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ABSTRACT

i
Strainrange Partitionin g is used to predict the long-tire cyclic

a
J	 lives of The Metal Properties Council(MPC) "creep-fatipme

interspersion" and "cyclic creep-rupture" tests conducted with

annealed 2 1/4Cr-IMo steel. Observed lives agree with predicted

lives within factors of two. The Strainrange Partitioning life
{

relations used for the long-time predictions were established

from short-time creep-fatigue data generated at NASA-Lewis on the
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NOMENCLATURE

APP - AE PP/As iN

PCP As 	 IN
,.

NOBS = observed number of combined creep-fati gue cycles to failure

G	
NPRE predicted number of combined cree p-fatigue cycles to failure

n number of rap id fatigue cycles per creep period

N PP = pure PP life, 	 cycles	 to failure

NC pure CP life, 	 cycles to failure

As 
IN

inelastic strainrange

AEPP a PP component of inelastic strainrange

As CC CC component of inelastic strainrange 

A£CP R CP component of inelastic strainrange

As PC PC component of inelastic strainrange 1

{
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I NT RO DU CT ION

The method of Strainrange Partitioning, a strain based

approach for dealing with high-temperature, low-cycle fatigue,

was proposed in 1971 by Manson, Halford, and Hirschberg (1)*o in

the intervening five years, considerable experience with the use

of the method in laboratory investigations has developed

confidence in the engineering utility of the concept. Studies

have produced refinements to the basic approach Manson (2),

Halford, Hirschberg, and Manson (3), and Manson, Halford, and

Nachtigall (4)1, extensions to broader ranges of applicability

[Halford and Manson (5), Zamrik (6), and Manson and Halford (7)]

concise characterizations of the creep- fatigue properties of a

wide range of engineerin g alloys Leven (8), Annis, VanWanderham,

and Wallace (9), Kortovich (10), and SNeffler (11,12) , and have

shown p rediction capabilities of the method for short-time

results	 ISaltsman and Halford (13) for Ai S1 Types 304 and 316

stainless	 steel,	 Brinkman,	 et al,	 (14)	 and Ellis, et al.	 (15)	 for
i

annealed 2	 1/4Cr-7.Mo steely o
It

il	 The purpose of this paper is to demonstrate the

applicability of the method to the prediction of long-time,
(500-5000	 hr)	 creep-fatigue results on the basis of short-time

(0.1-100	 hr) material	 characterization tests,

E	

This	 is an extremely important consideration in the design
J

* Numbers in parentheses designate references at end of text,
y

}
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of engineering structures which are to experience service

lifetimes that are well in excess of the lifetimes attainable in

laboratory material characterization tests.

Cyclic life predictions are made for the "creep-fatigue

Inters persion" and "cyclic creep rupture` tests conducted with

annealed 2 1/4Cr-1Mo steel by the Materials Technology

Cor poration for The Metal Pro perties Council (MPC). Curran and

Wundt have described the MPC program and discussed all results to

date in (16). The program was designed to generate relatively

long-time laboratory data for the specific purpose of assessing;

the validity of the time-fraction and cycle-fraction approach to

high-temperature, creep-fatigue interaction as used in ASME Code

Case 1592. Even though the results were obtained in a manner

best stilted for evaluation of the time-fraction and

cycle-fraction a pproach, interpretation in terms of Strainrange

Partitioning was also possible as is demonstrated in this paper.

The MPC tests were conducted in air at 3.DDD deg F (5313 deg

C) and involved interspersion of rapid strain cycles (0 to 22

cycles) between constant tensile stress-hold periods (23 or 47

hours). The induced tensile creep was always rapidly reversed to

zero by compressive plasticity so that ratchet strains did not

occur, The interspersed rap id strain cycles were then applied.

Figure 1 illustrates the stress-strain cycles involved,

Life predictions were made using the strainrange-life

E }	 REPRODI MILITY Or THE
ORIGINAL PjjGp 19 POOR



for providing the material for this program.

