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1.0 Purpos
 

1.1 Objective
 

The objective of this Final Report is to summarize, in a de­

tailed manner the effort required to perform the engineering design,
 

development and test of a totally solid-state television camera.
 

1.2 End Product
 

The end product of this contractual effort is asolid state
 

television camera which uses a CID (Charge Injection Device) as the
 

image sensor. The camera employs scanning techniques which allow
 

the CID-to be used with conventional monitor displays meeting EIA
 

standards. A number of significant options have been incorporated
 

in the product design to facilitate experimental study of CID camera
 

technology.
 

2.0 Scope
 

General Electric has provided the necessary resources to perform
 

engineering design, development and test of a solid state television
 

camera using a CID for the image sensor. A large number of diverse
 

tasks were performed in building the end product. A study of scanning
 

techniques and subsequent experimental evaluation resulted in the
 

choice of the two present CID camera scanning modes, normal RS170 and
 

synthetic interlace. A study of readout alternatives and their experi­

mental evaluation resulted in the choice of two selectable readout
 

modes, normal pre-inject, and NDRO. A thermoelectric cooler study
 

initiated in support of the NDRO readout mode, resulted in the incor­

poration of a thermoelectric cooler, heatsink and nitrogen purging
 

capability. Investigations, which had occurred during the progress
 

of an in-house program running parallel to this effort, resuited in
 

the valuable addition of a comb filter option. In an effort to pro­

vide as much versatility as reasonably possible, several video and
 

digital interfaces were made available externally. A detailed dis­

cussion of the work performed is described in Section 3 of this
 

report.
 



3.0 Technical keguirements
 

3.1 Study, Design and Development Requirements
 

Purpose: To study, design and develop a number of alternate
 

approaches and concepts that are applicable to the design of a CID
 

camera having state-of-the-art performance.
 

Scope: To perform engineering study, design and development
 

the areas of CID array size, camera scanning techniques, readout
 

modes and video processing.
 

Performance:
 

I. Evaluated various array sizes for state-of-the-art resolu­

tion and reasonable availability consistent with the timing of the
 

program. A 244 line x 248 array was chosen for use in the camera.
 

2. Evaluated several scanning schemes in an effort to find
 

techniques which provide video lines in proper vertical sequence.
 

The difficulty being to both satisfy the readout constraints imposed
 

by the pattern noise rejection techniques utilized in CID video
 

processing, and to meet the video output specifications imposed by
 

EIA standards. As a compromise, two scanning schemes were provided,
 

individually selectable via switching on the rear panel of the
 

camera. The "normal" scanning mode is one which has greater verti­

cal aberration however supplying the full compliment of lines (none
 

blanked) and satisfying EIA standards for total number of lines
 

(525 with 488 being visable) and interlace. The "synthetic inter­

lace" mode (outerlace) provides fully sequential video information,
 

however,supplies only 244 visable vertical lines per frame (every
 

other line is blanked), and non-interlaced fields. An additional­

video processor was added, a comb filter, which corrects to some
 

extent the vertical distortion incurred during the "normal" scanning
 

mode. This scheme also augments pattern noise rejection as an addi­

tional benefit.
 

3. Evaluated various readout modes for the CID imager from the
 

standpoint of providing a maximum of versatility for a reasonable
 

amount of hardware. Two readout modes, the normal "pre-inject"mode
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and the NDRO (Non Destruct Readout) were provided, individually se­

lectable via rear panel switches. The pre-inject mode has the best
 

signal to pattern noise ratio of any of the studied CID readout
 

schemes, however, it has a conventional fixed 33 millisecond optical
 

integration time for each element.
 

The NDRO mode provides for a variable amount of optical inte­

gration time (up to several seconds) while maintaining a continuous
 

readout of the image signal charges being accumulated by the CID at
 

standard TV video rates. The incorporation of this mode was aug­

mented by the addition of three significant hardware elements, a
 

thermo-electric cooler, video threshold detector, and AGC. The
 

thermo-electric cooler is used to cool the CID, thus maintaining
 

dark current integration at a reasonably low value during the three
 

second maximum integration period. Thermal electric cooling in­

volved a thermal design study and an iterative mechanical
 

design to achieve a compromise between dark current levels
 

(proportional to CID temperature) and the size and weight of the
 

camera package. The video threshold detector determines when the
 

accumulated signal charge is near saturation in the array and sub­

sequently injects that charge starting a new integration period.
 

(The threshold deteetor can be bypassed and a manual inject signal
 

via a rear panel BNC connector can be utilized to control injection),
 

The video AGC is utilized to maintain a constant video envelope.
 

(peak to peak video swing during the scene integration/readout time.)
 

(Note: The AGC can be used for both readout modes).
 

3.2 Scanning Technique
 

3.2.1 Resolution
 

Purpose: To develop a CID camera which simulates the resolu­

tion required by the EIA standards. To maximize the resolution
 

available from the CID array.
 

Scope: To utilize various scanning and video processing
 

techniques that significantly enhance the resolution of. the CID
 

array limited by reasonable hardware size.
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Performance: Two selectable scanning modes are provided by the
 

camera, "normal" and "synthetic interlace". A switch (S). on the 

rear panel of the camera is used to determine which is used by the
 

camera, the "normal"-scanning mode produces the vertical scanning
 

sequence as described by Figure IA. The out of sequence line for­

mat for this mode comes about by the use of redundant data (which
 

is available from the pattern noise rejection circuitry) for every
 

other line in. each field in combination with the standard interlaced
 

.TV display format. One would prefer to use a scheme (assuming a
 

244 line CID) which produced the vertical scanning sequence as
 

described by Figure lB. It is not practical to achieve this at the
 

present time as evidenced in the results of our preliminary study.

/ . 

The practical alternate to this is the synthetic interlace mode
 

(outerlace) which has the-scanning sequence as in Figure 1C. Simply
 

put, this mode is accomplished by elimination of the interlaced TV
 

format (by not allowing the extraI/2 line/field to occur) and by
 

blanking out the put of sequence redundant information which is
 

available from the pattern noise rejection circuitry. The result
 

is a sequential presentation with'no loss of unique video lines
 

Jnformation (244 unique visable lines available/frame) and direct
 

compatibility with standard TV monitors. For the "normal" scanning
 

mode, video processing by the comb filter changes the video line
 

sequence to that shown in Figure ID. The effect on the "normal"
 

scanning mode is that of interpolation and smoothness of the video
 

information vertically from line to line. This results in a more
 

subtle vertical aberration along with, as an added benefit, better
 

pattern noise rejection.
 

3.2.2 Formatting
 

Purpose: To maintain EIA vide6 standards assuring that the
 

camera will be compatible with conventional TV monitors and video
 

transmission characteristics.
 

Scope: To develop camera modes and circuitry with the intent
 

of meeting EIA video standards for sync and Video levels, inter­

lacing, and scan fates.
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Performance: The camera accomplishes the intent outlined in
 

"scope" taking a small liberty in *the way in which the sequential
 

scan mode is accomplished. This particular mode poses no problem
 

in compatibility with conventional equipment (.1%-change in-scan­

ning frequency).
 

3.3 Dei
 

3.3.1- Resolution
 

Purpose: To specify minimum resolution requirement for the CID
 

inatrix and to assure that EIA standards are met. "'
 

Scope: To maintain a nominal array size no smaller than
 

250x250 elements. To maintain compatibility of synthesized lines
 

with EIA positive interlace format.
 

Performance: An array size of 244 lines x 248 elements/line
 

was chosen as the only reasonable alternative which could meet or
 

exceed the minimum nominal requirement of 250x250 elements. This
 

array selection resulted from a best fit between required resolution,
 

array availability and baseline circuit design availability. The
 

EIA positive interlace format is met where possible, the intent of
 

this standard (i.e. compatibility) being met for all modes of the
 

-camera.
 

3.3.2 Interlace Ratio
 

Purpose: To assure interlace compatibility.
 

Scope: Specify interlace ratio of 2 to 1.
 

Performance: Interlace ratio is 2 to I with the exceptions as
 

outlined previously.
 

3.3.3 Aspect Ratio
 

Purpose/Scope: Specify an aspect ratio of 4 horizontally by
 

3 vertically.
 

Performance:- The 244x248 CID array is designed with and
 

provides an aspect ratio of 4 horizontally by 3 vertically.
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3.3.4, Vertical Scan
 

Purpose/Scope: To specify that the vertical scan be nominal ­

60 fields/second, 30 frames/second, and 525 lines/frame. 

Performance: The vertical scan is nominal - 60 fields/second, 

30 frames/second, and 525 lines/frame. A minor exception being the 

"sequential" scan mode where there are 524 lines/field. 

3.3.5 Operating Light Ranges
 

3.3.5.1 Gray Scale Response
 

Purpose: To define the camera's ability to resolve scene
 

contrast ratio and generate a proportional voltage to display'same
 

on a television monitor.
 

Scope: When the camera is activated under nominal conditions
 

and a logarithmic gray scale with 10 steps (32:1 contrast iatio) is
 

imaged onto the sensor faceplate with a highlight illumination as
 

indicated below (via a standard reflectance-type gray scale chart),
 

the camera shall resolve the 10 steps when its output is displayed
 

on a suitable television monitor and shall exhibit a signal/noise
 

ratio as defined in Section 3.3.11 and is indicated below:
 

Highlight S/N Ratio 
Illumination S/N Ratio (fixed 

Camera (faceplate) (random noise) pattern noise) 

Design Design 
Min Goal Min Goal 

244x248 Array 0.13 ft-c- 38db 48db 33db 43db 

The illumination source shall be a standard tungsten lamp at 2854 K
 

color temperature. *The highlight illumination shown corresponds
 

to 1/2 the amount required for array saturation.
 

