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SUMMARY

One-dimensional small-amplitude wave motion in a two-phase system consist-
ing of an inviscid gas and a cloud of suspended particles is analyzed using a
..continuum theory of suspensions. Laplace transform methods are used to obtain
several approximate solutions. From these solutions are inferred some of the
interesting properties of acoustic wave motion in particulate suspensions.

e

INTRODUCTION

This paper is concerned with small-amplitude wave propagation in a particu-
late suspension contained within a semi-infinite tube. Small-amplitude wave
propagation in particulate suspensions is of interest because of applications
to problems involving sound attenuation in fogs, flow visualization, nuclear
reactor cooling systems, and combustion instabilities in rocket motors. Most
previous work is devoted to various aspects of the problem of harmonic wave
propagation in a suspension of infinite extent. Representative of early papers
on this subject are those by Sewell (ref. 1), Epstein (ref. 2), and Epstein and
Carhart (ref. 3). 1In these papers the flow past each particle was considered
in detail, at least in principle. More recent calculations have employed two-
phase continuum models of suspension behavior. In general, these models are
appropriate when a representative volume element of the suspension, which is
small compared to the characteristic dimensions of the flow field, contains an
amount of fluid and an amount of particles sufficiently large to allow the for-
mation of meaningful averages of the properties of the two phases within the
volume element. Then the volume is treated as a differential element (a point)
and the averages are treated as continuous variables. Representative of this
approach to problems of small-amplitude wave propagation in suspensions are the
work of Temkin and Dobbins (ref. u4), Morfey (ref. 5), Schmitt von Schubert (ref.
6), Marble and Wooten (ref. 7), Goldman (ref. 8), Mecredy and Hamilton (ref. 9),
and the review articles by Marble (ref. 10), and Rudinger (ref. 11). Marble
(ref. 10) points out that comparison of the predictions of continuum theories
with the more detailed analysis given by Epstein and Carhart (ref. 3) shows that
the continuum approach is completely adequate for wavelengths that are long com-
pared to the particle dimensions.

In the present paper a simple continuum theory of particulate suspension
behavior is applied to the problem of small-amplitude wave motion of a suspen-
sion in a semi-infinite tube. 1In contrast to the large amount of work on
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harmonic wave propagation, there appears to be little (if any) work available
on the propagation of non-harmonic waves. In order to focus attention on the
basic relaxation mechanism inherent in such two-phase flows, several simplify-
ing assumptions are made. These are: the motion is one-dimensional, the fluid
phase can be modeled as an inviscid gas obeying a linear pressure-density rela-
tionship, the interphase force is directly proportional to the vector difference
between the velocities of the two phases (thus, contributions due to added mass,
history, etc. are neglected), and the volume fraction of the particle phase is
small. The linear acoustic equations which follow from these assumptions are
solved by the Laplace transform method for a step input of velocity at the end
of the tube.

GOVERNING EQUATIONS

Let o, be the initial gas-phase density, 7Y, be the initial particle-
phase density, a be the clean-gas speed of sound, U be the inlet gas velocity,
M = U/a be a Mach number, and Tt be the relaxation time of the suspension (see
Marble, reference 10). If the usual acoustic linearizations are made, the bal-
ance equations for mass and linear momentum and the equation of state take the
dimensionless forms ‘

8, *3u =0, Bdu=-dp+k(v-u), p=o (1)
for the gas phase, and

Bty + BXV =0, dI.v=u~-v | (2)‘
for the particle phase. "In equations (1) and (2) atx is the axial coordinate,
Tt is time, Uu is the gas-phase velocity, Uv is the particle-phase velocity,

P Mp is the difference between the current and initial gas demnsities, y My is
the difference between the current and initial particle-phase densities, pgUaP
is the difference between the current and initial pressures, and k = Yo/po. It
can be seen that equations (1) and (2) are five equations involving five :
unknowns. Thus it is not necessary to consider the balance-of-energy equations
for the two phases in order to determine the mechanical behavior. This is the
reason for the second simplifying assumption discussed in the previous section.

Equations (la), (1b), and (lc) can be combined to yield the modified wave
equation

Bttu = Bxxu + K(Btv - Btu) (3)

Equations (2b) and (3) can be solved simultaneously for u and v. Then equa-
tion (la) can be solved for p and equatiorn (2a) can be solved for Y.

