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ABSTRACT-


The primary objective of this investigation was to compile base­

line information pertaining to the ocean circulation, especially the
 
extent and patterns of tidal currents and tidal flushing, in Cook Inlet
 

utilizing aircraft and satellite imagery with corroborative ground truth 
data. Earth Resources Technology Satellite (ERTS) -1 and N.C.A.A. -2 
and -3 imagery provided repetitive, synoptic views of surface currents, 
water mass migration and sediment distribution during different seasons
 
and tides.- Color, color infrared-and thermal infrared imagery acquired
 
on 22 July 1972 with the NASAJNP-3A aircraft was used to analyze currents, 
mixing patterns and sediment dispersion in selected areas. Temperature 
(0C), salinity (o/ ) and suspended sediment concentration (mg/A)data 

and hand-held photegraphy were.utilized as ground truth information in the 
interpretation of the aircraft and satellite imagery. 

Coriolis effect, semidiurnal tides and the Alaska current govern the
 

estuary circulation. Clear, oceanic water enters the inlet on the south­
east during flood tide, progresses northward along the east shore with
 

minor lateral mixing-, and remains a distinct water mass to the latitude
 
of Kasilof-Ninilchik. South of the forelands, mixing with turbid inlet
 
water becomes extensive. Turbid water moves south primarily along the
 

north shore during ebb tide and a shear zone between the two water 
masses forms in mid-inlet south of Kalgin Island. Currents adjacent 
to and north of the forelands are complicated by tidal action, coastal
 

configuration and bottom effects. Turbulence is greatest throughout
 
the water column along the south shore and stratification is more pro­

nounced in Kamishak and Kachemak Bays, especially when fresh water
 

runoff is high. Most of-the sediment discharged into the inlet is
 

deposited on the extensive tidal flats or removed by tidal currents
 
along the west side'during ebb flow. Bottom scouring is evident along
 

the east shore south of Pt. Possession.
 

Regional relationships between xiver hydrology, sediment transport,
 

circulation and coastal processes were anilyzed utilizing aircraft,
 
ERTS-l and N.O.A.A. -2 and -3 imagery and corroborative ground truth 
data. The use of satellite and aircraft imagery provides a means of 

acquiring synoptic information for analyzing the dynamic processes of 
Cook Inlet in a fashion not previously possible.
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INTRODUCTION
 

The Cook Inlet area in south central Alaska (Fig. 1) is currently
 

undergoing the most rapid development in the state and will play an
 

increasingly important role in the future of Alaska. Anchorage, the
 

state's most populated city, located at the head of Cook Inlet, is
 

presently the center of transportation, commerce, recreation and in-


The use of Cook Inlet as a water road to this growing region
dustry. 

will increase as the areal development continues. A particular concern
 

of many governmental agencies, especially the Corps of Engineers, is to
 

control and alleviate the environmental disturbances associated with
 

this rapid coastal zone development. Increased estuarine pollution will
 

be a direct result of this future development.
 

This governmental interest in estuarine and nearshore environments
 

has increased over the last several years as illustrated by new federal
 

legislation and enactment of state laws protecting the fragile ecology
 

of the coasts. As a result, the importance of acquiring adequate base­

line data prior to further development in the marine environment was
 

emphasized recently by the Envixonmental Protection Agency (Carter 1973).
 

In addition, an international symposium on the physical processes re­

sponsible for the dispersal of pollutants in the sea with special
 

reference to the nearshore zone was convened at the University of Aarhus,
 

Denmark in July 1972. Subjects of particular concern were advective
 

processes (currents and circulation), turbulent processes (diffusion,
 

shear effects and stratification), effects of ice cover, water entrainment,
 

beach and estuarine processes and modelling (Hanson 1973). A coastal
 

zone workshop sponsored by the,Institute of Ecology and Woods Hole
 

Oceanographic Institution was also held in Woods Hole, Massachusetts
 

from 22 May to 3 June 1972. The primary objectives were to identify
 

problems of the coastal zone, assess effects of man's activities and
 

identify scientific, legal, social and economic constraints that prevent
 

rational management of coastal resources. A general conclusion of this
 

workshop was-that "maximum rational use of coastal resources consistent
 

with the retention of life-support systems, beauties and amenities of
 

the coastal zone for the enjoyment of future generations must be the
 

objective of coastal zone management" (Ketchum and Tripp 1972). A
 

specific recommendation of the workshop, "the acceleration and expansion
 

of-baseline surveys", was addressed during this investigation.
 

Suspended sediment is currently the dominant pollutant in Cook
 

Inlet and will increase as previously undisturbed areas become affected.
 

Knik and Matanuska -Riversalone-discharge up to 150,000 tons of glacial
 

silt per day into the inlet during the summer months (Carlson 1970).
 

It is estimated that in newly developed areas as much as 20,000-30,000
 

times more sediment is produced than in natural undisturbed areas
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(Environmental Currents 1972). Other .pollutants include municipal 
sewage, waste from canneries and natural or manmade oil spills. Base­
line data on the ocean currents, particularly tidal currents and the 
patterns of tidal flushing, are needed to determine the extent that
 
these pollutants remain in the inlet (Bartlett 1973). 

Background
 

Oceanographic processes in the following specific areas of Cook 

Inlet have been investigated using data collected by conventional ship 
board methods: Nikiski (Rosenberg et al. 1967 and 1969); the mouth of 
the Drift River and Trading Bay (Marine Advisers 196 6a and b); and, Knik 

Arm (Murphy et al. 1972). Data for regional areas are sparse; Sharma 
and Burrell (1970) mapped the distribution of -bottom sediments in a 

large portion of the inlet; availble"environmental and oceanographic 

data were compiled by Wagner et-al. (1969) and Evans et a4. (1972). 
Although regional.oceanographic relationships are beginning to emerge, 

considerably more data are required to develop a more detailed under­
standing of the oceanographic processes. A synoptic analysis of the 
oceanographic processes in large portions of the inlet can be accom­
plished by correlating interpretations made from remote sensing imagery 

-with ground truth data. 

The application of imagery in monitoring, surface water circulation 
and sedimentation processes has been demonstrated in the-Straits of
 

Georgia (Tabata 197T2), at-South Pass, Mississippi River (Coleman et al.
 

1972), near the Mississippi River Delta (Walsh 1,969), along.-the north
 
and south shore of Long Island (Pluhoawski 1972), and in the area around
 

Anchorage and Knik Arm (.Barnwell and Zenone 1969). Traditional data 
collection procedures from aboard ship are expensive, time consuming and
 

exclude the possibility of acquiring synoptic data.- Conversely, analyses
 

of patterns of-surface circulation and sediment distribution over a large
 

portion of the inlet can be made synoptically with aircraft and satellite
 
imagery and limited ground truth data. In addition, less time is re­

quired to observe a given area on the imagery than i-s needed for sampling
 

while 6n the sea surface.
 

The improved understanding of inlet .circulation, especially tidal
 
flushing processes as natural mechanisms for dissipating pollutants,
 

will result in more intelligent and efficient planning and performance
 
of construction, maintenance, design and related engineering activities
 

in this marine environment. In addit'ion, new remote sensing interpre­

tatiQn techniques developed-during this investigation would be useful in
 

guiding improvements in sensor selection and analysis methods for future
 

aircraft and satellite programs.
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Objectives
 

When this project was originally conceived the following objectives
 

were established:
 

1. Compile baseline information pertaining to the ocean circulation,
 

especially the extent and patterns of tidal currents and tidal flushing
 

in Cook Inlet.'
 

2. Obtain new remote sensing data on the circulation patterns,
 

sediment transport and deposition under different seasonal and tidal
 

conditions.
 

3. Validate the most suitable combination of sensors, altitudes,
 

and seasons for ocean and tidal current studies.
 

h. Develop appropriate maps, charts, diagrams and reports describing
 

and documenting the oceanographic processes to prepare a baseline data
 

package.
 

5. Improve techniques and develop ideas that will advance our
 

capability for improvements in future remote sensing studies of arctic
 

and subarctic oceanography.-


Objectives 1 through 4 have been accomplished and the results reported
 

A baseline data package has been compiled on circulation pat­herein. 

terns, extent and patterns of tidal flushing and sediment transp6rt
 

under various seasonal and tidal conditions. These data were acquired
 

using remote sensing methods (i.e. aircraft photography and IR scanner
 

imagery and medium and high altitude satellite multispectral imagery) and
 

This combination of sensors provided
corroborative ground truth data. 


the means to acquire the most useful data and each sensor attributed 
a
 

unique capability to the investigation. Objective 5 was indirectly
 

addressed in that limitations of the sensor systems used during this
 

project were enumerated. Techniques were improved and ideas developed
 

by illustrating the utility of remote sensing data in areas where
 

existing data are sparse.
 

Project History
 

A chronological listing of the events that occurred and the-mile­

stones that were accomplished during the project is presented in Table
 

Interim and related reports prepared and presentations made during
1. 

the project are summarized in Table 2. A preliminary cost analysis
 

(enclosed in the Seventh Quarterly Management and Financial Report, 
1
 

October-31 December 1973) was prepared to evaluate the benefits and
 

utility of remote sensing data in the investigation of Cook Inlet
 

-oceanographic processes.
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Table 1. Project history, chronological listing of events and milestones. 

CY7Z ' I CY73 CY74 
Milestones .3141 12 3 

Project commencement/Receipt of NASA-DPR, W-13452 (Za i 
Compilation of existing photography and data 

-
Literature review 
Reconnaissance of study area/establish field methods M il n(n 

VP Acquistion of aerial imagery 
Hand-held 5/W andl color infrared (GIR) /A J 

NASA NP-3A color, CIR and RS-14 thermal scanner imagery - -

Acquisition of ground truth data 
Receipt of ground truth data (6 June, 

Ist Quarterly Management/Financial 

9 Mar, 
Report 

12 July, 1 Veb) 4-----
A (2 1 

-

y) 

-
-

Acquisition of ERTS-l imagery 

Receipt of NASA aircraft imagery 
2nd Quarterly Management/Financial Report JA 

A 
(2 

301 0 a)i 

Thematic mapping with ERTS-I imagery - m m 

Surface circulation -

Water masses/sediment distribution 

Tidal flats 
River plumes 
Sea ice movement 

Acquisition of N. 0. A.A. -Z and -3 imagery m 

Sea ice regime/N. 0. A.A. -2 and -3 i magery - I 

3rd Quarterly Management/Financial ReRort 

Pres'entation at Znd ERTS-l Symposium, "Sediment distribution and coastal 1 
A .a) 

(9 1da 

processes in Cook Inlet, Alaska" 
Project review at Office of Chief of Engineers, Systems Analysis Branch. _9 a) 

Remarks 

Calendar year divided into quarters 



Table 1 (Continued) 

CY72:, CY73 CY74
Milestones IrI----------141 171 

First look interpretation/evaluation of aircraft imagery 
Thematic mapping with NASA aircraft imagery 

Surface circulation 
Nearshore transport 

Thematic mapping with and analysis of ground truth data 
Sdrface temperature, salinity and suspended sediment distributions 
Temperature and salinity profiles 
T-S diagrams /characterize water types 
Analyze changes with seasons/tides 

4th Quarterly Management/ inancial Report L(3 My)-

Preliminary analysis report (I 1ul 
5th Quarterly Management/ Financial Report A (13 A.g) 
'U.S. Army Corps of Engineers Remote Sensing Symposium, L. B.S. Space' ( ov) A 

Qenter, Houston, Texas, "Coastal processes, Cook inlet" F 

Preliminary Cost/Benefit Analysis (13 ec 
6th Quarterly Management/Financial Report 27 Dec) 
Seattle District remote sensing briefing (Zan) 
7th Ouarterly Manpgeiient/Financial Re ort 
8th Quarterly Management/Financial Report (l 31 e A 
Final Report (Draft) ( be)jOpte 

Remarks 

Calendar year divided into quarters 



Table 2. 	Reports prepared and presentations made
 

during the project.
 

Repot
 

Preliminary Analysis Report, "Baseline data on.tidal flushing in Cook 

Inlet, Alaska", June 1973, 11 p. 

"Sediment distribution and coastal processes in Cook Inlet, .Alaska": in
 

Symposium on Significant Results .Obtained from the Earth .Resources
 

Technology Satellite-i, NASA SP--327, March 1973, p. 1323-1339.
 

"Cook Inlet, Alaska, Bay Processes," in Remote Sensing for Environmental
 

Analysis, A Reference Document for Planners and Engineers, Office of
 

Chief of Engineers Handbook, Washington, D.C., August 1974, Chapter 4,
 

p. 33.
 

Presentations
 

Second ERTS-1 Principal Investigator's Symposium, Goddard Space Flight
 

Center, 5-9 March 1973, "Sediment Distribution and Coastal Processes in
 

Cook Inlet, Alaska."
 

Project review, Office of Chief of Engineers, Systems Analysis Branch,
 

Washington, D.C., 9 March 1973.
 

U. S. Army Corps-of Engineers Remote.-Sensing Symposium, L.B..Johnson
 

Space Center, Houston, Texas, 26-30 November 1973, "Coastal processes."
 

"Applications of remote sensing data-to Corps of Engineers projects,"
 

Seattle District, Corps of Engineers, 28 January 1974.
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A review was made of current literature and unpublished reports
 

pertaining to the oceanography of Cook Inlet. Oceanographic and bathy­

metric data were obtained from the National Ocean Survey and the University
 

of Alaska Institute of Marine Science. Thematic maps were prepared of
 

bottom topography, temperature and salinity distribution, surface currents
 

and suspended sediment distribution. The temperature-salinity contour 

maps were used to characterize the water masses and the complex circulation
 

patterns and were compared to interpretations from aircraft and satellite
 

imagery. NASA NP-SA aircraft imagery obtained on 22 July 1972 was used
 

to analyze surface circulation patterns, mixing patterns along river
 

plumes, tidal flat morphology and coastline configuration. Late sumner
 

and fall water movement was monitored and regional circulation patterns
 

determined with.ERTS-1 imagery. N.O.A.A.-2 and -3 VHRR (Very High
 

Resolution Radiometer).visible red and thermal infrared imagery was used
 

to analyze the formation, movement and ablation of inlet ice. The
 
a necessary tool
repetitive and synoptic satellite imagery proved.to -be 


in analyzing estuarine processes.
 

Tidal flushing rates were calculated for Knik Arm and the inner 

portion of Kachemak Bay. Dissipation of inlet pollutants is dependent 

on tidal current velocities and the amount of freshwater inflow, which 

influence the net exchange of inlet and ocean.water; where these factors 

are high, the dispersion and diffusion action is greatest. Current and 

mixing patterns were analyzed and areas delineated where tidal flushing
 

mechanisms and suspended sediment dispersion are most active.
 

APPROACH
 

Suspended sediment concentrations in Cook Inlet vary from greater
 

than 1700 mg/i near Anchorage (Wright et al. 1973) to-as low as 0.4 mg/i
 

near the inlet mouth (Kinney et al. 1970b). The suspended sediment acts as
 

a natural tracer by which circulation patterns and water masses with
 

different suspended sediment loads (temperatures and salinities) are
 

visible from satellite and aircraft altitudes; thus, surface currents,
 

water mass migration, sediment distribution and nearshore processes can
 

be analyzed using remote sensing techniques and corroborative ground
 

truth data.
 

Aircraft Imagery
 

The NASA Earth Resources Aircraft NP-3A (NASA 927) conducted a con­

tingency flight on 22 July 1972 (Data Flight 7) over Cook Inlet during
 

Mission 209. Seven flight lines (Fig. 2) totalling 292 nautical miles
 

were flown at an altitude of approximately 20,000 feet from 1053 to 1233
 

Alaska Daylight Savings Time. Coverage includes the northern inlet from
 

Harriet Point to the head of Knik Arm and the southern shore from Cape
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Kasilof to Anchorage including Turnagain Arm. 'Atmospheric conditions 
were ideal: ceiling unlimited, visibility 90 miles, air temperature 
66 0F, relative humidity 5T%, wind southeast at 3 knots. Most of the 
imagery was acquired during early flood tide'at Anchorage, but late 
flood at Seldovia; ebb tide occurred later in the day when the sun angle
 

was too low and an overflight was not possible (Table 3). The tidal
 

Table 3. 	 Tides at Anchorage -and Seldovia on 22 July 1972 
(from U.S. Department of Commerce 1971). 

TIME HEIGHT 
(Alaska Daylight Savings Time) (m)* 

Anchorage 	 0349 7.5 
1109 o.4 
1738 	 7.8
 
2321 	 2.5
 

Seldovia 	 o6ol 0.7 
1242 4.o 
1748 2.1 
2342 4.7 

* 	 Above the datum of soundings, which is mean lower low water 

on charts of the locality. 

stage differs at locations throughout the inlet because of its size; 
low tide can occur in the south while high tide is occurring in the
 
north. For example, on 22 July 1972, high tide at Seldovia occurred one
 
and a half hours after flood tide began in Anchorage.
 

Photography was acquired with two 9 inch format RC-8 metric cameras 
with 6 inch lenses (Table 4). One camera had a Wratten 16-filter with 
Kodak Plus-X Aerographic Black and White Film (Type 2402) and the other 

a Wratten 12 filter (minus blue) with Aerochrome Infrared Film (Type 
2443). The scale of the photography was approximately 1:40,000 and the 
quality generally good*.
 

Features apparent on the photography include surface circulation
 

patterns; relative differences in suspended sediment concentrations in
 

the inlet and river plumes; water mass boundaries; foam and debris lines
 
on the water surface which indicate local wind and/or surface current 
patterns; 	sun glint on the sea surface which enhances-the view of wave
 

front movement, wave refraction and long shore currents; areas of bottom 

* 	Refer to Earth Resources Aircraft Mission Data Transmittal/Quick Look 

Reports dated 24 October 	1972 and 23 March 1973.
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FLIGHT LINES 
TIME - Start (Alaska Daylight 

- Stop Time) 

ALTITUDE (m) 

APPROXIMATE AIR
 
TEMPERATURE AT
 
ALTITUDE 


GROUND SPEED (knots) 


TIDAL STAGE AT 

ANCHORAGE 


H SYSTEM USED 

RC-8 camera No. 1 
Re-8 camera No. 2 
RS-14 scanner 

DATA OBTAINED 


iWi
 

Table 4. 


