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INTRODUCTION

This paper is a review of certain theoretical ideas about the radi-
ation of sound and shows how these ideas have been implemented in strategies
for explaining or measuring the sound produced by practical structures. We
shall be especially interested in those aspects of the subject that relate
to the determination of the relative amounts of sound generated by various
parts of a machine or structure, which can be very useful information for
noise reduction efforts. We will also poimt out areas in which significant
uncertainties or questions remain in the theoretical and experimental aspects
- of the subject. o

Intensity and Energy Density

Since the acoustical equations are first-order perturbations of the
underlying fluid, dynamical, and state equations, it is not obvious that
acoustical intensity, which is a second-order quantity, can be determined from
the first-order quantities only. It is shown in advanced texts, however, that
in a nonmoving ideal fluid, an energy conservation statement can be written
in the form

%€ 4 yef = o, (1)

. -> >
where e = %pou? ey 2p%/poc? is the acoustical energy density, I = pu is the

intensity, p and u are the first—order "acoustic" pressure and particle veloc-
ity respectively. This formulation, while internally consistent, does leave
certain second-order terms out of the intensity and energy density which cor-
respond to the transport of internal energy of the fluid by streaming flows.
These terms are usually of little practical importance.

From eq. (1), it is clear that the addition to T of any solemoidal
vector field will leave the conservation relation unchanged, but can greatly
alter the intensity vector at any position (and time). Such solenoidal in-
tensity fields do exist in reverberant fields (even when time averaged) and
represent one way that reverberant sound can contaminate a measurement of
sound intensity.
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Simple Radiators

. A simple radiator is a rigid plane surface, vibrating with a velocity
u in a direction perpendicular to its own surface, set in an infinite rigid
plane. When all dimensions of this vibrator are large compared to a wavelength,
then the magnitude of the intensity is I = u? Poc. If the vibrator is a cir-
cular piston of radius a, then the total time-averaged radiated-sound power is

Liad = <u2>pOcs"rad (2)

where S is the area of the piston and ¢ is the radiation efficiency,
rad
shown graphed in fig. 1.

The interesting feature of fig. 1 is that, as expected, 0,54 approaches
unity at frequencies such that the wavelength is small compared to piston
diameter, but also, this limit is essentially reached when the piston diameter
is only about one~third of the wavelength of the sound wave. This geometric
effect is very important in sound radiation by machines since many machines
have sizes comparable to the wavelength of sound at frequencies of interest.

The radiation of sound by waves on a plane can be pictured as shown
in fig. 2. Above the critical frequency, the flexural waves become super-
sonic (acoustically fast), and there is highly directed sound radiation. Be-
low this frequency, the flexural wave is subsonic (acoustically slow), and there
is no sound radiation from an infinite plate. The critical frequency is deter-
mined by elastic properties of the plate -~ a simple formula for steel,
aluminum, or glass is:

fc = 500/h (in)

where the thickness h 1s expressed in inches. This effect of bending wave-
speed on radiation efficiency is very important for large flat structures,

but less so for highly curved, segmented, or stiffened structures. Plate damp-
ing generally has a large effect on the amplitude of vibration (determines
u“>), but has little practical effect on the radiation efficiency.

Above the critical frequency, the theoretical sound intensity is
uniform over the surface. This is also the case for large finite supported
plates, as shown in fig. 3. With a single mode of vibration, there are nodal
lines in the intensity that correspond to zero velocity node lines on the

plate. When the vibration is multimodal, the intensity pattern becomes more
uniform.
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Below the critical frequency, any interruption or discontinuity
in the properties of an infinite plate (such as the line of support shown in
fig. 4) will result in radiation of sound at frequencies less than the
critical frequency. The normal component of intensity for such a support due
to flexural waves reflecting from it at normal incidence is shown in fig, 4.
Note the alternating regions of positive and negative intensity, with the
region next to the support line being positive. The net radiation due to the
line support is, of course, positive, but various regions of the plate are
emitting and absorbing sound over an extended area.

