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SUMMARY 

The s t a b i l i t y  of  an e lec t r ica l ly   conduct ing   f lu id   subjec ted   to  two 
dimensional  disturbance w a s  inves t iga ted .  The physical  system  consists of two 
paral le l  i n f i n i t e   v e r t i c a l   p l a t e s  which are thermally  insulated.  Applied 
normal t o   t h e   p l a t e s  is  an  external   magnet ic   f ie ld  of constant   s t rength.  The 
f l u i d   i s . h e a t e d  from  below so  t h a t  a steady  temperature  gradient is  maintained 
i n   t h e   f l u i d .  The governing  equations were derived by perturbation  technique, 
and so lu t ions  were obtained by a modified  Galerkin method. It w a s  found t h a t  
the  presence of the   magnet ic   f ie ld   increases   the   s tab i l i ty  of the  physical  
system,  and i n s t a b i l i t y  can  occur i n   t h e  form of n e u t r a l   o r   o s c i l l a t o r y  
i n s t a b i l i t y .  

INTRODUCTION 

The Bgrnard  problem of s t a b i l i t y  of a v iscous ,   s ta t ionary   f lu id   hea ted  
from  below  has  been a subjec t  of many inves t iga t ions   ( r e f .   1 ) .  It is  found 
t h a t  when the  temperature  gradient  exceeds a c r i t i c a l   v a l u e ,   i n s t a b i l i t y  sets 
i n  as s ta t ionary  cel lular   convect ion.   For   the  case of a n   e l e c t r i c a l l y  con- 
duc t ing   f lu id   in   the   p resence  of a magnet ic   f ie ld ,  however, the  physical  
phenomenon becomes more complicated. The motion of t h e   f l u i d   c r o s s i n g   t h e  
magnet ic   f ie ld   ,causes  electrical currents   to   be  generated,   and  the  current  
car ry ing   f lu id   e lements   t ravers ing   the   magnet ic   f ie ld   g ives  rise t o   a n  
add i t iona l  body force  ( the  Lorentz   force)  which t e n d s   t o   r e t a r d   t h e   f l u i d  
motion.  Consequently,   the  stabil i ty of the  system is great ly   increased.  
Furthermore,  Chandrasekhar  (ref.  1)  proved  that  depending  on  the  relationship 
between t h e  electric r e s i s t i v i t y  and the   thermal   d i f fus iv i ty   o f   the   f lu id ,  
i n s t a b i l i t y   c a n   m a n i f e s t . i t s e l f   i n   t h e  form  of s t a t i o n a r y   o r   o s c i l l a t o r y  
motion. 

Exact so lu t ion  of i n s t a b i l i t y  due t o  small two dimensional  disturbance of 
a viscous   f lu id  bounded by two p a r a l l e l  vertical planes w a s  obtained by  Yih 
( re f .  2). The bounding  planes are thermally  insulated,  and ari upward tempera- 
t u re   g rad ien t  is a p p l i e d   t o   t h e   f l u i d .  Yih showed tha t   fo r   d i s tu rbances  
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periodic  in  the  vertical  direction,  the  most  unstable  modes  are  associated 
with  the  wave  number  zero.  It  is  also  shown  that  instabilities  due to anti- 
symmetric  disturbances  with  respect  to  a  median  vertical  plane  are,  more  easily 
excited  than  those  due  to  symmetric  disturbances  of  the  same  wave  number, 

In  this  investigation,  it  is  proposed  to  extend  Yih's  finding  by 
incorporating  the  effect  of a magnetic  field  applied  normal  to  the  bounding 
walls.  The  governing  equations  were  simplified  by  using  Boussinesq  approxi- 
mation.  The  onset  of  neutral  as  well  as  oscillatory  instabilities  was 
studied. 
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distance  between  the  vertical  planes 

acceleration  due  to  gravity 

intensity of applied  magnetic  field of constant  strength 

perturbation  quantity  of  magnetic  intensity 

wave  number 

pressure 

Prandtl  number, V / K  

magnetic  Prandtl  number, v / n  

parameter  defined  as T)/K 

electromagnetic  number, (pH d ) / ( 4 ~ r ~ v ~ )  

parameter  defined  as (pH d ) / ( ~ T ~ P K  ) 

