
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



i

U	 P'F- Z-) 7 '̂ -., (-,

NASA Contract NAS 8-31346

Feasibility of Coherent and Incoherent

Backscatter Experiments From the

AMPS Laboratory

FINAL REPORT

Technical Section

Pr'. ►ic i pal Investigator
1r̂ }j.

Prof. Forrest S. Mozer 	 S;

April , 1976	 C^pa

Series 17 Issue 35

(INIVERSITY OF CALIFORNIA, BERKELEY

1,C4
7[l` Y



Space Sciences Laboratory
University of California

Berkeley, California 94720'

i

NASA Contract NAB 8-31346

Feasibility of Coherent and Incoherent Backscatter Experiments

From the AMPS Laboratory

FINAL REPORT	 a

Technical Section -

,.	 y

Principal Investigator	 {

Prof. Forrest S. Mozer

v

F

Y

April, 1976,
3
x
3

Space Sciences Laboratory Series 17 Issue 35

a
t



'S

_i	 t
f

-i-

S

TABLE OF CONTENTS

; Page

PART I

Introduction 1

PART II

Theoretical Considerations and Computer Operation 2

PART III

Data Presentation 17

j

APPENDIX

I.	 Discrete Functions and Orthogonality Al

II.	 Periodicity and Completeness in Frequency Space A7

III. An Analysis of Spreading by Use of Fourier Series A14 a
p

IV. Symmetry and Spacing A26

V.	 Properties of Discretely Sampled Spectra '` A27
^ K

VI. Spreading in the Computer A3

4

a

a

x

t
f

^1	 i



PART I

Introduction

? In order to determine the feasibility of the space shuttle radar it

was necessary to implement a computer simulation program at the Uni-

versity of California, Berkeley. 	 This program simulates the spectrum

which results when a radar signal is transmitted into the ionosphere for

a. finite time and received for an equal finite interval. 	 The spectrum

derived from this signal is statistical in nature because the signal is

scattered from the ionosphere, which is statistical in nature. 	 Thus, any

estimator which uses the backscattered spectrum has a statistical char-

acter.	 That is, many estimates of any property of the ionosphere can

be made.	 Their average value will approach the average property of

the ionosphere which is being measured.	 However, due to the statistical

nature of the spectrum itself, the estimators will vary about this average.

The square root of the variance about this average is called the standard	 4

deviation, an estimate of the error which exists in any particular radar

measurement.	 In order to determine the feasibility of the space shuttle

radar, the magnitude of these errors for measurements of physical

interest must be understood.

A complete reading of this report makes it possible to implement

the computer simulation described herein. 	 If such an implementation

is not desired, reading of Part IT will give a good understanding of the	 5

physical prin-ciples involved in implementation of the program and a

reasonable overview of the mathematical tools used.
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TART II

Theomical Considerations and Computer Operation
fr

The computer program simulates a spectrum having statistical pro-

perties which are estimated infrequency space. Before explaining

exactly how the computer performs this simulation, it is necessary to

discuss the physical ionosphere that is being simulated.	 This ionosphere

is time stationary. This means that at any particular point in the iono-

sphere being simulated, a long time average will yield a well defined
^y.

number for any physical property being measured. 	 It also means that

an ensemble average of many ionospheres will yield the same results

as a long time average of any particular ionosphere being studied. 	 The

ionosphere is assumed to be uniform throughout the volume scattering

signals back to the radar. 	 This does not mean that there are no statistical

fluctuations within the ionosphere, but, rather, that the point properties

P

measured anywhere in the ionosphere ;possess the same long-time average.

Thus, although at any particular time there may be density fluctuations

in the ionosphere, on the average the density at any point in the ionosphere

is identical with the density of any other point from which scattered
E

signal is being returned to the radar. 	 The real ionosphere is not uniform.

It is often true that over the time period during which data from the radar

` are being averaged or over the _spatial .region .that one pulse of the radar
y

covers,; the ionosphere varies in its properties. 	 This type of non-uniformity

is not considered in this study, and the uniformity assumption should be
4

s
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considered in extrapolating the data from the simulation to real situations

in the ionosphere.

In addition to the uniformity of the scattering medium, the computer

simulation is idealized in another respect. 	 It is assumed throughout

this study that the radar itself is ideal.. 	 For example, no asymmetries

of the received' filters are simulated. 	 Nor is it assumed the receiver

gain varies with time due to saturation by the transmitted signal, although

both of these problems exist in real radars.

Consider a time stationary ionosphere in which density fluctuations

can exist, and compare it with an ionosphere in which no density fluc-

tuations exist.	 Assume thata signal with wavelength, X, long by corn-

parison to the Debye length and frequency, w, high by comparison to the

plasma frequency is transmitted into a- fluctuationless ionosphere. 	 There

will. be no return backscattered signal into the radar receiver. 	 This can

be shown as follows.	 Consider two planes in the ionosphere perpendicular

to the vector of the incident radar wave.	 For convenience call the two
a

planes PI and P2 and allow the first of these to be at a distance d from

x
the radar and the second at a distance d + -X/4,.	 During the trip from

radar to scattering plane and back, the scattered signal from the first

plane travels a distance, 2d, while the scattered signal from plane P2

travels a distance 2d +a/2.	 The signals from these two planes are

out of phase with one another and will cancel at the radar receiver.	 Now

consider any plane, P3,c in the medium from which scattered signal is

u

S



expected,	 It is possible to pick another plane, P4, which is related r<
to P3 in the same way that PI and P2 were related.	 In this way it can

be seen that no scattered signal can return to the radar if the ionosphere
a

is fluctuationless.	 }

Now consider the time stationary ionos phere in which fluctuations	 u

exist. ` Consider a plane Pl and another plane P2 as before, but which

have larger densities than the surrounding medium. 	 These planes are

now chosen a distance 's/2 apart.	 From the same arguments as in the 	 i

previous paragraph, the two signals are in phase when scattered back

to the radar and add, yielding a net return signal. 	 It is now not possible

to choose other identical planes in the medium that haw: the same density

to cancel the signal already returned to the radar from the planes 1 3 1 and

P2.	 Therefore, signals are scattered from a medium in which density a

fluctuations exist in contrast to a fluctuationless medium. As a specific 	
A

example, air contains density fluctuations. 	 The sky is blue because
s

light is scattered from thedensity fluctuations in the atmosphere. 	 It
T

is not blue when transmitted through water, because density fluctuations

r in this medium are many orders of magnitude' smaller than the density

fluctuations in air.
r

Care should be taken when considering arguments like the preceeding
z >

one.	 Although the argument is a useful heuristic tool, it is not a rigorous

mathematical proof.	 One difficulty presents itself immediately since
i

planes of atoms do not scatter signals since they are of negligible thickness.
z
r. in the medium which has aIn the above analysis, one must use a volume	

,
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large extent perpendicular to the incident wave and is thin relative to the

wavelength. Then all the atoms in this particular volume of interest

scatter waves back to the radar receiver in a relatively coherent fashion

analogous to the thin planes considered earlier. The two planes a distance

X /2 apart would then be considered the boundaries of a scattering volume.

This is, in fact, the smallest volume which can backscatter a radar wave
x

of length, X. The density fluctuations within a scattering volume or the

density fluctuations which have scale sizes a/2 are those which scatter

	

	 2
is

radar waves. This statement is not rigorously true if the thin planes

being considered are thin relative to the Debye; length.; however, in the

simulated case, the radar wavelength is long by comparison to the Debye	 ?

length and a thin plane relative to the radar wavelength does not have to

be small by comparison to the Debye length so that it is possible to select 	 !

planes in the medium which scatter the radar waves coherently.

It can be shown that the amplitude of a wave scattered from one

`	 particular scattering volume in the ionosphere is 'a Gaussian variablei

with zero mean. To prove this, it is necessary to consider the density

fluctuations within the scattering volume, which generally contains a
t.	

-.

r

	

	 large number of ions. In the realm of the computer simulation, atypical

number of ,particles within one scattering volume might be on the order

of 10 g . The density fluctuations in a scattering volume can be considered

to be due to the random motions of 10 $ particles. The central limit

theorem of statistics implies that these fluctuations are Gaussian about

the mean density unless they are of such enormous magnitude that they

v.



approach the actual average density of the medium. 	 In this case, it

would be impossible for the distribution to have Gaussian tails since a

`r. " negative density is impossible.	 Given these considerations,

A = k vii	 (1)
t

where A is the amplitude of the signal returning from a scattering volume

under consideration and vn is the density fluctuation within that volume. -

Since A is a scattering wave amplitude and not a power, density waves

} within the scattering volume scatter incident radar waves coherently

as can be seen from the arguments considering the planes P1 and P2.

Since the volume scattering the wave has a particular size and position,

the scattered wave considered in equation 1 has a specific wavelength

and phase.	 This phase depends on the distance of the volume from the
i

radar and upon the phase reference used --a cosine wave or a sine wave.
3

To understand this scattering further one can consider the phase of waves
:i

returning to the radar from scattering volumes, 	 Since in the time sta-

tionary ionosphere no particular distance from the radar is preferred

for scattering, the phase angle of waves scattered at ,a particular frequency
4

is a uniformly distributed random variable. ? If the return signal s (t) is
i

written

s(t)	 = A cos wt + B sin wt	 (2)

h

for any particular frequency w, the amplitudes A and B are Gaussian with

is
t4

zero mean since the density fluctuation in the scattering volume



Gaussian with zero mean. Also, from the argument of uniform phase,
t

A and B must have the same mean square. In other words, the power in
s+

the cosine component and the power in the sine component are equal on

k
the average if no preferred phase exists in the return signal spectrum,

It can also be stated that the A I s and B's for each frequency component

of the scattered wave are independent of each other in a statistical sense.	 4

These statements about the ionosphere may be summarized as follows:
r	 ?^

2) _ (32)
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t

(AB) = p	 (3)

Consider again the limitations to equations 1, 2 and 3. One such

limitation exists if the density fluctuation is on the order of the actual 	 a

density in the scattering volume. It was stated that ttis is not an impor-

tant restriction since a typical experimental radar does not receive!

signals from just one elementary scattering volume. Instead the radar

averages over a relatively large portion of space which might contain
z

on the order of 10 6 to 10 $ elementary scattering volumes. Even if each

`t one of these volumes was itself coherent,r i.e. , a hard target, this 1

would simply affect the magnitude of the signal scattered from the volume
i.

of the ionosphere which the radar was examining. The hard targets

would fill the volume that the radar was observing in much the same

manner that the small particles fill the much smaller scattering volume.

