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VIBRATION~TRANSLATION ENERGY TRANSFER IN VIBRATIONALLY
EXCITED DIATOMIC MOLECULES
Robert Lawrence McKenzie

Ames Research Center
CHAPTER 1
INTRODUCTION

1.1 New Aspects in Modern Vibrational Relaxation Processes

While the collisional excitation of vibrations in diatomic molecules has
been a frequently studied topic for decades, ™% an increasing interest in
processes that depend on the details of energy transfer to specific vibra-
tional states has put new demands on the analysis of such collisions. The
following comparison of the early class of relaxation processes with those
introduced in the past decade demonstrates the new features required in a
theoretical model of vibrational energy transfer.

Early studies of vibrational relaxation In gases were concerned mainly
with the influence of vibrational energy transfer on the bulk thermodynamic
properties during the relaxation process. Phenomena such as the absorption
and dispersion of ultrasonic waves®s® or the vibr§tiona1 excitation behind
shock waves’>8 were described analytically in terms of an effective "relaxa-
tion time," T, that characterized the rate at which the collisional exchange
of vibrational and translational energies brought the total energy in vibra-

tions toward equilibrium. Only a single relaxation equation was then

necessary, in the simple form:

*Submitted to York University as partial fulfillment of Ph.D., April 1976.
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dt T )
where e, is the total specific energy in vibrations and e$ is the corre-

sponding value at thermodynamic equilibrium with the local state of the gas
(see Appendix A for a list of symbols). The factors controlling these early
processes are evident in the derivation leading to equation (1.1) (e.g.,
Vincenti and Kruger,8 Ch. 7). The gas is considered to be an admi#ture of
harmonic oscillators in a thermal heat bath of structureless inert atoms. The
harmonic oscillator quantal properties allow only single-quantum transitions
and lead to the Landau-Teller" relationship describing the quantum number

dependence of rate coefficients:

kv,v—l = Vkl,O (1.2)

where kv v-1 denotes the rate coefficient for transitions from oscillator

s
state v to v-1 induced by oscillator-atom collisions. A set of simplified
rate equations describing the detailed kinetics can then be collected into a

simple equation from which the parameter, T, emerges in the form

~hw/kT

T=[(1-e Yy, oo/ml”! (1.3)

where w 1is the fundamental oscillator frequency and T, p, and m are the
kinetic temperature, density, and average molecular mass of the gas mixture,
respectively. Equations (1.1) and (1.3) combine to illustrate the principal
common feature of processes described this way; viz, the only collision param-
eter required is the rate of single~quantum transitions to the ground state.
The description is independent of the population distributions among higher
vibrational states and no assumptions regarding their definition is made. 1In
a more detailed account of the kinetics that includes the exchange of vibra-

tional energy between oscillators, Montroll and Shuler® show that a population

2



distribution of harmonic oscillator states rapidly recovers from an arbitrary
distortion and achieves a Boltzmann distribution described by some nonequilib-

rium "vibrational temperature."

The recovery occurs in a time period small
compared to T, causing the subsequent relaxation to proceed through a contin-
uous sequence of Boltzmann distributions. This result further reduce& any
concern for the detalls of energy transfer to excited vibrational states
beyond the description given by equation (1.2).

As experimental studies of vibrational relaxation became more detailed,
the kinetic models based on harmonic oscillator properties appeared less
capable of describing the observations. Motivated by soﬁe 1afge di;cfepancies
between theory and experiment in nonequilibrium supersonic expansions,
Treanor, Rich, and Rehm!0 recently showed that the small anharmonicity of most
diatomic molecules was sufficient to generate non—Boltzmann"distributions
among upper vibrational states during some relaxation processes. The impor-
tance of oscillator anharmonicity in the vibrational kinetics has since been

11-15

amplified by the introduction of infrared gas lasers, where the effects

of anharmonicity are essential to produce the necessary population inversions

among vibration-rotation states. 13

Some recent proposals using lasers to
selectively excite specific vibrational states for photochemical or isotope
separation experiments will also be strongly influenced by the effects of
anharmonicity. These modern applications of vibrational nonequilibrium con-
stitute a new class of relaxation processes that depend on the degree of dis-
tortion from a Boltzmann population distribution. Their analysis requires a
detailed solution to the set of relaxation equations — one for each contribut-

ing vibrational state — that describes the change in number density, N, of

each state v. A general form of the relaxation equations can be written as



dN_, .
r Z D, o, Fae (1.4

i v

where N; denotes the number density of all species or states i and kv'

1 sV

is the rate coefficient for transitions from state Vv' to v. Equation (1.2)
is not an accurate description of the quantum number dependence of kv',v
when the oscillator is anharmonic, and the selection rule allowing only
single-quantum transitions is also invalid. Thus the simplifications of
equation (1.4) leading to equation (1.1) and the concept of an effective
relaxation time given by equation (1.3) are no longer applicable. Rate coeffi-
cients for transitions from excited vibrational states are as essential to the
analysis of such processes as kl’0 is and vibrational anharmonicity will have
a major influence on their values. Since this study is concerned mainly with

the rate of energy transfer to excited states, oscillator anharmonicity is

therefore a basic feature to be included.

1.2 Role of Vibration-Translation Energy Transfer

In most modern applications involving vibrational nonequilibrium and
particularly in the analysis of infrared gas lasers, the collisional exchange
of vibrational and translational energies must usually be considered as one of
several paths for energy transfer to the molecular state in question. As
equation (1.2) indicates, the rate of vibration-translation (V-T) energy
transfer increases with quantum number even in the simplest model of the
oscillator. Thus, the V-T process can dominate the flow of energy from upper
vibrational levels even where it may be insignificant to the kinetics of lower
levels. In some cases, it may provide the principal path for vibrational
energy loss from the system. An essential feature of the V-T rates is there-

fore their dependence on the initial state quantum number, particularly in

4



deexcitation processes where excess vibrational energy has been produced.
Unfortunately, very little quantitative information defining the quantum num-
ber dependence of V-T rates for even the simplest diatomic molecules is
presently available from either experiment or theory.

Experimental ground-state excitation rates have been obtained from mea-

16 or in fluorescence experimentsl7 for many years

surements behind shock waves
by determining the value of T in equation (1.1) that best fits the observa-
tions. However, the difficulty of obtaining experimental V~T rates for mole-
cules in well-defined excited vibrational states is indicated by the sparsity
of attempts. Numerous experimenters have recently measured the rates of
vibration-vibration (V-V) energy exchange between pairs of oscillators in
excited states!8»19 because the fast V-V transfer can easily be made a dominant
mechanism; but to date, only one comprehensive set of upper—level V-T rate

measurements has been reported.18

Even then, while the experiment was cleverly
designed and carefully analyzed, the conditions were complex and the measure-
ments required substantial correction to compensate for extraneous modes of
energy transfer.

Theoretical studies addressed to the analysis of initially excited oscil-
lators have been similarly sparse. Since the relaxation time, T, is deter-
mined solely by the rate of single—quantum transitions to the ground state,
kl,O’ the usual theoretical approach has centered on a harmonic oscillator
model of the molecule initially in the ground state. The small-amplitude
oscillations characteristic of the ground state then allow a linearized inter-
action potential between the oscillator and an incident particle to be used.

By assuming further that the particle trajectory is collinear with the molecu-

lar axis and by adopting a semiclassical approximation, the linearized



interaction makes possiblé an exact and cbnvenient analytical solution for the
oscillator transition probabilities for any initial state. However, the
inaccuracy of the harmonic oscillator model has been demonstrated by Mies20-21
even for transitions originating from the ground state. Mies found that the
use of an anharmonic oscillator potential introduces matrix elements associated
with oscillator transitions that are no longer equal on the diagonal. (A har-
monic oscillator with an interaction linear in the oscillator coordinate has
constant diagonal matrix elements.) The nonzero differences in the diagonal
matrix elements introduce additional phase differences between the time-
dependent oscillator eigenfunctions during a collision and can lead to large
corrections to the harmonic oscillator model. Because the origin of these
corrections resides in the unperturbed oscillator eigenfunctions (from which
the matrix elements are computed), their effects are not always réproduced by
the popular practice of simply inserting oscillator eigenenergies, corrected
for anharmonicity, into a harmonic oscillator theory. Nevertheless, in the
absence of better analytic solutions, such theoretical models are frequently
used to predict the quantum number dependence of V-T rates. 11715 Thus, a need

clearly exists for the development of a suitable analytic solution containing

anharmonicity as a fundamental feature.

1.3 Purpose and Objectives of This Study

While the modern literature is abound with comprehensive and detailed
studies of the collisional excitation of diatomic molecules in vibration and
rotation (see almost any recent issue of the Journal of Chemical Physics),
vibrational states higher than the second are rarely considered. The objec-
tives are usually either to examine improved techniques for calculating the

collision dynamics or to obtain a quantitatively accurate estimate of the

6
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inelastic cross sections. The collision models used in the latter case are
usually fully quantum mechaniéal and hence are as exact as the form of the
interaction potential chosen for study. These studies are clearly 5 necessary
step in the understanding of molecular collision dynamics since they provide
the most precise test of our ability to explain the experimental observations.
Unfortunately, the computational requirements to obtain such precision are
expensive and tend to limit the scope of such studies. To a pragmatist con-
cerned with the analysis of a modern macroscopic process, these studies of
microscopic collision dynamics are seldom able to provide much useful informa-
tion about the thermally averaged rate coefficients for molecules in excited
states. Furthermore, even if exact calculations were typically carried far
enough to produce rate coefficients, a means of numerically reproducing the
results inexpensively would be required before they could be conveniently
applied in a solution of the macroscopic rate equations. This study is
addressed to the pragmatist and to four corresponding objectives.

The first objective is to examine the inelastic collision dynamics of
diatomic molecules in an arbitrary initial state struck by a structureless
atom. The purpose is to explore the qualitative features of such encounters
and to identify the parameters and physical features contributing most to the
prediction of the associated energy-transfer rates. By including a complete
account of the coupling between interacting vibrational states, especially as
it is amplified by anharmonicity, the results provide a basis for evaluating
more approximate treatments of the collision process that may have emphasis on
other aspects, such as those with sufficient simplifications to allow analytic

solution or those including coupled rotational motion.



A second objective of this study is to evaluate several analytic colli-
sion models in popular use for predicting the quantum number dependence of V-T
rate coefficients. This objective is motivated by the importance of having an
inexpensive means of generating values of kv,v' when solving the detailed
rate equations typified by equation (1.4). A collision model with sufficient
generality to be applicable for all conditions of interest in modern applica-
tions will necessarily require numerical solution, and the first objectives of
this study are met only with such a model. The solutions are time consuming,
however, and would be prohibitively expensive in a practical application.
Consequently, the usual practice is to obtain a simple analytic approximation
by introducing sufficient assumptions to decouple the interactions between
oscillator states and to linearize the interaction between the oscillator and
its collision partner. Several such solutions have been extracted, but they
all exclude one or more properties of the collision process that remain impor-
tant in a generalized model. Little definition, if any, of the range of
applicability of these analytic solutions appears in the literature in other
than the most general terms. The second objective described here is an effort
to define more explicitly their range of applicability for predicting excited-
state rate coefficients.

A third objective of this study is to evaluate the consequence of
several simplifying assumptions regarding the equations of motion and the col-
lision geometry that were necessary to meet the preceding objectives. A fun~
damental simplification to the equations of motion is achieved here by adopt-
ing a semiclassical or "impact parameter" description of the collision
dynamics.zz'23 The path of the incident particle is obtained classically,

while the oscillator response is treated quantum mechanically. As a result,
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the secqnd—order quantum mechanical equation of motion is reduced to two first-
order differential equations that are subsequently decoupled. The complexity
of solution is thereby reduced greatly. However, the semiclassical approxima-
tion fails to properly account for the quantal interference between colliding
nuclei while the decoupling of first-order equations obviates the conservation
of total energy. These shortcomings have been partially compensated in similar
harmonic oscillator models, but the success of the compensations has not been
tested for anharmonic oscillators. Part of this third objective is to examine
and define the limitations of the semiclassical approximation when applied to
anharmonic oscillators. The results will contribute to a more complete under-
standing of the associated analytic solutions that are also based on the semi-
classical approximation.

A final objective of this study is to evaluate the influence of coupled
rotational motion on the rate of vibrational energy transfer. The necessity
of including a multitude of vibrational states with large quantum numbers to
study their interactions required a reduction elsewhere in the complexity of
the molecular motion to keep the problem within practical bounds. The obvious
choice was to eliminate any account of the rotational motion by limiting the
collision geometry to one-dimensional collinear encounters. This procedure is
commonly applied throughout the literature for similar reasons and is usually
based on the presumption that collinear collisions are the most effective for
inducing vibrational excitation. However, intuitive notions suggest that the
inelasticity of three-dimensional collisions is partitioned among vibrational
and rotational degrees of freedom in the molecule, in varying amounts, depend-
ing on the molecular inertial properties and the initial state. Kelly and

Wolfsberg?4 have used a fully classical model to demonstrate that collinear



collisions are not always the most effective for converting vibrational energy.
For example, atom collisions with molecules possessing widely spaced rotational
states can induce vibrational transitions with very little energy converted to
translational motion. Vibration-rotation energy transfer is then a more cor-
recf description of the event. On the other hand, a full account of the
coupled vibration-rotation motion in a three-dimensional collision model must
include at least all of the energetically accessible rotational states in each
vibrational level. As a result, collision energies sufficient to induce vibra-
tional transitions will encompass hundreds of multiply degenerate rotational
states in most molecules. Since the occupation of each state must be treated
as a separate variable, an extremely large system of coupled differential
equations is required whose numerical solution is intractable for all but the
simplest cases. Fortunately, some methods have recently been introduced that
average the combined action of degenerate states and reduce the problem to an
expenéive, but tractable, size. Several of these methods are evaluated and
applied here, in conjunction with a three-dimensional semiclassical collision
model. From another point of view, the objectiQe is to determine the conse-
quences and validity of using a collinear one-dimensional model to predict the
vibrational quantum number dependence of vibrational energy fransfer rates.

The results give considerable credibility to the preceding conclusions of this.

study derived from collinear models.

1.4 Overview of the Contents and Results

In chapter 2, the basic concepts and assumptions commonly applied in the
analysis of vibrational energy transfer are reviewed. A brief historical
review of vibrationally inelastic collision models is first presented that

provides a guide to a number of more complete review papers. The concepts

10
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and physical factors that control the rate of energy.transfer are then dis-
cussed, and the several theoretical approaches from which the rates may be
estimated aré evaluated as they apply to the objecti?es oflthis study. The
semiclassical approximation is shown to be the most suitable approach to the
objectives previously stated.

Having established the primary theoretical approach to be one in which
the incident particle path is computed classically, chapter 3 examines the-
features of the interaction potentials that determine both the internal mole-
cular motion and the classical trajectory. Arguments are presented showing
that a Morse-oscillator/rigid-rotor description of the molecule is adequate
for the purposes of this study and that the classical trajectory may be deter-
mined from just the short-range repulsive forces between colliding nuclei.

In chapter 4, a collinear, semiclassical, collision model for predicting
V-T transition probabilities from arbitrary initial states is developed and
evaluated. Comparisons are made with equivalent, exact, fully quantum mechani-
cal solutions obtained from the literature for a broad range of collision
parameters, molecular types, and initial states. While similar comparisons
have been made before, they have been less complete and limited to harmonic
oscillator models of the molecule initially in the ground state. This work
includes a more extensive variation of collision parameters and tests the
application of the semiclassical approximation to an anharmonic Morse oscil-
lator in several elevated initial states. In the past, there has been a
variation of opinions on the best method of compensating for the lack of
energy conservation in the semiclassical approximation. The comparisons of
this study show that the correction is nearly the same from all methods sug-~

gested and no clear choice of the best method is possible — nor is a choice

11



necessary for they are all adequate in the range of collision energies of
interest. Finally, the éomparisons in chapter 4 bring to light the rééult
that, while the semiclassical approximation works well for a broad range of
collision parameters when the molecule is treated as a harmonic oscillator, the
more realistic anharmonic oscillator model imposes some definite limitationms.
When the anharmonic oscillator is homonuclear and struck by a collision partner
whose mass is less than either molecular nucleus, the semiclassical approxima-
tion is very successful. However, its application to heteronuclear molecules
or to homonuclear molecules struck by a heavy collision partner produces
anomalous resonances that do not appear in an equivalent harmonic oscillator
model. These anomalies are partially eliminated when additional coupling
between the oscillator and the incident particle is introduced.

With the limitations of the semiclassical approximation established for
anharmonic oscillators, chapter 5 describes an investigation of the factors
that influence the prediction of V-T rates for initially excited molecules.
The capability of several analytic theories for reproducing rate coefficients
predicted by a more exact numerical model is also evaluated. Unfortunately,
the most widely used and simplest analytic formula also produces the poorest
estimate of quantum number dependence. But two slightly less convenient
analytic models are found to reproduce the more exact predictions for well-
defined and easily identifiable ranges of conditions. Both favorable analytic
models are based on a collinear semiclassical description of the collision.

The validity of the collinear collision models used in the previous
chapters is evaluated in chapter 6 using a three-dimensional semiclassical
model developed for that purpose. A complete model is first constructed that

allows an arbitrary number of coupled vibration-rotation states to be included.
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It provides a basis for evaluating the accuracy of some approximate
formulations in which the combined effects of the degenerate projection states
associated with each rotational quantum state are decoupled and treated col-
lectively. The ability to decouple the degenerate states makes the objective
of this part of the study possible. An "effective Hamiltonian'" approximation
is found to be the most useful, and it is applied to a study of the influence
of rotational energy transfer on the rate of vibrational excitation. The
results show that the effects of rotations can be segregated into three
classes. TFor molecules like hydrogen or the hydrogen halides that have a
rotational frequency only a magnitude smaller than the fundamental oscillator
frequency, the rotational coupling is large and energy transfer can proceed
via rotation-vibration transitions with very little conversion of translational
energy. The behavior of molecules with these properties is further separable,
depending on the initial angular momentum, but the use of a collinear colli-
sion geometry is physically unrealistic in any case and the corresponding
analytic rate formulas are consequently of little value. On the other hand,
the third and much larger class of molecules, in which a multitude of rota-
tional levels is contained in each vibrational state, is not influenced by the
accompanying rotational motion induced in a three-dimensional collision. Rate
coefficients obtained from a collinear collision model then reproduce all of
the physical features contained in the three—-dimensional results and predict
an essentially identical dependence on vibrational quantum number when com—
pared with the net vibrational transition rate summed over all final rotational
states. Correspondingly, the predictions for such molecules are also shown to
be insensitive to the initial rotational state of the molecule. These results

lend considerable credibility to the results from collinear collision models
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and to the analytic solutions that depend on them. Finally, chapter 7
summarizes the new aspects of the results of this study and presents some con-

siderations for additional theoretical and experimental study.
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CHAPTER 2
CONCEPTS IN VIBRATIONAL ENERGY TRANSFER

In the preceding chapter, methods for describing the macroscopic behaﬁibr
of a vibrational relaxation process were discussed. The microscopic aspects
of the process were contained in a thermally averaged rate coefficient, kv,v'r
of undefined nature. The remainder of this study concentrates on the physical
factors that affect kv,v' and on the theoretical models used to evaluate it.

This chapter provides a general discussion of the concepts leading to a
theoretical model. A brief historical review is given first that provides a
commentary on some pertinent publications describing the various concepts in
greater detail. The latter part of this chapter defines the controlling
dynamic and molecular parameters affecting kv,v' and reviews the general con-

siderations leading to a choice for the fundamental theoretical approach to be

applied in the remainder of this study.

2.1 Historical Summary and Review Literature Guide

In the 1930's and before, the anomalous absorption and dispersion of
ultrasonic waves propagating in gases were the principal phenomena motivating
the study of vibrational energy transfer. All fluids absorb ultrasonic waves
through shear viscosity losses and, in most cases, through heat conduction.
By those mechanisms, they all display a corresponding dispersion. However,
molecular fluids (i.e., those with a capacity for internal-energy storage)
have an additional absorption and dispersion originally accounted for by
heuristically introducing a "bulk viscosity" into the Navier-Stokes equations
that describe the process. Investigators soon recognized, however, that the

artificial viscosity was a manifestation of intermal-energy absorption in the
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molecule. As early as 1928, Herzfeld and Rice® explained the origin of the
additional absorption and dispersion conceptually in terms of collisional
energy transfer between the translational and internal degrees of freedom at a
finite rate. A few years later, Oldenberg2?® discussed molecular collisions
qualitatively to show the inelasticity of rotational and vibrational motion.
In 1931, Zener3:26 was the first to give a detailed mathematical treatment for
vibrationally inelastic collisions. His theory was based on a quantum mechan~
ical perturbation method, referred to as a '"distorted wave approximation,"
applicable to low collision energies where the transition probabilities are
small. Then, in 1936, Landau and Teller published their historic paper in
which the properties of the rate coefficient were explored, again from a more
conceptual point of view. They used partially intuitive arguments (with no
reference to the earlier work) to show that equation (1.2) described the rudi-
mentary dependence of kv,v—l on Vv and they obtained the equally important

dependence of k

on temperature, given by log k, . ; < T1/3,
b

v, V-1

Later, interest shifted away from theoretical work addressed to ultra-
sonic relaxation phenomena, but increased in the study of a very similar
inelastic molecular collision problem. The accommodation coefficient, related
to the energy transfer between gas molecules and a solid surface, was studied
extensively, first by Jackson and his coworkers2? and later by Lennard-Jones
and his coworkers.28 The paper by Jackson and Mott27b became particularly
noteworthy because it provided a simplified mathematical derivation of the
"distorted wave approximation" still referred to in modern texts.

Only a few contributions to the field of vibrational relaxation followed

until the early 1950's. For example, one-dimensional treatments by Zener and

other early investigators were extended to three-dimensional collisions.
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After 1950, Takayanagi?® introduced the "modified wave number" approximation
designed to reduce the numerical labor in three-dimensional problems and
applied it to rotational transitions in hydrogen. Meanwhile, Schwartz,
Slawsky, and Herzfeld30 published their well-known paper in which vibrational
transitions were treated with the distorted wave approximation. Their closed-
form analytic formulas for resonant and nonresonant transition probabilities
in collinear collisison have become the most widely used means of estimation
until recent times. Their formulation, often referred to as the SSH fheory,
was later extended to three-dimensional collisions but for a nonrotating
molecule. 31

Experimental methods for measuring vibrational relaxation times were also
developing. Improved rate data were obtained from measurements in jetsgz’33
and behind shock waves3%>3% at other than room temperatures. The existing
perturbation theories were not always applicable to the analysis of these new
experimental techniques, however, because the theories were limited to low-
energy collisions pertaining mostly to near-room temperatures. In 1958,
Kerner3® obtained a nonperturbative exact solution to the Schrodinger equation
for a harmonic oscillator in the presence of a time-dependent forcing function.
The only constraint on the forcing function was that it be linear in the
oscillator coordinate. Kerner's solution was subsequently applied by Treanor 37
in a semiclassical treatment of high-energy collinear collisions, thereby
achieving an analytically exact formula in closed form for the transition
probabilities of a harmonic oscillator at all collision energies.

The 1960's brought on a deluge of publications concerned with vibrational
relaxation phenomena that has persisted to this day. So much experimental

38

information became available that Millikan and White were able to correlate
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empirically vibrational relaxation times for a large number of diatomic mole-
cules in terms of the fundamental oscillator frequency and the reduced mass of
the collision pair. Their correlation was only modestly guided by theory, how-
ever. During this period, theoretical studies were stimulated by a rapidly
growing computer technology. Consideration of exact numerical solutions to the
collision problem became a reasonable occupation; but vibrationally inelastic
solutions were awkward until Secrest and Johnson3® developed a numerical method
of "amplitude density functions" that allowed one-dimensional scattered wave
functions.to be obtained efficiently. Their methods have since been extended
to treat three-dimensional collisions with vibrational and rotational
inelasticity. %0

The early 1960's also marked the appearance of some review articles of
modern interest that describe the various theoretical approaches in detail.
One of the first was the chapter by Herzfeld"! on "Relaxation Phenomena in
Gases." His discussion is based primarily on the application to ultrasonic
absorption and dispersion, but he gives a clear account of the early theoreti-
cal approaches in which the fundamental collision parameters are described.
He later provided a more complete account in textbook form.® Cottrell and
Mlt:CoubreyL’2 took a slightly more modern approach in their book by dealing
with the quantum mechanical aspects of the collision process in greater detail.
However, their discussion remains physically descriptive and valuable as an
introduction to the theoretical approximations leading to analytic solutions.
Takayanagi“S provided the first comprehensive review of the theoretical aspects
of vibrationally and rotationally inelastic collisions covering the period up

to 1963. With the rapid developments in the field following 1963, Takayanagi®*"
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published a second, equally comprehensive, review covering the developments to
1965.

The reviews published before 1965 preceded the time when exact quantal
solutions for vibrationally inelastic collisions were obtainable with suffi- -
cient ease and confidence to serve as a basis for testing the approximate
methods. Prior emphasis was directed toward the comparison of approximate
theories with experiment as a test of thelr validity. A more recent review by
Rapp and Kassal*S was therefore addressed, in part, to an evaluation of the
earlier theories by comparing them with exact numerical solutions. With the
greatly increased detail of information about the collision dynamics in view,
both from fully quantum mechanical and fully classical numerical solutions,
Rapp and Kassal evaluate many of the assumptions contained in the approximate
collision models and provide a useful guide to their range of applicability.
Their article also deals with some aspects of modern interest such as the
transfer of vibrational energy between oscillators and the effects of oscil-
lator anharmonicity. However, at the time of Rapp and Kassal's writing, the
new class of vibrational relaxation processes had not quite impacted the
theoretical community. Their emphasis therefore centered on the dynamics of
oscillators in or near the ground state.

The beginning of this decade brought in widespread efforts to deal with
the new requirements in the analysis of vibrational energy transfer. Rich and .
Treanor*6 presented a comprehensive review of the aspects of vibrational
relaxation in gasdynamic flows. Their discussion is devoted mainly to non-
equilibrium flow processes and hence to an application of vibrational rate

theories, but they also provide a detailed description of many aspects of
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vibrational energy transfer that motivated this study and their review serves
as an introduction to the new class of relaxation processes.

With numerical investigations now a practical and popular approach to
molecular physics, this decade begins the era in which molecular collisions
can be studied in much greater detail. Many of the new methods in "numerical
physics" are described by Secrest“? in a recent review of their application to
rotational and vibrational energy transfer. Most methods are motivated by the
need to reduce the numerical labor and expense. For example, activity in the
use of fu}ly classical calculations for reactive and vibrationally inelastic
collisions has flourished with the development of "Monte Carlo" or random-
selection methods for averaging the results of many trajectories and orienta-
tions."*8 Another new concept is the semiquantal approximation, developed
independently by both Miller"® and Marcus.®? Also termed the "classical
S-matrix" theory, the principal distinction of the semiquantal approach from
earlier semiclassical methods is that, in the former, all degrees of freedom
are treated classically but with the quantum-mechanical principle of super-
position subsequently applied. While the method allows pure quantum effects
such as tunneling, selection rules, and interference to be studied and has
given reasonably accurate predictions for vibrationally inelastic collisions,51
its limitations are not yet fully charted. Two reviews..of the theory have.
recently been published by Miller.52’53

A final milestone that has contributed significantly to the results of
this study is the success of several efforts to average the combined contribu-
tions of degenerate rotational states and thereby make the study of vibration-

rotation interactions feasible. Forthcoming discussions in this study demon-

strate the futility of a complete treatment of the problem. The first
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successful solution to the problem was presented by Rabitz,sh who formulated

an "effective Hamiltonian" that nullifies the contribution of individual pro-
jection quantum states before the equations of motion are solved. Following
his work, McGuire and Kouri®® proposed a "jz—conserving" approach of some simi-
larity to the effective Hamiltonian approximation. A different method of
reducing the rotational aspects of the problem has been studied by Pack and

his coworkers,%® who treat the rotational motion in a "sudden approximation,"
well known in its basic form from numerous modern textbooks on quantum mechan-
ics. The relationship of all of these methods fdr decoupling thé internal
angular momentum of the molecule has recently been examined by Secrest. >’

These methods and their application represent a large part of the current

activity in studies of vibrationally and rotationally inelastic collisions.

2.2 General Considerations

Considered in the following paragraphs are some of the general concepts
and controlling parameters that form the basis of most theoretical models for
collisions involving a diatomic molecule. The general features of several
theoretical approaches are then reviewed to guide the choice of a method best

suited to the intentions of this study.

2.2.1 Modes of Energy Transfer in Diatomic Molecules

Binary collisions involving a diatomic molecule are not yet treated in
general terms entirely from first principles. Ab initio approaches to the
many-body problem presented by three or more nuclei and their attendant elec-
trons are still intractable on present-day computers. Fortunately, when elec-

tronic transitions are not of concern, an adequate collision model does not
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require an explicit description of the coupled nuclear and electron motion but
instead relies on the nearly instantaneous adjustment made by the electrons to
the nuclear motion. The problem then reduces to one of describing only the
dynamics of the nuclear motion during a collision but requires interaction
potentials independently obtained by some less rigorous means.

In this study, our interest 1s further restricted to collisions only of a
diatomic molecule with a heavy structureless particle such as an atom in its
ground electronic state. The inelasticity of the collision is then confined
to thé internal rotational and vibrational energy modes of just one molecule
and we avoid the complexity of dealing with the exchange of internal energy
between molecules. Energy transfer still occurs to any of several internal
modes, however, as figure 2.1 illustrates. A characteristic of most diatomic
molecules 1s the widely separated vibrational eigenenergies (heavy line levels

in fig. 2.1), each with a manifold of closely spaced rotational states (light
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Figure 2.1.- Modes of energy transfer in a diatomic molecule.
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line levels in fig. 2.1). Thus, a collision with sufficient energy to excite
vibrational motion in the molecule will simultaneously excite many rotational
states as well. The arrow labeled V-R-T (vibration-rotation-translation) in
figure 2.1 typifies those kinds of transitions. The internal energy change
appearing in the molecule will be reflected as a change in the translational
energy of the colliding pair. While a complete description of V-R-T energy
transfer is complex, certain limited paths for energy transfer are often the
dominant mechanism and they can then be treated separately. For example,
near-resonant transitions between vibration-rotation states (V-R in fig. 2.1)
may be dominant in some molecules with a suitable initial condition. 1In this
case, any energy traded with translation appears only as an elastic deflection
after the encounter. In another situation, the small amount of energy required
to induce a rotational transition within the same vibrational state makes the
exchange of rotational and translational energies (R-T in fig. 2.1) probable
at collision energies where the vibrational state of the molecule may be
ignored. The molecule is treated as a rigid rotor in such circumstances. The

analyses of these limited cases involving rotation are usually simpler than

-
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(a) Three-dimensional encounter.
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(b) One-dimensional collinear encounter.

