus roots and the f i n i t e  roots. 
are examined by using a simple expression for  t he i r  asymptote; whereas, the 
f i n i t e  roots a re  examined by computing the  magnitude of a complex-valued f’unctio 
on a f i n i t e  interval.  

A 

The large modulus roots 

Large MQdulus Roots 

All roots of equation (2)  must s a t i s fy  the  inequality 

obtained from equation (2). 
the  roots have bounded e. 

It can be shown that since % # 0 and bN # 0, 
Hence, i n  order for the large modulus roots 

(Is I -, m) t o  s a t i s fy  equation (5) 
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From equation ( 6 ) ,  ~p becomes a r b i t r a r i l y  close t o  

m bN 
A A 

bN 

A 1  z < T N N = B l n  N 

There are  then no in f in i t e ly  large modulus roots with 
system. It remains t o  examine the number of f i n i t e  roots with Q > -P. 

> -; i n  thenneutral 

N a - 
bN 

F in i te  Roots 
+ For zj + 0 L ( s )  has N roots arbitrarily close t o  the  N roots of 

t he  polynomial equation 

and the  remaining roots have a r b i t r a r i l y  large moduli ( ref ,  2).  For 
h zN 4 0’ and 1 ~ 1  > 1 i n  equation (7),  Q, -+ -a < -LL. Therefore, L ( s )  and 

L ( s )  have the  same number of roots wi-th g > -t ( i n i k i a l  r e l a t ive  s tab i l i ty ) .  
Since the  complex roots occur i n  complex conjugate pairs, only roots w i t h  non- 
negative imaginary parts (cu 5 0) are  considered. 
9 

A s  one of the time delays, say z , i s  increased i n  a continuous manner 
with the remaining delays held fixed, fhe f i n i t e  roots of L ( s )  move i n  some 
continuous manner (ref. 2),  generating root  locus curves i n  the  complex root 
plane (s-plane). 
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Intersection Points s = -3 + iol, and 
Corresponding Delays 

A root locus curve must intersect  the  -$-line (clashed l ine)  i n  figure 2 

The 

i n  order for  the  number, of roots of L ( s )  with Q > -b t o  change. These 
intersection points (-by w) and the  corresponding values of the  delay Z~ which result  i n  these intersection points a re  discussed i n  t h i s  section. 
change i n  the r e l a t ive  s t a b i l i t y  as a root locus curve crosses an intersection 
point i s  presented i n  the next section. 

For a specific time delay rKY equation (2) can be written as 

where 

3 N j -3 N 
%(s) = C a .  s + c b .  s e 

J j= 0 j= 0 J 

and 

(12) 
K JK(s) = -bK s 

A At an intersection point s = - ~ . l  + iw, equation (10) is  equivalent, to 

where %(-E, a) = E$(-; + b)., JK(-$y u)) = J,(-G + io))y and 
A 

JK('U> u)) - 7c < arg 57c - (15) 
E$(-& CUI 

It i s  assumed that u) # 0 and HK(-Cy u)) # 0. To handle these special  cases, 
the approach used i n  reference 2 may be followed. Only non-negative values of 
the integer p i n  equation (14) a re  of in te res t  because -rK 2 0 and w > 0. 
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Equation (13) gives the points ($, cu) where the root locus curves 
intersect the -$-line i n  figure 2, and equation (14) gives the correspon&hg 
values of T~ which result  i n  these intersection points. In general, the 
values of cu a t  an intersection point must be found by an i teration process. 
The values of cu which may satisfy equation (14) are  restricted to some f in i t e  
interval (0, cyn], where 
equation ( 3 ) .  Also, a use ul bound on the integer p i n  equation (14) is  
obtained as 

i s  an upper bound on 03 determined f r om 9 

where T~ < = 't and cu 5 cum. 

Change in  Number oz Roots 
With Q > -M 

Let N('tK, -$) denote the number of roots of L ( s )  w i t h  g > 0; a t  T~ 
for fixed zj, j # K; and define the testing function 

Then, the following theorem can be used to determine the change in  the number 
of roots of L ( s )  with Q > -0 as zK varies. 

Theorem: 

Let al < LD and a2 > LD be r e a l  numbers for which WK($, al) and WK(+, a2) 

are defined, and such that  there are no other intersection points with 
imaginary parts which l i e  on the interval [al, u2]. Then, for 
arbi t rar i ly  small positive number 

Let ($, cu) be an intersection point with cocresponding delay T~~ 
A 

an 
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lWK(-,i?, al) 1 and lWK(-j?, a2 1 a r e  greater than 1 or both less than 1. 

This theorem i s  developed i n  reference 3 by extending the 
method, as refined by Lee and Hsu (ref. 4). 

The theorzm i s  interpreted as follows: 
point, where Y i s  specified and cu is  a root of equation (13). If t h i s  i s  
the  only value of w on the  in te rva l  al 5 w 5 a*, which satisfies 
equation (l3),  then the  change i n  the r%lative s t a b i l i t y  %t the  intersection 
point is  determined by computing ~WK(-U,  ax) !  and lW~(-p, %)io For example, 
from condition 1 of t h e  theorem, if 1 and ~WK( -8, a2) <AI, 
then the  system gains exactly one root with 0 7 -Y; t ha t  is ,  N ( z K  + e, -U)= 
N(ZK, -a) + 1. 

z-decomposition 

kt (-2, w) be an intersection 

Jw,(-~, al) I 

The values of T~ 
a t  a l l  the intersection points a r e  ordered by 

increasing magnitude to obtain the  change i n  the  r e l a t ive  s t a b i l i t y  as 

increases to i t s  f i n a l  desired value 
delay becomes T~ i n  the  theorem. 

T~ 

7,. A s  each delay i s  varied, t ha t  

Intersection points (-cy w) s a t i s @  equation (131, or IW (-0, w ) /  = 1. K 
In  choosing al and a2 i n  t he  theorem, it is expedient t o  note that 
IWK(-k, w)1 increases as 

A 

p increases for each value of w e ( 0 ,  wm]. 

APPLICATION 

The r e l a t ive  s t a b i l i t y  of the neutral  equation 

where 7 i s  a system gain constant and zK > 0 is  a constant t i m e  delay may 

now be determined. 
damper control system for  an airplane with rudder deflection made proportional 
to the yawing acceleration. 

This equation was used i n  reference 5 i n  examining a yaw 

The character is t ic  equation associated with equation (18) can be writ ten 
as 

where 
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With s = -2 + h, equation (19) can be used t o  write 

A 
Now, with 1-1 specified, equations (22) and (23) can be used t o  partition the 
plane of 5 and 'tK in to  different regions as CD > 0 i s  allowed t o  vary. 
The solid lines i n  figure 3 were generated i n  this  manner. Any point on a 
partitioning l ine  or boundary corresponds to a ro&' locus curve intersecting 
the +-line i n  figure 2. 

To examine the s tab i l i ty  condition (stable or unstable) or the number of 
roots with (p > -2 i n  the regions of figure 3, it is usef i l  t o  write 
equation (19) i n  the form 

where 

and 

B 

The i n i t i a l  s tab i l i ty  of equation (24) along the ?-axis (zK 4 0') is 
evaluated by using equations (7) and (91, which became 

and 

L0(s) = (.01024 -I- .l635)s2 f .00704s -I- .250 0 (28 1 
For zK 4 O+ and ? = .04, there is one root with t~ = -.21 and + - CO. 

A s  zX increaszs from 0' w i t h  !f = .04 i n  figure 3, the relative s tab i l i ty  
boundary for -P = 0.5 is intersected. For t h i s  intersection point, it can 
be shown that C L ~  and a i n  the theorem can be chosen as al = 3 and 
a2 = 4. Then, since lWKT-. 'j, 3) f < 1 and IWK(-.5, 4)1 > 1, condition 2 of 
the theorem applies. Thus, the neutral system loses one root w i t h  Q 7 a.5. 
(This  i s  the root which ortginally had Q = -.2L) 
-1-1 = 0.5, there are  no roots with Q > =.3. This  same procedure is  used to 
determine which side of the curves in  figure 3 should be hatched. 

Inside the closed region for 
h 
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The hatching convention is  as follows: Passing from the hatched (unhatched) 
side of a boundary l ine corresponding to a particular value of M to the 
unhatched (hatched) side of the boundary results in the gain (loss) of exactly 
one root with Q > -0. 

A t  the point ( 5 ,  T ~ )  = (.04, .2), the system has no roots with Q > -.7. 
The value of Q, i n  equation (27) a t  th i s  point is Q = -2.257. 

W 

COJ!TCLUDING REMARKS 

A method has been developed for determining the s tab i l i ty  and relative 
s tab i l i ty  of scalar neutral equations, with constant coefficients and constant 
time delays. The approach was t o  determine the nlwiber of roots of the 
characteristic equation with r e a l  parts greater than specified negative r e a l  
numbers. The method consists o f  separately examining the large modulus roots 
and f in i t e  roots. 
expression for their  asymptote; the f in i t e  roots are examined by computing 
the magnitude of a complex-valued f'unction on a f in i t e  interval. 

The large modulus roots are examined by using a simple 

The s tab i l i ty  method i s  convenient for determining the number of roots of 
the characteristic equation with r e a l  parts located between specified negative 
r e a l  numbers. An example which has occurred in  practical application has been 
provided to i l lus t ra te  the method. 
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Figure 1.- R e a l  par t  of large modulus roots.’ 
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CUBIC SPLINE REFIXCIIANCE ESTIMATES 

USING THF: VIKING LANDER C m R A .  MULTISPECTRAL DATA 

Stephen K. Park and Friedrich 0. Huck 
NASA Langley Research Center 

SUMMARY 

A technique was formulated f o r  constructing spectral  reflectance estimates 
from multispectral  data obtained with the Viking lander cameras. The output 
of each channel was expressed as a l i nea r  function o f ’ the  unknown spectral  
reflectance producing a s e t  of l i nea r  equations which were used t o  determine 
the coefficients i n  a representation of the spec t ra l  reflectance estimate as 
a natural  cubic spline.  
estimates for a variety of actual  and hypothetical spectral  reflectances. 

The technique was used t o  produce spec t ra l  reflectance 

INTRODUCTION 

The Viking lander cameras ( r e f .  1) w i l l  return multispectral  images of 
the Martian surface with four orders of magnitude higher resolution than has 
been previously obtained. 
from t h i s  data. However, the data a re  limited t o  6 spectral  channels and most 
of these channels exhibit out-of-band response. 

It i s  desired t o  extract  spec t ra l  reflectance curves 

It i s  inappropriate t o  generate a data point f o r  each channel by 
associating a reflectance value with a d i s t inc t  wavelength; t h i s  i s  particu- 
l a r l y  t rue  f o r  those channels with appreciable out-of-band response. It is  
unlikely t h a t  data points so constructed w i l l  l i e  on the t rue spectral  
reflectance curve, and t h a t  any method of f i t t i n g  a curve t o  these points 
w i l l  adequately approximate the t rue  reflectance. 