REVIEW

AE
ON 

= AE 
PP+ 

AE 
cc

+ AECP (or hepc)

S

relations obtained from short-time material characterization

tests conducted at the NASA-Lewis Research Center U and 3) using

tubular specimens (17) taken from the same extruded and annealed
i

thick-walled steel pipe as the MPC specimens. We would like to
{

acknowledge Mr. A. 0. Schaeffer of the Metal Properties Council 	 ".

Procedures are described in detail in a recent paper by	 ^€

Hirschberg and fiatford (13) for characterizing the creep-fati gue.

behavior of metallic materials and applying the resultant

strainrange-life relations to predicting lives of independently 	 J

conducted laboratory tests. Only a brief summar y of the method

is provided herein,

ly

The method has its origin rooted in basic conce p ts: In any

^a
axial hysteresis loo p there are two directions of straining,

tension and compression, and there are two basic t ypes- of	 d '

inelastic strain, "plasticity" (time-!nde pendent strain), and

"creep" (time-de pendent strain); and creep- fati gue life in a } ^	 .

g iven environment is controlled primarily by the ability of a
E

material to absorb cyclic inelastic strain.

By combining the two directions of axial strain with the two 	 "y

types of inelastic strain, a hysteresis loo p of width AEIy can	 i	 c

be partitioned Into the four basic strainranges:



The relationship between strainrange and cyclic life can be

expressed by an e quation similar to the Manson--Coffin equations

These life relations are established by conducting completely

reversed, strain-cycli ng, creep-fatigue tests as described in

in p rinci p le, in any high-temperature, completely-reversed,

strain cycle, the inelastic strainrange can be partitioned into

its above defined com ponents,	 Then,	 knowing these components,
,, r

the cyclic life can be p redicted using the interaction damage

rule (?) and the characteristic life relations obtained from

- independent laboratory tests.

ANALYSIS

Establishment of Life Relations

The strainrange-l-ife relations used for 	 the	 life predictions

are based on tests conducted at the NASA-Lewis Research Center.

Hour-glass tubular test specimens (17) were machined from the

same extruded and annealed steel pipe as the uniform gage length,

solid s pecimens used in the MPC program,	 isothermal	 test

temperatures ranged from 950 to 1200 deg F (510 to 648 deg C),

and all	 tests were performed with fully-reversed strain	 limits.

Although the results of most of these tests have been published

in earlier reports	 U and 3),	 for convenience they are also -,u

listed	 in Table 10	 Only the PP and CP results are presented

since they are the only data needed to anal yze the MPC results.

1

6
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squares carve fit of the data. The inelastic strainrange is the

independent variable and is assumed to be known without error.

The life relations are put in linear form by taking logarithms of

straihrange and cyclic life. The correlation coefficient and

standard error of estimate were also determined for each life

relation using the methods g iven in (23).

Comparison of the PP and CP life relations reveals a life

difference at an inelastic strainrange of Z percent, for example,

of a factor of only 2.6. This is in sharp contrast to the

behavior of alloys such as the austenitic stainless steels which

exhibit, typically,  a factor of 10 to 20 or more difference

between PP and CP lives for a Ipercent inelastic strainrange.

These differences are attributable to the fact that the 2

1/4Cv -IMo steel does not exhibit Intergranular void growth and

cracking during tensile creep, whereas the austenitic steels do
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Partitioning of MPC Test Data

The analysis of the MPC tes t.3 was made usin g the detailed

test results made available to the authors by The Metal

Properties Council through the efforts of Mr, R. M. Curran and

Mr. B. Wundto The analyzed tests listed in Table 2 include

(except for duplicates) those reported by Curran and Wundt (16)

for annealed 2 1/4Cr-1Mo steel

In the interspersion tests, one combined cycle (Fig, 1)

