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SUMMARY

A three-dimensional finite element solution of the acoustic vibration prob-
lem in a solid propellant rocket motor is presented. The solution yields the
natural circular frequencies of vibration and the corresponding acoustic pres-
sure mode shapes, considering the coupled response of the propellant grain to
the acoustic oscillations occurring in the motor cavity. The near incompressi-
bility of the solid propellant is taken into account in the formulation. A
relatively simple example problem is solved in order to illustrate the applica-
bility of the analysis and the developed computer code.

INTRODUCTION

Present solid propellant rocket combustion instability state-of-the-art
technology employs a linear analysis for predicting unsteady motions in the com-
bustion chamber of the rocket based on the hypothesis that the influences of
combustion and flow can be represented as perturbations of an acoustic problem
in a closed chamber. In order to perform an accurate combustion instability
analysis, one must have adequate knowledge of the natural circular frequency
and corresponding pressure mode shape for the different modes of acoustic oscil-
lation occurring in the motor cavity in the absence of combustion and flow.

The cavities in functional rocket motors generally have complex shapes
that may include a number of symmetrically located slots (or fins) cut into the
propellant, the purpose of which is to increase the area of the burning surface
(fig. 1). During the past several years, the need for experimental acoustic
modeling of such irregular cavity geometries has been greatly reduced through
the use of finite element modeling techniques (ref. 1). In the finite element
method, a continuum is modeled as an assemblage of elements, connected at dis-
crete locations (nodes). Natural frequencies and mode shapes are then obtained
from an eigensolution of the resulting equations of equilibrium of the modeled
dynamic system. Applications of the finite element method to more generalized
acoustic analysis problems are found in references 2 and 3.

The presence of the solid propellant grain can significantly shift the
acoustic system frequency from that of the gas phase alone, a portion of the
acoustic energy being dissipated by the deformable solid material. This effect
can be one of the more significant sinks for acoustic energy in both large and
small rocket motors, the amount of damping depending on the grain geometry, pro-
pellant mechanical properties, and the acoustic mode shape and frequency. It
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is thus important to have the capability of finite element modeling of both the
acoustic cavity and the propellant grain structure and, therefore, of a combi-
nation and coupling of fluid and solid elements. Analyses of coupled plate-
acoustic systems are found in references 4 and 5, and a three-dimensional finite
element coupled acousto-mechanical analysis is formulated in reference 6.

In the case at hand, the problem involves the coupling of the irrotational
motions of an inviscid compressible fluid with the deformations of an incom-
pressible (viscoelastic) solid material enclosing the fluid. Since the propel-
lant grain is only accurately modeled as a nearly incompressible material, the
well-known minimum potential energy finite element formulation, based upon
Navier's equations of equilibrium and the Ritz procedure, is invalid. Formula-
tions for cases of incompressible and nearly incompressible materials are found
in references 7, 8, 9, 10, and 11. The solid finite element formulation utilized
in this development is a linear displacement-linear mean pressure tetrahedron
(ref. 10), similar to the Herrmann variationmal formulation (ref. 7) which employs
a linear displacement function and a constant mean pressure function.

The eigensolution technique employed in the developed program is that of
condensation, which is discussed in reference 12. The technique utilizes the
master and slave degree-of-freedom (d.o.f.) concept. In this application, the
fluid pressure d.o.f. are designated master and the solid displacement and mean
pressure d.o.f. are designated slave.

SYMBOLS

Values are given in both SI and U.S. Customary Units. The calculations
were made in U.S. Customary Units.

a,b,c,d exponential factors

B bulk modulus

[D] degree-of-freedom to strain transformation matrix
[E] constitutive coefficient matrix

[£] fluid element potential energy coefficient matrix
[F] fluid system potential energy coefficient matrix
G shear modulus

H mean pressure parameter

:I= identity matrix

:k= solid element stiffness matrix

(K] solid system stiffness matrix

L_ natural or volume tetrahedral coordinate

[m: solid element consistent mass matrix

[M_ solid system consistent mass matrix

P pressure

P point (defined in fig. 2)

S surface area

[t] fluid element kinetic energy coefficient matrix
[T] fluid system kinetic energy coefficient matrix
u,v,w displacement components

[v] acoustic~solid coupling matrix’

v element volume

X, Vs2Z rectangular Cartesian coordinates

B direction cosine

{a} displacement vector

€ strain

1642



Y Poisson's ratio

[2] transformation matrix defined by equation (14)

p mass density

w natural circular frequency

Subscripts: . Superscripts:

C - coupled .

i,j,2,m element node identifiers e : element

P,q number of degrees-of-freedom T transpose (of a matrix)
r,s node identifiers (eq.(4))

S solid

EQUATIONS OF EQUILIBRIUM

Acoustic Cavity

In applying the finite element method, the region of concern is divided
into a number of subregions, or elements. "Applications of the method in model-
ing the behavior of a fluid continuum involve several pecularities not encoun-
tered in the usual structural applications. In the discretization of a fluid
continuum, the finite elements represent spatial rather than material subregions
of the continuum; i.e., instead of representing finite elements of the fluid ma-
terial, the elements represent subregions in the space through which the fluid
moves (Eulerian description of motion). Values of pressure at the nodal points
of the element represent the pressures at the nodes rather than of the nodes
(ref. 13).

