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1.0 INTRODUCTION
 

The condensation of vapor on the inside surface of a tube is an important
 

heat transfer mechanism in many thermal devices. An example of such a device
 

is the heat pipe. This is a liquid-vapor two-phase system, often in the form
 

of a dosed tube, which transfers heat by evaporation and condensation at
 

opposing ends of the tube. The heat pipe has been used to advantage in many
 

aerospace and-satellite systems, and is now being recognized as a potentially
 

attractive heat transfer device for terrestrial applications. The intentional
 

or accidental introduction of noncondensable gases into heat pipes signifi

cantly changes the condensation heat transfer characteristics of the heat pipe
 

condenser. This unique behavior has been widely used for temperature control
 

in gas-loaded heat pipes. This report describes experiments and analyses done
 

to further establish the characteristics of these gas zones in the limit as
 

the gas becomes increasingly soluble in the working fluid.
 

Early analyses of the gas-controlled heat pipe assumed a very simple model
 

.for position and effect of noncondensable gas within the condenser; that is,
 

the noncondensable gas was assumed to be in the form of a plug with a sharply

defined vapor-gas interface. In time it was found that the flat-front model
 

did not accurately represent.many systems. It was observed that axial heat
 

transfer via the condenser wall caused the sharp front to become more diffuse
 

and that the boundary was also elongated due to vapor diffusion into the stag

nant gas zone. The culmination of one-dimensional models including wall con

duction was the numerical program GASPIPE (I) which allowed the user flexibility
 

in modeling condenser heat transfer effects and yielded better agreement be

tween design calculations and experimental observation.
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In this study a more exact one-dimensional condensation heat transfer
 

model for insoluble gases has been developed and compared with experimental
 

data. Modifications to this model to accommodate soluble gas behavior have
 

also been accomplished, and the effects on gas front behavior demonstrated.
 

InSection 2, Analysis, analytical models for condensation heat transfer
 

are documented. In Section 3, Experimental Apparatus and Technique, a novel
 

optical method used for measuring gas concentration profiles is outlined.
 

Section 3 also presents experimental data. Section 4 is an interpretation of
 

these data and Section 5 is the summary and conclusion.
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2.0 	ANALYSIS
 

Inthis section models are developed for condensation heat transfer and
 

dissolved gas transport in a gas-loaded heat pipe. The influence on condensa

tion of an insoluble noncondensable gas is developed inSection 2.1, while
 

various effects of a soluble gas are explored inSection 2.2. The intention
 

of these sections is to construct an analytical framework that can be used for
 

comparison with experimental heat transfer data presented inSection 3.8,
 

Experimental Results.
 

2.1 	 One-dimensional Model for Condensation in the Presence of an Insoluble
 

Noncondensable Gas
 

To determine the effect of gas solubility on condensation heat transfer
 

in a heat pipe, it is worthwhile to develop an analytical model for condensa

tion in the presence of an insoluble gas so that a bench mark or reference
 

model is available for comparison with data. An additional incentive for
 

developing such a model evolved during execution of this study--the soluble
 

gas models, in addition to being complex, were numerically unstable. These
 

problems are discussed inmore detail in Section 2.2, Soluble Gas Modeling.
 

The coupled-heat transfer and mass transfer processes inthe condenser
 

have been described by two one-dimensional conservation equations accounting
 

for heat and mass transfer inthe vapor phase and heat transfer along and
 

through the heat pipe wall. Both axial and radial pressure gradients are
 

neglected, and composition and temperature are assumed uniform across the
 

entire vapor cross section. The boundary conditions used are similar to those
 

of Marcus, (l) but certain simplifying assumptions have not been made. Specif

ically, the first and second spatial derivatives for vapor and wall tempera

ture are not assumed equal, allowing accurate representation of high thermal
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resistance systems such as the glass heat pipe used inexperimental phases of
 

this study. The modeling described inthis section issimilar to modeling by
 

Saaski,(2) but various improvements have been incorporated which increase
 

solution accuracy and reduce computational time.
 

2.1.1 Vapor Phase Mass Transfer
 

The intent of this modeling isto define heat transfer inthe stagnant
 

gas zone shown in Figure 2.1 and existing between the axial positions
 

ZoS zSzm. A cylindrical heat pipe cross section is assumed, but the
 

equations to be developed are not geometry-dependent. However, uniform wall
 

and vapor cross-sectional areas are necessary. An immiscible gas/fluid combi

nation isalso assumed. Ifaxial and radial pressure gradients and thermal
 

conduction are negligible inthe vapor phase, and the heat pipe wall is uni

form intemperature along any circumferential line, then vapor migration into
 

the gas zone can be modeled as diffusive flow into a stagnant gas layer. Con

servation of working fluid vapor (species a) at any cross section results in
 

the coupled heat and mass transfer equation
 

da Gf(Tv-Tw) (2-1) 

dz vHfg 

where 4 denotes molar flux and Tv and Tw represent the vapor and wall tempera

tures respectively. Hfg isthe molar heat of vaporization and the vapor cross

sectional area isAv. This expression isbased on the vapor phase being sepa

rated from the wall by a liquid film of uniform conductance per unit length,
 

Gf, This constant thickness film isattributable to a uniform thickness capil

lary wick upon the wall. Inthe case of reflux operation without a wick, the
 

film thickness is a slowly varying function of axial position, but can often
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FIGURE 2.1. REPRESENTATIVE THERMAL PROFILES FOR A GAS-LOADED HEAT PIPE 

be approximated by a constant value. The surface of this film which is in 

contact with the vapor phase is at the vapor phase temperature; any interfacial 

resistances are assumed small. For an insoluble gas, there is no net gas move

ment and b = 0 (b denotes the noncondensable gas). The molar flux of species 

a is given as 

CDabdXa/dz 
Oa = (l-X) (2-2) 

so that
 

d (CD abdXa/dZ Gf(Tv- Tw) 
I \- - Av Hf (2-3) 
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The ultimate goal isto obtain a differential equation which has Tv as
 

the primary dependent variable. With this objective inmind, the mole frac

tion Xa in a constant pressure system isexpressible as
 

P 
Xa = (2-4) 

sm 

and 

dP d2P 
Ps = f(Tv); sdTv 

= F' sdTv 2 = F" (2-5) 

where Ps isa function of the vapor temperature Tv, and Psm isthe total heat
 

pipe internal pressure. The concentration-diffusivity product, CDab, can be
 

expressed as a function of TV through the Chapman-Enskog formula for dilute
 

gases
 

CDab = B 4Tv (2-6) 

where B is a very slowly varying function of temperature, and Tv is expressed
 

in absolute temperature. For practical purposes, B can be evaluated at a mean
 

temperature and assumed to be a constant.
 

When the expressions above are substituted into equation (2-3), a second

order nonlinear differential equation inTv results
 

dTv d2TV +f" f' 2TvI1 2 GAd- /G X sm2 v f'A H CD " Tv-Tw (2-7)
 
2
dz [ XbPsm 2Tj(g ab 

The numerical technique used to solve this equation is discussed inSection
 

2.1.3.
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2.1.2 Axial Wall Conduction
 

The heat pipe wall isassumed uniform in cross section and to have a
 

temperature dependence on the z-coordinate only. The wall is coupled to the
 

vapor phase through a film or layer with per-unit-length thermal conductance
 

Gf and to the heat sink through a similar conductance, Gi. InFigure 2.2,
 

this series of thermal conductances is shown as both a nodal network and as
 

related to the condenser-heat sink assembly. A steady-state heat balance on
 

an infinitesimal wall slice leads to the differential equation used inthe
 

experimental phase of this study:
 

d2Tw = (Gi(Tw-Ts) - Gf(Tv-Tw) 
 (2-8)
 
2
dz AwKw
 

where Ts isthe heat sink temperature and Aw and Kw are the wall cross

sectional area and thermal conductivity.
 

2.1.3 Numerical Solution Method - One-dimensional Problem
 

Inthe last two sections, second-order differential equations for Tv and
 

Tw have been derived. Under steady-state operating conditions, both equations
 

must be satisfied simultaneously at all axial positions.
 

By formation of a nodal network as shown in Figure 2.2, it has been pos

sible to solve the coupled equations (2-7) and (2-8) by converting the equa

tions to finite difference form and using successive over-relaxation (SOR) to
 

iteratively approach consistent profiles for Tv and Tw . However, the approach
 

has required long computational times and alternate methods for solving the
 

equations were investigated. All failed but one. Most notable among the
 

failures was the so-called "shooting technique" inwhich initial guesses for
 

the temperatures and their derivatives at z = zo are adjusted until the
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solutions at z = zm, obtained by integrating the differential equations across
 

the zone, satisfy a zero derivative boundary condition at zm. However, the
 

solution for Tv would invariably either rise or fall with great speed after a
 

number of apparently stable increments in z. The nonlinear equation (2-7) has
 

many of the mannerisms of a "stiff" equation.
 

Successive over-relaxation is commonly employed as a point-iterative
 

technique; that is,one point at a time is adjusted in value. A block relaxa

tion technique was',defined which was stable and improved convergence rates.
 

Taken individually, the finite difference forms of (2-7) and (2-8) are tri

diagonal matrices for Tvi and Twi, if temperatures on the other nodal line are
 

fixed. That is, in the nodal network of Figure 2.2, if the wall temperatures
 

are held fixed at one iterative step, then the system of linear equations de

fining the axial vapor temperature profile is tridiagonal. A tridiagonal'
 

matrix can be solved exactly using the Thomas algorithm.(3) This exact set of
 

vapor temperatures is then held constant, and a new line of wall temperatures
 

is calculated using the Thomas algorithm. The new wall temperatures are held
 

constant and a vapor profile is calculated again as in the first step, complet

ing the iterative cycle. All theoretical profiles were generated- using,this
 

block iterative technique.
 

Prior to generating difference equations, the temperatures and axial co

ordinate system were nondimensionalized as follows:
 

T + T-Ts + = JGiz2 (2) 
+ T , z+ A--
s (2-9)
T-T5 AK
 

m;F w
 

where T is the adiabatic vapor temperature. The vapor pressure f(T ) was 

found by fitting experimental vapor pressure data to the following form:
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Znf = a + a2/Tv + a3zPn(TV) (2-10) 

The vapor temperature Tv is in absolute degrees. The finite difference form
 

of equation (2-7) can be configured into a tridiagonal matrix with each row
 

given by
 

+ T+T 

ai Tv, i-I + 6i Tv + yi Tv,i+l = di (2-11) 

For intermediate points excluding the boundaries, the constants are defined
 

by the following set of equations:
 

=ai I- Ei (2-12) 

i = -(2 + Fi) (2-13) 

Yi = (2-14)1 + Ei 
T - T + +Ua2 1 

Ei \4l (Tv -~~ [1-v U Tv' i 
= -- (Tv~i+l ,i-1) [ita + 21 (2-15)-TK-Ts 

U = a3 - a2/Tv i (2-16) 

=
F B Tv,U - (1Xa - i) ( AZ (2-17) 

B =( f ) ( )(' f) (2-18)
 

Fi *T +
d. = (2-19)* * W,i 
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The finite difference equations for the wall were similarly derived and
 

will not be presented. Boundary conditions used inmodeling were
 

T+ 
 v1.0 z+ <z0 
(2-20) 

T+ 
 0.995 z = z (2-21)
v0 

Tw : 1/(1 + Gi/Gf) z z 0 - 0.75 (2-22)
 

dT dT + +
 
dz.+ . dz.+ . 0 z = z°0 + 8.5 (2-23)
 

Standard methods were used to incorporate these boundary conditions into
 

the finite difference equation sets; for example, the derivative boundary
 

conditions were expressed as central divided differences.
 

The dimensionless vapor temperature was calculated over the range
 
+ + + 

z + <s z+ + 8.5. At a distance of 8.5 dimensionless units from the gas
 

front, the gas concentration is essentially constant and calculations over a
 

longer zone are not necessary and reduce solution accuracy in the area around
 
+ 

z for a fixed number of increments. The axial gas zone was divided into 114
 

increments. Wall temperatures were calculated over a wider range extending
 

into the nonblocked condenser zone. This is done because the heat pipe wall
 

in the gas zone acts as an extended fin, draining heat away from the warmer
 

areas and depressing wall temperature beyond the actual gas front.
 

A listing of the computer program used for modeling purposes is given in
 

Appendix C. The code is in BASIC language and was programmed on a PDP-11
 

minicomputer. Representative profiles are tabulated inAppendix B, and a
 

comparison with experimental data is given in Figure 3.10. Iteration of
 

temperature profiles was terminated when the largest change in wall
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temperature per iteration was less than 0.001 in dimensionless units. This
 

typically required 40 iterations--at the end of these iterations, the vapor
 

temperature was often very slightly less than the wall temperature for
 

zo. With a larger number of iterations this physically unrealistic
 

situation is corrected, but the difference in profile shapes isquite negli

gible, and was not considered worth the additional computer run-time. Forty
 

iterations required about 5 to 6 minutes of CPU time on the PDP-11.
 

2.2 Soluble Gas Modeling
 

An initial attempt to model condensation in a tube containing soluble
 

gas was done using a von Karman-Pohlhausen integral technique. By assuming
 

characteristic equations for the concentration and velocity profiles in both
 

vapor and liquid phases, itwas possible to generate coupled differential
 

equations describing the two-dimensional concentration and flow fields for
 

incompressible flow. The approach used was similar to that of Somogyi and
 

Yen. (4) The analysis developed will not be presented here in detail because
 

the authors were unsuccessful inobtaining stable numerical solutions.
 