Performance'
 

SIN Ratio S/N Ratio (Fixed
 

Readout Mode (Random Noise) Pattern Noise)
 

Normal pre-inject 39.6 db 33.6 db
 

NDRO > 30 db 32 db
 

(Commentary on comparisons between specified and achieved.
 
Great difficulty in making accurate NDRO measurements).
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3.3.5.2' Dynamic Light Range
 

Purpose: To define the camera's ability to respond to varying
 

light levels with a fixed lens iris setting. It must still retain
 

the ability to resolve the 10 logarithmic gray scale steps (as des­

cribed in 3.3.5.1) when the camera output is displayed on a suitable
 

television monitor, over a range of illumination levels.
 

Scope: The test procedure is defined to be: I) adjust lens
 

iris setting to obtain maximum signal/noise ratio without exceeding
 

array saturation; i.e., the highlight illimination'reflected from
 

the gray scale chart'shall be within 10% of array saturation;
 

2) adjust lens iris setting until the 2 blackest shades of the 10
 

step gray-scale chart are no longer resolved on the monitor display
 

(camera AGC functions to maintain constant signal output over this
 

range); 3) calculate dynamic light range from the relationship:
 

f# (loss of
 
gray-scale)


Dynamic Light Range = f# (saturation)
 

Dynamic Light Range specifications are as follows:
 

Dynamic Light Range
 
Camera Min. Des.Goal
 

244x248 Array --7:1 14:1
 

This specification may be interpreted to mean that as a minimum, one
 

can always adjust the lens iris one f stop in either direction with­

out losing the ability to resolve any of the 10 logarithmic gray
 

shades (with proper light level adjustment for nominal operating
 

conditions).
 

Performance:
 

Camera Dynamic tight Range
 

Normal pre-inject 30.25:1 (F4-F22)
 

(Commentary on comparisons between specified and achieved).
 

(AGC performed extremely well - refer to photos 8 through 15). 

-8­



3,.3.6. Operating Voltage
 

Purpose: To assure primary power capability. To assure I/0
 

cfihttol logic cbmpatibility.
 

Scope: The camera shall operate with a nominal input voltage
 

that is buffered such that standard TTL logic drive circuits can be
 

interfaced with the CID sensor electronics.
 

The camera circuits shall be so isolated as to prevent noise
 

from the power line or other circuits from appearing on the video
 

output.
 

Performance: 'The primary 'power requirements for the-camera and
 

associated thermoelectric cooler power supply are nominal 115V AC
 

50/60 Hz. Electronic regulation is used to derive DC voltages used
 

to power electronic devices internal to the camera. The distribution
 

lines are additionally bypassed at each circuit card within the
 

camera electronics assembly. Each circuit card has a ground plane
 

in close proximity to its bottom side.
 

3.3.7 Power Consumption
 

Purpose/Scope: The design of this camera shall be such that
 

power consumption shall be minimized.
 

Performance: (see 6.2) 

Voltage Power (watts) 

115V AC Primaty input to'camera 50/60 Hz 27 

115V AC Primary input TE cooler P.S. 50.60 Hz 20' 

+12V DC'Camera electronics "4.5 

-12V DC Camera electronics 4.2 

+5V DC Camera electronics 3°3 

3.3.8 Output Video Format 

. Sections 3.3.8.1 through 3 define the standard output video
 

load impedance, composite picture signal,-polarity, and signal
 

levels required by EIA television broadcast standards. The current
 

244x188 prototype camera meets all these standards, and the pro­

posed cameras will not deviate from them other than in the area of
 

-9­



Sync Signal Waveform (3.3.8.3). The timing relationships of the
 

sync signals will depend upon the choice of scan format developed
 

during the course of this program. There could be slight deviations
 

from the RS-170 Standards; however, the deviations will not be
 

sufficient to result in incompatibility with conventional TV moni­

tors and transmission characteristics.
 

3.3.8.1 Standard Load Impedance
 

Purpose: To define and specify the video output impedance of
 

the camera.
 

Scope: The standard load impedance is defined as the complex
 

ratio of voltage to current in a two-terminal network, expressed in
 

ohms. The output impedance shall be 75 ohms,+5%,over the frequency
 

range of the camera and shall be connected for single-ended operation.
 

Performance: The measured impedance = 72.0 at Jl, 75.6 at J4 

3.3.8.2 Composite Picture Signal
 

The composite picture signal is the signal which results from
 

combining a blanked picture signal (the result of the scanning
 

process) with the synchronizing (sync) signal.
 

3.3.7.2.1 Polarity
 

Purpose/Scope: The picture signal polarity is defined as the
 

sense of the potential of a portion of the signal representing a
 

dark area of a scene relative to the potential of a portion of the
 

signal representing a light area. Polarity of the composite is thus
 

stated as "black-negative" or "black-positive". The standard polar­

ity of the output of the camera shall be black-negative.
 

Performance: The camera is black-negative.
 

3.3.8.2.2 Signal Levels
 

Purpose/Sc6pe: The levels of the composite picture'signal
 

shall be defined in terms of Institute of Radio Engineers (IRE)'
 

units. Reference white level shall be +100 IRE units; blanking
 

level shall be 0 IRE units; sync level shall be -40 IRE units.
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Thus, the peak-to-peak level of signal extending from reference,
 

white to sync tip shall be 140 IRE units.
 

The subject level shall be'measured by means of an oscilloscope 

capab'te of measuring such a signal with the accuracy of - 2% of the 

actual value over the voltage range of -0.5 to +1.5 volts. Some 

means of calibration shall be provided so that 'signal level measure­

ments can be made in volts as well as in IRE units.
 

Measurements of signal levels shall be made in acc6rdance with
 

appropriate portions of 58 IRE 23.51 IRE'Standdards on Television:
 

Measurement of Luminance Signal Levels, 1958, or latest revision
 

thereof.
 

Performance: Composite picture levels f38 at Jl, 142 at J4
 

IRE units/volts (see 6.3.2)
 

3.3.8.3 Sync Signal Waveform
 

The timing relationships of the sync signals shall depend upon
 

the choice of scan format developed durihg this program as discussed
 

above. Slight deviations from the RS-170 standard in the area of syn
 

sync signal waveform are acceptable; however,' these deviations shall
 

not be'sufficient to result in incompatability with conventional TV
 

monitors and transmission characteristics'.
 

3.3.9 Output Resolution Response
 

Purpose/Scope: In television systms,- a measur.of ability to
 

delineate picture detail is resolution expressed in terms of. the maxi­

mum number of TVtines (alternate black and white -lines) per picture 

height discriminated on a standard test chart. The ratio of (1) the 

peak-to-peak signal amplitude, given by a test pattern consisting of
 

alternate black and white bars corresponding to a specified line
 

number (resolution), to (2) the peak-to-peak signal'amplitude, given
 

by.large area blacks:and 4arge area whites having eh-,same luminance
 

as the test pattern, is defined as the resolution response.
 

The methods of measurement shall be as. specified in Institute of
 

Electrical and Electronic Engineers (IEEE) 208, 60 IRE 23.52,
 

Standardson Video Techniques: Measurement of Resolution of Camera
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Systems, 1961 or latest revision thereof, be used. For the measre­

ment of resolution response, the picture signal shall be applied to
 

a picture monitor properly adjusted per the IEEE standard above. The
 

limiting horizontal and vertical resolution response is determined
 

by observing the point at which the individual lines of the graduated
 

wedges are no longer distinguishable as separately defined images.
 

The horizontal resolution response shall not be degraded by the
 

video processing chain of the camera systems, at least to an upper
 

limit defined by the number of CID elements. The limiting resolution
 

shall be no less than 70% of the number of TV elements - for example,
 

for a camera system employing 250 horizontal elements, the limiting
 

resolution shall be better than 175 TV lines per picture width.
 

Performance: Limiting resolution >175 elements. (See 6.5)
 

3.3.10 Output Video Voltage (Unblanked)
 

Purpose/Scope: The composite picture signal, as measured from
 

the sync tip to reference white level across the standard load
 

impedance (see Section 3.3.8.1), shall be nominally I volt peak-to­

peak with the following component signal levels and tolerances
 

comprising the total signal level.
 

Performance: 	 Composite picture signal .990 at Jl, .960 at J4
 
(see 6.3.2-c
 

3.3.10.1 Blanked Output Video Voltage
 

Purpose/Scope: The blanked picture signal with setup .(i.e.,
 

noncomposite), as measured from blanking level to reference white
 

level, shall be 0.714 +0.1 volt (nominally 100 IRE units).
 

Performance: 	 .738 at Jl, .705 at J4
 

3.3.10.2 Synchronizing Signal
 

Purpose/Scope: The synchronizing signal, as measured from 0
 

volts dc shall be +0.286 +0.05 volts (nominally 40 IRE units).
 

Performance: 	 .236 at Jl, .240 at J4 (see 6.3.2).
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3.3.10.3 Setup Levels
 

Purpose/Scope: The standard setup shall be 7.5 +5 IRE units
 

as measured across the standard impedance from blanking level to
 

reference black level.
 

Performance: 7.5
 

3.3.11 Signal-to-Noise Ratio S/N
 

Purpose: To determine the S/N for nominal camera operation
 

(i.e., highlight illumination at 1/2 that required for array satura­

tion) shall be as outlined below. S/N for temporal noise sources
 

(random noise) shall be determined by measurement on an oscilloscope,
 

at the camera output, (across the standard load impedance) of the
 

peak-peak noncomposite picture signal voltage and the peak-peak
 

random noise voltage. S/N is the ratio of peak-peak signal voltage
 

to rms ( ea-Peak) random noise voltage. S/N for fixed pattern
 
5.6
 

noise sources shall be determined by measurement on an oscilloscope,
 

at the camera output, (across the standard load impedance) of the
 

peak-peak noncomposite picture signal voltage and the peak-peak
 

fixed-pattern noise voltage across any one selected line of video.
 