$	 Thus, for most kinds of coherent scatter, as well as incoherent scatter -

radars, the siinuladon being used in the programdescribed here isri

i^^^
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applicable.	 If the coherent target is as large as the volume of space
s

being observed by the radar, the Gaussianess of the amplitudes and ran-

domness of phases assumed in the simulation would no longer be valid.

Thus far, no assumptions on the distribution of particle velocities within

this ionosphere have been made. 	 In the actual computer program it is

assumed that the ionosphere is composed of drifting Maxweliians in which

the electron and ion temperatures are allowed to differ.	 This does not ws
affect the statistical distributions used in the computer but the fact that

the ionosphere is of a Maxwellian character does affect the time average

values_ of parameters of the spectrum.	 These time average values can

be computed from theory once the particle distribution in the ionosphere is

known.'	 Given the known average values for the ionosphere parameters, y
the computer can simulate the fluctuations which must occur to

t
produce "these average values if the ionosphere is incoherent within a

' radar observation volume.

Now one can consider in more detail how the computer program models r

a signal scattered from a time-stationary uniform ionosphere. 	 Figure la

: describes a particular input spectrum that is fed into the computer. 	 This
S

input spectrum is calculated from theory for the ionosphere described

i' above for the following input parameters: electron temperature, Tet
ion temperature, T i; bulk velocity, vbulk; and density, ne .	 These para-

meters determine the shape, width, and center of gravity of the spectrum

shown in Figure la.	 The spectrum is computed under the assumption

y. 'hat a radar pulse is transmitted for inifinite time into the ionosphere z

If a^
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and received for art -nfinite time by a radar receiver. Since this does

not correspond to physical reality, the spectrum must bemodified in

' the computer to look like that of Figure 1b, which describes a spectrum

that is spread because the radar pulse is finite in length. 	 This pulse

is not monochromatic and the spectrum which results when the pulse is

scattered from the ionosphere is consequently broader than that which

would result in the ideal case when only one frequency is present. 	 In

Figure le two spectra are shown.	 The first is an average spectrum

of signal plus noise power. 	 The second is an average noise spectrum. 	 a

This average noise spectrum is computed from

average noise power = average signal power/snr	 (4)

where snr = signal/noise .ratio.	 Equation 4 refers to the total power in

the signal and the total power in the noise. 	 In order to create the noise

spectrum of it igure is it is only necessary to assume that the total power

` is distributed equally among the frequency windows in the noise spectrum.

This produces ,a flat spectrum which is consistent with the assumption ny

of an ideal radar 'system. 	 The signal plus noise spectrum is created by

raising the signal on a pedestal so that the total power entering the receiver 	 f

in any gate where signal is expected is the power of the signal plus the

power of the noise.
a

The spectra thathave been considered thus far are smooth, averaged
a

spectra.	 An actual example of a single spectrum (Figure 1d) is selected

at random in the computer by imposing` statistical fluctuations on the 	 3

^I^
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averaged spectrum of Figure le, to account for the previously discussed

fluctuations of the ionosphere, 	 In Figure le, the program takes account

of the fact that the signal is received for a finite time. 	 In the case of
i

the particular simulation being considered here, the time of reception

is equal to the time of transmission.	 This reception for a finite time

causes spreading of the same nature as the spreading in Figure lb that

is caused by finite transmission time. 	 In Figure If, the noise spectrum
f

which entered the radar system from. a portion of the ionosphere where i

no signal was expected, is subtracted from the signal plus noise spectrum

which entered the radar system from a part of the ionosphere which is

to be analyzed,	 -;raat remains is a signal spectrum that represents
-s

• O e possible result of the physical experiment of transmitting a signal

into the ionosphere for finite time and receiving the signal backscattered

from the ionosphere for an equal finite tune. 	 This possible resulting

spectrum can then be analyzed to determine the apparent parameters of

the ionosphere which existed when the signal was scattered from it. -
`s

it should be noted that the diagrams of Figure l are schematic in 	 '.

nature and they do not explain two important points. 	 First, 'these diagrams

` do not indicate in what way spreading of the signal is accomplished in
i
F
s
K

the computer.	 Second, they do not explain how statistical principles are

applied to produce the fluctuations in the spectrum of Figure Id.

+
i To clarify these points, one must digress to consider the autocorre-

u lation function of the signal voltage s(t), which is defined as

i.

G_
MMEN



4 T -T

r (T)	 =	 TJ	 s(t) s(t	 r) dt (5)
0

where T is the sampling interval and T is the lag time. 	 To illustrate

the properties of an autocorrelation function further, consider the specific

function,

s (t)	 _ A COS (wt + cp) (6)

For this s (t),

2	 T -T	 2
,r(T) _.2'Pd
	 COS (2Wt+wr	 2ep)dt+ 

2 (1 . --T,
	

COS WT (7)

f As T	 m, equation 7 becomes

L:
rm(T)	

- a	
COS wr (8)

_	 a	 _ 'v

In the finite limit when it is assumed that the phase of s(t) is uniform

and that therefore the phase term in equation 7 averages to zero one r

obtains
a

2
r('r)	 =	 2 (1 - Z ) COS wT (9)

i
Equations '8 and 9 yield

r (T) _ U —I-) r (T) (10)

This equation states that if the autocorrelation function is known in the r
;.r

limit where s(t) exists forever, it may be obtained for a,signal which

exists over a finite sample interval by multiplying by a factor (1 - T /T). )a

This multiplication factor looks like a ramp when graphed and the process



t	 ,

of multiplying by it is often called triangulation for this reason.
4

Triangulation is useful because the autocorrelation function ^ind a

signal spectrum are 1Pourier transforms of each other. To investigate

this relationship, consider a signal of the form

m	 ^,
s{t) = Fj (a cos w t + b sin w t)	 (11)

n-1 n	
n	 n	 n	

3

where

w	 21Tn/T	 (12)n
Y

and T is the length of the sampling interval. Consider a lag product of

the form

m	 ^	 -

s(t 1 )s(t 2 ) = F	 F [aman cos wmtl	ndos wr2
m = 0 n=0

r

	I• ab cos wt sin wt2	m n	 m l	 n+ ba sinwt cos wtm n	 m l	 n 2	 x

+bmbn sin wmtl sin 
wnt2J	

(13)

(anlbn) = 0 for all m and n	 (14)

(aman) 	 (bmbn) = 0 for m # n	 (15)

2(an 	 (bn)	 (1`6)	 y
Y

}

T

j
b
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Then
W

(s(t1 ) s(t2 ))

	

	 E (ant) cos wn T = r( ,r)	 (i7)
n=O

where

=Ki

Equation 17 is the Fourier series equivalent for a real symmetric

function of the statement that the autocorrelation function is the Fourier s

transform of the power spectrum.	 Notice that both the spectrum and the 	
Y

autocorrelation function are averaged. 	 That is, the average value of
j

the autocorrelation function is the Fourier transform of the average value

of the spectrum.	 This is realized because of equations 14, 15, and 16,

which are the generalization of equation 3.	 If equations 14, 15, and 16

do not hold, then the autocorrelation function 'of_equation 17 is not the

Fourier transform of the power spectrum, and furthermore, equation 17	 -

a has an explicit time dependence.	 This can be seen if the algebra leading

to equation 17 is performed without assuming equations 14, 15, and 16.

If the autocorrelation function is an explicit function oftime, that is

r`
depends on something other than the time difference t z - t1 , 'then the pro-

cess being considered cannot be a time stationary process. 	 By its nature

a time stationary process must be independent of the time at which one

begins to measure physical phenomena associated with it. Another way

of stating the same result is that if the autocorrelation .function is a function

of time, then the ,parameters of the ionosphere must be changing during,

the time that experiments are being performed.	 Such a-situation is

11



contrary to the assumptions made earlier about the characteristics of

f	 the ionosphere.

To summarize, if equations 14, 15, and 16 are valid, the autocorre-

lation function is not 	 function of time and is the Fourier transform of

the power specs um.	 It on the other hand equations 14, 15, and 16 are

invalid, the autocorrelation function is a function of time, is not neces-

sarily the Fourier_ transform of the spectrum, and in general the process

being described cannot be considered time stationary. 	 Thus, it has been

provcd that for a time stationary process equations 14, 15, and 16 must
9

(	 hold and the autocorrelation function is a useful function to describe the

spectral Fourier transform. r
1

p

`	 From the above analyses, it becomes possible to spread 	 signal in
a

the following manner.	 if one has the spectrum of a signal which exists sr

for an infinite time and which should be spread because it will be sampled 4

for only a finite time, one first derives the atitocorrelation function of
Y

the signal by Fourier transformation. 	 Next, the Fourier transform is

triangulated.	 Then the triangulated autocorrelation function is retrans-

formed into frequency space to 'produce a spectrum equivalent to that

which would have been derived from <a signal existing for a finite time.

The details of this equivalence are considered in the appendix and an ti

example of a spectrum before and after spreading in this manner is given i
}

in Figure 2.

Now that the methods used for spectral spreading in.the computer
i

have been discussed, it is necessary to understand exactly how the
r^
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E

computer produces spectra with the proper statistics to simulate the
t

` signal scattered from the ionosphere. 	 Such a spectrum, estimated from 3

the N samples obtained of the waveform s(t), will contain N/2 points be-

cause the Fourier transform of these N points produces N/2 amplitudes

of cosine terms and N/2 amplitudes of sineterms.	 The power at any fre-

quency is the sum of the squares of the amplitudes of the cosine and sine

terms at that frequency. Ifence, the spectral power in the ith frequency

window is proportional to (A i2 + T3i2) and is independent of the power in
a

any other frequency window since the A's and 13's are independent of each

' other for different frequencies.