A shooting technique was used from the interface at z = zo. A stable
 

solution set was obtained until the differential integration approached the
 

fully stagnant gas plug zone. Under these conditions, the fluid film on the
 

heat pipe wall is saturated with a large amount of noncondensable gas, and
 

the gas-saturated liquid moves toward the evaporator into regions of
 

lower vapor-phase gas concentration. This supersaturation creates a large
 

gas flux out of the fluid surface and, infact, the integral techniques indi

cated total vapor phase fluxes that were directed radially inward. When this
 

occurred, the solution became unstable and was not correctable with smaller
 

steps inz. Because of these large radially inward gas fluxes, it was not
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possible to obtain a zero derivative for concentration and zero value for the
 

=
axial and radial velocity components at z z.. The integral method was
 

abandoned and the hybrid 1D/2D method described inthe following section was
 

developed.
 

2.2.1 	Hybrid Soluble Gas Model
 

For tubes on the order of 1 cm diameter and vapor pressures of 1
 

atmosphere (typical heat pipe conditions), vapor phase diffusivity can be
 

much higher than liquid phase diffusivity. Vapor phase diffusivities range
 

typically from 0.1 to 1.0 cm2/sec, while liquid phase diffusivities of 1 to
 

10 x 10 2/sec are typical for gases incommon working fluids.
-5 cm


Therefore, if radial concentration gradients are neglected inthe vapor
 

phase but are accounted for in the liquid phase, it is possible to extend the
 

analysis of Section 2.1 to include soluble gas effects for a wide range of
 

physically relevant heat pipe designs.
 

If interfacial resistance is neglected at the vapor/liquid interface
 

as inSection 2.1, then the concentration of gas at the liquid phase inter

face isin the equilibrium with the gas concentration inthe vapor phase, and
 

Cg 	 =a Cgv (at liquid/vapor interface) (2-24)
 

where Cg, isthe liquid phase gas concentration, Cgv is the vapor phase gas
 

concentration, and a is the Ostwald coefficient. A mass balance on the
 

working fluid vapor yields the same expression as equation (2-1). However,
 

the noncondensable gas isno longer stationary, and the equation (2-2) for
 

a must be modified to
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= as 1CD baX /dz 
(2-25)
 

and the conservation equation for coupled heat transfer and vapor transfer is
 

-26)
d Gf(TV-Tw) 6
A f
-d-x ( as) = --
AyHfg
 

To obtain the flux b in (2-25), transport of noncondensable gas within
 

the surface liquid layer must be detailed. In the experiments described in
 

Section 3, the heat pipe was wickless and vertically oriented with the
 

evaporator at the bottom. The surface layer therefore is in the classic
 

falling film category as investigated by Nusselt and others. If it is
 

assumed that the dissolved gas has no effect on physical properties of the
 

liquid and that diffusion of dissolved gas in the vertical direction is negli

gible compared to convective transport, then conservation of gas in the film
 

is governed by
 

V(y,z) = 9 2 (2-27)
az 3y


where V(y,z) is the film velocity and D is the diffusion coefficient of the
 

gas in the liquid. The coordinate y is measured radially inward with respect
 

to the heat pipe inner wall surface.
 

Under conditions of laminar flow, negligible shear at the liquid-vapor
 

interface, and negligible vapor density compared to liquid density, the
 

velocity profile is
 

V(Y+) = pjg6 2 +_ 1/2y+ (2-28)
lip, 
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where y = y/6 (2-29) 

The fluid density and viscosity are p and , respectively. The fluid
 

film thickness is 6. At the wall, V(O) is zero, while at the vapor/liquid
 

interface, V(1) is a maximum.
 

Boundary conditions on C are
 

CgZ = aCgv y+ = 1 (2-30) 

d~£ 0
dCg0Y+ y+
 = 0 
 (2-31)
 
dy
 

Cgz = aCgvm z = zm, 0 y+ 1 (2-32) 

At z = zm , the dissolved gas concentration has reached a maximum value in
 
equilibrium with the fully stagnant gas concentration, Cgvm.
 

The liquid film thickness 6 changes with axial position-because of
 

condensation. By using the velocity distribution (2-28) and assuming a
 

linear temperature profile across the film, film growth is obtained by
 

integrating over the heat transferred from z = zI to z = zm, where z° z1
 

Zm. The film thickness 6 is given by
 

tw63 
 f
 

+ 1wa6 
Zm (T-T) dz 
 (2-33)


gHf
2 Ifg Z1 

where tw is the heat pipe wall thickness.
 

For coupling to the finite difference equations it was necessary to
 

include the wall thermal resistance between the fluid film and the node at
 

the center of the wall. For metal-walled heat pipes this radial wall
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temperature drop can be neglected, but it is of first-order importance in a
 

glass heat pipe because of a much lower thermal conductivity.
 

For numerical solution of the conservation equation (2-27), a dimension

less gas concentration and radial measure were defined.
 

Cgym ; y += x (2-34) 

The gradually-changing film width 6 must be accounted for in the con

servation equation
 

+ (C d6 a2c 

V(y ,z)0 _z _ d- y- -y+s2 2 (2-35) 

The conservation equation (2-35) with boundary conditions 2-30 through
 

2-32 was solved by implicit finite difference methods similar to those
 

described in Section 2.1. The gas phase concentrations Cg used in boundary
v 


conditions 2-30 were obtained from a finite difference solution of the vapor
 

phase equation (2-26). This solution was also obtained in a manner entirely
 

analogous to the solution method in Section 2.1 except for inclusion of the
 

new term in 4a' i.e.,
 

x new term = 1-Xa b (2-36) 

The axially-varying flux b was obtained from the solution to the liquid

phase diffusion problem. At each axial position, a mass balance including
 

both the vapor and liquid phases shows that the flux Avb in the vapor phase
 

must be balanced by a gas flux of opposite sign within the liquid phase.
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The liquid-phase gas flux AzPbZ is obtained by numerically integrating the
 

concentration profile,
 

A Xbz= D 6 Cgvm 1 V(y+) . Cdy+I (2-37)
 

where D is the heat pipe inner diameter.
 

The coupled problem was iteratively solved by alternately holding the
 

solution fixed in one phase and solving the finite difference equation in the
 

other phase. At the completion of each cycle, b(z) would be updated. When
 

the concentration profiles in each phase remained constant with iteration,
 

the coupled problem was considered solved.
 



18
 

3.0 EXPERIMENTAL APPARATUS AND TECHNIQUE
 

3.1 Alternate Methods for Measuring Vapor Phase Gas Concentration
 

To compare experimental data with analytical models for condensation in
 

the presence of a soluble gas, an approach is desired which indicates
 

accurately both vapor phase composition and spatial variations in composition.
 

Many previous investigators have inferred internal vapor phase dynamics from
 

variations in heat pipe wall temperature, or from probe temperatures in the
 

vapor phase. The first method has the obvious deficiency of not being a
 

direct measurement and, in fact, it is easy to show that measured axial
 

temperature variations are primarily related to axial wall conduction for
 

most metal-walled heat pipes. It is very difficult to infer from external
 

measurements an accurate picture of vapor phase mass transfer in the transi

tion zone between the freely condensing and fully stagnant zones.
 

It is also difficult to accurately measure the condition of the vapor
 

phase directly. Any probe inserted into the vapor generally has such a large
 

thermal mass that profiles can be severely distorted. Thermocouple techniques
 

or thermistors are generally difficult to integrate into an operating heat
 

pipe, not only affecting the accuracy of temperature measurement through their
 

own mass, but also fundamentally changing the flow distribution.
 

If a small diameter thermocouple well is placed along the axis of a
 

cylindrical heat pipe, boundary conditions for the Navier-Stokes equations
 

are modified as:
 

BEFORE PROBE: at r =O, U = U DU 0
 
0' Dr
 

=
AFTER PROBE: at r =O, U O, au 0

Dr
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where U represents the axially-directed velocity component. This is a very
 

fundamental change in velocity distribution and, therefore, the measurement
 

technique has significantly influenced the system being measured.
 

3.2 Vapor Composition by Optical Spectroscopy
 

As discussed, spatial variations in noncondensable gas concentration are
 

difficult to measure within an operating heat pipe without obtaining a dis

torted picture of vapor composition. This difficulty has been overcome to a
 

great extent by using optical spectroscopy.
 

The basic concept is shown in Figure 3.1. A working fluid/gas combina

tion is selected inwhich the noncondensable gas is either strongly absorbent
 

or optically transDarent at a wavelength where the working fluid vapor is of
 

opposite characteristic. Using a monochromatic light source, such as a laser
 

or spectrophotometer, the outgoing beam from the source is shaped by a narrow
 

slit perpendicular to the heat pipe axis. The heat pipe envelope is glass,
 

and light transmitted through the heat pipe impinges upon a sensitive photo

cell coupled to a picoammeter. The heat pipe/condenser assembly is mounted
 

on a vertical drive so that the heat pipe can be scanned by the beam.
 

Absorption of light by a gas is given by the familiar Lambert-Beer Law
 

I = 10 EXP(- SCbZab) (3-1)
 

where 10 is the incident light intensity, p is an absorption coefficient, and
 

Zab is the distance of light travel through the absorbing medium. Cb is the
 

effective, geometrically-weighted average concentration along the path at any
 

given axial position. At constant wavelength a photo-diode has a linear
 

response to light intensity, so that I and Io can also be regarded as photo

detector current. Therefore, if p and Zab are known, concentration of the
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FIGURE 3.1. BASIC TECHNIQUE USED FOR MEASURING CONCENTRATION PROFILES 
OF OPTICALLY-ABSORBING GASES IN A REFLUXING TWO-PHASE SYSTEM 
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absorbing species, Cb, can be found.
 

C	 In
Cbb 	 = Z-Zab n ('o) I n (1#)I (3-2) 

The constant a now isa cell constant and assumes uniform geometry along the 

heat pipe length. 

This technique allows very accurate measurement of gas concentration
 

versus axial position with minimum disturbance to the heat pipe vapor.
 

Spatial variation along the heat pipe axis can be defined to any degree of
 

accuracy by decreasing slit width, although practical limits arise inobtain

ing adequate light intensity to drive the photodetector.
 

The technique also has some limitations. It is obvious that the
 

technique is principally useful in defining the average concentration as a
 

function of axial position; the beam in effect integrates any radial varia

tions. It is also not advisable to use any wick upon the heat pipe inner
 

diameter, as itwill optically scatter light. Therefore, this technique is
 

most useful for studying condensation in the presence of noncondensable gases
 

upon smooth vertical surfaces. Such surfaces are of considerable importance
 

intwo-phase heat transfer equipment; for example, many terrestrial appli

cations use heat pipes invertical reflux, in exact agreement with the method
 

optimum for testing. Inaddition, both vapor phase and condensate phase
 

conditions are very similar to conditions in zero-g, where a wall wick and
 

surface tension pumping replace the falling condensate film defined by viscous
 

shear and gravity,
 

3.3 	 Apparatus Description
 

Table 3.1 summarizes the experimental system.
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TABLE 3.1. EXPERIMENTAL TEST VEHICLE
 
CHARACTERISTICS
 

Heat Sink
 

Type 


Length 


Diameter 


Optical slot width 


Optical slot height 


Heat pipe centering method 


Conductance of centering 

screws 


Heat Pipe
 

Envelope type 


Wall thickness 


Nominal length 


Evaporator length 


Adiabatic length 


Working fluid 


Gas additive 


Optical Assembly
 

Operating wavelength 


Effective beam size at 

heat pipe
 

Nominal indicator current 

with no absorbing gas
 

Background with light 

source shielded
 

Gas-gap chiller block with optical
 
slot; Aluminum
 

15.24 cm
 

1.4618 0.0013 cm (I.D.)
 

0.318 cm
 

13.20 cm
 

Four 6-32 nylon screws at each end
 
of sink
 

0.012 W/K for each set of four
 
screws
 

1.395 cm O.D. Pyrex glass tube
 

0.12 cm
 

50.0 cm
 

16.0 cm
 

18.8 cm
 

CCI4
 
Chlorine
 

3550 A
 

0.10 x 0.318 cm
 

4.03 (10-10) ampere
 

-
:0.02 (10 10) ampere
 

Resolution *0.025 (10 10) ampere on 10 10 scale
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Figures 3.2a and 3.2b present perspective views of the glass heat pipe
 

and aluminum heat sink. The heat sink, which was in the form of a split-shell,
 

had an inner diameter of 1.416:0.0013 cm, and was 15.24 cm long. Four cool

ing channels of 0.63 cm diameter maintained the condenser isothermal. The
 

optical transmission slits were 0.318 cm wide and 13.2 cm long. After the
 

heat sink was machined, it was given a dark brown chromate conversion coating
 

having a high absorptivity in the blue portion of the spectrum. The outside
 

was then painted flat black. In Figure 3.2b, the light beam is visible in
 

the optical slit.
 

Before operation, the glass heat pipe of 1.345 cm O.D. was inserted into
 

the inner hole, and centrally located using a feeler gauge and 8 radially
 

mounted nylon 6-32 screws; four screws are at the top of the condenser and
 

4 at the bottom, spaced at 90-degree intervals. These screws served to hold
 

the heat pipe in the condenser with a minimum conductive loss, and establish
 

a uniform gas-gap circumferentially.
 