SIN is the ratio of peak-peak signal voltage to peak-peak fixed
 

pattern noise voltage.
 

Scope: 
S/N (Random Noise) S/N (Fixed Pattern Noise) 

Camera Min. Des. Goal Min. Des. Goal 

244x248 Array 38db 48db 33db 43 db 

Performance:
 

Camera Mode S/N (Random Noise) S/N (Fix.Pat.Noise)
 

Normal Preinject 39.6 db 33.6db
 

NDRO > 30 db > 32db
 

3.3.12 Geometric Distortion
 

Purpose/Scope: The TV camera geometric distortion exclusive of
 

the lens shall not exceed a displacement of any picture element from
 

its true position in the object being viewed by more than +2% of the
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picture height within Zones I and 2 and +5% of the picture height
 

within Zone 3. For any increment of 5% of the picture height, the
 

rate of change of displacement of any picture element shall not be
 

greater than 0.5% of the picture height. Zone I shall be defined
 

as the area within an inscribed circule centered within the scanned
 

area, the diameter of which is one-half the picture height. Zone .
 

shall be the area included within an inscribed circle centered within
 

the scanned area with a diameter equal to the picture height, but
 

excluding the area of Zone 1. Zone 3 shall be the remaining area of
 

the scanned picture outside of or excluding Zones 1 and 2.
 

3.3.13 Spots and Blemishes
 

Purpose/Scope: A spot or blemish shall be defined as a video
 

signal transition of 7 IRE units or more in the output picture signal
 

not present in the original scene, and which is the direct result of
 

a sensor defect. The difference in sensitivity between any two
 

adjacent CID elements in any direction shall be no more than 10%.
 

Also, the difference in sensitivity from raster edge to edge (hori­

zontally and vertically) shall be no more than 10%. No horizontal
 

or vertical black lines resulting from a failed CID element shall be
 

allowed. The size of a spot shall be determined by counting the
 

number of scan lines on which the transition occurs; i.e., the number
 

of lines per frame on which the transition is greater than 7 IRE
 

units. The total of white and dark spots shall be less than or equal
 

to:
 

10 spots < 4 TV lines per frame
 

2 spots < 8 TV lines per frame. 

To determine the presence of spots, smudges, etc., a uniform grey
 

background shall be observed which is illuminated by light source(s)
 

of the appropriate color temperature and of the intensity to allow
 

nominal camera operation (i.e., S/N shall not be such that spots and
 

blemishes are masked by noise), Any gain operation by the camera
 

shall also be considered.
 

Performance: See photograph #7
 

# white spots 3 # black spots 6
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3.3.14 Blooming
 

The solid-state image sensor is particularly susceptible to
 

"blooming" - the spreading of an optical overload-generated charge
 

into adjacent regions. The contractor shall propose various solu­

tions to minimizing the blooming problem, incorporate the most
 

acceptable solution into the camera, and include in the final report
 

a detailed discussion of the solutions proposed 'and further work
 

that may be done in this area.
 

Perform-nance: See photographs #16 and #17
 

3.3.15 Camera Optics
 

Purpose/Scope: The camera shall be equipped with a lens with
 

a fixed focal length between 25 mm and 50 mm with manual aperture
 

and focus controls. The aperture control range shall-be between
 

f/2.2 to f/16 or better. The lens shall be mounted to the camera
 

such that it will be interchangeable with other-lenses. The lens'
 

shall be 'considered a part of the camera for all specifications
 

herein. No development is-intended in the optics area.
 

Performance: The camera has been equipped with two interchange­

able lenses each optimized for a specific area of experimentation.
 

A large F.85 to F11,25 mm lens is provided for experimentation at
 

low light levels, especially suitable where the camera is operated
 

in the NDRO readout mode. A small F1.9 to F22 lens is provided for
 

experimentation at high light levels. The recessed objective of
 

this lens makes it suitable in applications of extreme side light
 

intensities such as produced from large areas of high reflectance
 

scene material.
 

3.3.16 Camera Controls
 

The camera shall be equipped with external controls that are
 

accessible to the operator. The controls shall be so located,
 

positioned, and labeled with sufficient size and contrast to allow
 

ease of reading and operation.
 

Performance: See outline drawing
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3.3.17 	Came a Interfaces
 

PurkS 'IScope: The camera shall include two connectors so as
 

to facilitate the provision of camera power from one source and camera
 

video to a standard commercial-type TV monitor. The contractor shall
 

select the appropriate connectors to meet all the requirements of this
 

specification. They shall be small with a minimum number of pins and
 

and have a positive locking mechanism. Pin assignments are to be
 

determined by the contractor.
 

Performance: A standard 115V AC chassis mount, 3 pronged male
 

plug, J12, serves as the primary power input to the camera. All in­

put and output signal interfaces are provided with standard female
 

BNC chassis mount connectors (see 6.1).
 

3.3.18 Non-Destruct Readout Mode
 

A non-destruct readout (NDRO) mode shall be provided such that a
 

video output signal meeting with requirements of this specification
 

shall be atainable for all scene integration times up to and including
 

3 seconds for scene highlight illuminations of 0.1 foot-candle or
 

greater. A selectable capability shall be provided that will allow
 

either automatic integration cutoff at saturation or continuous inte­

gration (the minimum S/N specification shall not apply for the latter).
 

To achieve the necessary low noise level for proper NDRO mode opera­

tion, a thermoelectric cooling device shall be incorporated which
 

shall maintain the CID operating temperature at C + 50C.
 

Performance: A measured temperature of -4 0 was obtained with
 

the CID and cooler exposed to room temperature and humidity. Refer
 

to 6.1 for electrical performance.
 

3.4 	Prototype Development and Test
 

One prototype solid-state TV camera employing CID's as the image
 

sensor which meets the design requirements of Section 3.3 shall be
 

developed, tested and delivered to NASA/JSC.
 

Performance: Delivered 8/6/76.
 

305 	Design Reviews
 

There shall be at least two (2) design reviews with the presen­

tations to be held at the contractor site.
 

Performance: Design Review #1 - 12/75 
Design Review #2 - 4/76 
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4.0 Camera Operation
 

4.1 Preamplifier Board
 

The preamplifier board contains two channels. One channel is
 

connected to the "odd" columns of the array; the other to the "even"
 

columns. Each channel is identical to the other. A pre-amp channel
 

consists of a low-noise feedback type input stage, a filter section
 

with buffers, and a sample-and-hold circuit. The input stage has a
 

gain of approximately 0.67 V/pA. The equivalent EMS input noise is
 

0.62 nanoamps (measured with a 2 MC sharp-cutoff filter and a 39 pF
 

capacitor to simulate the CID array capacitance).
 

The input amplifier is followed by the filter section. Without
 

this filter, the sampling wave at 2.3 MC will alias with noise volt­

ages in the region of 2.3 MC and low frequency "difference" signals
 

will appear in the output of the samples. These noise voltages,
 

being low frequency, are very objectionable when viewed on a display
 

monitor. To minimize this "conversion noise", a filter with the
 

response shown in Figure I is used which has high attenuation at the
 

sample frequency. As seen in Figure 1, a step wave passed through
 

such a filter has rather slow rise time. It is necessary, therefore;
 

to delay the sample pulse almost the full element period so that the
 

full MIF of the CID can be realized.
 

The filter has about 10% overshoot but the time delay of the
 

sampling pulse is chosen to occur as the signal is just passing
 

through the 100% point. As a result, the overshoot is not repro­

duced in the sampled output.
 

The sampling circuit is designed to provide fast acquisition
 

time (60 nanoseconds) and with minimum feedthrough of the sampling
 

gate pulse. The feedthrough spikes are +48 MV in amplitude and are
 

about 10 nanoseconds wide. These spikes, although small to begin
 

with, are filtered out by the 3 MC low-pass filter in the processor.
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4.2 Video Processor
 

The two pre-amp signals eI and e2 are fed to the processor
 

module where they are multiplexed together in a way that provides
 

the lowest possible noise. A block diagram is shown in Figure 2
 

and the signal waveforms in Figure 3. Signal e1 is delayed for a
 

220 nanosecond delay line - the period of an element. This delayed
 

signal, elD , is then added to e2 to form the signal shown in
 

Figure 3a. The waveform used, indicates the output of a vertical
 

white bar or window scene. The two singals add directly whereas
 

the noise voltages, from 2 separate preamps, add inquadrature. The
 

S/N of the combined signal is therefore 3 db better than each preamp
 

by itself.
 

Referring again to Figure 2, elD and e2 are subtracted, yield­

ing the waveform of 3b. In this case the low frequency video is
 

cancelled leaving only edges or transitions as shown. Noise is not
 

cancelled, however, so this "edge" signal is fed through a base-line
 

clipper which removes the noise (random noise and pattern noise)
 

except during edges or transitions (see Figure 3c). The result is
 

that large flat areas of the TV image, where there is no detail,
 

will have little or no added noise.
 

The wave of Figure 3c could be used directly to correct the
 

rise time of 3a. Instead, additional pulse shaping with an R-L-C
 

circuit forms the wave of 3d which is then added to 3a as shown.
 

A pot controls the amount of correction and the picture may be
 

slightly over-corrected if desired to optimize subjective sharpness
 

in the final picture.
 

A 2.4 mc switching voltage, in phase with the sampling pulse,
 

is required to keep the HF correction wave polarized properly when
 

the image transition moves from an odd to an even column, or vice
 

versa'
 

The combined signal of Figure 3e is amplified and routed to a
 

1-H delay circuit which is used to cancel pattern noise . A block
 

The video crosstalk term which appears with pre-inject readout
 
is also cancelled by the delay line circuit.
 

-23­



diagram is shown in Figure 4 along with the pertinent waveforms.
 