consists of a creep period (23 or 47 hours) at a constant tensile

load followed by a rapid reversal of strain back to zero, plus a

specified number of inters persed rapid fatigue cycles at a fixed

total strain range with zero mean strain,	 At the beginning and

end of each combined cycle,	 the accumulated strain is forced to

be nominally zero, 	 it should be noted that the numher of

j	 interspersion	 fatigue cycles	 reported	 in	 :16)	 for	 the MPC tests	 }

includes an "extra s' half-cycle which	 is accounted for	 in the

strainrange partitioning analysis as being the half-cycle that is

used to	 reverse the tensile creep strain. 	 it is to be emphasized

that all	 portions of the	 inelastic strain	 in the MPC tests are

taken	 into account	 in	 the strainrange	 partitionin g, analysis„	
j

Partitioning the hysteresis	 loo p for	 the creep period is a

straight-forward procedure,	 The inelastic strainrange	 is given

by the width of the hysteresis	 loop (Fig,	 1),	 and the C1'

component	 is simp ly the amount of strain accumulated during; the

i

i 
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creep period at constant stress. 	 The PP component is the

difference between the inelastic strainrange and the GP

component.

The hysteresis loop during the interspersed fatigue cycling

is also shown	 in	 Fig.	 1.	 It	 is assumed herein that the straining

rate during rapid cycling is	 rapid enough to preclude creep.

Hence,	 all	 of the	 inelastic strain during rapid cycling	 is taken

to be of the PP type.	 The values for this PP strain component

are given	 in the detailed test results.
i

During the creep portion of these tests, 	 the stress	 level

and stress hold-time were the controlled parameters. 	 This

resulted	 in a possible variation 	 in the	 inelastic strainrange and

its components from period to period. 	 Thus,	 to account for any

variation	 in behavior,	 the	 inelastic strainrange for each cycle

was partitioned for every test.

In partitioning the data used	 in	 this	 report,	 all

^f	
a

time-independent strain was regarded as "plasticity' s and all

time-dependent strain was regarded as "creep" as originally

recommended (1).	 A recent study (4)	 indicates	 that more accurate

life  predictions are possible	 If only the s teadv state creep

strain is regarded as	 "creep".	 However,	 It was not possible to

apply this new concept here, 	 since stress hold-times for the

•	 characterization tests 	 used	 in establishin g the life relations

were of	 insufficient duration to establish reliable steady--state



.	 . C/\
^ ^ ^

\^
^^

|,	 //j
.:.^	 .«

.	
.\̂

^^

\^ ^^
\j
^^

. [^ \\^	 ,. §

^	 .. [,^ <.:^^\^\

/^ ^^
.	 . {^ ^

I^ ^
): j
;

^

^

\°&%^^

^^ }^	 ^ ^

.	 . (^^ \
\^%^

`^	 ° ^ ^\>

^
^	 ^^

^	 .

^^
kKd»^

\/\/\

/\
:

^..\::}^^
^

^`
/^ ^ ^^



7jt I	 ''	 a

S

/J^	 L

Because of these variations,	 life predictions were made in

.:^ two wa ys.	 The first was by partitioning the hysteresis loofas	 for

each creep period and summing the resultant fractions for each

cy cle.	 This	 is a tedious process. 	 The	 inelastic strainrange

during rapid cycling showed little variation,	 so	 the average

-- reported values were used in determining this damaging component.
6

The second set of life predictions was made by simply

partitioning the hysteresis	 loop for the creep period at half the

observed life and assuming that these values were constant over

the observed life of the test.	 The inelastic strainran ge during

rapid cycling was also taken at half the observed life. j

An example calculation of life using the half-life

strainranges	 for test bar 2A5AA	 is given	 in the Appendix.

The method of analysis was programmed for a digital computer

and automatic computer plots were made of the results.

