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SUMMARY

This paper assesses the state of the art in substructure coupling for
dynamic analysis. A general formulation, which permits. all previously de-
scribed methods to be characterized by a few constituent matrices, is developed.
Limited results comparing the accuracy of various methods are presented.

INTRODUCTION

Analysis of the response of a complex structure to dynamic excitation is
usually accomplished by analyzing a finite element model of the structure.
Since the finite element model may contain thousands of degrees of freedom, and
since the structure may consist of several substructures which are designed and
fabricated by different organizations, it is desirable to have a method of
dynamic analysis which permits the number of degrees of freedom of the dynamic
model to be reduced and which also allows as much independence as possible in
the design and analysis of substructures. The names substructure coupling and
component mode synthesis have been applied to the process of partitioning a
structure into substructures, or components, and describing the physical dis-
placements of the substructures in terms of generalized coordinates which are
the amplitudes of predetermined substructure modes. A number of substructure
coupling methods have been proposed. The goal of most of these has been to
permit analytical determination of system natural modes and frequencies from
given finite element models of the structure. To a lesser extent, the use of
experimentally-determined substructure data to synthesize mathematical models
of structures has been considered.

One classification of substructure coupling methods is based on the condi-
tions imposed at the interface between one substructure and the adjoining sub-
structures when mode shapes are determined for the substructure. One class is
called fixed-interface methods, and a second is called free-interface methods.
Related to the latter is a class which may be called loaded-interface methods.
Finally, some consideration has been given to permitting arbitrary interface
conditions which may be a combination of the above three types. Such a method
may be called a hybrid method.

The following classes of modes are used in defining substructure general-
ized coordinates: normal modes, constraint modes, attachment modes, and.rigid-
body modes. These are defined in greater detail in a later section of the
paper.

*This work was supported by NASA Grant NSG 1268.
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SYMBOLS

The principal defining equations are given in parenthesis after the
definition of each symbol.

interface equilibrium matrix (29)
displacement compatibility matrix (29)
combination of A and B (33)
substructure force vector (1)
equivalent force vector (15)
flexibility matrix (19)
substructure stiffness matrix (1)
system stiffness matrix (30, 37, 45)
Lagrangian (26)
substructure mass matrix (1)
system mass matrix (30, 37, 45)
substructure generalized coordinate vector (22, 25)
system generalized coordinate vector (31)
inertia relief matrix (14)
substructure kinetic energy (21) :
substructure transformation matrix (22)
system transformation matrix (31, 36)
substructure potential energy (21)
substructure physical coordinate vector (1)
Lagrange multiplier vector (26)
free-interface or loaded-interface normal mode matrix (7)
substructure generalized stiffness matrix (24, 25)
»A substructure eigenvalue, eigenvalue matrix (2, 3)
substructure generalized mass matrix (24, 25)
Lagrange multiplier vector (26)
generalized coordinate (27)
Lagrange multiplier vector (38)
fixed-interface normal mode matrix (4)
modified attachment mode matrix (20)
unmodified attachment mode matrix (13, 17)
constraint mode matrix (11)

EXREXO QM T A8 O3 XCI{)—I_:-IHZJ.Q'U EIMrxXRAXODTI-HhO @ =

Subscripts and,Superscripts:

dependent coordinates (32)

non-interface (interior) coordinates (1)
interface (junction) coordinates (1)

kept coordinates (18)

Tinearly-independent coordinates (32)
rigid-body modes, temporary constraints (14 15)
unrestra1ned coordinates (15) :

S = o NG e
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HISTORICAL REVIEW

The following is a brief review of the deve]opment of a number of sub-
structure coupling methods:

Hurty (refs. 1,2) developed the first substructure coupling method capable
of analyzing substructures with redundant interface connection. Fixed inter-
face normal modes, rigid-body modes and redundant constraint modes are used
to define substructure generalized coordinates.

