
DATA MANAGEMENT IN ENGINEERING

J . C . Browne
The University of Texas

SUMMARY

Engineering practice is heavily involved with the recording, organization
and management of data.
management with an orientation toward the needs of engineering application.
The characteristics and structure of data management systems are discussed.
A link to familiar engineering applications of computing is established through
a discussion of data structure and data access procedures. An example data
management system for a hypothetical engineering application is presented.

This paper is an introduction to computer based data

NEED FOR DATA MANAGEMENT

Formal data management procedures become necessary for a body of informa-
tion when the information

o has an extended useful lifetime,

o

o

is shared among or used by a substantial group of workers,

has established relationships among data items.
The use of computer based data management systems is justified by combinations
of several circumstances.

o The volume of data outstrips convenient use through traditional
media such as handbooks, microfilm, et;c.

The data is produced through computer processing and will perhaps
be subjected to further computes processing.

o

o The data requires frequent revising and updating.
o There is a large and geographically compact group of users.

It is clear that many types of engineering projects meet both sets of criteria.
The design of an aircraft or ship makes a cogent example.
depends heavily upon the use of computers. The design process may take several
years and involve hundreds of engineers.
of words of specifications and an immense volume of numeric data. 1% or 2% of
the data change on a weekly or monthly basis over much of the design cycle.

The design process

The design data may involve millions

Engineers have traditionally been heavily involved in the classical forms
of data management such as data compilations, design handbooks and system main-
tenance manuals. Computer based data management has been relatively slow to
penetrate standard engineering practice.
that engineering education tends to stress the use of computers as numerical

This may be in part due to the fact

779

problem solvers rather than as information managers. It is certainly in part
due to the fact that most existing data management systems are oriented towards
commercial and business data processing applications.

assistance.
suited to engineering applications there is considerable activity in the
engineering community towards designing and implementing data base systems
which are useable in engineering environments. It is the purpose of this paper
to give a perspective on the design and implementabion of such data management
systems.

cover data management systems in readable fashion.

Engineers have now begun turning to computer based data management for
Since available data management systems are not in general well-

Three recent texts, Martin (ref. l), Date (ref. 2) and Katzan (ref. 31,

DATA STRUCTURES, DATA REPRESENTATIONS
AND STORAGE MAPPING FUNCTION

The basic concepts of data management, data structuring, data re-
presentation and storage mapping functions are presented in the familiar context
of general purpose programmikg languages such as FORTRAM or PL/l.
ment systems present and utilize these concepts in more formal and complex forms.

Data manage-

A data structure consists of a conceptual object, i.e., a sparse array, a
name or name set for referring to the object and a set of operations on the
object.

A realization of a data structure consisix of a storage mapping function
which maps the name space of the data structure onto a memory structure and the
definition of the operations on the structure in terms of primitive operations.

These definitions are completed by defining a storage or memory. A cell
Memory consists of an ordered is a physical realization which holds a value.

collection of cells. An address is the location in memory for a given cell.
A value is an instantiation of a data object or data structure.
mapping function accepts a name as input and produces an address of a cell (or
cells) in memory as an output.

A storage

The definition and realization of a data structure thus consist of a se-
quence of actions:

This sequence

A structure declaration which defines the data type.
A name assignment which associates the name with a type or
structure.
The definition of the operations on the structure.
required operations are of course storage and retriwal.
An allocation of memory to the named instantiation of the data
structure.
The definition of the mapping function which maps the name space
onto the allocated memory space.

The only

of steps is seldom clearly delineated in traditional programming

780

languages. A FORTRAN DIMENSION o r COMMON dec la ra t ion of a rectangular a r r a y
executes a l l of t h e above s t e p s except t h e d e f i n i t i o n of operations upon the
a r ray . DIMENSION A (10,lO) recognizes t h e square a r r a y as a da ta s t r u c t u r e
of t h e program, a s soc ia t e s t he nameAwi th the a r r ay , ass igns 100 contiguous
cells of memory each of which w i l l hold a f l o a t i n g poin t number and ass igns
the i m p l i c i t f ami l i a r mapping function.

