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SUMMARY

An algorithm for optimal design is given which incorporates several of the
desirable features of both mathematical programming and optimality criteria,
while avoiding some of the undesirable features. The algorithm proceeds by
approaching the optimal solution through the solutions of an associated set of
constrained optimal design problems. The solutions of the constrained problems
are recognized at each stage through the application of optimality criteria
based on energy concepts. Two examples are described in which the optimal

member size and layout of a truss is predicted, given the joint locations and
loads.

INTRODUCTION

In the field of optimal structural design, two general techniques for
finding the optimum design may be distinguished: mathematical programming
methods and the use of optimality criteria. In the present paper, an algorithm
is given which resembles a technique of mathematical programming in that it
proceeds by stages, with an improved design generated/at each stage. However,
in contrast to most mathematical programming methods, the improved design is
identified at each stage by the application of optimality criteria, rather than
by a search technique. In this way, the computationally expensive search pro-
cedure is avoided, yet the principle of approaching the optimum through a suc—
cession of small changes is preserved. The algorithm is explained and illug-~
trated by application to the optimal design of a truss, where member cross-
sectional areas are taken as the design variables.

SYMBOLS

A, cross—sectional area of truss member i
2 slack function

)(p,S8%) trial design corresponding to p and S*
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E elastic modulus

F x and y components of external loads applied at nodes and
numbered consecutively

L augmented function

Zi length of member i

m total numbef of Addes

n total number of truss members, assuming each node connected to

every other node by a member

P potential energy.

S  value of.loﬁéf boﬁndlconstféiﬁﬁ

v . bépeéifiéd'vélume of matefial

Gj | ,nodal displacementé, nuﬁﬁerea cdfrespénding fo\f}

€ 4s£rainvof member i |

Ai Lagrange multipliers for area constraints

A Lagrange multiplier for volume coﬁstraint (also equal to specific

strain energy of fully-stressed members)

nk,nk(p,S) .specific strain energy of member k, corresponding'to
fully~-stressed set p and constraint value S

ENERGY FORMULATION

Consider the problem of finding -the maximum stiffness design of a planar
truss, given a specified total volume of material to be allocated to the various
members of the truss, and specifying inequality constraints on the truss members'
cross—sectional areas. The connectivity of the truss is unrestricted; however,
locations of nodes are specified beforehand, and the possibility -of member
buckling is ignored. Taylor (ref. 1) and Hiley (ref. 2) have shown how a
problem of the type just described may be formulated by the use of the potential
energy function of the structure. 1In the present paper a similar energy for-
mulation will be used. The potential energy of the truss may be written

n 2m ‘
P = Z liiAini - Z F.S, (D
i=1 =1 43 C

(See the list of symbols for definitions of the parameteré.)
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The specific strain energy ng is related to the strain € by

L2
hi = Eei/Z (2)
where E is the elastic modulus.
The volume constraint is
Z AR, =V (3)
. ii
Ci=l T T . o

where V is the specified volume of material. The inequality constraints are
A, >8 )

where S is the specified lower bound constraint.

It can be shown that the problem of maximum stiffness design is equivalent
to that of maximizing the potential energy P (refs. 1,3).

The constraints may be introduced dlrectly into the problem formulatlon by
defining the slack functions a_ by »

A - a =38, r=1,2,...,n (5)

and introducing Lagrange multipliers )\ and Ai to form the augmented function

L= P+A(V—ZA£)+ZA(S—A +a) (6)
i=1 i=1

Requiring the first derivatives of L with respect to Gk, Ar’ and a_ to
vanish gives

Z zlAl 55 - F = ov | (7)

nrzr - Mr - A'r (8)

fl
o
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Aa =0 (9)
while application of the Kuhn~-Tucker theorem of non-linear programming gives

A0 (10)

These equations can be shown to be both necessary and sufficient for
optimality (refs. 1,4,5).

A basic assumption about the optimal design problem formulated above will
now be m%de. It is assumed that for every value of S in the interval

0<S§V/(:E: Ki) an optimal design exists. That is, the optimal design is assumed
i=1

to be a function of S. Furthermore, this function is assumed continuous.

