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ABSTRACT 

Large plateaus of Eocene limestone and exposed limestone escarp

ments, in Egypt and Saudi Arabia respectively, were indicated by 

cool brightness temperatures TB < 2400 to 2650 K by the Nimbus 

5 Electrically Scanning Microwave Radiometer (ESMR) over a 

2-year period. Nubian sandstone, desert eolian sand and igneous

metamorphic rocks of the Pliocene, Miocene, Oligocene and 

Cretaceous period were differentiated from these limestone areas 

by warm TB values (> 2650 to 300'K). These brightness tempera

ture differences are a result of seasonal in-situ ground tempera

tures and differential emissivity of limestone (0. 7) and sand, 

sandstone and granite (0. 9) whose dielectric constants are (6 to 

8.9) and (2.9 and 4.2 to 5.3) respectively at 19.35 GHz. Cool 

TB values in the form of a "V", were found oriented N/S over 

broad areas of the Nile Valley southward to Lake Nasser and 
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NW/SE from the Kharga Oasis to the Baharia Oasis in the Western 

Desert of central Egypt. Surface moisture from sub-surface 

leakage from the Aswan Dam and the Western Desert oases could 

be a secondary cause for this TB value drop. Similar cool TB 

values were shown over limestone-dolomitic hills of the Interior 

Homocline and the Hadramawt Plateau of Saudi Arabia. Nimbus 

5 and 6 ESMER TB values selectively identified intermediate dense 

rock types (limestone versus sandstone/granite) in the Lake 

Nasser region whose thermal inertia ranged from 0. 035 to 

-
0.06 cal cm 2 0C sec-Y. Space albedo was determined from 

spatially averaged (Ikm resolution) Landsat 1, MSS-7 (0. 8 to 

1. 1 pm) data and day-night ground brightness temperature 

differences from Nimbus 5 THIR 11 ym data (9 km resolution) 

under clear sky conditions. 
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ENTRODUCTION 

Early television pictures of the Mliddle East recorded by TIROS 1 to 5 (Schnapf, 

1962, World Meteorological Organization, 1963) and geophysical observations 

by Nimbus I to 4 and Gemini 4, provided the first detailed satellite images of 

geological interest (Nordberg and Samuelson, 1965, Lowman and McDivitt, 1967, 

Pouquet, 1968, 1969, Pouquet and Raschke, 1968, Merrifield et al., 1969, 

Sabatini et al., 1971). With the flight of Landsat 1 in July 1972, more sophis

ticated rock type discrimination techniques were developed using computer

enhanced images recorded in the 0.5 to 1.1 gm region (Rowan et al., 1974, 

Blodget et al., 1975). 

The Nimbus 5 and 6 meteorological satellites which were launched on 12 

December 1972 and 12 June 1975 respectively, carried the electrically 

scanning microwave radiometer (ESMR) and the temperature-humidity infrared 

radiometer (THIR) which recorded useful complimentary data. 

The purpose of this paper is to study the geological features of selected 

Middle East regions using the combination of Nimbus 5 and 6 ESMR and THIR 

primarily, with supportive data from Landsat 1, NOAA 2 and 4, US Air Force 

DMSP images and USGS geological charts and reports. The following sections 

contain a brief description of the two radiometers used in this study. 
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THE ELECTRICALLY SCANNING MICROWAVE RADIOMETER (ESME)
 

The Nimbus 5 and 6 were flown in near-polar (810 retrograde) sun-synchronous 

circular orbits of about 1100 km (600 n. miles). Each orbit crossed the 

equator with an approximate 270 longitude separation and a period of 107 

minutes (Nimbus 5 User's Guide, 1972, Nimbus 6 User's Guide, 1975). The 

basic physics behind the Nimbus 5 and 6 ESMR are the same although the 

scanning geometry and operating wavelengths are different. 

The Nimbus 5 ESMR measures the earth and atmosphere radiation in a 250 

MHz band centered at 19.35 GHz (1. 55 cm) with a noise equivalent temperature 

difference (NE AT) of approximately 2 K (Fig. la). It scans the earth every 

4 sees. from 500 to the left through nadir to 500 to the right in 78 steps with 

some overlap. The scanning process is controlled by an onboard computer 

and scans a region approximately 30' of longitude wide at 30 0 N. The half

power beamwidth of the antenna is 1. 40 or 22 km at nadir and 2. 20 or 45 by 

160 km at the 500 nadir angle edges. The instrument is discussed by Wilheit, 

1972, Allison et al., 1974, 1975, Wilheit et al., 1976 and Kidder, 1976. 