Statistics are generated in the computer by use of

,.
n'

u	 = E a 2	 1191n	 i =1
f

where the a.'s are Gaussian variables with zero mean and are independent
i

of each othe. , .	 The quantity un of equation 19 is a chi square variable

with n degrees of freedom and is used as follows. 	 In any spectrum, such

as that of Figure 1c, each spectral point, whether signal plus noise or

noise, has a sine and a cosine component.' These components are squared,
k

added and averaged; to form the power indicated. 	 Since the A's and 13's

tare independent Gaussian variables, each frequency point is the average t

of a chi-square variable with 2 degrees of freedom. 	 Therefore,, to select $

a particular possible spectrum from the ensemble of spectra generated -	 #

from the scattering of signals from the ionosphere, it is only necessary
k g

a

ktoselect each frequency point in Figure lc from a distribution having theme_

ryrye
^x,

J
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correct average value to yield the power in that point and the statistics i
associated with a chi-square variable with 2 degrees of freedom. Such

a selection is consistent with the physical case in which one pulse is

transmitted into the ionosphere for a finite time and received for an in-

finite time. If one wished to generate statistics consistent with a case in

which many pulses were sent into the ionosphere, received, and the data

from these pulses were averaged, one could assign more degrees of

freedom to the distribution for each spectral point. 	 In particular, if P	 ti

pulses are transmitted into the ionosphere and their return spectra

averaged, then each independent frequency point would have 2P degrees

of freedom.- This is because each pulse yields data which is independent s

of the other pulses and, therefore, the number of independent variables

being summed with P pulses are averaged is equal to 2P.

In summary, then, the average spectra in Figure 1c are used to

generate spectra with the correct statistical behavior in the following way. -

r
First, - the number of pulses transmitted into ^lxe ionosphere must be

E known.	 Second, each real frequency point is considered to be independent

of every other real frequency point. 	 Third, for each real frequency point

a random number is ` selected from a chi-square distribution with 2P

degrees of freedom and possessing an average value equal to tl i .; average

i power in that frequency window.	 This then generates the spectrum which

a has a statistical behavior consistent with that of signals being scattered
J

from the uniform, tune-statienazy ionosphz:rc already described.

,

e
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PART III

Data Presentation

s	 Two estimators are evaluated below. The first is an estimator of
a

the ionospheric density and the second is an estimator of the bulk velocity

of the ionosphere, which is equivalent to an estimation of the Doppler

shift of the backscattered spectrum. These quantities are analyzed since

they are examples of one relatively easy and one relatively difficult

parameter to measure with reasonable accuracy using a Space Shuttle

radar. Before presenting data from the computer simulation, it is neces-

sary to understand how an actual error bar is computed from generation

of many spectra such as that described in the previous section. Each

such spectrum is analyzed by use of the estimator being studied with

each estimate made by the estimator of interest being stored in the com-

puter. The result of 1000 such estimates for a particular set of input

parameters is presented in the histogram of Figurre 4. In the simulation`

which produced this curve, a spectrum with the parameters and the

signal-to-noise ratio listed in the figure was given to the computer as

input data. The computer then produced the given histogram having an
J

apparently Gaussian shape and a maximum at a mean value of almost
r	 200-meters/second. The actual mean value estimated by the computer

	

is 196 meters/second and the standard deviation is 32 meters/second. 	 n

Now that the process producing the standard deviation or error bar f
has been described, the simulation estimates of errors in density and line

Crl
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i
of sight velocity will be discussed.	 It is possible to develop a theoretical

equation for the fractional error of the density, An/n in the following way.

An	
P	

(20)An
Ptt

where p, is the total power, the fractional error in the density may be

obtained from the fractional error in the return signal power, 	 To find

the fractional error in the total power consider one point in frequency

space, whose power is p. 	 If the point contains signal and noise power then

(p	 c (I	 (21)s +n	 snr

where snr is the signal to noise ratio and c is a constant that represents

the average signal power.	 Hence

C(p 	 ;	 (pc	 (22)
n	 snr	 s

Equations 21 and 22 describe every point of a real signal plus noise and

noise spectrum if both spectra are considered to be flat. 	 Both the signal

plus noise point and the noise point are chi-square variables with 2 degrees

of freedom.	 For this type of distrLbution it can be shown that

2	 2	 2Au	 (23)(U

where u is a chi-square variable with 2 degrees of freedom, and Aug;

is the variance.	 Since the variances of independent quantities are additive

2 =
Au

2	 (24)2 
+ AUA (uu1	 212



if u and uare independent variables.
1	 2

In order to obtain a point in the final signal spectrum as 
in 

Figure If

it is necessary to take a point in the signal plus noise spectrum and sub-

tract from it a point in the noise spectrum. From equations 21 through 24

2	
c
2	 2	 1	 2

A (Ps
 +	

p	 (25)
n	 n	 snr	 snr

From equations (25) and (22)

4(P	 p /( p ) _ Apf /(Ps)	 +	
1_ 

)
2	 1
+( 
_)2 ] 2	

(26)
s + n	 n	 s	 snr	 snr

where Pf is the final power in the particular point being considered.

c.
Equation 26 applies to the power in only one point.	 However, there

are N/2 independent frequency points. 	 Each one of these points contri-

butes to the power whose estimate is therefore improved by a factor of

I /^.	 In addition, when P pulses are transmitted and the data from

the different pulses are averaged to yield a spectrum, another improve-

ment by a fac tor I	 is accomplished.	 Thus, the final form f or the

fractional error in signal power, or from equation (20), for the fractional

error in thedensity estimate is

2	 1	 2An	 E(I +	 +	 (PN 2) 2	 (27)An 
snrnr

Since this formula was derived under the assumption that the signal spec-

trum is flat and since signal spectra of interest are not flat, the actual

errors are expected to be somewhat greater than those predicted by this

LZ;
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theoretical formula.	 This is because all of the points do not contribute

equally to the variance of the power. 	 To give an extreme example, if

all of the power in a signal were concentrated in one point, then there

'	 would be no enhancement of the accuracy by a factor 1 //^N/2 as is assumed

- in equation 27. 	 IIowever, for most spectra, the deviation of the signal

spectrum from flatness is expected to increase errors by a factor of

only about 10%.	 Thus, the theoretical formula for fractional density

error derived in equation 27 is expected to be accurate over wide ranges

of signal to noise ratio andnumbers of pulses.

To verify this statement, consider Figure 5 which is a plot of An /n

estimated for a ra:ige of ionospheric parameters by the computer simu-

lation versus that given by equation 27.	 The 'dots of this figure represent

a high temperature case having an electron temperature of 3500 0 and

an ion temperature of 2500° while the crosses represent a low temper-P	 P	 P ,

attire case with equal electron and ion temperatures of 1000° . 	 If a case

where the signal to noise ratio and number of pulses is high were simu-

lated - in the computer, this produced a point lying near the origin corres-

ponding to small values of An/n.	 The points representing small signal
I

to noise ratios and small numbers of pulses lie in the upper right hand

portion of the graph.
S

If the equation agreed perfectly with the simulation, every dot and

every cross would he on'a line at an inclination of 45 0 .` As can be seen
t

from the figure, the dots do lie close to this line over the wide range of

parameters used in the simulation,	 However, it should be noted that the
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crosses lie consistently above the line, indicating that the theoreti.::
r,

equation consistently underestimates the density error associated with
`y.

them by a typical factor of about 10 %. This resalt is explained by the

narrowness of the low temperature spectra associated with the crosses. 	 s
1

In summary, the computer simulation for broad spectra show that 	 4
a

equation 27 is an excellent predictor of the fractional error in the density
(

estimate. For relatively narrow spectra with low electron and ion tem-

peratures, it underestimates density errors by about 1076. Since the 	 if

i

	

	 feasibility of a space shuttle radar does not depend on 10% corrections

to such error estimates, equation 27 will be used to evaluate the perfor-

mance of such a radar. 	 +

In Figure 6, contours of constant pn/n as determined by equation 27

are plotted as functions of the signal to noise ratio- (ranging from 0. 1

to 100) and number of radar pulses, P (ranging front 1 to 105).

'-	 Again this graph is a log-log plot as in Figure 5. A general char-

acteristic of -the contours in this figure is their tendency to parallel

the snr,axis for signal-to-noise ratios greater than about 2. This

(
fi

break point at snr ;t^ 2 implies - ` that the accuracy of`a density measure-M	 Y

ment is not greatly improved by making the signal-to-noise ratio much 	 -'
3

greater than 2.

The break points in the contours can be understood by considering
5	

that beyond some value, no further increase in the signal-to-noise ratio 	 sWi
will produce a meaningful decrease in the number of pulses for the same

value of do/n because there is error associated with the signal power	 ry.

L	 =mom

r^
zi

3

-m
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4
even in the absence of noise. When a value of the signal-to -noise is

reached where most of the received power is signal, most of the error,

associated with the measurement is due to the statistical fluctuations in

the return signal and is unrelated to the noise. These statistical fluctu-

ations exist because the signal is scattered from a statistically fluctuating

medium.