Instead the output of each channel can be expressed as a l inear  in tegra l  
function of the unknown spec t ra l  reflectance and the known so lar  irradiance, 
atmospheric transmittance, camera opt ica l  throughput, and channel responsivity. 
This produces 6 equations - one per channel - which can be used t o  determine 
the coefficients i n  a representation of the spec t ra l  reflectance as a natural  
cubic spline.  In t h i s  paper the appropriateness of t h i s  technique i s  demon- 
s t ra ted by using it t o  produce accurate approximations t o  the t rue  spec t ra l  
reflectance of 8 materials f e l t  l i k e l y  to be present on the Martian surface 
and 16 hypothetical spec t ra l  reflectances chosen f o r  i l l u s t r a t i v e  purposes. 
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FORMULATION 

Let p(A) denote the  (unknown) spectral  reflectance at  wavelength A of 

Except fo r  a channel-dependent , multiplicative 
the material t h a t  i s  imaged by the Viking lander camera. Knowledge of p ( h )  is  
l imited t o  6 spectral  samples. 
constant, which can be determined by a calibration using as reference a t e s t  
chart on board the  Viking lander (see re f .  2), these 6 spectral  samples are  
given by bi where 

The system transfer  functions Ti(A) a re  given by 

i = 1,2,. . .,6 (1) 

i = 1,2,. . .,6 
ti 

.L 

where S ( A )  i s  the so la r  irradiance, ~ ~ ( h )  the atmospheric transmittance, 
.rc(A) the camera opt ica l  throughput, Ri(A) the channel responsivity, and ti 
i s  a constant chosen so tha t  

T i ( A ) d h  = 1 i = 1,2,. . .,6 

Plots of typical  system t ransfer  functions are  shown i n  f igure 1. Note 
spec i f ica l ly  the appreciable out-of-band response of the Blue (i=l), IR2 
( i = 5 ) ,  and m3( i=6)  channels. 
the Green (i=2) channel, none of the system transfer  functions are adequately 
approximated by an impulse function. 

Note also t h a t  with the  possible exception of 

THE REFLECTANCE ESTIMATE AS 
A NATURAL C B I C  SPLIJYE 

Equations (1) describe t h e  relationship between the  6 multispectral 

p(h),  denoted 
samples bl, b2, . . .,b6 and the  unknown reflectance P ( A ) .  These s i x  equations 
can be used t o  produce a natural  cubic spline estimate of 
< p ( A )  >, where . 

7 
I 

j =O 
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- 
The 8 lu?ots 
the wavelengths 

KO, rl,. . .,I7 are chosen t o  be equally spaced and located a t  

Xj = .33 + j A  j = 0,1,2,. . .,7 

where the spacing i s  
C (1 - Tj) 
where 

A =  .12 pm. Recall t ha t  each cubic spline basis  function 
X and defined by C(h)  i s  a bell-shaped curve centered a t  the knot 
j 

The coefficients xo, xl,. . ‘,x7 are t o  be determined. 

a t  the knots rl and r ~ .  These two  conditions give r i s e  t o  the equations 
It i s  desirable t o  impose the natural  boundarx conditions < p ( A )  >” = 0 

xo - 2x + x2 = 0 

- 2 x g + x  = o  x5 7 

1 

and .- 

The remaining six equations which determine the 8 coefficients are obtained by 
requiring the estimate < ~ ( 1 )  > and actual reflectance p ( h )  t o  have in- 
distinguishable camera multispectral responses (ref. 2 )  ¶ i. e. ¶ 

This produces the  s i x  equations 
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- 7 

j =O 
ai j  x j  - bi 

where bi i s  given by equation (1) and 

i = 1,2, .. .,6 

To s m a r i z e ,  a natural  cubic spline reflectance estimate corresponding 
t o  the multispectral sample bl, bg, . . .>b6 can be produced as follows : 

(i) evaluate the 6x8 = 48 coefficients a given by equation (6) 

(ii) determine the 8 coefficients x by solving equations (3a), 

i j  

j (3b), and ( 5 )  

(iii) form the estimate < p  (1) > given by equation (2)  

The estimate constructed i n  th i s  manner reduces to  an interpolating spline 
i n  the idealized s i tuat ion where each system transfer  function can be repre- 
sented as an impulse function. To see th i s  suppose tha t  

i = 1>2,. . .,6 

where the impulse system transfer  functions occur a t  the discrete wavelengths 
hl, x2, ...,h6. In  t h i s  special  case 

and 

so tha t  
spectral  reflectances p (hi), 

< p  (1) > i s  the (unique) natural  cubic spline which interpolates the 
p (h2), . . ., p (h6)  
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Reflectance estimates were computed for 8 materials felt likely to be 
present on the Martian surface and for 16 hypothetical spectral reflectaces 
chosen for testing and illustrative purposes. These estimates are presented 
in figures 2, 3, and 4. 
as a sequence of 71 discrete points (circles) in the wavelength range 
.4 < 1 < 1 . 1 ~ ~  
Foreach of the spectral ref lectances the corresponding multispectral sample 
bl,b2,. . .,b6 
The coefficients 
assuming each system transfer function to be zero outside the effective range 
of the camera photosensor arrays, namely 

In each case the actual spectral reflectance is shown 

and the corresponding estimate is shown as a continuous curve. 

was calculated from equation (1) using a 71 point Simpson's Rule. 
aij were calculated in the same manner from equation (6) 

.4 < - -  'h < 1.1 pm. 

Figure 2 illustrates the reflectance estimates for the 8 materials felt 
likely to be present on the Martian surface. 
(i.e., pinacetes 5 and 2 8 ~ ,  Syrtis Major, augite, and average Mars) the 
estimates are excellent. For the 3 more complex reflectances (i .e , limonite, 
hypersthene, and olivine) the estimates are very good. 
are reproduced; however, due to the undersampling inherent with just  6 
channels, small period features are lost. Note particularly that the dominant 
absorption band (at 

For those 3 simple reflectances 

The dominant features 

h M .93 pm) for hypersthene is quite accurately estimated. 

Figure 3 illustrates the reflectance estimates for 8 hy-pothetical spectral 
reflectances. 
are very smooth and the corresponding estimates are almost exact. 
four (3e, 3f, 3g, and 3h) are not smooth but the estimates remain good. Note 
specifically that the pronounced minima in 3e and 3f are accurately reproduced. 
Note also in 3g the characteristic oscillation exhibited by the natural cubic 
spline in the neighborhood of a large slope. 
features is again evident. 

The first 4 of these spectral reflectances (3a, 3b, 3c,  and 3d) 
The next 

In 3h the loss of small period 

Figure 4 illustrates the reflectance estimates for 8 additional hypo- 
thetical spectral reflectances. All 8 of these are of the form 

p ( h )  = .25 -t- .2 sin 'II - 
(I 

where the parameters C L , ~  have the values: 
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As the period becomes shorter (i.e., as 
reflectance estimates deteriorates. This is particularly evident in the 
sequence 4a, 4c, be, 4g and less evident in the sequence 4b, 4d, 4f, 4h. It 
is also true that the quality of the estimate is affected by the location of 
dominant spectral reflectance features relative to the location of the system 
transfer functions. 
spectral reflectances differ only by a shift of 
sponding estimates differ dramatically. 
of aliasing whereby a short period harmonic spectral reflectance curve has a 
reflectance estimate which is nearly harmonic but with a larger (false) period. 

p decreases), the quality of the 

This is illustrated by figures be and 4f where the 
.O7 pm while the corre- 

Figure 4g is a clear demonstration 

CONCLUDING REMARKS 

A technique was formulated for constructing natural cubic spline spectral 
reflectance estimates from multispectral data obtained with the Viking.lander 
camera. Using this technique it was demonstrated that smooth, simple spectral 
reflectance curves can be estimated almost exactly. For more complex spectral 
reflectance curves, large period features can be faithfully reproduced; small 
period features are lost due to the undersampling inherent with the limited 
number of spectral channels. The technique completely compensates for system 
transfer functions with irregular shapes and appreciable out-of-band trans- 
mittance. Moreover the technique should be a valuable aid in selecting the 
number of spectral channels and their responsivity shapes when designing a 
multispectral imaging system. This design approach would prove to be of value 
especially if spectral reflectance properties of interest are known a priori 
and if the transfer function shapes are desired to be broad to obtain good 
signal-to-noise ratios. 
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Figure 2.- S p e c t r a l  ref lectance estimates f o r  (a) average Mars, 
(b) S y r t i s  Major, (c) pinacetes 5, (d) pinacetes 28A, 
(e) augi te ,  ( f )  limonite, ( g )  ol iv ine ,  and (h) hypersthene. 
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Figure 3. -  E s t i m a t e s  f o r  e igh t  hypothe t ica l  s p e c t r a l  r e f l ec t ances .  

777 



COOOOOQ) actual 

- estimated 

R 

o07! ~~ 0 0  0 0  

& & 
0 0  (h) O O 

0 0  0 0  

~e 0 0  0 0 0  0 

Y 5 .6 . aA,pmB *' 

Figure 4 . -  Estimates for eight hypothetical spectral reflectances 
of the form given by equation ( 7 ) .  
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DATA MANAGEMENT IN ENGINEERING 

J . C .  Browne 
The University of Texas 

SUMMARY 

Engineering practice is heavily involved with the recording, organization 
and management of data. 
management with an orientation toward the needs of engineering application. 
The characteristics and structure of data management systems are discussed. 
A link to familiar engineering applications of computing is established through 
a discussion of data structure and data access procedures. An example data 
management system for a hypothetical engineering application is presented. 

This paper is an introduction to computer based data 

NEED FOR DATA MANAGEMENT 

Formal data management procedures become necessary for a body of informa- 
tion when the information 

o has an extended useful lifetime, 

o 

o 

is shared among or used by a substantial group of workers, 

has established relationships among data items. 
The use of computer based data management systems is justified by combinations 
of several circumstances. 

o The volume of data outstrips convenient use through traditional 
media such as handbooks, microfilm, et;c. 

The data is produced through computer processing and will perhaps 
be subjected to further computes processing. 

o 

o The data requires frequent revising and updating. 
o There is a large and geographically compact group of users. 

It is clear that many types of engineering projects meet both sets of criteria. 
The design of an aircraft or ship makes a cogent example. 
depends heavily upon the use of computers. The design process may take several 
years and involve hundreds of engineers. 
of words of specifications and an immense volume of numeric data. 1% or 2% of 
the data change on a weekly or monthly basis over much of the design cycle. 