Figure 2.2.- Collisional motion.
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the general case, but a three-dimensional collision geometry is still required
as shown in fig. 2.2(a). In contrast, an even simpler but more restricted
treatment of the collision is one in which no rotational transition occurs.
Translational energy is exchanged only with vibration (V-T in fig. 2.1).
Events of this nature can occur in a three-dimensional encounter of arbitrary
orientation because transitions always take place with a probability less than
unity (making no rotational transition also probable), but a frequently used
approach that drastically reduces the complexity of the problem is to assume
that the most efficient producers of vibrational transitions are collisions
with trajectories along the intranuclear axis of a nonrotating molecule. The
corresponding one-dimensional collinear geometry is illustrated in fig-

ure 2.2(b). As it turns out, we shall find in this study that the collinear
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where unsubscripted k is Boltzmann's constant and u is the reduced mass of
the collision., If m; denotes the mass of nucleus 1, then, using the nota-
tion in figure 2,

m, (my, + m)

- (ma +omy + mc) (2.3)

u

Methods of performing the integrals in equations (2.1) and (2.2) are
discussed in greater detail in chapters 5 and 6 where specific applications
are made. At this point, one only needs to recognize that obtaining the tran-
sition probability, PéEQP)’ from a semiclassical treatment or the differential
cross section, do/dQ, from a full quantum mechanical treatment is the funda-

mental problem. Once either of these results is obtained, a calculation of

the corresponding rate coefficients is relatively straightforward.

2.2.3 Controlling Variables in Vibrational Energy Transfer
For a collision to affect the vibrational motion of an oscillator, the

disturbing force created by the impacting particle must vary in a time period
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the general case, but a three-dimensional collision geometry is still required
as shown in fig. 2.2(a). In contrast, an even simpler but more restricted
treatment of the collision is one in which no rotationmal transition occurs.
Translational energy is exchanged only with vibration (V-T in fig. 2.1).
Events of this nature can occur in a three-dimensional encounter of arbitrary
orientation because transitions always take place with a probability less than
unity (making no rotational transition also probable), but a frequently used
approach that drastically reduces the complexity of the problem is to assume
that the most efficient producers of vibrational transitions are collisions
with trajectories along the intranuclear axis of a nonrotating molecule. The
corresponding one-dimensional collinear geometry is illustrated in fig-

ure 2.2(b). As it turns out, we shall find in this study that the collinear
collision model is surprisingly useful for predicting the rate of vibrational
energy transfer when many rotational states are associated with each vibra-
tional mode. Unfortunately, the incomplete nature of the collinear model
makes it awkward to obtain a rate coefficient from the detailed collision
dynamics calculated, whereas rate coefficients evolve naturally from the

results of a three-dimensional model, as the following discussion demonstrates.

2.2.2 Rate Coefficients from the Collision Dynamics

The relationships between a thermally averaged rate coefficient and the
results of a microscopic collision model depend somewhat on the theoretical
description used to model the collision. For example, a semiclassical formu-
lation in which the incident particle trajectory is obtained from the classical
equations of motion deals with collisions characterized by the parameters E
and b, where E is the initial, relative, kinetic energy in a center-of-mass

reference frame and b dis the impact parameter measuring the minimum distance
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between mass centers of each collision partner that would occur if the rela-
tive path were not deflected. The outcome is a transition probability, Péﬁe?)
between each pair of internal quantum states, v and v', included in the molecu-
lar model. A necessary step in obtaining the corresponding rate coefficient is
to first produce the total cross section, 063%'. In the semiclassical frame-

work, a total cross section may be generated by repeating the calculation for

a sufficient range of impact parameters to evaluate the integral

c(E) = P(E,b) 2wb db (2.1)
vv! !
(o]

Likewise, a fully quantum mechanical description of both the molecule and
incident particle motion follows a similar procedure. However, the incident
particle path is not localized so the collision must be characterized instead
by E and a final scattering direction, Q. The outcome is a differential
cross section do/dQ, which may be computed for all elemental solid angles and
integrated over the sphere by an expression similar to equation (2.1). 1In
contrast to any three-dimensional method, equation (2.1) or its equivalent
cannot be applied in a collinear collision model because b or § are not
included variables. Thus, obtaining 052%' from a collinear description
requires some kind of "steric factor" on an "effective hard-sphere cross sec-—
tion" to be introduced. These additional artifacts are discussed in greater
detail in chapters 5 and 6 where collinear collision models are evaluated.
Once the cross section is in hand, the desired rate coefficient for

vV transitions is obtained by averaging the energy-dependent total cross

sections over a thermal energy distribution characterized by a kinetic temper-
ature T. Remembering that E is the relative kinetic energy in a center-of-
8

mass frame, the result is
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where unsubscripted k is Boltzmann's constant and yp is the reduced mass of
the collision. If m; denotes the mass of nucleus i, then, using the nota-
tion in figure 2,

my (m + m)

u (2.3)

= (ma +omy + mc)

Methods of performing the integrals in equations (2.1) and (2.2) are
discussed in greater detail in chapters 5 and 6 where specific applications
are made. At this point, one only needs to recognize that obtaining the tran-
sition probability, PéE%P), from a semiclassical treatment or the differential
cross section, do/df, from a full quantum mechanical treatment is the funda-

mental problem. Once either of these results is obtained, a calculation of

the corresponding rate coefficients is relatively straightforward.

2.2.3 Controlling Variables in Vibrational Energy Transfer

For a collision to affect the vibrational motion of an oscillator, the
disturbing force created by the impacting particle must vary in a time period
that is comparable with or less than the normal oscillator period. Otherwise,
a slowly applied disturbance simply allows the oscillator to adjust adiabati-
cally, leaving its final condition unaffected by the encounter. Conversely,
an impulsively applied force will severely disturb the phase of the oscillator
motion and efficiently upset the proportions of energy in vibration, rotatiomn,
and translation. These conditions can be expressed more explicitly by denot-
ing a representative time interval in which the colliding pair interact as

T and letting v, represent the fundamental oscillator frequency. We then

o
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argue that energy transfer will occur with increased efficiency as 7T, becomes

Cc

less than the oscillator period 1/v0, that is, t,v, > 0. One way to evaluate

c
the magnitude of T, 1is by noting that the interaction distance for collisions
influenced mainly by repulsive forces can be loosely measured in terms 6f a
range parameter L., Then T, = 2L/u, where u dis the average relative colli-
sion speed. If the relative kinetic energy is E and u is thé.reduced

mass, then the relative collision speed is /?§E7a7 and the efficiency of

energy transfer will increase as

2u

E -0 (2.4)

Ly,

We should therefore expect the quantities related to the efficiency of energy
transfer, such as P(E,b) and o(E) , to increase with E and to decrease as

! '
the oscillator frequency, interaction range, or nuclear masses are made
larger. Note that the impact parameter, b, could also serve as a measure of
the interaction range when it exceeds L. Collisions at increasing b will
become more adiabatic with an accompanying decrease in P(E,p).

vV

The preceding relationships are sometimes described in terms of an

"adiabaticity parameter"
(2.5)

The larger & becomes, the more adiabatic is the encounter. Values of §
below unity lie in the '"sudden" region. Similar ideas are applied to rota-
tional motion as well simply by replacing Vo with the fundamental rotational

frequency, v Note that in many molecules, v, >> v, so that collisions in

re
some energy range may be adiabatic with regard to vibrations while sudden in

regpect to rotations.
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The effects of varying £ can be made slightly more quantitative by con-
sidering its sequel, the '"'resonance function,'" R(£), a measure of the effi-
ciency of energy transfer. If AE(f) 1is the average energy transferred in a
collision characterized by £, we can define

R(E) = AE(E)/AE(E = 0) (2.6)
where AE(fE = 0) is the energy transferred in the sudden limit. Although the
computation of R(E) requires a solution of the detailed equations of motion,
the outcome for atom—molecule collisions appears approximately as

R(E) ~ e ° (2.7)
Hence the efficiency of energy transfer can be expected to decrease exponen-
tially as the encounter becomes more adiabatic. This feature will manifest
itself in the following chapters by the use of semilogarithmic plots for all
quantities related to R(£) when plotted as functions of the variables con-

tained in &£.

2.3 Theoretical Methods for Modeling Collision Dynamics

The preceding discussion made use of simple conceptual arguments to char-
acterize the collisional transfer of energy, but an estimate of the amount of
energy transferred can be obtained only from a detailed solution of the equa-
tions of motion. The motion is customarily described in the literature using
one of three levels of quantization: (1) a fully classical treatment in which
quantization is imposed artificially on the internal energy of the molecule
before (and sometimes after) the collision, (2) a semiclassical approximation
in which the path of the incident particle is obtained classically but the
molecule response is handled quantum mechanically, and (3) a fully quantum-
mechanical formulation in which all members of the system are represented in a
quantum~mechanical wave equation. (A fourth intermediate level of quantization
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might also be given as the semiquantal method developed by Miller“? and

Marcus50

in which the phase distortions of the motion are obtained classically
but subsequently treated quantum mechanically. The validity of the semi-
quantal approximation in treating vibrational energy transfer is still a topic
for study, but it appears to give satisfactory results for the few examples
examined51s58762 g54 has several advantages worthy of consideration. At the
time this study was begun, however, the implications of the semiquantal
approximation were not clearly established, precluding its further considera-
tion here.) To choose the most sudtable theoretical method for meeting the

objectives of this study, we now briefly consider the general features of each

of the three principal methods of approach.

2.3.1 Classical Collision Theories

A large number of fully classical calculations for collisions involving
the vibrational and rotational motion of a diatomic molecule have been carried
out in recent times.2%>%48:63767 Modern results have shown that, when the
oscillator zero-point energy is included (a quantum limit to the minimum vibra-
tional energy), classical calculations for the total transfer of vibrational
energy reproduce the equivalent quantal predictions quite well. This is not
too surprising if one notes that the transfer of vibrational energy does not
depend on any pure quantum effects such as tunneling or wave interference.
However, a kind of quantum effect is ignored in a classical treatment when a
continuum of energy is transferred to the molecule without restriction to
discrete quantum increments. Collision energies in a moderate thermal range
excite only a few vibrational quanta so that the partitioning of energy into
widely separated quantized levels, excluded in a classical treatment, may have

some influence on the molecular motion. The validity of a classical
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description that ignores these effects is not clear. For rotational motion,
quantum selection rules impose clearly identified limitations on the path of
energy transfer throughout the internal states of the molecule. The effects
of these limitations on the total energy transferred are not very severe in
molecules where the rotational energy spacing is small and continuum-like but,
again, the criteria for treating the rotational motion classically are not
obvious. Finally, a classical description of the collision dynamics reveals
only the total energy transferred to the molecule, but it provides no rigorous
description of the manner in which the energy is partitioned among quantized
internal states. Since the objectives of this study pertain specifically to
the rate of energy transfer to individual internal states, a classical colli-
sion model would require considerable interpretation to produce such results.
Hence the use of a fully classical description of the collision dynamics does

not appear to be suitable for this study and no further consideration has been

given to it.

2.3.2 Quantum-Mechanical Theories

Fully quantummechanical calculations of wvibrational and rotational
energy transfer have also been abundant in recent literature,39,40,54-56,68
As the opposite extreme to classical treatments, they contain a complete
description of the energy deposition and provide an exact basis for comparison
with more approximate methods. The difficulties associated with a full quan-
tal formulation lie mainly in the mathematical and numerical requirements to
obtain a solution. The radial motion of the system is governed by a linear
second-order differential equation with at least two independent variables.
A numerical solution involves matrix manipulation and quadrature integration.

While general methods for dealing with these numerical aspects have
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become highly developed, their incorporation into a complete algorithm for the
collision process is not an inviting task. Even putting that inconvenience
aside, the experience of others®*~ 56 has shown that the computing time neces-
sary to reach a complete solution varies as the cube of the number of coupled
molecular internal states included in the calculation. For calculations
involving both vibrational and rotational states, this cubic dependence has
been the primary factor restricting comprehensive studies of the energy trans-
fer for all but a few special molecules like H,. To impose similar limita-
tions on this study would yield results little different from previous work.
Several approximations to the quantal formulation have been devised which
allow solutions to be obtained with less effort. The recently developed semi-
quantal method®%s50 is one example, but a much older and more easily applied
approximation is the "distorted wave' approach first proposed by Zener3:26 and
later reformulated by Jackson and Mott.27P we briefly mention the distorted
wave approximation here to show that it too is not the best choice for the
purposes of this study even though it retains much of the "exactness" of a
full quantal solution. The approximation has been applied in the past both to
collinear collision models“2? and to three-dimensional rotational models.“3
Generally, it is a perturbation method that may be carried to arbitrary order,
but its greatest advantage is realized By'retaining just the first-order term.
As with all first-order perturbation solutions, the results are accurate only
when transition probabilities and interactions between nonadjacent states are
small. This study of excited-state transitions, in which single-quantum
t;ansitions are expected to be large and multiple-quantum transitions to be
important, would then require at least a second-order theory for accuracy.

The distorted wave approximation is therefore not an attractive choice here.
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2.3.3 Semiclassical Collision Model

A semiclassical or "impact-parameter" method for treating the collision
dynamics has several attractive features that promote its selection as the
primary theoretical approach in this study. For one, it retains all the
quantum-mechanical aspects of energy transfer within the internal states of
the molecule that are absent in a classical treatment while avoiding most of
the mathematical difficulties associated with a full quantal solution. In the
semiclassical approximation, the Schrodinger equation describing the collision
may be reduced to three, coupled, time-dependent, first-order, linear, differ-
ential equations — one describing the molecular wave~function dynamics and two
classical trajectory equations for the relative motion of the incident par-
ticle. When the trajectory and wave equations are uncoupled, the trajectory
equations may be exactly integrated analytically for collinear encounters and
approximately for spherically symmetric interactions. Clearly, these reduc-
tions relax the numerical requirements considerably. Furthermore, the reduc-
tion to obtain first-order differential equations affords a second, and per-
haps more significant, advantage to the semiclassical formulation because the
computation time then varies with the square of the number of coupled channels,
making feasible the calculation of much larger sets than might be considered
with a full quantal method.

From another viewpoint, the ability to separate the motion of each colli-
sion partner in a semiclassical formulation allows analytic solutiomns to be
obtained for the final state of the molecule if some further approximations
are made. The usefulness of these more approximate analytic solutions was
discussed in chapter 1, but their accuracy requires validation. The valida-

tion is done most convincingly by comparing the analytic predictions with
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numerical solutions in which the trajectories are also obtained classically.
By choosing a general semiclassical approach, such comparisons may be included
as part of the results of this study. However, before a classical description
of the incident particle motion can be justified, several restrictive criteria
must be met. The following section delineates the pertinent criteria that

apply to vibrationally inelastic collisions.

2.4 Basic Criteria for the Semiclassical Approximation

A detailed derivation of the semiclassical equations of motion is pre-
sented in appendix B. In this section, we shall discuss only the general cri-
teria necessary to justify a semiclassical formulation.

The conditions for the validity of semiclassical theory have been exam-
ined for numerous applications in the past by many authors; but recently,
Delos et ql.69,70 reported a careful and detailed reexamination that revealed
some of the implications and restrictions of a semiclassical collision model
in much greater depth. They show that the classical trajectory equations may
be obtained in two fundamentally separate ways: one based on a classical
wave—-packet description involving the correspondence principle, and one that
makes no reference to a conventional classical picture but is based on an
extension of the usual WKB approximation. Their work was motivated by the
observation that semiclassical models work well even at collision energies too
low to justify a localized wave-packet description of the incident particle.
Indeed, they found, by comparison with the second method for obtaining the
same classical equations, that criteria based on the localized wave-packet
concept were overly restrictive. Specifically, in the classical wave-packet
picture, the correspondence principle leads to the classical trajectory equa-
tions only if
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(AL)1/2 << 1 (2.8)
where ) 1s the de Broglie wavelength and 1L is the range of the collision
interaction. On the other hand, the WKB approach yields the classical trajéc-
tory equations by requiring the weaker condition

AL << 1 (2.9)

Thus, Delos et al. conclude that, even when a classical picture involving the
correspondence principle is not justified, the classical trajectory equations
may still produce a reasonable description of the final molecular state. They
suggest that the classical trajectory equations are implicitly more fundamen-
tal to the collision dynamics than just in the correspondence limit. The com~
parisons of semiclassical and quantummechanical collision models for harmonic
oscillators by Rapp and Kassal“® and for anharmonic oscillators in chapter 4
support these conclusions. For example, in chapter 4, typical threshold col-
lision energies for a single vibrational quantum transition correspond to
A/L = 1, which violates even equation (2.9), and yet the semiclassical and
full quantal predictions appear identical. Delos et al. warn that by the same
rule, however, a classical interpretation of the computed oscillator dynamics
during intermediate times in the collision should not be given unwarranted
value for conditions outside equation (2.8). Since all comparisons to date
have examined only the predictions of final oscillator states, no conclusions
can be inferred about intermediate times. These warnings suggest some caution
when coupling the classical trajectory to the molecular dynamics, for example.

Delos et al. continue by showing that equation (2.9) is not the only cri-
terion necessary to validate a semiclassical theory. They state two further
requirements that, in combination, demand that the elastic collision trajec-

tory for all channels (internal molecular states) be approximately the same.
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These criteria are most restrictive when several potential energy surfaces are
considered and when the system is allowed to cross from one surface to another;
but the applications here, where reactive collisions and electronic transi-
tions are not considered, require only a single interaction surface. These
additional criteria then reduce to the stipulation that the difference in
diagonal matrix elements defined by the instantaneous state of the molecule

and by the interaction potential be small. Thus, if Vik is the instantaneous

diagonal matrix element for state k, the criteria requiring similar elastic

trajectories may be expressed by

v -v!
?]_I'Ii:__vl'(}i << 1 (2.10)
nn kk

With simple exponential interactions of the type most commonly used (see ch. 3
for examples), Vi

anharmonicity. When the molecule is treated as a harmonic oscillator and the

varies with k primarily as a result of vibrational

interaction potential is also linear in the oscillator coordinate, V. is

k
identical for all k and equation (2.10) is satisfied precisely. Conversely,
we can expect the results of a semiclassical treatment of anharmonic oscil-
lators with nonlinear interactions to compare differently with their full
guantal counterparts than found in similar comparisons using harmonic oscil-
lators. On the other hand, Vﬁk varies only weakly with k for most molecules
because the vibrational anharmonicity is generally small. Hénce a semiclassi-
cal model of anharmonic oscillators can still be expected to retain a large
measure of accuracy provided the differences V;n - VLk remain small.

With the preceding criteria in mind, we shall adopt a semiclassical for-

mulation throughout this study. However, since the criteria given by equa-—

tions (2.9) and (2.10) are not quantitatively explicit in establishing the
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" range of collision parameters and molecular properties that may be suitably
applied in such a method, much more explicit statements regarding the validity
of a semiclassical collision model will be obtained from the results in chap-
ter 4. Before proceeding with numerical solutions, however, the intramolecu-
lar potential determining the molecular dynamics and the collision interaction
potential determining the perturbing forces on the molecules must first be
modeled. Chapter 3 describes these potential models and the considerations

leading to them.
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CHAPTER 3

INTRAMOLECULAR AND COLLISION-INTERACTION POTENTIALS

A rudimentary aspect of any collision model is the description of forces
acting between elements of the system. In this study, three separate nuclei
constitute the system and, in principle, the forces acting on any one of them
depend on the relative positions of all three. 1In practice, however, a self-
consistent potential surface is rarely known, except for the simplest systems.
Instead, the potential surface is usually constructed in a semiempirical
manner using simpler concepts. To that end, we follow the conventional tech-
nique of considering only independent pairwise interactions. The potential
surface is then separable into three additive components, each dependent on
only the distance between two nuclei. Two of the components include the inci-
dent particle as one nucleus and are classified here as "collision-interaction
potentials." The third component is between the two bound molecular nuclei
and termed here the "intramolecular potential.'" Both types are modeled indi-

vidually below.

3.1 Intramolecular Potential

Since only pairwise interactions are considered, the intramolecular
potential is independent of the disturbance to the molecule brought by a col-
lision. The potential model is therefore based on the spectral properties of

an undisturbed molecule.

3.1.1 Vibrational Anharmonicity
The importance of vibrational anharmonicity in the intramolecular motion

has been emphasized several times in previous chapters and its inclusion has
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been stated as a basic feature of this study. Anharmonicity will manifest
itself in the molecular model by the appearance of second- and higher-order
terms in the expression for vibrational eigenenergies. A minimum example is

then

EV/h = we(v +-%) - wexe(v +-%)2 (3.1)

The first term in equation (3.1) is the familiar result obtained for a harmonic
oscillator potential of the form

Vo (x) = %—uowe(r -~ re)2 (3.2)

where 1, 1is the reduced mass of the oscillator, r is the internuclear
separation, and r., 1is the equilibrium separation. Numerous potential func-
tions will produce an anharmonic term identifiable with the second term in
equation (3.1). 1In fact, any potential function with a higher-order depen-

dence on r -~ r_, than equation (3.2) will do. However, two highly desirable

e
additional features of the potential function are (1) that it realistically
represent a real molecule for all separations to dissociation and (2) that it
be of an analytically convenient form. Again, several potential functions
have been proposed that fit these requirements (see ref. 71, ch. 5, for
examples). One example that has received perhaps the greatest attention since
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its conception is that proposed by Morse in the form

V,(r) = D, [e'za(r're) - 2e‘a(r're)] (3.3)
In the absence of molecular rotation, Morse obtained eigenenergies approxi-
mated by equation (3.1) plus higher-order terms that are clearly negligible
for all diatomic molecules. The potential constants are related to the oscil-

lator frequency and anharmonicity by

D, = hwg2/bwgxg (3.4)
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and
a = (Zuguexe/M)1/? | | (3.5)
Morse went further to show that if the steady-state wave function is separated

according to

R, (r)

r

¢(r’e’¢) = Yzm(e,fb) (3.6)

where Ylm(e’¢) is a normalized spherical harmonic function in the polar
angles 06 and ¢, then an analytic solution to the radial wave equation is

obtained for integer values of v given by

Rv(r) - Nv e—zlzzb'/ng'(z) \
where z = k' e*a(r—re) ’ (3.7)
N, = [ab'T(v + 1)/T(k' - v)]1/2

and LB(z) is the Laguerre polynomial?3

v

b' _ (-1)™v r(k' - v) -

Ly (2) = Z m! (v - m)! T(k' - 2v + m) z (3.8)
m=0

The parameters k' and b' are defined in terms of the oscillator frequencies
by
k' = 2(2u0Do)1/2/ah = Wwe/weXe (3.9)
and
b' =k' - 2v-1 (3.10)
The Morse potential is not as accurate as other more recent models (e.g.,
the function proposed by Hulburt and Hirschfelder76), but its analytic conven-
iernice has made its appearance in the literature seemingly second in popularity
only to the harmonic oscillator. Figure 3.1 illustrates a comparison of the

Morse function for the hydrogen molecule with a more accurate numerical
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Figure 3.1~ Intramolecular potential functions for H, (taken from ref. 74,
based on ref. 75).

representation obtained by the Rydberg-Klein-Rees method’%°75 of analyzing
spectroscopic information. Hydrogen is an example in which the Morse potential
appears at its worst because of the high degree of anharmonicity associated
with Hz' Figure 3.1 suggests that the Morse potential model should reproduce
the molecular properties accurately for vibrational energies at least up to
E, % Do/2. However, a comprehensive comparison for H, is difficult because
high-lying vibrational energies in H, are not available. They are available
for CO, however, where they have recently been measured up to v = 37 using
laser-spectroscopy techniques.77’78 Figure 3.2 compares vibrational energies
of CO, obtained from the laser measurements and defined by terms up to sixth
order, with the second-order Morse expression. As expected, values of
Ey s Do/2 are reproduced by the Morse function with reasonable accuracy. We
should note at this point, however, that eigenenergies are not as sensitive to

variations in the intramolecular potential as are the wave functions or their

overlap integrals used in collision theory. Thus the measure of accuracy
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Figure 3.2.- Vibration eigenenergies of CO (D, = 11.108 eV).

suggested by figures 3.1 and 3.2 is not entirely representative of the corre-
sponding accuracy given to a collisional model. Nevertheless, in view of the
other inaccuracies inherent in the collision model, the Morse function has

been adopted here as a sufficiently realistic intramolecular potential model.

3.1.2 Vibration~Rotation Coupling

A remaining question regarding the molecular model pertains to its rota-
tional characteristics. 1In a classical picture, the vibrational and rota-
tional motion of the molecule are clearly coupled. A quantum—mechanical
description of the molecule will produce corresponding coupling terms in the

wave functions and eigenenergies associated with vibration and rotation. The
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task is to determine.the degree of coupling that must be retained for the
purposes of this study. |
Pekeri§79 has solved the steady-state radial wave equatioﬁ for a Morse
potential with the rotational terms included. His results can be reformulated
to better show the influence of vibration-rotation coupling in the following
way: to second order, the radial wave function obtained by Pekeris is similar
in form to equation (3.7). Part of the difference lies in the parameters, b'
and k', which depend now on the rotational quantum number £. Denoting the
2-dependent parameters as by and k,, they are related to the values b' and

k' given previously for a nonrotating molecule by

ky = k"(1 + ¢)1/2 (3.11)
1 - cé
bQ, = k,Q. 1-+—C‘.£: - 2v -1 (3.12)
where
ey = A2(3/are - 1)
(3.13)
ci = AR(Z - 3/ary)
and
Ag = 2(2 + 1)202/(ugary3Dy) (3.14)
In this extended notation, the radial wave function becomes
; -Agz/2 bg/2. by

in which z=k e—a(r-re) as before and N4 = [abzr(v + 1)/F(k£ - v)]1/2. As
equation (3.15) shows, the wave function is distorted by Ay in the coordi-
nate z.

To evaluate the effect of vibration-rotation coupling on the molecular

model, equation (3.15) must be used in place of equation (3.7) when computing
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the appropriate overlap integrals appearing in the collision theory formula-
tion. Obviously, that kind of evaluation can be made only in retrospect after
the collision theory has been formulated in detail. However, at this point,
we are at least able to indicate the extent of the coupiing by computing the
magnitudes of the corrections to b' and k' and the distortion of the wave
function introduced by Aj;. Choosing the properties of CO as an example and
defining & < 40 as the range of interest, we find that, for & = 40,

kkfk' = 0.997, b, = 0.96k - 2v - 1, Ay = 1.05
The overlap integrals are sensitive to small changes in the wave function so
the effect of these small corrections is not clear; but one can see that the
influence of rotational coupling is not a major aspect of the vibrational
motion.

The initial choice of a method for describing the molecular properties in
this study was guided by a less sensitive but readily evaluated measure of the
vibration-rotation coupling. The eigenenergy terms associated with vibration-
rotation coupling were compared with those resulting from vibrational anhar-
monicity. The objective was to decide if vibration-rotation coupling should
be included to maintain a consistent degree of accuracy in the eigenenergy
expression. The energy expression corresponding to the second-order radial

solution given by equation (3.15) was shown by Pekeris’® to be

1 1\2
Evﬂ,/h = wg (v+—2-) - WeXg (v+5) + 2(2+1)Be - 2(2+1) ae(v+%> + De£(2+ 1)
(3.16)

We can then ask for what values of & is

) .
wexe(v + %) < e+ l)[ae(v + %) + Do (8 + 1)] ?
P

43



Again, using spectroscopic constants for CO, the rotational coupling terms
equal or exceed the anharmonic terms when &(& + 1) » 623[v + (1/2)]. The fol-

lowing table lists some sample values.,

TABLE 3.1.- ROTATIONAL QUANTUM STATES WITH SECOND-ORDER CORRECTIONS
COMPARABLE TO THE ANHARMONIC CORRECTION FOR CO

v £ xe(% +-%)
0 17 0.006
1 30 .009
2 39 .012
5 58 .031
10 80 .062
20 113 124

Thus, for & > 40, the second-order rotational terms are comparable only with
anharmonic terms for the first few vibrational states. The third entry in
table 3.1 is a measure of the anharmonicity correction that may be compared
with unity. For the first few vibrational states, it is much less than unity
and we may therefore conclude that, while a completely consistent molecular
model should contain vibration-rotation coupling terms, their influence on the
molecular dynamics is not expected to be large in any case. At the time the
molecular model was formulated for this study, the small amount of added com-
plexity introduced by the vibration-rotation coupling terms appeared to be
greater and a Morse-oscillator/rigid-rotor description was chosen to ensure

analytic progress. The eigenenergies are then expressed by

E
vl 2
2 we(v + %) - %, <v + %) + 2(2 + 1B, (3.17)
and the steady-state radial wave function is given by equation (3.7). In
retrospect, the coupled expressions of Pekeris given by equations (3.15)

and (3.16) would have required additional computational effort, but they do

not increase the complexity of the formulation substantially.
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3.2 Collision~-Interaction Potential

The outcome of any scattering event depends strongly on at least some
features of the interaction potential; yet the shape and magnitude of interac-
tion potentials are poorly known for all but a relatively few simple cases.
The potentials between elastically scattered atoms are generally well estab-
lished from both theory and atomic-beam experiments, but the interactions
influencing inelastic collisions involving diatomic molecules are still an
active subject for research and computation. The topic has been discussed

80

extensively in relation to the tramsport properties of gases and, more

81 To circumvent the complexity of

recently, in relation to scattering events.
the subject, we develop in this section an empirical model of the interaction
forces based on the general nature of the interaction.

The nature of the interaction forces depends greatly on the modes of
energy transfer and on the internal energy states that participate in the
collision dynamics. Here we are interested only in nonreactive interactions
between collision partners in their ground electronic states. Even then, ab
initio calculations for three-body systems of the type considered are diffi-
cult and still incomplete for even the simplest system, H,-H (e.g., ref. 82b).
The Born-Oppenheimer separation of electronic and nuclear motion is generally
used, but the complexity associated with electronic coupling between charge
clouds of three nuclei has limited present accomplishments. A few cases have
been obtained using "'self-consistent field theory" where the number of elec-
trons is a minimum (H2—H (ref. 82), H,-He (refs. 83, 84), H2—Li+ (ref. 85)),
but similar calculations for heavier nuclei are either less rigorous (HF-HF

(ref. 86)) or not available. Experimental determinations appear to be

equally difficult. The interaction potential cannot be measured directly but
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must be implied from some collisionally dependent observable property in which
the potential function is only implicitly contained. The uniqueness of the
potential thus determined is often in serious doubt and the accuracy of its
details are consequently diminished. Generally, the collision-interaction
potential, however obtained, appears to be the greatest source of uncertainty
in the calculation of vibrational inelastic collision dynamics for most mole-
cules larger than H,.