53 

1053 


1057 


6212 


309 


Late ebb 

flow 


X (frames 
X 0-12) 

X 


Data for NASA NP-3A aircraft flight 7, mission 209, 22 July 1972.
 

54 55 56 59 58 57 
1107 1127 1138 1159 1215 1229 

i120 1134 1154 1203 1223 1233 

6242 6272 6242 6272 6242 5393 

_90c
 

333 323 329 307 332 319
 

Low at
 
1109 (ADT) Early flood-


X (frames X (frames X (frames X (frames X (frames X (fram6s
X 13-48) x 49-67) x 68-109) X 110-117) X 118-139) X 140-150) 

X X X X X X 


9 in. positave transparencies: Black and White
I olor IR 


-- 70 mm IR Scanner imagery strips 


REMARKS
 

Plus-X, 1/300 sec at f6.8
 
Aerochrome IR, 1/150 sec at fr.6
 
Dual Channel: 3-5.5 um, 8-14 Dn
 

Electronic noi~e on imagery for
 
lines 57Aand 58
 



scouring and sediment reworking; nearshore- bathymetry; tidal flat 
morphology; and, coastal landforms. The above features are more distinct 
on the Aerochrome Infrared (Color Infrared, CIE) than on the Plus-X
 
photography because atmospheric attenuation is less. The CIR photo­
graphy records near-IR radiation which is less affected by haze. In
 
addition, the amount of blue-green light produced by the haze that
 
enters the camera is reduced by the Wratten 12 filter.- The color in­
frared photography has been reproduced in black- and white for this report.
 
The approximate scales of these reproductions are indicated on the prints.
 

An RS-14 infrared scanner recording in two channels, 3-5.5 -pm and 
8-14-1m, produced 70 mm positive film strips for each flight line (in 
pocket at end of report). The scale of the original RS-14 scanner 
imagery is approximately 1 inch equals 2.25 miles and features 400 feet
 
or larger in size can be seen.- The quality is acceptable although some
 

strips are marked with bright scan lines caused by instrument noise
 
(these are not included in pocket). The scanner imagery shows thermal
 
patterns in the water and was useful in interpreting 1) the surface
 

thermal patterns in selected locations, 2) mixing patterns at the inter­
face between colder river water and the inlet water, and 3) the sources
 

of warm or cold water entering the inlet.
 

The correlation between patterns on the photography and: the IR
 
scanner imagery is very good*. These two NASA aircraft data products
 
were used to verify patterns observed on ERTS imagery-and to aid in
 

°
 
analyzing surface currents which are the mechanisms of-pollutant dis­

persion and diffusion at 3iver mouths and along the coast.
 

ETrth Resources Technology Satellite (ERTS)-l Imagery
 

The multispectral scanner (MSS) on ERTS-1 has been the primary
 

source of satellite imagery. The MSS records reflected radiation in
 

four bands of the visible and near infrared region of the electromagnetic
 
spectrum: band 4, 0.5-0.6 pm; band 5, 0.6-0.7 jim; band 6, 0.7-0.8 pm;
 
and, band 7, 0.8-1.1 pm. Coastal landforms and cultural features are 

most distinct on ERTS MSS bands 5, 6 and 7, and suspended sediment
 
distribution on bands 4 and 5. In general only one-ERTS band is re­

produced in this report. However, many of the conclusions are fully
 
justified only by inspection of two or more spectral bands. In addition,
 

the offset reproduction process has obscured some of the features
 
discussed in the text or annotated on the photographs.
 

The satellite passes over Cook Inlet 4 successive days per orbital
 

cycle, records 3 scenes-of the inlet on each day (weather permitting),
 

* 	Refer to Preliminary Analysis Report for NASA SR-/T Project 160-75-89-02-10, 

dated June 1973. 
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nd, as of 7 August 1974 (end of analysis of ERTS imagery), had com­
pleted 41 cycles since launch on 23 July 1972. Each imagetcovers 185 km
 
on a side, has 10% overlap and approximately -5060%-sidelap-at the lati­

tude of Cook Inlet. Only 20%. of the imagery is'useful, however, because
 

of frequent and extensive cloud cover and because of the low sun angle
 
(<80) from late November to mid-January. In spite of these interruptions
 

in coverage, sufficient data are available for detailed analysis.
 

N.O.A.A.-2 and -3 Satellite Imagery
 

The very high resolution radiometer (VHRB) on board the NOAA-2 and
 
-3 satellites, launched 15 October 1972 and 6 November 1973, respec­
tively, into sun-synchronous polar orbits, provides imagery in two
 
bands, visible red (06-a.? 4m) and thermal infrared (10.5-12.5 Im). 
The thermal IR imagery is useful in observing the formation, ablation 
and movement of sea.ice in the inlet during the low sun angle periods 

when ERTS is not acquiring data. The VHRR imagery has a-ground resolu­
tion of 1 km at nadir (ERTS ground resolution is approximately 70 m), is 
acquired several times during the day for the same area and serves as 

correlative information to the ERTS imagery. 

Ground Truth Data
 

Ground truth data to be used in compiling a baselin6-data .package
 
and as corroborative information in interpreting satellite and aircraft
 

imagery were obtained from two principal sources:. the National Ocean
 

Survey, N.O.A.A. and the University of Alaska Marine Institute. Oceano­
graphic data were acquired with two ships from the Oceanographic and
 
Coastal Mapping Divisions of the National Ocean Survey, N.O.A.A. Data
 

collection was recently completed for the second season of a multiyear
 
N.0.A.A. program to provide information for revision of the Cook Inlet
 

navigational charts and to provide data for ecological, pollution,
 
engineering and fisheries studies (Isiah Fitzgerald, personal communica­

tion, 1973).
 

Two types of surveys are being performed by N.O.A.A.: a tidal/
 

current survey with instrumented buoys which measure currents and tidal
 

fluctuations at selected locations in the inlet and a hydrographic
 
survey of salinity, temperature, bathymetry and bottom--sediment char­

acteristics. Temperature and salinity (T-S) measurements: were obtained
 

from 15 May - 9 September 1973 using two instrument's: a Plessey 9060
 

self-recording STD and an in-situ salinometer. Three types of stations
 

were located at.62 sites in the inlet south of 600 north.latitude (Fig. 3).
 

Data were acquired from each site several times during the-survey period.
 

Four time series stations (S) were located in the south central part of
 

the inlet. Data were acquired every half hour for 13-hours at these
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locations. Thirty transect stations- (ST) were-located along :four
 
transects across the inlet and one across .Kamishak'Bay,,east of Augus­

tine Island. Thirty peripheral stations (SP) were scattered in Kamishak
 

Bay, Kachemak Bay, Kennedy Entrance between the Barren and Chugach
 

Islands and along the southeast coast from Elizabeth to Yukon .Islands.
 

Data were taken every 5 meters from the surface to-50 meters, then at 10
 

meter intervals from 50 meters-to the bottom-at-deeper sites.
 

Additional temperature, salinity, pH, dissolved-oxygen and .nutrient 

(P0 NH , NO2 , No, SiO ) measurements from six cruises were provided 

by the Uiversity f Alaka Marine Institute. Data for surface and 
depth were collected throughout the inlet at- 44 stations .from 15-19 

July 1966, 31 stations from.25-26 August 1966; 76 stations-from 6-13 

June 1967, 65 stations from 21-30 .May1968, -12 stations from 26-28 

August 1969, and .14 stations from 17-18 August 1970. More recent 

surface salinity, temperature and suspended.sediment concentration 

measurements* were obtained during 5 surveys from August 1972 to June
 

1973: 47 stations from 22-23 August 1972 in the northern inlet and on
 

the eastern side of the southern inlet, 68 stations from 25-29 September
 
27 March 1973 from Tuxedni Bay
1972 throughout the inlet, 4 stations .on 


to Anchor Point, 8 flood tide and 10 ebb tide stations on 14 April 1973
 
from Chinitna Bay to Homer, and 65 stations from 7-8 June 1973 in the
 

and 59030' north latitude.
southern inlet between 60010? 


Aerial and ground surveys were made from.28 .May - 2 June and
 

Panchromatic, color and color infraredilow-altitude
5-7 August 1972. 

aerial photographs were acquired of coastal.topography,-tida. flats,
 

sediment plumes at river mouths, surface circulation patterns at ebb and
 

flood-tide, suspended sediment load at various locations, wave patterns
 

and patterns of~wind effect on the water surface. Beach.pr6files and
 

surface features on exposed tidal flats were observed. The photographs
 

acquired and observations made during the.surveys were-used as ground
 

truth in.analyzing the satellite and NASA.aircraft imagery- Additional
 

ground truth sources include current literature; unpublished reports
 

from the U.S. Geological Survey, University of Alaska-Marine- Institute
 

and private industry; and bathymetric data from the National Ocean
 
Survey.
 

Imagery and Ground Truth Data Analysis
 

Satellite and aircraft imagery were analyzed and the .interpretations
 

correlated with data on currents, temperature, salinity, suspended sedi­

ment concentration.and -tides obtained from.shipboard surveys during
 

* Data provided by F. F. Wright, University-of Alaska.
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overflights. Data were acquired at .different seasons-and tidal-stages 

to detect respective.changes. The current velocity and'position, 
temperature, salinity and suspended sediment-data-were-used-to produce 

maps of surface circulation, isotherms, isohalines-andm.sediment con­

centrations; the "at.depth'! data were used to-prepare water-profile 

diagrams to determine water column characteristics 
, and-define sub­

surface processes and.inlet stratification. This report-constituted a 

preliminary baseline data package with direct application-to-many marine 
engineering problems. This approach has demonstrated the effectiveness 

of remote sensing techniques in providing data required-for the solution 

of these problems-. . . 

PHYSICAL AM CULTURAL SETTING
 

Geography
 

Cook Inlet (Fig. 4)i s oriented in a northeast-southwest direction
 

and is approximately 330 kmlong, increasing in width from 37 km in the
 

north to 83 km.in-the south. This mosaic was made with ERTS MSS band 6
 

images acquired during the -sixth cycle over the inlet on 3 -and 4 Novem­

ber 1972 when the sun angle was only 12'. These were the first cloud­

free images of the entire inlet .but the low sun angle caused the patterns 

on the flat water surface to be subdued, especially in bands 4 and 5. 

Various areas around -the inlet were observed. during the previous 5 
cycles .but generally clouds -obscured most of the inlet and a synoptic 

view of surface circulation patterns and sediment distribution was not 

available until November. It was determined by inspection that-band 6
 

provided the best rendition of coastline .configuration.and'.surface
 

patterns.....
 

The inlet is geographically divided into .a.northern and southern
 

region by the East and West -Forelands. .It .is bordered by extensive
 

Aidal marshes, lowlands with many lakes and glacier-carved mountains.
 

Tidal marshes.-are prevalent .around the mouthof-the-Susitna River,
 

in Chickaloon, .Trading and Redoubt Bays. :The Chugach Mountains border
 
-the.inlet.on the .east. The Kenai .Lowland,.aflat marshland .of lakes
 

and bogs, is.situated.east.of and adjacent to-the-inlet. It.separates
 
the inlet from .the Kenai.Mountains on the southeast; .the mountains
 
trend southwesterly andborder-the inlet--mouth-on the southeast. The
 

Susitna Lowland, .similar in .topography to the Kenai Lowland, is located
 

at the head of the inlet and lies between the Talkeetna Mountains on the
 

northeast and. the -southern.AlaskaRange.on.the northwest. The Alaska-


Aleutian.Range.forms .the.western.border... 


* 

.. 

The eastern mountains are generally lover (1000-2000 m) than those
 

on the vest (1000-3000 m). The mountains are steep and rugged with very
 
.distinct treelines. Above the treeline, bedrock is exposed and rock
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Figure 4. Geographic setting of Cook Inlet. Mosaic made 
from MSS band 6 imgs 1103-20513, 1103-20520, 
1103-20522, 1104-20572, 1104-20574, Ii04-20581
 

acquired 3 and 4 November 19T2. 
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slides are common; scrubby alpine vegetation occurs on the lower slopes; 

black spruce forests or grasslands exist in a few areas. The higher 

portions of the surrounding ranges are covered with ice fields and 

valley glaciers; regional topography has been sculptured by extensive 
glaciation.
 

Approximately 90% of the Kenai, Chugach and Talkeetna Mountains is
 

non-forested; however, approximately 70% of the forested areas in these
 

mountains occur in the Chugach National Forest where sitka spruce and 

western hemlock are dominant species. The remaining forest lands located
 

on lover slopes and in stream valleys are dominated by interior spruce­

birch forests. Nearly 75% of the Cook Inlet-Susitna lowlands is forested 

with white spruce, paper birch, and quaking aspen. Sitka spruce is
 

common around the mouth of the inlet and cottonwood along major streams. 

Black spruce occurs in wet or burned areas; muskeg, usually treeless, 
supports some stunted black spruce. Lowland vegetationoccasionally 

changes to grasses, willow, and alder (Johnson and Hartman 1969) at 

elevations greater than 240 m 	 at the inlet mouth and at 300 m to 455 m 

further north; scrubby alpine 	vegetation occurs at somewhat higher 

elevations.
 

Approximately 18,000 acres are cultivated for agriculture in the 

Matanuska River valley near Palmer and Wasilla northeast of Knik Arm. 

Virtually all of the remaining cultivated land is located in the coastal 

lowland area of the Kenai Peninsula and in the eastern portion of the 

Susitna River valley (U.S. Department of Agriculture et al. 1968). 

Many of the natural features, 	major cities, towns and previously 
mouth of Drift River and on theunmapped developments south of the 

southern shore of the West Foreland are identifiable on the ERTS-l image 

shown in Figure 5. Anchorage 	 (1), the state's most populated city, is 

the center of transportation, 	 commerce, recreation and industry and is 

situated between Knik (2) and 	Turnagain (3) Arms in the northern portion 

of the inlet. Fire Island (4) is located approximately 8 km off the 

coast west of Point Campbell. Te Susitna River (5) with an average
 

discharge of approximately 918 m /sec (Wagner et al. 1969) is a major
 
Note the well-defined tidal
contributor of sediment to the inlet. 


Chickaloon Bay (6) and
channels that have formed at the river mouth. 


other areas around the northern inlet have extensive tidal flats (7). 

McArthur River (8), a glacial 	stream originating in the Chigmit Mountains 

to the west, drains into the inlet in Trading Bay (9). Trading Bay is 

presently the major site of active petroleum production in the area.
 

An oil refinery and a tanker terminal are located at Nikiski (10), 24 km 

(n1), at the mouth of the Kenai River, is aacross the inlet. Kenai 
fishing and oil and gas processing center. Numerous submarine pipelines 

cross the inlet and several crude oil gathering facilities are located 

along the coast in this area. The Kenai Lowland (12), located east of 
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Figure 5. 	Northern Potion Of cook Inlet. WSS band 6
 
image 1103-20513, acquired 3 November 1972,
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Kenai, is a flat, glaciated plain marked by numerous lakes and swampy 
areas. The Kasilof River (13) begins at Tustumena Lake and discharges 
into the inlet approximately 21 kan northeast of the lake. Kalgin Island 
(14) is located in the central portion of the inlet and separates two 
bathymetric channels found between Harriet Point and Kasilof. Near the 
mouth of the Drift River is a tanker terminal, an oil storage area and 
a landing strip (15). Sediment patterns and oceanic water (16) with a 
low suspended sediment concentration are discernible in the inlet. 
Differences in the concentrations are visible because turbid water 
causes more reflection of visible light and appears lighter. 

The southern portion of Cook Inlet (Fig. 6) is less populated than
 
the north. Nevertheless, there are numerous small towns and settlements. 
Ninilchik (1), Anchor Point (2) and Homer (3) at the base of the spit in 
Kachemak Bay (4) are located along the southern shore. Homer is a 
fishing town and is often used as a haven for ocean vessels caught in 
foul weather in the Gulf of Alaska. Seldovia (5) and English Bay (6) 
are small fishing villages on the northern side of the Kenai Range at 
the inlet mouth. The Chugach Islands (T)are clearly seen on the south 
side of the Kenai Mountains. The mountainous west shore of the inlet is 
marked by many embayments; Tuxedni (8), Chinitna (9) and Kamishak (1) 
Bays are the largest. Geologic structure on the Iniskin Peninsula (10) 
is recognizable in this image. Augustine Island (12) is an active
 

composite volcano (trato-volcano) with a classic conical shape. It has
 
a history of violent eruptions typical of an andesitic type volcano 
(Selkregg et al. 1972). Cape Douglas (13) is located on the western
 
side of the inlet mouth, and between the Barren Islands (14) and the
 
Kenai Peninsula to the north is the Kennedy Entrance to the inlet. 
Differences in sediment concentration are apparent between clear oceanic 
water on the east and turbid inlet water on the west; the boundary be­
tween these water masses is approximately at mid-inlet. 

Geology
 

The Cook Inlet basin occupies a structural trough, is underlain by
 
Late Paleozoic to Recent marine and nonmarine sedimentary and volcanic
 

rocks and is mantled by unconsolidated deposits from five Pleistocene
 
glaciations and recent deposition (Wagner et al. 1969, Karlstrom 1964).
 
Local geologic history is characterized by extensive tectonism, deposition
 
and glaciation. Five parallel, arcuate geosynclines and geanticlines 
were developed during the Mesozoic in south central Alaska (Grantz et
 
al. 1963). Subsequent diastrophism further altered the southern Cook
 
Inlet region during the Eocene when the subparallel Shelikof Trough was
 

superimposed (Payne 1955) across the existing structures. As much as
 
4500 m of sediment was deposited during the Eocene following this 
subsidence.
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Figure 6. Southern portion of Cook Inlet. 148S band 6
 
image 1104-20574, acquired 4 November 1972.
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The Cook Inlet area is highly faulted by both major-.and minor
 

faults. Many of the major faults, such as-thenorthwest-dipping, re­
verse Bruin Bay and Castle Mountains faults, have-offset-the basal
 

contacts between the sedimentary rocks of the regional geosynclines and
 
geanticlines (Grantz et al. 1963); smaller faults have offset some of
 
the surficial deposits. The abrupt change from lowlands to the steep
 
flanks of the Chugach and Kenai Mountains (Fig. 4) and the relatively
 
straight trenches within the mountains are attributed to-faulting
 
(Miller 1958, MacKevett-and Plafker 1974).
 

