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*SUMMARY

After buckling, statically indeterminate trusses, beams, and other
"strictly symmetric" structures may collapse under loads which reach limiting
magnitudes. The current paper discusses optimal design for prescribed values
of these collapse loads.

INTRODUCTION

The principles and techniques of optimally designing structural elements
against buckling have been widely investigated. For example, there exists an
extensive literature on the problem of finding the least weight design for a
column of prescribed Euler buckling strength (see, for example, ref. 1,2,3),
and two recent publications (ref. 4,5) deal with the analogous problem of find-
ing the lightest beam to resist lateral buckling under prescribed loads. The
common feature of these problems is the fact that the structures considered are
statically determinate in the sense that the prebuckling stresses themselves
are independent of the design.

If the structure is indeterminate, and if the prebuckling stresses them-
selves are therefore affected by design changes, the problem becomes vastly
more complicated and no general optimality principles appear to have been
developed. On the other hand, it is likely that in cases of this type the
buckling load itself does not represent an important design criterion. Some
structures buckle under decreasing loads and are therefore imperfection-
sensitive. Others may buckle under increasing loads, and their actual strength
is again governed by factors other than the critical buckling load.

It has been shown that certain "strictly symmetric'" types of structures
necessarily buckle under increasing loads, and that these loads often approach
limiting values as buckling deformations increase indefinitely. Examples of
structures of this kind are statically indeterminate trusses (ref. 6) or beams
buckling laterally (ref. 7), and recent numerical (ref. 8,9) and experimental
(ref. 10) results have confirmed the general theory (ref. 11). It may there-
fore be realistic to study the optimal design of such structures as their
collapse strength, rather than their buckling strength, is prescribed. The.
object of this paper is to introduce a general discussion of this problem and
to indicate a method of solution.
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POSTBUCKLING MODEL

The postbuckling behavior of strictly symmetric structures has been
described in total generality in reference 11. It can easily be visualized
by means of a simple model consisting of a pin-jointed truss of n (say,
n=2) degrees of indeterminacy. If the external loads are increased by
increasing a common load parameter XA, then the "critical" load value is
reached when the compressive force in one of the bars (say, bar 1) reaches
the Euler value for that bar. Nevertheless, the load-carrying capacity of
the truss is obviously not yet exhausted. While member 1 buckles under
sensibly constant compressive force, M™continues to increase until member 2
similarly starts to buckle. Collapse occurs when member 3 also buckles, and
A==AC then remains constant. ‘

This simple process can be visualized within a format that is applicable
to all strictly symmetric structures. Let S, the vector of all bar forces,
be of the form -

S = A§O + ar§r , v ()

in which, for simplicity, the self-equilibrated bar force systems §r are
selected so as to satisfy the orthonormality condition

ststy.
z r s 1
AE.

i i7i

=585, =6 _ (r,s=1,2) | ()

where the summation extends over all the bars and &3, Aj, Ef represent,
respectively, the length, cross-sectional area, and Young's modulus of the
ith par. Moreover, if So 1s the actual force system in the unbuckled
structure, (o, =0), then

$,°8, =0 , (r=1,2) . - ®)

In the absence of any limitations on the tensile strength of any member,
the condition of "statical admissibility" is given by

st > -N | - (N'>0 = Buler force) , (4)
which, in view of equation (1), becomes

a_S -Nl-xs;a , (i=1,2,...,n) (5)

i
rr

v

For given value of A equations (5) define a statically admissible region in
the a, space, whose convex boundary consists of hyperplanes whose normal
vectors are proportional to S (fig. 1). The region so defined need not be
closed. For definiteness we assume A >0 and Sé <0 (1=1,2,3,...,p5n); in
that case the region '"shrinks" for increasing values of A.
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For the sake of brevity we rule out the possibility of multlple buckling
modes; then the critical value A=2Xp is reached when

1 1. i i .
A Sy = -N A S, > -N (i=2,3,...,n) . (6)

As bar 1 buckles under constant compressive Euler force the first ‘(i==1) of
equations (5), in view of equation (6), becomes

1 _ 1 ‘
0. 8. = - (A-2))S, . , (7)

At the same time the changes in the bar chord lengths are given by

sty
§, = L s
1~ AE 1
. (8)
slzi ' :
8 =TT (i=2,3,...,n)
1 1

in which Si.>0 represents the nonlinear effect of the curvature. Hence

i _ 1 v _ B
gsrai_gr §-5.68 =0 (r=1,2) , 9
or, with equations (1), (2), and (3),
. ol - a (r=1,2) (10)
r “r’1 T )

Finally, when equation (10) is substituted into equation (7),

- _x 1

confirming, once agaln, that strlctly symmetrlc structures have stable p01nts
of bifurcation.