It is thus concluded that there is little point in designing a radar-

system having a large signal-to-noise ratio. 	 After an optimum, signal-
P

to-noise ratio is reached, one can decrease the error bars in a measure-

ment only by increasing the number of independent samples taken. 	 For

purposes of discussion, an optimum signal/noise ratio is considered to
r
- be 2

s
The analysis presented above yields some useful order of magnitude

` numbers.	 The density can be measured to an accuracy of about 1016

with about 10 radar pulses if the signal-to-noise ratio is bigger than

about 2.	 Density measurements to an accuracy of 1 016 require about 1000

pulses.	 If the radar , operates at 100 pulses/second and the space shuttle

moves through the ionosphere at a speed of 10 km /sec, a measurement

requiring 10 pulses would occur over a distance of l km. 	 A measurement
y

requiring 1000 pulses would involve 100 km of spatial averaging, which
r

might destroy, the utility of some types of measurements. k

The velocity estimator will be examined by developing an equation i
for the uncertainty in the velocity analogous to equation 27. :5i?cn, at

w
least in. some range, the velocity estimator might be linear in the density
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estimator, an attempt was made' to design an empirical equation which

would fit the velocity errors as closely as possible, remains simple,

and have a form relatively sirnilar to that used for the density estimator.

The equation which resulted from this process is

3

10001Av(m/sec)
C1 -JL

_I	 )2'

\1'1\1	 /2 J2^sn (28) '.

(NP/2)Z

This 'egvation was developed through: analyses of data such as that

presented in tables 9 and 10.	 Table 9 compares the signal-to-noise
t'

dependence of equation 28 with the actual dependence of the average Tti
data.	 The columns in this table are velocity errors estimated from the

r

computer simulation. for different pulse numbers and two different temper-

ature cases.	 The rows in the table represent different signal-to-noise

ratios.	 The last column is an average of all the numbers in a particular

row, with values in excess of 475 m/sec dropped from the table. 	 This
i

was done because the computer program has a cutoff which will not allow
a

it to estimate any velocity greater than 800 m/sec.	 This means that

velocity errors which approach this value are , progressively underestimated

and these data were eliminated from the table.	 The table values are

normalized to the error associated with 'a signal-to-noise ratio of 100.
d

Comparison of the average signal-to-noise dependence with that predicted

by equation 28 produces close agreement, even though there are uncor-

rected temperature dependences in the data of `Cable 9.

5.



In `fable 10 the pulse dependence in qquation 28 is compared with that 	 ;..
i of the computer simulation.	 Ifere the error is plotted in units of

Av
l?/4v22, 500, where p vl, is the velocity uncertainty for P pulses., 	 Ex-

amination of this table indicates that the equation predicts the pulso 	 f

dependence for large numbers of pulses and overestimates it for small

number of pulses.	 By examination of the tables the statement that

equation 28 predicts velocity errors to within 15 016 typically and in the

worst case to 30% accuracy can be verified.

s Figure 7 presents a graphical comparison of equation 28 and the 	 a

velocity uncertainties estimated by the computer simulation. 	 Note that

the points do not lie asclose to the 45 degree fit line as they did for the

density errors of Figure 5.- Further note that not all of the dots and

crosses lie consistently on the line and that for example sometimes

crosses tie below the line while other times they lie above ;he line. 	 This

shows that hi the estimation of velocity there are temperature dependences

which are not beingbeing considered here.; Note, however, that the overall

` accuracy of the equation is typically 15 or 2076.	 Since 15 or 20% errors
a

in the uncertainty of the velocity estimate are small enough to be neglected z

when obtaining rules of thumb for operation of the space shuttle radar,
x
r such errors will be neglected.	 a
i

Contours of constant velocity uncertahiy are presented in Figure 8
n

as functions of the signal-to-noise ratio and number of radar pulses. .
x

These contours show many of the features of the density equation cor]tnurs 	 l
s since the equations which produced both sets of contours are relatively
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i similar.	 In both curves, the break point for improvement of accuracy

` versus signal-to-noise occurs at a value of about 2 for all contours.

For signal-to-noise ratios in excess of this value, one can obtain an

accuracy of 100 m/sec-in the velocity estimate with approximately 15
i

pulses, which involve a spatial averaging of about 1. 5 km.	 If one wished

to obtain an accuracy of 10 m/sec, one would need to collect approximately 	
_	

'•

' 1500 pulses.	 TI-As. would indicate spatial averaging over an area of per-

iaaps 150 km, which may be too large for many classes of experiment.

a Thus, for expo invents in the auroral zone, where typical bulk velocities

of the ionosphere are much larger than 100m/sec, the space shuttle 	 g

radar would be a useable tool for analysis. 	 In the equatorial zone, how-

t
ever, where typical velocities are less than 100 m/sec, the error in the

s'
measurement would be comparable to the magnitude of the velocity being

measured unless one averaged over a large volume of space. 	 Therefore,

€ space shuttle -experiments in the equatorial zone designed to measure

'eulk velocities of the ionosphere are probably not feasible.

-	 In summarzing the data the following conclusions can be made. Given

i
s

reasonable pulse repetition rates (perhaps 100/sec)a sufficient signal-

to-noise ratio (z 2), and a typical space shuttle speed (10 km/sec), one
z

can make density measurements, to the accuracy; of 10% and velocity

measurements to the accuracy of 100 m/sec, over small spatial intervals.

} s
Certain cautions should be kept in mind when extrapolating from the

data presented in part III. It must be remembered that the computer 	 `-
x

simulated a particular operating mode of the Chatanika radar. 	 In this

yVI
4
k
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mode the radar transmitted a pulse , for 320 µsec and received a pulse

for the same length of time. This corresponds to a range resolution of

approximately 50 km. During the received pulse, 32 sampi.es were taken,

N 32, This results in. a bandwidth of 50 ldlz containing 16 independent

discrete frequency points. When one t-xtrapolates from the data in part
a

III these explicit dependences should be kept in mind if one wishes to do
r

analyses for different range resolutions or different sampling rates.

n

2

,r

s
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APPENDIX

c Throughout this appendix the following formalism will be followed.

s(t) will represent a continuous function. 	
s 
	 will represent. a discrete

' function existing only for specific values or t.	 It will also he assumed

that the signal under consideration contains no d. c. nor Nyquist term,

c

'.
a0 = aN/2 = 0.	 These terms are neglected because they complicate the

mathematical formalism and add nothing to the understanding of discrete

vs. continuous analysis.

I.	 Discrete Functions and Orthogonality"

Beginning with continuous functions, one can study how the equations

of Fourier analysis are modific-d as discrete sampling is introduced.

If on an interval `P

s 	 _	 an cos nw O t +bn sin nw 0 t	 (1.1)
n°0

` where w 0 = 2n /T, then for all n

2 T
an	=	 f	 s(t) cos nw 0 t dt	 (1. 2)	 sT 0

and

1	 x

bn	 =	 T f	 s(t) sin nw 0 t dt	 (1. 3)
0

These equations follow directly from equation 1 because of the ortho-

gonality of sin and cos on the interval T. 	 To form a discrete signal related

to s(t) one can divide the interval T into N intervals of length 'C/N, with

_j
a
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the first interval labeled as the 0 interval and the last interval labeled

r	as N - 1. Imagine that at the beginning of each interval. s(t) is sampled

and its instantaneous value stored,	 This converts s(t) into a new function

s t with N discrete values on the sample interval. 	 This new function has

the value 0 except where

k = 0, 1, .... , N - 1.	 s t can be described mathematically as

T

s t ='s(1{'I/N} - f	 s(t) A(t - kT/N) d 	 {1:5)
J	 '.

' or

s (k TIN)	
s(k T/N)	 (1. 6)

k = 0,	 1,	 2,...,N - 1.'

Once the interval length ;T and number of samples N are defined,

equation 1. 6 is a function of k alone. 	 For this reason, the discrete

signal is often called sk.

At this point it is natural to inquire whether a signal of the type in 	 a
i

equation 1. 6 can be represented in a manner analogous to the represen-

tation of s(t) in equation 1. 1.	 in fact, such a representation is possible
l

but the proof of this point will be pursued indirectly. _ Before the proof
4

can be understood, one must inquire into the nature of equations 1. 2

and 1. 3.	 These equations depend for their validity both on the repro- 	 P,

sentability of s(t) as in equation 1, and on the orthogonality relations 	 -`

for sin and cos terms In Fourier series.
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The orthogonality relations in the continuous case are

T	 T
cos mw t cos nw	 t dt	

T	
sin mwt sin nwtdtT	 00 0	 0

0	 0

zdm, n

T
—1
T

cos mW() ^ sin nw	 tdt	 0t	
0

for all m and n.

The ox-thogonalitj, relations of equaticin 1.	 can be derived rrom

the trigonometric identities and Cne fact that any sin or cos wave periodic

on the interval T has integral 0 unless the term being considered is a

constant, that is, unless the term being considered is a cos term with

argument 0.	 As an illustration consider

T 1
f sin mw	 -9t sin nw	 t db

10 
cos (m	 n) w	 L (It0	

T
T 

0	
0 0

T
'cos (m+n)wtd tl= 2 A0	 M, n

0

where m and n are positive integers.

If in the discrete case one were to discover that periodic functions

surnmed over an interval behaved similarly to the periodic continuous

functions one could prove the orthogonality relations at once.

If one considers an interval of length T divided into N parts then in

accordance with equation 1. 6 the orthogonality relations in equation 1. 7

for discrete s become
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i
N-1

Tw [cos mW 0 (k T IN) cos nw 0 (k T IN A Ic=O..