Address [A(I,J)I = A(l,l)+lO(I-1) + (J-1)

The d e f i n i t i o n of opera t ions on an a r r ay (except f o r 1 /0 operations) must be
defined by the programmer i n terms of operations on t h e pr imi t ive da t a objec ts .

The most complicated d a t a s t r u c t u r e def inable i n FORTRAN is a multidimen-
s i o n a l a r r a y of i d e n t i c a l ob jec t s .
i den t i ca l . Data management systems may allow t h e d e f i n i t i o n of considerably
more complex s t r u c t u r e s which include t h e s t i p u l a t i o n of r e l a t ionsh ips between
the d a t a elements i n a s t r u c t u r e . The aspect of t h i s problem no t f ami l i a r t o
t h e s c i e n t i s t and engineer i s the representa t ion of t he d a t a s t r u c t u r e i n the
computer memory system and t h e d e f i n i t i o n and implementation of s torage mapping
functions.

P L / l allows a r r ays whose elements are not

The f ami l i a r s to rage mapping func t ion of equation (1) takes? t h e name
A(1,J) a s ' i n p u t and eva lua tes the expression on t h e r i g h t hand s i d e f o r output,
This mapping function has t h e very use fu l property of mapping names onto
addresses i n a unique one-to-one fashion.
functions which do not have t h i s property even f o r t h e simple case of square
a r rays . Consider, f o r example, t h e mapping func t ion

There are o ther poss ib le mapping

Address [A(I,J)] = (I x J) MOD N

with N = 101. It is e a s i l y seen t o generate i d e n t i c a l addresses f o r many index
pa i r s . It is the general case i n d a t a management app l i ca t ions t h a t t h e magni-
tude of t h e name space i s much l a r g e r than the p o t e n t i a l l y r e a l i z a b l e address
spaces. Thus, storage mapping functions which "fold" the name space i n t o a
smaller domain and thus l o s e the one-to-one property are required. Such
s to rage mapping func t ions t y p i c a l l y have seve ra l func t iona l phases and are
f a i r l y complex. The example d a t a management system which is spec i f ied i n t h e
last sec t ion of t h i s a r t i c l e uses an inverted f i l e o r d i c t iona ry look-up
s torage mapping func t ion t o l o c a t e records and t h e mapping func t ion defined
succeeding t o map d a t a elements onto records.

Figure 1 def ines a record s t r u c t u r e f o r d a t a r e l a t i n g t o t h e design cyc le
of t h e wing sec t ion of an a i r c r a f t .
l a t i onsh ips among t h e d a t a elements. This s t r u c t u r e def ines t h e occurence of
40 da ta records on t h e design and eva lua t ion of wing sec t ions .
numbers i n Figure 1 def ine t h e level i n t h e d e f i n i t i o n hierarchy as shown i n
Figure 2. The components a t any l e v e l with no immediately succeedicg compo-
nents a t a lower l e v e l are terminal nodes of a tree. The bracketed numbers
on the r i g h t hand s i d e of t h e terminating nodes are t h e number of pr imi t ive
d a t a objec ts i n each ins tance of the defined objec t .
t he r i g h t hand s i d e of t h e non-terminal nodes i n t h e tree are t h e number of
ins tances of t h e s t r u c t u r e f o r which storage is t o be a l loca t ed .

Figure 2 d i sp l ays t h e h e i r a r c h i c a l re-

The leftmost

The bracketed numbers on

78 1

It is convenient to describe the structure in tabular form. (See Table 1). It
is: desired to allocate storage for each record in a contiguous block with each
terminal node of the tree being stored contiguously for each instance of the
structure or sub-structure.
orders the names of the structures from left to right by level.

.

