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INTRODUCT ION

The effect of finite deformation upon a rotating, orthotropic cylinder
was investigated by Sandman (rvef. 1). He was able to predict the influence of
finite deformations and relate his results to the degree of orthotropy. In
this study an attempt has been made to study the same problem using a general
incremental theory.

The incremental equations of motion are developed using the variational
principle discussed by Washizu (ref. 2). A more than adequate development of
the governing equations has been given by Atluri (ref. 3). Although his inten-
tion is to implement a finite element scheme to solve boundary value problems,
the equations are given in general tensor notation. Hofmeister, Greenbaum, and
Evensen (ref. 4) have presented an excellent discussion of the use of an incre-
mental analysis; again, their goal is thé application of a finite element anal-
ysis. The governing equations are also developed in the treatise by Bilot (ref.
5), using both a geometrical viewpoint and a variational method. The governing
equations are rederived here, in somewhat less detail, using the principle of
virtual work for a body with initial stress (ref. 2).

The governing equations are reduced to those for the title problem and a
numerical solution is obtained using finite difference approximations. Since
the problem is defined in terms of one independent space coordinate, the finite
difference grid can be modified as the incremental deformation occurs without
serious numerical,difficulties. The nonlinear problem is solved incrementally
by totaling a series of linear solutions. This method was used to solve the
same problem discussed in vref. 1 and gave identical results.

GOVERNING EQUATIONS

The derivation of the governing equations is based upon an incremental
variational principle (ref. 2). The body is assumed to be in equilibrium at
some arbitrary reference state along the load path. Let

s -> >
X =a+u (1)
be the transformation of a particle at point 3 to point X in the same space,

then 4 is+the displacement of the particle. At the beginning of some increment
of load, a is the initial coordinate and X is the current coordinate, and the
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two are identical. Let initial stresses ¢°, initial surface tractions ¥°, and
initial body forces T° act on the body before the addition of the load incre-
ment. These stresses and loads are with respect to the initial coordinate axis
and are referred to a unit area before the loading increment is applied; hence,
they are referred to an undeformed area and volume.

Assuming the initial stress system is in equilibrium, it follows that,

div oo + B = ¢ @
9?; = to (3)

>
- where n is a unit normal vector. If the body is then loaded with some increment
of surface traction or body force, the total stresses at the end of that incre-
ment of load are the sum of the initial stresses and incremental stresses.

In order to formulate the principle of virtual work, first define a non-
linear strain tensor, such as,

D=E+N (u)
where

E= (Vu+ VE?) (5)

N = (VE?TE) (6)

>
where u is the displacement field corresponding to D and D is referred to as
Green's strain tensor (vef. 6). The notation is basically the direct notation
used by Gurtin (ref. 7), although some symbols are different.

..-).
Introduce a virtual displacement Su and incremental stresses, body forces,
and surface tractions, 0, ?, and T, respectively. The principle of virtual work
for a body with initial stress may be written,

é{(g?+g)°§27(¥°+%)‘5u}dv—£ (%b+%)°6§ds =90 (7)

where S7 corresponds to the surface on which stresses are specified. Substitut-
ing equations (5) and (6) into (7) and noting that 0° and 0 are symmetric yields

f{o°'6Vu+o°-vuT6Vu+o~SVEfo-VuTGVu}dv—f(?bo634?-83)dv—
v - - v
(Fo - su+t-51)ds = (8)
él
Making use of 18(1) (ref. 7), equation (8) can be rewritten as
[60-[div o + div(c® VuT) + div(cVuT) + flav
v
_j su- [on + (0°Vu Y5+ (cVu )& < %las =

é 6u [0°n - to]dS - fdu [div o + f°]dv (9)
1
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According to equations (2) and (3) the righthand side of equation (9) should be
zero; therefore, the equations of equilibrium become

div o + div[(o® + o)Vu'1 + F = 0 (10)

and the boundary condition is

>

gﬁ + [(g° + E)VETJTK = £ (11)

-5
The assumption that the incremental strains are small implies that u is small
incrementally and

D=E, i.e. N =0 in equation (4). (12

The initial stress may not be small; hence, we retain 0° terms in equations (10)
and (11). It follows from equation (12) that for a linear incremental stress~
strain relation the incremental stress will be small. Therefore products of
EYE? can be neglected and the governing equations become

div o + div(e®Vu') + £ = 0 (13)
on + (°vu')’A = ¥ (14)

Equations (2) and (3) serve as an error check and can be used at any increment
to determine the equilibrium status of the initial stress system.