The design process 

The design data may involve millions 

Engineers have traditionally been heavily involved in the classical forms 
of data management such as data compilations, design handbooks and system main- 
tenance manuals. Computer based data management has been relatively slow to 
penetrate standard engineering practice. 
that engineering education tends to stress the use of computers as numerical 

This may be in part due to the fact 
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problem solvers rather than as information managers. It is certainly in part 
due to the fact that most existing data management systems are oriented towards 
commercial and business data processing applications. 

assistance. 
suited to engineering applications there is considerable activity in the 
engineering community towards designing and implementing data base systems 
which are useable in engineering environments. It is the purpose of this paper 
to give a perspective on the design and implementabion of such data management 
systems. 

cover data management systems in readable fashion. 

Engineers have now begun turning to computer based data management for 
Since available data management systems are not in general well- 

Three recent texts, Martin (ref. l), Date (ref. 2) and Katzan (ref. 31, 

DATA STRUCTURES, DATA REPRESENTATIONS 
AND STORAGE MAPPING FUNCTION 

The basic concepts of data management, data structuring, data re- 
presentation and storage mapping functions are presented in the familiar context 
of general purpose programmikg languages such as FORTRAM or PL/l. 
ment systems present and utilize these concepts in more formal and complex forms. 

Data manage- 

A data structure consists of a conceptual object, i.e., a sparse array, a 
name or name set for referring to the object and a set of operations on the 
object. 

A realization of a data structure consisix of a storage mapping function 
which maps the name space of the data structure onto a memory structure and the 
definition of the operations on the structure in terms of primitive operations. 

These definitions are completed by defining a storage or memory. A cell 
Memory consists of an ordered is a physical realization which holds a value. 

collection of cells. An address is the location in memory for a given cell. 
A value is an instantiation of a data object or data structure. 
mapping function accepts a name as input and produces an address of a cell (or 
cells) in memory as an output. 

A storage 

The definition and realization of a data structure thus consist of a se- 
quence of actions: 

This sequence 

A structure declaration which defines the data type. 
A name assignment which associates the name with a type or 
structure. 
The definition of the operations on the structure. 
required operations are of course storage and retriwal. 
An allocation of memory to the named instantiation of the data 
structure. 
The definition of the mapping function which maps the name space 
onto the allocated memory space. 

The only 

of steps is seldom clearly delineated in traditional programming 
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languages. A FORTRAN DIMENSION o r  COMMON dec la ra t ion  of a rectangular a r r a y  
executes a l l  of t h e  above s t e p s  except t h e  d e f i n i t i o n  of operations upon the 
a r ray .  DIMENSION A (10,lO) recognizes t h e  square a r r a y  as a da ta  s t r u c t u r e  
of t h e  program, a s soc ia t e s  t he  nameAwi th  the  a r r ay ,  ass igns  100 contiguous 
cells of memory each of which w i l l  hold a f l o a t i n g  poin t  number and ass igns  
the  i m p l i c i t  f ami l i a r  mapping function. 

Address [A(I,J)I = A(l,l)+lO(I-1) + (J-1) 

The d e f i n i t i o n  of opera t ions  on an a r r ay  (except f o r  1 /0  operations) must be 
defined by the  programmer i n  terms of operations on t h e  pr imi t ive  da t a  objec ts .  

The most complicated d a t a  s t r u c t u r e  def inable  i n  FORTRAN is a multidimen- 
s i o n a l  a r r a y  of i d e n t i c a l  ob jec t s .  
i den t i ca l .  Data management systems may allow t h e  d e f i n i t i o n  of considerably 
more complex s t r u c t u r e s  which include t h e  s t i p u l a t i o n  of r e l a t ionsh ips  between 
the  d a t a  elements i n  a s t r u c t u r e .  The aspect of t h i s  problem no t  f ami l i a r  t o  
t h e  s c i e n t i s t  and engineer i s  the  representa t ion  of t he  d a t a  s t r u c t u r e  i n  the  
computer memory system and t h e  d e f i n i t i o n  and implementation of s torage  mapping 
functions.  

P L / l  allows a r r ays  whose elements are not 

The f ami l i a r  s to rage  mapping func t ion  of equation (1) takes? t h e  name 
A(1,J) a s ' i n p u t  and eva lua tes  the  expression on t h e  r i g h t  hand s i d e  f o r  output,  
This mapping function has t h e  very use fu l  property of mapping names onto 
addresses i n  a unique one-to-one fashion. 
functions which do not  have t h i s  property even f o r  t h e  simple case of square 
a r rays .  Consider, f o r  example, t h e  mapping func t ion  

There are o ther  poss ib le  mapping 

Address [A(I,J)]  = ( I  x J) MOD N 

with N = 101. It is e a s i l y  seen t o  generate i d e n t i c a l  addresses f o r  many index 
pa i r s .  It is  the  general  case i n  d a t a  management app l i ca t ions  t h a t  t h e  magni- 
tude of t h e  name space i s  much l a r g e r  than the  p o t e n t i a l l y  r e a l i z a b l e  address 
spaces. Thus, storage mapping functions which "fold" the  name space i n t o  a 
smaller domain and thus l o s e  the  one-to-one property are required.  Such 
s to rage  mapping func t ions  t y p i c a l l y  have seve ra l  func t iona l  phases and are 
f a i r l y  complex. The example d a t a  management system which is  spec i f ied  i n  t h e  
last  sec t ion  of t h i s  a r t i c l e  uses an  inverted f i l e  o r  d i c t iona ry  look-up 
s torage  mapping func t ion  t o  l o c a t e  records and t h e  mapping func t ion  defined 
succeeding t o  map d a t a  elements onto records. 

Figure 1 def ines  a record s t r u c t u r e  f o r  d a t a  r e l a t i n g  t o  t h e  design cyc le  
of t h e  wing sec t ion  of an a i r c r a f t .  
l a t i onsh ips  among t h e  d a t a  elements. This s t r u c t u r e  def ines  t h e  occurence of 
40 da ta  records on t h e  design and eva lua t ion  of wing sec t ions .  
numbers i n  Figure 1 def ine  t h e  level i n  t h e  d e f i n i t i o n  hierarchy as shown i n  
Figure 2. The components a t  any l e v e l  with no immediately succeedicg compo- 
nents a t  a lower l e v e l  are terminal nodes of a tree. The bracketed numbers 
on the  r i g h t  hand s i d e  of t h e  terminating nodes are t h e  number of pr imi t ive  
d a t a  objec ts  i n  each ins tance  of the  defined objec t .  
t he  r i g h t  hand s i d e  of t h e  non-terminal nodes i n  t h e  tree are t h e  number of 
ins tances  of t h e  s t r u c t u r e  f o r  which storage is t o  be a l loca t ed .  

Figure 2 d i sp l ays  t h e  h e i r a r c h i c a l  re- 

The leftmost 

The bracketed numbers on 
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It is convenient to describe the structure in tabular form. (See Table 1). It 
is: desired to allocate storage for each record in a contiguous block with each 
terminal node of the tree being stored contiguously for each instance of the 
structure or sub-structure. 
orders the names of the structures from left to right by level. 

. 

Let us define a reference expression ,(%name) which 

The reference expression WS(Il)SD(I )DH(I ) refers to the Ith 
within the 1:” instance of SD within the :Eh instance of WS. WS(Il)SD(12) 
refers to the I$h instance of SD within the Ith instance o t  WS while WS(I1)SD 
refers to all 10 instances of SD within the I1 instance of WS. A storage 
mapping function with the one-to-one propetty for these reference expressions 
can be derived (ref. 4 ) :  

storage element 2 3 

1 th 

k 
address[A (I )A (I 1. .%(Ik)] = 7 

i=l 
[Q(Ai) + M(Ai) (Ii-l) 1 1 1 2 2  

where Q(A.) and M(A.) are constants for each record element. 
The cons$ants Q and M can be defined recursively. 
1. 
2. 

1 

If A. is a terminal node of the structure, then M(Ai) = 1. 
If A’is a structure or sub-structure with a typical instance 
B1.. .Bn n 

M(A.) = C(Bi)M(Bi) 
1 i= 1 

3 .  If B1...B is a sub-structure definition, then n 
Q(B~) = 0 

Q(Bj) = Q(B. 
Q(A) = 0 ,  for root of tree 

1 + C(Bj-l)M(Bj-l), j>l 
J -1 

4 .  If B is the last item in a sub-structure B B of A, then 1“’ n M(A) = Q(Bn) + C(Bn)M(Bn) n 

The last two rows of Table 1 give the results of the calculations for the record 
structure of Figure 1. 

information on data structure. Knuth (ref. 7 and 8) is the most complete source 
for work prior to publication data in the areas of his coverage. 

Bertiss (ref.5) and Elson (ref.6) are good general references for further 

AN EXAMPLE DATA MANAGFSUIENT SYSTEM 

This section will illustrate the structure of a prototype data management 
The example system will be designed to store and system for engineering data. 

retrieve design data on the wing sections of an aircraft. 
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The components of a d a t a  management system are: 

1. 
d a t a  ob jec t s  and a set of composition r u l e s  which w i l l  enable a user  t o  create 
a s t r u c t u r e  which represents  t h e  ob jec t s  of i n t e r e s t .  
ob jec ts  and composition r u l e s  comprise what i s  o f t en  c a l l e d  the  da t a  d e f i n i t i o n  
model o r  d a t a  model i n  t h e  d a t a  management system l i t e r a t u r e .  
f ined by t h e  composition r u l e s  w i l l  be s a i d  t o  c o n s t i t u t e  a l o g i c a l  record. 
2. A s to rage  mapping func t ion  which enables access t o  t h e  components of a logi- 
cal d a t a  s t r u c t u r e  o r  l o g i c a l  record. 
3. A representa t ion  which packs l o g i c a l  records onto physical records i n  exe- 
cu tab le  memory. 
4 .  A s torage  mapping func t ion  which determines t h e  address of a l o g i c a l  block 
and t h e  address of t h e  phys ica l  block which conta ins  it. 
5. A block t r a n s f e r  func t ion  which t ransmi ts  phys ica l  records t o  and from 
a u x i l i a r y  memory. 
6. A query language which allows the  user t o  express h i s  s t o r a g e / r e t r i e v a l  
requests i n  an application-oriented format. Commercial d a t a  management systems 
o f t en  have very highly developed query languages. 
which sells t h e  system more than i t s  i n t e r n a l  performance. It is  generally the  
case i n  ac ien t i f ic /engineer ing  computing t h a t  simple o r  spec ia l ized  query 
languages w i l l  be a l l  t h a t  i s  required.  The use r s  of t h e  system w i l l  o f t en  
by f ami l i a r  with programming and programming systems. 