The heat pipe was 50 cm in overall length. The evaporator was 16 cm
 

long. To maintain the evaporator and adiabatic sections as thermally isolated
 

as possible, an aluminum walled Dewar, continuously pumped with a nitrogen
 

trap and fore pump, surrounded these sections, and was sealed to the heat pipe
 

at the condenser end with a Buna-N O-ring. Electrical feed-throughs supplied
 

current to the evaporator resistance heater through the opposite end of the
 

Dewar. On the external surface of the Dewar, a uniformly-space resistance
 

heater maintained the exterior of the Dewar within 10C of the heat pipe adia

batic temperature. This was necessary to reduce thermal losses via the O-ring
 

contact at the condenser end, and via a mounting plate at the opposite end
 

which centrally located the heat pipe in the Dewar. These elaborate pre

cautions were necessary since the heat pipe was operated as much as 750C above
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-COOLANT 

VERTICAL TIRAVERSE -

COUPLING BLOCK THERMOCOUPLE 

WELL 

OPTICAL SLIT 

HEATING TAPE- .	 3/8" INSULATION 

ALUMINUM DEWAR WITH 
EXTERNAL HEATER TAPE 

LUCITE LINE
 
CONTACT LOW
 

CONDUCTIVITY SUPPORT
 

0-RING SEAL- * 

CERAMIC FEED-THROUGH 
HEAT PIPE POWER VACUUM LINE 

FIGURE 3.2a. 	 PERSPECTIVE VIEW OF TEST SYSTEM USED IN MEASUREMENTS OF AXIAL 
NONCONDENSABLE GAS CONCENTRATION DISTRIBUTIONS. BY USING AN 

OPTICALLY ABSORBING NONCONDENSABLE GAS, A PRECISE BEAM OF 
MONOCHROMATIC LIGHT CAN DEFINE CONCENTRATION PROFILES. 
VARIATIONS IN TRANSMITTED LIGHT INTENSITY ARE DIRECTLY RE-

LATED TO CHANGES IN GAS CONCENTRATION 



FIGURE 3 2b 	 FRONTAL VIEW OF CONDENSER AND HEAT SINK SECTIONS 
TRANSMITTED LIGHT BEAM ISVISIBLE NEAR THE BOTTOM 
OF THE HEAT SINK GROOVE. 
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laboratory ambient. The condenser was capable of moving vertically via a
 

friction drive mechanism so that any portion of the transmission slit could
 

be intercepted by the detector beam.
 

3.4 	Gas and Fluid Selection
 

Based upon a high absorption in the blue spectrum, chlorine was selected
 

as the noncondensable gas. A typical absorption spectrum for Cl2 gas at
 

1 atmosphere and 20°C is shown in Figure 3.3. An operating wavelength of
 

3550 A was selected for all optical tests. This wavelength is very close to
 

the absorption peak of Figure 3.3. As a working fluid, carbon tetrachloride,
 

CCl4, was chosen on the basis of compatibility with chlorine, no significant
 

blue spectrum absorption for thin fluid films, and a high affinity for taking
 

chlorine into liquid solution. The latter characteristic is essential to
 

define the effect of solubility on gas zone behavior. The solubility of Cl2
 

in CCl4 and R-11 was experimentally measured using an optical absorption
 

technique. Results of these experiments are shown in Figure 3.4.
 

3.5 	Calibration: Optical System
 

Itwas experimentally established that the logarithm of optical absorp

tion was not linearly dependent upon gas concentration. Experimental
 

absorption measurements with known concentrations of chlorine in a 1.4 cm
 

diameter cell established the following relationship between gas content in
 

standard cm3 per cc and Zn (Io/I) at X = 3550 A and 20.80C.
 

2C = 	0.39815 £n (I /I) + 0.066075 (zn(Io/I)) £n(T1 0)<1.35 (3-3) 

PRECEDING PAGE BLANK NOT FILMM
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EG&G MONOCHROMATOR 585-22
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0 
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0 	 I I . I
 

320 340 360 380 400 420 440 460
 
WAVELENGTH (MILLIMICRONS) 

FIGURE 3.3. 	 THE ABSORPTION SPECTRUM OF 1 ATMOSPHERE OF CHLORINE GAS AT 
2C(AS A FUNCTION OF WAVELENGTH. AN OPTICAL PATH LENGTH OF 
APPROXIMATELY 1 CM WAS USED. MONOCHROMATOR BAND-WIDTH 
WAS NOT DETERMINED. 
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FIGURE 3.4. THE SOLUBILITY OF CHLORINE IN CCI 4 AND R-11 (CFCI 3 ) 

Cg = 0.29267 - 0.30541 kn (1/1) + 0.49546 (Zn (10/0)1.
5 

135 (3-4)
 
kn (10) 1.35 

The experimental data basis for these expressions is shown in Figure 3.5.
 

At a higher temperature T, the concentration is
 

C9(T) = I - [0.0005441 Zn( 0 /1) (T-20.8)] *Cg(20.8 0C) (3-5)
 

The light source employed at all times was a 500-watt slide projector
 

operated from a constant-voltage transformer. The wavelength selected for
 
0 

operation, 3550 A, was produced with an EG&G monochromator, Model 585-22.
 

Beam thickness at the heat pipe was chosen at 0.1 cm as a compromise between
 

spatial resolution and photodetector resolution. The radiometer detector
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FIGURE 3.5. 	 EXPERIMENTAL CORRELATION OF GAS CONCENTRATION WITH THE 
LOGARITHM OF THE OPTICAL ABSORPTION RATIO FOR A CYLINDRICAL 
CELL WITH IDENTICAL PHYSICAL DIMENSIONS TO THE TEST HEAT PIPE. 
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head and indicator units were also manufactured by EG&G, and were Models
 

580-22A and 580-11A, respectively.
 

3.6 Thermal Measurements
 

Heat sink and heat pipe temperatures were measured using Type K thermo

couples. Adiabatic temperature was measured with a thermocouple centered in
 

the adiabatic section on the heat pipe exterior wall. All temperatures were
 

measured with 0.10C resolution using a Doric DS-350 digital thermocouple
 

indicator.
 

3.7 Data Reduction
 

At completion of a test series, data included heat pipe vapor core
 

temperatures and heat sink temperatures, heat input data, and photometer
 

current readings as a function of axial position in the heat pipe.
 

Heat losses or gains through the Dewar surrounding the evaporator and
 

adiabatic sections were negligible. However, the nylon locator screws-at
 

the condenser entrance form a direct heat leak to the heat sink, and this
 

heat loss was subtracted from the gross heat input to obtain net heat de

livered to the condenser. Each set of nylon screws had a combined conduc

tance of 0.012 W/°K.
 

Gas concentrations were calculated using Equations (3-3) through (3-5),
 

with the sink temperature used as the characteristic temperature in equation
 

(3-5). The reference photocurrent 10 was based on the peak current immedi

ately in front of the gas front. For most data runs, this current was about
 

4.03 x 10 10 ampere. Total gas content within the gas zone was calculated
 

by numerically integrating the concentration profile with Simpson's Rule.
 

Gas concentration beyond the farthest measureable condenser position (about
 

13.7 cm) was assumed equal to the concentration at 13.7 cm.
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3.8 Experimental Results
 

Concentration profiles from experimental sequences using C12/CCl 4 at
 

sink temperatures of 14°C and 400C are shown in Figures 3.6 and 3.7,
 

respectively. The axial position scale iswith reference to the condenser
 

end nearest the evaporator; e.g., the blind end of the condenser is dis

placed 16-cm axially from the "front end" of the condenser. The continuous
 

curves, which represent theoretical predictions, are discussed in Section 4.
 

The raw and converted data are both given in complete tabular form in
 

Appendix A.
 

Vapor temperature response to heat input is displayed in Figure 3.8
 

for both sink temperatures. Figure 3.9 presents the gas zone molar charge
 

based on integration of the experimental concentration profiles in Figures
 

3.6 and 3.7. The molar gas load is shown versus stagnant zone gas concen

tration to determine if gas is going into solution in the stagnant zone.
 

Figure 3.10 presents two models for predicting noncondensable concen

tration distributions compared with data for the 2.2 W high temperature
 

CCI4 run.
 

Analysis of the data presented here is discussed in the following
 

section, Data Interpretation.
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4.0 DATA INTERPRETATION
 

4.1 Comparison of Experimental Results With Theory
 

The full complement of data profiles was simulated with the one

dimensional insoluble gas model and the results are shown in Figures 3.6 and
 

3.7 as the solid curves. The experimental runs were simulated on the basis
 

of the following data.
 

1. The vapor-sink driving temperature difference
 

2. The numerically-integrated experimental total gas content
 

3. Physical property data and conductances.
 

With these input data and the governing differential equations, the gas
 

concentration profiles were calculated and the gas front positions determined.
 

The analytical-and experimental data are in good general agreement, but the
 

model rather consistently predicts a somewhat shorter gas zone.
 

The general underestimation of gas zone length by the analytical model
 

is not attributable to the governing differential equations but rather to a
 

discrepancy between the optical absorption-derived gas density in the stagnant
 

zone and the value calculated from the ideal gas law. This difference is
 

summarized inTable 4.1, a comparison of heat transfer and gas concentration
 

data with theory. Although the difference inconcentration amounts on the
 

average to only about 5%, itis the cause of the gas front shift. The heat
 

transfer rate as a function of driving temperature difference, given in
 

Figure 3.8 and Table 4.1, isalso inagreement to within =5%; again, the
 

differences are primarily attributable to the discrepancy in gas zone length.
 

Inthe low heat flux runs the optically-derived stagnant zone concen

trations are inbetter agreement with the ideal gas law, and the data can be
 

compared with the model in greater detail, as inFigure 3.10. Ifaxial vapor
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TABLE 4.1. A COMPARISON OF EXPERIMENTALLY-DETERMINED VALUES
 
FOR HEAT TRANSFER AND GAS CONCENTRATION WITH VALUES
 
PREDICTED BY THE ONE-DIMENSIONAL ANALYTICAL MODEL
 

Stagnant Zone
 
Vapor-sink Gas Concentration
 

Sink Tempera- Temperature Heat Transfer Rate (W) (std cm3/cm3)
 
ture (0C) Difference (CC) Expt Model % 0ev Expt Model % Dev
 

14 nom. 35.65 2.09 2.05 -1.9 .285 .293 2.8
 

38.8 4.58 4.57 -0.2 .330 .340 3.0
 

41.8 6.95 7.00 0.7 .377 .388 2.9
 

45.05 9.37 9.54 1.8 .427 .445 4.2
 

48.2 11.95 12.03 0.7 .482 .508 5.4
 

51.45 14.3 14.56 1.8 .565 .579 2.5
 

58.17 18.8 19.24 2.3 .691 .740 7.1
 

40 nom. 23.23 2.22 2.01 -9.5 .330 .323 -2.1
 

26.9 4.67 4.57 -2.1 .394 .398 1.0
 

30.8 7.13 7.21 1.1 .474 .485 2.3
 

34.75 9.65 9.72 0.7 .567 .582 2.6
 

38.65 11.92 12.33 3.4 .660 .690 4.5
 

42.85 14.3 14.9 4.2 .754 .817 8.4
 

51.1 18.8 20.2 7.4 >.993 1.104 
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transport were completely neglected in the modeling, then the gas concen

tration would be defined by a fin-type axial temperature profile in the
 

stagnant region. This profile has been superimposed on Figure 3.10 to show
 

the influence of vapor diffusion into the stagnant gas. The concentration
 

data of Figure 3.10 are correlated well by the one-dimensional insoluble gas
 

model. Under most operating conditions, the gas concentration profiles did
 

not show any gross effect of the highly soluble gas.
 

There was, however, a definite "reduction" in noncondensable gas as the
 

stagnant zone gas concentration increased, i.e., as the heat transfer rate
 

was increased. It is very probable that this was due to gas being absorbed
 

into liquid inthe stagnant zone. At a sink temperature of 140C the Ostwald
 

coefficient for chlorine in carbon tetrachloride is 31.0, while it is 18.5
 

at 400C. Assuming no loss of gas from the gas zone, the total moles of gas,
 

No, must remain a constant. For a sharply defined gas zone kg in length, and
 

for a trapped volume of liquid VZ
 

No = (tAv + aV ) Cgvm (4-1)
 

But inan optical absorption experiment such as done here, only the gas-phase
 

noncondensable is seen, and this observable amount is
 

CgvmzgAv = No - (cVy) Cgvm (4-2)
 

Therefore, ifVk stays constant, itcan be predicted that the observed moles
 

of gas will appear to linearly decrease with increasing stagnant gas concen

tration, and that the rate of decrease will be proportional to the Ostwald
 

coefficient. Furthermore, inthe limit of Cpgvm going to zero, all test runs
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at different sink temperatures should intersect at Cgvm = 0 and this will
 

represent the total gas content, No.
 

Measured total contents shown in Figure 3.9 are in agreement with all
 

predictions above. The linear rate at which gas is "lost" at 140C is about
 

1.9 times the rate at 40°C, and the Ostwald coefficient is about 1.7 times
 

higher at 180C than 400C. In addition, intersection of the two linear gas
 

profiles in Figure 3.9 occurs very close to zero gas concentration. There

fore, the total molar gas content in the heat pipe is about 4.75 std cm3.
 

It is informative to now use (4-2) to calculate the amount of liquid
 

contained as droplets and surface film within the stagnant zone. This calcu

lation indicates a liquid load VZ of only 0.039 cm3 is sufficient to produce
 

the virtual gas loss shown in Figure 3.9.
 

This effect was the basis of another study (5) where itwas shown that
 

under certain conditions a liquid absorption matrix can be used as a gas
 

reservoir for gas-controlled heat pipes. This technique was shown experi

mentally to reduce reservoir volume by a factor of more than five compared
 

to standard gas reservoir designs.
 