The total stress o at the end of any load increment becomes the initial
stress ¢° for the next load increment. Then, 0 must be referred to the initial
coordinates 3 and the deformed area ,jin order to become 0°. The transformation
has been given by Fung (ref. 6) and can be rewritten as

T
O = .

o° = (p/p IV _xoV_x (15)
where p/p, is the ratio of final mass to initial mass and V, indicates that the
operator is with respect to the initial coordinates &. It follows from equation
(1) that

Va§_= Va(a+u) =.§-+z££ (16)
where § is a unit tensor. For an incremental theory equation (16) may be written

§__+Vag=§_+VE=.._I_ (17)
It follows ‘that

p/p, = det|Va] = 1 - tr(Vu) (18)

where tr( ) represents the trace of a temsor. Combining equations (15) through
(18) gives the transformation

o =[1 - tr(VE)]gggT (19)
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where

g? = (8 + VE)T =68 + VE? (20)

GOVERNING EQUATIONS FOR A ROTATING CYLINDER

The general equations can be reduced to plane cylindrical coordinates in
order to implement the analysis of a rotating cylinder. The problem is one of
axisymmetric plane strain; hence, the displacement vector U reduces to Up, the
radial component, which will be referred to as u.

The numerical method will be applied to the equation of equilibrium (13),
which In plane cylindrical coordinates may be written

o! G - g0t ' O (a1t [ - a0 2
r+(kr oe)/r+cr u +cr(u + u'/r) og u/r< +

ow(r + u) = 0 (21)

where f = p(r+u)w? the inertia force, 0, and 0g are the radial and tangential
stresses, respectively, and the prime denotes differentiation with respect to r.

Equation (12) is represented by the linear strains
= ! =
E,=u and Eg = u/r (22)
Following Sandman (ref. 1) we assume a linear anisotropic stress-strain relation
= !
o, = Cyyu' +Cp, u/r (23)

5 022 u/r + C12 u/r (24)

8)

Substituting equations (23) and (24) into equation (21) yields the incremental
governing equation

1 1 - 2 O 4,1 1 (01 1}
u" +u'/r - au/rt + o2 u /Cll + 1 (GP + Gr/r)/cll
- o9 2 2 -
o8 u/Cllr + pw (r+u)/Cll 0 (25)
where
o =C,,/C and B =C ,/Cyy (26)
The bourdary condition, equation (14), becomes
' o =
u' (1 +09/C 1) + 8 u/r =0 (27)
The linearized incremental stress transformation, equation (19), becomes
o = T
a2 >Gr(l +u u/r) (28)
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a@ = Ge(l - u' + u/r) (29)
NUMERICAL ANALYSIS

The governing equation (25) was solved using a finite difference technique.
The primary constraint to be dealt with is the magnitude of each increment of
strain. It must be small enough to insure that equation (12) is not violated.
After each increment of displacement is calculated, the finite difference grid
must be updated; hence, the finite Jdifference equations must be reformulated
after each incremental solution. The difference operations may be derived as
follows

(du/dr)iﬁ(ui+l_ui)/Ar22(ui_ui—l)/Arlg(ui+l_ui—l)/(AP1+AP2) (30)
2u. 2u. 2u.,
-1 i i+l
(d2u/dr?), = L - + (31)
i Arl(Arl+Ar2) ArlAr2 Arz(Arl+Ar2)

The first incremental solution is merely the linear solution for the first
increment of body force. Before the second incremental solution is determined,
the initial stresses are assumed to be equal to the stresses obtained for the
first increment. These stresses are transformed according to equations (28) and
(29). The incremental displacement associated with each finite difference node
is added to the coordinate of that nodes hence, a new initial stress problem is
formulated. The nonlinear analysis for the equation developed by Sandman (ref.
1) was obtained by transposing all nonlinear terms to the right. The displace-
ments for the previous analysis were used to evaluate the nonlinear terms, and
a solution for u is obtained. The calculated displacements are then used to
calculate new nonlinear terms, and the solution is repeated. This process con-
tinues until the two sets of displacements agree to within some tolerance.

This method was used to verify the results obtained by Sandman (ref. 1) and
appears to be accurate and efficient.

Equations (2) and (3) can be used at any increment to determine if the
initial stress system is still in equilibrium. If the initial stress system is
not in equilibrium, the solution can be corrected by including equation (2) in
the governing equation (25).

NUMERICAL RESULTS

Solutions were obtained for three different materials. These material
parameters were assumed to approximate the behavior of steel, aluminum, and a
composite epoxy-fiber orthotropic material. The maximum radial and tangential
stresses are shown in figure 1 as a function of w?. The cylinder was assumed
to have an outside radius of 0.127 m (5 inches) and inside radius of 0.254 m
(10 inches). The maximum radial stress occurs approximately halfway between
the inside and outside, while 9 is maximum at the inside radius.
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The percent deviation of the nonlinear solutions -above the linear is illus-
trated in figures 2 and 3. The increase in stress using the equations of refer-
ence 1 appear to be almost linear in every case. The radial stress increase,
using the incremental theory, is similar for both steel and aluminum and
reflects a nonlinear behavior. The increase for the composite appears to become
constant., The nonlinear tangential stress deviation increases and then tends to

decrease for both isotropic materials; however, this behavior is not demon-
strated for the composite.

In all cases the increase in stress level does not appear to be significant

for stresses in the elastic range. The analysis presented herein should be
extended to include nonlinear material behavior.
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Figure 2.- Percent deviation from linear solution.
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Figure 3.~ Percent deviation from linear solution.

480