When the plate is finite, it has been shown that below the critical
frequency, the radiation efficiency is proportional to the perimeter of the
plate. This has led to the concept of "edge radiation'", with the strong im-
plication that the sound is radiated from the edges of the plate. The average
radiation efficiency for a supported plate is shown in fig. 5. A direct cal~-
culation of the sound intensity for a supported rectangular plate shows that
the region very close to the edge is nearly always radiating, particularly for
the edge modes that have trace wavelengths greater than the wavelength of
sound. In fig. 6, we show a scan of intensity across a section of a simply
supported plate for a single mode of vibration mode (17, 1), which clearly
shows this edge radiation effect. 1In fig. 7, the case of multimodal radiation
is shown. Thus, although the total radiated sound power from the plate is
proportional to its edge length, the pattern of intensity is more like that of
a set of surface radiators and absorbers with a line of radiation along the
edge. :

In addition to radiator size, plate thickness, and framing or sup-
port structure effects, curvature effects can also play an important role in
radiation efficiency. Curved surfaces are stiffer than flat structures and may
vibrate less, but their radiation efficiencies are generally higher. 1In fig.
5, we show the effect of curvature by comparing the radiation efficiency of a
flat supported plate with that of a cylinder formed by rolling the plate.

EXPERIMENTAL METHODS

A number of experimental techniques are available for determining
the amount of sound power radiated by a structure (or machine). Some methods
simply give the total radiated power and possibly the directivity. Others
allow one to measure, or infer, the amount of sound produced by various parts
of the structure. Present concerns about machinery noise and noise reduction
by design create special interest in techniques that allow one to scan the near

field of the machine and determine noise radiated by various elements or sur-
faces,

The most commonly used technique is the reverberdtion method, in
which the machine is placed in a room of fairly low absorption. In such a
room, the reverberant mean square pressure <p§> is related to the radiated
power nrad

1033



- TRrR )

where R = So/(1-0) is the "room constant'", a is the absorption coefficient in
the room,and S is its interior area. The measurement of <p§? can only be done
reliably when the wavelength of sound is less than half of a typical room
dimension and if the source does not contain dominating pure tone compohents.

Another well known procedure employs a' reflection free,or anechoic,

room to measure the direct field <p%> from the radiator, which is related to
the radiated power by

il p C
<p2> = rad o Q 4)
D 4yr?

where Q is the directivity function and r is the distance from the
"acoustic center" of the source. Since one does not know where the acoustic
center of a source is, r mugt be large enough so that such uncertainties
don't matter. Typically, r must be greater than the largest dimension of
the source for the measurement to be in the "far field" or Frauenhofer zone of
the radiator. This measurement technique allows one to determine the di-
rectivity function Q and the total power by an integration over solid angle.

A variation of the methods in the two preceding paragraphs is the
"window" technique in which the machine is wrapped and then various positions
of the machine are exposed. In this way, the contributions to the total noise
power (and directivity) can be determined, if we assume that the process of
wrapping does not disturb the relative roles of various elements in sound
radiation. A sketch of a machine with its wrappings undergoing this process
is shown in fig. 8, This procedure is conceptually simple, but the process of
wrapping and unwrapping and the repetition of the sound measurements for each
case can get quite time consuming and cumbersome.

The direct, or free field, method is essentially a measurement of sound
intensity with a microphone. An intensity measurement close to the machine
surface requires both a velocity and pressure measurement. The velocity
measurement may be done using either a pressure gradient microphone or an
accelerometer mounted to the surface of the structure, as shown in fig. 9. The
required filtering, multiplication, and time averaging can be done by either
analog or digital methods. The principal challenge is making sure that relative
phase variations in the pressure and velocity channels are kept to a minimum.