Rayleigh  number,  (gaBd ) / ( K V )  

perturbation  velocity  quantity  in x and z direction 

2 2  

2 2  2 

4 

space  co-ordinates 

coefficient  denoting  change of fluid  density  per  degree  rise  in 
temperature 

temperature  gradients  in  fluid 

electric  resistivity 

fluid  temperature 



t h e r m a l   d i f f u s i v i t y  IC 

lJ 

V 

P 

w 
C 

6W 

V 2  

magnet ic   permeabi l i ty  

k i n e m a t i c   v i s c o s i t y  

d e n s i t y  

cr i t ical  wave speed 

parameter   def ined as ( 8 P l p )  + (W30hx>l/(4a~)  

Laplace   opera tor ,  - + - 
.. . 

a2 a 2  I 

ax az2 
2 

Superscr ip t :  * dimensionless  

Subscr ip ts :  
X,Z x and z component, r e s p e c t i v e l y  
C c r i t i ca l  

FORMULATION 

The phys ica l   sys tem  under   s tudy   cons is t s   o f  two i n f i n i t e  and  thermally 
i n s u l a t e d   v e r t i c a l   p l a n e s   p l a c e d  a t  a d i s t a n c e  d apart .   Appl ied  normal   to  the 
bounding  planes is an   ex te rna l   magne t i c   f i e ld  of c o n s t a n t   s t r e n g t h  Ho. The 
e l e c t r i c a l l y   c o n d u c t i n g   f l u i d  is  heated  from  below so  t h a t  a steady  tempera- 
t u r e   g r a d i e n t  is ma in ta ined   i n   t he   f l u id .   F igu re  1 shows the   schemat ic  
diagram of the   phys ica l   sys tem  and   the   Car tes ian   co-ord ina te   adopted   for   th i s  
s tudy  . 

A de ta i l ed   deve lopmen t   o f   t he   gove rn ing   d i f f e ren t i a l   equa t ions   and   t he  
pe r tu rba t ion   equa t ions  are p r e s e n t e d   i n   c h a p t e r s  2 and 4 i n   r e f e r e n c e  1. For 
the   p re sen t   p rob lem,   t he   pe r tu rba t ion   equa t ions  'are given  below: 

Cont inui ty   equat ion  

Momentum equat ion  

au pHo ahx 
a t  ax 4 r p  ax 
- = "  

- a (6w) + vvzu + - - 



aw pHO 
ah2 

a t  az a (SF) + gae + vv2w + - - 4 ~ p  ax 
" "- 

Energy  equation 

ae 
a t  - =  BW i- Kv28 

Equations  for E-M f i e l d  

- a hx ahz + - -  - 0  ax az 

a t  - Ho ax 
a t  - Ho ax 

ah 
" 

X a u  + qV2hx 

aw + qV2hz " ahz 

The physical   var iables   used  in   the  above  equat ions are de f ined   i n   t he  SYMBOLS. 
In  order  to  reduce  the  above  equation  to  dimensionless form, the  fol lowing 
dimensionless   quant i t ies  are introduced: 

* ud * wd x = -  
* x  

K '  
w = -  u = -  K '  d '  

* z  * x  * z  
h h 

z = -  d y  h = -  h = -  
x Ho z H y  

0 

* e  4 d2 - 0 = -  t * = -  Kt 6w = - 
Bd d2 ' 2 

6w 
K 

By employing these  dimensionless  quantit ies,   eqs.   (1)  . to (7)  can  be 
expressed  in  non-dimension  form as in  the  following: 