P

g N-1

i	 E	 sin mw0(k T IN) sin nwo (k T /N),Ot =
k=0

1
z ^m -.n. pN`

1 N-1

T	 E	 If- os mw 0 (k TIN') sin nw 0 (k TIN At = 0	 (1. 9)
k=0

Here, At equal TIN is the length of a sample 'interval and is analogous

to the d'i'fferential dt in the integrals of 1. 7. 	 from the definitions of
s

L  t and w
0 

equat :gin 1: 9 can be written as

;. 1 N - l

N	 Z)	 cos(2rr m k/N)cos(27r n k/iN)
k=0

1 N - l
Z)	 sin(2rr m k/N)sin.(2rrn k/N)=

i

N 
k_ 0 x

2 A 	 im - n,pN

4

N - I	 A
1 E	 cos(2rr mk/N)sin(2rrnk/N) = 	 0	 (1.10)
N k=0	 s

where p is an integer.	 i
^ z

To derive the orthogonality relations for discrete signals one needs 	 x

only trigonometric identities and complete knowledge of f 	 and g	 defined as
r q	 q	 J

k
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f N-1
f9 	=	 E	 cos 2rr 9k /N

k=0

1 N-1
t_	 = N	 sin 2n qk/N U. 11)

E q	 k=0

` To find f	 and g	 consider the relation
q	 q r

t

fq
9

( N -i
2rrgk/N + i sin 2rr qk/Nkcos

=

0
x

f

N -1	 .`1	 /NeL2rrgk (1.12)
N lc =p x

Rewriting of equation 1. 12 yields
b

z

N-1	 k'
f	 + ig	 =	

i	
S	

( ei2rrgIN
(1.13)\q	 q	 N k=0 	

//

By use of the algebraic identity

' N-1	 k	 1-x^
x (1.14)

1	 xk _ 0	 - z

A

Equation 1. 13 becomes
r,

i2rrgk/N^N1 -	 efq + igq = N
i2rrq/N (1.15)

1 - e

aor
1

2rriq
1	 1-e

u

k f	 +1g
q	 q

 - N
	 21riq/N

(1. S$)
1.- e a

r,
This gives -

a

r. y
s

r

4^
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If q = pN, then both the numerator and denominator in equation 1. 16 are
i

+ 0, and one must use equation 1. 12 with q = pN.

N-1
+ f	 + ig	 = 1	 cos 2rrpk + i sin 2rrpk = 1	 (1.18)

q	
9	 N	 k = 0	 '.

4

where q = pN and p and k are integers. 	 Equating real and imaginary parts

and combining the results of equations 1. 17 and 1. 18 yields

1 N-1
J	 cos 2rrgk/N = 1

k=-0
F, s

q = pN = 0 otherwise.

1

1 N-1	 -
2:)sin 217gk/N = 0 	 for all integer q. 	 (1.19)N
k=0

These equations are analogous to the integral relations 	 u

T	 T	 k
t dt = 1Tcos mwO t dt	 =	 T f cos

0,	 0	
T

if m _ 0 and 0 otherwise

T	 TI I sin mw Ot dt =	 f sill 2nP t dt	 0 for all m	 (1. 20)	 3=
0	 0

Note Here the periodicity in equation 1. 19 which does not exist in equation 	 3

1. 20.	 This leads to periodic behavior in the orthogonality relations

equations 1. 10 for discre to functions which does not exist in the case of

^x
Lib̀s 'l
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t Fourier series intended to analyze continuous functions. This problem 	 y

of periodicity will be discussed in the next section along with the problem

of representability of a discrete function by a Fourier series. 	 )
•	 3

I.I.	 Periodicity and Completeness in Frequency Space`

x;

This section contains explicit expressions for a	 and b	 for discrete
n	 n

+2

functions analogous, to equation l'.2 and 1.3.	 These expressions are derived"	 r

t

` using equation 1.10.	 However, because of the peculiar periodicity exhibited 	 =;
c

by equation 1. 10, confusion about these results may occur unless efforts 	 R

are made to understand in what way the relations for an and b n are

' periodic.	
r

If one writes expressions for discrete functions an and bn naively,

one obtains

i2
N-1	 N-1

2
s a	 =	

2	
s	 cos nw (kT/N)	 =	 s cos 2rrnk/N	 (2.1)

$ n	
T_k=0	

(kT /N) 	 0	 N lc=-0 k
't

and	 a

2 N-1
b 	 N	 sk sin 217nk:/N	 (2.2)

k	 0	 t

here

t

w^' = 2n/T,

6 t=
 T IN 	 (2.3)

^ a
35where t is the length of the sampling interval, and 1V is the number of
)

samples taken in the interval.	 Relations 2.1 and 2.2 give	 y

E

'3
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an - an+pI3

b 	 b + pIN^
n	 n

p	 = 0,1,2._..
0

and

an - apN - n
r

b	 = -b N n	 (2.0)n
p -

Setting p = 1 gives

an aN - n	 bn = -bN n	 (2. 6)

It follows from equation 2. 4 that if a^... aN 1 and b Q'.... b 	 1 are

known, then a and b are known for all n. It follows from equation 2. 6
n	 n

that if an and bn are known then aN n and bN n are known. Thus, one

need know only a0 ... ar and b 0 ...br where r is the greatest integer less

than or equal to N/2 inordev to completely determine the frequency corn-

ponents,an and bn of sl{ for all n.

Writing an expression analogous to equation 1. 1 now yields
m	

'

sk: _	 an cos nw 0 (kT/N) +bn sin nw 0 (kT/N)
_n=0

L

{

an cos 21Vk +'on sin 2^ k	 (2.7)

	

n=0	
g
a

r	 i^

r`	
3

r	
.!k

0
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z One may well ask at this point if it is necessary to extend the sum
i

in equation 2. 7 from 0 to W in order to completely represent sk. 	 It is

already known that the a's and b's repeat beyond the index r. 	 If the functions'

in equation 2. 7 multiplying the a n 's and bn 's repeat as do the coefficients

abn, then additional terms in the sum beyond r in equation 2. 7
t

11

will contribute no new informabout-about the functional form of sh .	 To

decide whether the -;um in 2..7 is periodic, consider one term in that sum,

the mth term, where m is between 0 and r. 	 Gall the co.ot:ribution to the

` function sk of this term, s k m.	 Then,

2 Tr (m + pN) k
sk, m + pN = am + pN cos	 N	 +

2r(m + pN) k	 2rtmkb	 Sill	 = a coym + pN	 N	 m	 N j
,a

bm sin 2nmk = sk	 (2. 8)
, m

Thus result follows from equation 2. 4 and uses the same techniques in

its derivation as were used in equation 2.4. 	 Further, r
>R

2 T(N - m)k	 2rr(N - m)ks	 = a '	 cos	 1 b	 sink,N-m	 N - m	 N	 N - m	 N
s

a,N	
sin (2n - 2wmk/N)(21r-2amk/N) +b1Vm cos - m

2 n n^lc
=	 aD1	 m cos	 - bN	sin 217mk/N-	 N	 - m

=	 a	 cos 2TTrnk +b	 sin 21rmk

m	 N	 m	 N

sk, m	
(2.9)



j,

t

Combining the results of equations 2.8 and 2.. 9 yields

Gk, m sk, pN ^- m

	
(2.10)

' Equation 2. 10 states that if ski 	 is known for 0 < m < r then adding terms

of the form on the right hand side of equation. 2. 10 to corresponding terms
k ;

s

of the form on the left hand side of this equation for all values of m 	 -

s ° between 0 and r simply multiplies the sum in equation 2.7 by a constant

but does not change the form of sk.	 Thus, without loss of generality

one can Trite
r	 r

2	 + ba sin 	 2 Pnk	 (2.11)=	 an cos Nksk =	 E	 s ic, n
n = 0	 n=0

Generally, it follows from equation 2.10 that the limits on equation 2.11
i

can be written as

R pN +r
lc	 2	

k2sk =	 an cos	 + bn sin-	 =N
n=pN

N-i+p1\1 kan cos t 	+bn sin 2tik	 (2.12)
n=r+1+PINT

y,
where p is any integer.	 Equation 2. 12 shows that, given a'particular sk,

it is impossible to determine its frequency Components.	 Specifically,

f
for p - A

r	 2 rnk	 2nnksk =	 E an cos	 + l^n sin —N.t N
n=0

4

N	 1	
a	 cos 2 N 

k + b sin 2 Tnk	 (2.13) n	 n
n =r +1

4
fOW i



Since, r s 1\/2, equation 2.13'states that one cannot decide whether sk
y

has frequency components between 0 and N w 0 /2 or between Nw0/2 and

N w 0 .	 Thus if one samples at a linear frequency 1 /At = I/ (T/N) one
S

can resolve components unambiguously only up to a frequency of

NW 0 /2 x 21T=- N/2T = '1/2C t.	 Thus, the maximum frequency which can 	 x

be unambiguously determined equals one half of the sampling frequency.

- This is a proof of Nyquist's theorem for discrete functions.

If on a fixed length sample interval N 	 m the number of a 's and	 rn	 x
bn 's one must obtain before the coefficients repeat also approaches

infinity.	 This is reasonable since in the limit 1\'	 m s l	s(t), a contin-
t

uous function. In other words as the structure of s k becomes finer, rapidly

oscillating sine and cosine terms must be added to the summation in

` equation 2. 11 to represent the rapid fluctuations in the fine structure.

A plausability argument for the fact that a finite number of terms is

' needed to represent a discrete function is that one would expect a function

with a finite number of points to be representable with a finite number

of functions which were independent on the interval of summation. x

' Now that it has been demonstrated that sk need be represented with

only a finite number of sine and cosine terms, one can show that every i
)

function sh can be represented with a series of the form of equation 2. 11,

as follows.	 It has been noted, that equations 1. 19 and 1. 20 are similar 	 M

but that equation 1. 20 possesses a periodic behavior. 	 If one is limited 
.t

to a series of the form of equation 2. 11, the 	 periodicity is removed

from equation 1.20 and equation 1.19 and 1. 20 imply identical orthogonality

i
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relations for discrete and continuous functions. 	 Thus, equation 1. 10

becomes
4

1 N, 1	 2nnk	 2trmk	 1	 N y 1	 2rtmk	 2rtrtk _E	 _ o,T 	 'S	 cos	 N	 cos	 sin	 Nsin N .	
:zt,itk=p	

k=0

"
(2.14)

1

' 1 N - 1	
2 Tmk	 2mii:cos	 sin —1\1	 = 0	 (2.15)N	 N

k 

` for0<m<r and0<n<r	 (2.16)

In order to decide whether or not any function sk can be represented

in the form equation 2. 11, it is only necessary to represent one particular

point s. of that function.	 The question of representa:bility is equivalent

to the question of completeness and can be stated in the following terms.