It is of interest to note that at least one optimal design can always be
found easily for the value of the lower bound constraint given by

n
S = v/(z £;) (11
i=1

For by equation (4) all admissible designs must satisfy
n
%
Aj > 8 zv/(z Ei), j=1,2,...,n (12)
i=1

However the strict inequality in equation (12) cannot apply for any j since
this would violate the volume constraint in equation (3). Thus the optimal
design for the value of S in equation (11) must be the "equally-sized" design

n
A, =/ L), i=1,2,...,n
J i=1 *

OBSERVATIONS ON GOVERNING EQUATIONS

Inspection of the preceding set of governing equations (3)-(10) leads to
several observations of later use in this paper. First note that when a member
area A in the optimal design is strictly greater than the lower bound con-
straint value S, then the corresponding slack function a_# 0 by equation (5)
and Ar = 0 by equation (9), but then equation (8) yieldg
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n. = A (13)

Thus all members with areas greater than S are stressed to the same level,

Note that by equation (2), equation (13) may be written as a linear equa-
tion in the strain €, and hence linear in the nodal displacements:

€. = i\’ZA/E (14)

Next consider a member t in the optimal design which is stressed below the
level 2 (egs. (8) and (10) exclude the possibility that an element in the
optimal design is stressed above the level A.):

n. < A (15)
Then by equation (8) At # 0 and so equations (9) and (5) imply
A =S5 (16)

The implication of equations (14) and (16) may be summarized by saying that
the members of the optimal design may be divided into two groups: fully-
stressed members (n A and A > S) and members at the constraint (n, < X .and
A = 8). As shall Ee discussed later in this paper, under certain conditions
borderline cases exist where a member is both fully-stressed and at the con-~
straint.

A second observation about the governing equations for the optimal design
problem can be made with the help of the fully-stressed condition, equation
(14). Introducing equations (14) and (2) into the equilibrium relations (equa-
tion 7) yields

‘\lﬁz:eﬂA +SZ£———F 0 a7

rrr 36

where the first summation is over the set of fully-stressed members, and the
second summation is over the set of members at the constraint (hence areas equal
S). e is the sign associated with member r (compression or tension).

Equations (14) and (17) have been formulated for the problem of maximum

stiffness design for a fixed volume of material V. The maximum specific strain
energy A is found as part of the solution. However, this problem may be shown
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(ref. 6) to be equivalent to the problem of minimum volume design for specified
A. From now on in this paper it will be assumed that a value of A is sgpecified.
The solution corresponding to this value of A may later be made to correspond to
some specified volume of material by multiplying all results by a common factor.

With A specified, equations (14) and (17) become linear equations in the
remaining unknowns §, and A . Thus once it has been determined which members
are to be fully-stressed in"the optimal design, the areas and nodal displace-
ments may be caleulated by solving a linear system of equations.

FULLY-STRESSED SET AND TRIAL DESIGN

Suppose that a subset of the n members of the truss have specific strain
energy A, as well as specified signs, and do not violate nodal displacement
compatibility. These members will be called a "fully-stressed set".

Suppose that a fully-stressed set p has been designated and a value of the
lower bound constraint specified, § = S*. In general, it is not known before-
hand if p corresponds to an optimal design for S = S*., However, knowing p and
S*, we can nevertheless determine a corresponding set of areas and displace-
ments by writing equations (17) and (14) for the fully-stressed set p and then
solving these equations.

The set of areas and displacements found in this way will be written
D(p,S*) and will be called the "trial design corresponding to p and S*." Note
that by assumption the trial design is a continuous function of the lower bound
constraint, for fixed p.

Once a trial design D(p,S*) has been calculated, equations (10) and (4)
may be used to determine if the trial design is also an optimal design. If
D(p,S*) is optimal, then p will be called the "optimal fully-stressed set cor-
responding to S*."

BASIS FOR ALGORITHM

Using the definitions just introduced, we can now discuss the basis for an
algorithm for finding the optimal design.