* * 
a U  "d: *2 * f ah* 

a t- ax 
- = - -  * a ( 6 w ) + p r l v  u + Q  - * 

ax 
* 

ae  
a t  

* 
* 

* *2 * 
- =  w + V  e 

* * 
- ahX ahz * * + - -  - 0  

X az 
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ahX ' *2 * 
a t  ax 

* hX 

a h Z  

a t  ax 

* 
-= - * aU + Pr2 v 

* * 
1 *2 * -= - * * + P r 2  v hZ 

Elimination  of a w  from eqs.  (9) and (10) y ie lds  
- *  

a *2 au aw ae* 
a t  

* * 
[T - Pr V I(? - 7) = PrlR 7 1 az ax ax 

l a  ah; ah; 

ax az ax 
+ Q  - [ ~ - - l  * 

The system  of  equations  can  be  simplified by introducing  the  following 
stream functions $ and 9 which satisfy  eqs.   (8)  and(l2)  automatically,  

Subst i tut ing  eq.  (16) into  eqs.   (15),  (11)  and  (14), the  governing 
eqs. become 

a *2 *2 ae* @ a  *2 

a t  ax  ax 

a *2 * a$ [*-v ] e  = -  
a t  ax 

a *2 a4 a $ 
[ T -  P r 2  v 1 * - 

a t  ax ax 

[T - PrlV ] V = PrlR 7 + Q 7 (V $) 

* 
2 

"2 

SOLUTION 

Solutions were sought by using  Galerkin method modified by Finlayson 
(ref.   3).  Assuming disturbances of the  following form 

$ = A(t) $(x) eini 

e = B(t)  @(X) e 
* inz  
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9 = C ( t >  a ( t )  einz (23) 

I n   s e l e c t i n g   a n   a p p r o p r i a t e  t r ial  f u n c t i o n   f o r  Y, a d i s tu rbance  
symmetrical w i t h   r e s p e c t   t o   t h e  medium plane  w a s  chosen as * * - - Cash A i X  - .  cos  AiX 

'i Cosh  (Ai/2) Cos (Ai/2)  (24) 

where t h e   c h a r a c t e r i s t i c   v a l u e s  X .  are given by 
1 

t anh  (Ai/2) + t a n  (Ai/2) = 0 

The assumed f u n c t i o n   f o r  8 and s are 
* * 

8 = s i n   a . x  , s = s i n   $ . x  
1 1 

S u b s t i t u t i n g   t h e  trial func t ions   g iven  by eqs.   (24)  and  (26)  into the 
governing  eqs .   (17) ,   (18)   and  (19) ,   and  af ter   d iagonal izat ion,   the   governing 
d i f f e r e n t i a l   e q u a t i o n s  are reduced t o  

+ rl ( C . / C i ) l  A + Pr  Ra.(C./Cosaix  )B + 4 * 
J 1 1 J  

Q' [-Bi(Bi2 + rl 2 >(C./CosBix ) I C  
* 

J 
dB ? 

(s ina  . /Sinai)  dt = (sinai/Ci)A + [-(a 2 2  +n ) ( s ina .   / s ina i ) ]B  

(s in$. /s inBi)  - = (sinBj/Ci)A + Pr2[  (Bi 2 2  +rl ) (s in0  . / s inBi)  I C  (29) 

J J 
dC 1 ? 

J -  d t  J 
Where the   inner   p roducts  are d e f i n e d   i n   t h e   f o l l o w i n g  manner 

1 

11 
- I 

( c j / c j  =/ CjD 2 Cidx * 
1 
2 

- -  

DISCUSSION OF RESULTS 

Numerical r e s u l t s  were obtained by us ing  a d i g i t a l  computer. The cr i t ica l  
Rayleigh number was obta ined   for   d i f fe ren t   combina t ions   o f   the   Prandt l  number 
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Pr l ,   the   e lec t romagnet ic   Prandt l  number Pr2 ,   the   e lec t romagnet ic  number Q and 
wave number n. The r e s u l t s  were p r e s e n t e d   i n   g r a p h i c a l  form from figures 2 to 
5-  

For   the case when Q = 0, the  present   problem w a s  r educed   t o   t he   Y ih ' s  
problem.  Examinat ion  of   the  resul ts   presented  in   Table  1 shows t h a t   t h e  
c r i t i ca l  Rayleigh number conve rges   r ap id ly   t o   Y ih ' s  exact s o l u t i o n   w i t h   t h e  
second  approximat ion ,   thus   conf i rming   the   va l id i ty   o f   the   resu l t s .  