Let us define a reference expression ,(%name) which

The reference expression WS(Il)SD(I)DH(I) refers to the Ith
within the 1:” instance of SD within the :Eh instance of WS. WS(Il)SD(12)
refers to the I$h instance of SD within the Ith instance o t WS while WS(I1)SD
refers to all 10 instances of SD within the I1 instance of WS. A storage
mapping function with the one-to-one propetty for these reference expressions
can be derived (ref. 4) :

storage element 2 3

1 th

k
address[A (I)A (I 1. .%(Ik)] = 7

i=l
[Q(Ai) + M(Ai) (Ii-l) 1 1 1 2 2

where Q(A.) and M(A.) are constants for each record element.
The cons$ants Q and M can be defined recursively.
1.
2.

1

If A. is a terminal node of the structure, then M(Ai) = 1.
If A’is a structure or sub-structure with a typical instance
B1.. .Bn n

M(A.) = C(Bi)M(Bi)
1 i= 1

3 . If B1...B is a sub-structure definition, then n
Q(B~) = 0

Q(Bj) = Q(B.
Q(A) = 0 , for root of tree

1 + C(Bj-l)M(Bj-l), j>l
J -1

4 . If B is the last item in a sub-structure B B of A, then 1“’ n M(A) = Q(Bn) + C(Bn)M(Bn) n

The last two rows of Table 1 give the results of the calculations for the record
structure of Figure 1.

information on data structure. Knuth (ref. 7 and 8) is the most complete source
for work prior to publication data in the areas of his coverage.

Bertiss (ref.5) and Elson (ref.6) are good general references for further

AN EXAMPLE DATA MANAGFSUIENT SYSTEM

This section will illustrate the structure of a prototype data management
The example system will be designed to store and system for engineering data.

retrieve design data on the wing sections of an aircraft.

782

The components of a d a t a management system are:

1.
d a t a ob jec t s and a set of composition r u l e s which w i l l enable a user t o create
a s t r u c t u r e which represents t h e ob jec t s of i n t e r e s t .
ob jec ts and composition r u l e s comprise what i s o f t en c a l l e d the da t a d e f i n i t i o n
model o r d a t a model i n t h e d a t a management system l i t e r a t u r e .
f ined by t h e composition r u l e s w i l l be s a i d t o c o n s t i t u t e a l o g i c a l record.
2. A s to rage mapping func t ion which enables access t o t h e components of a logi-
cal d a t a s t r u c t u r e o r l o g i c a l record.
3. A representa t ion which packs l o g i c a l records onto physical records i n exe-
cu tab le memory.
4 . A s torage mapping func t ion which determines t h e address of a l o g i c a l block
and t h e address of t h e phys ica l block which conta ins it.
5. A block t r a n s f e r func t ion which t ransmi ts phys ica l records t o and from
a u x i l i a r y memory.
6. A query language which allows the user t o express h i s s t o r a g e / r e t r i e v a l
requests i n an application-oriented format. Commercial d a t a management systems
o f t en have very highly developed query languages.
which sells t h e system more than i t s i n t e r n a l performance. It is generally the
case i n ac ien t i f ic /engineer ing computing t h a t simple o r spec ia l ized query
languages w i l l be a l l t h a t i s required. The use r s of t h e system w i l l o f t en
by f ami l i a r with programming and programming systems.

A d a t a s t r u c t u r e d e f i n i t i o n capab i l i t y : This includes a set of p r imi t ive