A d a t a  s t r u c t u r e  d e f i n i t i o n  capab i l i t y :  This includes a set of p r imi t ive  

The set of p r i m i t i v e  

A s t r u c t u r e  de- 

It i s  o f t en  the  i n t e r f a c e  

We proceed by de f in ing  f o r  our example system each of t h e  components 
previously described. 
1. The p r imi t ive  objec ts  which we w i l l  need w i l l  be 
charac te r  s t r i n g s ,  real numbers, i n t e g e r  numbers and real vec tors .  W e  w i l l  
allow t h e  composition of a r b i t r a r y  tree s t r u c t u r e s  u t i l i z i n g  these  p r i m i t i v e  
d a t a  types. Figure 3 def ines  a l o g i c a l  record f o r  a wing sec t ion  s i m i l i a r  t o  
t h e  example i n  the  previous sectaon. The record c o n s i s t s  of a charac te r  s t r i n g  
f o r  t he  aircraft  designation, a set of design parameters inc luding  thickness,  
f l e x i b i l i t y  coe f f i c i en t  and s t r u t  spacing, each of which is  a real  number and a 
set of stress values which i s a  vec tor  of length 25 of real numbers. 
i s  a tree s t r u c t u r e  f o r  t h i s  da ta .  
dec la res  t h a t  a physical record w i l l  conta in  15 l o g i c a l  records. 
purpose of t h i s  system is t o  be ab le  t o  examine t h e s t r e s s  values as a function 
of design parameters. 
de le ted  from t h e  f i l e  bu t  t h a t  records w i l l  seldom be  a l t e r e d  o r  modified. 
2. Storage mapping func t ions  f o r  l o g i c a l  records: W e  use t h e  s torage  mapping 
function defined f o r  h i e r a r c h i c a l  s t r u c t u r e s  i n  t h e  previous sec t ion .  
3 .  
zed and s to red  on phys ica l  record blocks (PRB) of 512 words i n  length. Each 
l o g i c a l  record w i l l  r e q u i r e  30 words. 
on each physical record block. 
be used f o r  t h e  loca t ion  i n  t h e  PRB of l o g i c a l  record i n s t a n t i a t i o n s  which con- 
t a i n  a given design parameter value. 
4 .  A s to rage  mapping func t ion  f o r  address ing . log ica1  records from physical 
records: The s torage  mapping func t ion  w i l l  u t i l i z e  an inver ted  f i l e  s t r u c t u r e  
( r e f .  1). Each design parameter w i l l  be represented as an inver ted  f i l e .  An 
inverted f i l e  i s  a t abu la t ion  of record addresses assoc ia ted  with a given name 
o r  s t r u c t u r e  component whereas a normal f i l e  contains t h e  values associated 

Data d e f i n i t i o n  model: 

Figure 4 
The 1151 fo l lowin .  t h e  record dec la ra t ion  

The primary 

It is  an t i c ipa t ed  t h a t  e n t i r e  records w i l l  be added o r  

Data representa t ion  i n  physical  memory: The l o g i c a l  record w i l l  be organi- 

F i f t een  l o g i c a l  records w i l l  be s to red  
Forty-five of the  remaining sixty-two words w i l l  
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with each name o r  s t r u c t u r e  component. 
design parameters w i l l  cons i s t  of a design parameter, t h e  number (= address) of 
each physical block which conta ins  a l o g i c a l  record with t h a t  design parameter 
value and a po in te r  t o  t h e  address on t h a t  physical  block of t he  set of pos i t i on  
numbers f o r  l o g i c a l  records containing t h a t  p a r t i c u l a r  design parameter value. 
Each en t ry  i n  the  inver ted  f i l e  on a given design parameter is sor ted  i n  ascend- 
i n g  order on t h e  design parameter values. 
s tored  on 512 word PRB's. 
e n t r i e s  f o r  a given design parameter w i l l  always f i t  on a s i n g l e  phys ica l  record 
block. 

Each en t ry  i n  t h e  inverted f i l e s  f o r  

The inverted f i l e s  w i l l  a l s o  be 
It w i l l  be assumed f o r  s impl i c i ty  t h a t  t h e  set of 

There w i l l  be a d i r ec to ry  t o  each inverted f i l e  which i s  kept i n  executable 
memory. The d i r ec to ry  entries f o r  a given inverted f i l e  w i l l  cons i s t  of the 
l a r g e s t  and smallest value f o r  a design parameter which i s  s to red  on a given 
inverted f i l e  PRB together with t h e  number (= address) of t he  PRB holding those 
inver ted  f i l e  e n t r i e s .  

5. Physical record transmission: We w i l l  assume t h a t  t h e  operating system 
provides a convenient c a p a b i l i t y  f o r  t ransmi t t ing  f ixed  length blocks t o  and 
from d i s k  storage.  
6. Query language: 
s t ruc tu res .  

The query language c o n s i s t s  of a knowledge of t h e  t a b l e  

A summary of t h e  r e l a t ionsh ips  between t h e  s to rage  mapping function and a 
given physical record i s  i l l u s t r a t e d  i n  Figure 5. 

This d a t a  management system s t r u c t u r e  w i l l  support quer ies  f o r  l o g i c a l  
records which spec i fy  one, two, or t h r e e  design parameters. To f ind  a l l  records 
which have a p a r t i c u l a r  design parameter, say  thickness = 0.002", t h e  following 
process would ensue: 

o A search would be made on t h e  d i r e c t o r y  f o r  thickness t o  l o c a t e  the  
inverted f i l e  page ( QRE containing 0.002" f o r  t h e  thickness design 
parameter. This PRB would be loaded i n t o  executable memory. 
A search of t h i s  page of t h e  inverted f i l g  f o r  thickness would r e t u r n  
t h e  set of phys ica l  record blocks containing the  l o g i c a l  records with 
t h a t  thickness parameter and the  po in te r  t o  t h e  physical record block 
sec t ion  which holds t h e  pos i t i ons  on the  PRB of the  l o g i c a l  records 
containing t h e  given design parameter. 

records would be ex t rac ted  from t h e  PRB's and examined one by one using 
t h e  h i e r a r c h i c a l  record addressing scheme. 

o 

o These physical records could then be read i n  from t h e  d isk .  The l o g i c a l  

To obta in  a l l  records which have two p a r t i c u l a r  a t t r i b u t e s ,  say a thickness 
of 0.002" and a s t r u t  separa t ion  of 0.8;  one would ca r ry  out an i d e n t i c a l  search 
on t h e  inverted f i l e s  f o r  both thickness and s t r u t  separation. The i n t e r s e c t i o n  
of t h e  two lists of physical  record blocks w i l l  contain a l l  of t h e  l o g i c a l  
records which have t h e  spec i f fed  value f o r  both parameters. 

A simple system such as t h e  one described can be implemented with only a 
modest amount of e f f o r t  i n  FORTRAN under a modern operating system. 
of course, many o the r  d a t a  representa t ions  and mapping functions which could 
be used. 

There are, 
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Level L 1 2 2 3 3 2 3 3 

Name N ws SD DH DD PC ED TD PR 
Count C 40 20 10 6 5 10 6 2 

Q 0 0 20 0 6 130 0 6 
M 210 1 11 1 1 8 1 1 

Table 1: Tabular Representation of 
Record Structure 
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1 Wing Section [ 4 0 ]  1 WS [ 40 ]  

2 Surface Description [20] 2 SD [ZO] 
2 Design History [ lo]  2 SD [20] 

3 Design Data [6] 3 DD [6] 

3 Plant Code [5] 3 PC [SI 
2 Evaluation Data El01 2 ED [ l o ]  

3 Test Data [6] 3 TD [6] 
3 Performance Rating[2] 3 PR [2] 

Figure 1: Record Definition for Wing Section Data 

Figure 2: Tree Diagram of Wing Section Data Record 
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1 Wing Section 1151 

2 Aircraft Designation C10 

2 Design Parameters 

3 Thickness Rl 

3 Flexibility Rl 
2 Stress Values R 1251 

Figure 3: Logical Record Definition for Wing 
Section Stress Data 

SECTION 

PARAMETERS 

Figure 4 :  Tree Structure of Wing Section Logical Record 
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Directory f o r  Inverted F i l e  

Thickness f o r  Thickness 

+I 0.002 

Block 10 

Block 1 9  

+ 
-~ 

0.004 

Physical Record 

Block 10 

Figure 5: F i l e  Structures For Wing Section Data 
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TOOLS FOR COMPUTER GRAPHICS APPLICATIONS 

R. L. P h i l l i p s  
The Univers i ty  of Michigan 

ABSTRACT 

Ten years  of ex tens ive  research  i n  computer graphics  has  produced a 
c o l l e c t i o n  of b a s i c  a lgori thms and procedures whose u t i l i t y  spans many d i s c i -  
p l ines ;  they can be regarded as t o o l s .  These t o o l s  are descr ibed i n  terms of 
t h e i r  fundamental aspec ts ,  implementations, app l i ca t ions ,  and a v a i l a b i l i t y .  
Programs which are discussed include b a s i c  da t a  p l o t t i n g ,  curve smoothing, 
and depic t ion  of 3-dimensional sur faces .  A s  an a i d  t o  p o t e n t i a l  users  of 
these  t o o l s ,  p a r t i c u l a r  a t t e n t i o n  is  given t o  d iscuss ing  t h e i r  a v a i l a b i l i t y  
and, where appl icable ,  t h e i r  cos t .  

INTRODUCTION 

Direct  computer-produced graphica l  ou tput ,  once considered a luxury, is 
becoming r e l a t i v e l y  commonplace. The a v a i l a b i l i t y  of  low cos t  p l o t t e r s  and 
d isp lay  terminals  is  l a r g e l y  respons ib le  f o r  t h e  t r end .  Increased usage of 
computer graphics  has given rise t o  a need f o r  appl ica t ion-or ien ted ,  non- 
research,  graphica l  software.  It i s  t h e  goa l  of t h i s  paper t o  p o i n t - o u t  
and d iscuss  such software.  The hope i s  t h a t  dup l i ca t ion  of e f f o r t  can be 
avoided and t h a t  t h e  use  of non-general, low q u a l i t y  graphic  sof tware w i l l  
be discouraged. 

The sof tware t o  be descr ibed here  i s  of such gene ra l i t y ,  widespread u t i l -  

The paper,  
i t y  and ready a v a i l a b i l i t y  s o  as t o  be c l a s s i f i e d  as a too l -a  t o o l  t o  be  
employed t o  the  use r ' s  advantage and no t  encumber him i n  h i s  work. 
then, i s  a survey of s o r t s ,  b u t  a r a t h e r  l imi ted  one. W e  s h a l l  not  d i scuss  any 
sof tware i n  t h e  research s t a g e s ,  nor  any software t h a t  is  not  r e a d i l y  avai lable .  
Moreover, s i n c e  device and system independence are a l s o  valued a t t r i b u t e s ,  
vendor suppl ied packages, no matter how good, w i l l  no t  be discussed. I n  what 
follows w e  s h a l l  d i scuss  b a s i c  da t a  presenta t ion  techniques,  bo th  fo r  two and 
th ree  dimensions. 
described (e. g. c l ipp ing  and shadin& 

Then c e r t a i n  da t a  processing and enhancement methods w i l l  be  

DATA PRESENTATION (2-Dimensional) 

Overview 

One of t h e  most u s e f u l  a p p l i c a t i o n s  of computer graphics is  da ta  presenta- 
t i o n ,  o r  graphing of d a t a  on an axis system. The two-dimensional graph is the  
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most common q u a l i t a t i v e  and quan t i t a t ive  method of representing r e l a t i o n s  among 
data.  Several software too l s  have been developed t o  f a c i l i t a t e  t h e  d a t a  presen- 
t a t i o n  process,  ranging from automatic axis scale determination t o  passing 
smooth curves through t h e  da ta  points.  