Bamford (ref. 3) introduced attachment modes, and developed a hybrid
substructure coup]1ng method.

Craig and Bampton (ref. 4) and Bajan and Feng (refs. 5,6) modified Hurty's
method by pointing out that it is unnecessary to separate the set of constraint
modes into rigid-body modes and redundant constraint modes.

Goldman (ref. 7) and Hou (ref. 8) developed methods which employ free-
interface substructure normal modes. They differ in the technique used to
effect coupling of the substructures, as will be explained in a subsequent
section.

Benfield and Hruda (ref. 9) introduced two new concepts: they employed
Guyan reduction (ref. 10) to determine interface loading, and they used a
coupling strategy which differs slightly from strategies used by previous
authors. These features serve as the basis for four methods described by Ben-
field and Hruda: free-free, constrained, free-free with interface 1oading, and
constrained with interface loading.

MacNeal (ref. 11) developed a hybrid method which allows some substructure
interface coordinates to be constrained while others are free. He also sug-
gested the use of statically derived modes to improve the representation of
the substructure motion.

Goldenberg and Shapiro (ref. 12) employed a method similar to Hou's, but
provided for arbitrary mass loading of interface points.

Rubin (ref. 13) extended MacNeal's method to include second-order residual
effects of modes truncated from the final set free-interface substructure
normal modes.

Kuhar and Stahle (ref. 14) -introduced a dynamic transformation which
approximates the effect of modes which are truncated from the final set of
system generalized coordinates.

In a recent paper Hintz (ref. 15) describes two statically complete inter-
face mode sets which he calls "the method of attachment modes" and "the method
of constraint modes." The former set is combined with both free-interface
normal modes and with fixed-interface normal modes to form system coordinates.
The latter is combined only with fixed-interface normal modes.

In reference 16 Craig and Chang describe three methods for reducing the
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number of interface coordinates in the final system equations obtained by the
Hurty method or the Craig-Bampton method. In reference 17 Craig and Chang

provide examples of substructure coupling based on the methods of MacNeal and
Rubin.

The previous references are primarily concerned with the use of substruc-
ture coupling methods in the analytical determination of modes and frequencies
of complex structures. Several studies, however, explore the use of experimen-
tal data as input to coupling procedures. The following studies are of this
nature:

Klosterman's thesis (ref. 18) provides a comprehensive study of the exper-
imental determination of modal representations of structures including the use
of these models in substructure coupling. In reference 19 Klosterman treats
substructure coupling by two methods which he calls "component mode synthesis"
and "general impedance method" respectively. The former closely parallels
Bamford's work. In reference 20 Klosterman and McClelland introduce "inertia
restraint” and outline a coupling procedure that appears to be especially
suited to coupling two substructures where one is represented by modes and the
second by a finite-element model.

Kana and Huzar (refs. 21,22) developed a semi-empirical energy approach
for predicting the damping of a structure in terms of damping of substructures.

Hasselman (ref. 23) employs a perturbation technique to describe substruc-
ture damping and discusses, in a general way, coupling of substructures using
either free-interface modes or fixed-interface modes.

Two symposia on the topic of substructure coupling have been held (refs.
24,25). Survey papers of particular importance, which were presented at these
symposia, are references 26 and 27.

A GENERAL FORMULATION OF SUBSTRUCTURE COUPLING FOR DYNAMIC ANALYSIS

The substructure coupling methods mentioned in the preceding section may
be described by a single comprehensive formulation. Differences in the methods
result from the use of different mode sets to describe substructure generalized
coordinates and different methods of enforcing compatibility of substructure
interfaces. We will first define the mode sets used in representing the sub-
structure physical displacements in terms of substructure generalized coordi-
nates. Then, using the Lagrange multiplier method, we will show how enforce-
ment of compatibility at substructure interfaces leads to system equations of
motion. Finally, the vectors and matrices which define the various methods
are tabulated.