It should be noted that the dimensional form of the equation of state is

(p Uap) = a%(p lp) (4)
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Thus the dimensional clean-gas speed of sound is

d(p Uap)/d(p Mp) = a? (5)
as originally stated. Because of the way a was used in the nondimensionaliza-
tion process it can be seen from equation (lc) that the dimensionless clean-gas

speed of sound is

dp/dp = 1 d (6)

LAPLACE TRANSFORM OF SOLUTION

v The suspension is contained in a semi-infinite pipe béginning at x = 0 and,
extending along the positive x axis. The suspension is at rest until t = 0
when a constant gas inlet velocity is suddenly created. Thus
u(0,t) = A(t) o (7)
where the symbol A(£) is used to denote a unit step function. That is
0, ¢&<0
Ag) = ,
1, §>0 (8)

Taking the Laplace transforms of equations (la), (1b), (23), (2b), (3), and (7)
one -obtains

sp+u' =0, sy+v' =0
g2y =u" + ks(v-u), sv=1-V (9)
u(0) = 1/s - (10)

where s is the Laplace transform parameter, a superposed bar denotes a Laplace
transform, and a prime denotes differentiation with respect to x. Eguations
(9¢) and (94d) can be combined to yield

' - s2b%y = 0 ‘ (11)
where
%
b(s) = (1 + /(1 + 8)) (12) .
Solving equation (11) subject to equation (10) and the condition that u(x)

should remain bounded for all x > 0, and substituting this solution into equa-
tions (9a), (9b), and (94) leads to

u

1]
H

exp(-sbx)/s, v = exp(-sbx)/(s(1 + s))

p

b exp(-sbx)/s, ¥y = b exp(-sbx)/(s(1l + s)) (13)
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It appears that no exact inversions of equations (13) can be obtained in terms
of elementary functions. In subsequent Sections several simple approximate
inversions will be found and used to illustrate some of the properties of the
solution to this problem.

INVERSION FOR SMALL TIMES

Approximate solutions for t << 1 can be obtained by expanding various func-
tions appearing in equation (13) for s >> 1. Expanding b (eq. (12) in this way
and retaining the first two terms leads to

b =1+ «/(28) (1w)

If only the first term in equation (1l4) is retained the corresponding
inversions of equations (13) are (see Roberts and Kaufman, reference 12)

[£]]

uzp=A(t-x)

(1 - exp(~(t - x)DA(t - x) (15)

(1Y
{le

vy

Equations (15a) and (15b) represent the solution for a clean gas. Thus immedi-
ately after the beginning of the motion, the motion is independent of the pres-
ence of the particles. '

If the first two terms in equation (14) are retained the corresponding
inversions are found to be

u = exp(~xx/2)A(t -~ %)
p 2 exp(~xx/2)(L + w(t - x)/2)A(t - %)

v = exp(-«kx/2)(1 - exp(-(t - x))NA(t - x)

v 2 exp(-«x/2)((1 - «/2)(1 - exp(~(t - x))) + w(t - x)/2)A(t - x) (16)
Equations (16) illustrate the coupling between the motions of the two phases
which manifests itself as the time since the beginning of the motion increases.
To interpret these results most easily it is useful to remember that nonzero
results are obtained only for + > x. Thus the condition t << 1 implies that
equations (16) are valid only for x << 1 and (t-x) << 1. Simplifying equations
(16c) and (16d) for (t-x) << 1 leads to

u £ exp(-kx/2)A(t - %)

©
il

: exp(-kx/2)(1 + k(t - x)/2)A(t - %)

= exp(-kx/2)(t - x)A(t - %)

<
1

<2
i

= exp(-kx/2)(t - x)A(t - x) ' (17)

950



Some observations based on equations (17) are as follows. For small t
all disturbances propagate with the clean-gas wave speed 1. The amplitudes of
all variables decrease with increasing x. For large values of the particle
loading «k this effect can be significant. For a given value of t-x (the time
since the wave front passed position x) the degree of spatial attenuation
increases with x. For a given value of x, the terms p, v, and 7Y are
increasing functions of the time since passage of the wave front.

INVERSION FOR LARGE TIMES

Approximate solutions for t >> 1 can be found by expanding the various
functions appearing in equation (13) for s << 1. Expanding b (eq. (12) in this
way and retaining the first two terms gives

b £ (1 % ) - ks ~ ¢ (18)

Retaining only the first term in equation (18), substituting into equations (13),
and inverting yields

ACt = (1+k)Bx), o 2 (1+6)2ACE=( 1k ) 2x)

u
v £ (1 - eXp(—(t—(l+K)%X)))A(t—(l+K)%X)
v 5 (1) B(L-exp (- (t-(1+K) %) ) )A(t=( L4k ) Bx) (19)

, It can be seen froE equations (19) that for t >> 1 all quantities propagate
with wave speed 1/(1+x)2. Tor values of x away from the wave front u and
v are essentially equal as are p and Y. For values of x mnear the wave
front differences between the velocities and densities remain for arbitrarily
large values of t. In contrast to equation (17a), equation (19a) predicts that
the gas velocity has a value of unity for all x. Thus the amplitude of u at
a given x must increase with time. More insight into this matter will be pro-
vided by the results obtained in the next section.

It was attempted to invert equations (13) using the first two terms of the

expansion of b . for small s (eq. (18). No inversion in terms of elementary
functions could be found.