Despite our inability to accurately define the interaction potential, we
can at least describe its qualitative features with some confidence. To sim-
plify the description, the potential may be separated into two major compo-
nents: an average spherical component that depends only on the separation of
the molecular mass center and the incident particle and an anisotropic compo-
nent that accounts for variations with the molecular orientation relative to
the direction of the incident particle location. Figure 3.3 is a qualitative

sketch of both components.

SPHERICAL AVERAGE
EQUIPOTENTIAL

ANISOTROPIC
EQUIPOTENTIAL

Vi(x)

(a) Spherical features.

Figure 3.3- Characteristics of nonreactive intermolecular potentials.
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3.2.1 Spherical Features

The spherical component may be further divided, though somewhat arbitrar-.
ily, into several types of forces. They are commonly referred to as (a) short-
range repulsive forces that occur principally when two nuclei are close enough
for their electronic charge clouds to overlap, (b) long-range attractive
forces that result from large separations in which the charge distributions of
each nucleus are independently distorted, and (c) intermediate forces that
simply refer to the transition region between the preceding extremes.

The short-range forces do not lend themselves easily to theoretical sim=
plification but, fortunately, the collision dynamics of vibrationally inelastic
events are not particularly sensitive to their precise shape. Usually, the
short-range force gradient at closest approach is the single most important
feature to the collision dynamics. Generally, theoretical attempts to model
the short-range forces have led to sums of terms like

x/L

where x 1is the separation distance, A(x) is slowly varying in x, and L
is a constant range parameter. Commonly, A 1is also taken as a constant and
effective values of A and L are deduced from experiment by simple comparison
with predicted results.8? The results of ab-initio calculations have also
been reproduced surprisingly well by equation (3.18) in interactions between
two atoms, but combination rules for cases where three interacting nucleil are
present are still a topic of discussion.

Long-range attractive forces, on the other hand, are more easily approxi-
mated from well-founded physical arguments. At separations large compared to
the intranuclear separation of the molecule, the molecule appears as an inde-

pendent multipole with some polarizability. The resulting multipole

47



interaction forces are the same both in quantum-mechanical and classical

treatments with the general result appearing as a series of terms in the form

Cn
X

Often the dominant terms are induction forces (dipole~induced dipole) and
London dispersion forces (similar to dipole-induced dipole), which both vary
as
vV~ -C/xb (3.20)

The single term represented by equation (3.20) has commonly been used to
approximate the influence of long-range forces.

Numerous empirical representations for the entire potential have emerged
from considerations similar to those just described. An immediate choice
would appear to be the Buckingham potential

%/l _ o6 (3.21)

VB=Ae_
but this form has the unrealistic property of reaching a maximum for small x

and becoming infinitely negative as x - 0. A more realistic formula that

emphasizes the same long-range force dependence is the well-known Lennard-

0 12 0 6
Vi = 4D <:§> - <;§> (3.22)

The zero-potential separation, p,, explicitly appearing in equation (3.22),

Jones 12-6 potential:

provides a useful measure of the equivalent "hard-sphere" radius that will be
required in the collinear collision model application described in chapter 5.
Similarly, the well depth, D, is also an explicit parameter. The Lennard-Jones
potential gained early popularity in the analysis of transport properties in

gases and its effective constants, p, and D, have been evaluated for many gas
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mixtures using viscosity data and virial coefficients. 80 Unfortunately, the
mathematical form of equation (3.22) is inconvenient for the calculation of
interaction overlap integrals in a collision model where the oscillator is
treated quantum mechanically. For that reason, we shall seek a more conven-
ient representation, but we can use the Lennard-Jones potential as a basis for
comparison.

A potential representation consisting of exponential terms is particularly
convenient in the mathematics of anharmonic oscillators. One such representa-
tion is the Morse potential

D e—(x—xo)/L -9 e-(x—xo)/ZL

= D (3.23)

VM

where the separation at the potential minimum, x is related to the Lennard-

o’
Jones zero-potential separation by x, = 21/600. Equations (3.22) and (3.23)
can then be made to yield similar potentials in the region of the potential
well by a suitable choice of L. However, the shape of the potential well is
usually not important to the collision dynamics at energies sufficient to
induce vibrational transitions. The threshold energies for vibrational tran-
sitions are near E = hwe = 0.2 to 0.5 eV, while apparent well depths for
many-electron molecules like N,, CO, O,, etc., are typically D = 0.0l eV.
Thus, E/D >> 1 in most cases of interest and the influence of the potential
well shape is negligible. Instead, the choice of range parameter, L, will be
dictated by the greater necessity for properly matching the potential gradient
where V = E. This latter requirement for gradient matching suggests that,
unless the potential shape is correct in the region of short-range forces,

the effective range L will depend on E. Later comparisons of theoretical

and experimental rate coefficients will show that such behavior is obtained
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and the thermal range of applicability for a given set of potential parameters
is correspondingly 1imited.

_ Arguments similar'tp those regarding the potential well region allow us
to further simplify the interaction potential representation (for the purposes
of this study) by also neglecting the long-range forces. The role of the
long-range attractive forces is basically twofold during a collision event —
they accelerate the incoming particle by an amount related to D/E and they
induce early transitions between levels whose energy spacings are the order of
D. Only rotational transitions within a given vibrational state are affected
in the latter role. In the first role, the effect of long-range forces will
be apparent only at energies very near threshold and hence only at very low
temperatures. However, this study is not directed at low-temperature applica-
tions in particular. In their second role, long-range forces would be impor-
tant if we were interested in pure rotation-translation energy transfer or in
the detailed final rotational state of the molecule after a collision involv-
ing V-R-T energy transfer. We shall find, however, that the net rate of vibra-
tional energy transfer is not particularly sensitive to the rotational dynam-
ics during the early or late stages of the encounter. The rotational state of
the molecule having the greatest influence on its final vibrational condition
will be the rotational state occupation occurring at the time of closest
approach when the short-range forces are dominant. Thus, we can justifiably
neglect the long-range forces entirely for these purposes and adopt the simple
and analytically convenient repulsive potential

veae Xl (3.24)
The effects of the potential well on vibrational energy transfer have

been investigated in greater detail by others.88790 Their findings support
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the conclusion that the well may be neglected when E/D or hwe/D >> 1.
There are examples, of course, where the well depth is larger (e.g., for
H2—Li+, hme/D==0.2). For those cases, the entire interaction potential must

be accurately represented.

3.2.2 Anisotropic Features

The anisotropic potential component is responsible for rotational distur-
bances to the molecule. Figure 3.3(b) illustrates the typical magnitude of
anisotropy effective during the collision. The magnitude is gauged by noting
that the equilibrium separation of most diatomic molecules is near r, = 0.1 nm,
while the distance of closest approach during a collision will be only
slightly less than the zero-potential radius, p,. For most common molecule-
atom interactions, p, = 0.3 nm. Figure 3.3(b) is drawn for the ratio
po/re = 3 with a radius Po centered on each molecular nucleus. The equi-
potential appears mostly spherical with relatively small aspherical components.
The small anisotropic terms of most calculated interaction potentials confirm
these observations.

When rotational motion is comsidered, it is most conveniently described
by a coordinate system containing an angle, §, that defines the rotation of
the molecular axis relative to the position of the incident particle. Fig-
ure 3.4 illustrates such a coordinate system. The subsequent mathematics theQ
appear in a convenient format if the potential is expressed as a series
expansion of Legendre polynomials, Pj, in the form

V(x,r,8) = JZ v (x,r) P (cos 6) (3.25)
In most cases, ab-initic potentials are represented by equation (3.25) using

only two or three terms.
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MOLECULE MASS CENTER

Figure 3.4- Three-dimensional encounter nomenclature viewed in the time-
dependent plane defined by the location of the incident particle A and
intramolecular axis BC.

The typically small anisotropy of most interactions makes two simplifying
assumptions reasonable that greatly reduce the complexity of a three-
dimensional collision model. One is operative if the incident particle motion
is treated classically. An approximate trajectory may then be obtained using
only the spherical component of the potential. Such an assumption neglects
out-of-plane deflections and reduces the translational motion to two dimen-
sions. Averaging the initial configuration is then greatly simplified. A
second simplification, in keeping with our original notions, is that the aniso-
tropic potential can be approximated by two additive spherical potentials,
each centered on a molecular nucleus. In concept, the use of pairwise poten-
tials ignores the second-order mutual interaction between nuciei and it also
omits the shielding or shadowing of one nucleus by the other as viewed from
the position of the incident particle. However, if the anisotropy is small,
these second-order corrections will be smaller. 1In addition, the interaction
potential decreases rapidly with internuclear separation so that for most

angles, 6, the incident particle will be interacting mainly with only one

molecular nucleus at a time. Thus, shielding effects should be relatively
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unimportant. For the purposes of this study, the three-dimensional interac-
tion potential is therefore simulated by two noninteracting short-range poten-
tials, each given by equation (3.24) and each centered on a molecular nucleus.
The final step in representing the potential is to express it in the form given

by equation (3.25).

3.2.3 Three-Dimensional Interaction Potential Model

Part of the nomenclature to describe a three~dimensional encounter is
defined by figure 3.4. The figure lies in a time~dependent plane containing
both molecular nuclei and the instantaneous position of the incident particle.
An additive repulsive force between each nucleus will then produce the inter-

action potential

V(xy,%,) = ae /L 4 X/l (3.26)
where A and L. are considered identical for both interacting pairs. The

internuclear separations may be expressed in terms of mass-~centered variables

i[% - 2Y

F{l:l + 21 - Y)

as

i
PGS
O

Xb cos

;1172
wve ]
172
cos § + (1 - Y)Z(-;—>j|

where Y = [mc/(mb + mc)] is the molecular mass ratio and m, 2 my. For the

(3.27)

Xe

HijR

potential to appear nearly spherical, r/X must remain small over the entire
trajectory. We have argued that it does remain less than unity since its
largest value at closest approach is only x/X = 1/3. Equation (3.27) may
then be expanded in a uniformly convergent power series of r/X, giving to

first-order,
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xb=§(1-¥§cosa+.. )

_ _ (3.28)
x. = i[l + (1 - Y)-g cos § + . . .

C L X

The corresponding first-order representation of equation (3.26) is then

V(x,r,8) = A e XL [eY(r/L)”S § 4 & ("N (x/L)cos 5] (3.29)
Figure 3.5 demonstrates that the first-order potential, equation (3.29), is a
reasonable approximation of the additive spherical potential, equation (3.26),
for the typical range of parameters used here.

The potential model given by equation (3.29) is now in a form that can be
conveniently handled in the framework of a three-dimensional collision model.

It may be transformed to a form equivalent to equation (3.25) by use of the

expansion

(z) PJ(cos 8) (3.30)

J+1/2

S i 23 + 1)) AT2z 1
=0

0)
e

|

o 30 60 90 120 150 180
ORIENTATION ANGLE 8, deg

POTENTIAL RATIO V(8)/V ($
»

Figure 3.5.- Variation of a pairwise repulsive potential and its first-order
approximation with orientation angle. Calculations were done for
r/L = 5. Solid curves are the infinite-order variation from equa-
tion (3.26); dashed curves are the first-order approximation,
equation (3.29).
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(see ref. 73, p. 445) where Iyp1/2 1is the modified spherical Bessel function
of the first kind and P; d1s a Legendre polynomial as before. By reducing
the notation with the definition |

iJ(z) =.Vn/22 I (z) (3.31)

J+1/2

equation (3.29) is transformed to the series representatioh:

VE,1,68) = A e ML D (21 + 1){iJ[Yr/L] + A - Y)r/L]}_. P (cos §)
= (3.32)
As expected, 73(z) decreases rapidly with J for typical values of z so
that only a few terms contribute to the summation. The correspondence between

equations (3.25) and (3.32) is obvious.

3.2.4 Collinear Interaction Potential Model

The discussions of previous sections have noted that a one-dimensional
collinear collision model will be useful in obtaining analytic descriptions of
the rate of vibrational energy transfer. A brief development of the required
interaction potential expression is therefore included here.

The most effective collinear collision to induce vibrational motion will
be an encounter with the lightest nucleus in the molecule. Collinear encoun-
ters are therefore limited to those where 6 = 0. Equation (3.28) then

reduces to

V(x,r) = A (3.33)

e—x/LI}Yr/L + e—(l—Y)r/L]
Typically, r/L = 5 while Y 1is always less than unity so that the second
term in equation (3.33) is always much smaller than the first. The interac-

tion potential for one~dimensional collinear collisions is therefore taken to

be
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-%/1+Yr/L

V(%X,r) = A e (3.34)

This form of the potential or a linearized version of it have been used for all
collinear vibrational energy transfer theories.%2:45,46 1t ig applied in the
following chapter to study the applicability of a semiclassical collision

theory to anharmonic oscillators.
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CHAPTER 4
A COMPARATIVE EVALUATION OF THE SEMICLASSICAL APPROXIMATION

We have shown in chapter 2 that, while a semiclassical collision model
offers several advantages in a study of vibrational energy transfer, the cri-
teria for its application are not explicit. Hence they offer marginal help in
evaluating the wvalidity of the semiclassical approximation for a specific
set of conditions. We have also observed that the criteria, expressed by
equations (2.9) and (2.10), suggest that the validity of a semiclassical model
will be influenced by the oscillator anharmonicity. However, previous com-
parative evaluations of semiclassical theories“® have been only for harmonic
oscillators. Furthermore, the results, although favorable, have not been
entirely conclusive because, in addition to the absence of anharmonicity, the
semiclassical formulation is typically only one of several approximations con-
tained in the comparisons, while all the corrections known to improve the
semiclassical predictions are not always included. The primary purpose of
this chapter is therefore to compare the vibrational transition probability
predictions from a semiclassical model for anharmonic oscillators with a
comprehensive set of solutions from an equivalent, fully quantum mechanical,
collision model. The only difference in the two models is the treatment of
the incident particle motion.

The physically incomplete nature of a semiclassical treatment requires
some interpretation and correction, however, to facilitate its correlation
with more exact collision models. Hence, in this chapter, we shall also deal
explicitly with the corrective aspects of a semiclassical treatment. TFor

example, a well-known weakness of semiclassical theories is the inherent lack
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of energy conservatioﬁ. Several methods of compensation have been suggested
thaﬁ aim at interpreting either the classical trajectory energy20 or veloc-
1t:yl*2 in terms of corresponding values averaged over the collision. Compari-
sons described here between these semiclassical predictions and the exact
quantum-mechanical calculations show that, while such an interpretation is
necessary to correct the semiclassical predictions, the results are insensi-
tive to the choice of method in the energy range of practical interest.

Regardless of the corrections for energy conservation, the conventional
semiclassical treatment will be shown to fail badly in some cases. The
failures appear in the form of anomalous resonances that occur only in anhar-
monic oscillator models and are caused by an incomplete account of the oscil-
lator compression and recoil during impact. Within the usual semiclassical
framework, the classical trajectory is computed, assuming that the oscillator
remains in a pure eigenstate having a fixed average separation of its nuclei.
In reality, the oscillator is compressed by the impact and enters a mixed-
state condition in which the average internuclear separation oscillates with
frequency components from each of the excited states. To include this
behavior in the semiclassical theory is not equivalent to conserving energy,
but it has the effect of introducing an oscillator ffeedback" on the classical
trajectory. The effect can change the entire nature of the results in some
cases. Extremely heteronuclear or anharmonic molecules, such as the hydrogen
halides, will be shown as members of the class strongly affected.

We also simplify the collision geometry used here by confining it to
collinear encounters. Direct comparisons with the fully quantum mechanical
results of reference 68 are thus made possible. Calculations have been

presented in the literature of more realistic three-dimensional encounters,*?
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but mainly for harmonic oscillators initially in the ground state. They have

also been made in chapter 6 for anharmonic oscillators in excited vibrational

states., However, a three-dimensional collision geometry introduces many a"di-
tional complexities, as we shall demonstrate in chapter 6, and little would be
gained by including it in this chapter.

In the paragraphs to follow, a multistate semiclassical formulation
requiring numerical solution is assembled first that iIncludes modifications of
the standard treatment to account for the effect of oscillator response on the
classical trajectory. The model is entirely equivalent to the fully quantum
mechanical model in reference 68, except for the classical treatment of the
incident particle motion. The accuracy of a first—order perturbation theory
used by Mies?l for anharmonic oscillators is also evaluated. As expected,
the first-order theory is suitable only where the tramsition probabilities
are small; but it must also be limited to cases where the oscillator feedback
effects are negligible. Such cases will be shown to pertain mainly to heavy

homonuclear molecules impacted by lighter collision partners.

4.1 Semiclassical Model for Collinear Collisions

A full description of the semiclassical formulation for a general colli-
sion geometry is given in appendix B. 1In this section, only the results
pertinent to collinear collisions are recalled in detail.

The collinear collision geometry is shown in figure 4.1 for a structure-
less particle of mass, m_, impacting a diatomic heteronuclear molecular with
nuclear masses, mb and m_. The impacted oscillator nucleus, m, s extends from
the molecular mass center by a distance +vyr, where vy = mc/(mb + mc). A

three-body center-of-mass reference frame is taken in which the relative
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Figure 4.1.- Collinear collision geometry.

collision speed is 1. (Barred symbols identify the incident particle vari-
ables to be evaluated classically and later interpreted as average values.)
Except for the notation, this configuration is identical to those used by
Mies20,21 and in references 45 and 68.

The interaction potential to be used here is of the same form given in

reference 68, namely,

V(x) = A e—x/L

where L and A are constants. The potential in terms of mass center and
oscillator coordinates defined in figure 4.1 then becomes

V(R,r) = A e XL Jyr/L 4.1)

The Hamiltonian for the three-body system is given by

" P 52 -
= E + E'l‘ Vo(r) + V(x,r)

where the symbols with subscript o refer to oscillator quantities and the
other symbols denote incident particle variables. The oscillator reduced

mass is W = mbmc/(mb + mc) and the collision reduced mass is

U= ma(mb + mc)/(ma + my + mc).
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4.1.,1 TIncident Particle Motion

The application of Ehrenfest's theorem to the incident particle dynamics
guides the formulation of its equation of motion with the quantum mechanically
averaged quantities properly included. In terms of quantum mechanically

averaged variables, the equations of motion are

-G - e
dt

d<¥> _ /330\ _ 1

ac "<a = - <5>

By separating the total wave function according to
¥(X,r,t) = ¢(X,0)¥(x,t)

and treating the incident particle classically so that
<p> =+ uu

<xX> > X

< -%/L Yr/L —X/L<Yr/L>

the equations of motion for the incident particle combine with equation (4.1)

and

to give

d2x A -%/L/vyr/L
acz 1L ¢ é

where the bracket notation implies

éYr/L> =fm1p*(r,t) YLy, t)dr (4.2a)

u

For the purely repulsive exponential potential used here, the potential con-
stant, A, influences only the distance of closest approach, a quantity of no

direct consequence to the transition probabilities. It may be removed by a
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transformation suggested by equating the potential energy at closest approach

for a stationary oscillator with the initial kinetic energy, that is,

where E = (1/2)uG? is the semiclassical relative collision energy before

interaction, ka is the time-independent diagonal matrix element defined by

Vi =f’ b () eYr/ka(r)dr (4.2b)

and wk(r) is the initial oscillator stationary-state eigenfunction. Note
that Eo is not the distance of closest approach for a nonstationary oscil-
lator. However, if a new interaction coordinate is defined as zZ = X - X,

[o}

the incident particle motion is unaffected and may then be described by

2= = =
W E B Eg, (4.32)
where
R(t) = <eYr/L>/ka (4.3b)

The variable R(t) represents the quantum-mechanical average effect of the
oscillator motion on the classical path. It is a measure of the oscillator
distortion during impact and subsequent "ringing" afterward.

To compute the trajectory classically, we must first describe the oscil-
lator motion to obtain R(t). The usual practice at this point has been to
consider the oscillator fixed in its initial pure eigenstate so that
P(r,t) = wk(r). Then R(t) = 1 for all time and the classical equation of

motion is reduced to the equation for a constant energy trajectory:

(a9

2= = _=
L 42 E o zZ/L (4.4)

t

A
NI
£
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Equation (4.4) can be integrated analytically“5 so that the interaction poten-
tial

V(t,r) = vi eZ(E)/L yr/L (4.5a)

kk

can be written explicitly in terms of time by use of the result:
e"z(t)/L = sechz(g%) (4.5b)

In such an approximation, the transformation parameter io becomes the

distance of closest approach.

4.1.2 Oscillator Motion
The unsteady motion of the oscillator is treated in the usual way by
expanding its time-dependent wave function Y(r,t) in terms of stationary-
state Morse oscillator eigenfunctions wn(r) according to
b, 0) =3 e (e Mty () 4.6)
n
where w = En/h and En is the nth state eigenenergy. Continuum states

are neglected. We showed in chapter 3 that, for the Morse oscillator,

- 1\ _ AV
wn = we(n + 2) wexe(n + 2) .

The dynamical wave function (r,t) describing the oscillator response

durihg a collision is the solution of the time-dependent Schrddinger equation:

.o (r,t h2 32
ih ‘P;Z: ) _ [_ _2.;;5;74- v (x) + V(t,r)]lb(r,t) (4.7)

where, from chapter 3,
Vo (r) = De [e—2a (r-re) _ 202 (r-re)]

The solutions are invariant with the equilibrium separation T, and it may be
set equal to zero. The remaining potential parameters are equated to the
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familiar spectroscopic constants W, and x, according to equations (3.4) and

(3.5).

The solution of equation (4.7) is reduced in a standard way (see appen-
dix B) to a set of linear, coupled differential equations for the expapsion

coefficients defined in equation (4.6). Denoting
., x yr/L
an —;l:” wn (r) e wj(r)dr (4.8)

and incorporating the form of the interaction potential in equation (4.5a), the

the coefficients in equation (4.6) vary in time according to

dec_(t) = - .
. - 1 -Wws )t
ih —2_— - B ZO)/L z e, (te (ugog)ty (4.9)
dt V. j nj
kk .
J
The probability that an oscillator, initially in state k at t = -, will
reside in state n at t = +», is then P(E) = lcn(w)f2 with the initial
k->n

conditions |c,(-»)|2 = & ,, where §, ., is a Kronecker delta.
3 kj kj
The matrix elements given in integral form by equations (4.2b) and (4.8)
may be evaluated analytically.zo’68 If, for convenience of notation, we

define o = y/aL and B = xe'l, then

V.=8

nj a

j
o NNy reg - j)z(_l)£+j—n Trl+a+j-TB-a-1~3-n+21)
n! LG ~ITA +a+3 -n - TR - 25 + 2)
=0

where f(g) is the gamma function’3 with argument £, and the normalization

constants are

el T )zm)]l/z
m - m

To stay within the maximum exponent constraints imposed by most computers, the

evaluation of matrix elements with large indices requires the ratios of gamma
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g

functions to be reduced to products of algebraic terms and a residual gamma

function with an argument less than unity.73

4.1.3 Coupling of the Oscillator Motion and the Classical Trajectory
z/L

The term e in equation (4.9) may be evaluated either from equa-
tion (4.5b) or by the coupled integration of equation (4.3), depending on
the treatment of R(t). The former case ignores any coupling between the
oscillator and the classical path, thus assuming R(t) = 1 f£for all t. The
latter case requires evaluation of R(t) in terms of the expansion coeffi-
cients — a task easily done by combining equations (4.2) and (4.6) to give

-1  (wg-wp) t
R(t) = Vr Z ch*(t) c (t) e Vom (4.10)
% m

where k again denotes the initial state.

Equation (4.10) characterizes the classical nature of the quantified
oscillator motion. The motion will become oscillatory as soon as a mixed-
state condition is produced during the collision and will remain so afterward.
Near closest approach, large transient excursions of R(t) occur, reflecting

the oscillator compression and recoil.

4.1.4 First-Order Perturbation Solutions

From a practical viewpoint, the convenience of an analytical solution
warrants even the coarsest assumptions, provided the limits of applicability
are understood. This study attempts to confirm those limits for a first-order
perturbation analysis applied to anharmonic oscillators in initially excited
states. We shall see that the perturbation solutions are quite successful
within their intended limits and will serve as u%eful approximation in many
cases.
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An analytical solution of equation (4.9) may be obtained if the motion of
the classical particle is described by equation (4.4). For an initial state
k, the perturbation method further requires that lck(t)l2 ~ 1 and
icn(t)l2 << 1 throughout the duration of the collision. Then only the

initial and final states are coupled, allowing equation (4.9) to be written in

the integral form:

2 E Vnk * o2flt 7 t 2
<] = P e—— —_— Pl ] L}
Icn( )| 5 ka ./. sech (ZL)eXP 5 Pnk(t yde'|dt (4.11)
- 00 0
with
"y = - - _E_ Z(EE)
Pnk(t ) = h(wn wk) + (Vnn ka) Ve sech 5T
Equation (4.11) may be integrated to give?l
Yok 2nguli 2
- n mgulu . .
P(E) = - M + 4g,2,22)) (4.12)
k>n ka h sinh(wg)
where
_ L(mn B wk) _ uLu vnn B ka
e~—% » 2R %
kk

and M(1 +ig,2,72)) is the confluent hypergeometric series with complex argu-
ments. The necessity of complex algebra may be avoided when computing the
modulus |M(1 + g, 2,22))| by noting its relation to the Coulomb wave func-

tion with zero index.’3 The result is

M1 + ig,2,220)| = ¢ _(-g,1) (4.13)

where

I I
®_(-g,1) —; )
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with Ay =1 and Aj; = -g. The remaining coefficients are obtained from

4.1.5 Numerical Solution Methods

Solutions to the couﬁled set of équations (4.3) and (4.9) were obtained
by first separating equation (4.9) into a separate set for eachAcdmplex com-
ponent and adopting the equivalent of a multiple-state, close-coupling
approach. Numerical integration was accomplished with a polynomial extrap-
olation algorithm originally developed by Bulirsch and stoer?! and given in
FORTRAN by Gear.%2 Fifth-order polynomialg and a requir;d ;ccuracy of one
part in 108 seemed to optimize the calculation of a selected test case and
allowed a complete encounter to be computed in 50 to 1000 steps, depending on
the collision energy and the number of coupled states. Solutions were started
with the molecule in a pure eigenstate and with the incident particle at a
distance such that the interaction potential had a value 107" times the esti-
mated value at closest approach. The calculation was terminated at an equal
distance after the encounter. All values of [cn(t)l2 were sufficiently

constant at termination. The closure relation 2:|cn(t)|2 = 1 was used
n

throughout the encounter to monitor accuracy. If the initial state quantum
number were k, states from n = 0 to 2k were included at the maximum ener-
gies considered to ensure that the solution was unaffected by neglected states,
Of course, in the energy range where the perturbation theory was successful,
as few as two states were adequate. The computing times required to obtain
all the matrix elements and to integrate the dynamics of a twelve-state model
was approximately 0.1 sec/step on a single precision-(l4—digit) CDC-7600

computer.
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4.2 A Comparisoﬁ'With Fully Quantum Mechanical Solutions

The availability of tabulated results for exact quantum mechanical calcu-
lations®8 over a broad range of collision parameters provides an excellent
opportunity to evaluate the semiclassical approximation in this application.
The extent of the examples covered is characterized by the range of the mass
parameter m = mamc/mb(ma + m + mc). For the cases chosen, m varies from
0.006 for Bry,-H collisions to 3.7 for HBr-He collisions. (Reference 68 labels
one data set as Br,-H;, but uses a mass parameter corresponding to Bro-H.) A
full range of oscillator frequency and anharmonicity is also represented.
Figures 4.2(a) to (f) compare the predictions of the semiclassical theory and
its first-order approximation to a sampling of the results in reference 68 for
the homonuclear oscillator cases. The semiclassical transition probabilities
are plotted as functions of the normalized initial kinetic energy of the
incident particle, E/hwe. The probabilities from reference 68, hereafter
referred to as "exact," are shown at energies displaced according to a trajec-
tory symmetrization scheme (to be discussed). In the paragraphs to follow,
the comparisons in figures 4.2(a) to (f) are used to evaluate the validity of
several methods of compensating for the lack of energy conservation in the
semiclassical approximation and to demonstrate the influence of coupling

between the recoiling quantum-oscillator and the classical incident-particle

motion.

4.2.1 Energy Conservation and the Classical Parameters
The absence of energy conservation in the semiclassical approximation

requires an interpretation of the initial relative kinetic energy E assigned

to the classical trajectory. It may be considered an effective value,
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Figure 4.2.- Comparisons of semiclassical and quantum—mechanical68 transition probabilities of homo-
nuclear molecules. All calculations are done for L = 0.02 nm. Open symbols denote points tabu-
lated in reference 68 and plotted according to equation (4.15). The curves ———— are semiclas-
sical multistate solutions using classical trajectories coupled to the oscillator motion via

equation (4.3). The curves are the same without coupling via equation (4.4).
curves — — — — are first-order perturbation solutions given by equation (4.12).
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averaged over the trajectory from the true initial value Ek to the final
value En’ when, the molecule undergoes a transition from state k to n. If

total energy is conserved, ET’ Ek’ and En are related by

= = h
E + hmk Ep = E +ho, (4.14)

No formal guidelines are available, however, for simply relating E to the

exact energies and En' Perhaps the closest one can come is with the

By
method described in reference 42, where the formulation of a linearized
quantum-mechanical approximation is compared to its semiclassical counterpart.
Expressions for the transition probabilities given by both approximations
become similar if E is defined by the average velocity u = (un + uk)/z.
Another approach is taken by Mies,2! who uses the intuitively appealing

arithmetic energy average E = (En + Ek)/2. Combined with equation (4.14),

the total energy can then be related to the average energy according to

ET =E + h(mn + wk)/2 (4.15)

where h(wn + wk)/z is the oscillator energy averaged over the transition.
Occasionally, even the geometric average E = (EkEn)l/2 has been suggested.®?
Equation (4.15) was chosen here for the comparisons in figures 4.2, where it
is shown to be generally successful. It correlates the predictions of both
theories for all initial states, transitions, and mass ratios tested and
appears applicable for all energies E from threshold up to at least the
first probability maximum. Figure 4.2(c) shows correlation beyond the first
maximum. Note however, that when the effect of the oscillator motion coupled
to the classical trajectory is distinguishable, the coupling must be included
to preserve the accuracy of equation (4.15) (e.g., see fig. 4.2(a)). The other

averaging methods are no less accurate, however. Table 4.1 reveals that all
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the averaging methods described give essentially the same results and that,
within the range of these comparisons, the best choice cannot be selected.
Differences in the three methods (or apparently any other method) will only

become distinguishable at values of E_  >> hwe, where, from thermal considera-

T
tions, ET is beyond the range of practical interest. From a pragmatic view-
point, equation (4.15) is attractive because, unlike the other averages, it

provides an energy transformation, E_. - E, indepéndent of E and allows the

T
energies E, or E  to be written explicitly in terms of E with simple
algebraic form. These features are convenient for additional manipulation

such as thermal averaging.