COMPARISON OF PREDICTED AND OBSERVED LIVES M

The results of the two sets of	 life prediction calculations t:

for the interspersion creep-fatigue and cyclic creep rupture

tests are shown	 in Fi gs.	 tea and 4b where observed life is plotted

versus predicted life. 	 These results are also given in Table 3.  ^

In Fig. 4a,	 the lives  were p redicted by summing the damage F!

on a combined cycle-by-combined cycle basis; 	 in Pi g. 	rib,	 the r

lives were predicted by simply using the partitioned strainrange j

^^
rE

j

r



f

values at half-life., 	 in these	 figures,	 the central	 line

V	 i

represents exact agreement between observed and predicted lives, 

whereas the dashed lines  on either side represent factors of two

in life between observed and predicted values, 4

An examination of Fig,	 4a shows that the points are

essentially equally divided about the central 	 line,	 Five points

are to the right of and above the central 	 line (i.e.	 NOBS/NPRE C

10 0 ),	 five points	 are to the	 left of	 the	 line	 CNOB /MPRE	 > 1„0),

and one point	 is exactly on the	 line	 (NOB = NPRE)o	 All	 points

f	 '^

lie within the dashed lines	 representing factors of two

agreement,	 In Fig,	 lib,	 nine points are to the right of and above

the central	 line,	 while only two points are	 to the left and

below this exact	 agreement line.	 Accuracy of	 life predictions

made by either way is considered to be highly satisfactory.

Life predictions of reasonable accuracy can be made using
z

E
only the partitioned strai nrange values at half-life since the

_

amount of creep strain per cycle remained reasonably constant

over the majority of the observed life. 	 Hence the half	 life

cycle is representative of the "average" cycle, f

f
Table 4 gives	 the damage fractions for the life predictions

I using the partitioned strainrange values	 at half-life.	 An

examination of Table 4 shows that in the	 interspersion 
S	

yr

creep -fatigue tests the damage varies from being predominantly

.,.,;j
the PP type	 incurred during rapid cycling (test bars 2A2B,	 2ABBS,

^ft.^

}I
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2A3AA, 2A5AA, 2131A, and 2133A) to predominantly CP type Incurred

during the creep period (test bars 2A413, 2A1A, and 2A4E)o The

manor damage in the two cyclic creep rupture tests is of the CP

type,

The Important point to note with regard to the results of

this investigation is that the exposure times for the MPC and the

characterization tests are vastly different, The MPC tests

lasted from about 500 to 5000 hours, while the characterization

tests lasted no more than about 100 hours for the CP tests and

were as short as 0.1 hours for the PP tests, it should be

pointed out, however, that annealed 2 1/4 Cr-IMo steel does not

undergo intergranular cracking clue to creep deformation in the

temperature-time range of either the characterization or MPC

tests (1 and 16). For other alloys, such as austeni tic

stainless steel, which are susceptible to grain boundary void

growth and sliding during creep deformation, such extrapolation

may be risky if the short-time behavior does not reflect the same

mechanisms of damage as the long;-time behavior,

SUMMARY OF RESULTS

The following, results were obtained from a study to predict

the cyclic lives of the MPC creep-fati gue interspersion and

cyclic creep rupture tests at 10nn deg F (538 deg C) on specimens

of extruded and annealed 2 1/4 Cr-1Mo steel usin g the method of

Stra t nrange Partitioning;

"IT 'RODUCE31,ffy OF THE
13	 ' OVAL PAGP, TS PnnR
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10 By partitioning the creep and plastic strains within

every cycle and summing the dam ge on a cycle-by-cycle basis, the

predicted lives a g ree with the observed lives within factors of

two, In order to greatly simplify the calculations, only the

strains for the combined cycle at half the observed life  were

partitioned and predictions made using these values. These

predicted lives also agreed with the observed lives within

factors of two,

l



APPEN p i X

Example Life Calculation Using

Half-Life Strainrange Values

For Test Bar 2A5AA

The predicted number of combined creep-fatigue c ycles to

failure (NPRE) is determined by the following equation which is

based on the interaction damage rule modified to include the

damage due to the interspersed rapist fatigue cycling.