Definition of Mode Sets

The physical displacements of each substructure are represented in terms
of substructure generalized coordinates through the use of various "assumed
modes," including normal modes of the substructure and certain static deflec-
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tion modes.

The equation of motion of a substructure, when connected to other sub-
structures and executing undamped free vibration, may be written in the form

A r O (s} o) o
Mo Mgl %, M Ml el L [0 -
M5i 0 M3l 5 K33 Kisl 1% f

Fixed-Interface Normal Modes

Fixed-interface normal modes are obtained by setting xj = 0 and solving

for the free-vibration modes of the substructure. Equation (1) reduces to the
eigenvalue problem

(ky; = A%mgs) x5 =0 (2)

ii
The resulting substructure eigenvalues (frequencies) form a diagonal matrix
= di 2 42 2
A = diag (A] A5 .. ANi) (3)

and the corresponding normalized eigenvectors (mode shapes) form the modal
matrix

where Ni is the total number of substructure interior coordinates.

Free-Interface Normal Modes; Loaded-Interface Normal Modes

Free-interface normal modes are obtained by setting fj = 0 in equation (1)
and solving for the resulting modes and frequencies of the substructure. Thus,

(k = 2*m) x = 0 (5)
The matrix of eigenvalues is
= 3 2 2 2
A = diag (A] A5 e AN) (6)
where N = Nj + Nj is the total number of substructure degrees of freedom.

Since the structure may be unrestrained, there may be Ny rigid-body modes. The
normalized eigenvectors form the modal matrix

oo [ -
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Several methods (e.g., refs. 9,12) employ loaded-interface normal modes.
These are obtained by augmenting the interface mass and/or stiffness in equa-
tion (5) to give

it K43 e M ™ 1 _ ]° (8)

.. .+ K., .. .t .. .
ki (kyg + Ky3) iy (myg ¥ myy) Xj 0

Ejj and ﬁjj are the interface "loading" matrices. The symbol © will be used
for the modal matrix corresponding to equation (8).

Constraint Modes

To complement fixed-interface substructure normal modes a set of con-
straint modes may be employed (e.g., refs. 2,4). A constraint mode is defined
by imposing a unit displacement on one physical coordinate and zero displace-
ment on the remainder of a specified subset of the substructure physical coor-
dinates. The procedure employed to obtain constraint modes is equivalent to
applying a Guyan reduction to all interior coordinatess i.e., the mass is
neglected in the top row-partition of equation (1) and unit displacements are
imposed successively on all junction coordinates giving

Y. .
k..11 “Wl=o0 (9)
W 1.,
JJ
Thus, the Nj constraint modes which form the columns of the constraint mode
matrix ¥ are obtained by solving the (multiple) static deflection problem

Lk

ii

Then,
V..
y=| W (11)
135

If the substructure is unrestrained, ¥ will contain N, linearly indepen-
dent rigid-body modes. As noted in reference 4, constraint modes and fixed-
interface normal modes are orthogonal with respect to the stiffness matrix k.

Attachment Modes

Attachment modes are "static" modes which may be used to complement free-
interface substructure normal modes (e.g., refs. 3,11,15,18). An attachment
mode is defined by imposing a unit force on one physical coordinate and zero
force on the remainder of a specified subset of substructurg_physica] coordi-
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nates. Attachment modes will be described first for restrained structures
(for which k is non-singular) and then for unrestrained structures.

Attachment modes for restrained substructures.-Attachment modes for a
restrained substructure are obtained by solving the multiple static deflection
problem

kii kij Xij ) 0 (12)
o kes U Xe ..
kJ1 JJ XJJ IJJ
Then the attachment mode matrix is defined by
X = (13)

Attachment modes can be expressed as linear combinations of free-interface
normal modes. However, in a later section when the normal mode set is trun-
cated, the attachment modes will be modified so that they are orthogonal to the
kept normal modes. The modified attachment mode set will be called X.