The high solubility of chlorine in CCl4 also produced another unique
 

effect not normally encountered in gas-loaded heat pipes. In the tests at
 

low sink temperature, there was an unusual increase in chlorine concentration
 

in the gas front region. This is shown very well in the 18.8 watt run of
 

Figure 3.6. Because the heat pipe is very nearly a constant-pressure system,
 

this zone must actually be cooler than the heat sink. Inthe fully stagnant
 

zone, the wall and liquid films are close to sink temperature; a higher con

centration of chlorine in an intermediate zone implies a local vapor pressure
 

(and film temperature) that must be below sink temperature. Another related
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and unusual manifestation of high power level operation was observed in
 

similar experiments carried out with an R-11 heat pipe and chlorine gas. In
 

this case, droplets continuously formed within the vapor phase and fell
 

through the gas front zone until they impinged on upward-moving vapor. This
 

created a stagnation zone of high droplet density. A time-lapse photograph
 

of this phenomenon isshown inFigure 4.1. The vertical streaks are falling
 

droplets, while the lower diffuse disk isthe droplet stagnation zone. This
 

photograph was taken through the optical slit of the test apparatus in Figure
 

3.2a with strong ba6k lighting. This phenomenon isoccurring within a tube
 

of only about 1 cm2 cross-sectional area.
 

At the 18.8 watt heat flux for each sink temperature, the gas front was
 

also very unstable with large "temporal" fluctuations inthe axial concen

tration profile. The position of the gas front shifted axially 0.15 to
 

0.20 cm inan erratic fashion with a time constant on the order of 15 to 45
 

seconds, and the vapor core temperature also fluctuated about 0.10C.
 

The 140C profile is shown ingreater detail in A of Figure 4.2, along
 

with a theoretical profile based on the soluble-gas modeling developed in
 

.Section 2.2. The axial positions of the experimental and theoretical profiles
 

have been adjusted so that the profiles overlap. The experimental data range
 

isindicated by the bounds given as dotted lines in A of Figure 4.2, while
 

the theoretical profile isdisplayed as a solid line. The effects of the
 

high chlorine gas solubility on the previously discussed insoluble gas con

centration profiles were very modest, and the differences in profile would be
 

indistinguishable in A of Figure 4.2. This was primarily because of the thin
 

fluid films (on the order of 0.001 cm) associated with the vertical reflux
 

mode.,
 



FIGURE 4.1 	 A TIME-LAPSE PHOTOGRAPH OF DROPLET FORMATION SEEN 
AT 18 WATTS IN A GLASS HEAT PIPE CHARGED WITH C2 AND 
R-11. THE DROPLETS ARE BEING PHOTOGRAPHED WITH 
STRONG BACKLIGHTING THROUGH THE OPTICAL SLOT 
SHOWN IN FIGURE 3 2a. THE DROPLETS FALL UNTIL RESIS-
TANCE IS ENCOUNTERED FROM UPWARD-MOVING VAPOR, 
CREATING THE DIFFUSE DISC-SHAPED AREA BELOW THE 
FALLING DROPLET STREAK PATTERNS ONE-SECOND 
ELAPSED TIME. 
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The unsteady gas front behavior is believed to be related to radial free 

convection. Ifa Grashof number iscalculated based on the tube radius and
 

the vapor-sink temperature difference, a value of about 170,000 is found.
 

For free convection between parallel vertical plates the critical Grashof
 

number isonly 8000. Ifsignificant radial concentration gradients were
 

present in the transitional zone from free condensation to stagnation, then
 

the radial Grashof number could be high enough to initiate a convective
 

motion, and this unstable convective motion would explain the concentration
 

fluctuations inA of Figure 4.2. This could also explain the cold zone indi

cated by absorption measurements at the 14°C sink temperature. A possible
 

scenario leading to this behavior will now be discussed.
 

InB of Figure 4.2, the calculated radial fluxes of vapor ( vR) and non

condensable gas (gR) at the liquid-vapor interface are shown. The vapor
 

condensation rate shows a maximum at a point 0.2 cm into the gas zone, and
 

decreases monotonically beyond this point. Chlorine gas issimultaneously
 

being evolved from the film between 0 s zr s 0.35 cm, and dissolved into the
 

film from 0.35 cm to the end of the transition zone. Both the vapor and
 

chlorine radial flux densities are small but finite at 1.05 cm, the position
 

of maximum chlorine concentration in A of Figure 4.2. If the vapor phase gas
 

concentration rises and falls in response to the disordered mass transfer
 

occurring in the first 1/2 cm of the zone, chlorine will be absorbed and
 

desorbed from the liquid film. From Figure 3.4, the heat of solution of Cl2
 

inCC] 4 isabout 14,000 Joules/g-mole, as calculated from the slope of log a
 

versus l/T, while the heat of vaporization of CC14 isabout 31,000 Joules/
 

g-mole in this temperature range. Because the film has 20 to 30 times as
 

much Cl2 per unit volume as the vapor phase, it ispossible that gas desorp

tion from the thin film under semistagnant conditions could lead to a net
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cooling of this zone, and a relative maximum in chlorine vapor phase concen

tration. However, because the modeling and experimental phases of this study
 

were basically one-dimensional approaches, it is not possible to substantiate
 

the mechanisms described above, and these processes should be regarded as
 

speculatory at this time.
 

4.2 Model Validity
 

The one-dimensional models developed in this study assume that axial
 

transfer of energy is predominated by diffusive mass transfer and that the
 

sensible heat capacity of the diffusing vapor is negligible compared to the
 

latent heat capacity. These assumptions are validated in Table 4.2, which
 

compares axial transport of heat via gas-phase conduction, ordinary diffusion
 

and thermal diffusion. The comparison was based on the theoretical profile
 

TABLE 4.2. 	THE RELATIVE IMPORTANCE OF VARIOUS ENERGY
 
TRANSFER PROCESSES FOR A REPRESENTATIVE
 
CONCENTRATION PROFILE 

Axial Heat Flux Density 

Mode (W/cm2) 

Conduction 0.0073 

Thermal diffusion( I) 0.0004 

Latent heat, ordinary diffusion 0.092 

Sensible heat, ordinary diffusion(2)  0.015 

(1)Assuming a thermal diffusion ratio of 0.05.
 
(2)Based on the total vapor-sink temperature difference.
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in A of Figure 4.2. The comparison was done at the axial position with maxi

mum vapor temperature rate-of-change versus zr* This position was zr = 0.38
 

cm. Ordinary diffusion isshown in Table 4.2 to be the primary mode of energy
 

transfer, with heat transfer by conduction accounting for less than 8% of
 

the total thermal flux, and thermal diffusion accounting for less than 0.5%
 

of the energy transfer. The initial assumptions pertaining to energy trans

port modes are therefore generally satisfied by model solutions. However,
 

the energy associated with vapor phase sensible heat was neglected, yet it
 

could account for up to 15% of the axial energy flux. Inclusion of sensible
 

heat would be an appropriate basis for a more accurate model of gas front
 

concentration profiles.
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5.0 SUMMARY
 

One-dimensional models for condensation in the presence of insoluble and
 

soluble gases have been developed for a tubular geometry. The models have
 

been compared with experimental data derived from C12/CCl 4 vertical reflux
 

heat pipes and are in good agreement with measured concentration profiles at
 

low heat flux densities. At high heat flux densities, the gas fronts become
 

unstable and exhibit a turbulent and fluctuating concentration profile. This
 

turbulent behavior was associated with unusual effects, including an apparent
 

depression of heat pipe wall temperature below sink temperature and the for

mation of liquid droplets in the vapor phase.
 

The experimental concentration profiles were determined using a new
 

technique having several advantages over conventional thermocouple or thermis

tor temperature measurement methods. By selecting a noncondensable gas which
 

strongly absorbs light over discrete portions of the spectrum, the concentra

tion of noncondensable gas as a function of axial position was determined
 

directly from optical absorption measurements in a glass heat pipe. Axial
 

resolution is improved over temperature measuring methods and the vapor-phase
 

flow field is undisturbed.
 

Apart from the effects at high power level, gas solubility did not have
 

a significant influence on gas concentration profiles. This was predicted
 

by the soluble gas condensation model, and was physically attributable to the
 

relatively thin fluid films (on the order of 0.001 cm) associated with the
 

vertical reflux mode. The short time constants for liquid-phase diffusive
 

equilibrium precluded any significant effect on gas front shape. This may
 

not be true for systems with thicker fluid films or lower liquid phase dif

fusivities, and each case must be considered individually.
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Liquid films and droplets within the stagnant portion of the gas-rich
 

zone were found to create a virtual sink for noncondensable gas. That is,
 

as vapor phase gas concentration was increased, the absorption of increasing
 

amounts of gas within this liquid was detected as a 10 to 20% loss intotal
 

moles of noncondensable gas inthe vapor phase. This phenomenon could be
 

used in gas-controlled heat pipes to increase thermal control capability or
 

reduce gas reservoir size by dissolving the noncondensable gas into a volu

metrically efficient liquid reservoir in lieu of the common gas-bulb
 

reservoir.
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Run Al
 

Vapor core temperature: 49.65°C
 

Sink temperature: 19.2°C.
 

Heat input: 2.087 W
 
4.342 std cm3
 Calculated gas content: 


Zero-absorption current: 4.03(x 10-10) A
 
Concentration
 

3)
Axial position (cm) Current (x 10-1 ?)A (std cm3/cm


.0070
1.294 3.960 

1.344 3.940 .0091
 

.0205
1.394 3.830 


.0313
1.444 3.730 


.0482
1.494 3.580 


.0674
1.544 3.420 

1.594 3.260 .0878
 

.1095
1.644 3.100 

1.694 2.920 .1358
 

.1529
1.744 2.810 


.1727
1.794 2.690 


.1972
1.844 2.550 

1.894 2.410 .2235
 
1.944 2.310 .2436
 
1.994 2.240 .2583
 
2.044 2.185 .2703
 
2.094 2.150 .2781
 
2.144 2.130 .2827
 
2.194 2.120 .2850
 
2.244 2.110 .2873
 
2.294 2.110 .2873
 
2.344 2.090 .2920
 
2.394 2.075 .2955
 
2.494 2.080 .2943
 
2.594 2.080 .2943
 
2.694 2.090 .2920
 
3.194 2.080 .2943
 
4.194 2.080 .2943
 
5.194 2.090 .2920
 
6.194 2.090 .2920
 
7.194 2.090 .2920
 
8.194 2.120 .2850
 
9.194 2.120 .2850
 
10.194 2.120 .2850
 
11.194 2.120 .2850
 
12.194 2.130 .2827
 
13.194 2.120 .2850
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Run A2
 

Vapor core temperature: 52.8°C
 

Sink temperature: 140C
 

Heat input: 4.584 W
 
3
4.299 std cm
Calculated gas content: 


-
Zero-absorption current: 4.03(x 10 10) A
 
Concentration
 

3
(std cm3/cm
Axial position (cm) Current (x10-1 1)A, 


1.694 4.080 -.0049
 
2.194 4.080 -.0049
 
2.694 4.070 -.0039
 
2.944 4.070 -.0039
 
3.094 4.030 .0000
 
3.194 4.020 .0010
 
3.294 3.970 .0060
 
3.344 3.890 .0142
 
3.394 3.780 .0259
 
3.444 3.630 .0425
 
3.494 3.390 .0711
 
3.544 3.170 .0998
 
3.594 2.910 .1373
 
3.644 2.740 .1643
 
3.694 2.610 .1865
 
3.744 2.510 .2045
 
3.794 2.380 .2294
 
3.844 2.300 .2457
 
3.894 2.180 .2714
 
3.944 2.080 .2943
 
3.994 2.020 .3088
 
4.044 1.970 .3212
 
4.094 1.930 .3315
 
4.144 1.925 .3328
 
4.194 1.890 .3420
 
4.244 1.890 .3420
 
4.294 1.890 .3420
 
4.344 1.890 .3420
 
4.394 1.890 .3420
 
4.494 1.890 .3420
 
4.594 1.930 .3315
 
4.694 1.930 .3315
 
5.194 1.940 .3289
 
6.194 1.930 .3315
 
7.194 1.930 .3315
 
8.194 1.940 .3289
 
9.194 1.940 .3289
 
10.194 1.940 .3289
 
11.194 1.940 .3289
 
12.194 1.940 .3289
 
13.194 1.935 .3302
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Run A3 

Vapor core temperature: 55.80C 

Sink temperature: 14.05°C 

Heat input: 6.949 W 

Calculated gas content: 4.22 std cm3 

Zero-absorption current: 4.03(x 10-10)  Concentration 

Axial position (cm) Current (x 10-10 )A (std cm3/cm 3 

1.694 4.080 -.0049 
2.194 4.080 -.0049 
2.694 4.060 -.0030 
3.194 4.040 -.0010 
3.694 3.940 .0091 
4.194 4.020 .0010 
4.694 4.030 .0000 
4.794 4.030 .0000 
4.894 3.990 .0040 
4.994 3.910 .0121 
5.044 3.820 .0216 
5.094 3.630 .0425 
5.144 3.430 .0662 
5.194 3.120 .1067 
5.244 2.880 .1419 
5.294 2.680 .1744 
5.344 2.540 .1990 
5.394 '2.380 .2294 
5.444 2.270 .2519 
5.494 2.170 .2736 
5.544 2.065 .2979 
5.594 1.940 .3289 
5.644 1.870 .3474 
5.694 1.800 .3668 
5.744 1.780 .3725 
5.794 1.740 .3842 
5.844 1.710 .3932 
5.894 1.730 .3872 
5.944 1.730 .3872 
5.994 1.730 .3872 
6.094 1.730 .3872 
6.194 1.730 .3872 
6.694 1.760 .3783 
7.194 1.780 .3725 
8.194 1.780 .3725 
9.194 1.790 .3696 
10.194 1.780 .3725 
11.194 1.780 .3725 
12.194 1.790 .3696 
13.194 1.764 .3771 
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Run A4 