TABLE 4.1.-~ A COMPARISON OF SYMMETRIZATION METHODS APPLIED TO ANHARMONIC H»

(ET - E)/flu:e
Transitions
k > n Observed 1 1 /
T = = q = = B = 172
Figs. 2(a)-(b) E 2 (En + Ek) u 2 (un + uk) E (EnEk)
Note (a) Note (b) Note (b)
0-1 1.0 0.97 0.99 1.01
0-2 1.3 1.41 1.46 1.50
0-3 1.7 1.83 1.94 2.05
2-3 2.7 2.75 2.76 2.78
2-4 3.1 3.14 3.20 3.26
2-5 3.5 3.51 3.65 3.80
5-6 5.0 5.03 5.06 5.08

Note (a) The observed energy difference between the semiclassical and
exact results for a given probability near threshold. The semiclassical
results include oscillator feedback.

Note (b) Computed for ﬁ/hme = 6.

73



4.2.2 Influence of Oscillator Response on the Classical Motion

The discussion to this point has been confined to homonuclear molecules.
Figures 4.2 indicate that coupling oscillatof motion and the classical trajec-
tory has a noticeable effect only for the most anharmonic molecule, H,, and
then only when struck by a relatively heavy particle, He. However, semiclés-
sical calculations for heteronuclear cases are much more sensitive to the
oscillator response. In the customary semiclassical formulation, the incident
particle dynamics are related only to its distance from the mass center of the
molecule, and no regard is given for the location of the impacted nucleus
(e.g., see eq. (4.4)). In an extreme heteronuclear case where the impacted
nucleus is extended to a distance similar to the distance of closest
approach, the incident particle can spatially overlap the impacted nucleus
without constraint. Of course, even the approach to this extreme situation
- signals the failure of the assumptions leading to equation (4.4).

The hydrogen-halides represent examples of diatomic molecules whose
heteronuclear properties strongly influence the incident particle motion, with
the effects further augmented by the accompanying large anharmonicity. As an
example, figure 4.3 illustrates the behavior of HBr-He collisions, where H is
the impacted nucleus. Similar results were obtained for HCl-He and are assumed
to be characteristic for all hydrogen-halide-like molecules.  Both the semi—:--
classical numerical solutions and the analytical theory predict an anomalous
resonance at low energy when the classical trajectory is obtained from equa-
tion (4.4). The resonance is a combined result of an improper trajectory and
the oscillator anharmonicity since similar calculations treating the molecule
as a harmonic oscillator behaved normally and in accordance with corresponding

quantum~-mechanical solutions.®® Considerable care was exercised in verifying
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Figure 4.3.- Comparison of semiclassical and quantum-mechanical transition
probabilities for HBr(k = 0) - He collisions. The impact is between H
and He. The notation is the same as in figure 4.2; o denotes
k->n=0->1.

the resonance as a real solution of the theoretical model rather than a numer-

ical artifact. The similar behavior of the analytical solution supports the

conclusion that the effect is a real consequence of the model used. When
oscillator motion is included via equations (4.3) and (4.10), the resonance
disappears and the solution is more in accordance with the quantum-mechanical
results for single-quantum transitions. However, multiple—-quantum probabil-
ities such as ?02 still display a low-energy anomalous resonance. The inter-

polation of E for single-quantum transitions is also shown to be less

accurate, but equation (4.15) still performs well near threshold. The results
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suggest that the interference between the oscillator and the incident particle
is not fully accounted for, but if it were, equation (4.15) would apply.
The.effects of the oscillator motion are not generated simply by large
excursions of R(t) during the collision. Figure 4.4 compares the time-
dependent variation of R(t) with and without the effects coupled to the
collision dynamics for two extreme cases: (a) Ho-H collisions, where the
excursions of R(t) are largest, but the effect is negligible; and (b) HBr-He
collisions, where the excursions are smaller, but a phase shift is introduced

in the oscillator motion that severely alters the remaining oscillator

response.

(b) HBr(k=0)-He

- +1 E/hwe=7.3
0 L 1 | o1 1 1 J
-6 -4 -2 0 2 4 6 8 10
at/eL

Figure 4.4.- Transient oscillator effects on the interaction potential; R is
defined by equation (4.3b). Curves ———— denote the potential term with
the oscillator motion coupled to the classical trajectory; curves — — — —
denote the potential term without coupling.
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4.2.3 Applicability of First-Order Perturbation Theory
Figures 4.2 and 4.3 amply demonstrate the fact that, when the oscillator

is anharmonic, not only must P be small for the first-order perturbation

k-o>n
theory to apply but the transient motion of the oscillator must also have no
significant effect on the collision dynamics. When the effects of the oscil-
lator motion were negligible, the perturbation approximation fails when

P +1, Further increases in E cause P to exceed unity before reaching
k->n k->n

a maximum — a familiar feature of equivalent harmonic oscillator models. 1Imn
the application of a perturbation approximation to anharmonic oscillators, a

probability maximum may appear for P < 1, but the maximum is always an

k- n
artifact of the semiclassical perturbation approximation and signals the
failure of the theory due to the neglect of R(t) variations. These conclu-
sions are not surprising, but they further constrain the anharmonic oscillator
perturbation theory to heavy homonuclear molecules such as Ny, 05, and the
halogens. First-order perturbation calculations for slightly heteronuclear
molecules such as CO also require careful attention. Just as for H,, colli-
sions of CO with lighter particles (e.g., CO-He collisions) were unaffected by
the oscillator motion. However, figure 4.5 shows that perturbation calcula-
tions of collisions with heavier particles (e.g., CO-Ar collisions) display
large errors due to the coupléd oécillator motion and also due to an increased
coupling of the nonadjacent oscillator states that are not included in the
perturbation approximation. As figure 4.5 shows, the two effects compensate
each other for the initial state chosen. In the CO-Ar case, the perturbation-

theory errors are not accompanied by anomalous probability maximums in the

energy range of practical interest.
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UNCOUPLED OSCILLATOR~
TRAJECTORY MOTION, R=1{
|0—| =
/4
/\FIRST-ORDER PERTURBATION
- THEORY, EQ. (4.12)
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COUPLED OSCILLATOR-TRAJECTORY
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I
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Figure 4.5.- Semiclassical transition probabilities for CO(k = 1) - Ar colli-
sions; L = 0.02 nm.

4.3 Summary

The semiclassical approximation has been applied to vibrational transi-
tions induced in anharmonic oscillators by collinear collision with inert
atoms. Multistate numerical solutions have been compared with exact quantum-
mechanical calculations of an equivalent collision model for a wide range of
initial molecular states and collision partners. The comparisons allow a
comprehensive assessment of the semiclassical approximation for the anharmonic
oscillator model. The semiclassical predictions accurately reproduce the
quantum-mechanical transition probabilities for all initial collision energies
from the threshold to at least the first probability maximum if either the
semiclassical collision velocity or energy is interpreted as a simple average
of the exact initial and final values. The accuracy of the correlation

between theories is not sensitive to the choice of averaging method.
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The semiclassical approximation, in its usual form where the classical
trajectory is computed independently, was found to be applicable to heavy
homonuclear molecules such as Ny, 0o, and the halogens on impact with lighter
partners. Lighter homonuclear molecules such as H, showed poorer agreement
when impacted by a heavier collision partner. Heteronuclear anharmonic mole-
cules such as the hydrogen-halides displayed anomalous resonances at loﬁ
energy that do not appear in their harmonic counterparts. The accuracy of the
semiclassical approximation for light or heteronuclear anharmonic molecules
was significantly improved by coupling the effects of the time-dependent
average motion of the recoiling oscillator to the classical trajectory.

A convenient, analytical, first-order, perturbation analysis for anhar-
monic oscillators was found to be accurate for small-transition probabilities,
but only if the effects of the oscillator motion on the classical trajectory
were unimportant. The analytical approximation is therefore not applicable
to significantly anharmonic and heteronuclear molecules and must be applied

with care for slightly heteronuclear molecules such as CO.
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CHAPTER 5

VIBRATIONAL QUANTUM NUMBER DEPENDENCE OF ENERGY-TRANSFER RATES

In chapter 1, we discussed the sparseness of experimental and theoretical
efforts to describe the rates of vibrational energy transfer from initially
excited vibrational states. The objectives of this chapter are therefore
to examine the factors influencing the prediction of such rates and to
evaluate the validity of several analytic formulas in popular use for
estimating their quantum number dependence. However, the approach to be
taken must be limited by pragmatic considerations. For example, accurate
V-T rate-coefficient calculations by any theoretical model are clouded by
uncertainties in the shape and magnitude of the interaction forces between
colliding pairs for all but a few simple cases. Thus, we can examine only
the qualitative features that are not masked by interaction potential
uncertainties. Furthermore, even an extended collision model must retain
some approximations, particularly regarding the collision geometry, if it
is to remain computationally practical in the prediction of thermally
averaged rate coefficients. Hence, attention is confined here to the col-
linear semiclassical treatment described in chapter 4 that accurately repro-
duces all the main characteristics of vibrational energy transfer to ini-
tially excited oscillators, but offers the advantage of being further reduc-
ible to yield closed-form analytic solutions. The analytic solutions are of
particular interest because of their practical importance in the numerically
cumbersome analysis of macroscopic nonequilibrium processes for which rate

information for several modes of energy transfer must be economically
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pr:ov:l.ded.“"15 ‘The complete semiclassical model, requiring.numerical solu-
;ion, is abplied both to an examination of the qualitative nature of ﬁppér-
state transitions and as a basis for evaluating the accuracy of the analyt-
ical solﬁtions.

In fhe sections to follow, the features of the collision model that
appear.most important to the dynamics of a vibrationally excited oscillator
are first discussed, followed by a description of several approximations,
each of which retains one or more of the features considered. Approximate
values of the interaction potential parameters and thelr range of uncertainty
are then estimated by comparing the predicted ground-state rate coefficient
with a comprehensive set of experimental values. Collisions of CO with He
are chosen as the example because of the abundant data available. The
implied potential parameters are then used to compare the numerical model
with some experimental excited-state rate coefficients and with the analytic
predictions. Finally, the effects of multiple-quantum transitions from
excited states on a vibrational relaxation process are considered both for
molecules like CO, where the effect is secondary, and for molecules like

the halogens, where the effect can be dominant.

5.1 Collision Model

S5.1.1 Features Influencing the Excited-State Collision Dynamics

As the quantum number of the initial oscillator state is increased,
several aspects influencing the oscillator dynamics and its interactions
with the incident particle become increasingly important. For example,
the wave functions that describe vibrationally excited eigenstates become

more extended in the oscillator coordinate. Consequently, when the
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oscillator is distorted by a collision, the wave-function overlap is greater
not only with adjacent eigenstates but with more remote states as well. This
feature is reflected by the increased magnitude of the matrix elements
dynamically coupling the eigenstates which, in turn, accounts for the greater
probability of V-T energy transfer through both single-~ and multiple-quantum
transitions. Furthermore, the increased coupling of nonadjacent states
during the collision can affect the final occupation of states adjacent to
the initial state and thereby influence the rate of single-quantum transi-
tions. Thus, a calculation of the oscillator dynamics from an excited
initial state must include multiple-state interactilons at collision energies
where they are normally unimportant for oscillators in the ground state.

The degree with which multiple-quantum transitions influence the
oscillator dynamics during a collision depend, in part, on the form of the
interaction potential. A common practice, often used to simplify the
analysis of ground-state oscillators, is to consider the oscillator motion
small compared to the range of interaction and linearize the interaction
potential in the oscillator coordinate. In a harmonic oscillator, this
treatment has the effect of equalizing all the diagonal matrix elements and
forbidding multiple-quantum transitions. The occupation of nonadjacent
oscillator states is then possible only through a sequence of single-quantum
steps during the collision. Nonlinear interaction terms remove these
restrictions and modify final-state occupations in two related ways. First,
all the nonadjacent states are directly coupled, thereby increasing their
accessibility. Second, the diagonal matrix elements are no longer equal,
leading to additional phase distortions in the quantum-mechanical oscillator

motion which modify the probability of transition. The additional phase
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shifts depend on the product of the difference betwegn diagonal matrix
elements and the strength of the interaction. Thgy appear explicitly in a
semiclassical impact parameter treatment described by Bates?3 and applied to
anharmonic oscillatqrs by Mies.?! The formulation has been reviewed in
section B.3 of Appendix B.

All the foregoing effects are amplified when oscillator anharmonicity
is included. Nonadjacent states become coupled even for linearized inter-
actions and the larger difference between the diagonal matrix elements
creates phase distortions that can become a significant fraction of the
unperturbed oscillator period. Mies2052l has shown the influence on transi-
tion probability predictions to be large even for oscillators initially in
the ground state. A second, and in some cases greater, effect of anharmon-
icity is its influence on the variation of eigenenergies with quantum number.
Since transition probabilities and the related rate coefficients are known
to depend on the amount of energy transferred, a lowest-order effect of
oscillator anharmonicity may be demonstrated by simply inserting anharmonic
oscillator eigenenergies into a harmonic oscillator theory such as that given
by Schwartz et al.39 The results deviate substantially from the simple

Landau-Teller relation for the rate coefficients given by equation (1.2) and

B L i L Coe . PR o T [ S S W LW I R

repeated here as

Ky neg (D = m kg (D) (5.1)

where km m—1(T) denotes the rate coefficient for transitions from state
H
m to m~1l and is a function of the kinetic temperature T. However, the

simple ad hoc insertion of anharmonic eigenenergies into a harmonic oscilla-

tor model is not always a sufficient means of accounting for anharmonicity.
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The influence of anharmonicity on the interaction matrix elements, which in
turn effects both the magnitude and phase of the oscillator motion, is often
50 great that an anharmonic oscillator model must be used from the start.
Fortunately, oscillator anharmonicity and nonlinear interaction potentials
present only a slight increase in computational difficulty, particularly if
a Morse oscillator and an exponential form of the interaction are adopted.
The necessary matrix elements are then conveniently expressed in closed
algebraic form just as for harmonic oscillators.

Finally, an oscillator potential cfeating anharmonicity also admits to
the existence of continuum states. We shall neglect their contribution to
the energy transfer process, however, since they are energetically inacces-
sible by a large margin for the combinations of collision energies and
initial states considered here. Although their effects have not been evalu-
ated, the occupation of continuum states is presumed to be as small as the
nearby bound states, and no bound states near the continuum were found to

influence the dynamics of any states at the quantum levels of interest.

5.1.2 Aspects of the Semiclassical Numerical Model

To obtain V-T rate coefficients, we calculate the associated transition
probabilities using the semiclassical collision model described in chapter 4,
wherein the trajectory is constrained to collinear encounters. One of the
penalties of using a semiclassical approximation was shown to be that total
energy 1s not conserved; but as shown in chapter 4, the effects of that
omission are easily and accurately compensated for by interpreting the
relative collision energy as an average of the known initial and final

values. A far more severe limitation of the semiclassical theory was
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found to be its incomplete treatment of the interaction when the oscillator
is very heteronuclear-(e.g., hydfogen—halides). Such cases ére avoided
here and have presented ﬁuméfical difficulty in exact treatments.58

The implications introduced by a reétriction to collinear encounteré are
not as well understood, but the restriction is nécessary if the quantum-
number dependence of thermally averaged rate coefficients is ever to be
obtained in a reasonable computing time. Clearly, a more realistic approach
would include a three-dimensional collision geometry in which simultaneous
rotational transitions are coupled with the vibrational motion, but the large
number of rotational states that become accessible at collision energies
sufficient to cause vibrational transitions would make our objective of
studying thermally averaged rate coefficients impractical for all but a few
special molecules, like Hz. On the other hand, so long as the rotational
eigenenergies of the undisturbed molecule are well described by a rigid-rotor
model (suggesting that the rotational and vibrational motions are separ-
able), and the molecular properties are such that vibrational energy is
traded mainly with translation, the disparity between a collinear and a
three~dimensional theory is not expected to be very sensitive to the initial
vibrational quantum number. Chapter 6 provides greater insight into the
necessary conditions. For our purposes, the collineaf predictions are
normalized according to the ratio km,m_llmkl,o, thus avoiding the predic-
tion of absolute rate coefficients and, hopefully, much of the absolute

error associated with the collinear restriction. Such a ratio also absorbs

the lowest-order quantum-number dependence suggested by equation (5.1).
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5.1.5 Thermally Averaged Rate Coefficients from a Collinear Semiélassiéal
Model |

With the possible exceptibn of molecular beam aﬁalyses, the applicatiohs
of an inelastic collisioh model usually require results in the form of a
thermally averaged r#te coefficient. A general formulation of the averaging
integral is well known, but here the restriction to coliinear trajectories |
and the use of a semiclassical approximation require some special considéra—
tion. Generally, the rate coefficient for a kinetic temberature T may be
written in terms of the energy parameter €n = Em/kT and an energy-dependent
cross section Uéfﬁ)’ where n denotes the final quantum state and Em
is the relative kinetic energy before a collision with an undisturbed
oscillator in a pure eigenstate m. The rate coefficient is then éimilar to
equation (2.2), that is,

-€
= r m
km,n (T) = C f c(Em)em e dem (5.2)
0
where the average thermal speed is C = (8kT/1ru)1/2 and pu 1is the reduced

collision mass defined by equation (2.3). A further requirement for the
collision model is that it conform to the detailed balance relatiomns.
Originating with the reciprocity theorem, the requirements of detailed
balance propagate through three levels of microscopic detail, giving the

general physical relations for spinless nondegenerate collision partners as

P(Em) = P(Ey) (5.3a)
mn n>m
E = E_o(E,) 5.3b
we (i = By (5.50)
—hwm/kT -hwn/kT
km,n(T) e = kn’m(T) e (5.3c)
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where Pm+n 1s the transition probability from state m to n and hwm is
the oscillator energy of state m.

The collinear collision geometry produces semiclassical transition
probabilities that behave according to equation (5.3a), but the restriction
to a zero impact parameter leaves the cross section required by equation (5.2)
undefined. One common solution is to adopt an effective hard-sphere cross

section % and compute the inelastic cross section according to

oéE%) = GOP&EH) (5.4a)
and
=g 'P .
G - % .

Equation (5.3b) requires that

o, = [1+ h(mn - mm)/En]oO

thus suggesting that the "hard-sphere" size must depend on the collision
energy and transition in question! This contradiction results from the
collinear approximation, but the error is negligible when |h(wn - mm)I/En << 1,
When the ratio approaches unity, the transition probability is typically so
small that the integral in equation (5.2) is unaffected.

Equation (5.2) must be modified further to compensate for the lack of
energy conservation inherent in the semiclassical approximation. This
discrepancy is easily and accurately corrected by interpreting the semi-
classical relative collision energy E or speed T as an average of the
initial and final values. The results in chapter 4 demonstrate that, while
the correction can be large, the method of averaging has no apparent effect

on the outcome for vibrationally inelastic collisions at alihenergies from
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threshold up to the limits of practical interest. For convenience, we use

an arithmetic energy average. Denoting the total energy as ET’ the

semiclassical approximation is brought into close agreement with an equiva-

lent quantum-mechanical calculation by the interpretation
= _ _ &
E = E, (w +w)/2 (5.5)

Combining equations (5.2), (5.4), and (5.5) then gives the thermal averaging

prescription for a collinear semiclassical collision model:

_ hwmn/ZkT ” _ hwmn —e
kéf% =0 Ce PéE% e + 2kT’ e de (5.6)
0

where € = E/kT and wmn - wn. To make the satisfaction of equa-

(@]

w
m
tion (5.3c) by (5.6) more obvious, the lower integration limit in equa-

tion (5.6) has been set to zero even though the independent variable trans-
formation from em to € via equation (5.5) produces a limit of
ilhmmn/Zle, depending on the sign of W e The negative limit may clearly
be reset to zero, but even when the limit is positive, the probability
threshold is nearly twice the limit, so that again setting it to zero has no

effect on the integral.

5.2 Analytic Approximations

0f the many analytic approaches appearing in the literature (see ref. 45
for a partial summary), three that stand out in their application for
estimating the V-T rate coefficient variations with quantum number are

(a) the semiempirical formulas for Morse oscillators of Keck and Carrier,?"

! and

(b) the perturbation treatment of Morse oscillators developed by Mies,?
(c) the exact solition to a linearly forced harmonic oscillator obtained by

Kerner.3® Each approach retains one or more of the aspects of special
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interest to this application. They share the common feature that all
incorporate collinear collision geometry and all are based on an exponentially

repulsive interaction potential (later referred to as potential I) of the form
v (x) = A e XT (5.7)
where the coordinates are defined in figure 4.1.

5.2.1 Keck-Carrier Formula for Anharmonic Oscillators

The formula obtained by Keck and Carrier®% is an adaptation of the
distorted-wave harmonic oscillator theory of Schwartz et aZ.3° for a Morse
oscillator. It includes an empirical fit to the numerical solution of an
integral equation for the "adiabaticity factor" and provides a particularly
simple formula for estimating single-quantum transition rates from an
arbitrary initial state. Keck and Carrier made no claim for the suitability
of their formula in applications beyond a demonstration of thé role of
vibrational nonequilibrium in a dissociating gas; but the formula was subse-
quently applied by Bray95 in a pioneering and detailed calculation of a
vibrational relaxation process for anharmonic oscillators, apparently because
of its simplicity and for lack of a better estimate. For similar reasons,
the Keck-Carrier formula has since gained widespread use in the detailed
analysis of upper—state kinetics in lasers.11715 7Its consideration here is .
motivated primarily by the number of kinetic models that incorporate it. The

Keck-Carrier formula can be written in a form similar to equation (5.1) as?s

1 - xe Fm
km,m—l(T) =o\T 0 mxe -i';l_ kl,O(T) (5.8)
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where Fm is obtained from the empirical formula

Fm - %_ (3 _ el+1m/3) emrn/a (5.9)
in which
n = "“’m,m—1L(“/2kT)1/2 (5.10)
The transition frequency wm’m_l e o-w is computed for a Morse

oscillator as done previously by the expression

w = W <m +‘l> - wXx (m +-l>2 ' (5.11)
e 2 e e 2 °

m

5.2.2 Mies Perturbation Solution for Anharmonic Oscillators

The closest approximation to the numerical model used here is a
semiclassical first-order perturbation treatment developed by Mies.2l 1t
properly includes the effects of anharmonicity but, by the nature of first-
oxrder methods, it neglects the influence of states other than the designated
initial and final states. Furthermore, to obtain an analytical solution, the
classical path must be computed independently from the motion of the oscilla-
tor. The theory is therefore applicable only to single-quantum transitions
in which the transition probabilities are small compared to unity. As
demonstrated in chapter 4, the independent classical path further restricts
its application to nearly homonuclear oscillators such as CO (and, of course,
all homonuclear molecules) colliding with atomic particles of lighter mass
than either of the molecular nuclei. The appearance of a probability
maximum signals the failure of the theory. Despite these shortcomings, we
shall see that the Mies solution still provides a more useful approximation

of the numerical predictions than the other amalytic formulas investigated.

91



A convenient form of the Mies result was given by equation (4.12) and is

rewritten here for the transition probability from state m to n, where

n=m*1 as

v _ 2
=y _} mn 2mgulLu

As with the numerical model, equation (5.12) produces energy-dependent
transition probabilities, while a temperature-dependent rate coefficient is
desired. No analytic solution of the integral equation (5.6) with Pég%
given by equation (5.12) is apparent, but a reasonably accurate technique
(labeled the '"'method of steepest descent'") for obtaining an analytic
approximation'+5 is based on the well-defined maximum contained in the
integrand of equation (5.6). The value of € at which the maximum occurs is
determined primarily by the exponential arguments. The remaining function
is slowly varying over the range of the integrand and may be evaluated at
the single value ¢ locating the peak. The exponential argument is then
expanded to second order about the peak and the term integrated analytically.
In this application, the notation is simplified with the substitutions
€mn = hwmn/ZkT and n = —wan(u/ZkT)l/z. The exponential nature of
equation (5.12) is also simplified by noting that, in the energy range where
the perturbation analysis is applicable, the transition period tp = Zn/wmn
is typically less than the effective collision period tc = 2L/4. Thus,

Tg = tc/tp > 1 and sinh(wmg) =~ (1/2)e™8., Equations (5.6) and (5.12) are then
combined to give

- an n2 2 € - —-E- +21TT]E—1/2 -

K(T) = o C|=™2 4n D[ efmn| (e + |e_[)o2 e de  (5.13)

m,n o |V £ mn
mm mn 0
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The integrand peak is located at

e, = [u(rw_L)2/2kr]1/3 (5.14)

Using the procedure described, the approximate solution to equation (5.13)

becomes 2

\") e 3
ké?% = l6(3ﬂ3)—1/2005(§¥21:fl—> epllz(ep + |emn|)¢2(—gp,kp) X
mm mn

—3ep+€mn 1/3 1
e {1 + erf B3ep/4) ];’ (5.15)

where g =¢ /7 and A = ¢ 2(v -V )/(we The error function in
P P p 1% mm nn

mnvnm)'
equation (5.15) is close to unity for most cases. Equation (5.15) has

log k « T"l/3 as expected and satisfies equation (5.3c). The temperature

at which a given collision speed is coincident with the peak of the integrand
in equation (5.13) defines the most effective speed at that temperature; this

temperature will also be useful and can be identified from equation (5.14)

as
T, = uﬁ3/(2ﬂk|wmn|L) (5.16)

Comparisons of the approximate integration in equation (5.13) with exact
numerical integrations show that the approximate method is most accurate at
low temperatures. The first-order perturbation formula, equation (5.12), is
most accurate at low energies, thus further contributing to the accuracy of

equation (5.15) at low temperatures.

5.2.3 Kerner Solution for Linearly-Forced Harmonic Oscillators
The final analytic formula to be considered is an exact solution

obtained by Kerner3® for a harmonic oscillator that undergoes a forcing
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function linear in the oscillator coordinate. That condition may be satisfied

in situations where r/L << 1 in equation (5.7). The potential may then be

linearized according to

V(x,r) = A e-i/L(l - yr/L) (5.17)

Kerner's solution was applied by Treanor37 in a semiclassical collinear
approximation using equation (5.17). Within the framework of the collision
model, the resulting formula exactly calculates the probability of transitions
between arbitrary states with the interaction of all states included. Thus,
it can be applied at high collision energies where the interactions of more
than two states influence the oscillator dynamics. Despite the approximate
nature of the harmonic oscillator model, wherein direct multiple-quantum
transitions and the unbalanced coupling of higher and lower states caused by
anharmonicity are excluded, the Kerner solution remains useful because it
offers the only analytic means for estimating transition probabilities at
high energies. Examples will be shown where multiple-~quantum transitions
and oscillator anharmonicity are not dominant, allowing accurate prediction
by the Kerner solution.

Kerner and Treanor write the probability for transitions between two

arbitrary states m and n as

- -E J 1)
P(E) = minte °E’:'“ j§0 [(-Eo)j(m - it - j)!] (5.18)

where J 1is the lesser of the quantum numbers m and n. The parameter Eo
is the-energy absorbed by a classical harmonic oscillator divided by one

quantum of vibrational energy. For a collinear collision and the interaction

of equation (5.17), Rapp?® obtains
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Eo = 2(2mwLyn)? e_zﬂwL/a/zpmuo) (5.19)

where ,uo is the reduced mass of the oscillator and w is the oscillator
frequency. The accuracy of the model, when applied to highly excited '
oscillators, is substantially improved if the effective oscillator frequency
is corrected for anharmonicity for each initial state m according té

w = we(l - 2xem). Without the correction, the excited-state rate coefficients
would simply behave according to the Landau-Teller relation, equation (5.1),
at low temperatures where the effective values of Eo are all less than
unity and give km,m—1/mk1,0 < 1 for large Eo' An inconvenience of the
Kerner formula is its incompatibility with the approximate integration method
of equation (5.6) for obtaining a rate coefficient. A simplified version of
equation (5.18), assuming Eo << 1, permits an approximate analytical
solution. However, the calculations are then restricted to a thermal range
where multiple-quantum éffects are insignificant and the theory loses its
advantages over perturbation solutions. 1In the comparisons to follow, we
have therefore resorted to a numerical integration of equation (5.6) when

the Kerner solution is applied.

5.3 Comparisons with CO-He Experiments

In this section, the ability of the theoretical model to reproduce
experimental rate coefficients is tested. Unlike past comparisons of
vibrational rate coefficients with theory, we now have access to at least
one set of experimental values for excited initial states.® To test the
consistency of the theory and experiment for all vibrational states, however,

the effective interaction range L and the hard-sphere cross section o,
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are determined from the abundant collection of measurements dominated by
transitions between the ground state and first vibrational state. The
interaction parameters required to match the ground-state experiments are

then applied in comparisons with the excited-state rate measurements.

5.3.1 Effective Interaction Potential Parameters

The computational convenience gained from the simplified interaction
potential I, equatiom (5.7), justifies its use, but as a consequence of its
simplified form, the predicted rate coefficients cannot be expected to
reproduce the experiments at all kinetic temperatures. Transitions induced
in an oscillator depend to a large extent on the potential gradient near
the distance of closest approach; while in a collinear collision, the distance
of closest approach is determined solely by the coordinate where the poten-
tial magnitude equals the initial kinetic energy of the collision. Thus
both potential features are important. However, the magnitude of a purely
repulsive potential, such as equation (5.7), and that of a more realistic
potential with an attractive well may be the same at the closest approach
distance, but have a significantly different gradient. Consequently, where
collisions are averaged over a range of energies, the predicted variation
of rate coefficients with kinetic temperature will be different for the
two potentials. By matching theory and experiment in several thermal
ranges, and by using more than one potential form, an indication of the
degree of uncertainty in rate coefficients attributable to potential errors
can be obtained. For that purpose, we consider a second potential given by

(xe—x)/L (x -x)/2L
Vi () =De -2De °© (5.20)
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Potential II is a Morse-type interaction with an attractive well of depth
=D at coordinate X, . As with equation (5.7), the exponential form allows
matrix elements to be calculated analytically.