F	 FCP	 PP	 n	 _ 1

L NCP NPP	 -_ NPP	 NPRE

Creep portion

	

	 Interspersed
fatigue portion

The partitioned strainrange values for the creep portion and

the interspersed fatigue portion of the combined cycle at the

observed half-life are as follows,

Port € on

QePP	
a 0.00095 	 FPP = AE PP /DE IN	 = 00 074

ACCP	
= 0.01192 	 FCP = AECP/AE IN	 = 0.926

AE N = 0.01287	 1°000

Intersversed Fatigue Portion

AEPP	 - 0.0120

The number of interspersed fatigue cycles (n) per creep period

from Table t is 22.



The PP and CP life  for the creep portion and the PP life  for the

Interspersed fatigue portion of the combined cycle are determined

using the life relations given in Figs. 2a and 2bo (Vote that when

determining; the life for a specific strainrange component, the enti re

inel-3stic strainrange is considered to be of that type (2).

Crq„e^ Portion

0.233	
1/0.515

N CP	 0.01287`

N	
^' o . 559 ,

 1/0-570

PP	 i 0.01287

II ntew-s ersCd Fa i r ePorti on

= 277 cycles

= 747 cycles

N	

0.559'11/0.570

PP	 0.0120
= 845 cycles

The number of combined creep-fatigue cycles to failure (NPRE) can

now be calculated.
I:t	 ;^

0.926	 0.074	 22 =	 1

277	
_ 7	

81+5 NPRE
3

_	 R

Thus NPRE = 34 cycles. This compares well with the ohserved life

(NOBS) of 29 cycles.

t

{

s
I

^	 .x



Ma

2) Ma

REFERENCES

A

nson, S,, S., Halford, G. R., and Hirschberg, M. H.#

"Creep-Fatigue Analysis by Strain-Ran ge Partitioning,	 J

Deszn*	 or gjgy_a	 grature_jPd leEnvironment, AmericanMn-	E-ll—ro-n-m

Society of Mechanical Engineers, 1971, pp. 12-28.

nson., S. S... "The Challenge to Unify Treatment of

High-Temperature Fatigue - A Partisan Proposal Based on

Strainrange Partitioning," Fatigue- at gj&va&Vd
J

T,PMp_era_qj.r_e,%, ST  520, American Society for Testing and

Materials.. 1972, pp 744-7750

3) Halford, G. R., Hirschberg, M. H. 0 and Manson, S. Se't

"Temperature Effects on the Strainrange Partitioning

Approach for Creep-Fatigue Analysis," Fatigue at 9j_e_v_aLgd

Temneratures, STP 520, American Society for Testing and

Materials, 1972, pp 658-6670

4) Manson, S. S., Halford, G. R... and Nachtigall, A. J.0

"Separation of the Strain Components for Use In Strainrange 	 ^	
E

Par  t i t I on I n g,. " Advances In. _D_e_q.._?z_n f o r Uma_%Add Tempera  t u re

EnvIt.oZLM=, Second National Congress on Pressure Vessels

and Piping, American Society of Mechanical Engineers, 1975,

pp 17-28.



press), (also see NASA TM X-73829, 1975)0

6) xamrik, S. Yo, "The Application of 'Strainrange Partitioning

Method' To Torsional Creep-Fatigue Interaction," American

Society of Mechanical Engineers paper No. 75-WA/Mats-8,

1975, (also see NASA CR-134817, 1975).

7) Manson, S, So, and Halford, G,, R., "Treatment of Multiaxial

Creep-Fatigue by Strainrange Partitioning," (in this

volume).

