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SUMMARY

A multi-level grid method has been studied as a possible means of accelerat-
ing convergence in relaxation calculations for transonic flows. The method
employs a hierarchy of grids, ranging from very coarse (e.g. 4 X 2 mesh cells)
to fine (e.g. 64 X 32); the coarser grids are used to diminish the magnitude of
the smooth part of the residuals, hopefully with far less total work than would
be required with, say, optimal SLOR iterations on the finest grid. To date the
method has been applied quite successfully to the solution of the transonic
small-disturbance equation for the velocity potential in conservation form. Non-
lifting transonic flow past a parabolic-arc airfoil is the example studied, with
meshes of both constant and variable step size.

INTRODUCTION

The multi-level grid method, for accelerating convergence in relaxation cal-
culations, has been shown to be very efficient for solving elliptic problerms with
Dirichlet boundary conditions. For background and historical material, see ref-
erences 1 to 4. The idea of the method is based on the fact that in many typical
elliptic boundary-value problems, the error is composed of a discrete spectrum of
wave lengths, which range from the width of the region down to the width of a
mesh cell. The short wave-length components of the error are usually diminished
quite rapidiy in a relaxation calculation, while the long wave-length components
diminish very slowly. After only a few iterations the residual will be smooth,
since the short wave-length error components have been eliminated; and thus the
residual can be represented accurately on a coarser mesh. An equation called
the "residual" equation is then solved on the coarser mesh, and the resulting
correction is added to the last approximation on the fine mesh, yielding a sig-
nificant improvement with very little work.
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Since relaxation methods are currently the most attractive for obtaining
numerical solutions to transonic aerodynamics problems, the question arises
as to whether a multi-level, or multi-grid (MG), method can be used in a mixed
flow with shock waves. In this paper we report some early results using the
MG method to solve a simple transonic problem: we consider the transonic small-
disturbance equation for the velocity potential, for nonlifting flow past a
parabolic-arc airfoil.

PROBLEM DESCRIPTION

The transonic small-disturbance equation for the velocity potential can be
written in conservation form as:

Pt Qg = 0 (1)
where

P=[E<_(I;l)M§°¢x]¢x (2)

q= ¢y (3)

K=(1- Mi)/Tg/?’ (%)

Equation (1) is to be solved subject to the boundary conditions that the distur-
bance potential, ¢, vanishes at infinity and the flow is tangent to the airfoil
surface, in the interval |x| < 1/2; i.e.,

at y = 0, ¢y = F'(x) for |x| <1/2

(5)

=0 for, |x|> 1/2
where F(x) is the (upper surface) thickness distribution function, T is the
usual thickness ratio, and Yy, M, and K are the ratio of specific heats,
free-stream Mach number, and transonic similarity parameter, respectively. The
form of equations (1) to (5) is a correctly scaled transonic similarity form,

in that all quantities are of order 1. Equation (1) is of hyperbolic or elliptic
type depending on whether

U=K—(Y+1)M§¢x (6)

is negative or positive, respectively.
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Finite-Difference Equations

Murman's conservative difference scheme (ref. 5) can be conveniently pre-
sented in terms of Jameson's "switching function" (ref. 6) as follows:

- -+ =
where
R LI it L Y
P, =U,. 5 (8)
J 3 Ax
U, =K - ( +l)M2<¢i+l“1 _ (bi‘lii) (9)
ij LA™ 2hx
q . = Of g+1 T 2055 % 95 50 (10)
13 2
Ay
and where
= 1 >
uij 0 if Uij 0
(11)
=1 if U.. <0
ij

It should be noted here that, in the interest of simplicity, we have pre-
sented only the constant-step-size (unstretched grid) form of the difference
equations. The actual computer program is written for a stretched grid, with
the identity transformation (constant step size) included as a special case.

Vertical Line Relaxation

A vertical line relaxation scheme for solving equation (7) by iteration can
be written as:

+ + = + +
ATi,j-l BTij CTi,j+l Rij DTi-l,j ETi—E,j _ (12)
where

. =0, — o, . (13)
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¢+ denotes a "new" value of ¢, obtained during the latest iteration sweep,
while ¢ 1is the value from the previous sweep. Rjj, which is the left-hand
side of equation (7), is evaluated with "old" values of ¢ij, as are the itera-
tion coefficients A through E, which are given in the appendix.