Vapor core temperature: 590C 

Sink temperature: 13.950C 

Heat input: 

Calculated gas content: 
9.369 W 
4.142 std cm3 

Zero-absorption current: 4.02(x 10- )A Concentration 

Axial position (cm) Current (x 10-0)A (std cm3/cm 3 

2.194 4.080 -.0059 
3.194 4.020 .0000 
4.194 3.970 .0050 
5.194 3.980 .0040 
5.694 3.990 .0030 
5.794 3.940 .0081 
5.894 3.990 .0030 
5.994 3.990 .0030 
6.094 3.980 .0040 
6.194 3.970 .0050 
6.294 3.940 .0081 
6.394 3.900 .0122 
6.444 3.830 .0195 
6.494 3.770 .0259 
6.544 3.640 .0403 
6.594 3.370 .0726 
6.644 3.130 .1042 
6.694 2.820 .1502 
6.744 2.610 .1853 
6.794 2.410 .2224 
6.844 2.260 .2529 
6.894 2.120 .2838 
6.944 2.030 .3051 
6.994 1.890 .3408 
7.044 1.835 .3557 
7.094 1.730 .3859 
7.144 1.650 .4105 
7.194 1.590 .4300 
7.244 1.570 .4367 
7.294 1.560 .4401 
7.344 1.560 .4401 
7.394 1.560 .4401 
7.694 1.580 .4334 
8.194 1.600 .4267 
9.194 1.610 .4234 
10.194 1.610 .4234 
11.194 1.610 .4234 
12.194 1.610 .4234 
13.194 1.600 .4267 
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Run A5 

Vapor core temperature: 62.30C 
Sink temperature: 14.1 0C 

Heat input: 

Calculated gas content: 
11.952 W 
4.046 std'cm3 

Zero-absorption current: 4.04(x 10-10) A 
Concentration 

Axial position (cm) Current (x 10-1)A (std cm3/cm3) 

2.194 4.120 -.0078 
3.194 4.040 .0000 
4.194 3.980 .0060 
5.194 3.960 .0080 
6.194 3.930 .0111 
7.194 3.980 .0060 
7.494 3.990 .0050 
7.594 3.980 .0060 
7.694 3.940 .0101 
7.794 3.780 .0269 
7.844 3.640 .0424 
7.894 3.370 .0747 
7.944 3.090 .1120 
7.994 2.760 .1621 
8.044 2.475 .2122 
8.094 2.275 .2521 
8.144 2.120 .2862 
8.294 1.980 .3199 
8.244 1.873 .3478 
8.294 1.780 .3738 
8.344 1.680 .4037 
8.394 1.590 .4326 
8.444 1.500 .4637 
8.494 1.425 .4915 
8.544 1.410 .4972 
8.594 1.376 .5106 
8.644 1.367 .5142 
8.694 1.370 .5130 
8.794 1.370 .5130 
8.894 1.400 .5011 
8.994 1.405 .4992 
9.094 1.406 .4988 
9.194 1.415 .4953 
10.194 1.480 .4709 
11.194 1.450 .482d 
12.194 1.450 .4820 
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Run A6 

Vapor core temperature: 65.65°C 

Sink temperature: 14.2°C 

Heat input: 14.263 W 

Calculated gas content: 3.92 std cm3 

Zero-absorption current: 3.98(x 10 10) A 
Concentration 

Axial position (cm) Current (x 10 10Ax (std cm3/cm 3 

2.194 3.830 .0154 
3.194 3.820 .0165 
4.194 3.840 .0144 
5.194 3.920 .0061 
6.194 3.940 .0040 
7.194 3.980 .0000 
8.194 3.970 .0010 
8.394 3.940 .0040 
8.494 3.880 .0102 
8.594 3.920 .0061 
8.694 3.930 .0051" 
8.794 3.930 .0051 
8.894 3.850 .0133 
8.944 3.730 .0262 
8.994 3.580 .0431 
9.044 3.380 .0671 
9.094 2.980 .1213 
9.144 2.680 .1687 
9.194 2.360 .2275 
9.244 2.180 .2654 
9.294 1.970 .3150 
9.344 1.844 .3481 
9.394 1.740 .3778 
9.444 1.630 .4117 
9.494 1.550 .4382 
9.544 1.460 .4702 
9.594 1.400 .4930 
9.644 1.320 .5253 
9.694 1.270 .5468 
9.744 1.220 .5694 
9.794 1.210 .5741 
9.844 1.185 .5859 
9.894 1.210 .5741 
9.944 1.210 .5741 
9.994 1.215 .5717 
10.094 1.215 .5717 
10.194 1.230 .5648 
10.694 1.280 .5424 
11.194 1.305 .5317 
11.694 1.120 .5295 
12.194 1.300 .5338 
12.694 1.300 .5338 
13.194 1.276 .5442 
13.694 1.230 .5648 
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Run A7 

Vapor core temperature: 72.270C 

Sink temperature: 14.10C 

Heat input: 

Calculated gas content: 
18.802 W 
3.534 std cm3 

Zero-absorption current: 4.03(x 10-10) A 
Concentration 

Axial position (cm) Current (x10-IO)A (std cm3/cm3) 

2.194 4.300 -.0256 
3.194 4.100 -.0069 
4.194 4.000 .0030 
5.194 3.900 .,0132 
6.194 3.850 .0184 
7.194 3.820 .0216 
8.194 3.600 .0459 
9.194 4.020 .0010 
10.194 3.980 .0050 
10.294 3.980 .0050 
10.394 4.030 .0000 
10.494 4.000 .0030 
10.594 3.880 .0152 
10.694 3.780, .0259 
10.794 3.750 .0291 
10.894 3.350 .0761 
10.994 2.950 .1313 
11.094 2.500 .2064 
11.194 1.890 .3420 
11.294 1.480 .4696 
11.394 1.300 .5407 
11.494 1.160 .6052 
11.594 1.090 .6413 
11.694 .965, .7121 
11.794 .926 .7371 
11.894 .907 .7499 
11.994 .916 .7438 
12.094 .945 .7247 
12.194 .960 .7152 
12.694 1.000 .6910 
13.194. 1.000 .6910 
13.694 1.000 .6910 



Run BI 


Vapor core temperature: 


Sink temperature: 


Heat input: 


Calculated gas content: 


Zero-absorption current: 


Axial position (cm) 


1.294 

1.694 

1.794 

1.894 

1.994 

2.094 

2.194 

2.294 

2.344 

2.394 

2.444 

2.494 

2.544 

2.594 

2.644 

2.694 

2.744 

2.794 

2.844 

2.894 

2.944 

2.994 

3.044 

3.094 

3.144 

3.194 

3.244 

3.294 

3.344 

3.394 

3.494 

3.594 

3.694 

4.194 

5.194 

6.194 

7.194 

8.194 

9.194 


10.194 

11.194 

12.194 

13.194 

13.694 
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63.35°C
 

40.12 0 C
 

2.221 W
 
3
4.498 std cm


4.03(xi0 -10 ) A
 
Concentration
 

Current (x 10-10)A (std cm3/cm3)
 

3.920 .0111
 
4.000 .0030
 
4.030 .0000
 
4.030 .0000
 
4.010 .0020
 
4.020 .0010
 
3.980 .0050
 
3.890 .0142
 
3.810 .0227
 
3.660 .0392
 
3.540 .0530
 
3.380 .0724
 
3.230 .0918
 
3.030 .1195
 
2.925 .1350
 
2.820 .1512
 
2.705 .1699
 
2.620 .1844
 
2.520 .2022
 
2.470 .2115
 
2.420 .2210
 
2.370 .2307
 
2.320 .2408
 
2.270 .2511
 
2.220 .2617
 
2.180 .2704
 
2.165 .2737
 
2.140 .2793
 
2.120 .2838
 
2.080 .2930
 
2.035 .3037
 
1.970 .3196
 
1.980 .3171
 
1.970 .3196
 
1.970 .3196
 
1.970 .3196
 
1.970 .3196
 
1.940 .3272
 
1.960 .3221
 
1.970 .3196
 
1.970 .3196
 
1.990 .3146
 
1.940 .3272
 
1.930 .3297
 



Run B2 


Vapor core temperature: 


Sink temperature: 


Heat input: 


Calculated gas content: 


Zero-absorption current: 


Axial position (cm) 


1.694 

2.194 

2.694 

3.194 

3.694 

4.194 

4.294 

4.394 

4.494 

4.594 

4.694 

4.744 

4.794 

4.844 

4.894 

4.944 

4.944 

5.044 

5.094 

5.144 

5.194 

5.244 

5.294 

5.344 

5.394 

5.444 

5.494 

5.544 

5.594 

5.644 

5.694 

5.744 

5.794 

5.894 

5.994 

6.094 

6.194 

7.194 

8.194 

9.194 

10.194 

11.194 

12.194 

13.194 

13.694 
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57.1°C
 

40.2°C
 

4.667 W
 
3
4.421 std cm


4.03(xl - 10 ) A
 

Current (x 10-1
 

4.030 

4.060 

4.060 

4.060 

3.970 

4.020 

4.020 

4.010 

3.990 

3.980 

3.910 

3.820 

3.680 

3.530 

3.360 

3.180 

3.020 

2.740 

2.610 

2.500 

2.355 

2.265 

2.180 

2.120 

2.070 

2.025 

1.980 

1.940 

1.930 

1.890 

1.880 

1.840 

1.820 

1.800 

1.790 

1.780 

1.753 

1.730 

1.720 

1.730 

1.710 

1.710 

1.730 

1.700 

1.690 


Concentration
 
-
A (std cm3/cm3)
 

.0000
 
-.0030
 
-.0030
 
-.0030
 
.0060
 
.0010
 
.0010
 
.0020
 
.0040
 
.0050
 
.0121
 
.0216
 
.0368
 
.0540
 
.0747
 
.0981
 
.1204
 
.1634
 
.1853
 
.2050
 
.2326
 
.2509
 
.2690
 
.2824
 
.2939
 
.3045
 
.3155
 
.3254
 
.3280
 
.3383
 
.3409
 
.3516
 
.3570
 
.3626
 
.3654
 
.3682
 
.3759
 
.3825
 
.3854
 
.3825
 
.3884
 
.3884
 
.3825
 
.3914
 
.3944
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Run B3 


Vapor core temperature: 70.950C
 

Sink temperature: 40.150 C
 

Heat input: 7.13 W
 
3
Calculated gas content: 4.337 std cm


Zero-absorption current: 4.03(x10 10 ) A
 
Concentration
 
(std cm3/cm


Axial position (cm) Current (x 10-10)A 


2.194 4.030 .0000
 
3.194 4.030 .0000
 
4.194 3.990 .0040
 

.0020
5.194 4.020 

6.194 4.010 .0020,
 
6.294 4.010 .0020
 
6.394 4.010 .0020
 
6.494 4.020 .0010
 
6.594 3.980 .0050
 
6.694 3.910 .012i
 
6.744 3.810 .0226
 
6.794 3.670 .0379
 
6.844 3.480 .0599
 
6.894 3.230 .0914
 
6.944 3.020 .1204
 
6.994 2.750 .1618
 
7.044 2.620 .1836
 
7.094 2.440 .2162
 
7.144 2.285 .2468
 
7.194 2.120 .2824
 
7.244 1.990 .3130
 
7.294 1.920 .3305
 
7.344 1.855 .3476
 
7.394 1.800 .3626
 
7.444 1.660 .4035
 
7.494 1.700 .3914
 
7.544 1.690 .3944
 
7.594 1.650 .4066
 
7.644 1.640 .4097
 
7.694 1.605 .4208
 
7.744 1.600 .4224
 
7.794 1.570 .4322
 
7.844 1.560 .4355
 
7.894 1.560 .4355
 
7.994 1.540 .4422
 
8.094 1.540 .4422
 
8.194 1.505 .4541
 
8.694 1.490 .4594
 

10.194 1.490 .4594
 
11.194 1.470 .4665
 
12.194 1.480 .4629
 
13.194 1.470 .4665
 
13.694 1.450 .4737
 



Run B4 


Vapor core temperature: 


Sink temperature: 


Heat input: 

Calculated gas content: 


Zero-absorption current: 


Axial position (cm) 


2.194 

3.194 

4.194 

5.194 

6.194 

7.194 

7.694 

7.794 

7.894 

7.994 

8.094 

8.194 

8.244 

8.294 

8.344 

8.394 

8.444 

8.494 

8.544 

8.594 

8.644 

8.694 

8.744 

8.794 

8.844 

8.894 

8.944 

8.994 

9.044 

9.094 

9.144 

9.194 

9.244 

9.294 

9.344 

9.394 

9.494 

9.594 

9.694 


10.194 

10.694 

11.194 

12.194 

13.194 

13.694 
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74.850
 

40.10
 

9.653 W
 
3
4.309 std cm


-
4.03(x 10 10) A
 

Concentration
 
Current (x 10-10)A (std cm3/cm3
 

4.030 
 .0000
 
4.030 
 .0000
 
3.980 
 .0050
 
4.010 
 .0020
 
3.990 
 .0040
 
4.020 
 .0010
 
4.020 
 .0010
 
4.000 
 .0030
 
3.990 
 .0040
 
3.990 
 .0040
 
3.980 
 .0050
 
3.870 
 .0163
 
3.820 
 .0216
 
3.630 
 .0424
 
3.400 
 .0697
 
3.140 
 .1036
 
2.870 
 .1428
 
2.750 
 .1618
 
2.490 
 .2068
 
2.295 
 .2447
 
2.165 
 .2723
 
2.020 
 .3057
 
1.845 
 .3503
 
1.740 
 .3796
 
1.160 
 .4192
 
1.560 
 .4355
 
1.150 
 .4524
 
1.460 
 .4701
 
1.425 
 .4829
 
1.405 
 .4904
 
1.395 
 .4942
 
1.370 
 .5038
 
1.360 
 .5078
 
1.350 
 .5117
 
1.320 
 .5238
 
1.320 
 .5238
 
1.310 
 .5279
 
1/310 .5279
 
1.290 
 .5362
 
1.270 
 .5447
 
1.270 
 .5447
 
1.260 
 .5490
 
1.230 
 .5622
 
1.220 
 .5667
 
1.220 
 .5667
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Run B5
 

Vapor core temperature: 78.870C
 
Sink temperature: 40.220C
 

Heat input: 11.916 W
 
3
4.195 std cm
Calculated gas content: 