Each line of the imager is read twice. The first "read" contains
 

the signal plus pattern noise as indicated by the arrows in
 

Figure 4. The second read contains only pattern noise. The input
 

signal is delayed by exactly one horizontal line period and is
 

subtracted from the undelayed signal. Since the pattern noise is­

the same on each line, it is cancelled out. The video signal is
 

not cancelled since it only appears on alternate lines. The delayed
 

video at this point could be thrown away or, as in this case, in­

verted again and added to the real-time video as shown in Figure 4e.
 

A subtle advantage of doing this is as follows: any residual
 

pattern noise not completely cancelled by the delay line appears in
 

opposite phase on alternate horizontal lines and provides additional
 

optical cancellation of the pattern noise. This has been indicated
 

by the single arrows of Figure 4e.
 

The remaining video processor functions are DC level setting
 

via keyed clamps, video gain, blanking addition, blanking clipping,
 

white level clipping, sync addition and a 75 ohm output for the
 

normal video output. Additionally, three other functions are pro­

vided. An analog switch is employed to blank redundant video lines
 

for the synthetic interlace scan mode. An AGC function is provided
 

which, via back panel connections, can be used or bypassed for all
 

modes. The mean value of the AGCed video signal may be controlled
 

via the AGC threshold contrbl, also located on the back panel. An
 

NDRO inject circuit is provided to control image charge injection
 

during the NDRO readout mode. It is essentially a video level
 

detector which produces a logic "I" level when the average video
 

level reaches a certain presettable value (on inject). When used,
 

the AG2 output from the video processor board is routed, via rear
 

panel connections (J6 to J5), to the video driver board where white
 

level clipping, blanking and sync addition is incorporated into the
 

video waveform.
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4.3 Video Driver Board
 

The video driver board has the functions of video buffering
 

and comb filter processing. The two primary video'output signals
 

provided at the rear of the camera, Jl - "Video Out" and J4 - "Comb
 

Filter Video Out", are buffered on this board.
 

Sync and blanking is incorporated into these waveforms along
 

with a 75 OHM driver for each output. Also located on this board
 

is a buffer for the video sent to the comb filter board. The
 

comb filter processor operates by summing the 1H delayed video
 

from the comb filter board with undelayed video, thereby adding
 

together alternate video lines within each field. There are two
 

benefits in using the comb filter. During the normal scanning
 

mode of operation, it softens the vertical aberration due to out
 

of sequence lines. This is due to the averaging function that
 

occurs which smoothes and interpolates line information in a nearly
 

proper sequence. The other benefit lies in the fact that the
 

residual pattern noise not removed by the video processor has the
 

characteristic of having opposite phase (1800) on alternate lines.
 

When the alternate lines are summed together, this residual pattern
 

noise is considerably reduced.
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4.4 Delay and Comb Filter Boards
 

The delay and comb filter boards are identical with the-excep­

tion of the 32 1Hz crystal oscillator which is contained on the
 

delay board and not on the comb filter board. To achieve the per­

formance necessary for good noise cancellation, the following re­

quirements are criticali
 

Exact I H delay
 

Stable delay time
 

Faithful impulse response
 

Very low amplitude distortion (differential gain)
 

Very low differential phase distortion
 

Low self-generated random noise.
 

These requirements are most nearly fulfilled by a zero T. C.
 

glass delay line. The video signal is AM modulated onto a 32 MC
 

carrier which is generated by a crystal oscillator. This same fre­

quency is divided down and used to generate the various voltages
 

required to scan the CID. In this way, any possibility of beat­

frequencies is eliminated.
 

The modulated carrier is then amplified and fed to the delay
 

line. The line has about 30 db of loss so that additional amplifi­

cation is required before demodulation. The demodulator is a full­

wave type using hot-carrier diodes. This circuit was found to have
 

lower differential gain and phase distortion than some integrated
 

circuit types. The response of the entire delay channel is shown
 

in Figure 5. It is flat to 10 MC; down to less than 6 db at 16 MC.
 

This response is considerably broader than the 2-1/2 or 3 MC needed
 

for the video information. However, to faithfully reproduce the
 

shape of the pattern noise, which is needed for maximum cancellation,
 

a wide bandwidth is required. Figure 2 also protrays a differential
 

gain and phase test signal similar to that used in standard televi­

sion systems. In this case, the H-ramp simulates a low frequency
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video signal which covers the full amplitude range. The 1.2 MC
 

square wave, which is added to the ramp, simulates the pattern
 

noise from the imager.
 

Such a signal was fed through the delayed channel and sub­

tracted from the undelayed signal. The pattern noise cancellation
 

over the entire amplitude range was 100:1. In earlier camera
 

designs, this ratio was 15:1.
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4-5 , annigBbard
 

The scanning module-consolidates circuitry used to generate
 

scanning logic required by the CID imager, clamp, sample and other
 

pulses required by the analog signal jrocessing loop, and synchro­

nizing and blanking pulses applicable to closed circuit TV systems.
 

Essentially, the scanning module consists of three sections:
 

a) A counter, and multiplex circuitry which generates.the imager
 

horizontal phase (0) pulses, processor loop sample pulses, a
 

2.4 MC switching voltage, and a 2 MC sync generator clock.
 

b) The TV horizontal and vertical rate section, employing a
 

3262 ADC M0S sync generator chip and appropriate processing
 

logic to produce imager H and V data pulses, vertical phase
 

(0)pulses, vertical enable pulses, and a row load device
 

gate signal - as well as synchronizing, blanking,°and field
 

and line rate pulses required by the Camera Video Processing
 

System.
 

c) Assorted logic for performing readout and scanning mode'
 

changes, and for controlling injection during the NDRO mode.
 

A) The counter section is comprised of devices A2, A3, A4, A5, A6,
 

A7 and portions of.Al and A12. 32 MC clock pulses generated on the
 

delay board are applied to cascaded sections of A2 &nd A3 (divide by
 

16). The resulting 2 MC square wave is applied to the sync generator
 

chip (discussed later). A 16MC square wave (clock divided by 2) is
 

brought out from A2a and is applied to a divide by 7 counter consist­

ing of A4, A5, and A6. The Q1 through Q6 outputs of A4, and the Q(7)
 

output of A5 have a duration of 61 ns and are delayed from the
 

previous Q output by a 61 ne period (see Figure 6).' A6 multiplexes
 

the outputs to derive a data pulse which resets the counter at the
 

end of the 7th interval.
 

The Q7 output of the counter (2.4 MC) is applied to A5b (divide
 

by 2)-deriving the 1.2 MC square wave and its complement which become
 

the HOpulses. Note that counter output Q7 "times" the -HO interval
 

(Figure 6). The Q6 output of the counter occurring at-the end of the
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HO pulses s inverted in Ala, becoming the system sample pulse. A7a,
 

in conjunction with Alb, and Al, generates the 2.4 MC high frequency
 

gate signal used in the video processor module. The sample pulse
 

rise initiates the sync wave; the inverted output of A12 which repre-­

sents Ql-l/2, ends the period (see Figure 6).
 

B) The horizontal and vertical rate section of the scanning module
 

processes various A8 (sync generator) outputs to obtain additional
 

imager scanning pulses, and video processor signals.
 

Horizontal data pulses are obtained by sampling and delaying, at
 

A15 and A14, a portion of the burst flag output of A8.
 

Vertical data pulses are obtained by sampling and delaying, at
 

A15, a portion of the "ov'ed" field index outputs of A8 which are
 

available at A13.
 

Vertical phase (0) pulses result from gating, at A12, divided
 

down horizontal drive pulses, A9, produced by AS.
 

Vertical enable pulses result from gating a field index counter,
 

A7, with a multiplexed signal which is readout mode dependent. This
 

multiplexed signal is a function of VO, H, and RVG VO being readout
, 


mode dependent.
 

The RG pulse is derived from a sampled and delayed -H pulse
 

available from A8.
 

Horizontal reset pulses required by various counter sections, are
 

derived from differentiated and inverted horizontal drive pulses, -+8,
 

at A13.
 

C) The A20, 21, 22 counter sections comprise a 262 line counter
 

which is used to reset the sync generator A8 at the beginningof each
 

field during the "synthetic interlace" scan mode. A19, 23 generate
 

the video gate signal which is also required for the synthetic inter­

lace scan mode. The purpose of this gate signal is to blank alternate
 

(redundant but out of spatial sequence) video lines from each field.
 

Even lines are blanked for field #1 and odd lines are blanked for
 

field #2. A26, 24, 25 utilize the video level switch output from the
 

video processor board to generate signals to control the injection of
 

charge at the CID during the NDRO readout mode.
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4-o Auxiliary Interface and Array Boards
 

The CID array requires several DC and switching voltages to
 

operate properly. The non-standardl DC voltages (i.e., not directly
 

available from the DCpower supply) and the non TTL level, switching
 

voltages are provided by the auxiliary and array boards. The array 

board also serves to provide mounting for the CID. Figure 6 des­

cribes the major functions performed on these boarda and their ­

,-relatlionship to the-CID. It is important to note that the switches
 

denoted SW on the diagram are essentially digital level translators.
 

They accept standard TTL input signals and provide switchingvolt­

ages'that swing nearly to the limits of the DC voltages provided-to
 

them. In addition, the RVG generation, provided on the auxiliary
 

interface board, takes into account the selected readout mode
 

(preinject-NDRO). The required logic for readout mode switching is
 

included on this board.
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4.7 Camera Power Supply
 

The camera power supply is mounted internally to the camera.
 

It supplies three regulated voltages, +12V (.25A), -12V (.25A) and
 

±5V (IA). Regulation is performed by three series pass IC regula­

tors mounted on a heat sink which is in thermal contact with the
 

top cover of the camera. All regulated outputs are over current
 

protected and in addition, the +5V output is over voltage protected.
 