This area is located in the trans-Pacific seismic zone and tee­

tonism characteristic of the regional geologic history continues along
 
many faults (Evans et al. 1972). The basin is included in seismic risk
 

zone 3, defined as areas susceptible to earthquakes with-magnitude 6.0­

8.0 and where major structural damage could occur (Federal Field Com­
mittee 1971). Approximately 60 earthquakes > 6.0 magnitude have occurred
 

in the area,from 1899-1964 (Evans et al. 1972); Anchorage alone has
 
experienced ll4 earthquakes from 1930 to 1954 (Porter et al. 1963).
 

Regional geologic structures in the Cook Inlet basin were formed by
 

the end of the Tertiary (Wagner et al. 1969). Glaciationwas extensive
 

from the end of the Tertiary through the .Pleistocene; five.major and two
 

minor glacial periods are recognized during the Quaternary (Karlstrom
 
1964). Glacial erosion sculptured the surrounding mountains and the
 

lowlands are blanketed with glacial deposits; most of the present day
 

topography was formed or modified during the Pleistocene. Thick al­
luvial, glacial and eolian deposits blanket the Tertiary, coal-bearing,
 

non-marine sedimentary bedrock (Barnes 1958a) which underlies most of 
the lowlands to the north and east. The glacial deposits occur as 
extensive moraines, drumlin fields, eskers and broad outwash plains;
 
marine and lacustrine deposits are not as extensive (Wahrhaftig 1965).
 

Eolian silts from the glacial outwash and volcanic ash mantle the origi­

nal glacial deposits (U.S. De~artment of Agriculture et al. 1968).
 

The mountains to the vest are composed of large granitic batholiths
 

which intrude highly deformed and slightly metamorphosed Paleozoic and
 

Mesozoic sedimentary and volcanic rocks. Jurassic sedimentary rocks in
 

the southern section of these mountains form 'ogbacks and cuestas
 

dipping southwaid toward the inlet. Mounts .Spurr, Iliamna and Redoubt
 

are active volcanoes which border the inlet (Wahrhaftig 1965). The
 

Bruin Bay fault trends northeast-southwest along the vest shore of
 

Kamishak Bay. A large Mesozoic granitic batholith is located north of
 

the fault with folded and faulted Mesozoic and Cenozoic sedimentary
 
rocks to the'south (Wahrhaftig 1965).
 

The central and western Talkeetna Mountains are composed mainly of
 
The southern section is
mid-Jurassic intrusives and Jurassic volcanics. 
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predominantly Jurassic and Cretaceous sedimentary rocks cappedxby Tertiary
 

basalt flows (Trainer 1953, Wahrhaftig 1965). Paleozoic and Mesozoic
 

greenstone, greywacke and argillite are dominant in the northern portion
 

(Wahrhaftig 1965).
 

The Kenai and Chugach Mountains are composed chiefly-of slightly
 

metamorphosed Mesozoic argillite and greywacke with-Paleozoictand Mesozoic
 

schist,: greenstone, chert and.limestone along-the northern-edge (Wahrhaftig
 

1965). Granitic intrusives are common. Lava flows, tuff and agglom­

erate are exposed along the western flank of both the Chugach and Kenai
 

Mountains in the vicinity of Knik and Turnagain Arms (Porter et al. 1963).
 

Climate
 

The Cook .Inlet area .is located in a transitional zone-between the
 

interior, with its cold winters, hot simers, low precipitation and
 

moderate winds -and the maritime with cool summers, mild winters, high
 

precipitation and frequent storms with high winds (Evans et-al. 1972).
 

Factors determining local climate are further complicated by-topography;
 

the surrounding mountains greatly affect the distribution-of precipitation
 

and the prevailing wind speed and direction.
 

Maritime characteristics predominate in the southern inlet region;
 
Average winter temperatures in
winters are mild and simers are coolo 


Continental
Homer are higher than 20°F; summers average 50°F (Fig. 7). 


influences become somewhat more important in the northern section and
 

the seasonal temperature range increases. In Anchorage; the average
 

winter temperature is less than 150F, the average summer temperature
"greater than 55'F. Temperatures at Kenai and Kasilof are transitional
 

between those at Homer and Anchorage. Temperatures can-vary considerably
 

from the mean for the various locations (Trainer 1953).
 

Topographic effects on annual precipitation are well-illustrated in
 

the Chugach .and Kenai Mountains. The mountains block the'.flow of moist
 

air from the Gulf .ofAlaska and most of the precipitation carried by
 

these easterly and southeasterly winds falls on the eastern slopes
 

(Fig. 8) (Schoephorster 1968). The mean annual precipitation in Anchor­

age, Kenai, Kasilof and Homer is therefore relatively low, 14.4, 19.2,
 

16.4 and 22.1 inches, respectively (Fig. 7). Departures from the mean
 

annual precipitation in these .areas, however,-can be as-much as 1/3 of
 

the local mean (Trainer 1953). Fifty percent of the-annual precipita­

tion for-the period 1962-1971 fell from July through October. The
 

driest period during the same 10 yeaxs, when about -20% .of-the precipi­-

tation fell, .wasJanuary .tbrough May (Fig. -7).
 

Annual precipitation in the western portion of the basin-is con­

siderably greater and more consistent (Schoephorster 1968). Moist
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southerly winds are directed up the inlet between the'bordering eastern
 

and western mountains where the sheltering effect of-the Chugach and
 

Kenai Mountains .is .reduced. Iniskin, located-on the north shore of
 

Kmishak Bay, records an average annual precipitation of 73.2 inches and
 

an average annual snowfall of almost 188-inches.- The average snowfalls
 

in Homer.and Kenai are only .53 and 69 .inches, respectively' (Wagner et
 

al. 1969).
 

Complete cloud cover data are available only for the Anchorage area
 

(Table 5). Average cloud cover is lowest during late-fall and early
 

winte \rith very little variation throughout the year.
 

Table.5-	 Average sky cover for Anchorage from sunrise-to sunset,
 

1962-71 (from Monthly Reports of Climatological Data:
 

Alaska, U.S. Dept. of Commerce, NOAA, Environmental Data
 

Service).
 

Sky Years of
 
Month Cover Record 
Jan 6.0 9 
Feb 7.7 10 
Mar 6.8 9 
Apr 7.3 10 

May 7.3
 
Jun 8.2 9
 
Jul 7.7
 

Aug 8.1 
Sep 7.7 10 
Oct 7.5 
Nov 6°6 

Dec 6.7 	 9
 

Annual average for seven years record: 7.3
 

Detailed wind speed and direction data for the region are-limited 

to Anchorage. The data are not representative-throughout-the basin but 

indicate regional trends and several generalizationsvcalrbe made. The 

eastern and western mountains block the winds from these directions; 

predominant winds are those funneled through the basin-from the north or
 

south. Forty-two percent of -the prevailing winds in Anchorage are
 

northerly (NEW-NNE) and 42% axe southerly (SSW-SSE) (Marine Advisers
 

1964). 'Highvelocity winds occur throughout the basin when an atmos­

pheric pressure gradient is established over the entire inlet; the winds
 

are localized when the gradient is established through'any of the
 

26
 



adjacent passes.(Marine Advisers 1964). Strong gusts occur-occasionally
 
but the average wind speeds are low. Prevailing vinds in-December and
 
January are northerly and .have the lowest average-wind speed. Southerly
 
winds which prevail in May and .Junehave .the highest average velocity.
 
Average daytime winds are approximately 10-to 20% greater-than nighttime
 
winds (Marine Advisers 1964). "Katabatic" or downslope winds occur
 

periodically and are caused by cold air moving downslope-from highland
 

glaciers through adjacent valleys into the basin,(Porter et al. 1963 and
 
1964). These winds are strongest .when the temperature-.differences
 
between the land and the inlet water are greatest (Marine Advisers 1964).
 

The following climatic generalizations can be made based on the
 

previous discussion: January temperatures are warmer -July temperatures
 
cooler toward the southern portion of the Inlet; total annual precipita­

tion increases toward the inlet mouth (Evans et al; 1972); winds are
 
strongly influenced by the surrounding mountainous terrain though the
 

prevailing winds are from the north in fall, winter and spring, and
 

from the south in summer (Wagner et al. 1969).
 

Hydrology 

Approximate values* for the average annual discharge and the drain­

age areas for several of the major rivers .and streams flowing into Cook 

Inlet are given in Table 6. Many streams with tributaries primarily in 
the mountains display similar yearly discharge. cycles. .The temperatures 
in the mountains are..generally below freezing.,from October-to May and 
most precipitation falls as snow during these months. The low flow
 

period for these streams .is in ,February and March; streamflow is mainly
 

sustained by seepage of water into the stream from surrounding.bedrock
 

and alluvium (Barnwell et. al. 1972). As average monthly temperatures
 

rise above freezing, the stream flow fluctuates-with the.melting of the
 

glacial ice and snow., Rapid melting generally begins in May and most
 

of the snow is gone by August (Rosenberg et al. 1967). . Streamflow is 

high from.mid-July through August because precipitation is generally at
 

its annual peak. The discharge of most streams increases 24 times in
 

July azd the..suspended sediment concentrations generally increase
 
equally. The only exceptions are Glacier Creek -at Girdwood, where
 

highest suspended sediment concentrations (1880 mg/i) occur in October,
 

and Little Susitna River at Palmer, where highest concentrations (102
 

mg/1) occur in June (U.S. Geological Survey 1971). Precipitation and
 

temperature decrease in-the subsequent months, repeating the cycle
 

(Banwell at ai ..1972). .... ­

* Approximate values because the-gaging stations- (in parenthesis) are 

usually located upstream from the river mouth. 
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Table 6. Drainage area and average annual discharge of rivers flowing into Cook Inlet.
 

Drainage 
River Area (sq.m) 

Western Cook Inlet: 
Chakachatna River (near Tyonek) 2867 
Susitna River (at Gold Creek) 15,770 
Susitna River tributaries: 

Maclaren River (near Paxson) 707 
Chulitna River (near Talkeetna) 6,579 
Talkeetna River (near Talkeetra) 5,135 
Skwentna River (near Skwentna) 5,760-

Little Susitna River (near Palmer) 1,065 
Knik Arm: 

Cottonwood Creek (near Wasilla) 641 
Matanuska River (at Palmer) 5,299 
Matanuska River tributary: 

Caribou Creek (near Sutton) 740 
Knik River (near Palmer) 3,021l 
Eklutna River 305 
Peters Creek 
Eagle River (at Eagle River) 492 
Ship Creek (near Anchorage) 233 
Ship Creek (at Elmendorf AFB) 289 
Chester Creek (at Arctic Blvd at Anchorage) 74 


Turnagain Arm: 2,970 

South Fork Campbell Creek (at canyon mouth
 

near Anchorage) 64 
Campbell Creek (near Spenard) 179 
Bird Creek --
Glacier Creek (at Girdwood) 1594 
Twenty-Mile River 4254 
Portage River 2824 
Placer River 317 
Sixmile Creek 6T3 4 
Resurrection Creek (near Hope) 381 

Eastern Cook Inlet:
 
Kenai River (at Soldotna) 5,146 

Kasilof River (near Kasilof) 1,889 

Niinlchik River (at Hinilchik) 335 

Anchor River (near Anchor Point) 340 

Bradley River (near Homer) 138 


Data primarily from U. S. Geological Survey 1970 and 1971.
 

Additional references and notes:
 

1. Lawrence 1949. 4. Childers 1968. 
2. Feulner 1971. 5. Values based on 1-7 years data. 

3. Barnwell et al. 1972. 6. Feulner et al. 1971. 
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The precipitationv-runoff cycle for rivers-with large- portions of 
the watershed in lowlands are different-because these: streams-lose water 

to groundwater while flowing across the-permeable glacial and alluvial 

deposits in the lowlands, and because there is less precipitation in the 

lowlands than in the mountains (Barnwell et al. 1972)-. As a.result, 

streams with extensive lowland-drainage exhibit low discharge rates,
 

while streams with a large percentage of mountainous drainage area have
 

high discharge rates (Feulner et al. 1971). The Chester-and-Cottonwood
 

Creek watersheds are located completely in the permeable lowlands
 

around-Knik Arm, The average monthly discharges of these streams are
 

.virtually constant, deviating slightly from an annual average of 22 and
 

16 cubic feet .per second, respectively (Marine Advisers 1965).
 

The Matanuska, Knik, and Susitna Rivers contribute approximately
 

70% of the fresh water discharged annually into the inlet (Table 6.).
 
These rivers originate in ,glaciers and consequently-show large seasonal
 

fluctuations in discharge (Rosenberg et al, 1967). The Knik River,
 

for example, has a peak flow in July of 24000-27000 cf's and a minimum
 

discharge in March.of 454 cfs (Murphy et al. 1972). Much of the
 

suspended *sedimentin these rivers originates at higher altitudes as
 

glacial flour or by freezing and thawing of bedrock and unconsolidated
 

material.* Additional sediment is produced by man's' activities, i.e.,
 

industry, mining, highway and urban development and farming.
 

Suspended sediment data for Alaskan streams are sparse and derived
 

from scattered analyses. However,'the following generalizations are
 

valid (Feulner et al. 1971). Nonglacial streams transport less than 100
 

mg/l suspended-sediment during the summer; glacial streams carry as much
 

as 2,000 mg/1. Nonglacial .streams often transport highest concentrations
 

during spring melt or heavy- rainfall, whereas glacial streas- carry
 

their highest concentration at times of high melt water discharge in
 

middle or late summer (Fig. 9). Less than 15% of the annual sediment
 
load is carried during fall and winter when concentrations are < 20 mg/l.
 

Less than 50% of the material transported by nonglacial streams-is finer
 

than 0.062 mm (the silt-clay fraction), more than 50% by glacial streams.
 

The percentage of fine material increases appreciably if a glacial
 

stream flows through a lake. Many large streams form from glacial and
 

nonglacial tributaries and transport suspended sediment that reflects
 

this bi-modal-origin in size distribution and concentration.
 

Glacial streams in the Matanuska-Susitna area normally contain as
 

much as 2,000 mg/i suspended sediment during the sinner while nonglacial
 

streams generally contain about 50 mag/i. The rivers entering Knik Arm
 

annually discharge 13-19 million tons.of sediment, primarily in the 
sumer
 

• Most information on suspended sediment loads from-Feulner et al. 1971.
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(Rosenberg et al. 1967). 
 Normal summer suspended sediment:concentrations
 
for the following streams in the Anchorage-area arer Ship Creek, 15

mg/i; Campbell Creek, 5 mg/l; and Chester Creek, 25 mgi1. 
The concen­
trations in Campbell and Chester Creeks increase-downstream to- 45 mg/i
and nearly 200 mg/i, respectively. In contrast, suspended sediment 
content in Ship Creek shows minor increase downstream where urban develop­
ment has reduced the amount of erodable land. Turnagain Arm southeast 
of Anchorage receives .approximately 2.5 million tons of sediment an­
nually from surrounding rivers (Childers 1968). 'Most of the streams in
 
the Kenai area.head at glaciers and contain as-much as 500-mg/i during a
 
normal summer; nonglacial streams contain <50 mg/i; during the winter
 
most streams transport <30 mg/i. Concentrations of several nonglacial

streams in the Homer-Ninilchik area are as high as 100mg/1 during the
 
summer. 

Local Industry and Population Density
 

Virtually one half of the 302,173 people (1970 census) in Alaska

reside in the Cook Inlet basin (Feulner et al. 1971, Selkregg.et al.
 
1972). 
 Most of these are located in'the Anchorage metropolitan area
 
and the smaller cities and towns bordering Knik and Turnagain Arms and
 
along the southeastern shore; scattered villages are located on the
 
northwestern coast. Commercial activities associated with the main
 
industries in the basin, petroleum exploration and production, fishing,

transportation, recreation, tourism, timber and agriculture-, are centered
 

-in these populated areas. 
These industries are the major-competitors
 
for utilization of the natural resources in the region.
 

Petroleum and gas exploration and production are presently the
 
primary economic activities in the basin (Evans et al; 1972). 
 The
 
rapid growth of the Kenai-Nikiski region, for example-, is attributed to
 

- the discovery.of petroleum in the Swanson River area in 1957 and the 
subsequent development of petroleum production facilities- (Wagner et al. 
1969). Figure 10 .shows currently producing oil fields-within the basin:
 
Granite Point (1), Trading Bay (2), MeArthur River (oil and gas) (3),

Middle Ground Shoal (4), Redoubt Shoal (5) and Swanson River (oil and

gas) (6); gas fields are: North Cook Inlet. (7), North Middle Ground
 
Shoal (8), Falls Creek (9), Ivan River (10), Beluga River (11), Moquamkie

(12), Nicolai Creek (i3), Albert Kaloa (14), West Foreland (15), Birch
 
Hill 
(16), Beaver Creek (17), West Fork (18), Sterling (19), Kenai (20)

and North Fork (21). Petroleum facilities presently located within the
 
basin include 14 offshore platforms (Fig. 11), off- and on-shore gas and
 
oil pipelines, tank farms, gathering facilities, refineries, petrochemical
 
plants and tanker terminals.
 

The estimated petroleum and gas reserves of the Cook Inlet area
 
are 7;9 billion barrels (bbl) and 14.6 trillion cubic feet- respectively
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Figure 1. (a) Platform locations in Cook Inlet; (b) Granite Point Platform Anna during
 

combined drilling and producing operations (from Owens and Allard 1970).
 



(Crick 1971). Coal deposits in the Beluga River region north of 

Trading Bay are estimated at more than 2.3 billion tons, equivalent 

to approximately 7 billion barrels of oil (Evans et al. 1972). In view 

of present acute energy requirements, rapid development of these re­

sources and subsequent industrial expansion along the coast are in­

evitable (Oil and Gas Journal 1974a and b). 