Predictions by the numerical anharmonic oscillator model with the
oscillator initially in the first eigenstate m = 1 aré compared with
experiment in figure 5.1. When potential I, equation (5.7), is used, the
rate coefficients are independent of the magnitude A, so that only the range
L requires specification. Similarly, the predictions using potential II
are independent of X, » but require both L and D to be specified. The value
D/k = 100 K is representative of well depths inferred from viscosity

measurements. 80

The two potential gradients are different by about 20 percent
at closest approach for the typical conditions considered. Figure 5.1
demonstrates the expected results. No unique set of potential parameters
reproduces the experiments over the complete thermal range, but the more
realistic potential II comes the closes. The required values of L fall
between 0.02 and 0.03 nm, depending on the thermal range considered.

As an interesting aside, note that the low-temperature departure of
the experimental rate from a variation proportional to T_ll3 is also
followed by the theory using simple repulsive potentials. As Shin®7 points
out, these low-temperature departures do not necessarily depend on weak
attractive forces normally omitted from the interaction potential; they even
occur with a repulsive potential when the thermal averaging integration is
done accurately for low collision energies. We know, however, that real
interaction potentials usually contain an attractive component and it will

augment this low-temperature behavior.
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Figure 5.1.- A comparison of experimental rate coefficients for CO(M = 1)-He
transitions to the ground vibrational state with predictions from the
numerical model of chapter 4. The solid and long-short dashed lines
were computed using the repulsive interaction potential I, equation
(5.7). The short-dashed line was computed using the Morse interaction
potential II, equation (5.20). Hard-sphere collision cross sectiomns
were chosen for each potential to match the experiment at T = 1000 K.
Experimental values are from: o reference 16, ® reference 1l7a,

A reference 17b, ¢ reference 1l7c.

5.3.2 Comparisons with Excited-State Rate Measurements

Normalized rate coefficients, predicted for initially excited CO at
T = 300 K, are compared in figure 5.2 with the room temperature measurements
of Hancock and Smith.l!8 The parameter km,m_llmkl,0 is much less sensitive
to interaction uncertainties than the absolute rate coefficients and varies
in a simple, nearly linear manner with initial-state quantum number m.
The nearly linear quantum-number dependence, increasing with m at room

temperature, 1s predicted for all the interaction potentials examined and is

believed to be an accurate description of the real behavior. As figure 5.2
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Figure 5.2.- A comparison of experimental rate coefficients at T = 300 K for
CO(m)-He transitions from vibrational states m to m - 1 with predictions
from the numerical model using repulsive potential I, equation (5.7). The
excited-state data are from reference 18 and have been normalized using
the experimental k; ¢ value of Millikenl8>17 (fig. 5.1).

shows, the experimental excited-state values compare favorably in magnitude

with the predictions, but their trend is inconsistent with a linear extrapo-

lation to m = 1. A highly nonlinear extrapolation is contrary to any
prediction of the collision model at any temperature. Although the

collision model contains many simplifications awaiting refinement, the

behavior implied by the experimental rates appears also to require further

verification and extension. In the interim, the theoretical predictions

of excited-state rates seem to be qualitatively reasonable and self consistent

despite their quantitative uncertainty. Unfortunately, their verification

by experiment remains inconclusive,

5.4 An Evaluation of the Analytic Approximations
The computational expense of the numerical model makes it impractical as

a general means of estimating excited-state rate coefficients. Instead, it is
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used here as a basis for evaluating the more convenient but less complete
analytic formulas. The predicted rate coefficient variations with quantum’
number for several models are illustrated in figure 5.3 for two extreme
temperatures. The differences in the various models depend strongly on the
kinetic temperature, but they all predict a simple monotonic change with
quantum number. The analytic approximations are therefore more clearly
evaluated by choosing the highest initial quantum number of practical interest

and then comparing the predictions for a range of temperatures. For CO,

100 -

e r T=300K

)
T

\
\

Km, m-1/mky o

} T=3000K

Q. 1 1 ] |
0 5 10 15 20

INITIAL-STATE VIBRATIONAL QUANTUM NoO., m

Figure 5.3.~ The CO(m)~He rate coefficient dependence on quantum number
predicted by several collision models. The solid lines represent the
anharmonic numerical model, the long-short dashed lines represent the
Kerner harmonic oscillator solution,3® equation (5.18), and the dashed
lines are from the formula of Keck and Carrier,g"+ equation (5.8). The
potential range L = 0.02 nm was used in all cases.

Rich et al.l® have shown that energy transfer from vibrational levels as

high as the twentieth can influence the net energy balance in an electrically

excited CO laser system. Choosing m = 20 as an example, the single-quantum

rate coefficients predicted by all the collision models are compared
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in figure 5.4. The independent parameter (huue/kT)l/2 was chosen so that
predictions by the Keck-Carrier formula, equation (5.8), appear as a nearly

straight line. A comparison of the rates from the numerical model using
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Figure 5.4.— A comparison of excited-state rate coefficients for
CO(m = 20)-He predicted by several collision models. The potential
range was L = 0.02 nm in all cases.

potentials I and II shows the moderate sensitivity of km m__l/mkl 0 to the
bl b1
form of the potential for one potential range L at all temperatures. XNot

shown is the great sensitivity of the magnitude of k /mk

to other
m,m_l 1!0 .

potential ranges at any temperature. Note, however, that the qualitative
nature of the predictions are undisturbed by the form of the potential and
are therefore considered realistic. As expected, the Mies solution,
equation (5.15), accurately reproduces the numerical results at low tempera-
tures, but fails at higher temperatures where multiple-state interactions
begin to affect the single—quantum transitions. The departure is signaled

when transition probabilities approaching unity influence the thermal
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averaging integral, equation (5.6). Since CO is not very anharmonic, the
Kerner harmonic oscillator model, equation (5.18), frequency-corrected for
anharmonicity at m = 20, works well over the entire thermal range. Note
that the anharmonic correction must be included, however, as all predictions
are significantly above the result stated by equation (5.1) for a single-
frequency harmonic oscillator. Finally, figure 5.4 shows that the Keck-
Carrier formula, equation (5.8), is too crude an approximation for large
initial quantum numbers.

The degree of oscillator distortion caused by the collision of a light
helium atom with a CO molecule has an insignificant effect on the classical
trajectory. This fact is made evident by the small difference at low
temperatures between the numerical model (where the effect is included) and
the Mies solution (where it is neglected). An example in which the coupling

is larger is illustrated in figure 5.5 for CO(m = 20)-Ar collisions. In this
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Figure 5.5.- A comparison of excited-state rate coefficients for
CO(m = 20)-Ar. Potential I, equation (5.7), was used with
L =0,02 nm in all cases,
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situation, none of the analytic models do well at low temperatures because
the effects of oscillator distortion on the classical path modifies the
transition probabilities even near threshold. The small corrections are
then greatly amplified by the thermal averaging integral at low temperatures.
The small anharmonicity of CO(xe = 0,0062) has influenced the preceding
examples mainly by altering the energy spacing between excited eigenstates.
Anharmonicity also modifies the absolute magnitude of the rate coefficients,
but that effect is not apparent in km,m—l/mkl,o' An example in which the
anharmonicity is large is illustrated in figure 5.6 for Hz(m = 10)-He
(xe = 0.0268). 1In this case, the frequency-corrected harmonic oscillator

model is inaccurate at all temperatures. The large spacing between eigen-

energies in H2 suppresses the onset of multistate interactions
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Figure 5.6.~ A comparison of excited-state rate coefficients for
H, (m = 10)-He. Potential I, equation (5.7), was used with

L2= 0.02 nm in all cases.
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at high temperatures, making the Mies solution an accurate reproduction of
the numerical results over the entire thermal range. The difference in mass
between the He and H nuclei produces only moderate coupling between the
compressed oscillator and the classical path (e.g., see fig. 4.2).

As the preceding comparisons indicate, one cannot generally choose a
single analytic model for estimating excited-state rate coefficients that
is applicable to all collisjion pairs. The situations where a model should
not be used are easier to identify. Clearly, the Keck-Carrier formula,
equation (5.8), is too approximate in all the examples. The Kerner harmonic
oscillator solution, equation (5.18), with anharmonicity-~corrected frequen-
cies is reasonably accurate unless the anharmonicity is large. The Mies
anharmonic oscillator solution, equation (5.15), is a poor approximation
when multiple-state interactions become important. Finally, no analytic
model based on the semiclassical approximation will be realistic when the
oscillator dynamics have a significant influence on the classical path of
the incident particle. This restriction limits all the models considered
to collision pairs in which the mass of the incident particle is not
significantly greater than the mass of the impacted nucleus and to oscilla-

tors that are not extremely heteronuclear.

5.5 Multiple-Quantum Transitions

In the preceding section, only transitions to an adjacent state were
examined. Here, we investigate the relative importance of multiple-quantum
transitions, particularly for oscillators in highly excited states. The
probabilities of multiple-quantum transitions are compared in figure 5.7

both for CO(m)-He collisions in which the oscillator is initially in an
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Figure 5.7.- Multiple-quantum transition probabilities for CO(m)-He

collisions using the anharmonic numerical model with potential I and

L = 0.02 nm. The effective temperature Tp locates the most effective

collision speed contributing to the thermally averaged rate coefficient

at the temperature designated.
excited state and in states near the ground state. The collision speeds
contributing most to the thermally averaged rate coefficient at a selected
temperature are indicated by the effective temperature Tp. In the thermal
range considered, multiple-quantum transitions to the ground state are always
improbable compared to single-quantum transitions from the first vibrational
level, but the situation is clearly different when the oscillator is
initially in the twentieth quantum state. However, thermally averaging the
transition probabilities in figure 5.7 reduces the apparent importance of
multiple-quantum transitions in a relaxation process. Figure 5.8 illustrates
the resulting rate coefficients for two potential ranges, using potential I

and values of o obtained from the experimental match in figure 5.1 at

o

T = 1000 K. The amplified uncertainty caused by the interaction potential
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Figure 5.8.- Multiple-quantum rate coefficients for CO(m)-He. Potential I
was used in the anharmonic numerical model. The hard-sphere cross-section
values o, for each potential range are those required to match the
experimental rates in figure 5.1 at T = 1000 K.

and its influence on the implied value of S, is most obvious, but the

qualitative features are again consistent for both potential ranges. For

oscillators like CO, multiple-quantum transitions provide a significant

path for energy transfer only at very high temperatures according to these

predictions.

A temperature marking the onset of competitive multiple-quantum
transitions is the characteristic vibrational temperature of the oscillator,
here defined as ev = hwe/k (for Co, ev = 3122 K). An oscillator in which
multiple-quantum transitions will dominate the relaxation process can then be
identified if ev is small compared to the thermal range of interest. One

extreme example is Br, for which ev = 465 K. Since the anharmonicity is

also small in Brz(xe = 0.0033), the Kerner harmonic oscillator model has
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been used to obtain the Brz-He rate coefficients displayed in figure 5.9.
Two- and three—quantum transitions from the tenth vibrational level are
shown to be significant even at room temperature, and the temperature
dependence of the single;quantum rate (m - n = 10 + 9) 1s inverted by
multiple-state interactions when compared with the dependence shown in
figure 5.8. The high probability-of multiple-quantum transitions in this
case contributes to the extremely fast and thermally insensitive relaxation
rates measured in the halogens and it destroys the concept of a single
"relaxation time" that is independent of the nonequilibrium state of the

process for molecules of this type.
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Figure 5.9.- Multiple-quantum rate coefficients for Br, (m)-He predicted
using the Kerner harmonic oscillator solution, equation (5.18), with
L = 0.02 nm.

5.6 Concluding Remarks

We have relied on a collinear semiclassical model for vibrationally

inelastic collisions entirely for pragmatic reasons. The collinear geometry
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affords an economically reasonable means of estimating V-T rate coefficients
for excited molecules and the semiclassical approximation is easily reduced
to practical analytic solutions. While these simplifications clearly
obviate the quantitative accuracy of the calculations, no serious omission
other than rotational coupling is apparent that would modify their qualitative
nature, even in the presence of uncertain interaction potentials. Unfortu-
nately, an attempt to confirm the predicted features through experimental com~-
parison was inconclusive. However, the experimental conditions that would
test the model most severely can at least be identified. For example, the
choice of collision partner has a large influence on the rate coefficient sen-
sitivity to initial quantum number. Note the large deviations of ];cm’m___l/mkl’o
from unity in figure 5.5 for CO-Ar compared to those in figure 5.4 for Co-He.
Furthermore, the increased oscillator distortion caused by heavy atom impact
requires a more complete description of the interaction than needed for light
atoms. From another viewpoint, the lesser sensitivity of some features of the
prediction to uncertainties can guide the choice of experimental variables to
be emphasized. 1In particular, an apparently universal feature of the V-T
excited-state rate predictions is their monotonic low-order variation with
quantum number. Once this feature is confirmed, the experimental emphasis
can be shifted to the less predictable variations with kinetic temperature.
Finally, a comparison of the estimates using various potential parameters
suggests that a self-consistent set of experimental rates for both high and
low initial quantum numbers contains much more information that defines the
interaction potential than ground-state rates alone.

Comparisons of the analytic and numerical rate coefficients graphically

delineate the suitable range of application for each analytic model. However,
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the utility of an analytic approximation can also depend on the physical
properties of the application. For example, the Kerner harmonic oscillator
model, with anharmonically corrected frequencies, predicts km,m—llmkl,o
with surprising accuracy for many molecules; but before the model can be
economically applied, an analytical solution to the thermal averaging
integral, including Kerner's transition probability formula, awaits develop-
ment. Even with that solution in hand, one must be concerned with the effect
of anharmonicity for each molecule treated by the model. On the other hand,
Mies' solution for anharmonic oscillators, equation (5.15), fails at high
temperature., At those conditions, however, many nonequilibrium processes
are insensitive to the V-T rates of excited states, either because the vibra-
tional state population distribution is nearly Boltzmann or because the
pProcess is controlled by some separate energy-transfer mechanism. At lower
temperatures, the model accurately deals with a broader range of oscillators
because anharmonicity is rigorously included. Collision partners for which
the theory fails are poorly treated by all the analytic solutions based on a
semiclassical approximation. Similarly, the frequently used formula
developed by Keck and Carrier is useful because of its simplicity, but the
additional computation required by the Mies solution is not prohibitive.

The series function ¢(-g,x) converges rapidly and the matrix elements

may be computed in advance.

Calculations of multiple-quantum transition rates from excited states
validate the assumption most often made in kinetic models of nonequilibrium
processes: they can usually be neglected. As before, at very high tempera-
tures where multiple-quantum transitions become competitive, a nonequilibrium

process is usually not controlled by excited-state V-T rates, while
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ground-state transitions are still dominated by single-quantum steps.
Molecules with closely spaced vibrational energy levels, such as the halogens,

are notable exceptions requiring a more careful analysis.
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CHAPTER 6
‘EFFECTS OF ROTATIONAL TRANSITIONS ON VIBRATIONAL ENERGY TRANSFER

The preceding chapters have utilized a collinear collision model in whicﬁ
vibrational motion was the only form of energy transferred during a collision,
and, indeed, in many cases it is. However, the use of a one-dimensional col-
lision geometry renders the model incomplete in the sense that cross sections
and rate coefficients cannot be obtained directly, but require artificial
three-dimensional parameters such as steric factors or hard-sphere cross
sections that must be estimated by some other means.

From a more physical point of wiew, collisions with sufficient energy to
induce vibrational transitions will simultaneously cause numerous transitions
among the more closely spaced rotational states, thus invoking an additional
energy sink not represented in the collinear models. This chapter investi-
gates the influence of rotational motion on the net rate of vibrational energy
transfer, It is motivated by a need to assess the validity of the collinear
models since they remain the most practical means for predicting vibrational
rate coefficients in a kinetic analysis. With that motivation, emphasis is
directed here toward the net rate of vibrational energy transfer summed over
all final rotational states, rather than individual vibration~rotation transi-
tional rates, since only the former can be compared with the collinear
predictions.

In the sections to follow, a semiclassical three-dimensional collision
model is first developed in detail. It is followed by a description of some
approximations that significantly reduce the number of coupled states neces-

sary to obtain a complete solution, thus making numerical results practical.
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The collision dynamics are then studied for molecular types that represent all
extremes in the role of rotational motion on vibrational transition rates.

The role of rotational coupling is summarized and categorized in conceptual
terms in the final section and the common characteristics of all related V-R-T

mechanisms are discussed.

6.1 Vibration-Rotation Collision Model

A three-dimensional, vibration-rotation collision model is formulated
here within the semiclassical framework described in appendix B and based on
the following underlying concepts: the incident particle is considered struc-
tureless while the target is a diatomic heteronuclear molecule. A natural
parameter for measuring the heteronuclear nature of the molecule is its mass
ratio

Y = mc/(mb + mc)

where my and m, are the nuclear masses and m, 2 my. The inertial proper-
ties of the molecule are modeled by a Morse-oscillator/rigid-rotor description
(discussed in ch. 3). The collision geometry is described classically
with the associated coordinates shown in figure 3.4 as viewed in a rotating
interaction plane containing all three nuclei. The classical trajectory is
assumed to be dominated by the spherically symmetric component of the interac-
tion potential and is determined from just those terms. Consequently, the
relative path remains in a single plane and the subsequent formulation is
greatly simplified. These concepts are reflected in an illustration of the
collision geometry shown in figure 6.1, where it is viewed from a space-~fixed

position in a center-of-mass reference frame aligned with the plane of the

trajectory.
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MASS-CENTER

~
TRAJECTORY N§
PLANE
Figure 6.1- Three-dimensional encounter nomenclature and geometry as viewed

from a fixed position in the center-of-mass reference frame. The x',y'
plane contains the molecular mass center and the incident particle path.
Only the portion of the molecule above the plane is shown.

The detailed formulation of a semiclassical model divides logically into
three main parts — one defining the nature of the interaction potential
between the colliding pair, one detailing the quantized motion of the molecule
in response to a time-dependent disturbance, and one describing the classical

motion of the incident particle that produces the disturbance. The descrip-

tion to follow proceeds in the same order.

6.1.1 Interaction Potential

A comparison of the predictions from the collinear model described in
chapter 4 with those of a three-dimensional model will be most meaningful if
the interaction potentials are similar. We therefore make use of the expo-
nentially repulsive and pairwise additive interaction discussed in chapter 3

and write, with reference to figure 3.4,
V' (x,x,) = A<e‘xb/L + e'xc/L) (6.1)
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To convepiently separate the molecular dynamics from the classical motion,
however, equation (6.1) must be expressed explicitly in terms of coordinates
&escribing each of the moiions separately. To this end, we have shown in
chapter 3 that equation (6.1) can be represented to first-order in r/X by

V' Er.8) = A e—i/L(eY(r/L)cos § , ~(1-0) (r/L)cos 5) L (6.2)

where the relative angle, 6, is related to the space-fixed coordinate angles in
figure 6.1 by

cos § = sin 6 cos(¢p - Q) (6.3)
Equation (6.2) expresses the potential in the desired explicit form. However,
to aid the following separation of dynamical equations into coordinates that
describe the motion of each collision partner, we shall temporarily denote the
poﬁential by an equivalent notation V'(%X,r,8) = V'(E,t) where Z = E(r,6,¢)
locates the molecule in configuration space and t emphasizes the temporal
dependence of the trajectory coordinates, %(t) and Q(t), appearing in equa-

tions (6.2) and (6.3).

6;1.2 Quantized Molecular Dynamics

In appendix B, we show that the quantummechanical equation of motion may
be reduced to a set of differential equations — one for each bound eigenstate
of the undisturbed molecule — in terms of the probability amplitudes associated

with each bound state. The result is

dcj(t)

zh —dt = Z Cn(t)e":(wj—mn)t<jlvv (Z,t)ln) (6.4)
n

where the bracket notation refers to

Glv @ el = fw;‘(E)v' (@,t)v, (@) dq (6.5)
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integrated over all E space and Y, 1s an eigenfunction of the undisturbed
molecule determined by the intramolecular potential, Vo(r).' As in chapter 4,

1

the intramolecular potential is modeled by the Morse function:

v (x) = Do[e—za(r_re) - ze‘a(r‘re)] (6.6)
Combined with a rigid-rotor description of the molecular rotational motion,
the eigenfunctions ¢, are then determined by three quantum numbers ]vﬁm)

and have their eigenfrequency given by
B 1 1\2
woo = we(v + E) - mexe(v + T’Z-) + BeR,(R. + 1) (6.7)

The remaining task, leading to solutions for equation (6.4), is then to evalﬁ-
ate the matrix elements defined by equation (6.5) in terms of the fundamental_
collisional and molecular parameters.

The numerical labor of solving equation (6.4) will be reduced greatly if
the matrix elements can be factored into a time-dependent term obtained classi-
cally and state~dependent terms containing all the quantum-mechanical spatial
integrals. The spatial integration may then be completed independently and in
advance for transitions between all eigenstates in the basis set. A step in
that direction 1s taken by writing

Glv'(q,e) |n) = LICROLNG) (6.8)

where, from the potential given by equation (6.2), the right-hand terms are -

Uh,t) = A e X(b>)/L (6.9)
and
o l.-cos S
Vi = 35 lett |n) (6.10)
i=1,2

with a; =Y and o, = -(1 - Y). Clearly, the function U(b,t) can be

obtained classically, but the expression for an(t) must now be developed to
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further isolate its time dependence. A useful aid will be the expansion of
e? ©°° 6 in terms of Legendre polynomials Pj(cos ) given by equation (3.30).

In the present notation, the expansion is

%—cos S ~ oy J r
o & - ToT (27 + 1)iJ(ai i) P (cos §) (6.11)

where iJ(air/L) is a spherical Bessel function of the first kind.”3
Recalling that |n) refers to a vibration-rotation state with quantum

numbers |v2m> and that the molecule is represented as a Morse-oscillator/

rigid rotor, the eigenfunctions represented in equation (6.10) may be factored

in the traditional manner according to

R, (1)

(r,8,9) = Y, (68,9) (6.12)

lpv!l,m
The factorization, in conjunction with equation (6.11), then allows the matrix
elements to be represented as a sum of products given by

\
Vv'l'm'vlm

(t) = :E: (23 + l)Ré{i Téf;.lm<t> 6.13)
J=0

where
a J
(J) _ E i Vs xr
RVS'V = (W {v I’bJ(OLi L)lv) (6.14)
i=1,2

is a radial matrix independent of time and

J
Té';'lm(t) = (Z'm']PJ(cos G)IZm) (6.15)

is a spherical matrix element containing the trajectory coordinate Q(t) via
equation (6.3). The remaining discussion is divided into separate develop-

ments of each element.
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6.1.2.1 Radial Matrix Elements

The radial term defined by equation (6.14) appears in expanded form as

RS = (v'|iJ(Y §)+ (-1)J7;J[(1 -7 %]|v) (6.16)

First note that when the molecule is homonuclear (i.e., ¥ = 1/2), the radial
term will be nonzero only for even values of J and that it wili emphasize
even J values for most heteronuclear molecules whefe Y is nearly 1/2.
This property directly affects the probabilities of rotational transitions.
To evaluate the spherical Bessel functions in equation (6.16) in terms of the
molecular coordinate r, we note that its arguments lie typically in the range
0 < ayr/L < 5. Larger values are suppressed by the vibrational eigenfunctions

that approach zero at large r. In this range of arguments, the spherical

Bessel functions may be calculated with rapid convergence by the ascending

73

J 2 2 2

. _ z z</2 (z2/2)

t5(z) = —3 [1 O RIGE IR ] (6.17)
Im (25 + 1)

3=0

series

The radial matrix element may then be written as

[ 0/l - Y 2n+J]
(J) (2J+ 1yJ Z (Y2/2) D ( Y ) | ((2040) (¢ 18y

n v'v
H(2j+1)n- @21+ 2k + 1)
j=0 k=0
where ré?i represents the remaining simplified integral
L T (E &, (x)dr (6.19)
Ty'y A L '

Equation (6.19) is similar to the integrals that define dipole matrix elements
associated with vibrational band intensity calculations and, as such, it has

been solved exactly for m = 1 and 2 using Morse oscillator
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eigenfunctions.98’99 In principle, the integral can be solved exactly for any
integer value of m, but the cqmplexity of the solution increases and becomes
impractic§1 for powers larger than m = 2. An iterative numerical method has
also been developed,100 but it becomes laborious for large quantum numbers.

In appendix C, we derive an approximate closed-form solution to equa-

tion (6.19) with the result:

L
(m) Nv'v <« 'S Te "
i > Dri+s+ D) Sl,n()\ - S)] +(5) 6 yry (6.20)
s=0
where k' =0 /w X, A =k' -2~ (v' +v), and T(A +s + 1) is a gamma func-

tion.”’3 Coefficients Dy and Nir, contain elements of the Morse eigenfunc-
tions (defined in appendix C). The derivation of equation (6.20) depends only
on the provision that A >> 1, which is easily obtained because k' >> 1 for
all diatomic molecules. Typical values of k' range from 37 for H2 to 161 for
CO0. Corresponding errors in r{é) from equation (6.20) are 1.5 percent for

H, and 0.3 percent for CO. Hence equation (6.20) is sufficiently accurate in
this application, although some numerical difficulties arise that can limit its
use. TFor example, the terms of the summation in equation (6.20) altermate in
sign so that, for large k' and large vibrational quantum numbers, small dif-
ferences between extremely large terms cause the loss of all significant digits.
The CDC-7600 computer with 28 digits in double precision allowed equation (6.20)
to be evaluated with at least 3 accurate digits for vibrational quantum num-
bers less than 12 when k' = 161 and for all quantum numbers to the continuum
when k' = 37. 1In the few cases when equation (6.20) could not be used, the
integral was evaluated with a standard Gauss-Laguerre quadrature algo-

rithml01-103 of very high accuracy. (The author is indebted to D. G. Galant,

NASA Ames Research Center, for developing the algorithm.)
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6.1.2.2 Spherical Matrix Elements

The spherical term defined by equation (6.15) incorporates the rigid-
rotor eigenfunction introduced in equation (6.12)i The eigenfunctioﬂs are
known to be spherical harmonics that satisfylo“’105
L2y, (6,9) = = h22(2 + 1Y, (8,4)

and

Y, (8,8) = hm¥, (6,9)

where L is the orbital angular momentum operator and 12 is a component.
Note that the Legendre polynomial in equation (6.15) can also be represented

as a spherical harmonic according to

- ‘/__fﬂL__
PJ(cos §) = 77 + 1 J 0(6 0)

allowing the spherical matrix element to be written as

e [ (7 (T v*. 6.6)Y. (6.0)Y. (6,8)sin 6 d0 b (6.21)
Tormem = Vo731 grm' Py 0t Tam )

The solution to equation (6.21) follows common procedures in the mechanics of
quantized angular momentumt®%>195 and it is described in detail in appendix D.
The result takes the form

(J)

(J) -Z(m'-m)Q (b, t)
(t) - 2 "m'em € . R ,QQIZQZA
where the time-independent term is
4Dy /e (GEm! (J "B T TS (“' )(- i)
£'m'em I (3 @), (I - m), 0 00
2 2 :
(6.23)
Nonzero values are obtained only if
fi=m'-m
J+m even } (6.24)
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The bracket symbols in equation (6.23) are Wigner 3-j symbols that account

for the vector coupling between the angular momentum states, ll'm') and llm),

and the trajectory orbital momentum designated by J. They impose further
@

constraints associated with nonzero values of “li'm'zm that are listed col-

lectively as

lm| <2, |m'| <2, @ <3 (6.25)

6.1.2.3 Complete Factored Matrix Elements
Factorization of the time-dependent terms in the complete matrix elements
defined by equation (6.8) can now be accomplished by defining a time-

independent matrix element (with an unprimed symbol) as

L'+
= 3 )
Vv',Q,'m'vSLm = J=|22'_2l (23 + l)RV'V jﬂ,'m'lm (6.26)

and writing the complete matrix element as

-2 (m'-m)Q(b,t)

(v'l'le'(Z,t)|v2m) = U(b,t)e Vv' (6.27)

£'m'vim
The time-dependent terms, U(b,t) and Q(b,t), in equation (6.27, are then
the functions required from the classical trajectory. Generally, they repre-
sent both an induced force and an induced phase shift in the molecular motion,
where the magnitude of the latter depends on the rotational transition con-
sidered. However, the primary quantal properties of the collision dynamics are
determined by the time-independent matrix elements given by equation (6.26).
For example, the summation limits in equation (6.26) reflect the constraints
imposed by equations (6.25) and lead to the only significant selection rule

associated with vibration-rotation transitions. Recall from equation (6.16)
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that, for homonuclear molecules, Ré{% is nonzero only when J is even. Thus,
nonzero_matrix elements and transition probabilities will voccur for homonuclear
[t - 2| Simi-

molecules only when is even, according to equation (6.26).

larly, for heteronuclear molecules, transitions of even }2‘ - 2] will domi-
nate, although odd-increment quantum changes are allowed in those molecules.
Other selection rules regarding intermultiplet transitions, m' to m, are also
implied by equgtion (6.25) and their accompanying zeros may be observed in
table 6.1, where a typical transition matrix is listed. However, the role of
these degenerate states in determining the oBservable behavior of a kinetic
process is usually lost due to subsequent averaging and hence become important

only in the computational aspects of the collision model.

TABLE 6.1- TIME-INDEPENDENT TRANSITION MATRIX FOR CO
v=0, =2

V"'.":" 1
. -.065
Y = 4
-1 0 -.097 0 .156 0
-2 .022 0. -.135 0 .142
-3 0 .034 0 -.189 0
-4 -.006 Q .044 0 -.322
Note: Shaded elements depict the symmetry of the matrix.