For a three-~dimensional region, a volume element is associated with a num-
ber of nodal points which define its shape. Within each fluid tetrahedral ele-
ment the variation of the pressure p is prescribed by the values associated

with the four element nodes through the expression: rpif
e Py
p(x,y,2) = [L]{p}" =LL; L, L, L1479} (1)
Py
[ P
where the natural or volume coordinates Li’Lj’Lz’ and Lm are defined mathemati-
cally by B
(1, ] 1 01 1 17 (1
i
1. [~ 1 [ (2)
L Z, Z, ZQ, Z 2
- md L + J m_ . J ]

and physically by figure 1.
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The matrix form of the homogeneous acoustic wave equations for the dis-
cretized fluid continuum is given by

([F] - w’[TD{p} = {0} (3)

where F is the coefficient matrix derived from a consideration of the potential
energy of a fluid element, and T is the coefficient matrix derived from a con-
sideration of the kinetic energy of the fluid element. The natural circular
frequency of the discretely modeled fluid continuum is designated as w.

The matrix F is developed through a superpositioning of the individual sym-
metric 4x4 element matrices, f, with restraint of the appropriate d.o.f. A typ-
ical term of the f matrix is (ref. 14):

BLr BLS BLr BLS BLr BLS
fee™ 29 5t 5. Ty Y )
X X y 'y z z
where r and s take the values i,j,%,m cyclically. The fluid mass density and the
volume of the tetrahedron are designated p and V, respectively.

e 1

The matrix T is likewise developed through the superpositioning of the in-
dividual symmetric 4x4 element matrices, t, with restraint of the same appro-
priate d.o.f. The t matrix has the form (ref. 14):

L% L.L, L.L L.L
i i’j 2 im
1 L% L'Ll L.Lm
[:]=3 ; ’ 1| dxdydz (5)
2
Ly Loln
sym
L2
m -

where B is the bulk modulus of the fluid. A useful integration formula for
evaluating the terms in the t matrix is:

a b .c d _ alblc!d!
f LyLyLgly dxdydz = — 0 qe3y1 oY (6)

Solid Propellant

Within each solid tetrahedral element, the variation of displacement is
prescribed by the displacement of each element node through the expression:

(A,

1
u(x,y,z) o A,
v(x,y,2) b= [L1A}° = [L,1 1.1 L1 L 114 T4 (7
W(X,}’,Z) 1 J AR,

A

h-md
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where I is the 3x3 identity matrix and where
LAiJ = LPi \A wiJ, etc. (8)

The u,v,w terms are the displacement components in the x,y,z directions, respec-
tively.

The matrix form of the homogeneous equations of motion for the discretized
solid continuum is given by

(x] - b -

where K is the stiffness matrix and M is the mass matrix. The term w_, is the
natural circular frequency of vibration of the solid system. The linear varia-
tion of the mean pressure parameter :

1

H(X,y,2) = 755 (€, + €y te ) (10)
is prescribed in the same manner as were the pressure (in the acoustic cavity)
and the displacement function, i.e., (1)

i
e Hj
H(x,y.2z) = [L]J{H}™ = |L, Ly Ly L1 . - (11)
2
H
L

The terms €ex? Eyy’ and €,, are the normal strain components and V is Poisson's
ratio.
The matrix K is developed through a superpositioning of the individual

symmetric 16x16 element stiffness matrices, k, with restraint of the appropri-
ate d.o.f. The form of the matrix k is given by (ref. 10):