The Nimbus 6 ESMR receives thermal radiation from the earth in a 250 -MHz 

band centered at 37 GHz (0.81 cm) (Fig. ib). Each electrically scanned sweep 

records brightness temperatures at 71 steps over a 5.3 see. period and scans 

a region approximately 130 of longitude wide at 300 N. The antenna beam 
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scans ahead of the spacecraft along a conical surface with a constant 450 angle 

with respect to the antenna axis and delineates a 15 km to 30 by 60 km field of 

view at the earth's surface with an NEAT of 10 K. The Nimbus 5 ESME 

measures only the horizontally polarized component while the Nimbus 6 ESMR 

measures the horizontal and vertical components by using two radiometer 

channels. A fall description of this instrument has been discussed by Wilheit, 

1975. 

The microwave brightness temperature of the earth's surface is mainly 

effected by the surface emissivity and temperature, atmospheric water yapor 

and liquid water droplets. Cloud ice crystals (cirrus) have little effect on 

microwave radiation and at the Nimbus wavelengths are essentially transparent. 

Molecular oxygen absorption can also be neglected (Wilheit et al., 1975, 

Sabatini, 1975). The emissivity of the surface may vary due to the change in 

dielectric constant. Since the dielectric constant of water can be 80 and dry 

soil as low as 3 to 5, water content of soil can have a strong effect at micro

wave frequencies (Schmugge et al., 1974 (a and b), Meneely, 1975). The 

resulting soil emissivity can vary from 0.5 (wet) to 0.9 (dry) (Poe et al., 1971). 

The emissivity of non-vegetating surfaces can vary from 0.85 to > 0.95 and 

depending on the soil moisture content, the occurrence of dew, the surface 

temperature and receiver polarization, can indicate microwave brightness 

temperatures between 2050 to > 3100K. Surface microwave radiation can 
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be effected by roughness, topographic slope, stratigraphy (layering of different 

materials), density of rocks, vegetation cover, receiver wavelengths, and 

angle of incidence observed (Oberste-Lehn, 1970, Cihlar and Ulaby, 1974, 

Vickers and Rose, 1971). Ocean surfaces have a low emissivity of ca. 0.40 

and a resulting cold microwave brightness temperature of 1200 to 1700K 

(horizontal polarization) and 190Q to 2200 K (vertical polarization). 

THE TEMPERATURE-HUMIDITY INFRARED RADIOMETER (THIR) 

The Nimbus 5 and 6 satellites carried the THIR, a two-channel radiometer 

which had proven its reliable performance by recording several years of 

day-night data indicating cloud heights, ground and sea temperature and 

providing a qualitative estimate of mid-tropospheric humidity under clear 

sky conditions (Allison et al., 1975). 

The two THIR detectors consist of germanium-immersed thermistor bolometers 

which have peak spectral responses in the 10.5 - 12. 5 Im "window" region 

and the 6. 3 - 7.25 pm water vapor absorption region (Figure 2). A cutaway 

of the radiometer, shown in Figure 3, includes the scan mirror, sun shield, 

5 inch-folded optical Cassegranian telescope, a dichroic beam splitter, 

electronics module and two detectors. 

The elliptically-shaped plane scan mirror, inclined at 45 degrees to the optical 

axis of the instrument, rotates at 48 rpm and scans through a 360 degree 

angle in the plane perpendicular to the direction of motion of the satellite. 
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Figure 4 shows the 7.7 by 7.7 km (4.1 by 4.1 n. miles) ground resolution 

(scan spot) of the 11 im channel at zero degree nadir increasing to an elongated 

14 by 31.8 km scan spot at 50 degrees nadir, at an 1112 km (600 n. mile) 

orbital altitude. Similarly the ground resolution of the 6. 7 pm channel at the 

sub-satellite point was 22.6 km while at 50 degrees nadir, it was 41.1 km by 

93.5 km. 

A sample Nimbus 5 THIR (11 pm) scan sequence is shown in Figure 5. The 

two detectors simultaneously view the housing, A at spacecraft zenith, 

(zero seconds). Seven synchronous pulses start at C, followed by six-1 volt 

calibration steps. A space scan starts at D to G, followed by an earth scan 

(1170 wide) to I, a space scan to K, a housing scan to M, and then back to 

zenith. The entire sequence lasts 1.23 seconds. The space and housing

viewed parts of the scan serve as part of the in-flight check of calibration. 