Zero-absorption current: 4.03(x 10 1 ) A
 
Concentration
 

0std cm3 cm
Axial position (cm) Current 10-1A 
3
 

2.194 4.020 .0010
 
3.194 4.030 .0000
 
4.194 3.980 .0050
 
5.194 4.020 .0010
 
6.194 4.010 .0020
 
7.194 4.010 .0020
 
8.194 3.990 .0040
 
9.194 4.020 .0010
 
9.294 3.970 .0060
 
9.394 3.830 .0205
 
9.444 3.670 .0379
 
9.494 3.380 .0722
 
9.544 3.120 .1063
 
9.594 2.810 .1522
 
9.644 2.540 .1977
 
9.694 2.330 .2376
 
-9.744 2.120 .2824
 
9.794 1.935 .3267
 
9.844 1.790 .3654
 
9.894 1.673 .3995
 
9.944 1.560 .4354
 
9.994 1.440 .4773
 
10.044 1.350 .5117
 
10.094 1.276 .5421
 
10.144 1.230 .5622
 
10.194 1.180 .5850
 
10.244 1.175 .5874
 
10.294 1.166 .5916
 
10.344 1.140 .6042
 
10.394 1.130 .6091
 
10.444 1.125 .6116
 
10.494 1.120 .6141
 
10.594 1.110 .6191
 
10.694 1.080 .6345
 
10.794 1.080 .6345
 
10.894 1.080 .6345
 
11.194 1.070 .6398
 
12.194 1.080 .6345
 
13.194 1.135 .6066
 
13.694 1.030 .6607
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Run B6 

Vapor core temperature: 83.10C 

Sink temperature: 40.250C 

Heat input: 

Calculated gas content: 
14.336 W 
4.157 std cm3 

Zero-absorption current: 4.04(x 10-10)A Concentration 

Axial position Ccm) Current (x 10-%A: (std cm3/cm3) 

2.194 
3.194 

4.040 
4.030 

.0000 

.0010 
4.194 
5.194 

4.030 
4.030 

.0010 

.0010 
6.194 4.020 .0020 
7.194 3.980 .0060 
8.194 4.000 .0040 
9.194 4.040 .0000 
9.694 4.030 .0010 
9.994 3.990 .0050 

10.094 3.980 .0060 
10.194 3.980 .0060 
10.294 3.890 .0152 
10.344 
10.394 

3.830 
3.690 

.0215 

.0367 
10.444 
10.494 

3.470 
3.050 

.0622 

.1172 
10.544 2.780 .1580 
10.594 2.420 .2211 
10.644 2.180 .2702 
10.694 1.970 .3191 
10.744 1.790 .3666 
10.794 1.605 .4220 
10.844 1.490 .4607 
10.894 1.370 .5051 
10.944 1.270 .5460 
10.994 1.165 .5935 
11.044 1.080 .6359 
11.094 1.030 .6620 
11.140 0.980 .6673 
11.194 0.965 .6990 
11.244 0.936' .7168 
11.294 0.938 .7155 
11.394 0.908 .7348 
11.494 0.895 .7434 
11.594 0.890  .7468 
11.694 0.890' .7468 
11.794 0.880 .7536 
12.194 0.880 .7536 
12.694 0.880C .7536 
13.194 0.880 .7536 
13.694 0.880 .7536 
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Run B7
 

Vapor core temperature: 91.30C
 

Sink temperature: 40.2°C
 

Heat input: 18.807 W
 
3


Calculated gas content: 3.915 std cm


Zero-absorption current: 4.03(x 10-10)A Concentration
 

3)
(std cm3/cm
Current (x IO4 )A_
Axial position (cm) 


2.194 4 4.020 .0010 
.0010
4.020
3.194 


4.194 2.980 .1263
 
.0010
4.020
5.194 

.0050
6.194 3.980 

.0050
3.980
7.194 

.0091
8.194 3.940 


-.0039
9.194 4.070 

-.0020
10.194 4.050 

.0000
10.694 4.030 

.0000
11.194 4.030 

.0030
11.294 4.000 

.0132
11.394 3.900 

.0132
11.494 3.900 

.0152
11.594 3.880 

.0163
11.694 3.870 

.0413
11.794 3.640 

.0823
11.894 3.300 

.1733
11.994 2.680 


12.094 2.180 .2690
 
12.194 1.460 .4701
 
12.294 1.180 .5850
 
12.394 0.985 .6859
 
12.494 0.860 .7661
 
12.594 2.741 .8604
 
12.694 0.650 .9487
 
12.794 0.650 .9487
 
12.894 0.640 .9594
 

.9704
13.194 0.630 


.9932
13.694 2.610 
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APPENDIX B
 

SELECTED TABULATIONS OF CALCULATED TEMPERATURE AND
 
CONTENTRATION PROFILES BASED ON THE 1-DIMENSIONAL
 

INSOLUBLE GAS MODEL
 

NOTE: The sign appearing in the printout is a misprint for thelnumeral "3'. 



Run 	Al 


Vapor Temperature 


Sink Temperature 


Gas 	Content 


Calculated Heat Transfer Rate 


Axial Position 

(cm) 


.E3148-?" 


-17', -C,T,.67 

1. f47. e4
 
1.G0 	 72 

-I.--- !9 

9.=,I 7 

! . 2E.1 !4 

i. 94 

. 

I 	-4.
34?-.4412 
- . 41:i. - 10 
1.45003 

1. 5797i~~~ . 51 
I . 4ti 

1. 4 
.	 9,,4
(Gd44 

S...	 j:?9 

i. 764'-, 
i. 7 i ?4 


1. 13S -,'?C 
1 •3593 
1. 	 0?179 

229c2c 
.453715

9.D523 

I a-n
14-2 


o-~ 


-D.n79R.e
1i I 1'1 1 7 

ORIGINAL PAGE IS 
OF POOR QUALITY 

T+ 

w 


.?;9-7 

2-

9'?E
 ~
 

9 1-t 3, 

9 tiE, 52 

871:4 1 
=; 

115 
S 

74547

7 


7 576: 

. 

734-


. 

.51.P-,57 


.5 0'f697 


.47340E 


.4451.25 

.41797 

.3? = 0
311-275 

4-

-


.300504
12?.:06 .9 

66
 

49.650C
 

14.00F
 
3
4.342 std cm


20.47 W
 

T+ 

v 

1.0 


Gas Concentration
 
(std cm3/cm 3)
 

0.0
 

. 330 E: 3-1" P F-

.9 	-' 3- -4u8 -

.? 	, 26n
 

. .912 :8373-'5E4E-! 

. 

. E'24A1 _. 2P 2E 
9 -994 R0 
791 025956;E-: 

. ;:,3 
. 9r E.P-5 	 5 6E 

.765 3 

,0053-4 149'1 
.1366 15211 1 

.52 . 171 5 ?51: 

*4 497S 1-,l 157 

4t. 4:9 41'0'2? 

.43:E97 	 . i9S17 
,
.40436 = Te51 

. 378'e-695 21251t 
1 17-0 	 . 10 

.3
 

.2229 

.30703. 2 995 
:''' 2 11 3 4 
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Run Al (continued)
 

?.17413 241984 
05t?34' , 

1:?~5311 O 

S1,041 TR 
14 .171411 

3.3@3 
-'. ..- 

.... a:,plo011_, 
15947 
14.10
1 1nr-- , 

454 12M251 

2.2'3144 11 53? 

551921'16029 

. S4 i 


.6i4E' (15BE-I 


.64637 .A19536E- i 

2.67785 .59TS81E-1 


' -3.T.?57E-1 

.1:=,2 .652699E-I 

7., .604654E-1 

E@3 .5599SE-I 


- .518473E-I 
.. _7 .4.:OE0-l 
-Z9_ 3 .4 44089E-1 
Q.9P71. 


--72.: 


'4 _19.I1?.3E. 

2. ,1 .9 B? 1rE- 1.1 


-- I
:t 214 . sd77 

_-12+1 .?56174E-I 


i 2f.1' 

:-4 -.
1~:".:_~ ~~L1%:'4454 .1$S-1KW- 

....... ] blZ 2,--1 


7,.-,*T , , -,2?. 
. -' 6 E-

_,4 7: *3,347',E46 -i 
2'.4,S3.3 .115i u56-E- 1 

3l.4 ?6, . 7'.,'597E-

B:. 2,, .' -59E---.' ::,_: -~ 

. . . . . .. ~ - .. tt-- * 

.. D3 . 7o'4e 


ORIGINAl PAGE IS 
0
PoR QUcALIT 

.
 

.R127 


.P 15 

.1S6ESR
 

.173119? 

1,o1II.16-0 ?79 

. .. .d5...
. i I?, -1-1p 


. " 

. 1.40u 

. 111 


.95 SE5
5 T-: 

3397'1 

.2-_1457E-1 

76113:-1 


.705046E-1 


. '-52901E-1 


.604443E-1 

.55P47E-1 
.51'62E-I 

.478Dl -- _ 

.44,=794E-1 

.04033 

.- 7-?91 E-1-.-.
 

. 349,6 

. ? A55T:'E-1 

29 


- -:,
.' 


.U*' 7@-9:;.' 


.14 1h=:-4,'- ! 


4 -. 
. 4 i- I9
 

4 --I 

.11:1te-I 


. 9Efl6.,.E-E 

. ?'a4?$glE-? 
. . . . . . .
 

....1d _ 


E'_S.04
-434
 
.?24724f4 

4597
 
.?62a5


70-- .
 ,IF 1 . 64E 01 

C-56TC
 

.27R3R4
 
.E(2221
 
'2E-1
2',?63
 
.T-1
.276714
 
.277962
 
.e7911?
 
. C01.6
 
.281174
 
. 0 ....
 

.282934
 

.283716
 
E?4439
 
El2s 10" 
285?-r 
.'-6 99
 ,.
 

. "71 

.287'17
 

-!3
,E---F
 

1 L 

c j-,
1, :'
 

.cw.:1 1 :: 
- 1?-: 

.-291la3-.
 

. ! 9
 a 

. 911Z
 



Run Al (continued)
 
-. fl.A_ -Ar-t.. ~ L L ...... 

=,. 2 D2, 1 

4.... 	 ... ...... 97 4 .{E-i . 2a:i0.	 ..

P." £2'c .439?1 - -: ,4.,3 4,. _ .,' 
.	 7.44A' E- P-

E - --
-- - - .- - 
:;41 E. C- 7 F

* 	 t~5~'1?- - tf,n fy 	 . 

- , 4,,,-qa 7E._p 	 -.':

_._ 	

: - =,t 
.. .	 .,. ..-. . .
- .	 9 -..15 

?S2OE-?-	 E2??$- 3 
-..f 	 . 3 - .229

4. oI 	 g R#..'. - o
: -,: ~ , 

4. ", 	 -E 44E-5 . 

4.i-,75.3 	 1751 1 27397E 
4.11 . 5 16105E-	 ,1640UtS-, •. 
,4 5 21519ThE-2 .14954E-, 

'
 -
 1?47RE--4, 	 .4,9E-1 409 2 5 

4.B -. ,1L ?J%5-~ . 1EE865=E-, . d9? 

4.57.-,4-	 110 ? E-, 11h9-,4F-2 

._". t..... .	 -.4 .4 I .	 ... . . . ....2 , '- - . . . . 

9q-,- = '-E 3 l'4. afm% 	 1 -E-- 0'- •''a
4. 	 . z. --77 l - . 29?--1C 

?135 ---- .-T1 ?-39F- 7-, . '9:I' 09i,-".4-	 ...
4.4.-,'1E-5 1C .79I1	 3 -. -F: 

4.Pa42 	 _c3U : "_,1-EE .29C 09 

4.757 	 . ns -. .. l113E- "-9c" 

SV 1-, . 4. . .. . ... . . 
a. 137 t 	.2-E4 - E 05121E-3 .29'?047 

D)RIGINAJ PAGE IS
 
P19 POOR QUALITY
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Run A3
 

Vapor Temperature 55.80C
 
Sink Temperature 14.0°C
 

3
4.22 std cm
Gas Content 


Calculated Heat Transfer Rate 7.00 W
 

T+ T+
Axial Position Gas Concentration
 
3)
(cm) w v (std cm3/cm


4. -Wl4S- .9
 

C4P' U=.~ 

'
4. ':134.~~~~~ J49 2" 2,:."7
' I( :I-5 - ---- 99 ' -' "fl O Si z'.q 03.
 3 -

I f. 1 1 :'7i -.'4 I - . 
fI. - 4-: -- .7??N E 4-t 4 -:
 

a~~1 
1 f47.~ 

. . . 1 1 4 - 1 - 1,-W.:7 .$5C49"-.', .S. 9: 4E,?.iE
- ,19 1 6 ,. : ,4 . ,.4- -744 ? . ? 4 4 4 9 2 E -! 