Commerical fishing activities are concentrated in the lower inlet
 

south of the forelands. The economies of Kasilof, Ninilchik, Anchor
 

Point, Homer.and-Seldovia are based upon commercial fishing.of salmon,
 

crabs and shrimp (Wagner et al. 1969). Fish canneries are located in
 

Kenai, Homer, Seldovia, Ninilchik and Anchorage. Present-projections
 

indicate that the Cook Inlet .commercial fishery could continue to produce
 

indefinitely under proper management (Evans et al. 1972).
 

Marine transportation and shipping is also an important regional
 

industry. Evans et al. (1972) report the categories of marine shipping
 

and traffic within the inlet .and indicate continued growth of this
 

industry as the entire region develops. Major ports or terminals around
 

the inlet are located at Anchorage, Drift.River and Nikiski; Kenai,
 

Homer, Seldovia, Halibut Cove and Ninilohik have small boat harbors.
 

Figures and statistics indicating the main cargo and usage of these
 

coastal facilities are available in reports by Evans et al. (1972) and
 

Wagner et al. (1969).
 

Recreation in and along the upper inlet is somewhat limited due to
 

the turbid water, fast current and extensive tidal flats.- The shore­

lines of the lower inlet are more attractive and are often used for
 
Federal and
beachcombing, claxnming and fishing (Evans et al. 1972). 


state resource-areas, parks and campgrounds which border the inlet are
 

used intensively for camping, sport fishing and hunting. -Recreational
 

boating is generally concentrated in the lower inlet, particularly in the
 

As tourism is a major aspect of the recreational use
Kachemak Bay area. 

of Cook Inlet, any activity which would reduce the scenic beauty of the
 

.inlet or of its shoreline would be detrimental to recreation and adversely
 

affect the local economy (Evans et al. 1972).
 

The timber industry is presently.active on a limited scale in the
 
Though timber harvesting
southeast near Seldovia (Evans et al. 1972). 


potential is great according to government sources, future.production 
will probably fall due to the low grade of the .resource in conjunction 

with marketing problems. -

Agriculture in the inlet basin is concentrated in the Matanuska 

River valley and the Kenai Lowland close to kachemak Bay (U.S..Department 
The products are consumed primarily in theof Agriculture et al. 1968). 

agri­regional market and used as feed for the local beef herds; future 
the increase in local population.
cultural growth is directly related to 
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Sources of Estuarine Pollution
 

The effects on the inlet environment likely to result from-future 
development must be assessed in order to formulate a rational coastal 
management plan for the Cook Inlet region. The present types and amounts
 

of pollutants in the inlet will increase; therefore; it is important to
 

evaluate the dispersion and flushing capability of the estuary at an
 

.early date. Glacial sediment is currently the dominant pollutant in the
 

inlet. It is estimated that in developing areas as much as 20,000­

30,000 times more sediment is produced than in natural undisturbed areas
 

(Environmental Currents 1972). The Knik, Matanuska, Susitna, Beluga,
 

McArthur, Drift and Tuxedni Rivers presently contribute the-most sediment
 

to the inlet; .future development in these watersheds will increase the
 

annual deposition throughout the inlet.
 

The coastal towns are additional sources of pollutants. With
 

completion of the Asplund Water Pollution Control Facility the sewage
 

from the Greater Anchorage Area Borough is treated prior to being
 

discharged-into-the.inlet near Point Woronzof. This project is the
 

single most important environmental protection measure so far undertaken
 

in the Anchorage area (Alaska Construction and Oil 1973). The -remaining
 

cities and villages,- however, discharge untreated sewage directly into 

the inlet.
 

Petroleum pollution originates from numerous sources: oil
 

producing offshore wells; the Drift River, Arness or Nikiski tanker
 

terminals; submarine and coastal pipelines; gathering and handling
 

facilities along the coast; and wastewater effluent from petroleum
 

refineries. Approximately 9500-17500 bbl/yr or 0.3% (Kinney et al.
 

1970a) of the total crude oil produced is accidentally spilled, but, to
 

date, the spills have not been noticeably detrimental to the coastal
 

areas. From January through April 1972, 5 spills occurred in the inlet 
as a result of accidental disconnections'at tanker terminals.' Evidence
 

of these spills had disappeared in 3-4 days (Evans et al. 1972). This
 

is typical"due 'to the high surface turbulence and mixing.' Oil spills 

rarely reach shore; they simply evaporate and disperse as-they move up 

and down the inlet with the exceptionally high tidal fluctuations.
 

Petrochemicals from the liquified natural gas plant and the am­

monia plant at 1ikiski presently are discharged directly-into the inlet.
 

However, the effluent outfalls from these plants are located in a region
 

of high turbulence and dilution of these wastes is rapid (Fig. 39). As a
 

result, concentrations remain below harmful levels even during the
 

winter months when fresh water runoff is low (Rosenberg et al. 1967).
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RESULTS AND DISCUSSION
 

Cook Inlet is an estuary as defined by Pritchard-(1967)- "a semi­
enclosed coastal body of water which has a free connection-with the open
 

sea an& within which sea water is measurably diluted with fresh water
 

derived from land drainage." Estuaries are classified-according to
 

relative water balance, dominant physical processesof mixing and physical
 

characteristics. Cook Inlet is considered a positive, tidal estuary
 

formed by tectonic processes based on criteria for various-estuary
 

classes. This estuary is characterized by more runoff and-precipitation
 
than evaporation, resulting in dilution of sea water by fresh water. It
 

is dominated by tidal action with strong tidal currents and mixing
 

and was formed by faulting and local subsidence.
 

Coastal Configuration
 

The coast from the head of Kachemak Bay to Turnagain Arm is
 

characterized by sea cliffs and pocket beaches (Refer"to-Figures 4, 5
 
and 6) which generally contain sand and/or coarser sediment; finer
 

grained ,material is present along lower,energy coasts. An extensive
 

coastal plain borders a low lying, marshy coastline, with scattered sea
 

cliffs along the northwest and west shore from Point MacKenzie to Harriet
 

Point. Steep mountains slope directly into the inlet in-most locations
 

from Harriet Point to Cape Douglas. Bayhead beaches have formed in many
 

of the small &mbayments and sea cliffs are found on thepromontories
 

along this coast. Tidal flats border much"of the coast-but are prevalent 

in the northern inlet.
 

The high sediment load in glacial rivers is the primary source of
 

material for the tidal flats in the upper inlet. ERTS-1 MSSband 5 and
 

7 images were found to be ideal for a regional analysis of these tidal
 

flats. However, to facilitate visualizing the relationships of these
 

features 'throughout the inlet the locations of the tidal flats were
 

superimposed on-the band 6 mosaic and may-not-be easily distinguished in
 

this representation (Fig8 12). The legend on this Figure may be mis­

leading to some; extensive tidal flats are shown as white areas and
 

river plumes are outlined by white lines. The-most extensive flats
 

formed north of the forelands. In the lower inlet tidal flats-usually
 
occur as bayhead bars in embayments along the western shore and north­

east of Homer in Kachemak Bay. Strong, variable tidal currents cause
 

significant changes in tidal flat configuration; migration of some of
 

the major tidal channels in Knik and Turnagain Arms can be substantiated
 

by comparing Figure 12 with the National Ocean Survey Navigational Chart
 
8553.
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Bathymetry
 

Bottom topography is extremely rugged-with'many deep.areas-and
 
shoals (Fig. 13). The depths in the upper inlet north of the forelands
 
are generally less than 20 fathoms; the deepest portion is located in
 

Trading Bay east of the mouth of the McArthur River. Turnagain and
 
Knik Arms are the shallowest areas with much of the- bottom exposed at low
 
tide. South of the forelands two channels, one between-Kalgin Island
 
and Harriet Point and another between Kalgin Island'and the.east shore,
 
extend southward in the inlet and join in an-area-west of Cape Ninilehik.
 
The deepest portion of the western channel is greater-than 40 fathoms. 
The eastern channel is deepest, 75 fathoms just south"of a-line between
 
the forelands. It rapidly shoals to approximately 30 fathoms until it
 
merges with the western branch. South of the Cape, the channel gradually
 
deepens to approximately 80 fathoms and widens to extend across the 
mouth of the inlet between Cape Douglas and Cape Elizabeth.
 

The following reports contain more detailed bathymetric data. 
Rosenberg et al. (1967) presented a bathymetric profile across-the inlet
 
from Beshta Bay, just north of Granite Point, to the bay 2 miles south
 
of the mouth of the Swanson River. Kinney et-al. (1970b) prepared 8
 
east-west profiles from the inlet mouth to the forelands, 5 north-south
 
profiles from the forelands to Point Possession, 1 longitudinal profile
 
from the mouth of the Susitna River to Eagle Bay in Knik Arm and 1 
longitudinal section from mid-inlet between the forelands to east of the
 

Susitna River mouth. Armstrong Associates (1968) prepared'9-bathymetric
 
cross-sections along Turnagain Arm from the Gull Bock area-to 3 miles
 
east of Girdvood. Marine Advisers (undated) prepared a bottom profile
 
and bathymetric'map for the area from Beluga to Moose Point. Carlson
 
and Behlke (1972) presented a bathymetric map of the inlet-in the 
Anchorage area and plotted 11 cross-sections for various stations along
 
'Cook Inlet and Knik Arm. 

Bottom sediment distribution is determined by tidal action, hydro­
graphy, type of material, ice rafting and bottom topography .(Wagner et 

-al. 1969). Bottom sediments in the inlet have been divided-into three 
groups on the basis of grain size: sand predominates in the upper
 
inlet, sandy gravel with minor silt and clay in the middle inlet, and
 

gravelly sand and minor interspersed silt and clay in the lower inlet
 
(Sharma and Burrell 1970).
 

Tides
 

The tides in Cook Inlet are semi-diurnal with two unequal high 
tides and two unequal low tides per tidal day (24 hours, 50-minutes);
 
high tide occurs approximately 4.5 hours later at Anchorage than at the 
inlet mouth. The results of a variable-boundary numerical tidal model 
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study (Mungall and Matthews 1970) show that-the tidal regime"divides
 

the inlet into two regions separatedby the forelands' .Tides in the
 

south show characteristics of a progressive'Kelvin wave. Co-range lines
 

lie along the length of the inlet with higher amplitudes on the east
 

(Fig. 14). Co-tidal lines lie perpendicular to co-range lines and
 

slope upwards to the right indicating that the wave is not entirely
 

progressive but tends toward a mixed type. If the tides in the south
 

behaved as a standing wave there would be-an increase in tidal range
 

going north to the forelands; however, this-is not the case. Lines
 

being nearly perpendicular indicate that friction between the bottom
 

and the moving water column is .probably not an important factor in
 

most of the southern inlet. Northern inlet tides appear more-like the
 

conventional standing waves; co-tidal and co-range lines are not per­

pendicular indicating that friction is increasingly important going
 

north (decreasing depths). Also, the difference in tidal range across
 

the inlet decreases.going north because the phase difference between
 

maximum tidal height and maximum current approaches-900; therefore, if
 

slack water occurs at maximum tide, no Coriolis force exists and no
 

slope of the water surface exists across the inlet at-that instant.
 

Figure 14 also indicates that the tidal wave speed increases along the
 

western inlet north of the Tuxedni Channel due to increased depth (less
 

friction).
 

Mean diurnal tide range varies from 4.2 m at the mouth-to 9.0 m at
 

It varies within the lower portion of the inlet-from 5.8 m
Anchorage. 

on the east side to 5.1 m on the west (Wagner et al. 1969, Carlson 1970).
 

The extreme tidal range produces currents typically 4 knots and occa­

sionally 6 to 8 knots (Horrer 1967). The differences between the times
 

of high tide and times of maximum flow at various locations are shown
 

in Figure 15. The high Coriolis force at this latitude, the strong
 

tidal currents and the inlet geometry produce considerable cross cur­
ebb and floodrents and turbulence within the water column during-both 

(Burrell and Hood 1967). The tides are highly effective in expanding 

.the dilution volume of the water by providing new water at .an .outfall 

and by increasing turbulence which increases dilution. Turbulence is 

especially strong along the eastern shore due to the-high tidal range.
 

Suspended Sediment Distribution and Circulation
 

Turbid fresh water discharging into the inlet, especially from the
 

north and west, produces sediment plumes which appear lighter- in tone 

than the less turbid water in ERTS-1 MSS band 4 and 5 images The 

-suspended sediment in the fresh water functionsas a natural tracer, 

marking water masses and making sediment distribution and current pat­

terns visible. The transport and extent of surface plumes are influenced 

by river runoff, wind, tide, Coriolis force, centrifugal force and 
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local topography. Qualitative descriptions-of surface flow near river
 

mouths can be -made .basedon the shape df fresh water-plumes-:and .on
 

mixing patterns observed on aircraft and satellite-imagery. Figure 16,
 
an ERTS-1 image acquired on 7 August 1972, shows the sediment plumes
 

from the Drift (3) and Big (4) Rivers during flood tide at Seldovia.
 

The shape and location-of the plumes are convenient markers to determine
 

current directions along the west shore-between McArthur River (1) and
 

Tuxedni bay (2). The plumes are clearly moving-in a-northerly direction.
 

Relict sediment plumes from earlier tidal stages- visible far offshore,
 

indicate water movement through -several tide cycles. Relative differ­

ences in sediment concentration of the inlet water can-also be dis­

tinguished. The darker tones apparent farther from shore indicate that
 

the water is less turbid. Tidal flats (5) appear-as a gray border along
 

the coastline. Mt. Spurr (6), one of the many volcanoes in the Chigmit
 

Mountains, .Lake Chakachanna (7) and numerous -glaciers (8) are also
 

visible.
 

Figure 17 shows the movement of near-surface and surface water in
 

the area of the Drift River tanker terminal during late flood at Seldovia,
 
approximately the same tidal stage as shown in Figure 16. Tidal range
 

at this location generally varies from 3-6 m and surface current velo­

cities are 1-3 knots. Currents at depths of 8 and15 m are generally
 

lower but periodically .reachvelocities equal to those at the surface
 

(Marine Advisers,1966a). Turbid fresh water-from-the Drift (1) and Big
 

(2) Rivers forms a distinct -surface layer riding over and mixing with
 

the saline inlet water (8). Turbulence caused by local tidal and wind
 

currents produces the mixing as the fresh water is diverted to-the north
 

by the flood.tide. Several-mixing boundaries are evident-.between sedi­

ment laden and clearer, oceanic water. -Turbid water (5)-from the rivers
 

rapidly mixes with the less turbid oceanic water. (8) to form different
 

water types of variable temperatures, salinities and sediment concen­

trations (6,7) within the mixing zone. More complete-mixing has occurred
 

in the southern portion of the area and-the Drift River plume has mi-,
 
grated from the south during flood tide. The tanker at the terminal (4)
 
roiled the more buoyant fresh water and brought deep, clear water up to
 

the surface (dark area of clear water off the ship's stern). The surface
 

foam lines (9) are common where different water types converge and mix.
 

Internal waves (linear patterns) near density boundaries are-also common
 

in these locations and are obvious southeast of the tanker terminal.
 

Compare the detail of tidal flats. (3)-to that observed on the ERTS image
 

in Figure 16.
 

(line 54; in pocket)
ES-14 Scanner imagery of the Drift River area 

has limited use; the gain control on the instrument was changed and
 

surface water detail lost. The tanker terminal appears as a warm (light)
 

spot surrounded by cold (dark) water. The cold water discharging from
 

the Drift River is faintly visible; it forms a triangular plume with the
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Figure 16. West shore of Cook Inlet between WcArthur River 
and Tuxedni Bay. MSS band 5 image 1015-21022, 
acquired T August IM7. 
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apex at the river mouth. Cold water from Big River moves north, staying 
close to shore while mixing with warmer water farther offshore. The Big 
River plume remains distinctly cold for approximately 2-3 ka offshore 
before mixing with warmer water. Comparisons to the NP-3A photography
(Fig. 1T) indicate that the coldest portion of the fresh water plume
 

exists nearest the river mouth swhere mixing is minimal.
 

The plume from the McArthur river in Trading Bay (Line 53) is 
clearly colder than the surrounding inlet water. In this location the 
currents appear to be moving in two directions, nearshore currents moving 
north ad currents approximately 4 km off shore moving south past the 
oil platforms. On the lee side of the platforms is a distinct mixing 
zone between cold river and bottom water and warm inlet water (more 
apparent in CIR photography). Between the North Foreland and the 
Susitne River on the northwest shore (line 54), nearshore northerly 
currents and offshore southerly currents are distinct. Complicated 
mixing patterns occur off the Susitna River mouth and a shear zone 
between opposite moving currents is discernible. Mixing between Point 
Possession and Boulder Point (line 56) about 48 km southwest of Anchorage 
shows a "feathered-edge" pattern, an indication of a high mixing area 
which occurs along most of the southeastern shore of Cook Inlet. 

Sediment plume patterns of the Big (5) and Drift (6)Rivers on 10 
September 1972 (Fig. 18) show a southerly direction of nearshore currents 
in Redoubt Bay (7)during ebb tide at Anchorage and flood in Seldovia. 
The shapes of the sediment plumes of the Kenai (15) and Kasilof (i) 
Rivers also indicate a southern current along the east shore. The plume 
shapes suggest that the ebb flow dominated the mid-inlet area at this 
time. Sediment laden water from the Twxedni River (12) is being trans­
ported along th. coast in a southerly direction between Chisik Island 
(13) and the mainland. Other features of interest in this scene are: 
the snowcapped Kenai Mountains (1), the Kenai Lowland (2), the East (3)
 
and West (4)Forelands, a sediment pattern indicating a counterclock­
wise current (8)around Kalgin Island (9), tidal flats (10), Harriet

Point (ii), and turbid Lake Tustumena (16).
 