Note the small noise ripple on the housing and space scans (MeCulloch, 1972). 

The NE AT for the 11 pm channel is approximately 1. 50 K at 1850K and 0. 28 0 K 

at 300 0K. Corrections of 2 to 70 K must be added for losses due to atmospheric 

water vapor. A correction of < 1 0 K may be disregarded for extremely dry 

desert atmospheres, which was the case in this study. 

CASE STUDIES 

Two areas of the Middle East were examined using the Nimbus 5 and 6 ESMR 

and THIR data in order to explain the repetitive occurrance of distinctive cool 
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microwave surface brightness patterns on successive cloud-free days and 

nights over a 2 year period. 

EGYPT 

A light gray "V" structure was noted in the Nimbus 6 ESME pictures in the 

region of north-central Egypt (Fig. 6). A computer-produced grid print map 

(1:2 million, Mercator) of this scene (Fig. 7) shows cool brightness values 

of < 240'K to 2650 K overlaying the Nile Valley, Lake Nasser and extending 

northwestward along a line of known oases in the Western Desert. A review 

of all Nimbus 5 and 6 ESMR pictures over Egypt was made from December 

1972 to the June 1976. This "V" structure appeared consistently in the 

imagery both day and night under cloud-free conditions. Two geological maps 

of Egypt (Figs. 8 and 9) delineate the Eocene limestone (Said, 1962) and 

Nubia sandstone (Issawi, 1973). These rook formations together with large 

sand areas in the Western Desert and igeneous-metamorphic rocks formations 

along the Red Sea, outline and coincide with the "V" structure shown in Figs. 

6 and 7. A more detailed geological analysis of the Nile Valley in the Aswan 

Dam area was made from Landsat I data by El Shazly et al. (1974, a, b,) 

who confirmed the limestone, sandstone and granitic deposits. 

Since surface and sub-surface soil moisture can lower microwave brightness 

temperatures in the salt deserts (Ulaby et al., 1975) a literature search was 
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made of Egypt with the hope of finding some evidence of sub-surface water 

seepage from prominent surface water systems such as the Nile or Lake Nasser. 

Figs. 10(a) through (d) show the pre-and flood stage of the Lake Nasser 

Reservoir in 1969 on Nimbus 3 and Landsat 2 images, respectively. A New 

York Times article by Tanner, 1975 reported that Lake Nasser had been 

filling ufl more slowly than expected since 1969 and that only 5 to 6 of 12 

available hydroelectric turbines were being utilized in the Aswan Dam due to 

the lack of water storage. Drs. Farouk El Baz and Abdel-Hady (1975) 

confirmed the possibility that underground water seepage could occur in the 

extensive Egyptian limestone and sandstone deposits in the Lake Nasser and 

Nile Valley region. Surface drilling would be attempted in 1976 in Egypt to 

measure the extent of water loss. 

MICROWAVE PHYSICS RELATIONSHIPS 

Previous field work by Edgerton and Trexler, 1970, Kennedy et al., 1966, and 

later by Edgerton et al., 1973 using a truck-mounted microwave-sensing 

equipment (Fig. 11), showed that limestone had a low computed and measured 

brightness temperature (high dielectric constant) when compared with other 

minerals of lower dielectric constants (high brightness values) (Fig. 12). 

Note the emissivity decreases more rapidly for the Brewster angle (> 600) 

resulting in a drop in brightness values. The dielectric constant of a material 
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is defined as the ratio of the capacitance of a condenser filled with the material 

to the capacity of the condenser when a vacuum exists between its plates 

(Oberste-Lehn, 1970). 

The dielectric constants of selected solid rocks measured at 35 GHz can range 

from 2 to 10 (Peake, 1967, Campbell and Ulrichs, 1969, Peake and Oliver, 

1971). The following tables contain a partial list of the physical characteris

tics of ground materials relevant to this study (Clark, ed., 1966, Peake, 1967, 

Edgerton and Trexler, 1970, Ingersoll, 1954, Poha et al., 1974). 

