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SUMMARY

The stability of an electrically conducting fluid subjected to two
dimensional disturbance was investigated. The physical system consists of two
parallel infinite vertical plates which are thermally insulated. Applied
normal to the plates is an external magnetic field of constant strength. The
fluid is heated from below so that a steady temperature gradient is maintained
in the fluid. The governing equations were derived by perturbation technique,
and solutions were obtained by a modified Galerkin method. It was found that
the presence of the magnetic field increases the stability of the physical
system, and instability can occur in the form of neutral or oscillatory
instability.

INTRODUCTION

The Bérnard problem of stability of a viscous, stationary fluid heated
from below has been a subject of many investigations (ref. 1). It is found
that when the temperature gradient exceeds a critical value, instability sets
in as stationary cellular convection. For the case of an electrically con-~
ducting fluid in the presence of a magnetic field, however, the physical
phenomenon becomes more complicated. The motion of the fluid crossing the
magnetic field causes electrical currents to be generated, and the current
carrying fluid elements traversing the magnetic field gives rise to an
additional body force (the Lorentz force) which tends to retard the fluid
motion. Consequently, the stability of the system is greatly increased.
Furthermore, Chandrasekhar (ref. 1) proved that depending on the relationship
between the electric resistivity and the thermal diffusivity of the fluid,
instability can manifest itself in the form of statiomary or oscillatory
motion.

Exact solution of instability due to small two dimensional disturbance of
a viscous fluid bounded by two parallel vertical planes was obtained by Yih
(ref. 2). The bounding planes are thermally insulated, and an upward tempera-—
ture gradient is applied to the fluid. Yilk showed that for disturbances
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periodic in the vertical direction, the most unstable modes are associated
with the wave number zero. It is also shown that instabilities due to anti-
symmetric disturbances with respect to a median vertical plane are more easily
excited than those due to symmetric disturbances of the same wave number.

In this investigation, it is proposed to extend Yih's finding by
incorporating the effect of a magnetic field applied normal to the bounding
walls. The governing equations were simplified by using Boussinesq approxi-
mation. The onset of neutral as well as oscillatory instabilities was
studied.

SYMBOLS
d distance between the vertical planes
g acceleration due to gravity
Ho intensity of applied magnetic field of constant strength
h perturbation quantity of magnetic intensity
n wave number
P pressure
Prl Prandtl number, v/
Pr2 magnetic Prandtl number, v/n
Péz parameter defined as n/k
Q electromagnetic number, (qudz)/(4npvn)
Q' parameter defined as (uHZdz)/(4wpK2)
R Rayleigh number, (gaBd4)/(Kv)
u,w perturbation velocity quantity in x and z direction
Xy 2 space co-ordinates
o coefficient denoting change of fluid density per degree rise in
temperature
B temperature gradients in fluid
n electric resistivity
) fluid temperature
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K thermal diffusivity

H magnetic permeability

v kinematic viscosity

o] density

wc critical wave speed

Sw parameter defined as (GP/p? +_(uH°th/(4ﬂp)
32 92

v2 Laplace operator, — + >
ox R4

Superscript:

* dimensionless

Subscripts:

X,Z x and z component, respectively

c critical

FORMULATION

The physical system under study consists of two infinite and thermally
insulated vertical planes placed at a distance d apart. Applied normal to the
bounding planes is an external magnetic field of constant strength H,. The
electrically conducting fluid is heated from below so that a steady tempera-
ture gradient is maintained in the fluid. Figure 1 shows the schematic
diagram of the physical system and the Cartesian co-ordinate adopted for this
study.

A detailed development of the governing differential equations and the
perturbation equations are presented in chapters 2 and 4 in reference 1. For

the present problem, the perturbation equations 'are given below:

Continuity equation

ou ow  _
9x dz 0 (1)
Momentum equation
wH . 29h
U _ 3 e 2 —~0 _X
ot  9x (Sw) + vvu + 4mp 9% (2)
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ug_ dh

W _ _ 23 5w 25 4 —2 2

5t - " 3z (dw) + god + vWew + hrp % (3)
Energy equation

90 _ 2

rrallie Bw + kV<8 4)

Equations for E-M field

oh oh
X zZ _ -
+52=0 (5/

ox
ahX ou 2
3t Ho5x T nvhy (6)
oh
Z ow 2
—— =3 ———— +
ot Ho ox nv hz 7

The physical variables used in the above equations are defined in the SYMBOLS.
In order to reduce the above equation to dimensionless form, the following
dimensionless quantities are introduced:

*_uwd  *_wd ¥ _X
v T  ’ d°’
oz oo "x h = Py
Z =3 %78 * 'z H
(o] [o]
2
* ] * KE —& d —
6 ==, t =-——%, 6w =-— 6w
gd 42 2

By employing these dimensionless quantities, egs. (1) to (7) can be
expressed in non-dimension form as in the following:

; * 5 *
u W
ox 0z
* ah*
—k %92 % 1 *
92;— = - 3—% (dw ) + Pr, V 2u +Q —% (9)
k 1
ot 9% 9xX
* ah*
—_% * * '
BW* =-2 - (6w ") + Pr,R 6 + Pr.V Zw+q —Z (10)
1 1 *
ot 0z oX
* %2 %
-a—e—* = w + V 8 (ll)
ot
* *
th 3hz
X Z
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*
dh

p:4 ou *
== — + Pr2 V hx 13
ot 90X
oh * *
*2 %
2 . W 4, v n (14)
2 z
ot 9x
—k
Elimination of 3w from eqs. (9) and (10) yields
% *
*
Py -pr, VA -2 S 39—
ot oz Bx Bx
* *
'y th th
9x oz Ix

The system of equations can be simplified by introducing the following
stream functions Y and ¢ which satisfy eqs. (8) and(1l2) automatically,