Attachment modes for unrestrained substructures.-For an unrestrained sub-
structure, attachment modes may be obtained by using rigid-body inertia forees
to equilibrate applied forces and by temporarily imposing a set of Ny nonredun-
dant constraints. Let O, be the set of Ny (normalized) rigid-body modes of the
substructure and let

_ T
R=1 - mo.. O, (14)

be the inertia relief matrix (ref. 15). Then, the attachment modes may be
obtained from

r T P =
e kpy kel [0 o | [Fy
Kor  Kuu kui K51 = RH0 | = Fuj (15)
I TR ] 8 L 1 N BT B A F]

where r stands for the Ni. restrained interior coordinates and u stands for the
Ny = Nj - Ny unrestrained interior coordinates. From equation (15)
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= (16)
Kju  Kyj
Finally,
-0 -
X= Xuj (17)
X33

Rigid-body modes may be removed from the X matrix by premultiplying it by RT.

Truncation of Mode Sets

One of the most significant features of substructure coupling techniques
is that they permit the number of degrees of freedom of a system to be reduced
in a systematic manner through truncation of the mode sets which define the
generalized coordinates of the system. Hintz (ref. 15) has provided a compre-
hensive discussion of truncation of mode sets. Although truncation is usually
accomplished by elimination of some coordinates associated with substructure
normal modes (e.g., ref. 26), truncation may also be associated with other
coordinates such as constraint mode coordinates (e.g., ref. 16). Attention
will be confined here to the former, i.e., truncation of normal mode coordi-
nates. The subscript k will be used to denote the columns of & or © which are
kept. For example, the Ny modes which are kept form the columns of Oy, where

k‘E (18)

The diagonal matrix of corresponding eigenvalues will be denoted by Akk'

As noted previously, attachment modes can be expressed as linear combina-
tions of the free-interface normal modes. However, when the normal mode set is
truncated, the attachment modes can no longer be represented in terms of ©¢. On
the contrary, it is possible to modify the attachment modes so that they are
orthogonal to the modes in Ok (e.g., see refs. 13,17). This will be illus-
trated here for attachment modes of a restrained substructure.

Note, in equation (12), that the columns of X correspond to columns of the
flexibility matrix k™!. The contribution of the kept normal modes to this
flexibility matrix is given by (see ref. 17)

= -1 T
G = O Mg O (19)
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The contribution of the modes in Gk to X can be removed from X leaving

_ s -1 T
X=X-0 Ay I (20)

Energy Expressions for Substructures; Coordinate Transformation

The derivation of system equations of motion will be based on Lagrange's
equations of motion with undetermined multipliers. Expressions for kinetic
energy and strain energy of the substructures are required. These will be
given first for substructure physical coordinates and then in terms of sub-
structure generalized coordinates.

The kinetic energy and potential energy of a substructure are given by

T = %.QT mx , U= %-xT k x (21)

respectively. The substructure physical coordinates, x, may be expressed in
terms of substructure generalized coordinates, p, by the coordinate transfor-
mation

x =T, p | (22)

When the above coordinate transformation is inserted into equations (21), the
substructure generalized mass and stiffness matrices are obtained. Thus,

T = l—ﬁT pp , Us= l—PT K P | (23)
2 2
where T T
= T] m T1 s, K= T] k T1 (24)

Substructure Coupling; System Equations of Motion

To illustrate coupling of substructures to form a system, two substruc-
tures, a and B8, will be employed. Let

p = NI = gl » K= B (25)

The substructure generalized coordinates are not all independent but are
related by force equilibrium and displacement compatibility at substructure
interfaces. These relationships may be expressed by the equations