For A <Ay the origin 0 of the coordinate system in figure 1 is in
the statically admissible reglon and therefore represents the actual stress
point. At bifurcation (A =21p) the hyperplane By passes through the origin
and, for increasing values of A, the origin moves outside of the statically
admissible region, while the stress point P moves with Bj. According to
equation (10) the vector OP is parallel to the normal to B; and, because

of the convexity of the stable region, P is therefore closer to 0 than any
dther statically admissible point.
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After bar 2 also buckles, point P 1lies on the intersection of two
hyperplanes, and

P 2
o, = Sr61 + Sréz . (12)

Finally, collapse is reached, for XA =2A., when the statically admissible
region has shrunk to the point P. representing the intersection of three
hyperplanes. In that case the constant values of a, are given by

C - 1 1 2 ] 3.t -
ol = Srél + Sréz + Sr63 (x=1,2) , (13)
and as collapse proceeds according to
8} = w6(.1: (W) , (14)
the collapse mechanism satisfies
1 .c 2 .C 3 .¢c _ ¥
S8 * 5.8, + 5 8;=0 (r=1,2) . (15)

We also note that, in general, this mode as well as the value of A, is
independent of initial imperfections.

OPTIMALITY

For the more general case we may identify the major state of stress by
means of

o =Ag, + a0 . ‘ v (16)

The equations of compatibility are given by

T 1
9. [Qg -5 gz(\_r)] =0 (r=1,2,...,n) (17)

in which C is the compliance density with respect to g, % is the
quadratic contribution to the major strain associated with the buckling mode

v, and the notation implies an integral or a summation over the entire
structure.

The condition of equilibrium is given in variational form by

KT () KK(SY) - o 2 (vov) = 0, (18)
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where k 1is the linear buckling strain tensor and K the stiffness density
with respect to k. We note that both K and C are, in general, functions
of the design variable h.

For optimality we vary the design by replacing h by h-*ﬁ, subject to
the condition of constant volume

h=o0. . | (19)

Q-lQ-
==

vV =
Since the load is prescribed it follows that i==0; nevertheless, the major
stress system (identified by o,) and the buckling mode v may change.
Variation of equations (17) and (18) then leads to

T [dc o o ] ' ‘

gn Sh+Cg o - gllfyy) =0 (r=1,2,...,n) (20)
T » T . _- T
k" (v) Kk(8y) -0 &y, (v 8v) =a g 2y, (v EV)

[k W) dﬁk(a v) - A2 gﬁ]h (21)

in which AZ has been introduced as Lagrangian multiplier to account for
equation (19). Equation (18) represents a homogeneous eigenvalue problem, and
equation (21) has therefore no solution unless the condition of integrability

dk .
,w - [ g rw -2 2]h-0 (22)

is satisfied. We note that equations (20) and (22) are similar to the equa-
tions derived for the initial buckling case in reference 4, except for the
last term in equation (20) representing the contribution of the postbuckling
condition.

Letting once again

Vo= ey b= wh, (w~) (23)

and assuming collapse under finite load and stress conditions we obtain

g_ % (Yc) =0 (r=1,2,...,n) (24)

K (rg) KE(O0) = 9 2y (v 60) = 0 (25)

2 dA

dK
k (V ) k( ) = A i

(26)
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of which the first two equations represent the collapse condition, and the
last constitutes the condition of optimality. It is noted that once again
this optimality condition requires constant strain energy density in the
design fibers. It is also noted that for collapse (in contrast to initial
buckling) the direct effect of a desigh change onthe collapse mode via the
compatibility conditions has disappearedr In other words, we see once again
a parallel behavior pattern between collapse through buckling and collapse
through perfect plasticity.

EXAMPLE

As an example to illustrate the theory,we consider a beam of length 2
which is fixed in its own major plane at the right end and subjected to a
bending moment A at the simply supported left end. Collapse occurs when

- 3 X
% © Xc<i_'2 2) T o

while the equations of equilibrium (25) assume the form

, (27)

ESL

Klug -0 B.=0 (Kzeé) " ocug = 0 (0sxs2) (28)

where u and B represent the lateral displacement and rotation, respec-
tively, with associated bending and torsional stiffnesses Kj and K;. 1In
the development of equations (28), it is assumed that u=u''=8=0 at both
ends and that the effect of warping can be neglected. In terms of B alone
equations (28) reduce to

~| _Q
=0 N

(KBD' + B8, =0 (0sx<8) (29)

The collapse condition equation (24) becomes

L
2
xu" g dx=f X 5 B°dx =0, (30)
J; cc o K1 cc
while the optimality criterion equation (26) assumes the form

2
dK. /o dK

1(%Y 2. % 2 24
ah <K1> Be*am B = A (0Ogxg8) . (31)

For the specific case of a thin rectangular beam, in which K1==b3h/12,

K2==b3h/3, and A=Dbh, and in view of equation (29), equation {31) can be
written in the form
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1

2 hg' ; : \
h= - -‘l-?: si (—B—S> 1 (32)

3A c
c

which lends itself well to an iterative solution scheme. It is also
interesting to note that equation (32) is satisfied for constant value of h
provided B =sinmx/%; this confirms the curious conclusion arrived at re-
cently by Popelar (ref. 4) that the prismatic design represents an optimum
for simply supported beams under constant bending moment.

Numerical results covering equations (29), (30) and (32) for the case
under consideration are currently being developed. Because of the variation
in the major bending moment, it is expected that in this case the prismatic
beam is not optimum, and that optimal design for collapse may lead to a
noticeable reduction in weight.
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Figure l.~ Redundant stress space,
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