Multi-Grid Approach

Residual equation.- Let us introduce a sequence of grids Gi, Go, ..., Gp»
where for simplicity, hy = 2hg4q1, and hy represents the step size of the
Gy grid. We can represent the iteration operator (e.g., eq. (12)) on the
finest grid Gy as:

Ly (9) = £ (1k)
where ¢M is the exact discrete solution on the GM grid. We can write
= +
Py = Wy * Vy (15)
where is the approximate solution and ALY is the error. Then we have the

residual equation:

Eﬁ (vy) = £y = Ty ()
(16)

where RM is the residual of the approximation uy on the GM grid. Eﬁ is in
general different from LM in the nonlinear case, which complicates matters.
Nevertheless, if RM is smooth, the error will be smooth, and the residual

equation (16) can be solved on a coarser grid. Thus, for example, we can write

- _ -M-1
Iyey (yeg) = Ty o (By) (17)
R . . . L
where Wy_p 18 an approximation to the error vy on the GM_l grid, and Ik

denotes interpolation from the G to Gj. After solving the problem (17)

(usually with homogeneous boundary conditions), we interpolate the function
LYY back onto the GM mesh, and thus form an improved approximation:
M
(

(uM) new (uM) old * IM—l ) (18)

VM-1
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In the complete MG algorithm, the solution of equation (17) is also per-
formed by relexation; and if the convergence rate falls below a prescribed
level, we can apply a similar procedure, backing up to the GM-o grid level,
and so on, until we arrive at G,, if necessary. The G, grid is so coarse that
a direct solution could be used economically, but we ha@ve used iteration here
also.

Full approximetion.~ In the general nonlinear case, the form of the
operation I can be quite complicated — more so than the original operator,
L — and thus applications to, say, the full potential equation may be tedious
-to program. It turns out that for the transonic small-disturbance equation,
the job is simple, and our first program did use the exact expression for L
in an efficient way. However, there is an equivalent, easier method for solving
the residual equation, which we call the full approximation method, as follows:

Suppose we add to both sides of equation (17) the function

Iy () = fg = Ry (19)

Then, since

Dyep Ggop) + Dyy () = Ty o (9y)s

we have

Tygp (O) = Ry g = Iﬁ-l (Ry) (20)

We can now use the original operator on all the grids, which greatly simplifies
the programming. The right-hand side of equation (20) ‘is the difference
between the residuals of Uy calculated with the coarse- and fine-grid opera-

tors. Note that when the solution converges on the GM grid, then

R, * O (21a)

Iﬁ_l(RM)-+ 0 (21p)

but ﬁM—l will remain finite, since ¢M is a solution on the Gy grid; ﬁM—l

is essentially the truncation error of the LM_l cperator.
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After equation (20) is solved to sufficient accuracy, we determine the
function

W =9y - I, () (22)

by subtraction at all points of the grid GM—l’ and then interpolate WM;l to
the Gy, grid as before in equation (18).

RESULTS AND DISCUSSION

In order to estimate the efficiency of the method, a work unit can be
defined as the amount of computational effort required for one relaxation sweep

on the (finest) GM grid. Thus a relaxation sweep on the Gk grid costs

n_ = (J./’-L)M-k work units, for example. Likewise, when we calculate the resid-
uals for the grid, we perform these calculations at the points of the G -1
grid, i.e., 1/4 as few points; hence each residual calculation costs less

than l/h+£he effort of a relaxation sweep on the Gy grid, or approximately
(l/)-L)M—k . Note that this is an overestimate, since the tridiagonal system (12)
is not inverted, nor do we calculate the iteration coefficients during the
residual calculations. On the other hand we did not count the work of inter-
polation in equation (18), for example, or any other "overhead" of that type.

An overall estimate of efficiency can be given by the effective spectral
radius

o= R || / | [Rual]} o (23)

where

I'RMslll = norm of RM after first sweep on GM

IIRM 'l = norm of RM after n_ work units
’nw w

and
21/2
= [rx (2k)
3] = = o £ ) ;
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Hence the norm we use is the root mean square of the residual on G,,. This
number is typically about 5 to 10 times smaller than the maximum norm in
transonic problems. We consider an approximate solution to be converged when

”RNM < ¢/{no. of grid points) (25)

where the prescribed constant C 1is typically chosen as 1 so as to estimate the
nominal truncation error.

Unstretched Grids

In the case of a grid with constant steps in both directions, the present
MG method performed guite well. Some typical results are summarized in table I
and discussed briefly in the following.

In all cases, the MG runs were made with a relaxation factor w = 1.0 on
all grids.