DTIO T D{O
k] = |-+ [[e] [E][®] dxdydz | ——+-- (12)
01 0,1

where I is the 4x4 identity matrix and where
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BLi oL, BLz aLml I
9x 9x ox 9x | 0 0 0 0 | 0 0 0 0
bon, o, oL, or !
o o o ol 2t 42 _B o o o o
| dy o9y dy Oy |
I | 9L, 3L, 3L, L,
[D] = 0 0 0 0 : 0 0 0 0 ] 39z 9z 9z 93z (13)
9L, oL, oL, oL | oL, oL, oL, oL |
i i L m| i i 2 LS TN 0 0 0
oy y ay dy | 90X  0x ox 9ox |
3L, 9L, 8L, 9L | L, AL, OL, oL
0 0 0 0 | 774 i L m i g % m
13z 93z 03z 93z |3y dy 9dy dy
oL, oL, 9L, oL | oL, on, op, oL
i i 2 m | 0 0 0 o | __1i i L m
dz 9z oz 9z | | 9x 9x 9x 9x
1 0 0 0 0 0 0 0 0 0

f¢J = o o o 1 o0 o0 O O O O (14)

i j m
and - .
1 0 0 0 0 0 v
0 1 0 0 0 0 v
0 0 1 0 0 0 Vv
] =2¢ 0 o O -;- 0o 0 0 (15)
0 0 0 0 % 0 0
0 0 0 0 0 1 0
2
v v v 0 0 0 -v(1-2v)

where G is the shear modulus of the material. The ordering of rows and columms
in the k matrix corresponds to

Lfi uj uz um vi vj Vz vm Wi wj wl wm Hi Hj Hl HEJ
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The matrix M is developed through the superpositioning of the individual
symmetric 12x12 element mass matrices, m, with restraint of the same appropri-
ate d.o.f. The consistent mass matrix, derived in references 15 and 16, is
used in the formulation and is defined by:

[m] = pg [LI'[L] daxdydz (16)
where Pg is the mass density of the solid propellant grain and where
[L] = [T L,I LI L I] (17)

Acoustic-So0lid Coupling

The formulation of the coupled acoustic-solid equations through equilib-
rium considerations is found in references 5 and 6. Reference 5 deals with the
transient response of a coupled system while, in reference 6 the eigenvalue
problem is formulated. The matrix form of the homogeneous equations of equi-
librium for the discretized coupled system is given by

p
I —_—
Flo ,| T U - 0] (18)
gz = % |5 tEp 1A
Y 1010

H

where wC is the natural circular frequency of the coupled system.

The matrix U of equation (18) has dimensions pxq, where p is the number of
pressure d.o.f. and q is the number of displacement and mean pressure parameter
d.o.f. The components of the U matrix are projections of the cavity-propellant
interface area associated with each surface nodal point, the surface area dis-
tribution being physically defined in figure 3. The portion of the U matrix
associated with the i,j,% triangular surface area of a boundary tetrahedron is
given by

| 1 i
Bixsi 0 . 0 IBini 0 0 IBizSi 0 0 | 0 0 0
I | I
0 .. S, 0 0 . S, 0 0 . S, 0 0 0 )
BJx j : BivS3 ! Bi2%3 !
g | |
0 0 BgxSgp O 0 ByySq O 0 By,Sq O 0 0
where B, . e are the direction cosines and S, 1 S. and 52 are the con-
trlbutlng (to a no&e) surface areas. 3
SOLUTION

Solution of the system mathematically modeled by equation (18) is facili-
tated by the use of condensation (ref. 12). 1In applying the technique to this
problem, the pressure d.o.f. are designated master and the displacement and
mean pressure parameter d.o.f. are designated slave.
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Example Application

The developed program is applied to the solution of the simple acoustic-
solid system shown in figure 4. The plane defined by nodes 5678 is the
acoustic-solid interface. The pressure is set equal to zero at nodes 1,2,3,
and 4. Thus, for the corresponding solution, p = 4 and q = 32. 3

The properties of the cavity gas used are: a mass density p of 1.225 kg/m

(1.146 x 10_7 lb—secZ/in4) and a bulk modulus B of 1.42 x 105 Pa (20.59 1b/in2).
The properties of the solid propellant grain used are: a shear modulus G of

4.41 x 107 Pa (6400 1b/in2), a Poisson's ratio v of 0.5 and a mass density Pg

of 1.770 x 10° kg/m3 (1.656 x 1074 1b-sec2/in4).

The solution for the coupled system yielded frequencies of 488 Hz, 1008 Hz,
1193 Hz, and 1804 Hz, compared to respectively corresponding values of 3670 Hz,
6934 Hz, 10,358 Hz, and 12,368 Hz obtained for the fluid system alone.

CONCLUDING REMARKS

It has been demonstrated through the use of a simple example that the
developed computer code can be used to predict the effect of solid propellant
grain structure on the natural frequency associated with the acoustic vibra-
tions occurring in the rocket motor cavity. It can be concluded that the effect
of certain suppression devices such as resonance rods can be predicted in the

same manner.
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Figure l.- Solid propellant configuration.

L P(LLj, Ly L)
or P(x,y,z)

(Xm/Ym s Zm)

Figure 2.- Tetrahedral element (natural and
global coordinates).
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Figure 3.- Surface areas associated with
interfacial nodal points.

3 equal spaces

Figure 4.- Acoustic-solid system.
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