INVERSION FOR SMALL PARTICLE LOADING

Expanding equation (12) for k << 1 and retaining the first two terms one
gets
b 21+ «k/(2(1+8)) _ (20)

If equations (13) are inverted using only the first term of equation (20) the
results are equations (15). TFor the important special case of negligible
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particle loading equations (15) represent the exact -solution. To find a correc-
tion for finite values of k +two terms of equation (20) must be retained. If
equation (20) is substituted into equation (13) no simple inversion of the
resulting expressions appears possible. Further simplification is achieved by
expanding the exponentials involving b for small «x and keeping the first two
terms. This results in

u 2 (1 - xsx/(2(1 + s)))exp(-sx)/s

o = (1 - k(sx - 1)/(2(1 + s8)))exp(-sx)/s

v 2 (1 - ksx/(2(1 + s)))exp(-sx)/(s(1l + s))

Y 2 (1 - k(sx-1)/(2(1 + s)))exp(-sx)/(s(1 + s)) (21)

Inverting equations (21) yields

(1

u kx exp(-(t - x))/2)A(t - %)

p = (1.+ x(1 - (1 + x)exp(-(t - x)))/2)A(t - x)

v 2 (1 - exp(-(t - %)) - wx(t - xexp(-(t - x))/2)A(t - x)
Y 2 (1 - exp(-(t - x)) + k(1 - exp(-(t - x))
- (1 + =)(t - x)exp(-(t - %)))/2)A(t - x) (22)

These expressions appear to be computationally useful for small x and all +t.
Equation (22a) shows that for a given x the value of u at the time of pas-
sage of the wave front is 1 - kx/2. (Note that this is the two-term expansion
for small k of the exp(-kx/2) appearing in equation (16a)). As the time t-x
since passage of the wave front increases, the amplitude of u increases to
unity. Similarly it can be seen that the wvalué of v for large t-x is unity
while the values of both p and vy for igrge t-x are 1l+k/2 which is the two-
term expansion for small «k of the (1+k)Z appearing in equations (19b) and
(18d). Thus the large-time limiting values predicted by equations (22) are
consistent with those predicted by equations (19). Equations (22) do not pre-
dict the change in wave speed indicated by equations (19). It can be shown
that this is due to the process of expanding the arguments of the exponentials
appeai;ng in equatlons (13) before inversion. For k << 1 the difference between
(1+x)2 and unity is small so this is not a serious matter.

DISCUSSION OF RESULTS

From the three sets of approximate solutions developed in the previous
sections (eqgs. (16), (19), and (22) it is possible to put together a fairly complete
picture of the wave motion produced by a step velocity input at x = 0. All
waves travel with the same wave speed. For small times this is unity and for
large times it is 1/(1+k)%. The former is called the frozen wave speed. It is
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the wave speed associated with the clean gas. The latter is called the equi-
librium wave speed. It is the wave speed associated with wave motion in a gas
having initial density equal to the initial suspension density. These results
are to be expected on physical grounds. For small times the motion of the gas
(through which the waves propagate) is independent of the presence of the par-
ticles as indicated by equations (15). For large times the velocities of both
phases are essentlally equal. Thus the suspension behaves like a gas with
effective dimensionless density l+k. The exact manner by which the transition
from the frozen to the equilibrium wave speed is accomplished is not revealed
by the approximate solutions obtained in this work.

The gas velocity u has the prescribed value of unity at the inlet and
decreases to a minimum value at the wave front. The value of u at each point
behind the wave front increases with time and eventually approaches unity. The
particle velocity w and the fluid- and particle-density perturbations, p and -
Y respectively, are also decreasing functions of x. Their values for all
values of x (including x = 0) increase with time. Finally p approaches a
constant value throughout the region of motion while v and Yy approach con-
stant values except near the wave front. Because the step increase in gas
velocity must be transmitted to the particles through the interphase-momentum-
transfer mechanism the particles in the immediate vicinity of the wave front
can never quite catch up to the gas.

It should be pointed out that for t > 0 a particle-free zone exists adja-
cent to the inlet. It can be shown that the speed of the forward boundary of
this region ig O(M). Since the acoustic equations are valid only for small Mach
numbers, and since the speed of the wave front is 0(1), the length of the
particle-free zone is negligible compared to the length of the region of motion.
For this reason the particle-free zone was neglected in this analysis. For
waves of finite amplitude this could not be done. The position of the forward
boundary of the particle-free zone would have to be computed as part of the
solution. This would greatly increase the complexity of the analysis.

CONCLUSION

In this paper the problem of small-amplitude wave propagation in a particu-
late suspension was analyzed using a continuum theory of suspensions. The gov-
erning equations were solved approximately by the Laplace transform method.
Three approximate inversions were developed and from these were inferred some
of the properties of the wave motion.
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