Automatic Sca le  Generation 

I f  we impose t h e  reasonable r e s t r i c t i o n  t h a t  t he  s c a l e  t o  be determined is  
nice" o r  readable, t h e  process of automatic scale s e l e c t i o n  i s  not a t  a l l  

t r iv ia l .  A scale obtained by d iv id ing  the  span of a v a r i a b l e  by t h e  corres- 
ponding a x i s  length  w i l l  almost never s a t i s f y  t h i s  r e s t r i c t i o n .  "Nice" scale 

- i n t e r v a l s  w i l l  never have values l i k e  0.125 o r  1.1 but r a t h e r  w i l l  be  more 
usable values l i k e  0 .1  o r  2.0. Even where a "nice" i n t e r v a l  o f ,  say 5 ,  is 
used, corresponding axis l a b e l s  l i k e  -1, 4 ,  9 ,  etc. ,  would not qua l i fy  as a 
readable scale. Tastes may d i f f e r  on r e a d a b i l i t y  but t he re  are some funda- 
mental good p r a c t i c e s  t h a t  should be  followed i n  scale se l ec t ion .  

I 1  

Several algorithms have been published f o r  automatic production of readable 
sca l e s .  They a l l  produce acceptable r e s u l t s  and w e  s h a l l  descr ibe  only one i n  
some d e t a i l ,  t h e  algorithm due t o  L e w a r t  ( r e f .  1). The r u l e s  are simple-the 
scale i n t e r v a l s  must be t h e  product of an in t ege r  power of t en  and one of a set  
of "nice" coe f f i c i en t s .  
and 5 but ind iv idua l  taste may allow perhaps 4 and 8 t o  be included. 
requirement is  t h a t  a x i s  l a b e l s  must be i n t e g e r  mul t ip les  of t he  scale in t e r -  
va ls .  
da t a  it represents .  When t h e  algorithm is  applied t o  each ax i s , t he  r e s u l t i n g  
graph is  "efficient"-the d a t a  come as c lose  as poss ib le  t o  f i l l i n g  the  avail- 
a b l e  p l o t t i n g  area. Figure 1 shows t h e  r e s u l t s  of applying t h i s  algorithm t o  a 
s i t u a t i o n  where a da ta  zoom is performed on the  o r i g i n a l  graph. The algorithm, 
being general, can adapt t o  any s i t u a t i o n .  Comparable algorithms are described 
i n  references 2 and 3. 

Certainly t h i s  set should cons is t  of a t  least  1, 2, 
The next 

These requirements r e s u l t  i n  an axis whose extremes w i l l  embrace the  

Labelling with Software Characters 

A common goal i n  t h e  preparation of computer-produced d a t a  representa t ions  
is  t o  make them report-ready, i .e. no subsequent draftsman work should be 
required. 
should be of high qua l i t y .  
w i l l  not s u f f i c e  f o r  t h i s ;  something more e legant  i s  des i red .  The nonpareil  of 
a l l  software charac te r  f o n t s  are those developed by Hershey ( r e f .  4 ) .  Complete 
fon t  d i g i t i z a t i o n s  as w e l l  as several soph i s t i ca t ed  typographic subroutines are 
ava i l ab le  f o r  t he  c o s t  of mailing a tape. A sample of t e x t u a l  output using 
Hershey's fon t s  i s  shown i n  f i g u r e  2;  nothing more need be sa id .  

If t h i s  goal i s  t o  be a t t a i n e d , a l l  t e x t  t h a t  appears on the  graph 
The usua l  s t i c k  f igu re  software charac te rs  usually 

Curve F i t t i n g  

W e  s h a l l  make a d i s t i n c t i o n  now between curve f i t t i n g ,  where one attempts 
t o  pass a smooth curve through a l l  d a t a  po in t s ,  and curve smoothing, where a 
smooth curve i s  passed through a neighborhood of a l l  po in t s  according t o  some 
leas t - squares  c r i t e r i o n .  The la t ter  process i s  use fu l  where the  d a t a  is  
s ta t is t ical  o r  imprecisely known; t h i s  w i l l  be discussed i n  t h e  next sec t ion .  
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In  a case where d a t a  are p rec i se ly  known and no smoothing is  required,  one 
o f t en  wishes t o  j o i n  t h e  da t a  po in t s  w i th  a continuous curve. The process is 
t r iv ia l ,  of course, i f  many intermediate d a t a  po in t s  can be ca lcu la ted  so  t h a t  
jo in ing  them by a s t r a i g h t  l i n e  produces a s u f f i c i e n t l y  smooth curve. This is 
o f t en  not  feasible,however. It may be t h a t  t h e  d a t a  are derived from an expen- 
sive computation, as i n  t h e  so lu t ion  of a set  of nonlinear par t ia l  d i f f e r e n t i a l  
equations, o r  t h e  o r i g i n a l  computational scheme i s  not  ava i l ab le ,  such as da ta  
obtained from a t a b l e  of thermophysical p roper t ies .  

Without b e n e f i t  of p r i o r  experience, one i s  tempted t o  t r y  t o  produce a 
smooth curve by using e i t h e r  a g loba l  high order polynomial f i t  t o  a l l  da t a  
po in t s  o r  t o  produce intermediate po in t s  by second o r  higher order interpola- 
t ion .  Neither approach is  ever very successfu l ;  unwanted o s c i l l a t i o n s  usua l ly  
r e s u l t .  An exce l len t  overview of these  problems is  found i n  Akima's paper 
( r e f .  5) where he  proposes a new scheme f o r  curve f i t t i n g .  H i s  cont r ibu t ion  

w a s  t o  devise a new way of l o c a l l y  computing s lopes  a t  each d a t a  point and 
using these  s lopes  t o  cons t ruc t  a series of cubic polynomials, continuous a t  
each j o i n .  The program t h a t  implements t h i s  algorithm appears i n  re ference  6. 
The author has not  been a b l e  t o  f ind  a s i t u a t i o n  where Akima's method f a i l s .  
It is inexpensive as w e l l  as accurate.  Figure 3 demonstrates i t s  c a p a b i l i t i e s .  

In some instances Akima's method produces a curve of g r e a t e r  curvature 
than may be des i red ,  e s p e c i a l l y  where t h e  o r i g i n a l  d a t a  is  sparse.  I n  t h i s  
case one should consider t h e  tension s p l i n e s  of Cline ( r e f .  7) .  Cline develops 
a rigorous theory f o r  these  curves but pragmatically w e  can imagine them t o  be 
f l e x i b l e  w i r e s  which are passed through a series of e y e l e t s  ( t he  da t a  poin ts )  
and made as t a u t  as one wishes by pu l l ing  on e i t h e r  end. The amount of tension 
i s  under con t ro l  of t h e  user ,  which i s  a t  t h e  same t i m e  an advantage and draw- 
back of t h e  approach. 
appropriate.  Figure 4 shows Cl ine ' s  method using d i f f e r e n t  amounts of tension 
on t h e  same set  of data.  

It i s  not c l e a r  a p r i o r i w h a t  value of tension is  

Curve Smoothing 

For d a t a  t h a t  is  imprecisely known o r  s ta t is t ical  i n  na ture ,a  c u r v e - f i t t i n g  
approach as described above would be inappropriate.  Rather, w e  wish t o  obta in  
some smooth, mean curve t h a t  passes through t h e  neighborhood of t h e  da ta  
according t o  some leas t - squares  c r i t e r i o n .  Often, t h e  curve obtained is  t o  be 
used f o r  f u r t h e r  computation such as d i f f e r e n t i a t i o n  o r  i n t e rpo la t ion  so  it  is  
important t o  perform t h e  smoothing accura te ly .  Var ia t ions  t h a t  are statis- 
t i c a l l y  s i g n i f i c a n t  must be accounted f o r ;  thus ,  t h e  method must be  capable of 
recognizing trends.  There are, by t h e  way, many nonlinear regression techniques 
t h a t  have been developed i n  t h e  s ta t i s t ica l  l i t e r a t u r e  ( r e f s .  8 and 9) t h a t  
treat t h i s  problem, bu t  t o  use them one must usua l ly  make some assumptions about 
t h e  func t iona l  form of t h e  da ta .  The method of smoothing s p l i n e s ,  however, 
requi res  no such assumptions and it i s  t h i s  technique w e  discuss.  Here a 
series of s p l i n e  curves are computed which j o i n  continuously a t  knots. 
may o r  may no t  coincide with d a t a  poin ts ;  t h e  number of them and t h e i r  pos i t i on  
are se l ec t ed  by t h e  program s o  as t o  produce a b e s t  f i t ,  subjec t  t o  a least- 
squares cons t r a in t .  The use r  can supply weighting f a c t o r s  t o  t h e  o r i g i n a l  d a t a  
s o  t h a t  o u t l i e r s  can be eliminated from t h e  smoothing process. 

Knots 
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Two smoothing s p l i n e  algorithms have been published i n  t h e  l i t e r a t u r e .  The 
method of Powell (ref.  10) requi res  somewhat more user  judgment than one would 
l i k e  but seems t o  produce good r e s u l t s .  Lyche and Schumaker ( r e f .  11) have des- 
cribed a method t h a t  i s  based upon l o c a l  procedures, bu t  i t  is published i n  
Algol and involves a recurs ive  procedure. Thus, t h e  program cannot be e a s i l y  
t r a n s l i t e r a t e d  i n t o  FORTRAN. Results t y p i c a l  of Powell's algorithms are shown 
i n  f igu re  5. Details on a t h i r d  smoothing s p l i n e  algorithm have not been pub- 
l i shed  but  t h e  rou t ine  t h a t  implements i t  i s  ava i l ab le  from Kahaner ( r e f .  12). 
This rou t ine  is noteworthy because i t  allows the  user  t o  apply c e r t a i n  boundary 
conditions t o  t h e  r e s u l t i n g  smooth curve. The o the r  algorithms do no t  allow 
t h i s ,  a f a c t  which may sometimes prove objectionable.  

DATA PRESENTATION (3-Dimensional) 

Overview 

Often one wishes t o  d isp lay  b i v a r i a t e  d a t a  i n  t h e  form of a sur face ,  a pro- 
j e c t i o n  of t h e  three-dimensional representa t ion  of t he  da ta .  
s en ta t ion  i s  seldom of any q u a n t i t a t i v e  u s e , i t  can provide valuable in s igh t  i n t o  
the  behavior of complex da ta se t s .  
where t h e  t r a n s f e r  func t ion  of an underwater sound s i g n a l  i s  represented ( r e f .  
13). The s t e p s  required t o  obta in  a p lo t  such as t h i s  can be d i f f i c u l t ,  depend- 
ing  upon t h e  o r i g i n a l  form of t h e  data. 
below. 