ERTS imagery acquired approximately one year later than that 
shown in Figure 18 shows changes in sediment distribution during dif­
ferent tides. Sediment patterns in Figure 19 were observed along the 
east shore on 1,7 August 1973 during early flood in Seldovia and early 
ebb inAnchorage. The shapes of the plumes from the Kenai (2) and 
Kasilof (3)Rivers suggest southerly moving nearshore currents. Note 
that the water from the Kasilof River is more turbid than that of the 
Kenai. The Kasilof originates in Tustumena Lake (6 in Fig. 20) which 
has a higher suspended sediment concentration than Skilak Lake (7 in 
Fig. 20), the source of the Kenai River. Turbid water (4)extends as 
far south as Cape Starichkof approximately 18 km south of Ninilchik. 
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Figue iS. 	 Central portion of Cook Inlet. MSS band 5 image 
i019.20512. acquired 10 September 19Th. 
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Figure 19. Southeastern Cook Inlet. MSS band 5 image 1390-20452, 
acquired IT August 1973; early eb]b at Anchorage, early 

flood at 6eldovia. 
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Figure 20. Southeastern Cook Inlet. MSS band 4 image 1426-20444,
 

acquired 22 September 1973; early ebb at Anchorage, 
high water at Seldovia.
 



Meltwater from the Fox River at the head of Kachemak lay (1) appears 
concentrated along the north side; clear oceanic water occupies the 
southern portion. 

Suspended sediment distributions at the same locations on 22 Sep­
tember 1973 (Fig. 20) indicate that the nearshore currents were moving 
north during high tide at Seldovia and early ebb at Anchorage when the 
image was acquired. Notice the change in the shape of the sediment 
plumes from the Kenai (2) and Kasilof (3) Rivers. The-high turbidity of 
the water (4) south of the Kasilof River mouth may be caused primarily 
by bottom scouring of the shoals along this coast. Scouring was ob­
served near Moose Point (5) on aircraft photography. Sediment patternsin Kachemak Bay (a) are similar to those observed in Figure 19. 

Figure 21 shows the Kenai-IJasilof Rivers area during high tide at 
Seldovia and early flood at Anchorage on 22 July 1972. Plume shapes 
from the K'enai (i) and Kasilof (2) Rivers are similar to those on ERTS 
image 1426-20444 (Fig. 20). The plumes (3) from these rivers and the 
streaks (5) of sediment formed behind submerged rocks suggest northerly 
moving nearshore water (4). These streaks in the water are probably 
a result of bottom scouring on the lee side of rocks (much of this area 
is <4 fathoms). Differences in the turbidity of water in the mixing 
zone within the river plumes, foam lines along contacts between water of 
different densities, and internal waves along density boundaries were 
also present at the time of image acquisition. Local currents are 
strong and clearer saline water appears to intrude into the 'Kenai River. 
Note also that wind-generated waves are moving in a northeasterly direction 
(6) and reinforce the northward surface currents. 

RS-14 imagery of this area (line 59; in pocket) shows that the 
Kenai River water is warmer than the surrounding inlet water on 22 July
1972. This may be due to heating as the river flows 48 km across the 
Kenai Lowland and/or to the introduction of warm wastes from the city of 
Kenai. Most pollutants introduced into the inlet at Kenai would be well 
mixed and rapidly dissipated because of the frequent changes in near­shore currents with each tidal cycle. 

Relative differences in the suspended sediment concentrations of 
the surface water in Kachemak Bay (1) are shown in Figures 19 and 20. 
Kachemak Bay has been divided based on topography. The outer bay is 
from a line between Anchor Point and Point Bede (on western tip of 
Kenai Peninsula) to a line from Homer Spit south to Lancashire Rocks. 
The inner bay is from this Homer Spit line to the mouth of the Fox 
River (Knull and Williamson 1969). Suspended sediment load appears 
higher in the water on the north side of the inner bay; less turbid 
water is found along the south coast. The orientation of spits and bars 
along the south shore indicate that the predominant direction of flow 
for nearshore water is northeasterly. These EETS scenes were acquired 
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during flood tide or high slack water in Seldovia and suggest that clear 
oceanic water intrudes into this bay along the south shore due to 
Coriolis effect. Currents past the mouth of the Bay during flood tide 
were estimated at 5 knots (Knull and Williamson 1969). The nearshore 
circulation continues counterclockwise around the bay and carries the
 
turbid meltwater discharged from the glaciers in the Kenai Mountains 
along the north shore. Flood tide currents move northeasterly along 
the south coast of the bay at 1-2 knots, ebb flows are variable in 
velocity and direction from southwesterly to westerly (U. S. Department 
of Commerce 1964). The light tone of the water along the north shore 
may be partially due to bottom effects. The water depth here is vari­
able from <1 to 12 m and bottom reflection may be significant especially 
in Figure 20 which is a band 4 image; the amount of water penetration is 
greatest in band 4.
 

Figure 22 shows the area around Homer Spit (i) in Kachemak Bay 
during flood tide at Seldovia on 22 July 1972. Turbid water (3) from 
the meltwater streams of the Wosnesenski and Doroshin Glaciers on the 
south shore moves across the bay, mixes with less turbid oceanic water 

(7) and forms water of variable turbidity (4) within the mixing zone. 
A similar pattern is evident near Homer Spit in Figure 20. The glacial 
meltwater moves on the surface of the oceanic water which is brought up 
from below by the mixing action (5) of the boat southwest of the spit. 
The dark bands (2) in the area of sun glint show areas where the water 
surface roughness has been reduced. This may reflect internal vertical 
circulation (Langmuir circulation) associated with streaks of windrows 
oriented approximately parallel to the wind (Scott and Stewart 1968). 
This circulation tends to dampen the roughness due to other factors. 
The distribution of surface sediment in inner Kachemak Bay (6) as 
observed on these medium altitude aircraft photographs verifies the 
observations made on the ERTS imagery that higher sediment concentrations 
occur along the north side. 

Figure 12 shows the location of sediment plumes from some of the 
major rivers entering the inlet on 3 and 4 November 1972. Although the 
Knik and Matanuska Rivers at the head of Knik Arm contribute most of the 
sediment deposited in the inlet (Wagner et al. 1969) these rivers do not 
produce distinct sediment plumes on these dates. The river borne sedi­
ment is dispersed so quickly in this high energy area and the sediment 
concentration of the inlet water is so high (approximately 1350 mg/l, 
from Kinney et at. 1970b) at this location that a distinct plume is not 
visible. The Susitna River, another major sediment contributor, has
 
only a small plume because the river discharge is reduced during the
 
winter months (Fig. 23) and the inlet water at the river mouth has a
 
high suspended sediment concentration (approximately 1540 mg/l, from
 
Kinney et al. 1970b).
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Figure 22. Boner Spit area during flood tide at Seldovia (ASA NP-3A photographs). 
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Circulation throughout the.inlet is primarily governe&.by.inter­
actions.between tides, Coriolis forae,.and -the counterclockwise Alaska 
current; however, local currents are additionally influenced by local 
bathymetry, morphometry and fresh water influx (Evans et .al. 1972). 
Generally tidal-currents dominate'and currents due to wind stress, 

surface waves, runoff and ordinary convective and advective processes 
are by comparison more local and-of smaller maognitude .(Marine Advisers 
1965). Wind-driven currents may add approximately 2-3% of .the.wind 

speed to tidal current velocities in some-localities (Marine Advisers 
1964). The tidal currents are predominantly recti-inear or .reversing 
currents which are common in elongated.-estuaries or bays. These cur­

rents produce turbulent mixing of sea and.fresh .water and-the resulting 
mixing.patterns are.apparent-.on aircraft .and satellite- imagery. Current 
velocities increase from 2-3 knots near the inlet mouth to .greater than 

8 knots at topographic narrows (i.e.. Harriet Paint, the ,Forelands, Knik 
and Turnagain Arms) (U.S. Department of Commerce -1964). . 

In the past, surface temperature, salinity, oxygen .and suspended
 
sediment data acquired over several days during numerous ship surveys
 
were used -to diagram the regional -circulation patterns of the inlet
 
(Figs. 24, 25, -and .26)-. - These data -do not provide -a synoptic -view and 
were not taken.during the same tide stage. .-Several low and high tides
 
occurred during the sampling period and the data do not -reflect-changes
 

between times of low and high water. In spite of these shortcomings the
 

data are useful for determining general patterns. The distributions
 
indicate that surface water on the east .side of the inlet south of the
 
forelands differs considerably -from that -on the -vst. 

Temperatures in May (Fig. 214.show a rapid decrease-from.5.T7C to
 
<4.90C westward between Ninilchik and Tuxedni Bay; surface temperatures 

increase from 4.90C east of Kalgin Island to >9.0C at the mouth of the 

Susitna River, to 8.0?C on the west side of the inlet mouth. The mid­

inlet cold water. around Kalgin Island may .result from .upelling-of 
bottom water during flood tides (Evans et al. 1972, Kinney et al. 1970b).
 

- Some estuaries are characterized by a salt wedge that moves headward 
into the estuary along-the bottom while the fresh water outflow moves 

over this wedge and out the estuary (Bowden 1967). 

The low salinities north-of.the.forelands and-near Cape .Douglas
 

result from .freshwater dilution. The .salinity and temperature .dis­
tributions near the mouth and along the -easternportion of the inlet to
 
north of Ninilchik .suggest that a distinct oceanic water mass exists
 
in this location.- The salinity data .indicate that-northof .the fore­
lands the saline water -moves-northin the eastern half of .the inlet
 
while fresher water progresses south on the west side; northeast of
 
Kalgin Island ebbing waters from north of the forelands.move.south past
 
the east side of the island. North of the forelands, temperature data
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Figure 24. 	 Surface temperature (°C), salinity (0/oo0 and oxygen (m£02/1) in May 1968 (adapted
 
from Kinney et al. 1970b).
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Figure 25. 	 Surzface temperature (OO), saliin'ity (a/_ and suspended sed~iment (m~g/].) in
 
August 1972 (adapted from unpublished Rata provided by F.F. Wright).
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Figure 26. 	 Surface temperature (°C), salinity (o/ ) and suspended sediment (mg/1) in 
September 1972 (adapted from Wright ana°Sharma 1973). 



indicate that cold water moves north in the central part tof the-inlet.
 
The cold.water-movessouth past the-east shore of Kalgin Island. This
 
southerly movement is verified by the salinity data.-


Surface oxygen data indicate-that none of the water in-the inlet 
is oxygen deficient; high concentrations occur at the mouth-of the 

Susitna River and near Kamiskak Bay0 The surface oxygen distribution 
also indicates a boundary zone between water types inthe-mid- and 
southern inlet as observed from-the temperature and salinity data 
(Kinney et al. l9T0b). -

The August (Fig. 25) and September (Fig. 26) 1972 data .show-similar
 
regional patterns; however, local differences are apparent.- The oceanic
 

water moving .intothe inlet on the southeast appears as a distinct
 
tongue in September temperature data; north of the forelands August and
 
September temperatures do not show.the distinct water-mass in the
 

central portion as-observed in May 1968. Salinity data'from May 1968
 
and September 1972 show saline water throughout the .southeastern half of
 
the inlet and in September this water appears to progress nearly across
 
the inlet northeast of Augustine Island.. The tongue of less saline
 
water east of Kalgin Island in May 1968 -isless obvious in -September
 
1972 and not present in August 1972. In addition, north-of the fore­
lands, the more saline water appears to move north through .Trading Bay
 
in the western inlet in August 1972 and does not appear in .September
 
1972. These differences in distribution may result because the data
 
were taken in different seasons-and. during different tidestand, there­
fore, reflect changes caused by.many tidal fluctuations.
 

In addition to these differences -in distribution, .the temperature
 
and salinity ranges are lower. Water temperatures are higher in the
 
northern inlet in August and in September temperatures decrease;
 
oceanic water intruding at the inlet mouth is warmer in September than
 
in August; water in Kamishak Bay -was06'C warmer in September 1972 than
 
in May 1968.,
 

Suspended sediment concentrations were generally higher in Sep­
tember than August -1972. Abnormally low concentrations .occurred at
 
the mouth of the Susitna River, possibly .aresult of the low precipita­
tion, 1.82 inches, in July and August (U.S. Department of Commerce
 
1973). Precipitation.increased.to 4.42 inches in September, resulting
 
in increased runoff and suspended.sediment concentrations. The.low
 
suspended sediment concentrations occur along the eastern portion of the
 
inlet below the forelands because this area is dominated by-clear
 
oceanic water and rivers discharging into the inlet along-this coast
 
contain low sediment concentrations0
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Based.on this analysis thefotlowingt.-observatiens:can-.be made. The
 
water in the upper- inlet is -well anixed:- duecta -the-,very -large tidal
 
fluctuations and high current velocities (Fig: -27) in this shallow,
 

.narrow basin. During summer, when. surface -runoff is high, there -is a 
net outward movement of water from the upper inlet; with reduced runoff 

in the winter there is virtually no -net:outflow (Murphy et -al. 1972). 
The middle-inlet has a net inward circulation of cold; saline .oceanic 

water up the eastern shore and-a net outward.flow-of warmer and fresher 

inlet water along the -western.shorer-(Evans et- al; 1972). - These water 

masses are well-mixed vertically along the .eastern shore .and.are separated 

laterally by a well defined shear zone. In the-lower inlet a .lateral 

temperature-and salinity separation is .maintained,-but in the western 

.portion vertical stratification-occurs with colder,-saline oceanic water
 

underlying warmer, less saline inlet water0 During tidal inflow the
 

deeper oceania water rises to.the surface at the latitude of Tuxedni
 

Bay and mixes with the inlet water (Kinney et al. 1970b).
 

The repetitive ERTS-1 imagery has been used to analyze these
 
regional surface 'circulati6n patterns (Anderson- et al. 1973; Wright et
 
'al. 1973)" and the imagery from Octobr--and -November. 1972 showed few
 
changes in the ,patterns observed on the ground truth data -(F.ig. 28).
 

-The-clear oceanic water from the Alaska Current enters .the .inlet at
 

flood tide along the east. side around the Barren Islands. This clear
 

water becomes less distinct toward the north as it disperses and mixes
 
with the turbid water in the middle inlet around Ninilchik .The tide
 

front progresses up the inlet primarily along the east shore, being
 

diverted in that -directionby-thei.Criol-s.force. A back eddy not
 

previously -reported (dotted .arrows ). (Fig. 28) -was-apparent-on the
 
November 1972 ERTS .frames just ntfshore from Clam Gulch. The.eddy forms 

in the slack.water northeast of .Cape Ninilehik during flood, 'The tide 

front continues past the East Foreland, a large peninsula protruding 

..some 16 km into.the inlet, an&-is -partially diverted across -the inlet 
. .where it meets the West Foreland. At this location -part of .the front 

.is diverted south of .the..West Foreland and the remainder moves north. 
-The result-.is a counterclockwise circulation -pattern.around Kalgin 


'Island. This pattern was verified by direct observation-from 1800 m
 

altitude during an aircraft-underflight~at the time the satellite passed.
 

- The circulation of surface water north of the forelands at -thistime 

appears to be similar to that previously reported (Evans et al. 1972). 

The ebbing water in the inlet moves predominantly along the northeastern 
- shore past the forelands and was discernible on the November .1972ERTS-1 

-imagery However, the previously reported counterclockwise pattern0 


north of the forelands, formed,as. ebbing waters .strikes'the .WestFore­

.land, are diverted across the-inlet and become .incorporated into the
 

flood current along the east shore, was not observe& (Anderson et al.
 

1973). South of the forelands as .the sediment laden ebbing .watermoves
 

past Chinitna Bay a portion appears to flow along-the shoreline and
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circulate around the west side of Augustine Island in Ksmishak Bay while 
the remainder moves past the bay and continues-paralleirto the coast 
past Cape Douglas and progressea tbrough Shelikof Strait. .This .circula­
tion pattern in Kamishak Bay was not previously reporte&but is evident 
on the MSS imagery and verified with ground truth data. In the northern 
part of the bay, currents follow the coast, flooding northeastward and 
ebbing southwestward at about 1 knot (U. S. Department of Commerce 
1964 ).
 

Changes in circulation and sediment distribution occurring during 
an 18 day ERTS cycle were detected and mapped (Fig. 29). Figure 29a 
shows differences in the position of the boundary between oceanic and 
inlet water in the southern inlet on two successive days; this boundary 
separates these two water types during late ebb tide in Anchorage and 
late flood in Seldovia. The irregularities and changes in the location 
of these lines may be due to changes in the mixing zone between these 
water types. The intrusion of the oceanic water appears to depend more 
or less on the tidal stage. Near the time of low water in Seldovia the 
boundary migrates toward the southeast, but near high water it moves 
more to the northwest.. The irregularities in the northern portion of
 
the 4 November boundary may also be due to upwelling of a subsurface 
salt wedge thought to occur in this portion of the inlet (Kinney et al. 
1970b, Evans et al. 1972). This subsurface tongue of oceanic water may 
move headward up the shoaling bottom of the inlet to the latitude of 

Tuxedni Bay where it rises to the surface south of Kalgin Island during 
flood tide. 

Changes in the boundary over an 18 day cycle are shown in Figure 
29b. The 17-18 October imagery shows the position of the boundary 
during mid-flood tide in Anchorage and early ebb in Seldovia. The 
boundary is generally comparable to that shown in Figure 29a and the 
general relationships of the two water types appear from these observa­
tions to be consistent during the period October through November. Some 
confusion may result because the October boundary (small dots) was drawn 

from patterns observed on two successive days, not one day as in Novem­
ber. This was necessitated because October images were partially 
obscured by clouds. However, the observations on these two successive 
days were made at virtua identical tidal stages. In the areas of 
image overlap the two lines coincide, suggesting that the regional tidal
changes from day to day were less significant than those over an 18 day
peri. This is in fact the conclusion illustrated in Figure 29b. 

Surface water features were most apparent on the band 6 ERTS imagery
acquired on 3 and 4 November 1972 because the low sun angle obscures 
the features on the band 4 and 5 images. Light recorded in the band 6 
spectral region is reflected from the water surface with very minor 
water penetration. Notice that the surface water south of Cape Ninilchik 
(1) appears clear compared to the water to the north (Fig. 30). Much of 
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Figure 30. Surface water patterns on Cook Inlet on 3 November 
1972. MSS band 6 images 1103-20513 (top) and 
1103-20520 (bottom). 
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the turbidity along the coast from Point Possession (3) to the East
 
Foreland (4) is caused by bottom scouring. The outlined area north of
 
Moose Point (2) shows clear (dark) water surrounded by sediment laden
 
water. Details of these patterns are shown in Figures 31-34. The
 

turbid water (1) in Figure 31 results from resuspension of bottom
 
sediment during flood tide. Moose Point shoals (2) are exposed and
 
water of variable sediment concentration (3)occurs farther offshore.
 