Table 1 

Surface Dielectric Constant Emissivity Density Porosity 
Materials (Real Part) (at 37 GHz) (gm cm - 3 ) (T0) 

Desert Sand 2.9 0.93 1.4-1.93 39-46% 

(quartz, dry. 

med. fine) 

Sandstone 4.2-4.8 0.93 2.2-2.7 0.7-20% 

Granite 4-5.3 0.90 2.5-2.8 0% 

Limestone 6-8.9 0.75 2.65-2.8 0.5-5% 

8)
 

http:1.4-1.93


Table 2 

Surface Thermal Inertia Thermal Conductivity 
-1 1Materials (cal cm -2 IC sec-'/) (cat cm sec °C-I) 

Desert Sand 0.01 -0.02 0.00063 

Sandstone 0.030-0.058) 0.0062)
 

Granite 0.036-0.066 0.0065
 

Limestone 0.04 -0.06) 0.0048
 

Table 3
 

Surface
 aea 
 Thermal Diffusivity Volumetric Heat CapacityMaterials 

(cmr2 sec 1 ) (cal cm 3 0C1) 

Desert Sand 0.0020 0.314
 

Sandstone 0.0113) 0.546
 

Granite 0.0127 . 0.511
 

Limestone 0.0081 0.594
 

The physical constants above which appear to be similar, are enclosed by a 

bracket. The use of thermal inertia mapping to discriminate geological units 

in the United States and Oman indicated that limestone, dolomite, sandstone 

-2
and granite fall in a thermal inertia class interval of 0. 03 to 0.06 cal cm 

0C1 see/2 (Pohn et al., 1974, Watson et al., 1971, Rowan et al. , 1970, 
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Watson, 1975, Kahle et al., 1975). Any microwave radiation technique which 

will better selectively identify any of these minerals within this class interval 

would be of value (Pohn, 1976). 

The following parameters effect the Nimbus 5 ESMR (19.35 GHz) brightness 

values (T.), of a smooth desert surface (Moore et al., 1975, Ulaby, 1975): 

TB =7 [ETg+(I-e)TdI +Tu 

Where 

r = atmospheric transmittance 

e = emissivity 

Tg = ground temperature, 0K 

Td = downward emitted atmospheric temperature, OK 

T u = upward emitted atmospheric temperature, 'K 

For two fields of view with different emissivities but the same ground tempera

ture, the difference in T B is: 

AT 1 = (Tg-Td) (ez - e) 

For a dry desert atmosphere, a ground temperature of 310°K, O0. 95 and 

Td410°K, the emissivity is: 

e=i1 - VK+iI 
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Where K is the dielectric constant. 
Limestone Sand 

Thus: Dielectric Constant: 8.4 2.9 

Emissivity : 0.763 0.932 

these emissivities give: 

Sand: TB = 2850K 

Limestone: TB = 2370K 

ATB = 48 'K 

The effect of roughness is minimal for a high emissivity material such as 

sand but roughness in limestone, a lower emissivity material, may warm the 

TB by 20'K or more at 19.35 GHz. 

From the basic thermodynamic relationship: 

Emissivity = 1-Reflectivity 

The reflectivity of a rough surface is smaller than a smooth surface since 

multiple reflections tend to reduce the total amount of incident radiation 

reflected. Therefore, the emissivity is greater and the TB value is warmer. 

Conversely, high soil moisture content can cause an increase in dielectric 

constant which results in higher reflectivity or lower emissivity, causing the 

TB to decrease. A one percent change in soil moisture content can result 

in a 40 K change in brightness temperatures (Edgerton et al., 1973). 
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NILE DELTA - NILE RIVER VALLEY 

An excellent cloud-free visible picture (0. 5 to 0. 7Am) of the Nile Valley was 

taken on 23 October 1974 by NOAA 2 VHRR (Ikm ground resolution) (ig. 13). 

Note the darker heart-shaped region to the southwest of the present Nile Delta 

which I labelled the "Old Nile Delta". This area according to a hypothesis 

of the "Urnil", described by Hanter, 1975, was the region where the Nile 

River exited to the Mediterranean Sea at 29 0 E, southwest of Alexandria and 

may have produced an "old" delta, which consists of fluvial and fluvio-marine 

sediments deposited during lower and middle Miocene period. This sand and 

shale region which logically could have moved eastward according to current 

theory to the present delta location, appears warmer in all the Nimbus 5 and 6 

ESMR analyses, to be discussed later. Figures 14, 15 and 16 which cover the 

Nile Delta show an ONC H-5, 1:1 million base map for reader reference, a NOAA 

4, VHRR (10. 5 to 12. 5 pm) (1 km resolution) day, unrectified thermal IR map 

of 28 June 1975, and a typical Landsat 1, band 7 (0.8 to 1.1 pm) (80 meter 

resolution) picture of the region. The irrigated farmland in the Delta which 

extends from Port Said westward to Rosetta and southward to Cairo, appears 

4' to 8°K cooler in the IR (Fig. 15) than the nearby desert sand. A wedge of 

cooler TB values indicating high soil moisture in the Delta is also shown on 

Nimbus 5 THIR (11 pm) day, on 16 July 1974 (Fig. 17). The Red Sea hills 

and mountains of Jordan and Saudi Arabia are generally the warmest (> 3150K), 
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followed by large portions of the Western Desert (3100 to 315°K) and the 

coastal strip and Nile Valley (<310'K). The water-land interface shows up 

well in the daytime but there is little coastal, hill or low-land definition at 

hught (2930 to 3030K). 