If one comput,is the Fourier components of afunction and then sums these'

Fourier components does one obtain the original function? 	 If the answer

is yes for all functions, then the set of Fourier components is said to be

complete.	 In the case of the discrete function, if one can represent any

" one point in the set completely, one can represent any function by summing ;.

the representations for individual points by the principle of superposition.

Let s^ be any point in the sample space.	 Define

(2.17)sk = cO k,

3

H



-A13-
3

which states that jth point on the sample interval has a value e.

N-1
2	 kNan	 l{c A	 cos N

h=0

r

N-1 2rrnlcbn, j	 Iv	 F	 c A lt	 sin
j	 Z\ (2. 18

k = 0

2c	 2rrnja	 -	 cosn, j - N

2c	 2rrnj-	 sinbpi (2.19)j	 N	 N

Using equation 2.11

r	 2c	 2rrnj	 2r, nk	 2nnj	 2rrnk
sk	 cos -	 +	 in	 sinCN cos (2.20)

nFJ O N	 Nr

Extending the interval of integration from 0 to N - 1 simply doubles sk
-	 _ a

f

by equation 2.13.	 Therefore, ?.

C	
N= l r	 2rrnj2rra:k	 2nnj	 Zrrnklsk =	 cos	 cos	 '.	 - + sin	 sin (2.21)N n -0 N	 N	 N	 N J

T

which gives z,a

1sk = N	 F	 cos 2rrn(j - k) (2.22)	 a
0n = ,

By equation 1.19

slc	 =	 CAk,j (2.23)	 Y

t
i

Y

i
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Equation 2.23 is the equivalent of the completeness relation for Fourier

integrals.	 Its existence proves that sk can be completely represented

in the form equation 2. 11. x

Thus, a representation skin terms of a discrete Fourier series has t,
s

been found.	 Further, this representation was found to be periodic in s
' its coefficient.	 Lastly, it was proved that sit can be completely represented

by allowing the index in equation 2.11 to range frorr. 0 to r only. If one I
inspects the number of terms thus included in the sum in equation 2. 11,

one discovers that the number of roefficienL•s in the Fourier series is

' - equal to the number of points to be represented. 	 This is reasonable since

` all the coefficients multiply functions which are independent on the interval

of summation, so that 1\1 independent points are represented by linear

combinations of N independent functions.

III. An Analysis of Spreading by Use of Fourier Series j

In sections .I and H of the Appendix, the mathematical formalism
r

a

used to derive amplitude spectra for discrete signals was developed. x
9

Next, certain applications of this formalism will be considered. 	 The

first of 'these is the uncertainty principle which expresses itself as a

s spreading of the signal width in frequency space when the signal is sampled

s for a finite time.	 It will be assumed throughout this section that the
a

y

rpower in the signal spectrum is proportional to the square of the sum of
7

s the Fourier amplitudes for a given frequency just as is assumed for

e continuous representations using Fourier series. a
s
r

j

a
L
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Consider a signal of the form

s'	 = u cos 2nµk + v sin 2rrµlc-	 (3.1)$	 k	 N	 N

where the variable µ need not be an integer. 	 Consistent with previous-

definitions, s l{ is the discrete representation of a wave with linear fre-

e	 quency µ/T.	 An alternate representation is
s

f	 1 2rrµli	 1

Sk - a cos 1\	 N	 + cpl	(3.2)

r

where cp = tan -1 (-v/u) and a = (uZ + v ) Z .	 Since µ is not an integer, s 

'	 in equation 3.1 is not periodic on the sampling interval. 	 From equation

2.`1 and 2.2

2	 - 1	 2rrnk(	 2rrµlc	 2nµk 1an =	 E	 cos	 N	 u cos	 N	 + v sin	 N	 J	 (3. 3)
k=0

2	 N- 1	 2rrnk r	 2r ^Lk	 2rrµk 1i	 bn =	 sin	 N	 u cos ^,— + v sin	 "	 J	 (3.4)
k=0

t

Define anew quantity c `= a 	 + ib	 The spectral power per unit frequency
s

n	 n	 n
2	 2	 2

is pw = tan	 +b., )/two = I cn l	 /2w 0 .	 Then

2	 N- 1	 i(2rrnk/N) r 2 	 2 Tpl'
°	 c	 =	 e	 u 

cos jrµ	 + v sin	 J	 (3.5)
r	 n	 N k=0	 N	 N

c
w

r	
3
1

7

L

e
>	 f

i
'+	 J1

E•

zj

v .

e



jr

y

i
=	 1	

A	 l ei(2nnk/N) ^ `(e i2Trglc/N ,M o-i2rr p k/Nl	 -c
n	 N k=0

/N _	 -i2vr tkf!:d1^
iv ( i2rrpk (3. 6)e	 e	 J

Q _ 2tt (n - p)
- (3.7)

N

= 2 T(n +p) (3. 8)Y	 N
'

Equation 3. 6 becomes

1 u (e iY k + eiAk\ -	 iv (e 1Y k - eiC 	 =	 /IV F (3. 9)
k = 0	 \	 I

)

With the algebraic identity 1. 14, equation 3. 9 can be written

1	 iYN	 1	 eiQN
Ic	 =	 [(u — iv)	

e	
+ (u + iv)

{

(31 10)	 i
i	 iAn	 N	 1-eY	 1-e

s

M
Consistent with the assumptions of the physical model presented

r earlier, assume that u and v are Gaussian variables with

° (u)	 _ (v) = 0
4

u ( 2 ) _ {v2 )

(uv) - 0 (3.11)

This is a mathematical statement of the randomness of the phase and sc

" amplitude of a signal s k scattered from the ionosphere. 	 Define 1k

i
yyx

a

till .'L
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1 - e!AN
«	 iA

- 1-e

` iyN—
1 - e

= (3.12)

1 - e iY

Then equation 3. 10 can be written as

)

cn = N	 [a (u +iv) +0(n - iv)]
i

(3.13)

or a.

2 =
	

1	
f	 a	 (u2 + v2 ) + a )3 ^= (u 2 - v) +-

F t,

nN2

a 	 (u2 - v
2 ) + I	 I 2] (3. 14)

where 0* is the complex conjugate of 0. 	 With the use of the physical r

conditions represented by equation 3.11

2)	 _	 1	 ^u2 + v2^ ^ 1 - cos N a	 1 - cos N y l
e n	

+ (3.15)
N2	 1 - cosp	 1 -cosy /J

ry

i a

For the sake of explicitness this equation can be written as 4,
H

(I c 1 2 ) =	 1	 ^ u2 + v2 ) r 1 -cos 2-,7(n  - µ)	 + u
n	 N2 1 - cos 2rr(n -µ)/N

! 1 - cos 21T(n+µ)
1 - cos 2sr(n+µ)/N^

(3.16)

s

'40 {
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Equation 3.16 is proportional to the average power per unit frequency in

" the nch frequency window.	 Note that one term in the equation is symmetric

about the frequency p/T while the other term is not. 	 This means that

if a signal which is not commensurate with a sample period is sampled

for a finite time, it will be spread and this spreading is consistent with

the uncertainty principle.	 Iiowever ; the signal will not be spread symme-

trically about its original frequency.

Before 3.16 can be applied to a spectrum, one must know the conditions

under which, equation 3.16 applies to a spectrum rather than simply to a

monochromatic signal.	 It is possible to imagine cases in which cross

terms would occur between different frequencies in the average power
f

spectrum of equation 3. 16 making it invalid for continuous spectra. 	 To

pursue this point further, assume a signal of the form

sk -	 uµ cos 217p/N + vµ sin 2rrp/N	 (3'.17)
aµ
g

The sum over µ is purely formal since 'µ is not necessarily an integer.
s,

If p is allowed to become a continuous variable, then s k would correspond	 i

to a continuous signal and the spectrum would likewise be continuous.
a

However, the subscript notation is retained for clarity ant to preserve

continuity with prior results. 	 Under the conditions consistent with a-
j

time stationary Gaussian process of the type discussed earlier,

^G

a.

1

Y;

t
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(UuV >	 = 
0	 µ

P

^	
- ( µ2)µ 2)

E

(uµ vµ}	 = 0	 for allµ and v	 (3,18)

Then equation 3.17 applies to a spectrum and we can write

c	 2	 1	 (u 2 + v 2	 1- cos 2rr(n - w)	 +
) } (1nI	 N 2 µ	 µ	 µ	 - cos 2n(n - µ)/N

i

1 - cos 27 (n + p)	
(3.19)1 - cos 27r'(n +p)/N)

i

This equation remains valid because the conditions of equation 3.18 insure =.

' that croSsterms`from different µ values will not contribute to (I cni 2}

Since it is now indicated that equation 3. 16 applies to continuous spectra k

in the form 3.19 when the process being considered is Gaussian' and time

stationary, one can draw certain conclusions about the spectra associated

with such processes. 	 The most important of these conclusions ` involves
T

the center of gravity estimator. 	 This estimator attempts to determine

by what amount the center of the spectrum is shifted from a position

symmetrically placed about the center of the bandpass. ' There are indi-
y

cations from the forms of equation 3. 16 and 3. 19 that the spectrum after jr

being sampled for a finite time might have a center of gravity shifted

relative to the center of gravity when the spectrum existed in a continuous

state.	 This kind of shift couldlead to systematic errors in the center -

of gravity estimate.	 The expression 3.19 for 'spectral spreading is an
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r.	 extremely interesting one and will be discussed at much greater length

r

	

	 in the next section. However, before this discussion it will be shown

that the expression 3. 19 obtained by squaring of Fourier components can

also be obtained by Fourier transformation of the triangulated autocorre-

lation function. This is strong indication that expression 3. 19 is a gen-

eral characteristic of finite discrete sampling rather than an apparent

characteristic resulting from some particular method of obtaining the

s pe c trum.