While t h i s  repre- 

Such a representa t ion  i s  shown i n  f igu re  6 

A l l  p o s s i b i l i t i e s  w i l l  be discussed 

In t e rpo la t ion  on a Regular G r i d  

W e  are imagining a d a t a s e t ,  func t iona l  o r  t abu la r ,  Z(X,Y), where Z is some 
a l t i t u d e  o r  t h i r d  dimension assoc ia ted  with every coordinate p a i r  X,Y. 
da ta  happen t o  have been derived on a regular  l a t t i c e ,  t h a t  is, Z i s  known a t  a l l  
po in t s  on a spec i f i ed  X-Y a r r ay ,  intermediate po in t s  can be obtained f a i r l y  
eas i ly .  It i s  no t  even necessary t h a t  t he  l a t t i c e  spacing be the  same i n  the  X 
and Y d i r ec t ions ;  i t  simply must be regular .  The production of intermediate 
po in t s  with t h e  a i m  of p l o t t i n g  a smooth sur face  can be approached as a s i m p l e  
b i v a r i a t e  i n t e rpo la t ion  problem. Unless t h e  function Z(X,Y) is very benign, 
however, s t ra ight forward  in t e rpo la t ion  schemes produce unrea l  values i n  the  
v i c i n i t y  of s t rong  l o c a l  va r i a t ions .  The most successfu l  and generally appli-  
cab le  algorithm f o r  regular  g r i d  in t e rpo la t ion  is due t o  Akima ( r e f .  14 ) .  The 
method is, i n  f a c t ,  t h e  b i v a r i a t e  analog of t h e  successfu l  un iva r i a t e  scheme 
described i n  re ference  6. 
f o r  der iv ing  values from a b i v a r i a t e  t ab le ,  and a smooth sur face  mode, where a 
dense a r r ay  of i n t e rpo la t ed  p o i n t s  are returned f o r  subsequent p lo t t i ng .  
author has used these  rout ines  i n  many s i t u a t i o n s ,  always with good r e s u l t s .  

I f  t he  

The program has a simple in t e rpo la t ion  e n t r y  poin t  

The 

In t e rpo la t ion  from Scat te red  Observations 

A more real is t ic  case than t h a t  of t h e  above, is  where t h e  da t a se t  cons i s t s  
of a t a b l e  of Z values known only a t  i r r e g u l a r  and a r b i t r a r i l y  spaced X-Y 
coordinates. Most s p a t i a l l y  d i s t r i b u t e d  geographic d a t a  i s  i n  t h i s  category, 
as is  experimentally derived b i v a r i a t e  da ta .  The process of i n t e rpo la t ing  from 
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s c a t t e r e d  observat ions t o  produce a r egu la r  g r i d  is much more chal lenging than 
the  corresponding problem f o r  r egu la r  da ta ;  over 100 papers have been published 
on the  s u b j e c t  over the l a s t  20 years .  The problem s t e m s  from choosing an 
i n t e r p o l a t i o n  func t ion  that w i l l  no t  b i a s  t h e  da t a  thus derived. Two i n t e r e s t -  
ing  and success fu l  s o l u t i o n s  t o  th i s  problem have r ecen t ly  appeared. 
due t o  Akima ( r e f .  15 ) ,  who w e  have referenced t w i c e  a l ready.  H e  again extends 
h i s  " loca l  procedure" scheme. t o  handle t h e  case of i r r e g u l a r l y  spaced i n i t i a l  
data .  
paper. 

One is 

The r e s u l t s  are i n  exce l l en t  agreement wi th  test d a t a  presented i n  h i s  

Tobler ( r e f .  16)  has  r ecen t ly  produced another  approzch t o  t h i s  problem, 
which amounts t o  an i terative s o l u t i o n  of t h e  biharmonic equat ion i n  t h e  
v i c i n i t y  of each da ta  poin t .  H i s  program produces r e s u l t s  equal  t o  those of 
A k i m a ,  us ing t h e  same data .  

Surface P l o t t i n g  

Once t h e  d a t a s e t  has  been r egu l s r i zed ,  one can proceed t o  produce a p l o t  
of t h e  su r face  i t  descr ibes .  Any method t h a t  is  t o  be acceptab le  f o r  our 
purposes must s a t i s f y  t h r e e  cri teria:  

a)  user-specif ied perspec t ive  p ro jec t ions  of t he  su r face  must be  
obta inable ,  

b) hidden l i n e s ,  e.g., t h e  back of t h e  su r face  must be el iminated,  

c )  one should be  a b l e  t o  d i sp l ay  t h e  su r face  as viewed from any or ien ta-  
t i o n ,  inc luding  from below. 

There are dozens of  su r face  p l o t t i n g  packages but  only a few s a t i s f y  a l l  
these  c r i t e r i a .  One t h a t  does is due t o  Williamson ( r e f .  17) .  It is  acceptab le  
i n  a l l  t h ree  of t h e  above respec ts  bu t  i t  might be  c r i t i c i z e d  f o r  i t s  l ack  of 
genera l i ty .  It i s  very much p l o t t e r  o r i en ted ,  expressing s i z e  va r i ab le s  i n  
terms of inches r a t h e r  than a b s t r a c t  u se r  un i t s .  Another system which is  
acceptable  i n  a l l  r e spec t s  w a s  developed by Wright ( r e f .  18) and forms p a r t  of 
t h e  impressive NCAR graphics  package ( r e f .  19).  Wright's program has  many 
opt ions  f o r  represent ing  a sur face ,  including'cross-hatching and the  production 
of s t e r e o  p a i r s .  Figure 7 i s  an example of a su r face  produced by Wright's 
pro gram. 

DATA PROCESSING AND ENHANCEMENT 

Shad i n  g and Cro ss -Ha t  ch i n  g 

It is  o f t e n  t h e  case t h a t  one wishes t o  au tomat ica l ly  shade o r  cross-hatch 
a genera l  two-dimensional polygon. This c a p a b i l i t y  i s  f requent ly  required f o r  
a r c h i t e c t u r a l  app l i ca t ions ,  engineer ing drawings, and thematic  cartography. 
The t a s k  is, given an n-sided simply connected polygon with no r e s t r i c t i o n s  on 
concavity o r  convexity,  f i n d  t h e  i n t e r s e c t i o n  of a family of shading l i n e s  wi th  
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t h e  boundary of t h e  polygon. The l i n e s  are then drawn with the  proper angle 
and spacing. 
o r i en ta t ion ,  and perhaps spacing. 
va r i ab le  spacing between shading l i n e s  s o  t h a t  a r b i t r a r y  and unusual pa t t e rns  
can be obtained. F ina l ly ,  i t  is des i r ab le  t o  be a b l e  t o  shade a multiply con- 
nected region by spec i fy ing  i n v i s i b l e ,  coincident c u t  po in t s  t h a t  j o i n  inner  
and ou te r  boundaries of a polygon. 

For cross-hatching t h i s  process is  repeated f o r  a d i f f e r e n t  
A general  shading rou t ine  should a l s o  permit 

A l l  of these d e s i r a b l e  p rope r t i e s  are displayed i n  f i g u r e  8, which w a s  pro- 
duced by an algorithm o r i g i n a l l y  suggested by Dwyer ( re f .  20) and implemented 
by P h i l l i p s  ( r e f .  21). The algorithm uses vec tor  a lgebra  f o r  t h e  computation 
of shading l i n e  in t e r sec t ions ,  an operation t h a t  is simulated i n  re ference  2 1  
by t h e  complex a r i thme t i c  f ea tu res  of FORTRAN. 
shading i s  shown i n  f i g u r e  9 ,  a thematic map showing t h e  loca t ion  of w a t e r  
po l lu t ing  i n d u s t r i e s  i n  New England. Another shading program has been developed 
by Ison ( r e f .  22)  which i s  capable of complex pa t t e rns  such as b r i cks ,  s o i l  
pa t t e rns ,  e t c .  This package, however, seems unnecessarily or ien ted  toward the  
d i g i t a l  p l o t t e r  as an output device. 

A more e l abora t e  example of 

Windowing and Shielding 

The process of methodically preventing some p a r t  of a graphica l  d i sp lay  
from being p lo t t ed  i s  known as c l ipp ing .  
rows h i s  f i e l d  of view i n  h i s  coordinate space, e.g. zooming i n  f o r  more d e t a i l ,  
and t h e  p a r t  of t h e  p i c t u r e  f a l l i n g  outs ide  t h a t  area i s  not t o  be seen. The 
boundaries of t h e  narrowed f i e l d  of view is c a l l e d  a viewport and can generally 
be formed by any polygon. Usually, however, t h e  viewport is simply a rec tangle ,  
making t h e  process of c l ipp ing  s t ra ight forward  ( r e f s .  23 and 2 4 ) .  The most 
general case involves any simply connected polygon, concave o r  convex. More- 
over, t h e  t e r m  window implies t h a t  t h e  por t ion  of a p i c t u r e  i n s i d e  t h e  viewport 
is  t o  be seen, while t h e  viewport acts as a s h i e l d  i f  t h e  p i c tu re  outs ide  i t  is  
t o  be v i s i b l e .  Behler and Zajac ( r e f .  25) have published an algorithm f o r  
t r e a t i n g  t h i s  general  case. The problem d i f f e r s  from t h e  one of general  shad- 
ing  i n  t h a t  i t  does not  dea l  w i th  a family of l i n e s  having common charac te r i s -  
tics; here every l i n e  is  a s p e c i a l  case. An example of polygonal windowing is 
shown i n  f igu re  10. There the  polygon i s  t h e  lower peninsula of Michigan con- 
s i s t i n g  of 370 po in t s ,  which windows contour l i n e s  t h a t  have been computed on 
a rec tangular  g r i d  t h a t  i s  much l a r g e r  than t h e  polygon. 

This i s  o f t en  done when the  user  nar- 

SUMMARY 

A reader may f i n d  f a u l t  wi th  t h i s  l imi t ed  survey f o r  having omitted seve ra l  
of h i s  f a v o r i t e  graphics rou t ines ;  t h i s  is inev i t ab le .  I have endeavored t o  
d iscuss  a l l  packages of which I am aware (one could do no more) & with the  
important s t i p u l a t i o n s  t h a t  t h e  software is  of proven u t i l i t y ,  i t  can e a s i l y  be 
i n s t a l l e d  on most machines, i t  i s  ava i l ab le  (from the  sources referenced),  and 
t h e  cos t ,  i f  any, is nominal. Naturally,  t h e  author welcomes any r eve la t ions  
of o the r  software t h a t  s a t i s f i e s  these  cons t r a in t s .  
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Figure 6,- Representation of a complex dataset 
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Figure 7.- Three-dimensional representation 
of a mathematical function. 