8) Leven, M, M,,"The Interaction of Creep and Fatigue for a

Rotor Steel," Experimental Mechanics, Sept. x973, pp

353-372

9) Annis, Co Go, VanWanderham, M. C o , and Wallace, R. Mo,

"Strainrange Partitioning Behavior of an Automotive Turbine

Alloy," Pratt and Whitney Florida Research and Development

Center, NASA CR-134974, 1976

10) Kortovich, Ca So, "Ultrahigh Vacuum, High Temperature,

Low Cycle Fatigue of Coated and Uncoated Rene' 80," TRW,

Inc., NASA CR-135003, 19760

11) Sheffler, KQ D„ "The Partitioned Strainran ge Fatigue

Behavior of Coated and Uncoated MAR-M-302 at 100Q deg C

(1832 deg F) in Ultrahigh Vacuum", TRW, Inc., NASA

CR-134626, 19740
r

12) Sheffler, K. Do, "Vacuum Thermal-Mechanical Fatigue Testing

of Two Iron Base High Temperature A 1 l oys, "TRIO. Inc., NASA



13) Salts man,	 J.	 Fe,	 and Halford,	 G.	 R,,	 "Application of	 iis
Str'ainrange Partitionin g to the Prediction of Creep-Fatigue 	 Ij

Lives of AI SI Types 304 and 316 Stainless Steel," to be

presented at the	 International Joint Pressure Vessel 	 and

' Piping and Petroleum-Mechanical Engineering Conference,

American Society of Mechanical 	 Engineers,	 Mexico City,
y

Mexico, Sept,	 1976,	 (also see NASA TM X-71898, 	 1976).

14) Brinkman,	 C,	 R,,	 et al,,	 "Time-Dependent Strain-Controlled
a

Fatigue Behavior of Annealed 2 1/4Cr-1Mo Steel for Use in

Nuclear Steam Generator Design," Journal of 	 c1 gar

Mgt,grials a 	 (in press).

15) Ellis,	 J.	 R,,	 et al.,	 "Elevated Temperature Patine and

Creep-Fatigue Properties of Annealed 2 1/4Cr-1Mo Steel,"

Structural Mat, 	 fns. Service in	 uclear Power

Geri -.4a ion, MPC-1,	 American Society of Mechanical 	 3

Engineers,	 pp 213-246,	 1976,

16) Curran,	 R.	 M,,	 and (Mundt,	 Bo	 Ma,	 "Continuation of	 the Study
s

of Low-Cycle Fatigue and Creep Interaction	 In Steels at

Elevated Temperatures," (in this volume), a

17) Hirschberg,	 M. H,,	 "A Low-Cycle Fatigue Testin g Facility,')

Manual an Law CVCI P_ Fatigue Tesli g, STP 465,	 American

Society for Testing and Materials,	 1969, pp.	 67-860

18)	 Hirschberg,	 M. He, and Hal ford,	 G.	 R,,"Use of Strai nrange

Partitioning to Predict High-Temperature Low-Cycle Fatigue

r'	 Life," NASA TN	 D-8072,	 19764 .`

•1

*

19

F

n



Specimen
number

Temperature Total
strain

Inelastic
strain

PP
strain

CP
strain

Cycles
to

Time to
failure,or 0C,

range, range, range, range, failure hr

percent percent percent percent

64 1100 593 3.40 2.97 2.97 ---- 186 0.3

62 1100 593 3.73 3.36 3.36 ----- 192 1.8

41 950 510 2,42 1.99 1.99 ----- 267 .1

53 1050 565 1.54 1.20 1.20 ----- 941 .3
49 1100 593 1.09 .77 .77 ----- 1 285 .6

15 1200 648 .85 .57 .57 ----- 3 234 1.0

27 1100 593 .70 .41 .41 ------_ 4116 1.9
'	 31 1100 593 .44 .20 .20 -w--- 13 359 4.6

35 1100 593 .47 .23 .23 M---- 25 360 30.4

47 1050 565 .35 .13 .13 - W-- 55 211 30.7

26 950 510 2.80 2.36 .89 1.47 88 66.3
39 1100 593 1.64 1.34 .50 .84 449 21.0

2 1100 593 1.04 .78 .35 .43 1 337 23.4

25 1200 648 .71 .49 .22 .27 1350 17.0

10 1200 648 .76 .56 .25 .31 1 950 104.0

29
1	

1100 593 .56 .33 .15 .18	 1 5 734 99.2

'L

^t

E



ksi	 MPa	 Vie,	 stress per	 range,	 fatigue	 number	 hr
rupture,	 of creep	 strain	 interspersed	 life,	 time,