To show that triangulation, the process discussed for continuous

functions in equation 9, achieves the same effect as does the squaring

of the Fourier amplitudes of a finitely sampled discrete signal, consider

a discretely sampled function of the form

s	 u cos 2;rpk/N + v sin 2upk/N	 (4.1)
's	 k	 µ µ	 µ

here, as in section 3 of the Appendix, s k is not necessarily composed a
of functions periodic on the sampling interval and the formal sum is 	 `.

physically equivalent to an integral since p is not an integer. Forming

the discrete autocorrelation function in accordance with methods outlined
3

in section 1,

N
r(kT/N) = Z	 sQT /N) s([J + k] T/N) At

,or



s
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N-k-1

r Hrl{ = N_	 F,	 sjsj	 It
(4.2)

"s
J=p

Substituting equation 4. 1 into equation 4. 2 gives

+
i

N -k- 1 1
rl{ 	

Cuµ 
cos 2nµj/N + µ sin 2rrµj/N

{µ
N

j.p

F

F	 uvcos 2nv(j +,k)/N + v^ sin 2,ry (j +k)/- 4 	 - (4.3)

N_k-1
	 1	 2nµj	 2r7v (l+lc)urk =	 DI E	 uv cos	 — NN 11	 µ	

1N cos
j_

J - p

'
2nµj	 2rrv(' +k)	 2rrwj	

-	
2rrv(j+k)+ uµ V. cos N1 sm — N — + µ uv sui N cos	 N

i
2rfvi	 21Tp(j +k)+ vµ vv sin ,
N 

sin	 NT	 J
(4.4)

If one imposes constraints on the u 's and v 's consistent with those of
µ	 µ

equations -14, 15 and 16 }
s

N -k- i	 uv	 +vv2 x
1

(rk) =	 (	 ) cos 2rrvk/N (4.5)N	 2
j 
	 v

Noting that equation 4. 5 is symmetric in k and contains no j dependence
a

it can be written as

2	 2-

u11
(rk)	 = C1 -	

N	
1^ ( 

y	 v	 ) cos 2rvk/1\7 (4.6)
2/v	 2

Y

ZA
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From equation 17 it is known that r(i • ) is the Fourier cosine transform
r

of the power spectrum. 	 It must be remembered however, that the auto-

correlation function and the power spectral density are cosine transforms

of each other only when they are real and symmetric. 	 Therefore, one

must perform the cosine transform over both, positive and negative values

of its argument. "Otherwise, a real symmetric function would not have

:- a Fourier transform which was real and symmetric. 	 The fact that the

transform is two-sided, that is, performed for positive and negative

values of the argument, will become important when the discrete case

" is considered.

The discrete relation corresponding to equation 17 is

r	 nwOkT
a

q
(r(kT/N))_	 (pw) cos	 aw	 (4.7)Nn=0

where

2	 2
an +bn d_	 2 _

pw - pnw	 an 20 , n

under the assumption that equal powers exist in the sine and cosine

-	 components.	 Equation 4. 7 can be rewritten as
i

r	 a 2 +b 2
(rk) 	 FJ	 ( n'	 n ;) cosi2nnk/N;	 (4.8)2n=0 k

It should be noted that this function is symmetric in the variable k as it

should be since it is the Fourier transform of a real symmetric spectrum.

Because (rk) is symmetric, it contains only cosine components and can

be written as

tk^'
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F r	 2rr nkirk)	 =	 E	 All cos	 (4.9)	 r
N

n=p

Equations 4.8 and 4. 9 are identical in form if A n is identified with the

spectral power in a particular frequency window, A n = (at12	 bn2 I 12

/Sub-Thus, the spectral power can be obtained, by determining the A n.

stituting equation 4. 6 into equation 4. 9 leads to
2	 2

v^	
) cos 2vk cos 2 

IV 
is	 (4.10)An -	 E 1 (1 - kl /N) Z,(uvN	 2k=O	 V

i

To simplify notation rewrite equation 4. 10 as

1c	 (4.11)An = (u2 2 ° ) NF	 1 (1 - k/N) cos 2 N ": cos 2
_

N

k-0	

Ji
where the index v has been suppressed and notation is consistent with that

s

used for the one component case. 	 A

Defining delta andgamma as in equation 3. 7 and 3.8 withµ in place

of v gives'

2	 2	 N-1
An = (u	 v )	 - k/N) (cos Ok + cos yk) 	 (4.12)( 12N

k=0

Note that in equations 4.-11 and 4. 12 the absolute value sign has been
;f

dropped.	 This is because the summation indicated will be performed over

only positive argument and then doubled. 	 One must perform two sums in
Y

order to determine the value of equation 4.12 in closed form. 	 They are 	 s

a

ut
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a

N-1
y =,	 cos no (4.13)

a=0

.
N-1

z =	 E	 n cos no (4.14)
n=p:

N=1
y re	 exnB (4.15)	 a

n=0 _,.
r

1	 d	 A-1	 in8
5 z= N 

im d 6	 e (4.16)
n=0

Use of the algebraic identity 1. 14 yields s

M 8

y = re 
1

(4.17)
i i8

1 - e

iN8
z = N im de	

i	 e (4.18)x6
1 - e

_	 - cos B' - cos N8 + cos (N -` 1)0
(4.19)y 2-eosB

fi

a

-2 1
iNe iNBIz = N im

iei8
[(1 - eiNB) (1 - eie) - (1 - e ie ) -

J (4.20)	 1

iN0	 iN8
z -	 1

N 
re ]	 e	 ex9	 Ne—2 (4.21)	 ,.°-exB	 e x6

(T -	
)	 1 Y

1 - eiN	 i6	 -i0	 Ne
i^Bi

z

1_
= ire e	 - (1 -e	 )2 (4.22)

-2cosB
Y

z =	 1 re	 1 - e
iNB	 `ei6	 cos No - cos (N` - 1)8 (4.23)

N :- 2 --2 cos 0eA ) 2
(1 3
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x ^:

1	 1 "	
iN9

=	
e	

i0	 cos (N - 1)0 - cos Ne
+ -- (4.24)

?
Z	 re

N 1	 eie(1	 ) 2 2- 2 cos 0

iN0

y- z = 1- 1 re	 1- e	 eie (4.25)
2	 N	 (1 _ ei0)2

/	
iN0

e
= 2	 N (4.28)y _ z	 -	 re - 8	 i0

^e -2+e

y-z _"1+1-1-cosNe (4.27)
2	 N	 2" 2 cos0 s

Substitution of equation 4.27 into equation 4. 12 gives

u2 + v2
A	 _ (	 )

1	 1- cos N A	 1- cos N Y
1 + — ---_ + (4.28 )n	 2N 2N	 1 -cost?	 1 - cos Y

Equation 4.12 for A includes terms ranging from k = 0 to k = N - 1.n
This is only half of the interval desired, since it was already shown that

terms ranging from -(N - 1) to N - 1 should be included. 	 If one were to

double a result for equation 4.12 obtained in equation 4. 28, one would

make the mistake of including terms with k = 0 two times. 	 As can be
i

E

seen from equation 4. 12, this woula give 2 extra contributions, one from

the term containing A and one from the term containing y. 	 Because
i

cos 0 = l these two contributions have a total value of 2. 	 Therefore, the

desired coefficients are
r

i
A'	 2A	 - 2 (4.29) €;

n	 n k
t

s
This yields in place of equation 4.28

x

i

n.

P4

t

,Y^i
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° A t = (u3 + v2 ) 1 - Cos Na + 1 cos NY	 (4.30)n	 2N2	 (1 - Cosa	 1 - cosy )

It should be noted that this equation is inexact agreement with equation i

3.16 since (I cn 1 2) has twice the power that is actually in•. ,each component-

of the frequency spectrum. In addition for equation 3.16 and 4.30 to be >i

power spectra, they must be divided bymo, the width of a frequency window.

IV. Symmetry and Spacing

r

	

	 Since equation 4. 30 was derived for a specific uµ and vµ , equation

4.30 can be written as

2 
v 

2

A'n,	
2	 cosµ - ( µ	 µ ) 

C

l -cos ND + 1 -cos 
Yy^	

(4:31)

	

2N	 i-- cos a	 1 - 
r	 Y

or
2	 2

E'	 _	 ( uµ + µ ) ( 1 -cos Na	 1 -cos N1A'	 A	 +1	 (4.32)`	 n	 µ	 n,µ	 µ	 2	 ` 1- Cos a	 1- Cos y /I
i

This equation is analogous to equation 3.19 in the same way that equation

4. 30, is analogous to equation 3.16.

Equation 4. 31 is a useful starting point for understanding the proper-

ties resulting from the discrete analysis of a signal which possesses a

continuous spectrum. This is because of the ease of considering a mono-

x	 chromatic wave, and that results thereby obtained can be linearly super-	 f

imposed in the limit of a Gaussian time stationary process according tor	 ^i

equation 4.32. For convenience, rewrite equation 4.31 as 7

V

Mfe
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cos 2n (n - w)	 ^.	 1 - cos 21T (n +µ)	 1	 (4,33)
n,µ	 eµ	 1 - cos 2a (n - µ) N	 1 - cos 2Tr (n +µ) N

where

u 2+V L

2µµ	 2N

is proportional to the spectral power of the µth component in the continuous

signal.

`.	 V.	 Properties of Discretely Sampled Spectra

Consider the limit in which the µ th component becomes periodic on

the sampling interval T, that is the limit µ 	 integer.	 This is rr !rr

sented by

lim	 ILM	 t(s 1 - cos 21r(n - µ)	 +E	 _1 - cos'2n(n - µ)
L µ	 1 - cos 21T(n - µ/N	 µ	 1 - cos 211 (n A-µ)/N]µ- integer 	 p	 =µ - integerµ

(4.34)
x

Since real radar systems. possess filters which limit the continuous signal
4
4

at the highest unambiguous sample frequency and because of arguments r
G

already made concerning the number of independent Fourier components

needed for representation of a discretely sampled signal one may write 3

0'<µ<r,-	 0°<n<r	 (4.35)

With the restrictions of equation 4.35
s^

lim
µ - integer An µ; = 0 	 (4.36)

{
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t if µ	 n.	 This is true because the numerators of both terms of equation

t 4.34 become 0 in the limit while the denominators do not. 	 If, on the
E

other hand, µ -• n then
s

lim
µ	 n An,µ	 N eW	(4.37)

i

The limit is obtained by expanding the numerator and denominator in

_ equation 4. 34,	 Equation 4. 36: and equation 4. 37 can be combined if one j
denotes the limiting process simply by replacing µ by an integer symbol

' f
m.	 This gives

u 
2 + v 2, )

n	
)	 (4.38)At	 =C

	
n

= fi n,= exn a n,m	 m	 m	 2

i.e Thus equation 4.34 states that a monochromatic signal which is periodic
4

on a sampling interval develops no extra components when sampled.
3.