This zone between turbid and less turbid water may result from mixing of
 
bottom water and inlet surface water. Note the thermal patterns in this
 
area (line 56); the turbid water appears to produce a cold return (dark)
 
on the scanner imagery. This is as expected since this water occurs in
 
a turbulent zone where cold bottom water would be brought to the sur-
Iface. The turbid streaks (4) form on the downstream side of submerged
 
rocks because of increased turbulence and bottom scouring. The clearer
 
(dark) water outlines an area where depths reach 10-15 m and scouring is
 
reduced. Note the counterclockwise vortex in the slack water area
 
formed on the lee side of the shoals.
 

Sediment patterns caused by bottom scouring are also shown in
 
Figure 32. Rocks are scattered throughout this area on the tidal flats
 
(3) and farther offshore (4) west of the sea cliffs (I) and the mouth
 
(2) of Otter Creek (5). The rocks are known navigation hazards along
 
the entire southern coast of Cook Inlet. The rocks are exposed during
 
low tide (Fig. 32a) but are inundated during high water (Fig. 32b).
 
The turbulence on the lee side of the submerged rocks causes bottom
 
scouring and streaks of suspended sediment form behind the rocks. The
 
pattern on Figure 32b is also apparent in the outlined area on Figure
 
30. Note the clearer water (7), the "feathered-edge" pattern (5) and
 
the turbid water (6).
 

Currents moving past the West Foreland (1) parallel this coast and
 
cause some bottom scouring (5) in the area around Knuttrain Rocks (Fig.
 
33). Erosion is active along the south side at the base of the sea
 
cliff (3) and deposition has formed the tidal flats (4) farther vest.
 
The surface patterns to the northeast (2) may be wind slicks; the
 
suspended sediment (6) may be reworked bottom sediment.
 

Across the inlet from Moose Point (2 on Figure 30) and east of the
 
North Foreland several water types converge and mix near the offshore
 
platform (1) (Fig. 34). The variability in sediment concentration
 
shown in Figure 34 are not as obvious in Figure 30. The offshore water
 
(2) appears to be moving north (note pattern behind platform) and over­
riding the less turbid water (6). Mixing between clear (6) and turbid 

(7)water is apparent. Plume patterns on the thermal scanner imagery
 
(line 54) indicate that the water from Beluga, Theodore, Lewis and Ivan
 
Rivers is moving north nearshore. The water about 4 km offshore appears
 
to be moving south. The water types (3,4, and 5) nearshore -in Figure 34
 

are from these rivers. Internal waves (8) occur along the front between
 
these water types.
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Figure 31. 	 Cook Inlet coast approximately 13 km southest of
 
Point Possession (outlined on Figure 30; NASA
 
NP-3A photographs ). 
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Figure 32. Coast south of Moose Point (outlined on Figure 30;
 
NASA NP-3A photographs). a. early flood tide.
 

M(INAL PAGF, IS 69 

ORP0R QUALM 



I
 
U
 
I
 
I
 
I
 
I
 
I
 
I
 
I
 
I
 
I
 
I
 
I
 
I 

0 thu 

t.. 

1 Figure 32 (conttd). b. late flood tide. 
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Figure 33. 	 West Foreland during flood tide (outlined on Figure 30; 
NASA NP-3A photograph). 
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Figure 34. 	Area east of the North Foreland (outlined in Figue 30; 
NASA NP-3A photograph). 
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Suspended sediment concentration -throughout- the inlet-.is'_controlled 
primarily by the circulation -describedabove,and a generalized -distribu­
tion"can be presented (Fig. 35-). Suspended sediment,-mostly-of glacial 

origin, is concentrated in the-well-mixed"northern inlet; it is nearly 

absent in the water of the east central and eastern portions-of the
 

The inlet -water_from the mouth- to the latitude -of Cape
inlet mouth. 

Ninilchik and .Chisik Island contains suspended sediment-predominantly
 

smaller than medium silt; medium-silt or smallerpaxtioles dominate, but
 

fine sand is present, north of Ninilchilk'to the .area between the Susitna
 

River mouth" and Peint Possession; silts predominate but-fine .sands
 

become.increasingly prevalent -in the.upper-inlet east of Point Possession
 

(Kinney et al.- 1970b). This regional distribution -ismaintained year­

round- but the- total suspended sediment, lead- varies with season and with 

depth (Murphy et al. 1972, Kinney et al. 1970b). - Subsurface measure­

-ments show that suspended load normally increases with depth .(Sharma et 

al. 1974). Rosenberg et-al. (1967) also indicate-that the vertical 
Maximum values generally occursediment distribution varies with depth. 


at approximately -10 m at the head. of the inlet, load-.increases-with depth
 

south of-the forelands.
 

ERTS MSS imagery from November:>972. (Fig. 30); April -(Fig _36) and 

September 1973 .(Fig. 37) clearly-.shows.many- of--the aforementioned sedi­
of water types-with- different-ment patterns produced by-the movement 

temperatures,- salinities -and, suspended sediment concentrations. -The 
saline,distribution .of and areas -of-mixing .batween the- less -turbid,more 

oceanic.vater-Zin-the southeast and.the turbid, fresher inlet water in 

the north-and southwest are appar-ent.. Zones of mixing along the boundary 

between the oceanic (1) and inlet (2)_.water are apparent based.on 

.changes in suspended sediment concentration (Fig. 36). This .ERTS image 

was taken on 15 April 1973-during late.flood tide in Seldovia.and shows 
The-zone .of .intermediatea clear distinction (3)between water types. 


sediment concentration -(4) suggests extensive-mixing at the northern end
 
of the oceanic water.
 

Figure 37 shows surface.patterns-of suspended sediment distribution
 

on 24 September.1973-during-late flood tide in Seldovia and late ebb
 

tide in Anchorage (lower low water in Anchorage occurred at 1204, ap­

- proximately ten minutes.after.the-imagery was-.taken). The oceanic water 

(l) on the southeast has migrated as far north as Kenai.- The boundary
-

(2)between this water .and inlet water (3) is much-less obvious on this 

. imagery-than -that.acquired-.on 15 April -(Fig.- 36). Surface runoff is 

probably reduced .and less suspended sediment discharged- into the inlet. 

.Mixing.betwedn the.two major-.water types-appears to be-.more.extensive at 

-this time in the middle -and.southern- i-let.. The entire.inlet south of 

the forelands is dominated by oceanic vater-.and-complex-.surface circu­

lation patterns exist near Kalgin .Island. The-patterns .differ from
 

those observed on the November 1972 imagery. Flooding-oceanic water
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appears to bifurcate near the latitude of Tuxedni Bay and move northward 
east and west of Kalgin Island. A nearshore counter current appears 
along the east coast of Kalgin Island. The high sediment concentration 
along the east coast between Cape Ninilchik (4) and Cape Kasilof (5) 
may be due to scouring of the bottom or a southerly counter current 
along the coast. A similar pattern was observed on 22 September 1973 
(Fig. 20). North of the forelands the oceanic water has mixed exten­
sively with the turbid inlet water but appears to continue up the inlet 
along the west shore and in the middle. McArthur River plume (8) 
indicates that coastal water here is moving north. Surface salinity 
data from August 1972 (Fig. 25) show a similar pattern north of the 
forelands. The Beluga River (9) is a meltwater stream flowing from 
Beluga Lake (10), a periglacial lake at the terminus of the Triumvirate 
Glacier (11). The river plume (6) indicates southerly nearshore currents. 
This coastal water may continue along the coast to the North Foreland 
(7) then move across the inlet and become mixed with flooding water. 

Figure 38 shows details of water movement in the Anchor Point (1) 
area at flood tide conditions as shown in Figure 37. Clear water (2) 
dominates this area especially during flood. Anchor River (3) discharges 
clear water at the north end of the bay mouth bar (4) which has formed 
across the mouth of the river. Wave action and currents appear to re­
work the nearshore sediment producing a turbid zone (6) seaward of the 
bar. The dominant current direction is northerly as inferred from the 
orientation of the bar. Sea cliffs (5) are common along the coast. 

Figure 39 shows the Nikiski wharf area (1) and the surface current 
patterns near the East Foreland during flood tide. These patterns are 
also apparent in Figures 30 and 37. Current velocities reach 8 knots 
here and current directions are parallel to the coast. Turbid streaks 
in the nearshore water (2) show northerly flow. A distinct line be­
tween this water and more turbid water (3) offshore is apparent in the 
west (also very apparent on Figure 30). Turbidity (4) on the north 
side of the foreland may result from bottom scouring. The light area
 
(5) is due to sun glint on the water surface. Rosenberg et al. (1967) 
report the changes in local tidal currents based on drogue studies: a 
large eddy develops in the area of turbid water (4) north of the East 
Foreland during flood; this assists in lateral mixing and dispersion 
of wastes from the Nikiski outfalls. Water that misses this eddy is 
moved farther offshore during ebb, while nearshore ebb currents parallel 
the coast and carry effluents to the Kenai River area. The high currentvelocities and lateral mixing cause rapid dispersion of the local wastes. 

Circulation patterns similar to those observed on 24 September 
1973 (Fig, 37) were observed on 6 September 1973 during mid-flood at 
Anchorage and very early ebb at Seldovia (Fig. 40). Clear oceanic water 
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Figure 38. 	 Anchor Point area during flood tide (outlined on 
Figure 37; NASA NP-3A photograph). 
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Figue 39. 	 Nikiski wharf -East Forelad area during flood tide 

(outlined on Figure 37; NASA NP-3A photograph). 
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moves -north on either side of -algin- Island-. Plumes from the -Kasilof
 
(i), Drift (2) and Big (3) Rivers indicate that-nearshorecurrents are
 
moving north., The turbid waters (4) near the coasts occur over shallow
 
areas (refer to N.O.A.A. Navigational Charts 8554 and 8553) and the high
 
concentration of suspended sediment may result primarily from bottom
 
scouring and river discharge.
 

Repetitive ground truth observations of water characteristics in 
the southern inlet from 15 May to 9 September 1973 were provided by the 
National Ocean Surveys N.OA.A. These data were used to prepare dis­
tribution maps, profiles and T-S diagrams; seasonal and tidal changes
 

in characteristics were noted. These results were-correlated with
 
and verified many of the interpretations and observations made from
 
the imagery. Surface temperatues (Fig. 41) an salinity (Fig. 42)
 

istributions from 22-26 May-are comparable to the 1968 data (Fig. 24) 
although the 1973 temperatures are generally lower, salinities higher. 
Cold water ( 5C00) enters the inlet on the southeast side while warmer 
water moves seaward along the vest-shore.. The warmest wter is found in 
Kamishak Bay and, appears to circulate out of the Bay round Augustine 
Island. This circulation was observed on ERTS imagery acquired in 
November 1973 (Figs. 28 and 30)but was not previously recognized. The
 
1968 and 1973 salinity patterns in May re very similar. The more
 
saline water is concentrated in the southeast and dilution by fresh 
water occurs primarily from the north. and southwest. A very distinct 
shear zone is indicated by the 1968 and 1973 salinity data. 

Differences in surface temperature (Fig..43) and salinity (Fig. 
44) distributions for flood aned ebb tides from 17-26 May were prepared 
to illustrate changes in distributions and circulation due to tidal 
action. Surface temperatures of inlet water are colder-than the oceanic 
water during this time, although this relationship reverses.in the 
summer. Lowest salinities (290/oo) are found in Kamishak Bay. Circu­
lation in Kamishak Bay appears to be reduced during flood tide and fresh 
water tends to accumulate in this protected embayment. Surface tempera­
tures in Kachemak Bay are generally higher than in the inlet while
 
changes in salinity during different tides are minor. Circulation in
 
the inner bay my be reduced because the narrow opening between the end
 
of Homer spit and the south shore causes restricted water exchange.
 

Temperature and salinity data indicate that the shear zone (boun­
dary) between the two water masses in the southern inlet is compressed
 
toward the vest during flood, being forced in that direction by the
 
inflowing oceanic water. Surface circulation out of Kenishak Bay
 
appears to be negligible during flood. The boundary migrates eastward
 
during ebbs and southerly moving inlet water appears to spread over a
 
larger portion of the lower inlet. The mixing'zone between the water
 masses is moved toward the mouth and oceanic water is restricted to the
 
loer southeast side of the inlet.
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Figure 41. Surface temperatuSre distribution, 22-26 May 1973. 
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Temperature and salinity-profiles-(Fig; 45-) indicate-that -adis­
tinct thermocline and halocline. occur'between' 5-10 m and 0 5 m-respec-

tively,•at'location-SP-2014: in Kamishak Bay. -The-surface water-is % 20
 
warmer thav-the water at depth while the salinity-is X 2_?oo higher at 
depth. The water temperature-and salinity below 10 m remain-.virtually
constant. Strong stratificationis-not present at sites SP-2033, south­
-west of Eomer, and SP-2021, in mid-inlet. In general,-mixing of surface
 
and lower waters appears to be more complete-in these locations.
 

Data acquired from 8-15 June. show several changes in.water charac­
teristics for flood and ebb-tidea. Surface waterrentering-the.inlet

during flood tide -in -June (Fig. 46a4 is approximately 20C -warmer .than

-in May. The water temperature change across -the mouth is greater (30C),
and the oceanic water appears-to intrude.less- into the .inlet -during 

- flood tide in June. -Temperatures of the-inlet water appear to be as 
cold as the oceanic water, possibly due-to the increased discharge of
 
glacial meltwater streams in summer. 
 Surface temperatures -during ebb
 
(Fig. l6b)-indicate less intrusion of-oceanic water and a spreading of
 
warmer water from Kamishak Bay. 

Surface-salinity distribution (Fig. 47) also indicates a greater

restriction of oceanic water to the southeast than was evident in May.

A more rapid-salinity change across the mouth occurs and the less saline
 
water in Kamishak Bay is confined-.during flood tide6 The shear zone
 
appears to be more compressed and slightly east of its-location during

flood in May. 
This shear zone or frontal zone becomes more diffuse and
 
-moves eastward -during ebb flow. -This-migration-withtides -­was also
 
detected in tidal data acquired 
on 14 April 1973 (Sharma et al. 1973).
 

Water profiles .at ST-2006, ST-2009 and ST-2020 indicate -decreasing

.temperature and increasing salinity with depth (Fig. 48). -Changes in
 
temperature-salinity with depth are more pronounced and stratification
 
is generally stronger in June than- in May, except for the"data .at SP­
2014 (Fig. 45) where a strong thermocline .and halocline exist. Water at
 

- ST-2006 is more stratified. than at the other sites, possibly-because 
*
this site is in the area where Kamishak Bay and oceanic waters migrate

with the tides. 
 The water below 10 m in May-has similar-salinity and
 
temperature values to the water below 30 m in June. 
-This suggests that 
surface layers .withhigh temperature/salinity variabilityhave become 
thicker -as surface runoff increased in June. - -

Temperature and salinity distributions for 3-8July.(Figs. 49 and
 
50) are comparable to-those previously observed. Movement -ofwarm
 
-surface .water-
toward the inlet mouth from Kamishak Bay is-well docu­
mented by the temperature patterns from-3-8 July and ebb tide-data for
 
8-15 June (Figs. 46b and 47b). This circulation was also -observed on
 
the ERTS-1 imagery acquired 24 September 1973 (Fig. 37).' Surface
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temperatures of the. inlet water and the-water- in"Kamtshak Bay have 
.increased since June while the salinitr has'deereased, a result of 
increased fresh-water runoff. Maximum runoff occurs in July --August 
(Fig. 23) -and dilution ,of the surface water is near maximum.
 

Temperature profiles in July (Fig; 51) for ST-4,-5 and -25'indicate 
nearly complete mixing; temperatures.change'.only 20C from"surface to 
near bottom and no-distinct thermacline exists.' 'Salinity'variation is 
minor at. ST-4-and -5, while-at.ST-25 salinity- increases-from 310/oo at 
the surface to -32.2P/oo at 30 m depth. Below 30 m--the -water -at ST-4, 
-5 and -25 is comparable.. Strong-stratification occurs at station ST­
2001, north of Cape Douglas; turbulence is low in this area, resulting 
in a distinct thermocline and halocline from 0-20,m. Stratification is 
weak or absent at the other locations and water characteristics below 
30-40 m are similar; 'water temperature- at S-3 is generally .higher 
throughout.the water column than at other locations.- Bottom water is 
slightly warmer and.more saline in July than-in June. 

Surface temperature of the .oceanic water and the inlet -waternorth 
of Anchor Point increased approximately 2°C from'3-8"July to 7-9 August 
(Fig. 52). Surface salinities (Fig. 53) are similar to those in July. 
Salinity stratification-is strong.at -station SP-2034 near Homer Spit
 
(Fig. 54); less saline surface water (288°/oo) extends to 10 m where a
 
strong halocline occurs from 10 m to 3m (28_80/oo to-31,50/eo);
 
temperature at this site changes .from 10.5 to 9.20C in-this'.interval.
 
Knull and Williamson (1969) repozt that: stratification in Kachemak Bay
 
is maximum in July when runoff .is high. Below: 30 m temperature and
 
salinity remain virtually unchanged- This.station is located-near shore
 
at China Poot' Bay and surface- water may be dominated .by'meltwater from 
the glaciers on.Kenai-Peninsula. ERTS image.1426-20444-(Fig. 20) shows
 
highly turbid water at this location,
 

Time series data for station S-1 are-also.presented in-.Figure 54.
 
Data-are acquired every half hour through half a tidal cycle'.(generally
 
13 hours) at -time series stations. The profiles - show changes in water 
temperatures -and, salinities from the .suface'.to .near .bottom-.at S-1 from 
late flood-through early ebb.on 30 August- - The:.S-la data-were taken at 
1328, 2:14 hrs. min. before high water and-the S-lb at 1632, 0:50 hrs. 
min, S-os, at 1731, 2:29 brs. min., and S-id, at-1830, 3:28 hrs. min. 
after high water (Table 7). Minor temperature and salinity changes 

Table-7. Forecast tides at Seldovia, Alaska, 30 August 1973
 
(from U. S. Department of-Commerce 1972).
 