THERMAL INERTIA RELATIONSHIPS 

The thermal inertia of a material is determined by its volumetric heat 

capacity, thermal conductivity, thermal diffusivity, specific heat and density. 

Figure 19 shows the variations of surface temperature as a function of thermal 

inertia. Optimum surface heating and cooling occurs at 1:30 pm and 2:30 am. 

The temperature variations are caused by atmospheric cooling and heating at 

35 0 N, heat loss by thermal emission and heat gain by solar energy absorption 

(Watson et al., 1971, Smith, (ed), 1974). The greater the diurnal surface 

temperature variation of a material, the smaller the inferred thermal inertia 

and conversely the smaller the temperature variation the larger the thermal 

inertia (Schutt, 1975, Price, 1976). 

A previous study by Pohn et al., 1974, used Nimbus 3 High Resolution Infrared 

Radiometer (HRIR) (0.8 to 1.1 pm) day-time data for measuring surface 

reflectivity and Nimbus 4 THIR (11 pm) data for day-night temperature differ

ences to derive a thermal inertia map of geological units in Oman. A similar 

visible band (MTSS-7, 0.8 to 1.1g m) from Landsat 1, on 9 November 1972 
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was used in this study to obtain space albedo over the Lake Nasser region and 

Nimbus 5 THIR for day-night differences. The Landsat 1, 80 meter resolution 

elements were averaged to 1 kin elements in order to permit comparison with 

the larger scan spots covered by the THIR data. 

Space reflectivity (R7), from MSS 7, on Landsat 1 was derived as follows: 

(Otterman & Fraser, 1976) 

R ir N7
 

S7 Cos 00
 

R 7(%) = 1. 3795 x C7 

where:
 

N 7 = nadir radiance
 

S 7 = solar constant for MSS 7 

00 = sun zenith angle 

C7 = Landsat digital count for MSS 7 

A one km element represents an average of 16 columns and 12 rows of the 

full resolution (80 meter) Landsat digital data printout. 

Figures 19 and 20 show the Landsat 1, MSS 7 image and the 1 kn averaged 

Cal-Comp line drawn analysis for 9 November 1972, respectively. Large 

limestone areas indicated by space reflectivities of 50 to 65% are shown to the 

left of column 1600 (top) while the Nubian sandstone (greytone) and granite 

areas are 35 to 45% and < 35%, respectively. Figures 21 and 22 are included to 
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show the large limestone units described by El Shazly et at., 1974, for the 

same Landsat picture. Otterman and Fraser, 1976 had reported space reflec

tivities of 54 to 57% for Libyan desert sand from Landsat 2, MSS 7. A labora

tory spectrographic analysis of Sinai desert sand indicated 49 to 54% total 

diffusive reflectances for this wavelength (Fig. 23) which makes the above 

space reflectivities more credible. 

Day-night temperature differences for 16 July 1974 were obtained using 

Nimbus 5, 11 pm data, under clear sky conditions (Fig. 24). A radiosonde 

run at Aswan, Egypt on 16 July 1974, 1200 GMT, (Fig. 25) indicated a dry 

atmosphere and therefore no atmospheric corrections were made to the 11 gm 

analyses. The southern Sinai Peninsula, the Red Sea hills, mountains of 

Jordan and Saudi Arabia and portions of the Western Desert show the largest 

diurnal temperature difference (200 to 35 0H), while the limestone deposits 

in the Nile Valley and coastal deserts indicate 50 to 20 0 K. The Red Sea -

Mediterranean Sea, and Nile Delta show a smaller AT B of 3' and 50 to 100 K, 

respectively. 