Figures 6.2 and 6.3 illustrate some general properties of the time-
independent matrix elements and allow one to reach some early conclusions con-

cerning the nature of vibration-rotation transitions during a collision. For
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® Vy'U'm'vim POSITIVE
© Vy't'm'vim NEGITIVE

Figure 6.2- Variation of time-independent matrix elements defined by equa-
tion (6.26) with angular momentum quantum numbers, for CO with v = 0,

'v' =1, and L = 0.02 nm.
'r
ol=0
ol-=1|
1o-1 ©1=20
>
_v- '0‘2
">
>
10-3
10-4 i i 1 1 3 E
0 2 ) 6 8 10
Al
(a) H,
Figure 6.3.- Variation of time-independent matrix elements with A% = |2 -4]
for H, and CO with v=0 and v' = 1.
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Figure 6.3.- Concluded.

example, figure 6.2 depicts the variation of matrix elements with projection
state quantum number. These features will be of interest later when methods
for reducing the number of coupled states in the calculation are sought. At
this point, we simply note that transitions from the corners where m = *£,
m' = #4', and m', m have the same sign are the dominant route by which energy
18 transferred. As ¢ and %' increase, the dominance also increases so that
in the limit of large £, &', all other m ¥ *¢ and m' ¥ *2' states may be
ignored. .

Another basic aspect of the matrix elements is illustrated in fig-
ures 6.3(a) and (b) where for both H, and CO — two extremely opposite molecular

types — only states with small differences in angular momentum, AL (where

123



AL = lz' - 2]) are shown to share significant coupling. This feature persists
for all values of &, as shown by the sets of symbols in figures 6.3, and it
also holds for all vibrational transitions. Note that the emphasis of small

A% transitions is independent of any degree of resonance that may occur between
the initial and final states of the transition since equation (6.26), from
which these matrix elements are obtained, contains no reference to the eigen-
energies of the transition.

Nevertheless, resonance enhances the probability for transition. Its
effect, in combination with the preceding small A% constraint may be
anticipated by examining the relative vibration-rotation eigenenergies
depicted in figure 6.4 for both H, and CO. Note that while the transition
vk > v'2' = 0,8 >~ 1,0 in para-H, is nearly resonant, AL = 8 1is too large and

the coupling between these states (fig. 6.3(a)) will be very small. Much

St
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4 - 22 — 20 —
18 —
20 ——
8 —
20 — 16 —
18 ——
3 16 — 14 ——
> 18 —
A 6 — 14 — 12—
= r2 10—
W e — 14— 8 —
2+ 2 10 — 6 —
R 4 ——
T ST 5
10 — 6 — = y=
12 — a — v=3
8 — 2-==
i0— & 10"
I “_ v=2
—_— 2-—=
8 1:0”
6 — v=|
4 ——
15— (a)
-0 a
O V O - _
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2

Figure 6.4.- Vibration-rotation eigenenergies for para—H2 and CO.
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(b) CO (NOTE: Not all rotational levels are shown).
Figure 6.4— Concluded.

larger A2 will be required in CO to approach resonant transitions while the
restriction to small A% will make the rotational aspect of a vibrational
transition insignificant. From these observations, we may conclude that, while
transition probabilities are enhanced by resonance, vibration-rotation transi-
tions with small AL will dominate the intramolecular energy transfer process,
regardless of resonance!

Finally, we see from figures 6.3 that, although odd Af transitions do
not occur in homonuclear molecules where Y = 1/2, a slightly heteronuclear
molecule like CO (Y = 0.43) will allow odd A% transitions with only moderate
suppression, as indicated by figure 6.3(b). Hence, the selection rule regard-
ing even Af transitions applies strictly to homonuclear molecules.

The foregoing derivation of the molecular equations of motion has explic-
itly identified the required trajectory functions. We can now proceed to
evaluate those functions classically in terms of the fundamental collision

parameters.
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6.1.3 Classical Trajectory
The classical, two-body, central-force equations of motion are obtained

in appendix B as

(—}E‘-)z = 32[ - T’g‘) —(%)2] (6.28)

d@ _ bu

‘ at = (6.29)
X

where the coordinates refer to figure 6.1 and V(X) 1is a spherically symmetric
version of the interaction potential. The total energy, E, and the correspond-
ing initial speed, T = V2E/u, are "effective" values averaged over the trajec—

tory (as discussed in ch. 4).

In this chapter, we shall not include the dynamic influence of the mole-
cule on the incident particle motion as in chapter 4. To do so in three
dimensions would require a great deal of artificial approximation and would
demand extensive comparisons with exact quantum-mechanical solutions for vali-
dation, as in chapter 4. Such an investigation is outside the intent of this
chapter. Instead, we use the results in chapter 4 as a guide to those colli-
sion parameters where the dynamic coupling is unimportant and confine the
examples used here to only those cases.

The form of the interaction potential necessary to determine a trajectory
is obtained here by spherically averaging the model potential given in equa-
tion (6.2) over all coordinates of the molecule in its initial state. Thus,

V@ = 1|v' (@, 1) (6.30)
where Ii) denotes the initial state. By use of equation (6.27), the matrix
element above may be rewritten in the more workable form:

/Ly (6.31)

V(X)) =Ae ii
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This method of averaging the potential produces a single trajectory'fo: each
initial state of the molecule and it is independent of the numerous possiﬁle
final states. Transition probabilities computed using other methods of aver-
aging (e.g., involving a final state designation) were found to be oniy negli-
gibly different from those obtained with equation (6.31) when the energy trans-
féfféd:inelastically is small compared to the total energy. Equation (6.30) is
an approximation consistent with the adopted classical equations of motion
since their accuracy is likewise contingent on the requirement that the energy
traded inelastically remain small.

At this point, we have the sufficient formulation to obtain a full
numerical solution of equation (6.4). However, the numerical integration of
a coupled set of differential equations often proceeds with much less labor if
all equations relax at intrinsically similar rates. The selection of step
intervals in the independent variable (t in this case) 1s then controlled by
the unanimous behavior of all dependent variables rather than the conflicting
behavior of.several dependent-variable subsets. (The amplitudes, cn(t), and
the trajectory coordinates, %(t) and Q(t), are conflicting subsets with dissim-
ilar relaxation rates in this case.) While a set of equations cannot always be
idealized in such a manner, the numerical effort is reduced here significantly
by using approximate analytic sqlﬁtions of the classical trajectory equations
and solving only the molecular equations of motion numerically.

. An analytic solution of the trajectory equations is possible only because
we have gdopted an exponential interaction potential with convenient analytical
properties. In most cases, however, nonexponential potential functions, such
as the Lennard-Jones potential, equation (3.22), can be represented by an

exponential function over the essential regions of interaction with acceptable
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accuracy. A development of analytic solutions to the trajectory equations is
~described in detail in appendix E. The solutions are based on first-order
approximations developed by Hansen and Pearsonl06 and later extended by
Stallcop.107 Here weloutline the procedure only briefly as it has been
.adapted in this application to obtain the functions U(b,t) and Q(b,t).
The function U(B,t) defined by equation (6.9) may first be converted to

a more convenient form by noting that at closest approach t =0, X = io, and

dx/dt = 0. Equation (6.28) may then be solved for V(io) to obtain

ae/ly =B - (5/%,)2) (6.32)

Equation (6.9) then becomes

U(b,t) = gE— [1 - (b/%,)?] e~ (XRo) /L (6.33)
ii

When b = 0, we also have the solution to equation (6.28)

e-(ero)/L - sechz(gg) (6.34)
L
Hansen and Pearsonl?€ assumed that a solution to equation (6.28) for nonzero

"“impact parameters will have a similar form and defined a function, ab(b,t), so

that, for all values df b,

e—(x—xo)/L = sechz[ab(b,t)ﬁt/ZL] (6.35)
We show in appendix E that an expansion of both sides of equation (6.35)
about t = 0 then gives, to first-order,
- \2 - 1/2

ab(b,O) = [1 - (b/%,)“(1 - 2L/%,)] (6.36)
Furthermore, exact numerical solutions of equation (6.28) show that ab(b,t)
varies so slowly with t that equation (6.36) may be used for all t. Fig-
ure 6.5 illustrates the accuracy of equation (6.36) for large impact param-

"eters where the error is greatest and at a collision energy near threshold.

128



1.0 EXACT
———— EQ.(6.33)
.8
3 6l b/L =14 (b/Xg=0.995)
12
x4t b/L =7 (b/Xe=0.7)
'o
)
2
0 4 6 8 10 12

ut/sL

Figure 6.5.- Exact and approximate (eq. (6.32)) trajectory functions for non-
zero impact parameters; E/AV;; = 1074,

A similar figure for energies 10 times greater would appear almost identical.

Thus, we have the required analytic approximation:
U(b,t) ~ 5= [1 - (b/%,)%sech?[a, (b,0)Tt/2L] (6.37)
ii

where a(b,0) is obtained from equation (6.36) and %, 1is the positive root

8]

of equation (6.32). For small impact parameters where the peak contribution

to vibrational transition cross sections is made, X, may be approximated by

o}

the analytic expression obtained from equation (6.32) for b = 0; namely

_ Avii
%, ~ %o(b = 0) = L zn< = ) (6.38)

Figure 6.6 indicates the range of b/L where equation (6.38) may be applied.
Finally, for very large b/L where b/?{o + 1, the classical patb foilows a
straight line, as figure 6.6 indicates, and although equations (6.36)

and (6.37) are still sufficiently accurate, an alternate and more accurate

approximation is

129



U(b,t) wemp A exp[—/(b/L)2 - (ﬁt/L)2] (6.39)
b

= > 1
X0

20 //

/

6 |
A STRAIGHT—LINE

PATH

12
Xo/L
8 E/avy=10~%
sl E/Av,; =1073
/
1 L 1 1 ]

0 4 8 12 186 20

Figure 6.6.- Distances of closest approach.

The remaining trajectory function to be determined is Q(b,t). Hansen
and Pearsonl®® obtain an analytic expression by expanding ﬁ(b,t) in a Taylor
series about t = 0, again where the interaction is greatest, and keeping only
terms to first order. Thus,

3

B(b,t) = a(b,0) + t(—a-E)t=O ...

With the aid of equation (6.29), a first order approximation is then

Q(b,t) ~§022- t | (6.40)

Stallcop107 explores the error in neglecting higher-order terms and finds it
to increase with Af%. However, the error in cross section is only about
10 percent for A% = 4 and appears insensitive to collision energy. We see in

figure 6.3 that the matrix elements and hence cross sections decrease rapidly
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with A% and will be of marginal interest for AL > 4. Thus, the approximate

function given by equation (6.40) is used for its computational simplicity.

6.2 Representations of the Results

The solutions to equation (6.4) provide complex probability amplitudes,
cn(+w), for all states included in the vibration-rotation set. The final
transition probability from an initial state |i) to some other state In)
is then

Pion = ey (+=) |2

In more explicit notation, we designate the initial state by unprimed quantum

numbers, v&m, and denote the probability

P(E,b) = Jergrgr 12 (6.41)
vimv'2'm' 'm

However, transitions between individual projection states, m and m', are
rarely of interest in the analysis of a kinetic process. A more easily mea-
sured and useful quantity may be referred to as the vibration-rotation transi-
tion probability, defined as the final probability averaged over all initial

projection states and summed over all final projection states according to

P(E,b) = 5y Z P(E,b) (6.42)
virv' ! m,m' vimrv'2'm'

Finally, to compare with a collinear model in which rotational traﬁsitionshéfé
nonexistent, we define a net vibrational transition probability as the total
probability of finding the molecule anywhere in the manifold of rotational
states associated with a designated vibrational state. Such a probability is

computed simply as the sum .

P(E,b) = ), P(E,b) (6.43)

virv'! L' vev'a!

131



The net vibrational transition probability so defined still depends on the
initial rotational state, however, and cannot be compared directly with col-
linear predictions. To evaluate the collinear approximation, we must first
identify the properties of Pv2+v' that must be obtained to produce similar
cross sections and rate coefficients from either collision model.
The relation of cross sections to transition probabilities has been dis-
cussed in chapter 2 and is known to be
o

o(E) = 2Trf P(E,b)b db (6.44)

vi-sv! o viv'
Equation (6.44) poses no difficulty in a three-dimensional model but, as
chapter 5 demonstrates, its application to the collinear model requires some
additional consideration. Since the impact parameter, b, is not a collinear
variable, an effective "hard-sphere" cross section, o,, must first be chosen
by some independent means and the collinear cross section is then defined by

o(E) = o P(E) (6.45)
vv! vy

The validity of equation (6.45) is contingent on the idea that o, is
invariant with both quantum number and collision energy. One test of the
utility of a collinear model is then to test this contingency by defining a
parameter equivalent to o, but obtained from the three-dimensional collision
theory. To that end, equation (6.44) may be recast into a form defining an

"equivalent elastic cross section," og, by the relation

o(E) = o P(E,0) (6.46)
vi»v! vi>v'
where
o® = nxCZf 2[P(E,b) p(E,O)](l) d<—b—> (6.47)
° o vt vt Xe Xe
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and x. 1s an arbitrary collision radius. Equation (6.47) has been written
in a manner that also correlates with other concepts used in the methods for

selecting a hard-sphere cross section, 0,- For example, the constant, Xos may
be considered a radius corresponding to the elastic collision radius used to
coﬁpute gas-kinetic collision rates.® The associated elastic cross section is

then the constant term, mx.2, appearing in equation (6.47). When a Lennard-

c
Jones interaction potential is adopted, X, is often equated to the zero-
potential radius and evaluated from viscosity or viral-coefficient

measurements.eo

The remaining integral term in equation (6.47) is

S =2 f [P(E,b) P(E,0)]<xl> d(;b-> (6.48)
o Lviv'/ vav! c c

which may be identified with a "steric factor" often used as a correction for
three-dimensionality with collinear collision models. The steric factor must
be considered invariant in the collinear model, although its magnitude here
depends on the values of E and the transition quantum numbers. Hence, cases
in which either os or S are invariant with both quantum number and colli-
sion energy show possibility as examples where a collinear collision model is
applicable. However, the invariance of cs or S alone is not sufficient to
declare collinear rate-coefficient predictions valid, as shown in the follow-
ing discussion.

According to the results in chapters 4 and 5, a semiclassically deter-
mined cross section 1s related to the thermally averaged rate coefficient, in
the notation of this chapter, by

R L =
k(T) =¢C Z e VAV A f 5 (%) (E + Ievzv'z'» e”¢ az (6.49)
o

viy! 'K visv'e!
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where -

= E/KT , = h(w

Evav' e’ Ve

= w1, )/26T , and T = (8kT/mu)!/2
If we now assume that transitions for which the steric factor defined by
equation (6.48) is invariant are those for which €vgv'e! = Eyv! (i.e., ;he
contribution of rotational frequencies to the eigenfrequency can be neglected),
then equation (6.49) is well approximated by
k(T) = -('-1 Svv' f P(E, O) e + Ie ,I)e_e de (6.50)
vi-v! o viv'
To compare with the collinear rate coefficient that presumably represents the
average of all initial rotational states, we introduce a rotational state

population fraction va(Tr) that is dependent on a rotational temperature,

T The net vibrational rate coefficient is then approximately

re
= e Sw 7 S - - .
k(T,T,) ~C o e f Ny (TIPE0| (B + [e i])e™ dE  (6.51)
A\as's o L vV

For cases where T = T, it may be compared directly with a collinear rate

coefficient. The additional conditions to be met before a collinear model may

be applied are then shown by equation (6.51) to be that P(E,0) must be rela-

va-v'

tively imvariant with quantum number, %, and it must vary with E in the same

manner as the collinear equivalent probability.

6.3 Numerical Methods of Solution

Numerical solutions to the set of differential equations (6.4) were
accomplished using the same algorithm that was applied to the collinear model
in chapter 4, namely, a fifth-order polynomial extrapolation technique
developed by Bulirsch and Stoer®! and provided in FORTRAN by Gear.2? The

method is shown by Hull et al.198 to be generally advantageous both in S
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computer eﬁpense and reliabilify (error) over several o;her eétablished
methods, particularly the frequently used Runge-Kutta methods. A fypicalAcol—
lision event could bg computed in this application with as few as 50 steps
thile,maintgining six-digit accuracy. Most solutions were obtained with .
100 steps and‘iéitializéd a;.a distance where the interaction poteﬁﬁial was
?10’“ oé its value at closest approach.

An additional consideration required by the thfee—dimensional model was
‘the' economic uée of éomputer'storage. The time-independent matrix elements

V|_

v om’ given by equation (6.26), were computed prior to the numerical

L'm'v
integration and stored in memory. However, their designation by a sixfold |,
index set suggested by the associated quantum numbers is impractical even for
the CDC-7600 computer with its large-core memory. Thus, advantage was taken
of the zeros and symmetry of the matrix elements_(see tablF 6.1 for examples)
and an index scheme was devéloped that reduced the sixfold' matrix to a one-
dimensional vector with no zeros or duplicate elements. Details of the index
methqd and its implementation in the computational procedure are described in
appendig.F.

An important conclusion, quickly recognized from early solutions, was
that the number of coupled vibration-rotation states required to achieve a
convergent solution (i.e., a solution for which the further addition of states
made no change) was too large to be computed in a defensible time, For
example, the execution time per step on the CDC-7600 computer was approxi-
mately N2/2 msec, where N 'is the total number of coupled states. A con-
vergent solution usually requires that at least all energetically accessible

states must be included. Thus, if % denotes the uppermost rotational state,

there are 282+l projection states for each orbital state & and hence (§+1)2
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total states from 2 =0 to 2. Computer time then varies as (E#l)“. For

collision energies near vibrational threshold, E 2 hwe so that, fromlfig-

=l
113

ure 6.4, minimum values are & = 8 for H, and 33 for molecules like-CO,

A corresponding minimum computing time for H, collisions is then approkimately
5 min — an acceptable value that has allowed numerous studies of vibration-
rotation transition rates in H,. However, for molecules like CO where the
rotational frequency is much less than the vibrational frequency, we could
expect to require more than 18 hr per case! Obviously, to study such mole-
cules, we must seek ways to reduce the required number of coupled states. The
greatest reduction will be achieved by any method for decoupling the projec-
tion states within a given orbital state and averaging their effects in
advance of the calculation. Several such methods are discussed in the follow-

ing section. Their implementation has been a key factor in reaching the

objectives presented here.

6.4 Effective Hamiltonian and Other Approximations
During the course of this study, three primary methods of approximation

were examined. They are discussed in this section in an order of increasing

utility to this work.

6.4.1 Sudden Rotation/Perturbed Vibration Approximation

In a recent analysis of vibration-rotation coupling in harmonic oscilla-
tions, Stallcop109 drew renewed attention to the concept that rotational and
vibrational motion can be treated in separate limiting approximations. For
example, the rotational period, 1/Be’ is typically very long compared with the
collision period, T = 2L/u. Consequently, the molecule appears rotationally

stationary during the collision period and the induced mixing of rotational
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states is predicted accurately by the "sudden" or "impact" approximation.>6>110
The sudden approximation then provides a closed-form integral description of
the mixed rotational state of the molecule at any time during the encounter.
In contfast, the vibrational motion typically undergoes several oscillations
while the incident particle is at close range. Stallcop treats the vibra-
tional motion in the extreme adiabatic limit for which many oscillations must
occur during the interaction period, but that limit is too restrictive for our
purposes. Instead, we may recall, from chapter 4, the broad range of colli-
sion energies in which a first-order perturbation treatment is successful and
then treat the vibrational motion accordingly. Dynamically, the vibrational
and rotational motions are thus decoupled and a complete closed-form integral
description of the vibration-rotation transition probability may be obtained.
Unfortunately, all series solutions of the resulting integral equation were
found to be ill-conditioned and hence not calculable with the significant
digits carried by available computers. Numerous attempts to restructure the
formulation or to evaluate the integral by numerical quadrature were also
unsuccessful for similar reasons. Thus, while the approach is mentioned here
because of its potential significance as a means of analyzing vibration-

rotation energy transfer, we were forced to abandon it for the present study.

6.4.2 Maximum Coupling Approximation

The broad range of magnitudes covered by the matrix elements, Vv'l‘m'vzm’
for the range of m and m' values suggests that the number of coupled states
may be reduced by including only the dominant paths of energy transfer. As

figure 6.2 indicates, the coupling between vibration-rotation states will

be dominated for large £ by the_projection states in which m and m' are
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maximum and of the same sign. The "maximum coupling" approximation therefore

simply excludes all states except those cOntributing?éo Vv' and

L' 2'vas

Vv' The number of coupled rotational states in each vibrational

L'-2've-2" ' _
set is then reduced from (2+1)2 to 22 + 1. Calculations incorporatiﬁg the

foregoing'exclusions are discussed in the following sections where they are

compared with the "effective Hamiltonian" approximation described next.

6.4.3 Effective Hamiltonian

An approximate method for decoupling and subsequently averaging the con-
tributions of all projection states of each orbital state has recently Eeen.
developed by Rabitz.°" Unlike the preceding two approximations, however, even
the relative range of parameters for which the method is expected to be accu-
rate has not been defined in terms of the molecular properties or collision
parameters nor is a method of defining them apparent. Hence, for the present,
the approximation must simply be tested by comparison with limited exact cases.

In effect, Rabitz determines the form of the Hamiltonian required to
exactly nullify the contribution of individval m and m' states in the matrix

elements. He begins by assﬁming an interaction potential with the general

form:'

V' (%,r,8) = 2, v (r,%)P (cos 6) ~(6.52)
J=0

and finally obtains the effective matrix element, analogous to equation (6.5)

or (6.27) ‘as
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[(22" + 1) (28 + 1)]11/% x

(v'e' |Vi(R,1,8) |ve) = -1y (1212 H2 140 /2

d ' L' J 2
2 ' v (B v 2T + 1)1/2 - (6.53)
where'-Vé- is an "effective potential" correspondiﬁg to equation (6.52).
Equation (6.53) may be-conﬁérted to terms corresponding to the particular
potentiai, given by equation (6.2), through the use of equation (6.11). An
equivalence is.easily 1deﬁ£ified as
! - - o

- _ -x/L 2 1 o x

UJ(r,x) Ae (23 + 1) L Z(TE_T) tJ(ai L)
X /

so that

(v! !UJ(r,i)lv) = Ub,t) (2T + l)R‘(,.']")’

The resulting "effective" time-independent matrix element is then

e (Jor-2|+2'+2) /2

Voigteg = D [(22' + 1)(2% + 1)11/% «
2148 (¢ T %
Y, 2T+ 1Ry (6.54)
_ Y vV
J=|2'-2| 0 0 O

and the complete matrix element, analogous to equation (6.27), is

e
(v'e' [vi|ve) = LICH L ARURN

(6.55)
The use of equation (6.55) in place of equation (6.27) reduces the total num-
ber of coupled rotational states in each vibrational manifold from (24+1)2 to 2.
Note by comparison with equation (6.27) that the induced phase shift
associated with the exponential argument, (m' - m)R(t), in equation (6.27) is
lost in the effective Hamiltonian approximation and the rémaining formulation
is independent of Q(t). We shall see in the discussions to follow, however,

that the rotational energy transfer is dominated by small A% ‘and hence small

values of m' - m. Thus, even in a complete solution, the phase shifts -
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associated with Q(t) are subdued and the accuracy of the effective Hamiltonian

approximation is not threatened by their neglect.

6.5 Aspects of Convergence

Before applying the preceding three-dimensional model, we first require a
criterion for choosing a sufficient set of rotational and vibrational eigen-
states to ensure convergence. Experience with the collinear model (ch. 4)
has shown that near threshold only a few states higher ﬁhan the energetically
accessible vibrational states are necessary to obtain convergence. Thus, for
ground-state molecules with ﬁ/hwe near or slightly greater than unity, only
three or four vibrational states are often adequate., Similar concepts can be
applied to the vibrational states in a three-~dimensional model. However, the
fundamental vibrational frequency of a diatomic molecule is always larger than
its rotational frequency so that, in a three-dimensional model, collisions
with sufficient energy to induce vibrational transitions (i.e., E/hwe > 1)
always couple numerous rotational states in each vibrational manifold. The
best manner of selecting the minimum, and yet sufficient, number of coupled
rotational states for each vibrational eigenenergy is therefore difficult to
determine in advance of a calculation. A seemingly logical first choice would
be to include only the energetically accessible states and exclude all others.
For E/hwe = 1, this method of selection envelops many rotational states in the
initial vibrational manifold and only a few at the next higher vibrational
eigenenergy. We shall find, however, that this criterion for selection is not
only inadequate to ensure convergence but with a semiclassical formulation it
almost certainly guarantees a nonconvergent solution! The primary purpose of

this section is therefore to examine the requirements of convergence in
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&etail. The reader should be aware at the outset, however, that the results
pertain to our semiclassical model without energy comnservation. Their rela-
tionship to the convergence requirements for an energy-conserving collision
model will only be inferred.
- We test our ability to obtain convergent solutions for the molecular types
of interest by choosing the worst numerical case in an example (namely, CO-He
collisions in which a maximum number of basis states is required) and contrast-
ing the results with those for H2-He collisions, the opposite extreme.

As figure 6.4(b) illustrates, a basis set that is convincingly convergent

for CO-He collisions at E/hw_, 2 1 will include an impractical number of

e
states that extends to large &. To deal with such situations, we must there-
fore first determine the most appropriate method of approximation from sec-

tion 6.4 that will reduce the necessary number of coupled states and that

allows solutions for large 2 to be obtained in a practical computing time.

6.5.1 Evaluation of the Projection-State Decoupling Approximations
In keeping with the predominant objective of thils chapter to study the
effects of rotational transitions on the net vibrational transition rates, we

use as a basis for comparison both the probability, P (defined by

viv!
eq. (6.43)), and its component, defined by
P = 3, P

vimv' o vimrv'a'm'
?

(6.56)

Note that the former is averaged over all initial m states while the latter
pertains to a specific initial m state. However, both are summed over all
final &' and m' states in the vibrational manifold, v', and are therefore

both net vibrational transition probabilities.
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Since the approximations described in section 6.4 are methods for decou-
pling the influence of the projection states on the molecular dynamics and sub-
sequently averaging their effects, the sensitivity of complete solutions fo the
quantum number of the initiai projection state is an important aspect in under-
standing of the relationship of the complete and approximate calculatibns.

Figure 6.7 shows that, for CO-He collisions, P is relatively insensitive

vimv'

to the initial value of m, even for large impact parameters where the phase

EFFECTIVE EFFECTIVE
HAMILTONIAN HAMILTONIAN
b/L=0 }b/L=0
}b/L=45
i o
-3-2-1 01 2 3 93-2-|o| 2 3
m m
(a) A = 6 MeV (b) A = 1000 eV

Figure 6.7.— Distribution of net vibrational transition probabilities over the
range of initial projection states for CO(v& = 0,3)-He collisions at
several impact parameters. Only probabilities for v' =1 are shown.
Fixed collision parameters are E/hwe = 1.08, L = 0.02 nm. The basis set
contained £ = 0-8 rotational states in each vibrational manifold and
included all corresponding projection states. Symbols denote results
from: ® = ® a complete solution, © @ ¢ the maximum coupling approxima-
tion. Effective Hamiltonian results appear as a single value.

shift associated with ﬁ(b,t) is greatest. This result occurs because no
other dynamical phase interference exists between m states of the same

eigenfrequency w__, while Q(b,t) is generally small in the primary region

v
of interaction (R = 0 at t = 0 where the interaction is greatest). In view of
the foregoing insensitivity to initial m, vibrational transition probabilities
calculated with an effective Hamiltonian approximate the complete solutions

more accurately than the maximum coupling approximation. Its similar accuracy

in reproducing related net vibrational cross sections is indicated by
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figure 6.8, where the variaﬁions of Pv2+v' with impact parameter, calculated
by the two approximations, are compared with complete solﬁtions. Clearly, the
effective Hamiltoniaﬁ approximation is superior, particularly for the smaller
interaction scale factor, A, shown in figure 6.8(b). (The smaller scale fac-
tor is believed to be more realistic.87) Similar accuracy is obtained for
Hy,~He collisions as shown in figure 6.9. One should note, however, that the
impressive accuracy of the effective Hamiltonian is aided significantly by our
use of the net probability, Pv2+v" as a basis for comparison. Similar com-
parisons for detailed vibration-rotation transitions would not appear as

favorable. Others®%>111-113 have obtained equivalent results for a variety of

molecular types.

S
fw
-> .
1
o>
>
L0
%
>
L
&> 1 1 ") 1 L —
0 5 10 15 [0} 5 10 15
b/L b/L
(a) A = 6 MeV (b) A = 1000 eV

Figure 6.8.— Variation of net vibrational transition probability with impact
parameter for CO(vRZ = 0,3)-He collisions using several approximate solu-
tions. Only v' = 1 probabilities are shown. The basis set included
£ = 0-8 1in each vibrational manifold for all cases; ﬁ/hwe = 1.08,

L = 0.02 nm. Symbols denote results from ® a complete solution, © the
maximum coupling approximation, and 42 the effective Hamiltonian

approximation.

143



EFFECTIVE

HAMILTONIAN
1.2
(12
o Lo }b/L=O
x .8
I ',> 6
£ .4 }b/L=3
o> .2
0
-2-1 01t 2

Pyi=y' (Eib) /P 1 (E,0)

Figure 6.9.- Variation of net vibrational transition probability for

Hy(v& = 0,2)-He collisions; v' = 1, E/hw, = 1.1, A = 303 eV, and

L = 0.0273 nm. The basis set included £ = 0-10 in both vibrational

manifolds. Symbols denote the results from: ® ®, 3 complete solution,

and 2, the effective Hamiltonian approximation.
6.5.2 Convergence Requirements for Vibration-Rotation Energy Transfer

The individual vibration-rotation transition probabilities from a com-
plete solution are shown in figure 6.10 for CO-He collisions at an initial
kinetic energy just above the vibrational threshold. Rotational states from
£ = 0 to 10 were included equally in vibrational manifolds, v = 0 and 1. The
accompanying 484 differential equations and 14,883 dissimilar matrix elements
exceed a practical upper limit for repetitive computation. And yet, compari-
son to a similar calculation with & = 0 to 8 rotational states in each vibra-
tional manifold shows that convergence in the vibration-rotation probabilities
Pvl+v'2' is far from realized. However, this result is not surprising
because, while all open channels (energetically accessible states) have been

included in v' = 1, most open channels in v' = 0 are missing (see
P

fig. 6.4(b) for reference). The interesting result is shown in figure 6.11
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Figure 6.10.- Effect of additional rotational states on the vibration-rotation

7

e

transition probabilities in CO(v&m = 0,0,0)-He collisions. Both cases
were obtained from a complete solution including all projection states in
the basis set and vibrational states v = 0, 1. An equal number of rota-
tional states were included in each vibrational manifold. Collision
parameters are E/hwe = 1.08, b = 0. The interaction potential is
defined by A = 6 MeV, L = 0.02 nm.
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fold. Only probabilities for v' =1 are shown.
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Figure 6.11.- Convergence of the net vibrational transition probability for CO-He collisions (i.e., the

according to eq. (6.43), but for a single

A duplicate set of rotational states was included in each vibrational mani-
Collision parameters are the same as in

®, a complete solution, ©, the maximum coupling approxi-



where we imply from the behavior of Pv for one value of m that, even

v
before all open channels in any vibrational manifold are reached, a convergence

in the net vibrational transition probability, P is obtained! Similar

virv'?
behavior is found for H,-He collisions, as figure 6.12 indicates. Note that,
in this latter case, calculations including all open channels in both vibra-
tional manifolds were possible and the convergence asymptote is convincingly

unique., TFigures 6.11 and 6.12 also include results from the approximate

methods of solution and show them to approach similar asymptotes.