Time (bra, min.) Height (m) 

0325 6.3 
0928 -0.6 
1542 6.4 

2154 -0.5 
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Figure 51. Temperature-salinity profiles, July 1973.
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occur from the surface to l0 m;-bet-een 10 and-30 n-ethe- data-are-similar; 
below 30 m the variability increases with-depth.- -,Salinity--at .S-Ic 
decreased rapidly from 31°/o.to 300/oo at 42-m. -This .sudden-decrease 

- may have been caused by an instrument--problem or-ty the rapid movement 
of less saline water past the station. This station isnear .the shear 
zone and considerable variation..could oecur:throughout the water column 
along this frontal zone. This rapid change was not detected at 1830. 

Surface temperatures from: 5-9 September (Fig. 55) vary considerably
 
from those acquired.in August. Temperaturest:are 2?C warmer-near the
 
east side of the inlet mouth andZ20 C cooler on the west.. Kachemak Bay
 
temperatures are *30C warmer than in May (Fig. 41) and2 0 0C colder
 
than the inflowing oceanic water (Fig. 55). Fresh water runoff during
 
the summer has diluted and reduced the salinity of the water throughout
 
the area, especially-in Kachemak Bay with-surface salinity 50/oo lower
 
in September (Fig. 56) than May 1973.
 

Water profiles in September are more variable than previously seen
 
(Fig. 57). Water temperatures and salinities are variable-.from the
 
surface toPk0 m. The thermocline and halocline extend to this .depth.
 

Below 40 m variations continue to the bottom. Salinity at SP-17, south
 
of Homer Spit, increases from ,28.20/oo-at the-surface to 310/c0 at'
 
0 m; from 40 to 80 m it increases.to.31..i°/oo. Temperature rapidly
 
increases from 8°6°0 -at surface to 10.40C at 5 m; from-5 to 80 m it
 
decreases to 9,10C. These halocline and thermocline characteristics are
 

- -not present farther west. The temperature profile at ST-4 shows no 
thermocline and decreases .gradually Irom 102C at the-surface-to .7.5°C 
near the bottom;, salinity decreases .slightly from 0-5 m,-.then increases 
.steadily to 31.80/oo Temperatures at ST-25 increase-from 9,40C at the
 
surface to-10.40C at ,5m, are xelatively.constant from 5 to 35 m, and
 
decrease from 100C to.80C from .35to 100 me ..
 

T-S diagrams are especially useful in-characterizing water .at
 
-depth.and in determining water types.based on features .and.anomalies of
 
temperature-salinity. Temperatures and salinities-are plotted .in refer­
ence to water density expressed as aT; the diagram indicates the stability
 

and stratification of water by-graphically- illustrating-density char­
acteristics through the column (Sverdrup et al. 1942yvon Arx 1962).
 

Water characteristics at .location.ST-2008 during early flood on 26
 

May (Fig. 58) produce a stable water column.with very minor .stratifica­
tion. Salinity and temperature changes are minor, 31.1 - 31.60/oo and
 

5.9 - 4,50C, respectively Strong stratification occurs at-ST-2006
 

during late flood on 25.May. Surface water is colder, more saline and
 

therefore more dense than the water immediately below. This reverse
 

stratification may result from the intrusion of oceanic water during
 

flood tide. The water type at ST-24 is generally less dense than at
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ST-2008 during flood; temperature is the controlling variable. Tempera­
ture at ST-2008 changes from 7.8'C at surface to 5.5'C at depth while
 
the salinity range is only .30/0o; density is comparable to the deeper
 
water at ST-2006..
 

Water types at ST-2002 show considerable variation-in stability
 
fromn3 to 31 July (Fig. 59). On 5 July, salinities.are higher through­
out the water column and temperatures lower. Salinity stratification
 
occurs at several depths while temperature stratification is less pro­
nounced. Rapid salinity changes are not as prominent on 31 July and the
 
water is generally less dense0..
 

Water characteristics at ST-25 on 3 July (Fig. 59) produce a deep
 
salinity stratification and generally more dense water than present on 7
 
September (Fig. 60) when surface stratification is pronounced. Station
 
SP-17 (Fig. 60) shows a slight change in temperature from surface to
 
depth but a large salinity variation, 28.2 to 31.40/oo. Temperature­
salinity values at ST-4 (Fig. 6o) are virtually the same as at ST-25;
 
the water types are similar. The variability of the water character­
istics, as shown by these T-S diagrams, illustrates the rapid changes
 
that occur throughout the water column during different tidal stages and
 
seasons.
 

Sea Ice
 

Sea ice is a navigational hazard particularly in the upper inlet
 
north of the forelands for four -to five months of -the -year.(Marine
 
Advisers 1964; Alaska.District, Corps of Engineers 1948; Rosenberg
 
et al. 1967). . The movement .and strength of the ice are important
 
aspects of the inlet environment to be considered, -especially in planning 
offshore construction. The ice is fine-to medium-grained.(1-4omm) with 
a salinity of .4- a6%and a.ring .tensile-strength of 10-20.kg/cm . It 
exists as large floes which are commonly greater than 320 meters across 
with individual blocks generally less than .lmeter thick. Pressure 
ridges-up to 6 meters in depth occasionally form on the floe .peripheries 
due to frequent collisions with other floes.(Blenkarn-1970). -Large ice 
floes become scattered .aid move primarily up and down the upper inlet 
with the .6-8 knot-tidal .currents; some -move-as far \south.as .Anchor Point 
on the east side (Wagner et al, 1969); large floes-are.commonly carried 
'bywinds and tides along the west side -as far south as Kamishak Bay and 

- beyond to Cape Douglas.. Brash and frazil ice are common between the 
rounded floes. Previous -reports (U.S. Department of Commerce 1964) 
suggest that.ice occasionally .closes 1Tflana Bay for brief periods; 
however, repetitive ERTS-1 and NoO.A.A. -2 and -3 imagery indicate that 
large floes persist in Kamishak Bay for long periods and that many of
 
the small embayments bordering the bay appear ice covered for a major
 
portion of the winter.
 

107
 

http:south.as


3 july 

ST-255 

CIC 

2 
ST-2002 

vip22 

1' 

-o 

-24Cpu2 

0 

2rI1 

2 

%~-22 

Figure 59. T-S diagrams, stations ST-25 and -2002. 



o$ 

%-22 

,0jj 

%.i4 

Figue 

4 

WWIr. 

60. 
T-S 

diagras, 

stations 

ST-25, 

5 -I 

-4 

Ul ntly 

and 
SP-17, 



Most of the ice- forms--by the- freezing -of river water asit flows 
over -the tidal- flats. Smaller-_amounts- of-iea are- formed from.sea water 
left on.the flats during low tide (Shaxra-and--Burre3i" 1970.- .' Much of 
the ice on the flats is picked up during flood-tide, moved--out into the 
inlet and incorporated into the.floe; the renainder is-left on the flats 
and repeatedly refreezes to form sheets or stacks of-ice (stanukhi) 
some as thick as 12 m. Some of these thick sheets are eventually trans­
ported to-the floe while some remain on the flats throughout the winter. 

ERTS-1 and NOAA-2- and -3 imagery.are useful in observing the .forma­
tion and ablation of inlet .ica.-and.ir-defining winter surface .circulation 
patterns as inferred ,from sea ice movement. Although ERTS-1 imagery has 
:better ground resolution, its-utility is somewhat reduced-by the 14 day
 
.gap between orbital cycles-and by a.to month period whien data are not
 
obtained due to low sun angles .(<8o). -NOAA-2 and -3 IR imagery sup­
plements the ERTS data because of.increased capability for haze pene­
.tration,the capability.to show thermal differences-and more frequent
 
acquisition of data. 
 -

Cloud free ERTS imagery acquired on .29 January'1974 (Fig. 61) shows
 
the distribution (1) of ice'floes and-frazil ice-along the-western coast
 

-from Chenik Head in Kamishak Bay.norxth to Redoubt Bay. Westerly winds 

are moving the ice southeast (2) out-of-Kamishak Bayxpast.Augustine 

Island (4) while winds and tidal turrentsw.produce complex .patterns along 
the inlet ,coast farther north. - These complex patterns maybe influenced 
by tide rips which form 2 to 4 miles-.north of Chinitna Point with a 
.strong'esterly wind (U,.S. Department of Commerce 1964). Lake Iliamna 

(3) is ice covered and the fractur-es are very distinct. 

Although 80% cloud covered, ERTS image 1571-20472, acquired on 14
 
February 1974, shows ice floes concentrated in Redoubt Bay west of
 
Kalgin Island, along the west side between Harriet Point-and Tuxedni
 

- Bay, southeast-of Chisik Island, .in the eastern inlet south of the East 
Foreland-to anarea between-Kenai'and-Kasilof and in'the northern inlet.
 

_ERTS images-1572-20530 and- 1572-20533, acquired 15 February 1974, are
 
50% cloud covered but show the-ice distribution along-much .of the
 

western shoreline between the .West Foreland and-Cape Douglas as observed
 

-

on the previous day.. Movement of. the ice in:-this 24"hour period was 
strongly influenced by dominant-westerly to- southwesterly winds. Ice
 

floes-.are. still concentrated- in-Redoubt.Bay but much of that southeast 
of.Chisik Island has been aligned with the wind in long "stringers'! and 

has been. moved- northeastrly . away from: the west- coast; Similar elongated 

patterns have formed in -the ice near Cape Douglas.. 

NOAA-2 and -3 imagery acquired. on- 18 February .1973 (Fig..62), 
12 March (Fig. 63) and 26 March (Fig. 64) 1974-show the-distribution of 
sea ice-throughout the inlet. The sea ice patterns are similar to the 
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Fig'are El. 	 Distribution of inlet ice along the southwest shore. 
MSS band 5 image 1555-20591, acquired 29 January 197h.
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Figure 62. 	 Sea ice in Cook Inlet on 18 February 1973, 

NOAA-2 VHRR visible image. 
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Figure 63. Sea ice in Cook Inlet on 12 March 1974, NOAA-3 VR 
i visible image. 
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patterns' of suspended ,sediment-.aw- observed: on ERTS imagery.-.. The'.highest 
coneentrationsw-of sea ice- ocaur.-in the northern inlet- an&-.in the--western 
portion of the southern inlet. The eastern'portion south of'.thet.foreland
 

is generally ice free because this-area-is-characterized-.by--the intrusion
 
of sea water which is warmer than inlet water- during winter months. There 

appears to be more ice present,on-18 February-1973-than on 12 March
 

1974. The area near the inlet mouth (1)-is ice-free-but ice is con­

centrated around Kalgin Island (4)and--in: Kamishak"Bay-around'.Augustine 
Island (3-). Clouds (2) obscure portions of"Kamaishak Bay on-18 February 

1973. There is less ice inKamishak.Bay-.on-12 March-1974 (Fig. 63) than
 
on 29 January 1974 (Fig. 61). Notice the-changes-in"distribution be­

tween 12 March and 26 March (Fig. 64) 1974.- Less"ice is-present in the
 

inlet but more is concentrated .west of Augustine Island; Also the east
 

side of the ice-cover on Tustumena Lake (5)appears to'have melted by
 
26 March 1974. NOAA-2 imagery from 4April 1973 and 6 April 1974 show
 
that ice has ablated and the inlet is ice-free while ice and snow remain
 

on land near.the coast. This preliminary analysis af sea"ice distribution
 
and movement demonstrates that with certain limitations, .satellite
 

imagery-.can provide data required to aid navigation and gude .construction
 

of offshore facilities. An important advantage of satellite imagery is 

the synoptic view while the major limitation is the difficulty of ob­

taining sequential cloud free imagery coincident with the occurrence of
 

significant ice movement. ­

-The presence of this mobile -ice cover is useful in-making compari­

sons between analogous.summer and winter circulation-.patterns. The
 

highest concentrations.of sea ice generally occur in the western portion
 
.of the lower inlet while the eastern portion.remains ice free. Pre­

dominantly north winds in the winter also moves the ice-to the -west and
 

southwest side of the inlet. Although large-ice floes are,a navigation
 

hazard-as-they move.up and down the inlet'.between the forelands during
 

flood and ebb tide, extensive damage to shipping has generally been
 

avoided although numerous reports of shipping difficulties-have been
 
made (Alaska District 1973).
 

Tidal Flushing Characteristics
 

The pollutant flushing time of an estuary: is the-time-required for
 

existing fresh-water in an estuary to be replaced.'The time.depends
 

basically on river di'scharge and salt water. replacement: dueto mixing 

entrainment.- Pollutant concentrations are-also-reduced-by" dispersion/ 
diffusion mechanisms-which move pollutants to other .water masses in a
 

high velocity regime and.by fresh water input which moves-entire water
 

masses to sea by supplying new water (advective flow) (Murphy et al. 1972).
 

Various methods are useful in determining the flushing-rate but their
 

utility is limited by the available data.
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Rosenberg et al. (1967) calculated the concentration of-an-effluent 
introduced near Nikiski and determined its- distribution-considering 
removal by river flow and salt water replacement. Fresh water, as it 
migrates seaward from an estuary, entrains salt water-from below; at 
steady state, seawater enters-the inlet.at the-rate it'is being en­
trained. The amount of entrained water is- calculated-knowing the mean 
salinity of the estuary. This value"for Cook Inlet is-24.150 /oo as 
determined from data acquired in June 1967. The- flow of- entrained water 
is calculated as follows: 

Vi-S - S 	 1V.. a(R) ( 
0 a 

where V.1 = entrained flow (ft 3/sec) 

S = 	avg. salinity of inlet (o/oo) = 24.150/oa 

S = salinity of source waters at mouth ( 0/oo)-= 32.00°/oo 

R 	 river flow at time of observation (ft3/sec) = mean
 
monthly, 10.2 x 10 ft /sec
 

Assuming this to be t § average .per year, total water leaving the inlet 
per year is 1.13 x 10 ft . Conclsions-from-this-investigation-indicate 
that 	soluble wastes introduced south of the- East Forelands -would be mixed
-

-throughout the inlet or removed by turbulent mixing, tidal changes, river 
flow, salt water replacement and waste decay.
 

Kinney et al. (1970a) investigated oil pollution in-Cook Inlet and 
reported the flow6 of gntrained.salt water for June using equation I to 
be V. =lt32 :-10 ft /sec when S = 32.0°/oo, S = £.°oo and 
1.02 x !0-ft./sec. This is equivalent-to-14%O0 x 10 fto/yr. Since
 
winter river flow is significantly lower,,the-yearly-flushing flow would
 
be reduced if salinity remained constant;. However; Bowden (1967) reports
 
that flushing times-are affected more by turbulence- and mixing than 

.- seasonal river.flo-w.variations.;-thermefore, Cook Inlet would' maintain a 
relatively high V.. With these values, Kinney et al. (1970a) conclude
 
that 	tidal andlriver driven flushing reduces the hydrocarbon- pollutants 
in. Cook Inlet by 90% in about 10 months. 

Since data for the entire .inlet are sparse-and-coastaldevelopment
 
is and will be concentrated-along Knik Arm-and Kachemak Bay-,-respectively, 
the flushing rates for these areas were determined-by-the--simplest, but
 
possibly the least precise, method, the tidal prism method- (Ketchum 1950,
 
Lauf 1967 and Dyer 1973). Flushing time in tidal-cycles was calculated
 
as follows:
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V + P
T = 	 (2)
 

where V is the low tide volume and P the intertidal-.volume-(tidal
 
prism). Flood-tide water is assumed to become totally mixed .with
 
estuary water; sea/river water.introduced during flood equals the tidal
 

prism. The same volume of water is removed-on ebb and-the.amount of
 

fresh water equals the increment-of river flow. Generally this method
 
- yields faster rates than other methods because-in reaiity mixing is
 
incomplete. Fresher water near the inlet head-does-not reach the mouth
 

during,ebb and some of the water -that escapes-during ebb returns at
 
flood.
 

The-modified tidal prism method-(Ketchum.1951-): divides-.anr estuary 

into segments determinedby the average tidal excursion of-a water 

particle on.flood tide. - This -segmentation.method requires: that the 
segment-be defined-as that-which hasan intertidal'volnme
 

equal to.the river-discharge. -River-discharge-data for Eagle, .Chester,
 

.Matanuska, Cottonwood and.Knik Rivers bordering-Knik-Arm-were-available
 
from Wagner et al. (1969). -.


-innermost. 


Discharge data.were available only for the 

Bradley.River on the northeast-coast of Kachemak-Bay (U.S.-Geological 

Survey 191). - To approximatethe.total river input for-this-bay (Fig. 
° 
-65), the meltwater-discharge from the Grewingk (6),r-Portlock.(7) and
 

Dixon (8-). Glaciers was considered similar: to:that of-Kachemak- Glacier
 
..	 (9), the source of Bradley Ri-ver (10); the-Fox River-(1l) discharge was 

approximated.as twice that - of th& Bradley River: since'two-main tribu­
taries of-the Fox head atfDinglestadt (12)Yand Chernoft (13tGlaciers. 

The innermost segment is that with an intertidal volume (Po) equal
 

to the river flow (R) (Dyer 1973)
 

P 
o 
=R	 (3)
 

VO = low-tide volume of segment
 

The limit of the next segment is placed so
 

V1 =V+ P =.V + R 

The low tide volume in each segment equals the total tidal-prism with
 

the next landward segment plus-the low tide-volume in-segment 0, or
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V -V + R +- p (4)
V 0
n 


Each segment at high tide contains the-.volumeoflwater in-.thexnext- seaward 
. segment at low tide. With'.eomplete mixing- at high tide; .the .proportion 
of water removed on ebb is-the ratio between local-intertidal volume and 

high tide volume and an exchange ratio-can-be-defined-for-
any segment "n" 

as
 

r =- /(P- + ) (5) 

.The flushing time in tidal cycles will be a/r In any segment the 

amount of river water removed during ebb .equais rn (l-rn)m-u R where "m" 

is age in tidal cycles while the amount remaining"equals
 

(l-rn)m R (6)
 

accumulated in-segment- "n" equalsTotal volume of river water, Qn 


= R (l+(l-rn)-+ (!-rn)2 .... (l-rn)m) (7)
 

The sum is 

R iC-r )M+l (8)
 

r n
n 

when m is large, (1-rn)M+l approaches 0 when rn<1, so that
 

n n n
 

Qh= R/r (
 

Total flushing time for all estuary segments-equals
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E rn (10) 

The seaward limit of Knik Arm was defined by a north-south line
 
from Point Woronzof-(Fig.-66), that of Kachemak Bay from Gull Island to
 

Coal Point (Fig. 65).. Total areas of water for high tide, mean lower
 
low tide and the 3 or .10 fathom depths in .each bay were determined with
 
a planimeter from National Ocean Survey navigation charts 8553 and 8554.
 