Pohn et al., 1974, developed a least squares fit of thermal inertia versus 

day-night temperature difference for different albedos (Fig. 26). By overlaying 

a portion of the day-night temperature difference chart (Fig. 24) on the 

reflectivity chart of the Lake Nasser region (Fig. 20), the following range of 

-
thermal inertia (cal cm 2 0C sec-A) was derived: 
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Table 4 

Space Day-night Thermal 

Reflectivity 11 pm TB differences Inertia 

Granite 20%- 35% 200 - 25 0 K 0. 038 - 0.058 

Sandstone 35%-45% 16o - 20 0 K 0.040 - 0. 060 

Limestone 50%- 65% 120 - 160K 0. 035 - 0.058 

The thermal inertia values for the 3 materials above range from 0. 035 to 0. 060 

cal cm-2 
0C sec - which is in agreement with published values in the literature, 

shown in Table 2. The use of microwave data to further differentiate these 

materials will be discussed in the next section. 

MICROWAVE AND INFRARED BRIGHTNESS TEMPERATURE RELATIONSHIPS 

In order to compare the Nimbus 5 ESiIMR (19.35 GHz) and THIR (11 pm) 

brightness temperatures, four crossections, (Box 1, 2, 3, 4) were drawn 

through the area of interest (Figs. 27, 28, 29). Coincidental data was used 

for the night of 16 July 1974 but a 10 day separation occurred for the day 

comparison (July 16 to July 25, 1974) due to satellite instrument processing 

problems. 

Individual Landsat 1 and 2 frames with box area limits in black are shown for 

ready reference of geological formations (Figs. 30, 31, 34, 37, 40). 
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Averages of IR and ESMR brightness values were plotted within a half degree 

of latitude from 24°N in the 4 regions to 290 300 N using the respective Nimbus 

grid print map (1:2 million, Mercator). The IR brightness data was uncorrected 

due to negligible atmospheric moisture content. 

An analysis of the crossectional data in Figs. 32, 33, 35, 36, 38, 39, 41, 42 

show the following relationships: 

1. The Nimbus 5, 11 pm brightness values over the igneous-metamorphic 

rocks in the Red Sea hills and southern Sinai peninsula were the warmest 

(320 0 K ± 20 K) during the day while the cooler nighttime TB gradients appear 

rather flat (2960 ± 40C) over most ground surfaces. 

2. The Nimbus 5 ESMR, 19.35 GHz brightness values were warmest 

(2700 to 282 0 K, day) (2600 to 265°K, night) over the igneous-metamorpnc 

rocks and sandstone and coolest (2500 to 2630K day) (2400 to 2510 K, night) 

over limestone. The average day or night difference between the above 

materials was approximately 15 ° to 30 K. 

3. The THIR-ESMR brightness difference is largest for the Red Sea (> 1000 K), 

followed by limestone (480 to 520K, day) (420 td 450K, night), igneous

metamorphic rocks (380 to 470 K, day) (260 to 400 K, night) and sandstone 

(350 to 41 0 K, day) (280to 370 K, night). A second areal average of THIR-ESMR 

brightness temperature difference between limestone and igneous-metamorphic 

rocks-sandstone was 140K night and 10 0 K, day. Sandstone and igneous
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metamorphic rocks have similar dielectric constants, density, thermal inertia 

but different porosity and surface roughness (Tables 1 and 2). 

Nimbus 6 ESME (37 GHz) data were also analyzed for selected days in July 

and August 1975. The dotted "V" structure in the horizontal polarization data 

of 28 July 1975 (Fig. 43) appears cooler (TB : < 2500 to 2600K) while the 

sandstone and igneous-metamorphic rocks are warmer (TR : 2700 to > 3000K). 

The cool "'V" structure in the vertical polarization data appears to be < 280' 

to 2900 while the sandstone and granitic hilly areas are warmer: 3000 to 318 0 K. 

(Fig. 44). When horizontal polarization data is subtracted from the vertical 

polarization data on 14 August 1975, large 700 to 800K T. differences occur 

over the sea while 400 to 500K TB differences occur in the Western Desert and 

the An Nafud Desert (Fig. 45). These differences may have been caused by 

scattering from smooth sand dune surfaces which have similar scattering 

characteristics to that of the 100 to 150 slope of a "low wind" sea surface 

(Peake, 1975). A similar effect was noted in the sands of the Rub Al Khali 

Desert (Empty Quarter) of southern Saudi Arabia (Fig. 59). Smaller Tn 

differences (<20OX) appear in the hilly regions bordering the Red Sea, the 

Sinai Peninsula and Israel. 