10-2
A & & A A A
Pyim—v' o .
1073 -
OPEN CLOSED
CHANNELS ~—|— CHANNELS
IN V=l IN V=1
OPEN CLOSED
CHANNELS <—|—= CHANNELS
IN V2O INV=O
|0—4 1 1 1 1 1 I
| 3 5 7 9 I 13

NUMBER OF ROTATIONAL STATES IN EACH
VIBRATIONAL MANIFOLD

Figure 6.12.- Convergence of the net vibrational transition probability for
Hz(vzm = 0,4,4)-He collisions. Stipulations and symbols are the same

as in figure 6.9. Collisions parameters are E/hwe =1.5, b =0,

A= 303 eV, L = 0.0273 nm. Note that, in this example, cases are shown

where all open channels are included in both vibrational manifolds.

The uniqueness of the asymptotes obtained in CO-He solutions is not yet
cénfirmed, however.h in féct, subsequent calculations using the effective
Hamiltonian for large but unequal numbers of rotational states in each vibra-
tional manifold are_shown in figure 6.13 to produce drastically different
results. Note that, even though cases including £ =0 to 40 in v = 0 but
only £ =0 to 10 in v = 2 contain all open channels in both v =0 and 1,

the transition probability is two orders of magnitude from a final convergence.
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Figure 6.13.-~ Convergence of the net vibrational transition probability in

effective Hamiltonian solutions for CO(v% = 0,3)-He collisions v' =1,

E/hwe = 1.08, A = 1000 eV, L = 0.02 nm. Cases are represented that
include large but umequal numbers of rotational states in each vibra-
tional manifold. ©Note that cases are also shown where all open channels
are included in both vibrational manifolds.
As more rotational states are added to v = 1, a final definite convergence is
eventually reached where further additions of any kind have no effect. Con-
versely, figure 6.13 also demonstrates that cases including a duplicate set of
rotational states in each vibrational manifold obtain a solution near the
final convergent value with relatively few rotational states. Recall, however,
that the convergence criterion thus implied pertéihs‘only to the net vibra-

tional transition probability, P vs and not the individual vibration-

vi-+v

rotation probabilities Pv2+v'2"
While there is no attempt made here to construct a mathematically

definitive argument showing why a duplicate but nonconvergent set of rota-

tional states in each vibration manifold produces nearly convergent vibra-

tional transition probabilities, the following conceptual explanation is
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offered. First, recall that each time-independent matrix element, Vv'z'm'vzm’
is a measure of the coupling strength between two vibration-rotation states.
The matrix elements are shown in figure 6.3 to generally emphasize coupling
only between states with small differences in angular momentum, regardless of
the angular momentum of either state. This emphasis is primarily a consequence
of the integrated overlap between rotational eigenfunctions of the undisturbed
molecule and it is qualitatively unaffected by any vibrational change of

state. As a result, vibrational transitions also occur predominantly between
states with small differences in angular momentum. We shall refer to such
pairs of states as 'companion states" to imply that their angular momentum is
similar (A2 dis small) but each is a member of a different vibrational mani-
fold. Thus, if a rotational state has no companion in the basis set of an
adjacent vibrational manifold, direct vibrational transitions from that rota-
tional state will be improbable.

With the foregoing general property of vibration-rotation transitions in
mind, we can now describe its effect on the energy transfer process within the
average molecule during a collision. To do so, we shall adopt a point of view
compatible with our time-dependent semiclassical model and refer to the time-~

variant amplitude modulus |c m(t)|2 as the instantaneous "occupation" of

v
state |v&m). By "average molecule" we then mean that the progression of state
occupations in time provides a trace of the average path of energy flux within
many identical molecules, all experiencing identical collisions.

Since we consider collision energies mainly above the vibrational thresh-
old, many rotational states are typically accessible. Early in the collision,

the energetically accessible rotational states in the vibrational manifold

containing the initial state become occupied, all with similar probabilities.
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Near closest approacﬁ,:vibratiOnal transitions then bégin between éompanion'
states and a corresponding ogcupatipn distribution;deveiops in ﬁhe.adjacent
vibrational manifolds. However, if the manifold receiving energy has beep
given fewer rotational states in ité basis set- (as it might becauég a higher
manifold would have fewer open channels), then not all rotational states in
the initial-state manifold have companions. For the energy in those rotational
states to become available for a vibrational transition, it must first return
to a rotational state iq the same manifold where a companion exists. Obviously,
such occurrences are the aftificial consequence of an incomplete basis set and
they sfress the importance of including at least a duplicate rotational set in
each vibrational manifold (if not a convergent set) to properly reproduce the
transient dynamics during a collision.

We may now ask why a duplicate but incomplete rotational basis set in
each vibrational manifold approximates the convergent solution. Recall that
it does so only for the total occupation of each vibrafional manifold, that is,
the occupation summed over all rotational states. If all rotational states
have companions as they do in duplicate sets, the most probable paths are
available for vibrational energy transfer from each rotational state consid-
ered and hence no artificial impediment to the energy flow is introduced any-
where. However, obtaining the correct net rate of vibrational energy transfer
remains to be questioned. The net rate of energy transfer to all states of a
vibrational manifold may be written as a sum proportional to the occupation
distribution among its rotational states. At collision energies exceeding
the vibrational threshold, the rotational states are strongly coupled
and the depletion of any rotational state by a vibrational transition

is rapidly restored, thus maintaining the distribution of rotational state
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occupations in a.time scale short compared to the encounter period. “When

too few rotational: states are -included in the basiseset; the bccupation
distributioﬁfis unnaturally-constréined and vibrational transitions from' *
each rotational state occur at an increased'rate-bﬁt’from a fewer number of
states.: -Since all rotatiohai-states are closely coupled, no pafticular
preference is given to vibrational transitions from any of them and the ‘net

vibrational transition rate ié-only weakly affected, 4s we have observed.

.Note, h0wever;'that the occupétion'distribution‘bf rotational states is

strongly affected by the completeness of the basis set so that convergence
in the individual vibration-rotation transition rates cannot be expected from
an ‘incomplete basis set, as we have also observed.

Thus, we have rationalized, in the foregoing explanation, the reasons for
expecting duplicate but nonconvergent sets of rotational states in each vibra-
tional manifold to closely reproduce the net vibrational dynamics of the mole-
cule given by a convergent set. We shall incorporate this convergence criter-
ion along with use of the effective Hamiltonian approximation in all the cal-
culations of Pv2+v' to follow. Conversely, when individual vibration-~
rotation transition probabilities are studied, a duplicate and completely con-
vergent basis set will always be used.

e MU 1A - St et T P T I I S L

6. 6 Ambiguities of Unconserved Ene;gy in a Three—Dlmen51onal.Seﬁlcla331cal
Model

An example of the final rotational state occupations from a convergent
basis'eet is shown in figure 6.14. The distributions in each vibrational
manifold are plotted on Qertically sﬁifted scales to demonstrate their rela;ive
similarity.. However, if we take:the total energy of the system to.be the

initial sum of internal energy and relative kinetic energy, then many of the
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Figure 6.14.- Vibration-rotation transition probability distributions for

CO(vk = 0,3)-He collisions from an effective Hamiltonian solution;
E/hwg = 1.08, b = 0, L = 0.02 nm, A = 1000 eV.

rotational states in the v' = 1 manifold that remain occupied after the col-

lision are energetically inaccessible! (They are closed channels.J% Since a
more exact collision model, where total emnergy is conserved, would leave the
closed channels in all vibrational manifolds completely empty, the failure of
our semiclassical model to comply with such considerations is, of course, a
consequence of the lack of energy conservation when computing the classical
trajectory, just as it was in the collinear model discussed in chapter 4. We
showed in chapter 4 that, when the loss of energy conservation had no large
effects on the molecular dynamics, it could be adequately compensated for by
use of the average total energy given in equation (4.14) as

Ep = E + hluy + w)/2 (4.14)
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However, the use of equation (4.14) to compute total energy makes it dependent
on the transition being considered and, as a result, the concept of open and
closed channels becomes ambiguous. While this aﬁbiguity poses no practical
difficulty, a careful interpretation of the semiclassical results must be made
when comparing them to energy-conserving predictions — namely, the probability
distributions obtained for a single value of E do not correspond to a single
total energy or single initial kinetic energy and, consequently, they cannot
be compared directly with a distribution obtained from an energy-conserving
collision model. But, after transforming the distribution of either collision
model into the framework of the other, using equation (4.14), the results
should be comparable just as they were in chapter 4. The accuracy of the
three-dimensional semiclassical model in such comparisons remains to be proven
and no comparisons are made in this study. However, from the results in
chapter 4, there is good reason to expect that the three-dimensional semiclas-
sical model, constrained to homonuclear molecules with light collision partners
and properly interpreted, should give reasonably accurate predictions.
Finalls we must consider the consequences of the ambiguous closed-
channel concept on our previous convergence arguments. While the initial dis-
cussions of convergence in figures 6.11 to 6.13 were keyed to the concept of
open and closed channels, they serve mainly as a guide to identify the number
of channels for which convergence may be expected. 1In that regard, the concept
is as useful as it would be in an energy-conserving model. Recall, however,
that the primary aspect of our convergence criterion was to provide companion
states in all vibrational manifolds to properly handle the transient dynamics

during the collision. That principle applies to all collision models,
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regardless of their energy-conserving features or the final rotational-state -,

occupations. obtained.

6.7 Three—Dimeﬁsional Inelastic Collisions and Their Relatidﬁ to ééiiiﬁééff.:q
Encounters. -
fhe.preéeding three-dimensional collision model is applied heré to é;;IJ:'

ate the validity of collinear models for a variety of molecular.types and o

initial conditions. However, examples are constrained to collisién partnérs

that can be treated accurately by the semiclassical approximation in the
absence of dynamic coupling between the quantized molecule and the classical
trajectory. Guided by the results in chapter 4 in that regard, we consider
only helium atom collisions with H,, N,, and CO. The hydrogen molecule is an
example in which the rotational eigenenergies are broadly spaced in comparison
with the vibrational energies and the effects of vibration-rotation coupling
are expected to be significant. H, also requires the smallest convergent
basis set since its homonuclear nature only couples rotational states of the
same parity (i.e., AL is always even). N, also requires only states of the
same parity, but its close rotational emergy spacing places it in a different
molecular class where numerous rotational states of high angular momentum must
be included. Finally, CO is similar in rotgtiqpal structure to N,, but its
heteronuclear nature couples all rotational states of either parity. Most
common inert-atom/diatomic-molecule collisions are represented by one of thegd’
three examples. Excluded cases are those in which reactive atom-exchange
states participate in the energy-transfer process (as in H,-F collisions) and
those in which electronic states participate (as in NO).

The range of initial rotational states of interest in a practical appli-

cation is first indicated by considering their equilibrium population
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diétributions.. Figure 6.15 illustrates some typical distributions for several

is a characteristic rotational tem—

vaiuéq.of_the pénamefer, T/er, where 6,

peratufe with representative values of 2.8 K for CO and 44 K for H,

(er - hBeIsk, where s 1is a symmetry factor). The results in figure 6.15
suggest that initial rotational states in the range 2 = 0 to 20 are repre-
sentative of most applications. We shall see that the collision dynamics for

larger initial values of £ are easily inferred from the predictions for

2 < 20.
| 'r
2 _1/8,=10
10-! T/8,= 100
Nvl
%Nn T/8,=1000
10—2
10—3 1 1 1 1 1

(0] 10 20 30 40 50
ORBITAL QUANTUM NUMBER, 1

Figure 6.15.- Maxwelllan rotational state populations. Numbers at the distri-
bution peaks indicate the corresponding angular momentum quantum numbers.

Finally, we do not attempt to compare collinear and three dimensional
predictions directly by obtaining rate coefficients from each model since to

do so with the three-dimensional model would be too costly. Instead, we shall
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compare the individual elements contained in the rate coefficient definition
and their variations with the collision parameters, as discussed in sec-

tion 6.2.

6.7.1 H,-He Collisions

Although vibration-rotation energy transfer for H,-atom collisions has
been studied extensively in the recent 1iterature,"*0’5"”111’11“_118 we include
it here as a contrasting example to the behavior of the heavier molecules that
follow. The interaction potential constants, A and L, for all H,-He calcula-
tions were chosen to resemble the calculated potential of Gordon and Secrest.8%

An indication of the coupling strength between vibration-rotation states
in H, is given by the matrix elements shown in figure 6.3(a). As mentioned
previously, the results show that transitions with A% < 4 provide the primary
path for vibrational energy transfer. The relative levels of H2 rotational
eigenenergies in each vibrational manifold shown in figure 6.4(a) then suggest
that transitions from v = 0 to 1 (for example) will occur with increasing
resonance enhancement from values of £ > 10 in v = 0, and that the state
v% = 0,16 is in near resonance with v'L' = 1,14 leaving very little excess
energy to be traded with translation. Such transitions may be considered as
the primary contributors to an apparent net V-R mechanism for energy t;ansfer.

The calculated transition probabilities shown in figures 6.16 to 6.18
confirm all the foregoing expectations. TFigure 6.16(a) shows that, when the
initial state is v& = 0,16, transitions occur to v' = 1 predominantly for
A% = 2 downward with large probability and that the occupation of rotational
states within each vibrational manifold is dispersed, but with less probabil-
ity, by AL = 2 transitions in either direction. A sequence of AL = 2 down-

)

ward transitions then populates v' = 2, etc., at lower £. Conversely, when
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the initial state has.sm;il angular momentum, as shown in figure 6.16(b),
yibrational states are connected either by single large A% tramsitions or by
successive rotational transitions within v = 0 that precede any vibrational
change. The vibrational transition probability is correspondingly lower.

This latér example then appears more as a V-T mechanism for energy transfer
because of the relatively large amount of translational energy required to
induce a vibrational transition. Intermediate results for other initial rota-
tional states ére Sﬁﬁha;iied in figure 6.17, where the net vibrztional transi-
tion probabilities are shown for all initial £ below the continuum. (Note
that the molecular dynamics for initial states near the continuum are not
accurately treated because of the neglected continuum interaction, but fig-
ure 6.17 is believed to demonstrate a realistic qualitative behavior.)

We can see from figure 6.17 that the vibrational transition probability
is strongly dependent on the initial rotational state and hence a collinear
model cannot be expected to realistically predict vibrational transition rates
for H,. The inapplicability of a collinear model to H, is further confirmed
by figure 6.18. For example, curve (a) in figure 6.18 represents the usual
collinear prediction in which the rotational contributions to eigenfrequencies
are entirely excluded. The comparative three-dimensional predictions show
that the probability and threshold energy depend strongly on the initial £
and both can be significantly different from the collinear results. Further-
more, simple corrections to the collinear model, such as the use of vibrational
frequencies shifted to match the predominant vibration-rotation states, are
not satisfactory as curves (b) and (c¢) in figure 6.18 indicate.

The preceding comparisons were all done for a zero impact parameter, but

we have shown with equation (6.47) that, although collisions at b = 0 make
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no contribution to the cross section or rate coefficient, the prbbabilities at

b = 0 can be used as a normalizing factor. Cross sections are then propor-

tional to P(E,O) and the integral of (b/L) P(E,b)/P(E,O) over all b/L. While
virv'! vivv'  visv!

adequate discouragement for the use of a collinear theory to model H, colli-

sions has already been presented, we display the cross-section integrands for

later comparisons with heavier molecule results. Figure 6.19 shows the H,

cross—section integrand to depend strongly on initial £. Figure 6.20 shows

it also to depend on collision energy but with significance only for initial

rotational states where vibrational energy is transferred predominantly through

V-R transitions (i.e., as in fig. 6.20(b) for wv& = 0,16).

r

b)/P,;.\ (E.O)

1—v' (Es

L Py

<l

bsL

Figure 6.19.- Effect of initial rotational state on the net vibrational cross-
section integrand for para-H,(v = 0)-He collisioms, v =1, at
E/hwe = 1.5. Note that the integral of this parameter over all b/L is
proportional to the inelastic cross section according to equations (6.46)

and (6.47).
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Figure 6.20.- Parameters affecting the net vibrational cross-section integrand
for para-H, (v = 0)-He collisions, vl = 1.

From the preceding comparisons, there is no difficulty in concluding that
the analysis of vibrational energy transfer in H,, or any molecule where near-
resonant vibration-rotation transitions with small A% can occur, requires a
complete three~dimensional treatment including both wvibrational and rotational
motions. Furthermore, even though some initial states with small angular
momentum are treated by the collinear model with some resemblance to the three-
dimensional results, extended use of the collinear model to deduce a thermal-
rate coefficient enveloping a thermal distribution of initial rotation states

is entirely inappropriate.

6.7.2 N,-He Collisions

The calculated collision dynamics of N, with He serve here as the primary
example to illustrate the nature of vibration~rotation energy transfer in
diatomic molecules with closely spaced rotational eigenenergies. The N,
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molecule provides a considerable computational convenience because, as with
all homonuclear molecuies, only alternate rotational states are coupled,
thereby requiring half the basis set demanded by an otherwise similar hetero-
nuclear molecule. Thus, in this section, we study N,-He collisions in detail
and later compare the results with more limited calculations for the hetero-
nuclear CO molecule.

Unlike the H,-He collisions, the interaction potentials for atom colli-
sions with many-electron molecules like N, are relatively unknown. The poten-
tial parameters, A and L in equation (6.1), are therefore subject to large
uncertainties and wé-ﬁﬁét-ensure that any conclusions made concerning the
nature of energy-transfer processes are unaffected by the interaction uncer-
tainties. An indication of the range of uncertainty is obtained by noting the
range of interaction parameters implied in previous comparisons of experimen-
tally determined vibrational rate coefficients with their related collinear
theories.t1:%2,45 For example, the interaction range, L, is typically found
to be between 0.02 and 0.03 nm with L = 0.02 nm favored for molecules like
N,. The analysis of molecular beam experiments,87 which yields vibrationally
inelastic cross sections directly, suggest similar values for L but also
produces values of the interaction magnitude A. For molecules like N,,
values are typically near A = 1000 eV. However, an alternate means of
obtaining A is to compare the exponentially repulsive potential model
(eq. (6.1)) with the repulsive part of Lennard-Jones potentials (eq. (3.22))
implied by early viscosity measurements.®280 Magnitudes as large as A=6 MeV
are thus obtained. While this later value is not taken seriously nor is our

potential model realistic enough to warrant much detailed interpretation, both
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values are used here as limits to demonstrate the effects of A on the calcu-
lated cross sections.

The mechanism of vibrational energy transfer in N, is significantly dif-
ferent from that previously shown for H,. The reasons may be generally under-
stood from an examination of the eigenenergies and interaction matrix elements
of N, (illustrated in figs. 6.21 and 6.22, respectively). A well-known fea-
ture of most induced transitions is that their probability is enhanced by
their degree of resonance. For example, figure 6.17 illustrates the case for
H, in which the most resonant transition from ¢ = 16 is also the most prob-
able, causing the principal path for energy transfer fgébéffﬁrodgh V;k transi-

tions. For N,, however, the vibration-rotation eigenenergies shown in
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Figure 6.21.- Vibration-rotation eigenenergies for N,.
(Note: Not all rotational states are shown.)
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Figure 6.22.- Time-independent matrix elements for para-N,; v, v =0, 1.

Open symbols are for L = 0.02 nm, solid symbols are for L = 0.03 nm.

A similar plot for ortho-N, would have no distinguishable differences.
figure 6.21 allow near-resonant transitions only for large A2, while the
matrix elements for Nz(fig. 6.22) suppress large AL transitions, just as
they do in H, and CO (fig. 6.3). Thus, molecules with a vibration-rotation
spectrum like N,, characterized by a large value for we/Be, are always con-
strained to nonresonant V-T transitions with a transitlon energy approximately
equal to hwe. Consequently, the rotational energy transferred by small Ai
transitions is always a small contribution to the total, thus rendering the net
vibrational transition rates insensitive to the initial angular momentum.
Figure 6.23 demonstrates that insensitivity for both para- and ortho-Nz.

The emphasis of nonresonant V-T transitions and the accompanying insen-
sitivity of vibrational transition rates to the initial-state angular momentum
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Figure 6.23.- Effect of initial rotational state on the net vibrational Erap—
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are the key factors contributing to a surprising accuracy of the collinear
collision model for predicting transition probabilities in N,. Vibrational
transition probabilities from both the three-dimensional and collinear model
are compared in figure 6.24, Recall that the interaction potential is charac-
terized only by the range L 1in the collinear model. Likewise, probabilities
obtained from the three-dimensional model for zero impact parameter depend
only on L and hence are independent of A. The three-dimensional predictions
in figure 6.24 therefore represent all values of A and the only difference
between the two models shown in figure 6.24 is the collision geometry.

The role of A in the three-dimensional model is shown in figure 6.25(a):
where the cross~section integrand is shown as a function of the impact param-
eter. Clearly, A determines the variation of transition probability with
impact parameter and thus determines the relation between P(b T 0) and the
cross section. In another sense, A determines the equivalZﬁ:velastic cross

section oi (eq. (6.46)), undefined in the collinear model.
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Figure 6.24.- A comparison of net vibrational transition probabilities for
para-N,(v = 0)-He collisions from the three-dimensional and collinear
models; v' =1, b = 0, L = 0.02 nm. Open symbols are three-dimensional
model results. Shaded symbols are equivalent probabilities for a constant
ge as defined by equation (6.46) but set equal to the cross section at

E?hme = (0.8, thus simulating the procedure typically applied to collinear

models.

When the interaction potential parameters are fixed, the equivalent
elastic cross section (fig. 6.25(b)) increases slightly with collision energy.
Any variation is contradictory to the assumption made when converting collinear
probabilities to cross sections by use of a constant hard-sphere cross section,
o, (eq. (6.45)). However, as it turns out, the increase in cz approximately
equals the increasing difference in P(b==9) between the two collision models

viav

so that their respective cross sections and rate coefficients are in closer

agreement than figure 6.24 implies. The shaded symbols in figure 6.24 show
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Figure 6.25.- Parameters affecting the net vibrational cross-section integrand
for para—Nz(v = 0)-He collisions, v' = 1.

the equivalent position of the three~dimensional results corresponding to a

constant inelastic cross section obtained using the value of os from

E/hwe = 0.8 (i.e., cross sections and rate coefficients from the two models

would?compare graphically as indicated by the collinear model curve and the

shaded symbols).

A further point illustrated in figure 6.24 pertains to the required
vibrational basis set for molecules like N,. The collinear model has been
used as a guide to show that, although the predominant vibrational transitions
are s}pglg—guantg@‘transit;ons from the ground state to v =1, higher RS
vib;ationa; states participate even at collision energies near threshold. The
threg—dimepsional model behaves similarly and it was therefore necessary to
include four vibrational manifolds from v = 0 to 3 with & = 0-60 in each
before acceptable convergence was achieved. On the other hand, a collinear,
firstforder‘perturbation calculation of the type described in chapter 4 gives
results_nea;ly identical to the ll-state collinear model over the energy range
included in figure 6.24. These comparisons suggest that a first-order
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perturbation treatment of the vibrational motion, in conjunction with the
"sudden approximation" describing the rotational motion, will be a very useful
analytical method for dealing with three-dimensional inelastic collisions if a
workable solution of the resulting integral equation can be found (e.g., recall
sec. 6.4.1).

Another interesting feature of the three-dimensional calculations is the
variation of transition probabilities with impact parameter. As shown in
figures 6.8 and 6.9, the net vibrational transition probabilities, Pv2+v',
simply decrease monotonically as the impact parameter becomes larger so that
b = 0 impacts always produce the greatest probability of a vibrational tran-

sition. However, the same is not true for all individual vibration-rotation

with b 1is shown in figure 6.26,

.. . . . P .
transitions The variation of viv'e"

where some vibration-rotation transitions are seen to be more effectively
induced by nonzero impacts, just as previous classical calculations have

suggested.65

6
5
>4 1' =20 (INITIAL STATE)
o> 3 16
©
e]

(0] .| .2 3 4 5
b/Xc

Figure 6.26.- Vibration-rotation transition probability variations with impact
parameter for para-N,(v=0)-He collisions at E/hwe==1.l, A=1000 eV,
L = 0.02 nm. Collision radius is x, = 0.3 nm.
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Finally, having established the applicability of a collinear model for
predicting the rate of vibrational energy transfer from N, initially in the
ground vibrational state, we can now investigate the accuracy of the collinear
model in predicting the associated vibrational quantum number dependence of
vibrational energy-transfer ratés. The results validate the conclusions of
chapter 5. Figures 6.27 and 6.28 compare both collision models for N, ini-

tially in the v = 10 vibrational state and show them to be qualitatively

ol=2 5 STATE
al=20J 3-D MODEL
|O-| -
10°2 |-
2| STATE COLLINEAR
(v=0-20)
A=y
5 STATE COLLINEAR
(v=8-12)
|0-3 -
|0—4 L
-5 L ] |
10 0 | 2 3

E/hwe

Figure 6.27.- Comparison of net vibrational transition probabilities for para-
N, (v = 10)-He collisions from the three-dimensional and collinear models;
v! =11, b =0, L = 0.02 nm. Shaded symbols are equivalent probabilities
for a constant cs equal to the cross section at ﬁ/hwe = 0.5.
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Figure 6.28.- Parameters affecting-the net ﬁibrational crosé—section integrand

for para—Nz(v_= 10)—He collisions, v' = 11. lCollision.parameters are

A = 1000 eV, L = 0.02 nm, Xe = 0.3 nm.
similar as in the ground-state predictions. When the initial state is vibra-
tionally excited, the differences in results are seen (fig. 6.27) to be of sec-
ondary importance; that is, a larger vibrational basis set is required and the
error of the collinear model is slightly greater. The thrge—dimensional model
predictions must be compared with the five-state colliﬁear model (dashed line)
in figure 6.27 and, clearly, neither set of calculations contains a sufficient
number of vibrational states. Thus, convergent three-dimensional calculations
for excited vibrational states become increasingly impractical, even when the
effective Hamiltonian approximation is incorporated. However, the variation
in os with collision energy again compénsatgs nicely for the inaccuracy of
the collinear model as the solid symbols in figure 6.27 indicate. Thus, as
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before, the collinear model appears to produce an adequate description of the
vibrational quantumnumber dependence of cross sections and'rate_coefficients

for molecules like Nz..

6.7.3 CO-He Collisions ‘

A comparison of figures 6.3(b) and 6.4(b) for CO with figures 6.21
and 6.22 for N, suggests that the structural properties of CO are very similar
to N,. The intent of this section is therefore £o loék'mainly for effects
introduced by the heteronuclear nature of CO associated with the additional
coupling of éven- and odd-parity rotational states. Generally, no significant
effects were found and the conclusions reached for N, appear to apply equally
well to CO. For example, figure 6.29 illustrates the net vibrational transi-
tion probability dependence on &. For small £, the variations of Pv2+v'
are only slightly more pronounced in CO than for N,. Figure 6.30 shows that

the collinear model is just as applicable and the vibrational quantum-number

10-3 ~

p 000000000 [0}
vi=v' ©0
104 |-

‘0—5 i L 1

(0] 10 20
o 1

Figure 6.29.- Effect of initial rotational state on the net vibrational tran-
sition probabilities for CO(v = 0)~He collisions, v' = 1, at E/hw, = 1.08,
b=0,L =0.02 nm. Basis set includes £ = 0-60 for vibrational states
v = 0-2.
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Figure 6.30,- Comparisons of the net vibrational transition probabilities for
CO-He collisions from the three-dimensional and collinear models. Collin-
ear basis set includes states v = 0-17. Three-dimensional basis set is
the same as shown in figure 6.28. Collision parameters are b = 0,

L = 0.02 nm.

dependence obtained with it is just as reliable. Finally, figure 6.31 demon-

strates that the equivalent elastic cross section, 02, is not profoundly
influenced by the collision conditions, any more than it is for N,. Thus, we
conclude that when the rotational eigenenergies are closely spaced in compari-
son to the vibrational elgenenergies and, hence, no resonant transitions with

small AR are available, vibrational energy transfer will appear as a V-T

process regardless of the other molecular properties.
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Figure 6.31.- Parameters affecting the net vibrational cross-section integrand

for CO-He collisions; A = 1000 eV, L = 0.02 nm, x, = 0.3 nm, v' - v = 1.
6.8 Classification of Rotational Coupling Effects on Vibrational Energy

Transfer

The primary purpose of this chapter is to examine the role of coupled
rotational motion in a diatomic molecule during the collisional exchange of
vibrational and translational energy. A corollary to that purpose is the
identification of conditions for which a collinear collision model will realis-
tically predict the rate of vibrational energy transfer. We have found that,
although the analysis of rotational coupling is complex, the nature of its
influence on the energy-transfer process is conceptually simple.

The mechanisms of vibrational energy transfer become readily apparent
when one recognizes that the controlling features of vibration-rotation cou-
pling are the predominance of coupling between states with small differences
in angular momentum (i.e., small AR) and its interplay with the resonance
enhancement of transition probabilities. Thus, while we deal with collision
energies tﬁat have many rotational states occupled in each vibrational mani-

fold, their occupation occurs primarily through sequential rotational
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transitions of small Af during the encounter. Likewise, vibrational mani-
folds are connected primarily by vibration-rotation transitions with small
A%. Hence, the predominance of small AR transitions is a common feature of
all inelastic mechanisms within the molecule. Furthermore, the range of A%
for which rotational states are closely coupled is independent of the degree
of resonance associated with a transition and it is insensitive both to the
interaction potential parameters and to the inertial properties of the mole-
cule. Thus, the effective range of Af (which we shall refer to as Almax’

where 0 < AR < AR ) is similar for all the diatomic molecules and interac-

, max
tién potentials considered here and it is presumably similar for all others as
well. We have shown (fig. 6.3) that, typically, Afp., = 4 to 6.

| With small AR transitions as a common characteristic, the different
meéhanisms of vibrational energy transfer separate into three natural classes.
The molecules belonging to each class are identified by their inertial proper-
ties, as specified first and foremost by the ratio of fundamental vibrational
and rotational frequencies, we/Be, and, second, by the proximity of the
initial rotational state to a resonant companion. Given these two identifiers,
we can then anticipate the qualitative nature of vibrational energy transfer
for any diatomic molecule that does not involve electronic motion or reactive
atom-exchange in the process.