Laplace's equation with smooth boundary conditions.- To illustrate just
how fast the MG methcd works for a nice, smooth, elliptic problem, we present
in table I results for the solution of Laplace's equation with the prescribed
normal derivative equal to sin mx along y = 0. Because of the smoothness of
the boundary data, it could be expected that interpolating a converged Gh
(32 x 16 grid) solution onto G. will give a very good starting approximation
for Gs. This is true, for altgough the convergence rate on G yielded
a = .583, the efficiency of the two combined levels is more 1iké a = k6! 1In
contrast, successive line overrelaxation (SLOR) achieved a = .924 on G.,
starting from the zero solution, and using a relaxation factor w = 1.857

Nonlinear airfoil flows.— The next three entries in table I show the
results for the nonlinear problem of flow over a parabolic-arc airfoil. In
these cases, the Neumann boundary condition is an "N-wave'" — far from smooth.—
but the M_= 0.7 subcritical case (i.e., no supersonic flow) converged as
well as the previous smooth problem; hence, it can be concluded that discontinu-
ous boundary conditions do not deteriorate MG performance. The "combined" mode
of operation, where the converged solution for G) is used to start Gg, was
not helpful, since the truncation errors around boundary singularities and
shock waves were so large. That is, the G4-solution gives a large residual
when interpolated on the G.-mesh. The M_= 0.85 (moderately supercritical)
case had 124 supersonic poifts out of a total of 2145 mesh points on Gs, or 6%.
The relative efficiency between MG and SLOR is still unaffected. In both of
the aforementioned nonlinear cases, the SLOR runs were carried out with w = 1.85,
which was found to be near optimal by experiment.

The last of the unstretched grid cases is M_ = 0.95 (highly supercritical),
with 355 supersonic points. The flow pattern exhibited a weak obligque shock at
the trailing edge, followed by a triangular region of nearly constant supersonic
flow, which was terminated by a normal shock in the wake. The final number of
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supersonic points was established after 38 work units, and the solution con~
verged after 67.6 work units, giving a = 0.858. The SLOR run was unstable
with ® = 1.85, and had to be "babied" by slowly increasing w, using an inter-
active remote terminal. The best result achieved was n_ = 228, with a = .957.

Stretched Gridg

An attractive way to satisfy the boundary condition at infinity is to
transform the independent variables such that the infinite space is mapped
onto a finite domain., However, it became quickly evident that vertical line
relaxation alone is not the best way to relax the solution for a stretched grid,
either in the MG mode or simple SLOR. Analysis of the difficulty shows that all
the high-frequency error modes -are not rapidly damped if the mesh aspect ratio
differs significantly from 1.0; the success of the MG method, of course, hinges
on this feature. The analysis, not given here, also indicates that a solution
to this problem is to sweep in all directions alternately (forward, backward,
up, and down).

The last entry in table I shows the results of a stretched-grid case,
again for M_ = 0.95. The deterioration of the MG method is clear; some bene-
fit over SLOR is achieved, however, by the MG method.

CONCLUDING REMARKS

The MG method for accelerating relaxation calculations has proved to be
applicable to nonlifting transonic flows with embedded shock waves. The method
appears to work from three to five times faster than optimal SLOR on unstretched
grids of moderate size (64 x 32); the relative advantage of MG over SLOR
increases as the grid gets finer, since the MG convergence rate is nearly inde-
pendent of mesh size. It 1is probable that the gains in three-dimensional cal-
culations would be even more impressive, since each coarser grid requires
only 1/8 the work of the next finer grid.

On stretched grids, the present MG approach slows down, being only about
twice as fast as SLOR., It is felt that a remedy is the use of alternating-
direction relaxation sweeps.

In the future we hope to develop the MG method for flows with 1ift; for
otherwise it will have limited usefulness in aerodynamics.

During the course of our work, Professor Antony Jameson of the Courant
Institute of Mathematical Sciences, New York University, also carried out
research on the multi-grid method. He showed independently that the '"full
approximation" approach would work, and some of his attempts at alternating-
direction sweeps have been encouraging. Our many discussions have been
beneficial.
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APPENDIX

ITERATION COEFFICIENTS

We have used various choices for iteration coefficients in equation (12).
The coefficients used to make the calculations presented in this paper are
simply based on the Newton linearization of equations (7), (8), and (10). They
are as follows:

First define: (dropping the J index, since all quantities are
evaluated at the same j)

bl= K- (pnC(e,, - ;) (A1)
2 Ax
Then we have
7 =i = -2
O, =5 (b1 +b; 1) = U (a2)
2 2
A=C=-ty2 (A3)
- -2 7
B=2Ay ~ + 2 (l—ui) Ui/w - ;g biﬁ% (AL)
D= (1-y;) by, 1 =21 ;0 (a5)
2
E = u1-1 1-1 (26)
2
where
W =0 if U; >0
(A7)
=1 4if U. <0
1
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TABLE I.- SUMMARY OF MULTI-GRID RESULTS, 64 x 32 CELLS

Problem description

Effective spectral radiusa for —

MG SLOR

Unstretched Laplace's equation, smooth 0.583 0.924
grid boundary conditions (0.46 combined levels)

Parabolic airfoil, M_ = 0.70 .549 .868

Parabolic airfoil, M_= .85 .593 .855

Parsbolic airfoil, M_= .95 .858 .957

Stretched Parabolic airfoil, M_ = 0.95 0.936 0.97h

grid

835ee equation (23).
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