5. .-2 15 21 3 12 9 -_ .6 1 [4 d i 'E ] 
. -.13& . 7 7 5 5 f 1 

* . -,-- . $ f' 4 04. - =, :.3 
.,:. . 45- . . 

- .PI0E7 .94T1 .146 UA 
U 1 7..5..-57 7,2'-, - 

= - . I ,1. . - _ , l i A*. -.U _- 
4 "43.5.? 7141E. 
4,1 "' . ,2:,3 . 'S 

-m....n,.
i: 5"26 5 r515 4 t2.......?. F 7 55'.247= , :9c _, 
*:51 9(06I ~ 354':4 

_,. 43 .4A5679 , ?74 S2 4 

'iA -4 ?1,e
4uLiq:-94 ,4221 .a704? 
',-,1 1-1'= 4 ' 0 7 ,9 1'' '
 

.>""7
5.5F:::54. ":'4 Alfl4 . -439, 257 
5A1 05.7543. . 951?'?,'9 ?531
..
i-., .4 ":: . ' ,56--'4 9? . ...- -,

C C9f4 3t 454 *341;E. 

5.*27913C 1 3 40 P 31i, 

. . .,4 . 15035 

ORGomA PAGE is
 
OF POOR, QUAi~y
 



Run A3 (contihued)
 

77. 5-- - - 5.-4 : .. .. _,3C 751n ='.'3 7" 

-
178-2.= .3:4-,.6 
- f1B507 :t 

5. 091' . "=19479 4 
a-S.I1 G.,' . .11.r4I:. 10653.65 .-34? 

' t = ' 1" -. U _,'.5 1R 4 1F I .- 3 4 
2_d4, 3' 12R57? 3 4 2/:E -'41 6.3 

" .32511 ,iC.4 13161 6407 
,. 3 11220-,3 . t 1E57-I .65035 

S14& R...5 z-

-,,- .iaa.13619 336 06*'= 

lfI 5 $--." 1
. ... .9?4 .. !? 7 1F E-- .6 5035 

"I-z,53: ?90,E- 1 .904324E-I . ?667,1 
. 31 7?5E- 1 '?-3753 E4E-I .I9z413t:.,c401 

£.4154? 75 OCE-I 775466E-I .?91 
,- 1s9 aE-7 17 . R:E-

-446 ., .99Y4 . 7257 
_-sn5 1 . .1546EF-I 3,- :'
A9P--'E 


.. :6994rE-t -748i-541 4E .5d 

...... 9 .5eT34SE-1 .5.25604E-1 
: 04 A4 1 .4?5? 4E-i ':76774 

75,,-" .4-! JEE- .44? 94-1 76 -2 

E. 5 417P5E-l _ .414975E-1 S794-25,:-
Z. "3?E:'-;4 *,:.54-E-1 . 0 ?S3::36 ._z.915,

,..03? . ?54074E- 3'79 : 33.256294E-

E. -,l5'* u2?1!9 .6 955E-1 _-l.'] S 

9 :',8 . . 040,E. I E--1 . 64=,- 1 . 310-4 
6.c,9477 ._20_. , ..7361¢,I4E-1 ,16
 

_- IF,..-..-. 
- *,1921.. E-025.25TE-' . E 1 7-:F- I 

I ,E,, ? CI 7.E-- . [ 3'--.E-i 

=.r-nl-'-I- I [-, :4=--1 ,
-. 5 4. 1-9fP-4E-! . , _ . 1-E 

*-- IqS-" 1 ;4-',147~,r--1 . 

, - zE-,.i n; i .1 3' .1 344B IE-! 

7.1-. - 1~4-=E-1 . E:.7l 
-. ",'E 1! 4 5- -. - -c -5- -,-, , :-~J C C7 l,.il;' t-! i' E- P.- 

, - -,-- I ,-
-5-=, P!4 1'

* .- Z 4 . ., ,4.1 .lE-..... 1 

"'.:'5'9'92 T :5-'E-' - 549z2M(14E:-2= . 

* . ,4:_1-4 .,52R,'-E.= .594 -,4E-,- . -:-: '_2 
69-'=_,5i445. . 4 

F.4=,44.8 5*Ltd,,,Z~lg *'5454riTE-4j . _,E _La,' 

OBVGINl PAG IS 

OF pool QUALIMW 

http:10653.65
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Run A3 (continued)
 

•.54:' 	 .4lC4E-,-

.. .	 . ,13.054$3 *3SM- B,2 


* 7?:u 	 ,t-E7.64D . 313., E-E 

-
* -. G,... 
F, 7 . 1 0 0 351 -d'12-, . . -.: = ' 

.76?24 .?45769E-2 
-. , , -. 226 -,T E-2 

, -.	 9529E-.E3?21 .2 
" ''- 6 	 :., - 2 

* .:0517 .1,qn. jE-2 
--	 * -a -* ,.,.t-, 

M 34M04
19..-4EE-2. 
. -	 .14,I19E-2 

B. 0211.11 Bi5P-2 

2.05W 	 .112477E-? 

;.nD407 .10927F-2 


7.1 15"55 .10614RE-?_ 
2.14703 	 . ?'-,:, :,-. 
. i ?5:. ? ?-7E-

-n141 q- UIEMO--s 
A..--W, aK-.- .769 T.3.3E-u 
3. ef,.wc: .72:9071E- ? 

3.3-6{741 .6599r?75 E-? 

141,L:. i M"-'SIF - 3 
, ,53:7
- ,451A 	 r,5E-. 


D,.4 ??1 4 .57089:'-E E- 3 
5.524M

_.55621 .u1, 9E'C-F 

,.57.. 	 .5'4362E-3 
. -	 65,-..- 1E-= 

POOR,-e rul --------E 

.JE64744-p 

.3Y..EEzweNjC
-l£E-2
 

. --fl2,?Ezh.t 

'-,..2 ?CE -,o-2 
-. --' 1- , 

.241607E-2 

.2. 304E-2 

.205994E-2 
.'* .J34E-2. 
.176' E-2 


150e,1E-2
I3?. r-; 
.1297.275-2 


.1'525E-? 

.112134E-2 
1fn449c_ E-2 


.975545E-3 

.912671E- 3 


. -1'M MT E-3, 

.,759'_215T=,-? 


. 717"-4E-3 

Sf{,0OME-3 

.59q'14"4 -3 

.5755-77E ,- 3

AmE751F-3 


._,-.o5 S?E-3
.54-902E-3 


774E-c. 
.536016E-3 

*-$CE-r-N 

- : -'-I 
.3973Ih
 
.3372
 

:* 9 5 
35743 

." 746' 

. ,175 18 
:,:8754S
 

S37-56T
 

S3:75. ,
 

3po
 
ssrs
 

-6765
 

":70-7:5 
AAW-P
E 
.3emw'
,
 

.33770.
 

..... i 
".397'5 

.,o39772,? 

.37731


.377H
 

.- 7734 
3377=5
 

01RIG11jal Pp'GF I 
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Run B1
 

Vapor Temperature 63.350C
 

Sink Temperature 40.120C
 
3
4.49 std cm
Gas Content 


Calculated Heat Transfer Rate 2.014 W
 

Axial Position T+ Tv 

(cm V 

6 --

.
 

1.7= 1 
1 .1053 

. A4 P? 

. 0 9-
• 

..... 4 :2 


2.157"4 


E.241-40_ 


-.27399 

-
.30_5,
 

6A21S5 .7005 

R.l 


141 
.740-


* .'50. 

MUM 


.c 14. 

24?4 


.074%PME 


O N UAIT
 
1.77,45, 

2.70703..3 


1.9'::2,M-: 


PB QUA11=7 

: 1.0 


'--1-,*4-*7. 

.903
 

. -

. 4 n M , 

.
 

9?001 - 4 
2*77 .97161.
-,,-, 


" .0,., -:...
1:',,:'4'-' . :'.,1
N , 4, 11 


.6luT? A51M
 

. ,_,S 4 . .P9- 4-, 
'--  
.'2c4': .91 M. 


.SA7T,7 ? 
.73 4--- .57 5 9 
7 U4 


.7 32 


.,002 


.. 4 19 


.754nnc 


62A..


.54G'-A 


.56303 


MU31 

.4111-35 


1 


.-?61 059 


M?23131
A 54,2 

.7 7 2 


.
 

.- 47 
dR50410 


.,'7-.4 


4 
. "?4 

. .54.79 

.51A4G7 


.407? 


.43......23?, 

A r?-77 


.:'35479 


Gas Concentration
 
(std cm3/cm3)
 

0.0
 

. IEK - 

751 512.
.. 


a E E-i
 
. .4'. M -'- 

.5 "
 

4 ,=,
 

n4X
 
.51515

.7774dMIFl?5.0
i-S-
.7027E

.57 :,-
*10Q24

.l'5773 

.1 535
 

.35710c'
 

. 67-
A
 

. ...
7
 
A_.' _Q9
 

".tM',
,T
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Run BI (continued)
 

HOW4 
e.00?57 


... .
 
15 ?8i--. 


D.016j
-.04i-9 


1 f7;?74 
.103074 


RW' 

-I.1A= -4 


..194y,173151 


.255A1

3....644 


_I._ 

3.S-475 

- 37-,3 

3.40-. 

3.4SP3A,?

3.4E90 


W.O"14 


-. 5612 . 
?.59? 

3.-226 
3.6527? 
BASIN 

-,-105 


7442-'-

-.7749 

s..-.43 


..


-:.JJ59 

.,-,4? 


". -97 E",
.,4.R 

3.'T55 

-.
 

-.- __.i 

4.01914

4 04?,-.n-


4.00? 

4.1107? 

_44
4. A 
4.12IT1 


4. . I 

4.,2 0?-1-7, 


J. 2139 
4.. _44_, 


?4724=,251E 
* 3279t- .?-4R40'5MA 

.2872 ? ...... 

-1-- -5 -W" 

R5S .0151518

.098 4 .?--4694? 


.2049? .21125P 
.j1.4. 

.19755? .?.i25d9

lDS-4244--7'5
U749% 


.177119 


.151497 .154;i


.14 ...-S P"•14"4a3 


'
 . IS ? 4 . 1?--S 
.1270tW 1? ,41.-
.i_.4: 1174n1 

7 1 f'94 5 
. '15AWS IHuEGT--7:
 
.0.la93 951456E-!-


.4.z-E- .39039E-1 


.,-W . 7E-i ?E-i 

.707?I4E-1 .715755E-1 

.65S735E-1 .6.%an67E-l 

. u71R 4 . 6196739E-1 
057PT ! .576273E-

.,'r7E-1 .535731E-1 


.-- 41E-1 .4979S5E-


.459173E-I .4E271E-1 

.426.1-E-1 .4-93E-E-1 

. M96615E-i .399149E-1 

. -6BS446E-t .37uT5E-1 

l ?lE-1-4, 

.23177AE-1 .319A97E-1 

.- 'OS .295988E3-1 

.273605E-1, .E7447E-I 


.u_,:.4E-1
-547E-1 

:,.2=5411E-1,58T6E-1 


. 1S60E-1 RI951?F-l 

.021.E-1 .? A.1... 

! 84'-"a-i .1606F-I190%

.07I-E-1 .173-EE-1 

I 4? -""E-1 .14:6-'IE-1 
A! 'N -{ET- t1 1 -75E4E- i 

l?725?E-1-7S7E-i . '-1
t t21' -

. A ? T,
F541?9 
"R58?,1
 

.263243 
H7339
 
.71!,",
 

.27jA7?
 

-10n,

.?8?S15
 

.2D:9 ,i 

......
 

.29 -$
 

.1-

.30439F
 

.3:-57M5 

. 307019 

.301S
 

.3092%
 
.010319
 

.311- 2 
.1 e.
 
. ,3129%
 
.313755
 
.?14471 

. 315137 

.315756 

.?16333 
. 3165 3 
.?173m,
.A- V'-I?
 

.:?p?-'

.319
 
EP OWr,-_. 


D?0511

A M?.::z'-:-


OO
 

.318259 
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Run BI (continued)
 

4.-545 .1093CF---1 
4.. ,,.a .010 M1
 

4.41 Ud! . .":E= -


J. 4 797. 
4.507E 7 ,L-3I 

-_.
 

4.5991? . K, 5CE-?,

4 1q : .5S4d651Z -. 

VIRP71.540~q?!-2
 
_--4 .500M'5E- 2 


4.6907, .4S?7u E-

4.72! 3 .4291542-2 
4.75183 -= E-
4.r..-- .3,7Q43E-

4.:. z 24
.. .3401? 

84.3154.E 


4..173%, .2 E7 E-_ 

4. ?0447 .,ET205E-2 
4.9 ,.E5W22E-2 

4.565M3 .039S6E-2 


-4,S .1.E1gE-24. ...4..1-3..E.....iE:5?D?,9E-Pu5U5 -,2
='- - 2 


5. o571$- .193l1E-E 

5.50-7.o5 . SKl44F-2 

":.5A -''-M
S:'--i .171MEE-2 


I4??1 . ...?.S-F-2 
5.179-3 .154alE-


1
S. io7j 7?94E-
5.=40w- . 141t1lE-E 
5. o,,,- . 64r4E-2 


M -iS .1359zE-, 
5.0".: 1E?297E-2 

5.E4i . 127101E-2 
5SHB7!9-i 


5.4347 .125-5_E-2 


. 1 

-_3+f47E-. 

79444P-a 
3 1 'E 

b-'" ,tE E-

5 9 Q1 "r-.-:, 

494977S-2
4Q4Q"'. 
.457-M-P 

.2-E,"- -?-?,
 
• 44-3E-
.8 -:27E-2 

9 -
.311036E--? 