SAUDI ARABIA 

Several Nimbus 5 and 6 ESMR and THIR orbits over Saudi Arabia were selected 

in order to study the patterns of microwave and infrared brightness temperatures 
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over an adjacent cloud-free desert-mountainous region. This area does not 

have an established river system flowing through it like the Nile in Egypt which 

could have underground water seepage and possibly change the surface micro

wave emissivity patterns of the desert. 

Figure 46 (a) shows an excellent U.S. Air Force Defense Meteorological 

Satellite Program DMSP visible picture of the region (Dickinson et al., 1974) 

on 14 Feb. 1975 while (b) indicates the main geological features as described 

by Powers et al., 1966. 

The Arabian Shield consists mainly of igneous and metamorphic rocks which 

have been tectonically stable since the Precambrian period and locally overlain 

by Cenozoic volcanics, and Quaternary alluvial and Eolian sediments (dark 

and light-tones) (Blodget, 1971). 

The Interior Homoclme falls away from the shield (Fig. 47) and consists of 

eroded limestone, dolomite, shale and sandstone which appear in a stripe

pattern in the central Arabian arch area. Extensive low lying wind-blown 

Eolian sand occur in the An Nafud and Rub Al Khali Deserts, to the north and 

south respectively. The Hadramawt Plateau along the south coast is a high, 

dissected plateau with a dominant east-west drainage system make up of 

limestone, shale and marl strata. Fig. 48 shows all areas containing large 

units of limestone obtained from the U. S. Geological Survey-Arabian 
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American Oil Co., 1963, Geologic map of the Arabian Peninsula; U.S. 

Geological Survey Misc. Geol. Inv. Map I-270A. Note the similarity in the 

light grey areas in the Interior Homocline (central portion) and south coast 

of Saudi Arabia in the Nimbus 5 ESMR image (Fig. 49) and the limestone 

deposits in Mg. 48. 

Cool microwave brightness temperatures at night, (2400 to 2600 K) on 18 

Sept. 1973 clearly outline these areas (Fig. 50). The Arabian Shield (granitic 

rock) is progressively warmer (>2600 to 2700 K) and the Rub Al Khali Desert 

is the warmest (>270'K). However in a day analysis over the same area 

on 24 Sept. 1973 (Fig. 51) a 2 to 40 of longitude-wide strip of hills in the 

Arabian Shield from 40 0 E to 450 E indicate warmer TB values (2800 to > 290'K) 

than the sands of the Rub Al Khali Desert. A similar pattern showing this 

temperature reversal is found on 16 July 1974, day (Fig. 53). A distinctively 

warm T. pattern (>270K) night, > 2800K, day) was found over the Kuwait 

oilfields (MeCaslin, 1975) in all Nimbus 5 ESMR analyses. This was an area 

mixed with chalk, limestone and quartz gravel, marly sandstone, sandy marl, 

sandy limestone and calcareous silty sandstone (Fig. 48) (Powers et al., 1966.) 

Fig. 52 which shows another view of the region at night on 8 March 1975 

indicates a pattern similar to Fig. 50 but overall ESMI brightness values 

are lower by 10Q to 20 0 K due to seasonal temperature changes. Analyses 

of Nimbus 5 ESMR and THIR (Fig. 53, 54) for 16 July 1974, day were made, 
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on which a half degree latitude crossection through the Arabian Shield, the 

Interior Homocline and Platform was performed (Fig. 55). Large differences 

(520 to 610K) were found between the 11 gm and ESMR TB values over lime

stone and dolomite hills while smaller differences (380 to 430K) were found over 

igneous-metamorphic rocks and sandstone. The limestone-ddlomite structures 

in the Interior Homocline are generally 200 to 300K cooler than the granitic 

rocks in the Arabian Shield and 100 to 20 0 K cooler than the eolian sand in the 

Rub Al Khali and An Nafud Desert at 19.35 GHz. 

Nimbus 6 ESMR (37 GHz) vertical and horizontal polarization data for 16 

August 1975 (Fig. 56, 57) showed a similar mght temperature pattern as did 

the Nimbus 5 analyses (Fig. 50, 52) i.e., the eolian sand appeared warmest in 

both polarizations. When horizontal was subtracted from vertical polarization 

data, large 400 to 60 0 K T B values were noted to be located over the sands of 

the Empty Quarter (Fig. 58, 59). This may be caused by a surface scattering 

effect of the sand dunes at 37 GHz (Peake, 1975). 