Approximate volumes were calculated for .lower low, intertidal and higher
 

high water using tide tables (U.S. Department .of Commerce -1972). The
 
3lower log witer.volume for Knik Arm was 4.5 x-108 m , the intertidal 

9 3
5.7 x 10. m , and the higher high water 1.02 -x.10 m . -The river flow
 
into Knik Arm in March is 1031 cfs and .using.the tidal prism method the
 

flushing time was -determined-to.be 205..3 hours, .approximately.8 .5 days.
 
When freshwater runoff is .highest in July, .the.flushing.timedecreases
 
to 13-1 hours; the annual.average.is 7.9.hours.. Using the modified
 
tidal prism method, the resulting flushing times were higher, but compared
 

favorably to that determined for March by the tidal prism method, 205.6
 

hours. The.-July value was .calculated totbe.13.2 hours; theaniual
 
average .was-482.-hours.......
 

The lower low water volume for inner Kachemak Bay.is 5.81 x l09 m3 , 
the intertidal 1.53 x.109 H3. Using the tidal prism method, 773 hours 
,or approximately 32 .days.was the flushing time--in -Marchwhen runoff was
 
30.5 cfs; flushing time using .themodified method was 77-4.3 hours. In
 
July the runoff was 1394 cfs, and with the two methods, 17.07 and 18.0
 
hour flushing rates were calculated, respectively. With an annual
 
average discharge of 408-cfs, the flushing times were 58.8 and 59.3
 
hours, respectively.. ..-.
 

The extremes in.river discharge at both sites-significantly influ­

ence the flushing of pollutants. In addition, at Knik Arm the tides are 
especially effective in increasing the dilution volume -of-the receiving 

waters by: 1) moving vast quantities of water -past any point in the 

Arm; this produces an .effect comparable to that -obtained.by a.large 
diffuser installed in the .same.body of .water without such tides; and, 

-2) the intense tidal currents increase the turbulence in the receiving 
water and create an ideal environment for rapid dilution of wastes through 
turbulent diffusion (Marine Advisers 1965). As a result the large tidal 

ranges and turbulence especially-in.Knik..Arm-would produce more rapid 

flushing rates. -

The movement .of surface water out of Knik Arm .during ebb tide is
 

observed in Figure 66. This ERTS image shows near IR reflected radiation
 

(0.8-1.1 m); very little water penetration is achieved in this wave­

length. Tidal flats (1) are apparent and variations in suspended sediment
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loads near the water surface enhance the current patterns. Turbid water
 
(2) appears.lighter than clear water (3). These patterns show the most
 
likely path of pollutant transport and potential sites of dispersion or
 
concentration can be distinguished. Ebbing water moves out of the Arm
 
between Fire Island and the north shore and appears to stay on the north
 
side of the inlet. Data from detailed studies at the mouth of Turnagain
 
Arm indicate that tidal currents- of 4-6 knots generally move directly
 
up and down the Arm with the changing tides (Alaska-Department of High­
ways, undated). There is minor lateral movement of water except at
 
early flood and late ebb when bottom friction is- greatest and eddies
 
are common. These virtually straight patterns are also apparent on the
 
ERTS image in Figure 66.
 

Figure 67 (location indicated on Figure 66) shows the location of
 
the Anchorage Borough Sewage Treatment Plant (1) at Point Woronzof (2).
 
The outfall is located northwest (3) of the Point in an area of high
 
turbulence and mixing. Currents in this area are essentially rectilinear

(to-fro) with weak transverse currents. This is re,,e~tedin the linear
 

surface patterns (4) at the mouth of Knik Arm (_±. 66 and 67). Model 
studies show that flow past the Anchorage Dock area (9) is approximately
 
2.5 x 106 cfs but varies with tide heights (Carlson 1970). Murphy et 
al. (1972) report that a large eddy current may form in the half-moon
shaped bay east of Point Woronzof which may tend to concentrate wastes
 

in this area. Detailed current studies verify that a clockwise gre
 
forms on the northeast side of Point Woronzof during flood, a counter­
clockwise gyre on the southwest side during ebb (Marine Advisers 1965).
 
Due to high turbulence in this area there is nearly complete mixing and
 
little thermal stratification. The "feathered-edge" pattern (5) suggests
 
that bottom scouring may occur west of Point MacKenzie during early

flood. Clear water (6) occurs in the protected area; sun glint (7)

shows the surface roughness; turbid mixed water (8)exists north of Anchorage.
 

Figure 65 shows Kachemak Bay on 27 September during early flood 
tide. Romer (1) is located at the base of the-spit which divides the 
bay in half. Clear oceanic water (4) has begun to move into the inner 
bay and more turbid water (3) occupies the north side. Glacial melt­
water (5) appears to be moving out and mixing with-less turbid water 
(2). Flushing within this portion of the bay may be significantly
 
reduced because of the narrow opening between the spit-and south shore.
 

SUMMARY AND CONCLUSIONS
 

Sufficient observational data on transport-circulation processes
 
were presented to develop a basic understanding-of the regional relation­
ships between river hydrology, sediment distribution and nearshore
 
oceanography in Cook Inlet. Synoptic interpretations made from repetitive
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aircraft,- ERTS-1 Multispectral- Scanner -(MSS) ;- and NOAA-2 and" -3 Very • -
Radiometer (VHRR) imagery-with- corr-oborative groundHigh Resolution 


truth data provide for the first- time, a means- of analyzing on a
 

regional basis, estuarine surface circulation; sediment-distribution,
 

water mass movement6 coastal processes, areas of-sediment deposition,
 

tidal flat distribution, and coastal-land forms.--The-distribution and
 

images.
configuration-of tidal flats were mapped with MSSband 5 and 7 


Coastal landforms and configuration are'-most'apparent-in-band 6 and 7
 

images taken .during the 6th ERTS-1 cycle; cultural features not pre­

viously mapped are also visible on the MS-band"5 images of these
 

Areas of' suspected upwelling; thet.distribution"of"suspended
scenes. 
sediment and-surface circulation patterns-vere"mapped on'MSS bands 4 

Comparisons of these features and-processes-were-made with colorand 5. 

IR aircraft imagery. Sediment distribution;- current
IR and thermal 

directions, mixing patterns along river plume and water-mass boundaries,
 

tidal flats and coastal landforms-show best on-the color IR -photography.
 

The thermal IR scanner imagery was most .useful in interpreting mixing
 

zone patterns.
 

The regional circulation as inferred- from suspended, sediment pat­

terns apparent on the imagery were verified by ground truth data. Clear 

ocean water moves into the inlet and progresses northerly along the 

east shore during flood tide at Seldovia, while ebb-flow is occurring 

- at Anchorage; near Ninilchik mixing increases with sediment .laden inlet 

water. Clear oceanic water also progresses in an easterly direction
 

along the south side of Kachemak Bay during flood tide. Water with
 

higher suspended sediment concentration-from-the Fox River and Sheep
 
inlet
Creek is confined -tothe northern portion of the bay. -Turbid 


water generally occurs in the western portion oft the inlet-and moves
 

Changes-in the
south towards the inlet mouth along the vest side, 


sediment concentration of these water masses-and of rivers-discharging
 

into-the inlet can be inferred from the tonal-variations-in-the MSS
 

imagery.-. Complex circulation .patterns-are produced around-Kalgin Island
 

because at this location ebbing.and flooding waters meet; current
 

velocities are high and coastline configuration-causes strong cross-


Several .local circulation patterns not-recognized
inlet currents.. 

before were identified: a clockwise back-eddy observed during flood
 

tidelin the slack water area-between Cape-Ninilchik'and Kenai offshore
 

from Clam Gulch; a counterclockwise.current north-of the forelands 

during ebb tide at Anchorage; and, the movement of sediment laden, 

ebbing water past the west side.of AugustinetIslan', out the inlet a­

round Cape Douglas and through .Shelikof.Strait. 

Imagery interpretations -and ground truth data also indicate that
 

turbulence and mixing are especially high along-the-southeast coast.
 

The rivers along this coast contain less suspended"sediment-than those
 

on the northwest shore; the high sediment-concentration-in these-coastal
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waters is probably due primarily to bottom scouring and resuspension
 

during flood tide. A distinct mass of less turbid water .was observed
 

to intrude into-the Kenai River more than-a nile during flood tide.
 

This may hasten.the removal of .pollutants from the river by increasing
 

the volume of water available for mixing. Along the northwest coast
 

between the Drift and Big Rivers, variability in water turbidity is
 

distinct and the movement of Mater was traced through several tidal
 

stages_ ..
 

areas such asStratification occurs in .and around- protected 
Kamishak-and Kachemak Bays throughout the summer months .but -is weak 

in late, spring and early fall when fresh water runoff is reduced. It 

is generally agreed .however, .that stratification in most .of the inlet
 
is weak due to high turbulence and -ixing. The variable densities in 

stratified water provide boundaries along which .pollutants move and 

disperse. Strong stratification could restrict diffusion and cause 

increased pollution concentrations. A .summary of .stratification in the 

lower inlet during summer 1973 follows: May, weak or absent in the 

central inlet,-more developed in Kamishak Bay around Augustine Island, 
along or near the vest shone and in outer Kachemak-Bay (this is typical
 

for all tides); June, weak in mid-inlet, decreases .going north along
 

the west shore, persists in Kamishak Bay, however, the thermocline is
 

up to 25 m deeper near the inlet mouth on the vest side; July, weak 

near mid-inlet mouth, stronger on west side of mouth, generally the
 

thermocline varies within the 0-25 m depth; August, stratification
 

persists in Kachemak and Kamishak Bays; .September, stratification be­

comes stronger in the -above areas. -. 

The locations where most pollutants are presently discharged into
 

the inlet are sites .of high turbulence and mixing. Dissipation of the
 

pollutants depends .on freshwater inflow, which,influences the net ex­

change of inlet and ocean water, and on the velocity of the tidal currents,
 

which influences turbulent diffusion; where these factors are high,
 

dispersion and diffusion are greatest. Cur-rent and ,mixing patterns in 

these.areas were observed.on the satellite and aircraft-imagery.
 

This investigation has contributed to the NASA Earth .Observations
 

Aircraft Program by -demonstrating the utility of aircraft and satellite
 

imagery and curr-ent state-of-the-art .remote sensing.-interpretation
 
synoptic data on estuarine processes
techniques in providing repetitive 

in the subarctic. This program was established in- 1964 at NASA's Manned 

Spacecraft Center (MSC) to develop earth.survey techniques using air­

craft equipped with .waxious combinations.-of photographic, infrared,
 

and microwave remote sensing instruments. The .programhas .grown in size 

and importance due primarily to increasing national interest in ecologicai
 

problems and the current emphasis within the government in testing space 

science and technology for practical applications (National Aeronautics
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and Space Administration 1972). The techniques utilized during this
 

study can be useful in guiding improvements in sensor selection and
 

interpretation methods in future satellite programs investigating arctic
 

and subarctic oceanography.
 

APPLICATIONS
 

Demonstrations and speculations on the application of aircraft and
 

a wide variety of earth .resources investigations
satellite imagery to 
are numerous in the literature.. It would be redundant to cite these
 

examples here. As.an alternative the Congressional Acts which deal
 

with subjects pertinent to this investigation and which form the basis
 

for the principal civil works mission responsibilities of the Corps of
 

Engineers are listed according to subject areas:
 

1. Water/land conservation:
 

Federal Water Project Recreation Act, 1965
 

Land and .Water .ConservationAct, 1965 -. 

Outdoor Recreation Act, 1963
 

Estuarine Study Act - Inventory of Estuaries, 1968 

2. Environmental impacts:
 

National Environmental Policy Act, 1969
 

3. Maintenance of waterways, shorelines and beaches:
 

River and Harbor Act, 1962-1968
 

Coastal Zone Management Act, 1972
 

4. Water quality: 

Clean Water Restoration Act, 1966 

Fish and Wildlife Coordination Act, 1946-1958
 

Federal Water .Pollution Control Act, 1948-1972
 

Water Quality Act, 1965
 

Marine Protection, Research and. Sanctuaries Act, 1972
 

Simultaneously, these Acts deal with subjects for which the utility of
 

aircraft and satellite imagery has been demonstrated -or suggested by 

this-or related investigations. A number of applications in earth
 

resources studies recognized during this investigation and directly
 

applicable-to the requirements of the aforementioned Congressional Acts
 

are shown in Table 8. -­
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Table 8. Applications of aircraft and satellite imagery.
 

A. 	Data base C. Acquire engineering design
 
criteriasite selection1. 	 Preliminary 

2. 	Coastal Zone Management D. Interpret coastal processes
 

decisions
 
3. 	Channel and harbor main- E. Improved thematic mapping
 

tenance
 
4. 	 Regional environmental F. Monitor estuarine circulation 

interpretations 
5. 	Ecosystem protection 1. Dispersion of pollutants
 

2. 	Movement of sea ice/
 

B. 	Augment preparation and revision ice survey
 

of hydrographic and navigation 3. Sediment distribution
 
4. 	 Fish migrationcharts 


In addition, data on circulation and sedimentation provided by
 

this project and similar remote sensing investigations would be useful
 

in several on-going Alaska District, Corps of Engineers investigations
 
sites of proposed deep­of: circulation and sedimentary processes at 


draft harbors and/or small boat basins in Iniskin Bay, near Anchorage
 

and at several locations along the southeast shore, resuspension of
 

dredge material disposed at the site 300 m vest of Anchorage in 12 m of 

water, sedimentation near Anchorage and Kenai, shoaling and littoral 

drift near Kenai, suspended sediment transport mechanisms, and beach 

erosion control at Ninilchik. The data could also be used in devel­

oping maintenance dredging schedules and in preparing environmental
 

impact statements prior to the construction of offshore and coastal
 

structures, especially in areas of active petroleum development.
 

Remote sensing techniques utilized in this investigation could
 

also provide reliable repetitiv.e data to state, local and federal 
agencies and private industry with interests in preserving the en­
vironmental quality of the inlet. One of the major objectives of the
 

Coastal Zone.Management programs being administered.by N.C.A.A. is the
 
information on estuarine and coastal water circulation,
acquisition of 

waste assimilation capabilities .of coastal water and coastal sediment 
transport. The .U.S. Geological Survey is currently investigating the 

sources and deposition of sediment in estuarine and coastal environments. 

The National Ocean Survey, N.O.A;A. is actively updating existing navi-
Private industry has increasinggational and tidal current charts. 


interest in developing and exploiting the resources and commercial
 
Federal funds may become available
potential of the Cook Inlet basin. 
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to study the regional impact of a proposed export dock at Point Mac-


Kenzie. A lumber chip mill has been proposed for construction in the
 

Romer area. Interest has recently increased in coal reserves at Beluga
 

and minerals along.the west shore; petroleum exploration drilling in the
 

southern Cook Inlet has been active since September 197h. Wise utiliza­

tion of these resources with minimal environmental degradation is now
 

acknowledged to be a primary concern of our society. With pressure
 

mounting rapidly for extensive development, it is necessary to continue
 

the environmental research required to increase our basic understanding
 

of this region as soon and as vigorously as possible. Cook Inlet is the
 

fastest growing area in industrial development in the state of Alaska.
 

Increased pressures of population and industrialization make it impera­

tive that investigations of the water resources of Cook Inlet be continued
 

in order to manage these resources in the most efficient manner possible.
 

RECOMMENDATIONS
 

Based on the experience of this investigation it is considered
 

appropriate to make some general recommendations relative to future
 
First, there is a need to emphasize
NASA Earth Observations programs. 


and improve provisions for technology transfer within user organizations.
 

Greater awareness and participation from the operational personnel of
 

the user agencies is needed. This, of course, is a responsibility of
 

the user agencies, but NASA should recognize this need and take the lead
 

in stimulating a greater awareness of this requirement and aid in de­

vibing means for implementing effective programs. Second, utilization
 

of aircraft and satellite data must be increased in remote areas where
 

ground surveys are seasonally impossible.or prohibitively expensive.
 

These aerial data provide repetitive, synoptic -views of many dynamic
 

environmental processes. Third, a cooperative program between the U.S.
 

Geological Survey, the National Ocean Survey, NOAA, the Corps of Engineers,
 

universities .and state agencies should be instituted to develop a more
 

complete data base on the water quality and processes of the inlet.
 

Presently the above agencies and institutions have separate projects to
 

provide data on several aspects of.the inlet oceanography. The suggested
 

unified approach would produce integrated baseline data in all pertinent
 
As a resultoceanographic fields with minimal duplication and costs. 


private industry and responsible state ,and federal governmental agencies
 

could utilize the data package-to more intelligently and efficiently
 
plan, design and.construct offshore engineering structures; to maintain
 

existing harbors and navigable waters; and, toimplement.a coastal zone
 

management program based on complete and up-to-date data. Fourth,
 

additional.research is required -in several-areas.. Complex circulation
 

patterns were observed in themiddle inlet from Kalgin-Island to just
 

north of the-forelands. Extensive mixing of.theoceanic and inlet water
 

masses occurs here and current directions change four times daily. A
 

detailed analysis of tidal/seasonal changes in this area would provide a
 

more complete understanding of-the inlet circulation. Detailed
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investigations .of oceanographic .proeesses--should be-completed -prior to
 

offshore exploration and drilling in southern.Cook Inlet. Totential 
pollution from drilling muds is .currently of particular concern to 

fishermen in the Kachemak Bay area. Repetitive aerial.surveys of the 
bay would provide data on circulation which would be useful in selecting 

possible disposal-sites for the muds. Fifthj-the-utility-of imagery in 

measurement of suspended sediment concentrations- should-be investigated 

as a method for estimating deposition rates, dredging schedules, and 

ultimately,the longevity of harbors and small-boat-basins. 
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