An unregulated +23V is also supplied. This voltage is subsequently
 

regulated to -15V with a Zener diode on the auxiliary interface
 

board.
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4.8 Thermoelectric Cooler
 

A provision is made for cooling the CID thermoelecttically
 

for use in the NDRO readout mode. A two stage thermoelectric
 

cooler (Nuclear Systems, Inc. 5HF2) is mounted to a heat sink plate
 

which is in thermal contact with the bottom of the camera chassis
 

(hot surface). The cold end of the cooler is in thermal contact
 

with the back of the OID via an intermediary copper block cold
 

-finger. A separate thermoelectric cooler power supply is provided
 

which connects to ill on the rear of the camera. Proper polarity
 

must be observed in this connection. A protective diode mounted on
 

the T.E. cooler heat sink prevents inadvertent current flow in the
 

wrong direction. The power supply has a high and a low power
 

switch. The high switch position should be used only for rapid
 

cooldown of the CID and subsequently, the unit should be placed in
 

the low position for continuous running. It should be noted that
 

it is extremely important that the heat sink be in good thermal
 

contact with the camera chassis, i.e. thermal grease at this junc­

tion and fully tightened focus adjustment screws (which mechanically
 

mount the heat sink to the camera chassis), Failure to note this
 

may cause permanent damage to both the thermoelectric cooler and
 

the CID. Additionally, it is important that a moderate rate of dry
 

nitrogen flow be maintained into the "purge" connection while the
 

camera is being thermoelectrically cooled. This will prevent
 

excessive condensation in the area of the CID which will cause a
 

slow but reversable deterioration in performance.
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5.0 Controls and Their Function
 

Video Processor:
 

HO Level 


Blanking: 


F to F: 


H/2: 


Delay Channel 

Gain: 


Delay Bal: 


High Freq: 


.AGO Level: 


PI Gain: 


NDRO Gain: 


Vid Lev$5W 

Th'Id:
 

Controls positive excursion of H0 pulses and is
 

adjusted for minimum patterning consistent with''
 

reliable horizontal scan.
 

Controls "setup"; the level between the most positive
 

excursion of camera sync and the most negative (black)
 

video component.
 

(Field to Field) compensates where necessary for
 

differing array'sensitivity field to field.
 

Compensates for line to line DC level variation.
 

Adjusts gain of the delay channel such that it matches
 
exactly that of the undelayed channel thus optimizing
 

pattern noise cancellation.
 

Balances undelayed channel time delay such that it
 

matches exactly that of the delay line channel for
 

optimum pattern noise cancellation.
 

Aperture corrects video signal to re-constitute
 

element rate MTF (may be adjusted to exceed 100%).
 

Controls DC feedback in the AGC loop. Control should
 

beleft in the fully MT position
 

Sets processor gain when camera system is in the pre­

inject mode.
 

Sets processor gain when camera system is in the NDRO
 

mode. This control and the PI gain control tend to
 

interact
 

(Video level switch threshold) controls integration
 
time when camera is in the NDRO mode and determines
 

the video level at which injection of the arrdy
 

occurs. Control is adjusted (when the cooler has
 

stabilized) such that array is injected just short of
 

saturation on low light level scene material.
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Gain Bal:K 


NDRO H Shade: 


NDRO H/2: 


Delay Module:
 

XO Frequency: 


Compensates for possible pre-amp channel gain imbal­

ance. Control is adjusted for minimum element rate
 

patterning in scene highlight (PI mode).
 

Compensates for possible horizontal shade due to dark
 

current effect in CID.
 

Compensates for H/2 offset characteristic of preamp
 

video in the NDRO mode.
 

Allows for trimming crystal oscillator frequency.
 

Control is adjusted along with processor delay channel
 

gain and delay balance for minimum pattern noise.
 

Response Trim: 	Adjusts 1 H delay channel RF bandpass for optimum
 

response. (Sweep generator required).
 

Comb Filter:
 

Comb Delay Bal: Trims undelayed channel time delay to match that of
 

of the-I H delay channel.
 

Response Trim: 	Adjusts 1 H delay channel RF bandpass for optimum
 

response (sweep generator required).
 

Video Driver Board:
 

Comb Gain Adjusts 1 H delayed channel gain such that it matches
 
Balance: exactly that of the undelayed channel.
 

Comb Blanking: 	Controls setup in the comb filter video channel (see
 

video processor "blanking").
 

Video Preamp:-


H0 Comp Compensates for HO crosstalk in odd and even preamp
 
(R, R30): channels. Controls are adjusted for minimum
 

element/2 rate 	square wave at each preamp output.
 

Aux Interface:
 

Scdn Logic: Controls positive excursion of scan logic. Control
 

is adjusted for nominal level of -+7V.
 

Epi Adjust: 	 Controls array epitaxial layer bias, Control is Set
 

for epi level of = 8.1V.
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6.0 Predelivery Acceptance Test Procedure
 

6.1 Camera Interfaces
 

The following outputs will be appropriately terminated and monitored
 

by a scope to verify proper signal levels.
 

Location Description Verified
 

5l Video Output X
 

J2 Undelayed Video X
 

J3 Pre AGC Video- X
 

J4 Comb. Filter Video Out X
 

J6 AGC Video Out X
 

V -V (I U.L.) X
 

J8 -Sync (1 U.Lo) X
 

J9 -H (I U.L.) X
 

The following input functions will be exercised to verify proper
 

operation.
 

Location Description Verified
 

J5 Post Processor Video In X
 

J10 External Inject X
 

Sl Ext/Auto Inject -X
 

S2 NDRO Enable X
 

S3 Synthetic Interlace Enable X
 

S4 Power X
 

RI Video Gain X
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6.2 Power Consumption
 

Camera power consumptions external and internal to unit:
 

Nominal Voltage Description Power (Watts) 

1l5V AC Total Primary Input to Camera 27 

A,8/5.15V DO(a) TE Cooler (Input to Camera) 13.92/16.99 

+12V DC Camera Electronics 4.50 

-12V DC Camera Electronics 4.21 

+5V DC Camera Electronics 3.26 

Camera electronics independent of cooler and power
 
supply inefficiency. 11.97
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6.3 Output Video Format
 

6.3.1 Standard Load Impedance
 

The standard load impedance is defined as the complex ratio of
 

voltage to current in a two-terminal network, expressed in ohms.
 

Procedure:
 

The following test circuit will be used:
 

Load
 

Camera OHMmeter Scope
 

The open circuit output video voltage will be measured with
 

a scope. The pot will then be used to terminate the output and be
 

subsequently adjusted to yield an output voltage of 1/2 the
 

previously measured open circuit voltage. The pot will then be
 

removed from the output circuit and measured with a digital ohm­

meter.
 

The output impedance shall be 75 ohms +5% over the frequency
 

range of the camera and shall be connected for single-ended
 

operation.
 

J1 Measured impedance 72.0 a 

J4 Measured impedance 75.6 a
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6.3.2 Composite Picture Signal Measurements
 

The composite picture signal is the signal which results from
 

combining a blanked picture signal (the result of the scanning
 

process) with the synchronizing (sync) signal.
 

The subject level will be measured by means of an oscilloscope
 

capable of measuring such a signal with the accuracy of + 2% of
 

the actual value over the voltage range of -0.5 to +1.5 volts.
 

Some means of calibration shall be provided so that signal level
 

in IRE units.
measurements can be made in volts as well as 


The following composite signal measurements were made in accord­

ance with appropriate portions of 58 IRE 23.51 IRE Standards on
 

Television: Measurement of Luminance Signal Levels, 1958, or
 

latest revision-thereof:
 
Jil J4
 

Required Verified Verified
 

Polarit Black Negative X X
 

Signal Levels
 

White 100 IRE units 100 100
 

Blanking 0 IRE units 0 0
 

Sync -40 IRE units -38 -42
 

Setup 7.5+5 IRE units 7.5 7.5
 

Output Video Voltage (with 75 ohm termination)
 

Composite IV p-p 990 MV 960 MV 

Blanked Picture Signal with setup .714 + .V p-p 738 MV 705 MV 
(non composite) 

Synchronizing Signal +.286 + 05V p-p 236 MV 240 MV
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6.4 Spots and Blemishes
 

A spot-or blemish shall be defined as a video signal transition of
 

7 IRE units or more in the output picture 'signal not present in the
 

original scene, and which is the direct result of a sensor defect. The
 

difference in sensitivity between any two adjacent CID elements in any
 

direction shall be no more than 10%. Also, the difference in sensitivity
 

from raster edge to edge (horizontally and vertically) shall be no more
 

than 10%. No horizontal or vertical black lines resulting from a failed
 

CID element will be allowed. The size of a spot shall be determined by
 

counting the number of scan lines on which the transition occurs; i.e.,
 

the number of lines per frame on which the transition is greater than
 

7 IRE units.
 

To determine the presence of spots, smudges, etc., a uniform grey
 

background shall be observed which is illuminated by light source(s) of
 

the appropriate color temperature and of the intensity to allow nominal
 

camera operation (i.e., SIN shall not be such that spots and blemishes are
 

masked by noise). Any gain operation by the camera shall also be considered.
 

The total of white ad dark spots shall be less than or equal to:
 

10 spots < 4 TV lines per frame
 

2 spots < 8 TV lines per frame 

F significant white 

The total of white and dark spots me&sured: 9 L6 significant bla~kJ 

Measured at room temperature (white spots halve in intensity
 
for approximately each 800 reduction in CID temperature)
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6.5 Output Resolution
 

In television systems, a measure of ability to delineate picture
 

detail is resolution expressed in terms of the maximum number of TV lines
 

(alternate-black and white lines) per picutre height discriminated on a
 

standard test chart. The ratio of (1) the peak-to-peak signal amplitude,
 

given by a test pattern consisting of alternate black and white bars
 

corresponding to a specified line number (resolution), to (2) the peak-to­

'peak signal amplitude, given by large area blacks and large area whites
 

having the same luminance as the test pattern is defined as the resolution
 

response.-


The methods of measurement are as specified in Institute of
 

Electrical and Electronic Engineers (IEEE) 208, 60 IRE 23.52, Standards on
 

Video Techniques: Measurement of Resolution of Camera Systems.
 