Starting with a fully-stressed set r and a value of S = 8% such that
D(r,S*) is optimal (finding such a starting design presents no difficulties, as
was observed earlier), S is repeatedly reduced and D(r,S) recalculated until a
value of S is found for which D(r,S) is non-optimal. Since the cause of the
non-~optimality must lie in the incorrect choice of fully-stressed members, a
method is needed for identifying those members which must be added to or
deleted from the optimal fully-stressed set as S decreases. Such a method may
be derived from a close examination of the optimal designs in the neighborhood
of a point where the optimal fully-stressed set changes.
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Consider the particular case where a single member, for example, j, is to
be added to the optimal fully-stressed set. 1In figure 1, S = S, is the value of
the lower bound constraint for which N: first equals the constraint value A as S
is decreased from a value S) slightly above S, to a value S; slightly below S..
Note that, for S = 8 , member j is an example of a "borderline' case referred
to earlier (A; = §_ %nd.nj = A).

If p denotes the fully-stressed set for which D{(p,S) is optimal for
S, >S > S , then D(p,S) is non-optimal for SC >S5 > Sl’ since by hypothesis p
lacks the %ully—stressed member j.

Denote by q the fuliy—stresséd set obtained from p by adding member j
and consider a member, for example, k, which belongs to neither p nor q. By
hypothesis,

nk(p,Sc) = nk(q,SC) <A

Furthermore since nk(p,S) and nk(q,S) are continuous functions of S, it
follows: that - ;

nk(p,S) < A and nk(q,S) < A
for Sl <8 < Sc’ For the same range of S, it must alsoc be true that
ﬂj (P,S) > A

since D(p,S) has been assumed to be non-optimal. Thus the member to be added
to the fully-stressed set p to form the optimal fully-stressed set q (for
S, <8 < S ) may be determined by examining the non-optimal design D(p,S,) -

- c s X s .
t%e member "to be added is that member with specific strain energy exceeding AX.
The sign associated with the member j to be added is identical to the sign of
member j in D(q,Sl), as may be established by a continuity argument similar to
that given above.

The preceding discussion dealt with the procedure for identifying the
member to be added to the optimal fully-stressed set as S decreases. An anal-
ogous procedure can be developed for identifying the member to be deleted from
the optimal fully-stressed set. Proceeding as in the previous paragraphs, it
can be shown that the members of the optimal fully-stressed set can be iden-
tified by inspection of a non-optimal design D(p,S,) = the criterion being that
the member in p whose area is less than Sl, is to %e deleted from p to form the
optimal fully-stressed set. :

A final remark on the algorithm should be added here. In developing the

method for adding or deleting fully-stressed members, the assumption was made
that only one element at a time could be both fully-stressed and have area equal
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to the constraint value. In certain problems, especially where a high degree
of symmetry is present, this assumption may be violated. The argument pre-
sented above for identifying additions or. deletions to the optimal fully-
stressed set is no longer generally valid. 1In the examples considered in the
course of this study, several instances were observed where more than one mem-
ber was fully-stressed and also at the constraint for the same value of S.
However, the algorithm had no difficulty in these instances and found the
optimal fully-stressed set. The information gained by examining the non-
optimal design in the vicinity of a change in the fully-stressed set was a
reliable guide in determining the elements to be added or deleted. Thus the
lack of theoretical justification for the algorithm in this situation does not
appear to be serious.

EXAMPLE PROBLEMS

In figure 2 an example is presented, involving sixteen interior nodes
loaded as shown and also two support nodes located far from the interior nodes
and not shown in the figure. The optimal design (shown in the figure) is self-
equilibrated. In this example, the algorithm was able to select the appro-
priate sixteen members comprising the optimal design from among all possible
members. In achieving this result, no advantage was taken of the symmetry of
the problem.

In figure 3, seven internal and four support nodes are specified, and a

single applied load is to be carried by the truss. The optimum design is found
to contain ten members and is reminiscent of a Michell truss.
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Figure 1.- Specific energies near point where member j is to be
added to optimal fully-stressed set,

Figure 2.~ Optimal truss, with sixteen interior nodes.
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Figure 3.- Optimal truss, with seven interior nodes and
four support nodes.