This is not surprising since if a signal were periodic on a'sample interval

its nature would be known for all times.	 Then, in accordance with the k

uncertainty principle this would mean that the frequency of the mono- {

chromatic periodic signal would be completely determined. 	 Another

statement of the same thing is that periodic signals cannot be -spread.
i

Now examine equation 4.34 in the base where µ is not an integer.
i

For a particular s	 Al	 has components for all values of n since e
µ	 n,µ

neither numerator nor denominator of equation 4. 34 are zero for any
J

combination of nand µ.	 Under these conditions, however, the discretely

analyzed continuous spectrum exhibits certain symmetry properties. It

has already been stated that in general a particular component is not a
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spread symmetrically about its own frequency. 	 In the special case in

equation 4.38 the spreading is symmetric since there is no spreading at
r

all.	 There is an interesting non-trivial case, however, in which spreading

of compoxients not commensurate with the sample period is symmetric.

This case can be understood as follows. 	 In section 2 of the appendix: ^,'r

' it was shown that signals can be analyzed unambiguously from an angular r
frequency of 0 to an angular frequency corresponding to an integer r

N/2.	 The frequency corresponding to the integer r will be called the

limit of the pass band„ fihF center of the pass band is then

(center of pass band) = rw 0 /2 = N w 0 /4	 (4.39)
5

(Note: The numbers in the discrete case corresponding to these values 

are r/2 and N/4. )

Consider a case in which there are two components symmetrically

placed above and below the center of the band pass with equal magnitudes s
rt

and of the form
8
r"

sk 	= u cos 2n (v +N/4)/N + v sin 2n (v +N/4)/N a
1

L'

and

^

:
3_	 s

sk 	= u cos 2-a	 v +N /4)/N + v sin 2n (- v +N/4)/N'	 (4.40)
2)

t By equation 4. 33 the components s k and sk	possess spectra of the form n'1	 2

J

q

a
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A ,	= s	 1 - cos 2 Tr (n - v - N /4)	 +
n,v +N/4	 J. - cos 2n (n - v - N 4) N

i

1 - cos 21T (n + v + N/4)
C 1 - cos 2 TT (n +v +;N/4)/N	 (4.41)

and

a _	 _	 1 - cos 2n (n - v +N/4)	 +e
n, -v +N/4	 1 - cos 21T (n - v +N/4)/N

1	 cos 2 TT (n + v - N/4)
C	 (4.42)1 - cos 2TT (n + ,j - N/4)/N

t To obtain the total spectrum of the signal s	 = s	 + s	 equations
x

ktot	
k	

k
l	

2
7

4.41 and 4.42 must be added to obtain

a	 _	 1 - cos 2 TT (n - v - N /4)	 +	 1 , cos 2TT (n + v - N /4)
e	 +

ntot	 L 1 — cos 27 (n - v - N/4)/N	 1 - cos 2TT (n i v - N/4)/N

)
1 - cos 2TT (n +,v +N/4)	 1 - cos 2TT (n - v +N/4)+

1 - cos 2n (n +v +N/4)/N	 1''- cos 21T (n - v +N/4) N] (4.43i
y

To see whether a'n tot is symmetric, about the center of the bandpass r
C

one must compare A'	 with A'	 This comparisonN/4 + m, tot	 N/4 - m, tot' l
gives

D

A'	 = s	 1 - cos 27(m -y)	 +	 1 - cos 2 -,c (m +v)	 +
^1N/4 +m, tot - cos 2TT(m _ v)/N	 1 - cos 2 •rr(m +v IN s

1 - cos 2 1(m +v) +N Tr + 1 - cos 2TT(m - v) +Nr l (4.44)-1 +cos 2TT(m +v)/N	 1 +cos 2T(m - v) IN	 J

and

r
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A	 - E	 1 - cos 2rr(m+v)	 +	 1 - cos 2rr(m - v)	 +
s N/4 - m, tot	 L1 - cos 2n(m a•v )/N	 1 - cos 2n(m - v) /N

1 - cos 2rr(m - v) +Nn + 1 - cos 2rr(m +v) +Nnl	 (4.45)1 + cos 2rr(m - v)/N	 1 + cos`2rr(m +v) N

Since equation 4.44 and equation 4.45 are identical and since superposition r

of Spectral components holds in the time average limit it has been established

that a continuous spectrum which is symmetric about the center of the pass a
y

s band has this same symmetry property when resolved into discrete com-

ponents.	 However, in general a continuous spectrum is not symmetric

about the same frequency before and after discrete analysis. 	 The gen-

eralproperty of asymmetry induced by analyzing a spectrum for a,finite

time is called the principle of spectral asymmetry and leads as was

earlier pointed out to mis-estimates of the spectral center of gravity.

VI.	 Spreading in the Computer

Equation 4. 38 states that a signal periodic on the sample interval

is not spread.	 Yet in thegeneral discussion of signal and noise cor-

ruption in the main body of the report mention was made of corrupting

only the frequency points which were obtained from a Fourier analysis x
x

of the backscattered signal.	 These points correspond exactly to functions r'

which are periodic on the sample interval. 	 Taking the autocorrelation

function of these points triangulating it and re-transforming it to frequency

space will cause no spreading in the frequency spectrum. 	 One may wonder

then how, in fact, ° a frequency spectrum is spread. r

y <r



f,

The spreading is accomplished by interpolation of points between

those actually derived from a Fourier analysis of the incoming signal.

If N samples are taken on a sample interval N autocorrelation functions

and N/2 frequency points result.	 Before retransforming to autoeorrela-

'	 tion space, N/2 frequency points are added.	 These points are interpola-

tions between the N/2 "real" points already obtained. 	 Now there are N _.

'	 points in frequency space. ;These N points are not all independent, since

N/2 points are simply interpolated from the "real" points. 	 The N points
i

are symmetrized and the Fourier cosine transform is taken. 	 That is,

-2N points of a symmetric interpolated spectrum are transformed into a

21\1 point autocorrelation function.: This function is symmetric and so -N

points are unnecessary since they contain no new information.	 Thus,

only N points are used and these points are the new N point autocorrela-

tion function, which is triangulated to produce spreading infrequency

space.	 The interpolated points in frequency space are not periodic on F

l

the sample interval and thus triangulation causes these pointsto be spread,

To examine whether or not the spreading is of the proper magnitude,
J,.

that is whether it has the same value as it would in a; continuous spectrum,- s

f
the following argument is employed. 	 Imagine a continuous spectrum ex-

tending between two "real" (uninterpolated) points infrequency space.

Assume that the interval under consideration contains one interpolated

and one uninterpolated point. 	 This interval is therefore representative

of the way in which points were added in frequency space. 	 For conven- f
iince allow the continuous spectrum to have an amplitude 1. ` Assume

a

it

a
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the spectrum has height 0 everywhere except between the m and (m + 1)th

real frequency points, with the (m + 1)th frequency point being excluded.

By equation 4. 32 the discretely analyzed spectrum has the form
I m +1

r 1 - cos 2n(n - µ)	 1 -Cos (n+0	
d

-	
dµ	 +	 (_.4G)µ) N	 1 - cos 2n(n +µ)/N,n Ll - cos 2r(n -P—)7N— i

The denominators are slowly changing functions by comparison to the

-;numerators of equation 4.46. ; Thus, over the small interval m, m + 1

to a first approximation the denominators of the function of equation 4.46

can be considered constant and evaluated at m'+ i while the numerators

' can be integrated.	 This yields

At	
1	 1

n,m+i	 1 - cos 2 IT (n - [m+1/21 IN + 1- cos 2rt(n+M+1 2)/N	 ;`r
(4.47)

Since the cosine terms in the numerator cycle through one ,period between 	 $

m and m + 1, hence integrate to 0.	 Now consider the discrete analog of

equation 4.47.	 First in equation 4. 47 the spectrum which was used had 	 a

an amplitude of 1 over an interval of length 1.	 Thus the total pome r in

the frequency interval between m and m + 1 was unity. , To make a con.-	 {x
sistent'analog in discrete space the total Power must be the same. 	 Thus,

the powers in the points at m and m + 1/2 must be equal with amplitudes 	 a

1/2.	 It has already been shown that the point at m will not be spread.

Thus, the spread power in the spectrum comes from the point at m + 1/2, 	 i
Y

and by equation 4, 32	 7a.



L

i

A
n,m+1/2	 1/	 2

A t	 _	 _`
n	 2	 2	 1 - cos 2rr[n - (m + l/2)] /N

1 - cos 2n [n 2 (m + 1/2)/N] 	 (4.48)

s
Equations 4.47 and 4.48 are identical. 	 Of course, they are only

approximately_ so since equation 4.47 was obtained assuming that the

denominators inequation 4.46 were constant. 	 However, this is a'good

approximation except where these denominators are near 0. In such a	 b

case, however, components nearly periodic on the sample interval are

being considered. 	 As the denominator passes through 0 there is a positive

` and a negative contribution to the integral and these contributions tend

' to cancelto 0.	 This cancellation simply confirms the fact that nearly

periodic functions tend to have little , spreading.	 (Note:	 The same results

` for spreading are obtained if more than one point is interpolated for ea ^h
4

real point.	 In fact, the approximate result obtained in equation 4.47

becomes exact in the infinite limit. )

' I

i
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