hr	 combined	 percent	 cycles	 of
cycle,	 combined
hr	 cycles

2A4B	 22.5	 326	 1000	 47	 2.3	 1	 59	 2776
2AIA	 22.5	 326	 1000	 23	 1.5	 1	 141	 3243
2A2B	 22.5	 326	 1000	 23	 2.3	 2	 73	 1691
2A3AA	 22.5	 326	 1000	 23	 1.5	 5	 96	 2186
2A6BB	 22.5	 326	 1000	 23	 2.3	 11	 39	 914
2A5AA	 22.5	 326	 3000	 23	 1.5	 22	 29	 667

2A4L	 22.5	 326	 1000	 47	 .55	 1	 67	 3179

2B]..A	 19.5	 283	 3000	 23	 1.5	 1	 202	 4664
2B3A	 19.5	 283	 3000	 23	 1.5	 5	 92	 2135
2A00	 22.5	 326	 1000	 23	 ---	 --	 99	 2281
2B00	 19.5	 283	 3000	 23	 -----	 241	 5549

Test bar Creep stress Monotonic Duration Total 	 Number afa Observed Test

aNu'mber of PP type interspersion fatigue cycles used in damage analysis by method of
strainrange partitioning is 1/2 cycle less than used by MPC since 1/2 cycle is used
to plastically reverse the 1/2 cycle of tensile creep in each combined cycle.

I
E
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TABLE 3. -- COMPARISON OF PREDICTED AND OBSERVED CYCLIC LIVES OF , MPC TESTS

Test
bar

Observed

life

Predicted cyclic life Life ratio: observed/predicted

cycles Damage summed Damage based on Damage summed Damage based on

every cycle half life cycle every cycle Ralf life cycle

2A4-B 59 46 57 1.28 1.04
2A1A 141 139 160 1.01 .88
2A2B 73 89 122 .82 .60
2A3AA 96 88 99 1.09 .97
2A6BB 39 30 30 1.30 1.30
2A5AA 29 30 34 .97 .85
2A4E 67 53 68 1.26 .99
2B1A 202 346 408 .58 .50
MA 92 139 153 .66 .60
2AOO 99 99 126 1.)0 .79
2BOO 241 398 490 .61 .50

li



.e

Test Number of	 Observed Predicted Strainrange components Damage fractions (sunu ation =3.000)
bar interspersed	 life life percent

Interspersion Creep periodfatigue	 cycles cycles Interspersion Creep period
cycles

PP PP CP PP damage PP damage CP damage

2A4B 1	 59 57 1.99 0.115 2.570 0.164 0.014 0.822
2A1A 1	 141 160 1.23 .113 1.451 .197 .020. .783
2A 2B 2	 73 122 1.94 ..490 1..070 .670 .009 .321
2A3AA 5	 96 99 1.23 .082 1.290 .612 .007 .381
2A6BB 11	 39 30 1.96 ..070 1.076 .916 .003 .081
2A5AA 22	 29 34 1.20 .095 1.920 .885 .001 .114
2A4E 1	 67 68 0.28 .049 2.610 .006 .007 .987
2B7A 1	 202 408 1.23 .027 0.716 .505 .006 .489
1B 3A 5	 92 153 1.21 .037 0.454 .919 .003 .078
2A00 --	 99 126 ---- .089 1.875 ----- .015 .985
21300 --	 241 490 .051 0.924 ----- , 021 . 979
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spersed fatigue cycles. Partitioned stralnranges indicated on loops.
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(b) CP TYPE STRAINRANGE.

Fig. 2. - Partitioned strain range-Iife relations for annealed

24Cr-Wo steel.
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(b) PREDICTIONS BASED ON DAMAGE DONE ON HALF -LIFE CYCLE.

gig. 4. - Comparison of observed MPC creep-fatigue lives of annealed

4Cr-lMo steel versus lives predicted on basis of strain range

k	 partitioning using interaction damage rule.
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