Resolution: The limiting horizontal and vertical resolution
 

response is determined by observing the point at which the individual
 

lines of the graduated wedges are no longer distinguishable as
 

separately defined images. For the measurement of resolution response,
 

the picture signal shall be applied to a picture monitor properly
 

adjusted per the IEEE standard above.
 

The horizontal resoltuion response shall not be degraded by the
 

video processing chain of the camera systems, at least to an upper
 

limit defined by the number of CID elements. The limiting resolution
 

shall be no less than 70% of the number of TV elements.
 

Desired Measured
 
Scanning Mode Horizontal Vertical Horizontal Vertical
 

Normal 174 lines 171 lines >200 lines 175 lines
 

Synthetic Interlace 174 lines 171 lines >200 lines >200 lines
 

Resolution Response
 

Measured Resolution Response > 175 lines
 

(See photographs #1 through #6)
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6.6 Operating Light Ranges
 

6.6.1 Gray Scale Response
 

The gray scale response is defined as the camera's ability to
 

resolve scene contrast ratio and generate a proportional voltage
 

to display same on a television monitor.
 

When the camera is activated under nominal conditions and a
 

logarithmic gray scale with .10 steps (32:1 contrast ratio), is
 

imaged onto the sensor faceplate with a highlight illumination as
 

indicated below (via-a standard reflectance-:type gray scale chart),
 

the camera shallresolve the 10 steps when its output is displayed
 

on a suitable.television monitor and shall exhibit a signal/noise 

ratio as, defined,and indicated below: . , -

The S/N for temporal 'noise'sources (random noise) shall be
 

determined by measurement on an oscilloscope, at the camera output,
 

(across the standard load- impedance): of the peak-peak-noncomposite
 

picture signal voltage an the peak-peak random noise--voltage.
peak-peak

( :6 )S/N is the ratio of peak-peak signal voltage to rms 


random noise voltage. S/N for fixed pattern noise sources shall
 

be determined by measurement on an oscilloscope, at the camera
 

output, (across the standard load impedance) of the peak-peak fixed­

pattern noise voltage across anyL cne selected line of video. S/N
 

is the ratio of peak-peak signal voltage to peak-peak ftxed pattern
 

noise voltage.
 

Mode 
Highlight Illumination 

(Faceplate) 
S/N Ratio 
'(Ra•om 

S/N Ratio 
(Fixed Pattern) 

Normal 
Preinject 

1/2 amount requiied'for 
array saturation (.4 ft-c) 

--
(.13 ft-c nominal) 

Min 
NR 

38DB 

Meas 
>50 DB 

39.6__DB 

- Min, 'Meas 
NR 46 DB 

. . -
33DB 33.6DB 

1/2 amount required for 
array saturation with a scen
integration time of 3 second

e 
s 

NDRO (.A ft-e nominal) 38DB >30 DB 30DB 32 DB 

The illumination source shall be a standard tungsten lamp at 2854K color
 
temperature.
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6.6.2 Dynamic Light Range
 

The dynamic light range is defined as the camera's ability to
 

respond to varying light levels with a fixed lens iris setting.
 

It must still retain the ability to resolve the 10 logarithmic gray
 

scale steps (as described previously) when the camera output is
 

displayed on a suitable television monitor, over a range-of illumina­

tion levels.
 

The test procedure is defined to be: 1) adjust lens iris setting
 

to obtain maximum signal/noise ratio without exceeding array satura­

tion; i.e., the highlight illuminati6n reflected from the gray-scale
 

chart shall be within 10% of ariay saturation; 2) adjust lens iris
 

setting until the 2 blackest shades of the .10 step gray-scale chart
 

are no longer resolved on the monitor display (camera AGC function
 

to maintain constant signal output over this range); 3) calculation
 

dynamic light range from the relationship:
 

2
 
D Ln(loss 

of 

Dynamic Light Range = gray-scale) I
 

\f# (saturation) /
 

Measurement performed with camera in the normal preinject readout
 

mode:
 

Dynamic Light Range
 

Required Meas.
 

with AGO 7:1 30.25:1 F4 to F22
 

Without AGC NR 7.84:1 F4 to FII
 

Refer to photographs #8 through #15.
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6.6.3 Signal-to-Noise Ratio (S/N)
 

The S/N for nominal camera operation (i.e., highlight illumination
 

at 112 that required for array saturation) shall be as outlined
 

below. S/N for temporal noise sources (random noise) shall be
 

determined by measurement on an bscilloscope, at the camera output,
 

(across the standard load impedance) of the peak-peak noncomposite
 

picture:signal voltage and the peak-peak random noise voltage.
 

S/N is the ratio of peak-peak signal voltage to rms \ a5.b
 

random noise voltage. S/N for fixed pattern noise sources shall
 

be determined by measurement on an oscilloscope, at the camera out­

put, (across the standard load impedance) of the peak-peAk non­

composite picture signal voltage and the peak-peak fixed-pattern
 

noise voltage across any one selected line of video. S/N is the
 

ratio of peak-peak signal voltage to peak-peak fixed pattern noise
 

voltage.
 

S/N (Random Noise) S/N (Fixed Pattern)
 
Readout Mode Required Measured Required Measured
 

Normal Preinject 38 DB 39.6 DB 33 DB 33.6 DB
 

*NDRO 38 DB >30 DB 30 DB 32 DB
 

The highlight illumination shall be at 1/2 that required for array
 

saturation for a scene integration time of 3 seconds (cooler in operation).
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6.6.4 Blooming
 

The CID image sensor is particularly insensitive to blooming. Due
 

to this fact, the measurement of the effect becomes difficult to
 

do at the camera as the optics and signal processing circuitry of
 

the camera tend to obscure the inherently low value of the charge
 

spreading which occurs at the sensor.. Tests have been performed
 

using a laser focused on a single element of a CID sensor. The
 

results of these tests indicate a nominally small amount of spread­

ing even for extremely intense light levels.
 

In lieu of performing a laser test, photos are provided which
 

depict the camera's overall response to an intense red light over­

load (from lighted match) under a nominal camera system gain with
 

the camera system gain at maximum level.
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VERTICAL AND HORIZONTAL RESOLUTION MEASUREMENTS
 

PH #1. Horizontal Resolution, Normal Scan 
> 175 Lines. 

PH #2. Horizontal, Resolution, Synthetic 
Interlace > 175 Lines. 

-SIR 

lio ... 

PH #3. Vertical Resolution, Normal Scan PH #4. Vertical Resolution, Synthetic
 
175 Lines. Interlace > 200 Lines.
 

To facilitate resolution measurements, only the center portion of the resolution chart (shown in PH #5
 
and PH #6) was used. This area corresponds to 1/2 width of chart X 1/2 height of chart. The areas used
 
above, therefore, are at 1/2 resolution and resolution numbers are 1/2 that shown.
 



RESOLUTION CHART
 

lJ 

PH #5. Normal Scan Mode PH #6. Synthetic Interlace Scan Mode
 

The above photos demonstrate the need for the use of a scaled down
 
resolution chart as used in PH #1, 2, 3, 4 to make accurate resolution
 
measurements.
 



ARRAY DEFECT MEASUREMENTS
 

PH #7. White and Black Spot Defects
 

Each defect occupies only 1 line.
 
White spot defects present only on I field.
 
There is a total of 9 "significant" defects.
 

3 white spots (nominally 20 IRE units
 
6 black spots 

Note: Above measurements made at room temperature and
 
with a nominal scene illumination (AGC not used). 



AGC PERFORMANCE (UPPER PORTION OF DYNAMIC RANGE)
 

PH #8. F 2.5 PH #9. F 2.8
 

PH #10. F 4 PH #11. F 5.6
 



00 

, PH #12. F 8 PH #13. F 11
 

PH #14 F 16 PH #15 F 22
 



ANTI BLOOMING RESPONSE
 

PH #16 Nominal Lighting PH #17 Low Level Lighting 
(AGC at full gain) 



NDRO
 

PH #18. F 22, 1/2 see Integration Light PH #19. Bias Charge Variations after 
Level of Brightest Chip 3 second Integration 
130 Foot Lamberts 

PH #20. F 22, 1 sec Integration, Light Box at 100 Foot Lamberts 
Condition used to Measure S/N Ratio (No AGC) 



7.0 New Directions for CID Camera Design
 

7.1 Higher Resolution
 

Three significant efforts are underway in the area listed
 

below in the sequence in which they will be addressed during in­

house development:
 

1. A 324 element X 244 line CID array has been designed, and
 

a sample lot will be evaluated in the near future. This next
 

step up in resolution retains all of the previous CID structure
 

and will produce a horizontal resolution equivalent to that
 

obtainable in current color TV receivers.
 

2. A high density 248 element x 244 line CID array has been
 

developed and produced in small quantity. This design signifi­

cantly shrinks the pixel size within the array, thus leading
 

the way toward greater array densities. An overlapping elec­

trode readout structure is also incorporated in this design
 

which impacts color response.
 

3. A row readout chip has been developed to the point where a
 

test chip is available waiting for a breadboard camera to be
 

built. It is a 248 element x 244 line device manufactured in
 

a way that will allow video to be read simultaneously from two
 

sequential lines at one time. If successful, this will elimi­

nate the requirement for the cascaded double line readout tech­

nique now required for successful pattern noise rejection. The
 

door will thus be open for a full 488 visable line camera with
 

the CID operating at present readout rates.
 

