DATA MANAGEMENT IN ENGINEERING

J.C. Browne
The University of Texas

SUMMARY

Engineering practice is heavily involved with the recording, organization
and management of data. This paper is an introduction to computer based data
management with an orientation toward the needs of engineering application. -
The characteristics and structure of data management systems are discussed.

A link to familiar engineering applications of computing is established through
a discussion of data structure and data access procedures. An example data
management system for a hypothetical engineering application is presented.

NEED FOR DATA MANAGEMENT

Formal data management procedures become necessary for a body of informa-
tion when the information

o has an extended useful lifetime,
o 1is shared among or used by a substantial group of workers,
o has established relationships among data items.

The use of computer based data management systems is justified by combinations
of several circumstances.

o The volume of data outstrips convenient use through traditional
media such .as handbooks, microfilm, etc.

o The data is produced through computer processing and will perhaps
be subjected to further computer processing.

o The data requires frequent revising and updating.
o There is a large and geographically compact group of users.

It is clear that many types of engineering projects meet both sets of criteria.
The design of an aircraft or ship makes a cogent example. The design process.
depends heavily upon the use of computers. The design process may take several
years and involve hundreds of engineers., The design data may involve millions
of words of specifications and an immense volume of numeric data. 1% or 2% of
the data change on a weekly or monthly basis over much of the design cycle.

Engineers have traditionally been heavily involved in the classical forms
of data management such as data compilations, design handbooks and system main-
tenance manuals. Computer based data management has been relatively slow to
penetrate standard engineering practice. This may be in part due to the fact
that engineering education tends to stress the use of computers as numerical

779

problem solvers rather than as information managers. It is certainly in part
due to the fact that most existing data management systems are oriented towards
commercial and business data processing applications.

Engineers have now begun turning to computer based data management for
assistance. Since available data management systems are not in general well-
suited to engineering applications there is considerable activity in the
engineering community towards designing and implementing data base systems
which are useable in engineering environments. It is the purpose of this paper

to give a perspective on the design and implementation of such data management
systems,

Three recent texts, Martin (ref. 1), Date (ref. 2) and Katzan (ref. 3),
cover data management systems in readable fashion.

DATA STRUCTURES, DATA REPRESENTATIONS
AND STORAGE MAPPING FUNCTION

The basic concepts of data management, data structuring, data re-
presentation and storage mapping functions are presented in the familiar context
of general purpose programming languages such -as FORTRAN or PL/1l. Data manage-
ment systems present and utilize these concepts in more formal and complex forms.

A data structure consists of a conceptual object, i.e., a sparse array, a
name or name set for referring to the object and a set of operations on the
object.

A realization of a data structure consists of a storage mapping function
which maps the name space of the data structure onto a memory structure and the
definition of the operations on the structure in terms of primitive operationms.

These definitions are completed by defining a storage or memory. A cell
is a physical realization which holds a value. Memory consists of an ordered
collection of cells. An address is the location in memory for a given cell.

A value is an instantiation of a data object or data structure. A storage
mapping function accepts a name as input and produces an address of a cell (or
cells) in memory as anm output.

The definition and realization of a data structure thus consist of a se-
quence of actions:

0o A structure declaration which defines the data type.

0 A name assignment which associates the name with a type or
structure.

o The definition of the operations on the structure. The only
required operations are of course storage and retrieval.

o An allocation of memory to the named instantiation of the data
structure. ;

o The definition of the mapping function which maps the name space
onto the allocated memory space.

This sequence of steps is seldom clearly delineated in traditional programming

780

languages. A FORTRAN DIMENSION or COMMON declaration of a rectangular array
executes all of the above steps except the definition of operations upon the
array. DIMENSION A (10,10) recognizes the square array as a data structure

of the program, associates the name A with the array, assigns 100 contiguous
cells of memory each of which will hold a floating point number and assigns

the implicit familiar mapping function.

Address [A(I,J)] = A(1,1)+10(I-1) + (J-1) &)

The definition of operations on an array (except for 1/0 operations) must be
defined by the programmer in terms of operations on the primitive data objects.

The most complicated data structure definable in FORTRAN is a multidimen-
sional array of identical objects. PL/1l allows arrays whose elements are not
identical. Data management systems may allow the definition of considerably
more complex structures which include the stipulation of relationships between
the data elements in a structure. The aspect of this problem not familiar to
the scientist and engineer is the representation of the data structure in the
computer memory system and the definition and implementation of storage mapping
functions.

The familiar storage mapping function of equation (1) takes the name
A(I,J) as input and evaluates the expression on the right hand side for output,
This mapping function has the very useful property of mapping names onto
addresses in a unique one-to-one fashion. There are other possible mapping
functions which do not have this property even for the simple case of square
arrays. Consider, for example, the mapping function

Address [A(I,J)] = (I'x J) MOD N (2)

with N = 101. It is easily seen to generate identical addresses for many index
pairs. It is the general case in data management applications that the magni-
tude of the name space is much larger than the potentially realizable address
spaces. Thus, storage mapping functions which "fold" the name space into a
smaller domain and thus lose the one-to-one property are required. Such
storage mapping functions typically have several functional phases and are
fairly complex. The example data management system which is specified in the
last section of this article uses an inverted file or dictionary look-up
storage mapping function to locate recerds and the mapping function defined
succeeding to map data elements onto records.