Figure 8.- Shading of compound polygons. 
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COMPUTER SYSTEMS: MHAT THE FUTURE HOLDS* 

Harold S. Stone 
University of Massachusetts 

ABSTRACT 

Continuing advances i n  device -technology will result i n  substant ia l ly  
higher speed devices a t  rapidly d iminish ing  costs. 
have a s ignif icant  impact on computer architecture i n  the next decade, and on 
the wide-scale proliferation of computer systems in to  new applications. 

These changes will i n  turn 

The microprocessor of today will eventually evolve t o  a processor w i t h  
the power of a minicomputer or perhaps a medium-scale computer of today. 
mechanical auxiliary memories are l ike ly  to  be available as well. 
tat ional power and low cost of these computer systems will see them used i n  
the home, off ice  and industry for  a wide variety of new applications. 

Non- 
The compu- 

Medium-scale systems will tend to  be total  systems tha t  are service ori- 
ented rather  than hardware oriented. A major service will be t h a t  o f  the in- 
formation u t i l i t y  t o  provide data to  a widely distributed pool of on-si te com- 
puters. 

Large-scale computer systems have the potential t o  achieve two to  three 
orders of magnitude speed improvement over the next decade. A large p o r t i o n  
of this may come from the f a s t e r  devices. Another s ignif icant  portion will 
come from higher para1 le1 ism. For 1 arge numerical computations , the vector 
processor of today may evolve t o  a hybrid vector processor-multiprocessor t o  
provide e f f i c i e n t  operation on b o t h  sca la r  and vector types o f  computations. 

I .  INTRODUCTION 

The past two decades have seen t ruly phenomenal advances in computers, b u t  
the potential of computers has barely been realized. The advances i n  computer 
technology anticipated i n  the next decade will be so widespread tha t  computers 
will  d i rec t ly  a f fec t  the l i v i n g  habits and quality of l i f e  of almost every 
person i n  the United S ta tes ,  

software interfaces,  Section I1 of this paper is  devoted t o  an analysis of the 
devices tha t  may be available i n  the 1980s, and t o  the smaller end of the com- 
puter scale.  
um-scale computers are  treated in Section 111, where we project that  medium- 
scale  computers will tend  t o  be be t te r  oriented t o  the specif ic  needs of the 

Computer Science and  Sc ien t i f ic  Computing, Academic Press, New York, 1976, 
edited by J .  M. Ortega. 

Since computer architecture i s 1 argely driven by device techno1 ogy and 

Here's where growth i n  the next decade will  be most rapid. Medi- 

* This paper i s  an abbreviated version of the a r t i c l e  tha t  appears i n  
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user than the i r  predecessors of today. 
Section IV indicates t ha t  rather few new ideas i n  high-speed computer architec- 
ture  are  l ikely t o  appear i n  the next decade, b u t  there i s  room to  a t t a in  about 
two to  three orders of magnitude increase i n  speed by perfecting present ideas. 

Finally, for  large-scale computers, 

11. ADVANCES IN DEVICE TECHNOLOGIES--THE COMPUTER ON A CHIP 

Semiconductor and integrated c i r cu i t  technologies have consistently 
achieved advances i n  density, speed, and power consumption over the history 
of sol id  s t a t e  devices. Figure 1 i l l u s t r a t e s  some of these trends [Turn2]. 
Densities double roughly every two years a t  the present ra te .  Assuming tha t  
this continues and the 16K b i t  chip i s  a standard i n  1976, then the megabit 
memory chip may appear la te  i n  the 1980s. 
megabit chips, i t  will be necessary to  achieve new breakthroughs in the reso- 
l u t i o n  o f  the etching process by moving from vis ible  l i g h t  to  electron-beam 
scanning techniques or  beyond. 

To obtain densit ies leading to  

Apart from achieving greater resolution, there are other gains to  be 
made from new processes. In the past decade, processes based on MOS (metal- 
oxide semi conductor) techniques have been characteri zed by h i g h  densi ty > low 
power consumption, b u t  low speed. The competing technology is  bipolar, w i t h  
h i g h  speed, b u t  roughly one fourth the density and additional complexity in 
i t s  fabrication. 
of bipolar technology fo r  implementation of reasonably f a s t  logic, and ECL 
(emitter-coupled logic) i s  another bipolar technology tha t  a t ta ins  the f a s t e s t  
logic speed. Unfortunately, the power consumption of ECL i s  very h i g h ,  and 
i t s  density i s  low, thereby leaving the designer no clearly best choice for  
a logic family. 

TTL ( t rans is tor - t rans is tor  logic) has been the favored type 

Recent changes i n  technology seem t o  have pointed bipolar and MOS pro- 
cesses i n  the same direction. MOS c i r cu i t s  diffused onto a sapphire substrate 
instead of the tradit ional s i l icon substrate a t ta in  notably higher speeds than 
standard MOS c i r cu i t s ,  b u t  t h i s  technology has not ye t  overcome some obstacles 
tha t  have impaired i t s  development. 
shoot known as 12L (integrated-injection logic) greatly simplifies the masks 
for  active gates, thus increasing c i r cu i t  density while retaining speed. 
logic has a speed more nearly tha t  of ECL ra ther  t h a n  t ha t  of the slower T2L 
logic. 
t he i r  respective goals, then one may have h i g h  speed, h i g h  density, and low 
cost  a l l  i n  one family. 

In the bipolar technology, a new off-  

12L 

I f  e i the r  I2L or silicon-on-sapphire technologies succeed i n  a t ta ining 

Projecting these developments into architecture has a very interesting 
impact on the innovation known as the microprocessor. 
essent ia l ly  a complete processor compact enough t o  be constructed on a single 
chip. Actually, one often finds several chips used t o  make up a full-fledged 
computer w i t h  one chip consisting o f  the arithmetic logic and processor regis- 
te rs ,  another chip holding control memory, and ye t  another chip used for 
random-access memory. Input/output interfaces may be on ye t  other chips. 
As density of fabrication increases, the chip boundaries will grow larger 
and the number of different  chips will be reduced. 
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We have th ree  data p o i n t s  on the  power o f  microprocessors. The 4 - b i t  
microprocessor was in t roduced i n  q u a n t i t y  i n  1971, the 8 - b i t  i n  1974 and t h e  
1 6 - b i t  i s  be ing shipped i n  q u a n t i t y  i n  1976. Th is  i s  cons i s ten t  w i t h  the  
c la im  t h a t  dens i ty  increases by a f a c t o r  o f  two about every two years. 
ch ips themselves are i nc reas ing  i n  size, too. Again p r o j e c t i n g  t h i s  forward 
by several years, we f i n d  t h a t  the complex i ty  o f  the  a r i t h m e t i c  u n i t  o f  a 
m i  croprocessor may a t t a i n  t h a t  o f  soph is t i ca ted  medi um-scal e machines o f  
today by the  1980s. 
may lead. 

The 

F igure 2 i l l u s t r a t e s  a specu la t ion  on where the t rend 

A1  though microprocessors w i  11 have the power o f  today 's  mini computers , 
o r  more, i n  the  1980s, there i s  a major obs tac le  t h a t  must be crossed be fore  
microprocessor based systems can l e a d  t o  subs tan t i a l  cos t  reduct ions i n  con- 
vent iona l  minicomputer systems, The problem is  mechanical a u x i l i a r y  memory. 

Fortunately, there  are  several poss ib le  nonmechani c a l  rep1 acements f o r  
a u x i l i a r y  memory i n  var ious stages o f  development. 
are n o n v o l a t i l e  magnetic s h i f t - r e g i s t e r  memories i n  which storage dens i t i es  
comparable t o  MOS memories have been achieved. 
low as 20 microseconds, more l i k e l y  somewhat higher, b u t  s t i l l  some 100 t imes 
f a s t e r  than access t o  r o t a t i n g  mechanical devices. 

Magnetic bubble memories 

Random-access t ime may be as 

Another a t t r a c t i v e  s torage medium i s  a l so  s h i f t - r e g i s t e r  or iented,  and 
CCD memories are v o l a t i l e  known as charge-coupted device (CCD) techno1 ogy. 

s h i f t  r e g i s t e r s  made up o f  capaci tors .  
c i r c u l a t i o n ,  u n l i k e  bubbles i n  magnetic bubble memories, b u t  otherwise CCD 
performance c h a r a c t e r i s t i c s  c l o s e l y  approximate magnetic bubble memory Fharac- 
t e r i s t i c s .  
appeared i n  1975 and had 16k b i t s  p e r  chip. This puts  CCD technology s l i g h t l y  
ahead o f  magnetic bubbles, s ince bubbles had n o t  reached the  market p lace  by 
1975. 

Charge i n  capac i to rs  must be kept  i n  

The f i r s t  CCD memory ch ips f o r  computers announced commercially 

One o ther  technology today i s  a candidate f o r  rep lac ing  mechanical a u x i l -  
i a r y  memory, namely, electron-beam addressable memory (EBAM). 
uses electron-beam techniques t o  depos i t  charges i n  a small  reg ion  o f  a sur-  
face, and t o  read them o u t  a t  a l a t e r  time. EBAM i s  several years behind 
the development o f  CCD and bubble memories, but,once perfected,could be a 
s t rong  contender since access t o  memory i s  by random-beam addressing r a t h e r  
than by s e r i a l  access t o  s h i f t  r eg i s te rs .  

Th is  technology 

I I I.  MEDIUM-SCALE COMPUTERS 

Computer manufacturers have t o  face the  1980s w i t h  a mix tu re  o f  j o y  and 
g r i e f .  
sen t  number o f  systems s o l d  as computers move i n t o  every imaginable app l i ca-  
t i o n .  
t o t a l  sa les volume o f  the  hardware may drop p r e c i p i t o u s l y  even w h i l e  u n i t  
sa les are growing enormously. A l l  the w h i l e  t h i s  i s  happening, t h e  end-user 
f i n d s  t h a t  a p a l t r y  sum buys him hardware o f  i n c r e d i b l e  p o t e n t i a l ,  b u t  t o  make 

The j o y  stems f rom p o t e n t i a l  u n i t  sa les o f  100 t o  1000 t imes t h e  pre- 

The g r i e f  i s  due t o  t h e  decreasing c o s t  o f  t h e  hardware i t s e l f  so t h a t  
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i t  do his job he has t o  pour many thousands of dollars into software and 
program development. 

So how w i  11 these trends a f fec t  medi um-scale machines? Medi um-scale 
computers will be designed to  use inexpensive additional logic wherever pos- 
s ib l e  t o  f a c i l i t a t e  f l ex ib i l i t y ,  and enhance the range of services tha t  can 
be done effect ively on the machine. 

Among the several trends f o r  medi um-scale computers tha t  are percept- 
able are the following: 

1. 

2. 

3.  

4. 

5. 

A "rich" instruction s e t  i s  included t h a t  permits many higher level 
operations to be done e f f ic ien t ly .  