As a goal, consideration is being given toward array structures
 

with horizontal resolutions significantly greater than those currently
 

being developed.
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7.2 Greater Sensitivity
 

There are two areas that are currently being developed to
 

increase camera sensitivity.
 

Signal to Noise Ratios Improvement -


A number of techniques have been developed and are now avail­

able for significantly reducing pattern noise at the output of
 

the CID camera. Many more avenues of improvement are yet to
 

be explored. Efforts directed toward-an increase in delay line
 

performancewill yield substantial reductions in noise, allow­

ing higher video gains to be used in the camera to accommodate
 

a higher sensitivity requirement. It is also felt that the use
 

of the row readout CID will result in a better overall signal
 

to noise ratio. This is due to the inherent pattern noise
 

reduction that can occur in processing directly following the
 

CID and the possibility of certain crosstalk noise not being
 

present to the degree that it is in current CID structures.
 

Larger Effective Pixel Area -


The actual photo receptive area of a pixel can be increased
 

significantly over what is now possible with a careful choice
 

of materials used in the construction of row and column lines
 

on the CID. At present total or blue wavelength obscuration
 

occurs over the large area taken up by these lines, The use
 

of transparent conductive materials has been under investiga­

tion at the General'Electric Corporate Research and Development
 

Center:' It has yet to be saccessfully implemented into a fully
 

operiational CID camera. It is probable that significant gains
 

in cell sensitivity and in flatness of spectral response
 

(especially in the blue region) would result from efforts in
 

this area.
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7.3 Color Performance
 

Three areas of development are most promising:
 

1. 	Three imagers optically registered with a prism could pro­

duce high quality color images. It is significant to note
 

that the innate geometric stability of the CID imager is an
 

advantage over vidicon devices in this technique. The
 

optical alignment, once performed, is complete and electri­

cal tracking requirements between imagers is a minor task.
 

2. 	A single imager color stripe filter approach is now under
 

serious consideration for a CID color camera. The fact that
 

a single imager is used and the potentially simple optical
 

system, makes this approach attractive from an economic
 

standpoint. Development work is now under way in this area.
 

3. 	The field sequential color camera capability is currently
 

available based upon a preliminary evaluation at NASA, LBJ
 

Space Center, Houston, Texas with the delivered 248 element
 

X 244 line camera. Adequate color rendition was obtainable
 

with the use of a color wheel. The vidicon-like scanning
 

sequence made the camera directly compatible with standard
 

color wheel hardware. Since silicon image devices in general
 

have attenuated blue response, a minimal effort at enhancing
 

the electrical performance of the camera during the blue
 

channel readout would be of significant benefit. Overall,
 

the field sequential approach can yield high quality color
 

imagery having bandwidth requirements identical to that of
 

B&W with the disadvantages of motion sensitivity and the
 

need for a scan converter.
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7.4 Stereo
 

This third dimension of TV imagery has yet to show its true
 

importance. fDepth information may be the missing link in the
 

successful application of TV to critical visual and measurement
 

systems. In a visual system, the information added in the perceived
 

image may easily be greater than double that provided by a single
 

sensor. fDepth, as a sorting clue, can unclutter a scene, highlight­

ing the essential details without ignoring the total.' The fact that
 

each sensor is indeed an independent sample of a field-of-view, and
 

that the human Visual perceptive system has the innate ability to
 

marry and correlate common elements of each view; allows the sub­

jective resolution of the stereo system to be at least double that
 

of a single sensor system. Visual measurement systems on the other
 

hand could be made to greatly'benefit from depth information extrac­

ted computationally from the scene. Manipulator devices requiring
 

closed loop feedback of relative position would be given the benefit
 

of distance measurement relatively independent of object size and
 

shape. Additionally, absolute size measurements could be made
 

independent of changes in distance.
 

Presently; we are aware of the existence of one stereo'
 

system using CID devices. General Electric is currently under don­

tract to build a stereo CID camera for the NASA Marshall Space
 

Flight Center,
 

-80­



7.5 Smart Cameras
 

Television is increasingly being considered as the measurement
 

sensing technique for a large variety of industrial processes. It
 

is recognized that solid state sensors, in general, are very suit­

able for measurement systems due to their fixed and accurate geometry,
 

reliability and small size. CID devices, in particular, have the
 

- additional features of antiblooming, relatively wide spectral 

response and readout flexibility that allow them to be applied in 

situations where other solid state imagers can not. Recognizing 

this industrial need for video sensoring devices, General Electric 

has begun the development of a smart camera system. This system 

will provide not only standard TV rate video information, but will
 

additionally have a capability of being programmed for limited
 

classes of measurements and decisions relating to objects within
 

its visual field.
 

Processed output from the camera will be standard digital for­

mat suitable for computor or other digital processing equipment.
 

The smart camera will then -be a true peripheral sensing device
 

requiring a minimum of interface; General Electric is currently­

working in close cooperation with two industrial firms having re­

quirements in this area.
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APPENDIX
 

CHARGE INJECTION DEVICE (CID) CONCEPT
 

1. Introduction
 

The charge injection imaging techniques make use of a two-dimensional
 

array,of coupled MOS capacitors to collect and store photo-,generated charge.
 

Coincident X-Y selection is used to inject the store charge into the bulk
 

and the time integrals of the charging currents to the MOS capacitor plates
 

are detected for readout. Shift-registers along two edges of the imaging
 

array are used for raster scanning. Some features of this technique are
 

design simplicity, compatibility with standard MOS processes, high defect
 

tolerance and excellent signal-to-noise performance. This section will
 

describe the basic sensor mechanism, the X-Y 6canning'and various readout
 

techniques.
 

2. The Basic Sensor Mechanism
 

The basic device is an integrating photon detector consisting.of an
 

MOS capacitor biased above threshold. Minority carrier charge generated
 

by the incoming photons is collected and stored in the.surface inversion
 

regions under the capacitor electrodes. Since most CID imagers have been
 

p-channel devices constructed on n-type substrates, holes are the minority
 

carriers and negative voltages are applied to the gates of the MOS capaci­

tors. As holes are collected in the inversion layer under the MOS capaci­

tor, the capacitance increases. If now the gate is pulsed close to zero
 

volts, the collected charge is injected into the substrate where it
 

recombines or is collected. On 'reapplication of the negative voltage, the
 

signal charge is absent and the capacitance of the MOS capacitor returns
 

to a lower value close to the depletion layer capacitance. For readout one
 

can detect signal charge by integrating the charging currents or measure
 

the capacitance change. These will be discussed later when the various
 

readout techniques are described.'
 

For the substrate and the drive line readout techniques,"the injected
 

signal charge must be rapidly eliminated. In bulk substrates, this occurs
 

principally by means of recombination centers in the silicon. Since these
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centers are also a source of dark current, their number should be kept
 

small. This compromise between low dark current and recombination of in­

jected charge set a speed limitation of about one microsecond for the in­

jection pulse width. This limitation has been overcome by use of n epitax­

ial layers on p-substrates. This places a p-n junction below the sensing
 

site which collects the injected charge as in a bipolar transistor. The
 

use of the epitaxial substrates has been shown to be highly effective for
 

injection pulse widths in the order of 100 nanoseconds. In fact, reverse
 

biasing of the p-n junction virtually eliminates the injection problem.
 

The use of "p-streets" adjacent to the sensing capacitors has also been
 

shown to be an effective collector of injected charge.
 

3. X-Y Scannable Structure
 

The simple MOS structure described above, while suitable for one
 

dimensional (line) imaging, requires modification of use in area imaging.
 

If two TAOS capacitors at each sensing site are coupled together so that
 

stored charge can b& transferred from one capacitor to the other, then a
 

two-axis selection method can be used for scanning. The basic approach is
 

to design each capacitor such that it can store the signal charge when volt­

age is removed from the other capacitor electrode. Injection will then
 

occur only when both electrode voltages are switched off.
 

Various methods can be used to couple surface charge between adja­

cent electrodes. Among these are fringing fields, which require a very
 

narrow interelectrode gap, overlapping but insulated electrodes, or the use
 

of an interconnecting diffused region. Both overlapping electrodes and
 

interconnecting diffused regions have been used by General Electric.
 

In order to clearly explain the operation of this image sensing
 

technique, the concept of potential wells in mOS structures will be used.
 

When voltage is applied to a MOS structure in which the oxide capacitance
 

is much greater than the depletion capacitance, and there is no charge
 

stored in the surface inversion region, then most of the applied voltage
 

appears across the depletion region. The potential of the silicon surface
 

under the metal electrode is slightly less than, but approximately equal
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to, the applied voltage minus the threshold voltage. This surface poten­

tial can be thought of as a potential well in which inversion region charge
 

can be stored. As the quantity of charge stored increases, the surface
 

potential decreases in magnitude and reaches approximately zero when the
 

inversion region is saturated (completely filled) with charge. The diagrams
 

in Figure 1, which illustrate the distribution of surface potential and
 

stored charge between the coupled MS capacitors inder various drive condi­

tions, are useful in explaining the operation of this structure.
 

The surface potential distribution between a pair of electrodes is
 

shown in Figure l(a) when the indicated voltages are initially applied.
 

Figure 1(b) illustrates the conditions that would apply if-the maximum
 

value of charge were stored at a sensing site. Note that the potential
 

wells are not saturated. If the Y-line voltage is switched to zero while
 

.X-line voltage is still applied, the conditions of Figure l(c) apply.
 

dharge has been transferred from the Y electrode to the X electrode but
 

not injected. When a row is selected for readout, the X-line voltage is
 

switched to zero. The charge that was stored under X electrode transfers
 

to the adjacent Y electrodes, Figure l(d). 'Subsequent pulsing of the Y­

line voltage to zero results in injection of the stored charge at the
 

selected site, Figure l(e).
 