.-203553-2 

.2679?SE- . 
.249215E-2,o0
.a3 119r-E 
._16581E-i
02514E-2 


.1i6-'6E-1 

. -, -,.E 

.16525E-3 


. 59 54E-a 

.151-'4-2 

1-44-

- 1135, E-2 
. -337 
.1E Z66E-2 
.12671K 2 

. 124545E-: 
.1E225E-E 

.1 .. E-2 


.
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:-'1 a
 

192:.a 

3 21B,
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.#2252
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.:'cz75
 

..,2
3'28'5
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_.22 

MN
 

.-


TW07
 

.-M21i
1?_1l

.32_

s23?l-':
 

.320207d
 

.....
 
MSE77
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Mvoe
 
D2332
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Run B2
 

Vapor Temperature 67.10C
 
Sink Temperature 40.20C
 

3
Gas Content 4.421 std cm


Calculated Heat Transfer Rate 4.572 W
 

T+
Axial Psition+ 

(acm)_ionT v 

4. -. 1.0 

4 . , 
-4.45 i..h . :,.41P: I 

4.4 -9:7w , 
4. •~ .. ..q52 

4.,,"-i- .911:=2. 

45....... . ? 'Z45
f 5_ 9 

754.J75 :"?='I- ..4.T7-I .= 915- 15 9-- Q,,= 
-
4. E I'. z 7. t 

' . '-963494_"1) (,92C-'5- 

4:.4-9 :I.1-151. . 

4,.47-- .D-.0803 
X9. ., > .-'j,.: . 299 

- 96.-".-"h,
 
-. 5 32'i 5 .9 9=,7.jE 5-5 


.- ,2 

-Ir. , h_ ,.I 
5--SS374.'  .:,7 .5-91
., 16110.
--. 142> c 39745 "566 " 

4, .-4 

"
 ...= ' 1 .445,',- .l ,=6?13? 

5.4o5921 .5:53571 . air"q 

-,.5?794. . 1144. . 3S6559 
<. 35 .c3:9.497' 504=? 

OR .n5 iAGE "T4h- 715' 
0? Q,,J:aL--OO 

Gas Concentration
 
(std emS/cm3 ) 

0.0
 

? 

=,6 -DMr-

*-

9 - PD 

844
7 5 4.
 -_,, 2=' -
I -Z

3 

21 

.I4 0979E-1
 

. 741 I''=, 

1725E,11
 

1 - 

7,26 4EP E
.1-' -
." ?-,"4 

.,-,.1i
,--l3 

. 6 1i 
15r1
 

. -. a9, 

. 8--'145 

3 
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Run B2 (continued) 

S'.-: O . E!744N,}:''E . - "94l~.E.. 

s.6ma -.5---3- 24_04" .3-1i5fl 
5.71115 . ?4O91 .: . 4717 . 320844 

.23104? .326269 
--* z.:' .clIf .~. 2 '01 .0 -,022 
-. - .9 9 . -- . 201649.18449- 1vIFr K . 34A41 

1.%17:.9 .172577 .17571? .2_444.9 
5.3.=943:? .i ,9 IS'94 -? .340W

-. 9j=4 .1501A .1590? . 5513.? 
5.95-' .4NS='63 .142556 .#5.12 

0.395% .13V15 .1K5 .2581%
.,.01644 .12:15 .123791 .361043 

,..4j . .n137-39 1529 .36"7 

_.077%? .105?DS At07355 .36 14 
60 02.,
'0.1E 5f 

.9a71E-1 ?,57-
9!9O: -I E9814E-I 

36M:477 
.70l619F 

' .1 : n955rI-:-: .M'r,40.27E-I .,R E13 
i. .9.4u.E-1 .0044:19F-I .3,4469 

i.a-014 7409?'-DE- .747T7?E-I .?276195 
-.. r-U67 .68912S6E-1 .6?4907E-1 .=77901 
..291E 06407 .645:---r .379295 

.. .... &.707.=:.2E-:.5_= = 
!.TT225~ ~ 

4C %._ I ..: ==?65,E-
_,. _1.19E-1 5 S E lM.513?50E-1 .56..-1 

.I ,0 0S 
N.391976 

.477265-1 .479E 4tE-1 . 39429-3 
_4.44?'l4 .. 14;61E-I .444952E-I .0853D 
i. 47437 .4111 __E-1 uQ%9E-1 -:195 
w.504? .03815 .03?26: ., I . 
S.50,43 .- 5S854E-1 .354659E- .3302
i.56596 
j.5%45
6.s2701 

.32S119E-1 .03 365 

.40417?E-1 .wh446E-1 
•28MM9E-1 n'--aE-j: ' 

.3-9795 
A1'S9512 

i.65754 .02610 .2-092E-1 .3907=, 
q.&,30 .241 2E-1 .?4168E-1 .39 36? 
S.,0, V24AWE-1 .2i3lS6EE-I 09.mfli 
-,.7i91 "i . M746T=E-1 2,0S9- E-1 ??2??4 

.79to .iP196YE- I .191405E-1 SK?52 
..1i. c172' v-1 .1F CIE-i 5.3=7 

:-.-2n7_ .164?27E -a .W A,=4PE-1 -9p-. . 
"=.,=1 -4 . ' :,?.m-! .1 ,:.,_T-t .??40 0 

-.D0177 .*01404 .139779E-1 .343t:. 

,. 6 5 .I> c -1 I.2I4:_,E-i ._94io. 

-, .- :-fr 

S.12G0E1 . 11.;:cg..j 
.1lA002S- 1 .11 017?&-

.- _, 
.?d 

2.0"W9 .1,254?E-1 .114?E-l .94Zi 
7. 05442 .00?7-' .K3 PTE-1 3?571 2 

ORI fOOR QU I 8F 
O po UAY0 
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Run B2 (continued) 

7.6849f .?74??E-E .9E,7OiE-. .399S4 
T.11548 .20a0IiE-n .900B4?E-2 MlE115 
7.14601 .740222E-E .735649E-2 OGWI? 
7.1.i5: .GAMMIzt-2 .MIMSDE-2 .1%4%6 
7.20706 .6?1EE-2 .6EQRE-2 . 396E19 
7.D3759 .5a735SE-2 .5USE-2 .396751 
-. 6W12 .54E2EE- .5"5t12E-2 .09680? 
7.2%65 .5006?EE-2 .4iO?23E-R 397013 
*.,01.4r13 SK9E-2 .456i7E-2 .3971E4 
7.35971 .426961E-2 a 65E.-2 . 397 2S 
7.:0024 .394377E-2 3%746E-2 .071E 
.420'T1 .364376E-2 .590E-2 . 39740
7.4512? 
P.4s1 3 

.;6274E-Q 

.31fS99E-2 
s31WE-p 
.306539E-2 

-974 
P 

- 3?7t6 
5123i TWOSH-2 . 23?478E-2 .97627 
.54220 
.57341 

.2670?E-2 

.247131E-2 
W F-2 
242961E-2 

347S89 
39770 

7 j 94 -a29175E-? .2244E-1 .3 7797 

.SD447 .21280E-2 .20904E-E .397844 
7.i .19793ZE-z , 31F-S .397887 
P.6P5K? 184EtE-E .130aW97E-E .07ME. 
*.72605 
7.7505P 

17130M-H 
16AOFB -s 

.Iv,725E-R

.15T717E-2 
.07962 
.07994 

7.79711 .15064&E-2 .14779E-E 3023 
7.1376a .141614E- .13303E-2 39O4 
7.64M1 1DS55SE-0 !l=A971E-& .39BA7E 

7.9797 
7.?092? 

.126419E-2 
100157E-2 

!2S49E-2 
I1778?E-i 

.39SOM 

.0911 
7.639&
7.Q7029 11472tE-2

I1809?E-i 112449E-2
!107?93E-2 3PS12

.08111? 

OlOlst .10221E-2 .10409E-2 3905 
S.0?134 .03092E-2 .101012E- w?8159 
s.u61E7 .10067E-i .9S6417E-1 NM 

924 ...989663E-3 .?69594E-? .39s171 
?.12i9E .79 E-? .. 546E- 9S174 
i.15346 .?76034E-3 .956205E-? .398175 
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APPENDIX C
 

LISTING OF COMPUTER CODE FOR 1-DIMENSIONAL
 
MODEL OF CONDENSATION HEAT TRANSFER IN THE
 

PRESENCE OF AN INSOLUBLE GAS
 

NOTE: The "n"sign appearing in the printout isa misprint for the numeral "3".
 



T 79 
C, 06-FEB-76
 

i t & (64C2,4 C(264),D(2640,Pe264)
 
- '- T)=e4.E)<P(Cc)T*A
r"l~N(Tl:Al*E-,p(A,F sT)+T*+A? 

l9DZO !TOTI CONDENSEP LENGTH
 
" "iTR 16.


*' :Iqf G1,sGE i,111,1i -F1l.6-RINK,k-i,iALtR-blRLLt 

*,ATR .41MS. . 0?52., . 0117.. 41i
 
REA '1.V.'. !R-VRPORCONST. IN C*D,HT. OF VAPOR.
 

?4 DATA 1.047,_.S1E-S.10AA.
 
5 READ AOFI2,A E !LN'P)= RU + .l 'T + A4-*LNT) (P IN RTMOSPHEPES) 
"6 DATA 0. a?5.-4344.47--.901"4
 
40 PEAt N'Z2'M !IIGA .- ZONE INCF..Z2=DIM. LENGTH.M=INCR. IN FREE Z.
 
41 DATA 114.-e.5-16.
 
45 PER E5 !MNRX.EPPOP PERMITTED I T-,,ALL PER ITERATION
 
4 DATA .OI
 
51 IHPUT"T-'APOF=' ;Ti
 
3? INPUT 'T-S ItiK"; T_
 
53 INPUT STD. CC. OF GAS= :rn
 
SI' H=7 'N: H I =r +1 '1 =tI - : Hl+ rJ 1: '.1=II+rI: NS=N+N+1
 

" 
. A5 :t =F(TI+27?.15 :4 I.'P1
R1=E0T15+E>Ptu

78 Iu,T3+'. 15:t=T1-T!':C5=U?,/4. :C_5=H4*n5IjbI1I'.m3,.V*tI+JB)'/ 

?:71_ F1=-&.-.-.-G '..)H*:2=-G1.H.E,G 

7? Hn=Zi*H
 
gN 11AT IC' Hi=11")
 

I MAT +lIW)
I,= *Ii 
9:,_kI. IFlm ,I O. D(I=,,I) !AIDJUSzT FOR CALC, CQ ),D 2) 

1uO =flC I=2 TO N? 
10 ')- I) =EFr-hI-l s.) iI IHr) b3.'I, :rAET I
 
ll'I P'2'=./
 
115 FO3P I=- TO M13 !P-MATRIY FCR ,]ALL TEMP . K2LUTION
 
12n P =E.'CP-FI-': 'E' T I
 
15u T2=U.: GO TO 3.I(
 

19A T=0.
 
200 ;OP I ? TO 1ii !CGLC. C AND D ;ATPI-'y FOP "APUR TEMP. SOLN.
 
2115 T=UJ+U * ,I):C6=AC,T:"=A4E'<PC ,+T*A- :C7=R3-CS
 

~210
 
c-o5 CU(I(.+E' ,Brf(I,=-,r.I.IrI+,1.+-i-. -ED I-i,, 

24n 'E4 T I 

Et n FOP I=14 TO F STEF -1 ! "PPP TENIEPATUPE *POFILE
 
Ec5 "f5=DC1)-t¢i+': tE<T I
 

2-5 FOP rl !D P1ATPl Rn' ,ILL TEMPEFATUPE CALCg.I=& TO F
":-'0 tD(I=(-(I-)FU)1N:IET I 

1uO FP' T=ll TO fl1 
305 T(I='B2.'rI-1l)-fl(I--. PI):NEXT I 

T25 FOR I=rIe TO 2 -TEP-1 

-*?5 IF T2<T? GO TO 34
 
-40 T=T2
 
45 4FPT I 

400 IF T'E5 CO TO 1 n
 

600 C3= 'PI-F-F 8 ClIJ3>) ,'UI" T=UII+L*',') :(=(Pi-FIPO (T, 'VT 
605 T=j8+LI9.I"N1,±CrN11=.p1-PNP0(T)/T
6iA 3=.5.'O~(b+C rilfl: o =.+,dci(I+w.oln- , 

612 FOR T=E TO Il ! I;TEGcRTE rlCG 9ND TEMP. PPOPILES
 
z.j3 -5=02+tIrll t tlEgT I
 

_ P515 FOUR I=2 TO I !INTERARITE GR HN TEd . PROFILES 
I-tI T=IJu+U +WtT: CkIlDP-FN','lT)'T 
;E5 6=5+C I): 0 =r2+II(I4+tl :IEVT 1 

2=U?+H0*ff 2 'GG-G)
*5ViHC--30 ¢ n.=CD2Hn2 27 '=5+1i 


E45 POP 1=1 TO M; 
65D fl'=Z5+HO 1-1 "IE-T I
 
670 PPIHTtCRINT'CONCENTPATION AND TENPERATURE PROFILES" PPINT
671 - INTIP I!T 0I,Q2,n3:PPINT 

6-
Af OR 1=1 TO M 
64 F'J I11T D(I).I,'I):MET 
bl FOP I=t TO NI? 
4 PCINT PU, ,itt) ,' 1-19) tel-ti :NE'T I 
78U FOP I=1 TO IIt 

71 A DI=N0*.(I-1):IEPT F 
?U PRINT: PIMT 
72( FOP I=t TO rl 
740 0PINTr (.1,IthMI),(q),CI':MET I 
3nO I'MT P IT fDl',[ 
911o N ORIGINAL PAGE 18-
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