Figure 1 defines a record structure for data relating to the design cycle
of the wing section of an aircraft. Figure 2 displays the heirarchical re-
lationships among the data elements. This structure defines the occurence of
40 data records on the design and evaluation of wing sections. The leftmost
numbers in Figure 1 define the level in the definition hierarchy as shown in
Figure 2. The components at any level with no immediately succeeding compo-
nents at a lower level are terminal nodes of a tree. The bracketed numbers
on the right hand side of the terminating nodes are the number of primitive
data objects in each instance of the defined object. The bracketed numbers on
the right hand side of the non-terminal nodes in the tree are the number of
instances of the structure for which storage is to be allocated.

781

It is convenient to:describe the structure in tabular form. (See Table 1). It
iz desired to allocate storage for each record in a contiguous block with each
terminal node of the tree being stored contiguously for each instance of the
structure or sub-structure. Let us define a reference expression (Funame) which
orders the names of the structures from left to right by level.

A DA, (1,044 (1)
A (T4, (T1,)4,

th
3
within the Igh instance of SD within the Iih instance of WS. WS(Il)SD(IZ)

refers to the IEh instance of SD within the Iih instance ot WS while WS(Il)SD

refers to all 10 instances of SD within the It' instance of WS. A storage
mapping function with the one-to-one property for these reference expressions
can be derived (r¥ef. 4):

The reference expression WS(Il)SD(IZ)DH(IB) refers to the I storage element

k :
addreSS[Al(Il)Az(Iz)"'Ak(Ik)] =izl [Q(Ai) + M(Ai)(Ii—l)]

where Q(A,) and M(A,) are constants for each record element.
i . .
The constants Q and M can be defined recursively.
1. 1If Ai is a terminal node of the structure, then M(Ai) = 1.
2. 1If A"is a structure or sub-structure with a typical instance
B B

1..0 n n
M(A,) = 7 C(B,)U(,)
i=1
3. If Bl"'Bn is a sub-structure definition, then -
Q) = 0

Q(A) = 0, for root of tree -
4. If B is the last item in a sub-structure Bl"'Bn of A, then
M(8) = Q(B) + C(B_)M(B)

The last two rows of Table 1 give the results of the calculations for the record
structure of Figure 1. '

Bertiss (ref.5) and Elson (ref.6) are good general references for further
information on data structure. Xnuth (ref. 7 and 8) is the most complete source
for work prior to publication data in the areas of his coverage.

AN EXAMPLE DATA MANAGEMENT SYSTEM
This section will illustrate the structure of a prototype data management

system for engineering data. The example system will be designed to store and
retrieve design data on the wing sections of an aircraft,

782

The components of a data management system are:

1. A data structure definition capability: This includes a set of primitive
data objects and a set of composition rules which will enable a user to create
a structure which represents the objects of interest. The set of primitive
objects and composition rules comprise what is often called the data definition
model or data model in the data management system literature. A structure de-
fined by the composition rules will be said to constitute a logical record.

2. A storage mapping function which enables access to the components of a logi-
cal data structure or logical record. ‘

3. A representation which packs logical records onto physical records in exe-
cutable memory.

4. A storage mapping function which determines the address of a logical block
and the address of the physical block which contains it.

5. A block transfer function which transmits physical records to and from
auxiliary memory. 7

6. A query language which allows the user to express his storage/retrieval
requests in an application-oriented format. Commercial data management systems
often have very highly developed query languages. It is often the interface
which sells the system more than its internal performance. It is generally the
case in scientific/engineering computing that simple or specialized query
languages will be all that is required. The users of the system will often

by familiar with programming and programming systems.

We proceed by defining for our example system each of the components
previously described.

1. Data definition model: The primitive objects which we will need will be
character strings, real numbers, integer numbers and real vectors. We will
allow the composition of arbitrary tree structures utilizing these primitive
data types. TFigure 3 defines a logical record for a wing section similiar to
the eXample in the previous section. The record consists of a character string
for the aircraft designation, a set of design parameters including thickness,
flexibility coefficient and strut spacing, each of which is a real number and a
set of stress values which is a vector of length 25 of real numbers. Figure 4
is a tree structure for this data. The [15] following the record declarationm
declares that a physical record will contain 15 logical records. The primary
purpose of this system is to be able to examine the stress values as a function
of design parameters. It is anticipated that entire records will be added or
deleted from the file but that records will seldom be altered or modified.

2. Storage mapping functions for logical records: We use the storage mapping
function defined for hierarchical structures in the previous section.

3. Data representation in physical memory: The logical record will be organi-
zed and stored on physical record blocks (PRB) of 512 words in length. Each
logical record will require 30 words. Fifteen logical records will be stored
on each physical record block. TForty-five of the remaining sixty-two words will
be used for the location in the PRB of logical record instantiations which con-
tain a given design parameter value.