Scanning for a raster type of readout involves switching each row,
 

in sequence, to zero volts, and sequentially pulsing all of the column
 

voltages to zero while each row is selected. Each sensing site has voltage
 

applied to either or both electrodes for the total frame time less the
 

injection pulse width applied to the Y electrodes; therefore, photon inte­

gration time is very nearly equal to the frame time.
 

A very simple topological structure results with this image sensing
 

technique. Two MOS capacitors at each sensing site are coupled either with
 

an electrically floating p+ island or by a fringing field resulting from
 

an overlapping gate structure. Array connections are readily made using
 

the two level conductor capability of self registered MOS processes such
 

as silicon gate.
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SENSING ELEMENT SURFACE POTENTIAL 

COLUMN 
ROW 	 VOLTAGE(Y)
 

VOLTAGE (X) Vy=-IO Vy=-IO Vy=O Vy=-IO Vy=O
Vx- j VXOl vx 1 vx: I vxo 

APPROXIMATE 0 	 T 
SURFACE 5 
POTENTIAL -10 
0s (a) (b) (c) (d) (e) 

(a) INITIAL CONDITION, STORED CHARGE Q$=O 
=(b) QS QFULL SCALE 

(c) UN-SELECTED LINE 

(d) SELECTED LINE PRIOR TO INJECTION 

(e) SELECTED LINE, INJECTION 

Figure 1. 	Sensing Element Surface Potential for
 
Various Operating Conditions.
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4. Parallel Injection Readout
 

The injectiomndetection process in the drive line readout at each
 

sensing site is itself sequential and consists of the following opera­

tions:
 

* Charge injection
 

* Amplifier overdrive recovery
 

e Signal level sample-hold
 

e Integrating capacitance voltage reset.
 

To reduce the cycle time even further, one can use parallel injection read­

out, which eliminates the first two operations listed above.
 

This method involves maintaining the row electrodes at a more
 

negative voltage than the column.electrodes such that all the charge is
 

stored beneath the row electrodes. This effectively isolates the stored
 

charge from the column electrodes and voltages. This permits the setting
 

of all the columns to a reference voltage (Vs), through column load resis­

tors, by pulsing the S-control as shown in Figure 2. If the voltage of
 

the selected row (X3) is switched to zero, the signal charge will transfer
 

from the X3 row pads to the column pads. -The voltage on each of the column
 

lines will then be reduced by an amount approximately equal to the signal
 

charge divided by the column capacitance. The signal charge then can be
 

sensed by sequentially connecting each column line to a video amplifier by
 

the use of a scanning register and MOS switches. The readout operation
 

would consist of resetting the video amplifier input to the reference volt­

age, and then stepping the scanning register to the next column line.
 

After all the columns of the array have been scanned, the charge in the
 

column pads of the selected row could be injected simultaneously by switch­

ing all the columns to zero voltage. This would be done again through the
 

load resistors by setting Vs to zero and turning on the load resistor gates.
 

This parallel injection would take place during the horizontal line blank­

ing. Alternatively, the charge need not be injected but can be returned
 

to the row pads for further integration or future processing, effectively
 

resulting in a non-destructive readout.
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The non-destructive readout characteristic of the parallel inject
 

scheme has been evaluated on high density OlD arrays, the arrays were
 

operated at reduced temperature to minimize dark current and thereby
 

achieve long storage time intervals.
 

Storage time in excess of three hours has already been achieved at
 

operating temperatures of approximately -70C. Furthermore, arrays have
 

been read continuously over these same period non-destructively at least
 

300,000 times with no detectable information loss.
 

Two experiments have been performed which serve to identify the
 

potential limiting factors in NDRO (Non-Destructive Read-Out). In the
 

first, a charge pattern for image was generated and stored by momentarily
 

opening the camera shutter. The array was continuously read out at a rate
 

of 30 frames per second until image degradation was noted. At an array
 

temperature of -70°C, images were readout far in excess of three hours
 

(324,000 NDRO's) with no detectable charge loss.
 

In the second experiment, a series of time exposures were made 'at
 

successively lower light levels and the time required to reach a given sig­

nal level was measured. The results, Figure 3, show conclusively that
 

there is no reciprocity failure between the inverse of exposure time and
 

light intensity-level. The readout charge losses per NDRO is clearly less
 

than one carrier per CID site per frame,
 

This readout method results in a cycle time for each element con­

sisting of only two operations, a sense amplifier reset and a signdl level
 

sample-hold. Besides the apparent speed advantdge, this method permits
 

the use df an on-chip amplifier which will reduce noise level considerably.
 

This method has been tested on arrays and was shown to have the expected
 

properties. Both small and large scale arrays have already been success­

fully implemented using this readout scheme.
 

5. Pre-Injection Readout
 

A fourth readout technique, dubbed "pre-injection", is similar in
 

some respects to the parallel injection technique, but has some novel and
 

useful consequences. Basically, the readout occurs as follows (see
 

Figure 4):
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Figure 4. Read Out Sequence
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a) The rows are at a reference voltage VR and the columns are
 

at a reference voltage VC . At-each site there is a bias charge
 

which, by proper-selection of voltages, can be entirely under the
 

row pad, and a signal charge, which is equally shared-by the two
 

pads. The-bias charge is equal to the maximum charge-that can be
 

stored under a column pad. The columns are connected sequentially
 

by the shift register to the voltage VC through a load resistance R.
 

Thus, the columns float at all times except when they are selected
 

for readout. At that time, they are reset to the voltage VC if
 

their voltage has changed since the previous line was read out. The
 

voltage will have changed if there has been a net change in the
 

charge stored in the column wells. The current or charge that
 

flows during reset constitutes the video signal.
 

b) A row is selected by raising its voltage to, say, zero.
 

Charge is transferred simultaneously from all the row wells into
 

the column wells. Because of the bias charge, the column wells be­

come completely filled and the-excess charge, the signal charge that
 

has accumulated since the previous selection of the row, is injected.
 

c) The row voltage is reset to V which, if it is approximately
 

twice the column voltage, results in the transfer of the column
 

charges back into the row wells. Before injection, half the signal
 

charge (positive) was under the column pads. After injection, the
 

wells under the column pads -are empty. Since the columns are float­

ing, the column voltages are now more negative than the reference
 

voltage by an amount equal to the charge difference, half the signal
 

charge, times the line capacitance,.
 

d) The columns,are reset, sequentially, to VC . The variations
 

in column voltage appear across R and are amplified by the ampli­

fier A. This video can be used directly, but is freer of extraneous
 

noise if it is sampled periodically.
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There are several consequences of this readout procedure.
 

(1) The column voltage varies between interrogations not only
 

because charge is injected from the selected sites (which tends to
 

make the column voltage more negative), but also because charge is
 

accumulating under the pads at unselected sites (which tends to make
 

the column voltage become more positive). The net change in voltage
 

of a column then depends upon the relative magnitude of the injected
 

signal charge (which has been accumulating for a frame time) and the
 

sum of all the changes that have accumulated since the previous
 

reset, i.e., during one'line time. If the entire column is uniformly
 

illuminated, the net signal is very small:
 

AV = (/Ceol) (-Qs/2 + (Nr ~i) QS/2 Nr)
 

where Qs is the signal charge collected at each site during one
 
frame time, and N is the number of rows.
 

r 

For a more general illumination, the voltage on column j at the
 

time row i is read out is:
 

Av. = (i/cl) (-Qsij /2 +J i Qsnj/2 Nr).
1


Clearly, there is no disadvantage if the image is a small number of
 

isolated sources.
 

(2) Note& that only half the signal charge at a site appears -under
 

the column pad and is detected. Thus the output voltage is half
 

that observed using parallel injection readout, and, if noise sources
 

are identical, the pre-injection technique will be less useful at
 

low light levels. HoweverI'he maximum output voltages are identical
 

(%ax'Ccol) and the dynamuiCranges are the same. 

(3) Under overload the pre-injection technique performs uniquely and
 

to great advantage. Consider, for example, a single site overloaded
 

by a factor of 10. Once the row containing the overload has been
 

read out, the next N r/10 rows will exhibit a positive going (black)
 

signal of amplitude 10 Qmax/Nr in the column containing the over­

loaded site. The wells at the overloaded site will then be full and
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no further signal will be observed until the affected row is again
 

read out. In other words, there is partial black column blooming,
 

with the length of the black line decreasing as the overload
 

increases.
 

(4) The amplitude of the signal readout from the overloaded site
 

is also affected, to a degree that depends upon its position along
 

the row (i.e., depending upon which column it is in). This occurs
 

because, once injection occurs (at row selection time) charge can
 

again start to integrate under the column pad so that, at read time,
 

it is no longer empty, but contains charge proportional to the time
 

since injection. This time is a fraction of a line time and the
 

charge is undetectable at normal illumination levels. However, at
 

very high light levels (e.g., an overload of lOX) if the overloaded
 
site is in the last column, the readout signal will be reduced by
 

the fraction 10/N
r .
 

(5) Signal processing techniques can, of course, remove the
 

Itunselected signal", as well as the black column blooming, from
 

the video output.
 

6. Differential Row Readout
 

An extremely interesting variation of the CID NDRO charge sensing
 

method is in a readout strategy that promises to eliminate a major compon­

ent of noise, namely KTC noise, while simultaneously cancelling fixed
 

pattern (spatial) noise.
 

All solid state imagers (CCD as well as CID) are limited in dynamic
 

range by a fixed spatial noise background caused by variations in structure
 

and by the readout process; not by temporal (random) noise. The non­

destructive readout capability of the parallel injection CID structure
 

makes it possible to measure the output with and without signal charge and
 

to take the difference. In principle, this would result in complete
 

cancellation of fixed pattern noise.
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