CONCLUSION 

The microwave brightness temperatures from Nimbus 5 and 6 ESMR and 

THIER have been used to identify large units of limestone-dolomite against 

a background of igneous-metamorphic rocks, sandstone and eolian sand in 

the Middle Eastern deserts. Nimbus G, Seasat and Shuttle to be launched 
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in the 1978-81 time period will carry multi-frequency passive and infrared 

radiometers which hold great promise for further geological exploration from 

space. 
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Figure 11. Truck-mounted passive microwave radiometer equipment used on geologic research (Edgerton 
and Trexler, 1970) 
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Figure 13. NOAA 2 Visual picture (VHRR), 23 October 1974 (1 km resolution) over Egypt 
and Red Sea area 
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Figure 16. 	 Landsat 2 MSS 7, 10 May 1973, over Nile Delta (southern end), 
Egypt (UAR) 
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Figure 29. 	 Nimbus 5 ESMR 19.35 GHz, orbit 7934 (day), 25 July 1974, 
horizontal polarization; analysis of computer-produced grid 
print map, 1:2 million, Mercator, with 4 boxes showing region 
of THER and ESMR Tli comparison 
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Figure 30. 	 Landsatt 1 MSS 7, 9 Nov. 1972, Lake Nasser and Nile Valley, Egypt 

(UAR), with box limits of THER and ESMR T. comparison 

65
 



WE 330301 34DE 340 30,E 

25*,N 

2430'N 

24° 30'N ..... 

24*N 

24 N 	 77 

' .23030,N 

330E 33030'E 34E 

FIgure 31. 	 Landsat 1 MSS 7, 8 Nov. 1972, Lake Nasser and Nile Valley, Egypt 

(UAR), with box limits of THIR and ESME T, comparison 

66
 



32 o 
lljm NIGHT SURFACE TEMPERATURE 

.. 3000 ORBIT 7821 	 .. ,."r -""- : 

(NIGHT)
w280".6iIULY 1974 
W ESMR 
3 -ORBIT 7821 

16JULY 1974
 

.2400 
I'- 22(r - A ._ - ,. 

SANDSTONE LIMESTONE SuiDSTONE IGNEOUS & REDSEA 

z 200- AV.T, DIFF. 
-11~3ESMR)23' 330
 

A180-T IseP , 7
 

I l
I W ArII 

29E 300E 310E 320E 330E 340E 350E 360E
LONGITUDE
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Figure 45. Nimbus 6 ESMR 37 G~z, orbit 846 (day), 14 August 1975, vertical 

minus horizontal polarization; analysis of computer-produced grid 
print map, 1:2 million, Mercator 
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Figure 46. 	 a) U.S. Air Force DMSP visual picture, orbit 4752, 14 Feb. 1975, 0837Z, 
(2 mile resolution) b) Map of Saudi Arabia indicating major geological 
features (Anon, U.S. Geological Survey, 1966) 
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Figure 49. 	 Nimbus 5 ESMR 19.35 GHz, 
orbit 3780 (night) 18 Sept. 
1975, facsimile picture 
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Figure 50. 	 Nimbus 5 ES1ME. 1935 0Hz, orbit 3779 (night), 18 Sept. 1973, 
horizontal polarization; analysis of computer-produced grid print 
map, 1:2 million, Mercator 
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Figure 58. 	 Nimbus S ESMR 19.35 GI-z, orbit 7813 
(day), 16 July 1974, horizontal polariza

tion; analysis of computer-produced grid
print map, 1:2 million, Mercator; dashed 

box indicates area of crossection shown 

in Fig. 55. 

88 



4W'E 45'E 5WE 55E SE 
30'N 3r29 \-t 325 30 0 3538 315" 320 3n- 3160 30 N 

320 
317-

320 
AN NAFUD DESERT 

322 
325 

300 
320 

32' 3 W 

3100 

< 

3250 	 305- PE SIAN GULF 310' 30 

to 302K)(9 (2(3 t 

325' 

P= 22, 27 

D 1305K 

40E 4 5 'E 5 0 ( 	 55 E 2 8 -

LEGEND
in >325 K 

Figure 54. 	 Nimbus 5 TIR 11. i orbit 7813 (day), 16 July 1974, aLnalysis of 
computer-produced grid print map, 1:2 million, Mercator; dashed 
box indicates area of erossection shown in Fig. 55. 
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Figure 57. Nimbus 6 ESMR 37 0Hz, orbit 880 (night), 16 
August 1975, vertical polarization; analysis of 
computer-produced grid print map, 1:2 million, 
Mercator 
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produced grid pnnt map, 1:2 million, Mercator 
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