* 0 * )
u = —w—* y W = -;—
2z ox (16)
% *
N
9z 9x
Substituting eq. (16) into eqs. (15), (11) and (14), the governing
eqs. become
Rl s I P 29—-+ Q 2 %) an
ot Bx Bx
9 *2 * v
[.___* - v ] e = —* (18)
ot 9x
T % ¢
at ox ox

Eqs. (17), (18), and (19) are subjected to the boundary conditions

%
it x=xhu=mpentag=o0 (20)
SOLUTION
Solutions were sought by using Galerkin method modified by Finlayson
(ref. 3). Assuming disturbances of the following form
i
= A(E) ¥(x) e " (21)
0* = B(t) O(x) eimZ (22)
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6 = Cc(t) d(t) eIP2 (23)

In selecting an appropriate trial function for ¥, a disturbance
symmetrical with respect to the medium plane was chosen as

A * A *
y = Cosh A4X - Cos AX

Cosh (Ai/2) Cos (li/2) (24)
where the characteristic wvalues Ai are given by |
tanh (Ai/Z) + tan (Ai/2) =0 (25)
The assumed function for © and s are
5 = ai * . *
= gin a,x , s =sin Bix (26)

where O = (2§j-1) = , Bi== 2jm and j = 1,2,3, etc.

Substituting the trial functions given by egs. (24) and (26) into the -
governing eqs. (17), (18) and (19), and after diagonalization, the governing
differential equations are reduced to

11 2 :
[ey/e; = n(c,/e] §¢ = Prylcey /™) - 2nPce /e )

4 *
+ n (Cj/Ci)] A + Pr Rai(Cj/CosaiX )B +

1
Q' 1-8;(8;% + %) (¢;/Cos8x") Ic @7)
(sinaj/sinai) g%-= (sinai/C;)A + [—(a2+n2)(sinaj/sinai)]B (28)

. . dc
(81nBj/§}nBi) at

(sing /C)A + Pr;[(Biz+n2)(sinBj/sinBi)]C (29)

Where the inmer products are defined in the following manner
1

(c,/c; ) = / ? ¢’ ax" (30)
S

The method for determining the stability criteria for eqs. (28), (29)
and (30) is presented in reference 3.

DISCUSSION OF RESULTS

Numerical results were obtained by using a digital computer. The critical
Rayleigh number was obtained for different combinations of the Prandtl number
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Prl, the electromagnetic Prandtl number Pr,, the electromagnetic number Q and
wave number n. The results were presented in graphical form from figures 2 to
5.

For the case when Q = 0, the present problem was reduced to the Yih's
problem. Examination of the results presented in Table 1 shows that the
critical Rayleigh number converges rapidly to Yih's exact solution with the
second approximation, thus confirming the validity of the results.

Table 1: COMPARISON OF Rc FOR Q =0

n 0 1 2 4
Yih's soln. 500.8 592.0 856.0 2952
1st approx. 514.6 597.1 885.5 3100
2nd approx. 501.0 578.8 857.0 2927

For the case of neutral stability, the critical Rayleigh number is only a
function of the wave number n and Q which is a measure of the strength of the
applied magnetic field (see figs. 2 and 3). The Prandtl numbers Pr. and Pr
have no effect on the stability of the system. This is expected since for
the case of neutral stability, the terms involving the time derivative in the
governing equations (eqs. 28 to 30) are dropped, and Pr, and Pr2 would be
cancelled from the resulting equations. Similar situatIons arise in the
Bérnard problem.

For the present physical system, overstability can occur. Figure 4 shows
the variation of Rc as a function of Q, Pr., and Pr,. The results show that an
increase in either Pr., or Pr, tend to decrease R . This finding is in agree-
ment with the results obtainéd for Bérnard Problém (Chapter 4, ref. 1).

With the trial functions used in this study, the convergence of the
numerical results are fairly satisfactory. This is especially so in the case
of neutral stability; an average discrepancy of about 57 was observed between
the first and second approximation. For the case of overstability, greater
deviation is observed. A difference of 257 was observed between the first and
second approximations. Higher order approximation would be needed to obtain
more accurate results.

CONCLUDING REMARKS

The following conclusions can be drawn from this study:

1. The presence of a magnetic field increases the stability.
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2. In the presence of a magnetic field, instability can occur in the
form of neutral or oscillatory instability. When oscillatory instability
occurs, the effect of Pr, and Pr, becomes important. An increase in either
one or both parameters teénd to render the system less stable.

3. The most unstable modes are associated with the wave number =zero.

REFERENCES

1. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford
Press, 1968.

2. Yih, C. S.: Thermal Instability of Viscous ¥luid. Quart. Appl. Math.,
Vol. 17, pp. 25-42, 1959.

3. Finlayson, B. A.: The Galerkin Method Applied to Convective Instability
Problems. J. of Fluid Mechanics, Vol. 33, Part 1, pp. 201-208, 1968.

1516




ftmme |
A N
A N
/ N
A N
/1 N
/ N
/ N
g Z N -
y N g
l N
H0—>/ N
/] N
/] Y X N
N
A N
A N
/] N
/] N
/ IN
A S
/]
A N
/]

Figure 1l.- Schematic diagram of physical system.
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Figure 2.- Variation of R as a function of n and Q for onset of
neutral stability.

1517



1518

10°

llll_l_I1

T

104

I]II|III

1 t 1 | llll 1 1 H 1 11 ll
4x10% 5 102 103 104

Figure 3.- Variation of R, as a function of Q for onset

c
of neutral stability (Q = 0).
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Figure 4.- Variation of R, as a function of Q, Prqy
and Pr, for onset of overstability.
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Figure 5.- Variation of critical wave speed W, for onset of overstability.
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