Ap=0 , Bp=0

respectively. Then, a Lagrangian may be formed as follows:
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L=gp up-3p cp+tn Ap+v Bp (26)
¥he system equations may be obtained by applying Lagrange's equation in the
orm
d faL oL _
HE‘[aan] “ag 00 (27)

where £ can refer to p ., n or v
combined to give

n-  Then equations (26) and (27) may be
u§+Kp=ATn+BTv ' (28)
together with the constraint equations |
Ap =0 , Bp =0 (29)
In the works cited previously, two basic approaches have been employed for

solving the coupled equations contained in equations (28) and (29). Both lead
to system equations of the form

Mg+Kq = 0 - - (30)
The method used by most authors will be referred to as the implicit

method. It involves the use of a coordinate transformation T2 to replace the
set of dependent coordinates, p, by a set of linearly independent coordinates

g. Thus,
P=T,0q (31)

Let p be partitioned into dependent coord1nates, pd> and linearly independent
coordinates, py, as follows:

p = | R ‘ (32)
and let the constraint matrices A and B be‘combined to form the matrix C, i.e.,

A ,
Cpz= [: :l p = 0 (33)
B

Since C will have fewer rows than columns, equations (32) and (33) may be
combined and written in the form '

Pd
[Cyq Cay b, = 0 (34)
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where Cdd is a non-singular square submatrix of C. Then

-1
Py “Caq Cq
= o, (35)
Py, Iog

Let q = p,. Then equations (31) and (35) give

-c:l¢c
T, = dd d“:l | (36)

IM,
as the general expression for transformation matrix T2. The matrices M and K
in equation (30) are given by

M = T; wT, , K= T; < T, (37)

Goldman (ref. 7) solved equations (28) and (29) by an approach which will
be referred to as the explicit method. Let

n
(38)

Q
48}

v
Then equation (28) may be written
pE+Kp=CTU (39)

o may be related to p by multiplying equation (39) by C u ! and incorporating
equation (33). Then equation (39) may be written in the form

wp+-c (cut e cwTep=0 (40)

Goldman's final system equations are obtained by letting

p=«2gq (41)
Then equation (40) can be reduced to the form of equation (30) with
- - - - 2
M=T,Kk=kwir-¢ (Cuch)?cutye’ (42)

Since equation (41) implies no reduction.in number of coordinates, equation
(30) leads to some extraneous frequencies and modes in the Goldman method.
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Description of Various Coupling Methods

Table I shows the constituent vectors and matrices (i.e., T], P, T2, etcj

of a representative selection of the substructure coupling methods named
earlier in the historical review. In all cases the methods fit into the
general formulation just described. However, in a few cases the notation has
been simplified by employing a partitioning of C (or B) different from that

~ indicated in equations (34) and (36).

CONVERGENCE PROPERTIES

Desirable characteristics for substructure coupling methods include
(e.g., see refs. 13,15): computational efficiency, interchangeability, compo-
nent flexibility, synthesis flexibility, static completeness, and test compat-
ibility. Although it is not within the scope of this paper to make a detailed
comparison of coupling techniques on the basis of the above criteria, a few
results concerning computational efficiency, i.e., convergence, will be
presented. Several authors have previously discussed convergence of system
frequencies (e.g., refs. 13,16,26,27). Rubin (ref. 13) also considered con-
vergence of mode shapes and shear and moment in beam elements.

Figure 1 shows frequency and RMS bending moment convergence properties of
mode 3 of a clamped-clamped uniform beam.

CONCLUDING REMARKS

A general formulation has been presented which permits substructure
coupling methods to be defined in terms of a few constituent matrices.
Although a detailed comparison of various substructure coupling methods has
not been within the scope of this paper, it is hoped that the presentation of
this general formulation will facilitate future studies of substructure
coupling methods. At the present time the use of substructure coupling as an
analysis tool seems to be a well-developed subject. On the contrary, much
remains to be learned about effective ways to use substructure coupling in
conjunction with experimental studies. It is hoped that this topic will
receive increased attention in the future.
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Figure 1.-Frequency and RMS Moment Convergence for
Mode 3 of Clamped-Clamped Beam.
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