The set of p r i m i t i v e

A s t r u c t u r e de-

It i s o f t en the i n t e r f a c e

We proceed by de f in ing f o r our example system each of t h e components
previously described.
1. The p r imi t ive objec ts which we w i l l need w i l l be
charac te r s t r i n g s , real numbers, i n t e g e r numbers and real vec tors . W e w i l l
allow t h e composition of a r b i t r a r y tree s t r u c t u r e s u t i l i z i n g these p r i m i t i v e
d a t a types. Figure 3 def ines a l o g i c a l record f o r a wing sec t ion s i m i l i a r t o
t h e example i n the previous sectaon. The record c o n s i s t s of a charac te r s t r i n g
f o r t he aircraft designation, a set of design parameters inc luding thickness,
f l e x i b i l i t y coe f f i c i en t and s t r u t spacing, each of which is a real number and a
set of stress values which i s a vec tor of length 25 of real numbers.
i s a tree s t r u c t u r e f o r t h i s da ta .
dec la res t h a t a physical record w i l l conta in 15 l o g i c a l records.
purpose of t h i s system is t o be ab le t o examine t h e s t r e s s values as a function
of design parameters.
de le ted from t h e f i l e bu t t h a t records w i l l seldom be a l t e r e d o r modified.
2. Storage mapping func t ions f o r l o g i c a l records: W e use t h e s torage mapping
function defined f o r h i e r a r c h i c a l s t r u c t u r e s i n t h e previous sec t ion .
3 .
zed and s to red on phys ica l record blocks (PRB) of 512 words i n length. Each
l o g i c a l record w i l l r e q u i r e 30 words.
on each physical record block.
be used f o r t h e loca t ion i n t h e PRB of l o g i c a l record i n s t a n t i a t i o n s which con-
t a i n a given design parameter value.
4 . A s to rage mapping func t ion f o r address ing . log ica1 records from physical
records: The s torage mapping func t ion w i l l u t i l i z e an inver ted f i l e s t r u c t u r e
(r e f . 1). Each design parameter w i l l be represented as an inver ted f i l e . An
inverted f i l e i s a t abu la t ion of record addresses assoc ia ted with a given name
o r s t r u c t u r e component whereas a normal f i l e contains t h e values associated

Data d e f i n i t i o n model:

Figure 4
The 1151 fo l lowin . t h e record dec la ra t ion

The primary

It is an t i c ipa t ed t h a t e n t i r e records w i l l be added o r

Data representa t ion i n physical memory: The l o g i c a l record w i l l be organi-

F i f t een l o g i c a l records w i l l be s to red
Forty-five of the remaining sixty-two words w i l l

783

with each name o r s t r u c t u r e component.
design parameters w i l l cons i s t of a design parameter, t h e number (= address) of
each physical block which conta ins a l o g i c a l record with t h a t design parameter
value and a po in te r t o t h e address on t h a t physical block of t he set of pos i t i on
numbers f o r l o g i c a l records containing t h a t p a r t i c u l a r design parameter value.
Each en t ry i n the inver ted f i l e on a given design parameter is sor ted i n ascend-
i n g order on t h e design parameter values.
s tored on 512 word PRB's.
e n t r i e s f o r a given design parameter w i l l always f i t on a s i n g l e phys ica l record
block.

Each en t ry i n t h e inverted f i l e s f o r

The inverted f i l e s w i l l a l s o be
It w i l l be assumed f o r s impl i c i ty t h a t t h e set of

There w i l l be a d i r ec to ry t o each inverted f i l e which i s kept i n executable
memory. The d i r ec to ry entries f o r a given inverted f i l e w i l l cons i s t of the
l a r g e s t and smallest value f o r a design parameter which i s s to red on a given
inverted f i l e PRB together with t h e number (= address) of t he PRB holding those
inver ted f i l e e n t r i e s .

5. Physical record transmission: We w i l l assume t h a t t h e operating system
provides a convenient c a p a b i l i t y f o r t ransmi t t ing f ixed length blocks t o and
from d i s k storage.
6. Query language:
s t ruc tu res .

The query language c o n s i s t s of a knowledge of t h e t a b l e

A summary of t h e r e l a t ionsh ips between t h e s to rage mapping function and a
given physical record i s i l l u s t r a t e d i n Figure 5.