The use of microprogramming w i t h  a writeable control s tore  will be 
prevalent, so tha t  new instructions can be implemented by the user 
a f t e r  physical delivery of the machine. New instructions might be 
included fo r  each compiler target  language to increase efficiency 
of execution of object code, and emulation of one architecture by 
another w i  11 be commonplace. 

large memories, b o t h  real and vir tual ,  will simplify problems of 
writing programs of large s ize .  

Executive and control functions will be done by special purpose 
hardware insofar as is possible to  simplify the operating system 
and control program. 

Virtual machine architecture will be widely used to  aid the writing 
and debugging of the control software tha t  cannot be implemented i n  
hardware. 

Projecting present trends forward t o  the l a t e  1980s, we see tha t  a device 

This will have a great e f f ec t  on decen- 
comparable i n  cost  and s ize  to  the e l e c t r i c  typewriter could be as powerful 
as a medium-scale computer of 1976. 
t ra l iz ing  the computer center as we know i t  today. 
o f  shared-resource medi um-scal e computers then? 

What will be the function 

In the 1980s there will s t i l l  be need for  central computers fo r  computer 
users to  access. 
tion from central data f i l e s .  The data will be a resource and a commodity of 
trade by tha t  time i f  i t  i s  not already now. 
use the central data base fo r  numerical d a t a ,  catalogs, bibliographies, mai 1, 
and text ,  quite apar t  from uses he makes of programs stored centrally.  Since 
information i s  created i n  real time, a computer user must tap tha t  information 
through access to  one or  more centralized d a t a  bases even when he i s  able to  
sa t i s fy  his computational needs fo r  t ha t  data through the purchase of inexpen- 
s ive hardware. 1 

Access will be less  for  computational power than fo r  informa- 

The user will almost certainly 
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IV. LARGE-SCALE SYSTEMS 

By ear ly  1976 a number of very high-speed computing systems had been 
instal led and were i n  operation. 
instruction set, and use a number o f  clever design techniques to  achieve h i g h  
speed. 
can operate simultaneously, and uses an in t r i ca t e  instruction scheduling 
mechanism to  keep these units busy as much as possible, even executing the 
instructions outsof  order if that  results in a net increase i n  speed. 

Some of the systems use a standard se r i a l  

For example, the CDC 7600 system uses multiple functional units tha t  

One trend tha t  has emerged i n  recent years i s  t h a t  o f  using a computer w i t h  
a vector instruction set. Each vector instruction i n  such a 
on en t i re  vectors instead of single elements. 
issued on a vector computer, tha t  one instruction manipulates 
elements of the vector operands, and achieves a great deal of 
operation w i t h  a large gain i n  speed. 

When a vector 

Two d i s t i n c t  types of computers w i t h  vector instructions 
ered. One type i s  the array computer of the ILLIAC IV class 
element of the vector is t reated by an independent processor. 

achine operates 
nstruction is 
a l l  of the 
para1 le1 ism of 

have been deliv- 
n which each 
Figure 3 shows 

a control u n i t  linked t o  64 processors i n  an array by a broadcast-bus. Each 
instruction issued resu l t s  in 64 responses, each on a different  element of a 
vector of l e n g t h  64. 
by the CDC STAR, has the computational u n i t  partitioned in to  successive stages,  
each of which can be busy simultaneously. A vector operation is  in i t i a t ed  by 
placing the f i r s t  operand pair  into the f i rs t  stage of the computation; as 
they pass on to the second stage,the next pair  is passed into the empty f i r s t  
stage. 
be i n  operation simultaneously, each i n  a dif ferent  stage. 
t r a t e s  the s t ructure  of a typical pipeline computer. Floating-point operations 
can be conveniently divided in to  about  eight successive stages, and the pipe- 
lines themselves can be replicated t o  give additional parallelism. 

To give some idea of the parallelism achievable on the present machines, 
ILLIAC IV has 64 pVocessors, b u t  each processor can do two single precision 
operations simultaneously, s o  tha t  128 different  computations can be executed 
a t  once. The CDC STAR has an effect ive parallelism of about 32. 
ism achievable i s  impressive, b u t  i s  representative of designs i n  progress 
well over f ive  years ago. The ILLIAC IV uses an integrated c i r c u i t  memory, 
b u t  no large-scale integration. 
memory nor large-scale integration. I t  is  obvious tha t  technological changes 
available today can be included i n  the next generation of these computers t o  
gain a potential speed improvement of approximately another factor  of 10 a t  
no increase i n  cost. I f  we take in to  account the advances that  are certain 
to  appear i n  the next five years in integrated c i r c u i t  technology, then this 
could contribute a total  fac tor  of 50 improvement i n  speed over machines i n  
operati on today. 

The  other type, the pipeline computer, as exemplified 

Thus i f  there are N stages i n  the pipeline, N d i f ferent  operations may 
Figure 4 illus- 

The paral le l -  

The CDC STAR uses neither integrated c i r cu i t  

Unfortunately, a fac tor  of 50 is not enough f o r  the very large-scale 
Most notable of the problems for  which these computer systems are b u i l t .  
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massive calculations are  f lu id  dynamics problems and weather analysis. We will 
s t i l l  be a factor  of lo5  too slow t o  solve these problems i n  t he i r  full  de ta i l .  

The obvious answer to  a t ta in  higher speed is to  increase the degree of 
parallelism where possible. 
identical units tha t  can be p u t  in to  a design of marketable cost  can increase 
from lo2 i n  1976 to  perhaps 103 or  104 i n  the l a t e  1980s. 
speed increases attainable f a l l  short  of being equal t o  the replication factor.  

When logic costs drop very low, the number of 

Unfortunately, the 

A number of lessons have been learned from experience w i t h  vector comput- 
e rs  l ike  STAR and ILLIAC. A few of the prPnclpa1 ones are given below: 

1. When algorithms can be cas t  i n  vector form there are s ignif icant  
advantages due to  elimination of unnecessary overhead for  individual 
el emen ts  . 

2.  I t  i s  possible to  incur substantial overhead i n  vector algorithms in 
communicating information among elements of a vector when operations 
on one element are  influenced by the value of another element. 

3. There are numerous t r icks  for  casting ser ia l  algorithms i n t o  vector 
form. 
t o  obtain the best  alternative.  
cular problems may be q u i  t e  unconventional and, i n  fac t ,  may not be 
very e f f i c i en t  when performed in equivalent se r ia l  form. 

Major bottlenecks occur when sequential scalar  operations have to  be 
done i n  between vector operations. T h i s  reduces the effect ive speed 
of a highly paral le l  machine dras t ica l ly  and the e f fec t  becomes more 
pronounced i n  machines as the parallelism increases. 

A programmer may have t o  experiment w i t h  various alternatives 
The best  vector algorithms fo r  par t i -  

4. 

By a l l  appearances the vector machine is  not the f inal  answer, although 
the range of problems for  which vector machines are we1 1-sui ted has proved t o  
be much larger than anticipated because of innovations i n  parallel  algorithm 
and architectural features. 

T. C. Chen (ref. 1 )  among others observed the performance deficiences from inter-  
mixing parallel  and ser ia l  processes. Figure 5 i ' l lus t ra tes  a typical duty . 
cycle for  an array processor i n  which one processor i s  kept busy in i t i a l i z ing  
a vector process, then a l l  N processors are ganged together performing the 
vector operation. 
has the form of s ta i rcase  i n  figure 6 ,  t o  show how each successive s t a t e  i n i -  
t i a t e s  ac t iv i ty  s l i gh t ly  l a t e r  than i t s  predecessor stage. The  shaded region 
i n  dark boundaries i s  exactly equal to  the unshaded region i n  dark boundaries, 
so that  the shaded area of the pipeline computer duty cycle i s  exactly equal 
to  the shaded area o f  an array processor computation as shown in the previous 
figure. W i t h  this observation i t  i s  c lear  tha t  there i s  a potential perform- 
ance decrease i n  a pipeline computer due to  a phenomenon very much l ike  the 
ser ia l  overhead prior to a vector computation i n  an array computer. 

Chen observed tha t  a pipeline computer duty cycle figure 
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The ILLIAC IV i s  designed t o  perform the computation shown in figure 5 
as shown i n  figure 7,  where the serial computation i s  done i n  a single control 
u n i t ,  and i s  done while the previous vector operation i s  in progress in the 
arithmetic processor array. This vastly reduces time lost due t o  interspers- 
i n g  serial and parallel operations. The equivalent processing duty cycle for  
the pipeline computer is shown in figure 8, which simply shows one vector 
operation initiated before the termination of the prior one. 
pipeline computer presently does not  have the facil i ty t o  execute in this 
manner. 

The CDC STAR 

Thus, the STAR duty cycle is  more like t h a t  shown in figure 9.  

To achieve better total performance than i s  predicted by Chen's pessi- 
mistic analysis, i t  i s  clear t h a t  the architecture o f  the 1980s will have a 
mix of processors, some of which are dedicated t o  serial types of tasks, and 
some dedicated t o  highly parallel or iterative types of tasks. 
overlap among processing units will have t o  be significant t o  attain the 
speed potenti a1 of having many ari thmeti c units. 

Execution 

With microprocessors so inexpensive, there i s  an obvious motivation t o  
construct vector or  mu1 t i  processor computers from arrays of mi croprocessors. 
While the individual speed of any one microprocessor may be moderate, the 
ability t o  gather lo3  or lo4 processors together in a single computer can 
lead t o  a very high-speed computer with tremendous computing power for reason- 
able cost. 
and algorithmic advances, t o  the extent t h a t  i t  i s  now possible t o  construct 
arrays with incredible computational power, except t h a t  i t  i s  not  clear what 
form the arrays should take and how calculations should proceed in them. 

Hardware advances have unfortunately, outstripped architectural 

To summarize the current trends for high-speed machines, a factor of 50- 
speed improvement i s  possible by the end of the 1980s from technological ad- 
vances in devices, b u t  the demands of very large problems will stimulate evo- 
lution o f  the architecture i tself .  Vector machines look more promising than 
multiprocessors for large-scale problems for the long-term future, b u t  some mix 
of the two may emerge and prove t o  be the best solution. (See ref. 2,) 

V .  CONCLUSIONS 

With technological advances leading the way as we move into and through 
the next decade, computer architecture will evolve t o  enhance the prolifera- 
t i o n  of the microprocessor, the uti l i ty of  the medium-scale computer, and the 
sheer computational power o f  the large-scale machine. The most dramatic 
changes will be in new applications brought  about because o f  ever lowering 
costs, smaller sizes, and faster switching times. 
time t h a t  the rate of advance in domputer technology will slow significantly 
in the 1980s. We are truly undergoing a Computer Revolution o f  the scale o f  
the Industri a1 Revol u t ion ,  

There i s  no evidence a t  this 
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Figure 1.- Trends i n  device technology. 
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Figure  2.- Microprocessor  complexity. 
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Figure  3.- An a r r a y  computer (ILLIAC IV). 
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F i g k e  6.- Duty cyc le  f o r  a p i p e l i n e  computer. 
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