Table 1: COMPARISON  OF R FOR Q = 0 
C 

n 4 2 1 0 

Yih ' s   so ln .  500.8 
514.6 1st approx. 

2952 856.0  592.0 

2927  857.0  578.8 501.0 2nd approx. 
3100  885.5  597.1 R c  

For  the case of n e u t r a l   s t a b i l i t y ,   t h e  c r i t i ca l  Rayleigh number is only a 
func t ion  of t he  wave number n and Q which i s  a measure  of   the   s t rength  of   the 
app l i ed   magne t i c   f i e ld   ( s ee   f i g s .  2 and 3 ) .  The P r a n d t l  numbers  Prl  and  Pr2 
have   no   e f fec t   on   the   s tab i l i ty   o f   the   sys tem.   This  is expec ted   s ince   fo r  
t he  case of n e u t r a l   s t a b i l i t y ,   t h e  terms involv ing   the  t i m e  d e r i v a t i v e   i n   t h e  
governing  equations  (eqs.  28 t o  30) are dropped,  and P r  and  Pr2  would  be 
c a n c e l l e d   f r o m   t h e   r e s u l t i n g   e q u a t i o n s .   S i m i l a r   s i t u a t l o n s  arise i n   t h e  
Bgrnard  problem. 

1 

For   t he   p re sen t   phys i ca l   sys t em,   ove r s t ab i l i t y   can   occu r .   F igu re  4 shows 
t h e   v a r i a t i o n  of R as a func t ion  of Q ,  P r  and Pr2.  The r e s u l t s  show t h a t   a n  
i n c r e a s e   i n   e i t h e r  P r  o r  P r  t end   t o   dec rease  R . This   f ind ing  is i n   a g r e e -  
ment w i th   t he   r e su l t s   ob ta ined   fo r   Bgrna rd  Problem  (Chapter 4 ,  r e f .   1 ) .  1 2 e 

C 1 

With t h e  t r i a l  func t ions   u sed   i n   t h i s   s tudy ,   t he   conve rgence  of t he  
n u m e r i c a l   r e s u l t s  are f a i r l y   s a t i s f a c t o r y .   T h i s  is e s p e c i a l l y  so i n   t h e  case 
of n e u t r a l   s t a b i l i t y ;   a n   a v e r a g e   d i s c r e p a n c y  of  about 5% w a s  observed  between 
t h e   f i r s t  and  second  approximation.  For  the case of o v e r s t a b i l i t y ,   g r e a t e r  
dev ia t ion  is observed. A d i f f e r e n c e  of  25% w a s  obse rved   be tween   t he   f i r s t  and 
second  approximations.   Higher  order  approximation would be   needed   to   ob ta in  
more a c c u r a t e   r e s u l t s .  

CONCLUDING REMARKS 

The fol lowing  conclusions  can  be drawn  from t h i s   s t u d y :  

1. The presence  of a m a g n e t i c   f i e l d   i n c r e a s e s   t h e   s t a b i l i t y .  
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2. In  the  presence  of a magnet ic   f ie ld ,   ins tab i l i ty   can   occur   in   the  
form of n e u t r a l  or  o s c i l l a t o r y   i n s t a b i l i t y .  When o s c i l l a t o r y   i n s t a b i l i t y  
occur s ,   t he   e f f ec t  of  Prl  and  Pr2 becomes important. An i n c r e a s e   i n   e i t h e r  
one or  both  parameters  tend  to  render  the  system less s t ab le .  

3. The most uns tab le  modes are assoc ia ted   wi th   the  wave number zero. 
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Figure 1.- Schematic  diagram of physical system. 
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n 

Figure 2.- Variation of R as a  function of n and Q for onset of 
neutral  stability. 
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Figure 3 . -  Variation  of Rc as  a function of Q for  onset 
of  neutral s tab i l i ty  (Q = 0 ) .  

Figure 4 . -  Variation of Rc as a function of Q, P r l  
and P r 2  for  onset  of  overstability. 
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Figure 5.- Variation of critical wave speed wc for onset of overstability. 
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