4, A storage mapping function for addressing logical records from physical
records: The storage mapping function will utilize an inverted file structure
(ref. 1). Each design parameter will be represented as an inverted file. An
inverted file is a tabulation of record addresses associated with a given name
or structure component whereas a normal file contains the values associated

783

with each name or structure component. Each entry in the inverted files for
design parameters will consist of a design parameter, the number (= address) of
each physical block which contains a logical record with that design parameter
value and a pointer to the address on that physical block of the set of position
numbers for logical records containing that particular design parameter value.
Each entry in the inverted file on a given design parameter is sorted in ascend-
ing order on the design parameter values. The inverted files will also be
stored on 512 word PRB's. It will be assumed for simplicity that the set of

entries for a given design parameter will always fit on a single physical record
block.

There will be a directory to each inverted file which is kept in executable
memory. The directory entries for a givern inverted file will consist of the
largest and smallest value for a design parameter which is stored on a given
inverted file PRB together with the number (= address) of the PRB holding those
inverted file entries.

5. Physical record transmission: We will assume that the operating system
provides a convenient capability for transmitting fixed length blocks to and
from disk storage.

6. Query language: The query language consists of a knowledge of the table
structures.

A summary of the relationships between the storage mapping function and a
given physical record is illustrated in Figure 5.

This data management system structure will support queries for logical
records which specify one, two, or three design parameters. To find all records

which have a particular design parameter, say thickness = 0.002", the following
process would ensue:

0. A search would be made on the directory for thickness to locate the
inverted file page (PRE containing 0.002" for the thickness design
parameter. This PRB would be loaded into executable memory.

o A search of this page of the inverted filé for thickness would return
the set of physical record blocks containing the logical records with
that thickness parameter and the pointer to the physical record block
section which holds the positions on the PRB of the logical records
containing the given design parameter. v

o These physical records could then be read in from the disk. The logical
records would be extracted from the PRB's and examined one by one using
the hierarchical record addressing scheme.

To obtain all records which have two particular attributes, say a thickness
of 0.002" and a strut separation of 0.8, one would carry out an identical search
on the inverted files for both thickness and strut separation. The intersection
of the two lists of physical record blocks will contain all of the logical
records which have the specififed value for both parameters.

A simple system such as the one described can be implemented with only a
modest amount of effort in FORTRAN under a modern operating system. There are,

of course, many other data representations and mapping functions which could
be used.

784

REFERENCES
1. J. Martin, "Computer Data-Base Organization" Prentice-Hall, Inc. Englewood
Cliffs, New Jersey, 1975.

2. C.J. Date, "An Introduction to Database Systems" Addison-Wesley Publ. Co.,
Reading, Mass., 1975.

3. H. Katzan, "Computer Data Management and Data Base Technology" Van
Nostrand, Reinhold, New York, 1976.

4, P, Deud, "On a Storage Mapping Function for Data Structures", Communications
of ACM, Vol.9, No.5, 1966, pp. 344-347.

5. A.T. Bertiss, "Data Structure: Theory and Practice", Academic Press, New
York, 2nd Edition, 1975.

6. M. Elson, '"Data Structures" Science Research Associates, Palo Alto, Cali-
fornia, 1974.

7. D.E. Rnuth "The Art of Computer Programming, Vol. 3, Sorting and Searching"
Addison-Wesley, Reading, Mass., 1973.

8. D.E. Knuth "The Art of Computer Programming, Vol. 1, Fundamental Algorithms"
Addison-Wesley, Reading, Mass., 1968.

785

786

Level L 1 2 2 3 3 2 3 3
Name N WS SD DH DD PC ED D PR
Count C 40 20 - 10 6 5 10

Q 0 0 20 0 6 130

M 210 1 11 1 1 8

Table 1: Tabular Representation of
Record Structure

1 Wing Section [40] 1 WS [40]

2 Surface Description [20] 2 SD [20]

2 Design History [10] 2 SD [20]
3 Design Data [6] 3 oD [6]
3 Plant Code [5] 3 PC [5]

2 Evaluation Data [10] 2 ED [101}
3 Test Data [6] 3 1D [6]
3 Performance Rating(2] 3 PR [2]

Figure 1: Record Definition for Wing Section Data

WS

DH ED

Figure 2: Tree Diagram of Wing Section Data Record

787

1 Wing Section [15]
2 Aircraft Designation C10
2 Design Parameters
3 Thickness R1-
3 Flexibility R1
2 Stress Values R [25]

Figure 3: Logical Record Definition for Wing
Section Stress Data

WING
SECTION

ATRCRAFT
DESIGN
PARAMETERS

FEEXTIBILITY

Figure 4: Tree Structure of Wing Section Logical Record

788

Directory for Inverted File Physical Record

Thickness for Thickness Block 10
0.002 . : R1
R2
5 0.002 R3 &
0.004 Block 10
Block 19
0.004

Figure 5: File Structures For Wing Section Data

789