This d a t a management system s t r u c t u r e w i l l support quer ies f o r l o g i c a l
records which spec i fy one, two, or t h r e e design parameters. To f ind a l l records
which have a p a r t i c u l a r design parameter, say thickness = 0.002", t h e following
process would ensue:

o A search would be made on t h e d i r e c t o r y f o r thickness t o l o c a t e the
inverted f i l e page (QRE containing 0.002" f o r t h e thickness design
parameter. This PRB would be loaded i n t o executable memory.
A search of t h i s page of t h e inverted f i l g f o r thickness would r e t u r n
t h e set of phys ica l record blocks containing the l o g i c a l records with
t h a t thickness parameter and the po in te r t o t h e physical record block
sec t ion which holds t h e pos i t i ons on the PRB of the l o g i c a l records
containing t h e given design parameter.

records would be ex t rac ted from t h e PRB's and examined one by one using
t h e h i e r a r c h i c a l record addressing scheme.

o

o These physical records could then be read i n from t h e d isk . The l o g i c a l

To obta in a l l records which have two p a r t i c u l a r a t t r i b u t e s , say a thickness
of 0.002" and a s t r u t separa t ion of 0.8; one would ca r ry out an i d e n t i c a l search
on t h e inverted f i l e s f o r both thickness and s t r u t separation. The i n t e r s e c t i o n
of t h e two lists of physical record blocks w i l l contain a l l of t h e l o g i c a l
records which have t h e spec i f fed value f o r both parameters.

A simple system such as t h e one described can be implemented with only a
modest amount of e f f o r t i n FORTRAN under a modern operating system.
of course, many o the r d a t a representa t ions and mapping functions which could
be used.

There are,

784

REFERENCES

1. J. Martin, "Computer Data-Base Organization" Prentice-Hall, Inc. Englewood
C l i f f s , New Jersey , 1975.

2. C.J. Date, "An Introduction t o Database Systems" Addison-Wesley Publ. Co.,
Reading, Mass., 1975.

3. H. Katzan, "Computer Data Management and D a t a Base Technology" Van
Nostrand, Reinhold, New York, 1976.

4. P. Deud, "On a Storage Mapping Function fo r Data Structures", Communications
of ACM, V01.9, No.5, 1966, pp. 344-347.

5. A.T. Bertiss, "Data St ruc ture : Theory and Practice", Academic Press , New
York, 2nd Edition, 1975.

6. M. Elson, "Data St ruc tures" Science Research Associates, Palo Alto, C a l i -
f o rn i a , 1974.

7. D.E. Knuth "The A r t of Computer Programming, V o l . 3, Sor t ing and Searching"
Addison-Wesley, Reading, Mass. , 1973.

8. D.E. Knuth "The A r t of Computer Programming, V o l . 1, Fundamental Algorithms"
Addison-Wesley , Reading , Mass. , 1968

785

Level L 1 2 2 3 3 2 3 3

Name N ws SD DH DD PC ED TD PR
Count C 40 20 10 6 5 10 6 2

Q 0 0 20 0 6 130 0 6
M 210 1 11 1 1 8 1 1

Table 1: Tabular Representation of
Record Structure

786

1 Wing Section [4 0] 1 WS [40]

2 Surface Description [20] 2 SD [ZO]
2 Design History [lo] 2 SD [20]

3 Design Data [6] 3 DD [6]

3 Plant Code [5] 3 PC [SI
2 Evaluation Data El01 2 ED [l o]

3 Test Data [6] 3 TD [6]
3 Performance Rating[2] 3 PR [2]

Figure 1: Record Definition for Wing Section Data

Figure 2: Tree Diagram of Wing Section Data Record

787

1 Wing Section 1151

2 Aircraft Designation C10

2 Design Parameters

3 Thickness Rl

3 Flexibility Rl
2 Stress Values R 1251

Figure 3: Logical Record Definition for Wing
Section Stress Data

SECTION

PARAMETERS

Figure 4 : Tree Structure of Wing Section Logical Record

788

Directory f o r Inverted F i l e

Thickness f o r Thickness

+I 0.002

Block 10

Block 1 9

+
-~

0.004

Physical Record

Block 10

Figure 5: F i l e Structures For Wing Section Data

789