Measurements of the intensity near the surface of a supported plate
using a microphone-accelerometer scheme are shown in figs. 6 and 7. These
measurements are in good agreement with the theoretical predictions shown in
these figures, but these examples demonstrate one of the difficulties of apply-
ing this method. Since there are some areas of sound generation and others of
sound absorption, a correct assessment of total, radiated-sound power requires
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a very careful and accurate scan of the surface. Also, the requirement for
two, phase-matched, measurement channels adds to the complication. Thus, its
practical utility in measuring machine component noise is likely to be fairly
limited. ‘

Since measurements at the surface of a structure to determine
relative sound generation of its various parts are so desirable, schemes have
been developed which, although they lack a strict theoretical basis, are used
because they seem to give useful answers, are very easy to implement, and the
results are easy to interpret. The methods are the near field pressure scan
and the acceleration,or radiation,efficiency method.

The near-field pressure scan takes note of the fact that the inten-—
sity of sound in a plane wave is $p2>/poc and in a diffuse field (over
solid angle 27) is <p2>/2p0c to assert that near a machine surface the in-
tensity is <p2>/6poc, where & is to be determined. Each part of the
machine has an area S; and, consequently, the total power is

<p%> S.
=y - 1 (5)

I
rad i Gpoc

If I,,4 is known from a reverberant measurement, ¢ is determined. Most
studies suggest a value of 4 for §. 1In fig. 10, we show the total, sound-power
output measured for a consumer sewing machine and the relative contribution to
the total radiated power from its various surfaces as determined by this
method. Also shown are the iso-pressure contours on this machine for the 500-
Hz octave band.

The radiation efficiency method assumes that the sound radiation is
dominated by vibrating structure. Mean square acceleration values <a%> are
determined for various parts of the structure, and the radiated power is deter-
mined by a variant of eq. (2),

<a?> 8§,
i

1
Boaqg =2 2 Pot @
1 w

(6)

rad,i

One can assume that o0,.,4 ; is the same for all surfaces and determine its value
by a measurement of total radiated power. Then, the relative sound produced by
each part of the machine is proportional to its contribution <a?>S,. This has
been done for the sewing machine, and the result is shown in fig., 1I.  Ob-
viously, this technique does not rank the sound output of the various elements
in the same way that the pressure method does.

Of course, this last method can be improved by using the ideas pre-
sented in the section on "Simple Radiators" to make better estimates of
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Orad,is However, on balance, this vibration technique has several drawbacks
compared to the pressure method There is generally more variability to the
acceleration field than in the pressure field so that an average is more dif-
ficult to determine. There is only a single,unknown parameter in the pressure
method (§) compared to several (dpaq,i) in the acceleration method. Also, the
acceleration method requires that stfuctural vibration dominate the sound
generation process, while no such assumption is made in the pressure method.

Clearly, more research and applications studies are required to de-
fine the basis for and limitations of these simplified methods for determining
the sound produced by various parts of a machine or structure. Moreover,
there is good reason to carry out these studies because of the importance of

-8uch measurements in developing noise reduction treatments for machines, par-
ticularly in the important area of redesign for reduced noise emission.
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Figure 1.- Sketch of vibrating piston and theoretical radiation efficiency.
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Figure 2.~ Sketch of radiation of sound by vibrating plate, associated air
motion, and resulting radiation efficiency.
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Figure 3.- Normal component of intensity vector at surface of vibrating,
simply-supported plate above its critical frequency.
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Figure 4.- Intensity near a line of support on an infinite plate showing

regions of positive and negative intensity.
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Figure 5.- Radiation efficiency of finite supported plate and cylinder of
same area.
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Figure 6.~ Intensity scan across mid-section of rectangular supported
plate showing region of sound absorption near the edge.
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Figure 7.~ Measured intensity along mid-section of simply-supported
plate below the critical frequency.

Figure 8.~ In the window method, various parts of a wrapped machine

are exposed for measurements of noise using either reverberant
or anechoic methods.
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Figure 9.~ Two methods for measuring the local sound intensity
at the surface of a structure.
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Figure 10.- Total and relative contributions of various machine
surfaces to sound power radiated by a sewing machine as
determined by the near field pressure method.
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Figure 11.- Total and relative contributions to sound power radiated
by sewing machine as determined by the acceleration method, assuming
a uniform radiation efficiency for all surfaces.