The first class pertains to all molecules in which we/Be >> Alpaxs

regardless of the initial rotational state. Our examples were CO and N,.
When the frequency ratio is very large, near-resonant vibration-rotation
transitions of small Af do not exist anywhere in the practical range of

rotational states and any resonant enhancement of large A% transitions is

suppressed by the lack of coupling between such states. Consequently, the
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energy-transfer process is dominated by nonresonant small AL transitions in
which the energy exchange is primarily between vibrational and translational
modes. The initial-state angular momentum then has little influence on the
rate of energy transfer and the process is described as a V-T mechanism. Mole-
cules in this class are justifiably treated by a collision model in which the
rotational contribution is either averaged or omitted. We found the collinear
model to be surprisingly accurate for this class of molecules.

The second and third classes of energy transfer pertain to molecules in

which we/Be is comparable with AL . . Our example was H,. Since we/B

X e

is not large, near-resonant vibration-rotation transitions with small A% are
available. The proximity of the initial rotational state to rotational states
capable of near-resonant vibration-rotation transitions then determines the
class of energy transfer in which the molecule belongs. For example, the
second class may be chosen as those molecules with initial rotational states
remote enough from the near-resonant transitions for their angular momentum to

be different by an amount greater than Azma . Since the rate of energy

b4
transfer through the near-resonant transitions is rapid but proportional to
the occupation of the resonant states, at least some of the resonant states
must first become occupied before the near-resonant transitions can serve as
an effective energy-transfer path. However, the restriction to small AR
transitions requires a sequence of induced rotational transitions to first
take place within the vibrational manifold containing the initial state. Such
a multistep process for successive small rotational energy changes during the
collision is collectively as inefficient as a single-step nonresonant vibra-

tional transition directly from the initial state. As a result, the energy-

transfer process will not favor either path and the process must be labeled
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as either a V-T mechanism in the extreme case or as a V-R-T mechanism in which
near—resohant V-R and nonresonant V-T transitions compete.

The final class also pertains to molecules with we/Be ~ Alpaxs but with
an initial state within A% .., of a near-resonant vibration-rotation transi-
tion with small Af. Near-resonant vibration-rotation transitions then
immediately dominate the energy-transfer process. Pure V-R mechanisms of this
type characteristically transfer vibrational energy at rates far exceeding the
previous two classes.

Clearly, these latter two classes involve the rotational motion of the
molecule in a significant manner and a collision model omitting the rotational
coupling would not distinguish their separate characteristics. However, we
have shown that, while the collinear model is not applicable to such molecules,
we can at least identify those molecules for which it may be applied by using

simple identifiers.
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CHAPTER 7
A REVIEW AND SOME CONSIDERATIONS FOR FUTURE STUDY

7.1 Review of the Newfound Aspects of Vibrational Energy Transfer

The primary emphasis of this study has been directed toward the factors
that influence the collisional exchange rates of vibrational and translational
energy from excited vibrational states of diatomic molecules. In particular,
emphasis has centered on the dependence of energy-transfer rates on initial-
state vibrational quantum number and on the role of coupled rotational transi-
tions in the energy-~transfer process. As a consequence of the emphasis on
excited vibrational states, two fundamental aspects were included in the col-
lision model that are not often considered, namely, the anharmonicity of the
molecular vibrations and the coupled interaction of multiple vibrational
states. However, an overriding limitation to the realism of the collision
model is the uncertainty of the interaction potential between collision
partners. Thus, the conclusions of this study pertain mainly to the qualita-
tive nature of vibrational energy transfer with no attempt made to predict
absolute rates.

A point made early in this study was that the analysis of a macroscopic
nonequilibrium process is most conveniently carried out using simple analytic
formulas to generate the necessary vibrational rate coefficients. One of the
primary objectives of this study, therefore, was to evaluate the several ana-
lytic approximations in popular use, as they apply to excited state transi-
tions. To that end, a semiclassical description of the collision dynamics
was adopted because, from previous comparisons, it showed the greatest promise

as a theoretical framework leading to accurate analytical solutions. However,
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a semiclassical formulation is itself an approximate description of the colli—
sion dynamics. The first investigative step was therefore to determine the
limitations of the semiclassical approximation when applied to a multistate
anharmonic oscillator initially in an excited state.

A comparative evaluation of the semiclassical approximation was conducted
(ch. 4) based on a collinear collision model entirely equivalent to a fully
quantum-mechanical formulation appearing in the literature. Transition
probability predictions were compared for a wide range of anharmonic molecular
types, initial states, and collision parameters. The-comparisons also
included heteronuclear molecules. Generally, they were unlike previous com-
parisons in the literature which are typically confined to homonuclear
harmonic oscillators in the ground vibrational state. The results illustrated
some notable and previously unrealized effects of oscillator anharmonicity on
the semiclassical approximation. For example, when computing the motion of
the incident particle, the usual semiclassical procedure is to consider the
oscillator nuclei as stationary relative to the molecular mass center.
However, the effects of oscillator compression and recoil are amplified when
the oscillator is anharmonic, and the agreement between semiclassical and
quantal theories is significantly degraded unless the time-dependent average
positions of the oscillator nuclei are introduced into the classical path
determination. 1In the absence of such coupling, errors in the semiclassical
approximation are largest when the incident particle mass is comparable to or
larger than the mass of either mclecular nucleus. When the molecule is
heteronuclear, the semiclassical errors can become so large that anomalous
resonances appear in the transition probability predictions. The anomalous

resonances are strictly a consequence of the anharmonic coupling and do not
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occur when the oscillator is harmonic. Coupling of the anharmonic oscillator
motion with the classical path removes the resonances and brings the semi-
classical model into acceptable agreement with the exact quantal predictions.
These results place new limitations on the use of analytic solutions based

on a sgmiclassical approximation. For example, the analytic models do not
include the effects of oscillator compression on the classical path and they
should not be applied to heteronuclear anharmonic oscillators like the
hydrogen-halides. For the same reason, the analytic models are also inaccu-
rate when applied to the collision of light homonuclear oscillators with a
heavy incident particle. This latter result is contrary to earlier arguments
based on a concept that the semiclassical approximation should be most accu-
rate for heavy incident particles because their wave packets are more local-
ized and hence their motion corresponds more closely with a classical descrip-
tion. Finally, the limitations of the semiclassical approximation observed
for oscillators initially in the ground vibrational state were found to be no
more restrictive for oscillators in an excited state. Thus a semiclassical
collision model should be adequate for studies of the dependence of fransition
rates on the initial vibrational quantum number.

With the semiclassical approximation validated and its limitations
understood, the factors influencing the dependence of vibrational rate coeffi-
cients on the initial state quantum number were investigated next (ch. 5).
Again, a collinear model was used, this time because it corresponds to the
collision geometry adopted in all the analytic solutions to be tested. Com-
parisons of the several analytic solutions available from the literature with

multistate numerical solutions for anharmonic oscillators in excited states
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showed that the most accurate analytical description in applications where
the accuracy is important is a first-order perturbation treatment of anhar-
monic oscillators. Conversely, the approximation in greatest popular use was
found to give the poorest results for highly excited states. The influence
of multiple~quantum transitions on the vibrational relaxation process from
highly excited states was also examined. Two- and three—quantum transitions
from highly excited states were found to be generally unimportant at kinetic
temperatures less than the characteristic vibrational temperature of the
oscillator (defined as hwe/k). Since vibrational relaxation is usually
superceded by other kinetic mechanisms at higher temperatures, the usual
assumption that single-—quantum transitions prevail is adequate for the range
of initial vibrational states typically considered.

The remaining question pertains to the role of coupled rotational transi-
tions in the transfer of vibrational energy and their impact on the previous
conclusions obtained with a collinear collision model. A three-dimensional
collision model was developed (ch. 6) that allows an arbitrary number of
coupled rotational states to be included in the arbitrary set of vibrational
manifolds. However, the collision calculations only confirm what is apparent
(in retrospect) from the matrix elements associated with all diatomic
vibration-rotation states: namely, that the two controlling factors of rota-
tional coupling are (a) a restriction to vibration-rotation transitions with
small changes in angular momentum and (b) the interaction of that restriction
with the rate enhancement given to near-resonant transitions. Based on these
general features, one can classify the mechanisms of vibrational energy
transfer between a diatomic molecule and a structureless particle into three

distinct types: vibration-translation (V-T), vibration-rotation-translation
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(V-R-T), and vibration-rotation (V-R). The molecules belonging to each type
are easily 1dentified, first and foremost by their ratio of fundamental vibra-
tional and rotational frequencies, me/Be, and, second, by the proximity of
their initial rotational state to a near-resonant transition invoking a small
change in angular momentum. A result particularly important to the analyst of
macroscopic kinetics is the finding that molecules belonging to the class
dominated by V-T transitions (i.e., those where we/Be >> 1) are accurately
treated by a collinear collision model that may be reduced to yield analytic
solutions.

As a consequence of this study, we reach the broad conclusion that the
collisional exchange rates of vibrational and translational energy can be
accurately estimated for diatomic molecules in excited vibrational states
using a simple analytic semiclassical model if the following conditions are
met :

(a) The fundamental vibrational frequency of the molecule is larger than
its rotational frequency by several orders of magnitude.

(b) The molecule is homonuclear or only slightly heteronuclear.

(c) The incident particle mass is less than either nuclear mass of the
molecule.

(d) The interaction potential is accurately modeled in the region of
closest approach.

(e) A theoretical model is used that includes oscillator anharmonicity
in its primary formulation. The first-order perturbation treatment of Morse
oscillators appears to be the most satisfactory choice.

While the preceding conditions are numerous, they only exclude light or

heteronuclear molecules, like Hy and the hydrogen-halides, or collision
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partners heavier than Argon. Hencé the limitations of a well-chosen analytic

model are not severe.

7.2 Considerations for Future Study N

Long befére this study was conceived, mény investigators wefe_aware of
the need for more detailed descriptions of the interaction potentials between
simple diatomic molecules and atoms or ions. The computational and experi-
mental determination of such potentials continues to be an_activity of fore-
most importance if quantitatively accurate predictions of vibrational and
rotational energy-transfer rates are to be achieved. Clearly, many other
related collision phenomena such atom exchange reaction rates, ion and atom
recombination rates, and collisional radiative line broadening also await the
same potentials. However, the theoretical and experimental methods for deter-
mining interaction potentials are usually somewhat remote from the physics of
inelastic collisions discussed here. We only acknowledge their importance
to future studies of this type. In fact, with exact quantum-mechanical calcu-
lations of inelastic collisions now effectively a routine numerical exercise,
much of the new work on vibrational and rotational energy transfer is based
on the availability of improved potentials.

Nevertheless, there are new practical applications, particularly those
associated with lasers, that require further study into several untouched
aspects of vibrational energy transfer. For example, if we limit our interest
just to the exchange of vibrational and tramnslational energy and exclude the
multitude of other vibrational exchange mechanisms such as vibrational energy
transfer between two oscillators or the interactions between vibrational and

electronic states, we are still left with the following considerations:
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(a) The absence of satisfactory experimental determinations-of the depen-
dence of vibrational rate coefficients on initial-state quantum number was
indicated in chapter 5. Clearly, such measurements will be difficult but
recent 1mproved techniques for selective excitation of upper states using.
tunable 1asers and‘multiphoton absorption offer possibilities for new
anp;oecnest |

(b) The use of a semiclassical approximation and the deletion of long—
range forces from the.interaction have made the collieion models of this
study ineppropriate.for predicting 1ow—tenperature rate-coefficiente. Yet we
have shown that the rate predictions for transitions from highl&Iexcited
vibrational states are most sensitive to the collision parameters et low
tenperatures. Several infrared lasers of great practical importance operate
at such conditions. Thus, rate predictions using a fully quantum-mechanical
model ano a more complete description of the long-range interactions would be
extremely useful for the analysis of such lasers. The same collision models
would also advance the study of heteronuclear molecules at ell conditions
since, for those molecules, the semiclassical approximation is generally
inappropriate. |

(c) Molecules like Hy are shown to transfer vibrational energy with high

A A SR I S T S U IR

probabllity from rotational states near the continuum Clearly, more realis-
tic predictions of such energy—tranefer rates should include interactions with
the continuum. Furthermofe, a collision model including continuum states
would allow further study into the nature of vibration—dissociation coupling
and'eleo into the reverse process, namely, three-body teconbination to excited

vibrational states.
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The foregoing considerations have come to mind during the course of this
study as a result of the particular fopics investigated. However, recent
innovative techniques using the selective excitation of vibrational states
in such applications as laser isotope separation, photoenhancement of chem-
ical reactions, and fluorescence enhancement have brought importance to many

other aspects of vibrational energy transfer not considered here.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif. 94035, March 4, 1976
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‘The following catalog of symbols includes only those used repeatedly.

All symbols are defined locally in the text.

APPENDIX A

NOTATION

Equations and figures cited

locate explicit definitions and usage.

iJ(y)
k
k'

km,ﬁ’

k

mn

Morse intramolecular potential range, equation (3.3)
trajectory coefficient for nonzero impacts, equation (6.36)
interaction potential magnitude, equation (3.18)

impact parameter, figure 6.1

Morse oscillator wave-function constants, equation (3.10)
molecular rotational frequency constant

wave-function amplitude in basis state n

Lennard-Jones interaction potential well depth, equation (3.

Morse intramolecular potential well depth, equation (3.3)
relative kinetic energy in a center-of-mass reference frame
average relative kinetic energy

oscillator energy in eigenstate v

22)

total energy of a colliding system in a center-of-mass reference

frame, equation (4.15)
h/2n, where h 1is the Planck constant
modified- spherical Bessel function, equation (3.31)
Boltzmann's constant
oscillator anharmonicity constant, equation (3.9)

rate coefficient for transitions from quantum state m to n
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@)
jl'm'lm

viv

(n)

r v

ﬂv(r)

3

186

angular-momentum orbital quantum numbers

+ interaction potential range parameter, equation (3.18)

Laquerre polynomial, equation (C.2) -

- angular~momentum projection‘qﬁantum numbers

m'-m

mass of nucleous 1

rotational matrix elemeﬁt coupling term, equation (6.22)

oécillator radial wave-function normalization féctor,
equation (3.6)

tegendfe polynomial in the variable vy

transition probability between states m and n

final transition probability from state v'e'm' to vim

net vibration-rotation transition probability averaged over
all initial m states and summed over ali- ﬁ' states,
equation (6.42)

net vibrational transition probability averagéd over all
initial m states and summed over all £' and m' states

in manifold v', equation (6.43)

oscillator internuclear separation distance

oscillator equilibrium internuclear separation distanee

elementary radial overlap integral, equation_(6.19)

oscillator radial wave function for eigenstate v,
equation (3.6)

radial matrix element, equation (6.16)

time measured from the instant of closest appfoach



£

\

el

Y

kinegic temperéture

éverage relative collision speed in a center-of-mass
reference frame

interaction-potential spherically symmetric term,
~equation (6.9)

vibrational quantum number

interaction potential between colliding nuclei

spher;cally averaged interaction potential, equation (6.30)

intramolecular potential

time-dependent interation matrix element (overlap integral)
for states m and n

time-independent matrix element for states v'2'm'' and
vim, equation (6.26)

"effective-Hamiltonian'" matrix element, equation (6.55)

separation distance between colliding nuclei, figure 3.4

"hard sphere'" collision radius

mass-center separation distance between collision partnerg,
figure 3.4

mass—center geparation distgnqg aylg;oqes?lappfqach

anharmonic second-order frequency coefficient, equation (3.1)

spherical harmonic function

oscillator-internuclear separation parameter,.equation (3.7

molecular mass ratio, figure 3.4

molecular orientation angle, figure 3.4

|27~
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r'(y)
f(aQY)

0,9

T
C

¥(r,6,9¢)
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gamma function of argument vy

incomplete gamma function

spherical polar coordinate angles, figure 6.1

reduced mass of the collision pair

reduced mass of the molecule

Lennard-Jones zero potential radius, figure 3.3

"hard-sphere' constant cross sections, equation (5.4)

equivalent hard-sphere cross section computed from the
three-dimensional collision model, equation (6.47)

total cross section for transitions from state m ton

vibrational relaxation time constant, equation (1.1)

mean collision-interaction time

oscillator steady-state wave function

perturbed oscillator time~dependent wave function

circular frequency of eigenstate m

fundamental oscillator frequency, equation (3.1)

m n

trajectory azimuthal angle, figure 6.1



APPENDIX B
GENERAL FORMULATION OF THE SEMICLASSICAL COLLISION THEORY

The semiclassical procedure developed here is assembled from the contents
of typical textbooks describing classical and quantum mechanics. For example,
the classical equations of motion are derived from first principles in H.
Goldstein, Classical Mechanics, Addison-Wesley (1950), chapter 3, and the
quantum-mechanical methods are discussed in E. Merzbacher, Quantum Mechanics,
John Wiley (1970), chapter 18. Both aspects are included here to provide a
unified description of the complete theory and to identify explicitly the
notation and assumptions associated with the collision model.

The formulation to follow is based on a center-of-mass reference frame
in which Mo and ¢ denote the reduced mass of the target molecule and the
complete collision system, respectively. The incident particle is limited
here to a structureless point mass whose motion is pictured classically.

The target molecule is capable of intranuclear motion and its dynamic response
to a time-dependent disturbance induced by the incident particle is described
quantum mechanically. The motions of both collision partners are coupled
through an interaction potential that depends on the relative separation of
all nuclei in the system. For these purposes, the potential is represented
here only by an arbitrary function V(ﬁ,i) when ; specifies the molecular
coordinates in configuration space and R locates the incident particle
position relative to the molecular mass center. The remaining discussion may
then be divided into a section describing the classical motion of the incident
particle and a section detailing the quantum-mechanical formulation for the

molecular dynamics.
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B.1 Classical Trajectory

In most semiclassical collision theories, the classical-path is deter-
mined from just a spherically symmetric average of the interaction potential
centered on the target mass center. This approach reduces the encounter to a
simple two-body central-force problem and, more importantly, it avoids most
of the difficulties arising otherwise from a need to define the molecular
coordinate 3, contained in the interaction potential, in classical terms.
The spherically symmetric average potential, v, may be obtained by quantum
mechanically averaging the potential over all molecular coordinates in a

manner suggested by
— > >
V(R) = {j|V(q,R)|n>
where molecular states Ij) and |n) may be initial states or some combina-

tion of initial and final states. In many cases, the method of averaging has

little influence on the final results.

Given a central potential, the trajectory remains in a single plane
described by two coordinates as shown in figure B.l1. The potential may then
be denoted as V(i) = V(X) and the trajectory is conveniently described
by a Lagrangian development of the equations of motion. As a result, the

conservation of total energy, E, leads to

_u | fax\% | (< d9\?| | 5, -
E -E[<E> +<x dt)] + V(x) (B1)

and the conservation of angular momentum, L, requires that

- z2 9@
L ux at (B2)

190



LINE OF SYMMETRY AT
‘ CLOSEST APPROACH
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S T

—e
/ \MOLECULE MASS CENTER

Figure B.l.- Classical path in a center-of-mass reference frame
for a two-body, central force interaction.

The initial conditions are defined by the initial speed, u,, and the impact

i
parameter, b. At t = -o, we then have E = (l/2)uu% and L = ubu,. However,
before introducing the initial conditions, we must recognize that no account
has been taken of the energy or angular momentum traded inelastically with

the target. This inconsistency is the origin of the lack of conservation in

a semiclassical theory. While, in principle, a further approximation could

be invented for keeping the system conservative, the usual method has been

to adopt an equally approximate approach in which E and L are simply
interpreted as "effective" constants of the motion averaged over the trajec-
tory. In this formulation, we shall consider the impact parameters b and b',
shown in figure B.1 to be identical but acknowledge that ug # u, in a fully
conservative system. We then define an average speed, u = ﬁ(ui,uf) and average
energy E=1/2 pG2, where the metho& of averaging is determined by that giving
the best results. With these interpretations, the equations of motion that

determine the time dependence of the coordinate R=1R (%,9) in the inter-

action potential are obtained from equation (Bl) and (B2) as
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S—
t=
tall

—2 oy
(%%’ =g2|1- Y® _ <£>2 (B3)

)
T - - (B4)

B.2 Quantum-Mechanical Molecular Motion
The molecular motion is driven by the complete interaction potential,
V(q’,ﬁ). To emphasize the time dependence, however, we use the equivalent

notation V(ﬁ,ﬁ) = V(E,t). The Hamiltonian describing the molecular motion

is then
H(G,e) = X (@ + V@E,t) (B5)

-5
where ﬂb(q) is the stationary-state Hamiltonian containing the intra-

molecular potential Vo according to

h2 -
¥ (q) = - — V2
o(2) 20 et v (Q)

This definition of M(E,t), in which the incident particle motion is only
implied by the time dependence of V(;,t), is the essence of the semiclassical
approximation. Otherwise, H(E,t) would contain a momentum operator related
to the incident particle.

In the Schrodinger picture, the equation of motion is

¥ (q,t)

-th ¢

= H(q,t)¥(q, t) (B6)

For t - *», the molecule is undisturbed and ¥ = ﬂ;, giving a stationary-

state solution of the form

-tw_t .
@) =Y D e Ty @+ f (0 PB Ny iy R (87)

n
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where the probability amplitudes, céo) and céo) are constant in time.
The first term in equation (B7) represents bound states of ﬂ; with quantum

numbers n and satisfying
wan = hmnq"n

The second term accounts for any continuum states allowed by ﬂ; with
energy Ek and momentum hK. While continuum states may exist, we justify
their neglect by arguing that they will never participate in the dynamics
of the molecule for the conditions of interest here. Consequently, we shall
always choose total energies (internal plus kinetic) well below the level
where any continuum states are energetically accessible. With that
stipulation, the bound-state eigenfunctions, wn’ provide a natural and
complete basis set in which to expand the solution to equation (B6). Thus,
we can write the time-dependent wave function as

-tw_t

¥Ge) =Q e (e @ (88)

n
The probability amplitudes, cn(t), are analogous to céo), but are now time
dependent. The probability of occupation in state n at any time during
the encounter is <:wn|W(E,t)>>= lcn(t)lz. Since all that we desire are the
occupation probabilities, a description of the cn(t) terms provides an
adequate solution to the problem. Equation (B6) may be transformed into a
set of equations — one for each cn(t) — by the usual procedure of substituting

equation (B8) and utilizing the orthogonality of the eigenfunctions,

VY

(wnle) = an. The result is b
dec, (t) Z(w,-w )t 5
ah —L— = b c(®e I ™ Glv@,0|w (89)
n
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where the bracket notation refers to

Glv@olw = ] v@,0 v, & (810)

integrated over all ; space.

To solve equation (B9), the molecule is considered to be initially in a

pure eigenstate li), thus creating the initial condition

—») |2 =
lcn( )I 6in

for all n. The initial phase of cn(-m) is unimportant and is chosen
arbitrarily since we are interested only in |cn(t)|2. The final state of
the molecule at t - 4+~ then determines the transition probabilities

resulting from the collision. For tramsitions to state |j), the probability

is

Pj_-—>j = |CJ (+°9\) |2

At this point, note the role of various terms in equation (B9) and how
they contribute to the transition probability. The matrix element,
(jIV(a,t)In), is a coupling factor that connects states |j) and |n). It
contains the primary quantal properties of the transition and it introduces
the appropriate selection rules, if any exist. However, while selection rules
will control individual matrix elements, the coupling of more than two states
in the molecular dynamics can allow alternate routes for the molecule to
reach a selected final state. Thus, energetic collisions involving numerous
intermediate states will not always display the selection properties appear-

ing in low-energy collisions where only two states participate in a transi-

tion.
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Resonance in a transition plays no direct role in determining the matrix
element properties. Thus, the matrix-element properties will prevail regard-
less of the degree of resonance. However, resonance will have an additional
effect on the transition probability by way of the phase term in equation (B9).
Clearly, a resonant transition (in which wy = wn) will not be degraded by
phase interference during the collision and will achieve the maximum proba—'
bility determined by the matrix element. Conversely, as Iw

3

increases, phase interference can add an oscillatory structure to the final'

- wnl

transition probability that varies with the collisional parameters.
The practical aspects of solving equation (B9) are made simpler if the
time-dependent aspect of the matrix elements defined by equation (B10) may be

factored according to

GlvE,e) |n) = uee) GV @ |

(B11)

U(t)VJ.n

Then the time-independent elements an, which contain all the quantum-
mechanical selection properties and often require considerable numerical labor,
can be computed in advance of the time-dependent solution. The function U(t)
is obtained from the classical trajectory and applies to the entire set of
equations (B9) for all quantum states. - ” o | “
Another practical aspect in solving equation (B9) is to adopt the
so~called "close-coupling" approximation in which not all eigenstates in the
complete set are included. Guided by trial solutions, only those states
contributing to the dynamics of selected states of interest are retained in
the coupled set of equatiohs (B9). Usually, many.states that are energetically

inaccessible from a classical point of view may be neglected, although
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experience has shown that inaccessible states with eigenenergies close to a
state of interest contribute to the transient dynamics during the collision

even though they are unoccupied afterward.

Finally, a necessary criterion that will be satisfied at any time, if
the numerical solution of equations (B9) proceeds accurately, is the closure

relation conserving probability, that is,

Yle (]2 =1 (B12)
iol n

Hence, equation (B12) may be used as one test for regulating the numerical

step size, although, in practice, it seldom becomes a limiting factor.

B.3 First-Order Perturbation Theory

When the kinetic energy is very low, the occupation of all states other
than the initial state remain very small. Thus, if |i) denotes the initial
state, we can assume Ici(t)l2 = 1 and Icn(t)l2 << 1 for all times and all
n # i, To obtain the equivalent of a first-order perturbation theory in
these circumstances, we must make the further stipulation that only two
states interact, with one of them the initial state. This suggests that the
eigenenergy of the second state is remote from all others and lies adjacent

to the initial~state eigenenergy. 1I1f, for simplification of notation, we

denote

|V, e |i) = V;i(t) (B13)

equation (B9) can then be written:

de, (t) '
h _%1?_ =V, (8) ¢;(6) (B14)
. an(t) . . i(wn—mi)t
7h R Vii(t) ci(t) + Vni(t) cn(t) e (B15)
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The neglect of ¢, in equation (B1l4) constitutes the perturbation approximation
and leads to a violation of closure as given by equation (B12). The set of
equations (B1l4) and (B1l5) are therefore not exactly equivalent to a two-state
description using equations (B9).

A solution of equation (Bl4) is

t
j: 3 Vii('r)d'r] (B16)

thus fixing the occupation Ici(t)|2 = 1 for all t. Equation (B16) is used

= e

ci(t) = exp [—

to suggest the form of cn(t) by writing
c (t) = b (t) ex [—i- t V' (t)dr (B17)
n n pL h /. nn

where Icn(t)I2 = Ibn(t)lz. Thus, we may solve for b,(t). Equation (B1l5),

in terms of bn(t), takes on the convenient form

h Lne) _ V', (t) L ( w,)t + L ft(V' v!.d (B18)
dt ni explrie, i h J., non T Y4797
By defining a phase frequency Pni = oW, + (VI'In - Vii)/h’ the transition

probability is then obtained in simple form as

® Yy, ..t 2
- ni 2fgTpi(T)dr
Pi—m f o © (B19)

Note that since Pi+i = 1 from equation (B16), probability is not conserved '~

and the solution of equation (B19) will be accurate only if Pi+n << 1.
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APPENDIX C

RADIAL MATRIX ELEMENT INTEGRAL

Q)

1 1s expressed in equation (6.18) as a

(n)

series expansion containing the integrals Tt where, according to equa-

The radial matrix element R.VV

tion (6.19),

r®) = JCj;:,(r) (%)nﬂv(r) dr (6.195

The integral r(nz
vv

(3)

convergence in va,. We therefore seek an analytic solution to equa-

must be evaluated for a sufficient range of n to reach

tion (6.19) for arbitrary n that will allow rapid calculations of the
numerous matrix elements required for a typical basis set of vibrational
states,

The first step in evaluating equation (6.19) is to express it in
explicit algebraic terms. To that end, we recall that ﬁ:,(r) and av(r)
are Morse oscillator radial wave functions described in chapter 3. Morse’?
shows that, in the absence of rotational centrifugal forces, the wave

function may be written:

& (r) = N_ e_zlzsz/ZL:v(z) (CL)

where
z = k' e2(rTe)

k' - 2v -1

o
Il

-
1

[ava(v + 1)/T(k' - v)]1/2
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and v dis an integer denoting the vibrational eigenstate quantum number.

b
The function va(z) is a Laguerre polynomial defined as’3

LV(z) = iqiv)zm (c2)
m=0
where
v __ DV r! - v)

4 = ml(v -m)! T(k'" - 2v + m)
and T'(y) 1is a gamma function. By comparing the eigenenergies associated

with Rv(r) with the spectroscopic term expression:

h = - 2
Ev/ we(v + 1/2) wexe(v + 1/2)
Morse shows that the parameter k' is then a measure of the oscillator
anharmonicity and related to the spectroscopic parameters by
' =
k we/mexe (c3)
Substitution of the radial wave-function expression, equation (Cl), into

equation (6.19) leads to a transformed integral over the variable =z

according to

0 n
n N ] ' 1]
rf,f,? = <%e—> 6vv' +@%‘f e 2 z>\ LE)’V(z) LSY (z) liln(—%—)] dz (c4)
o

where va' is a Kronecker delta and the new terms are defined by

va, = Nva'/a

\&k' - 2v -~ D' = 2v' - Dviv'!
= Tk - v) Tk = v') (c5)

and

A=k'-2- (v+v") (cé6)
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dow invoking equation (C2) and noting that the product of two finite poly-
nomials may be written as ~
b b,
v v _ s
LY@L ) (2) = ZO D_z
where 8= L c7)
- qu(V)q(v )

J

equation (C4) becomes

n
(n) _[Te n -z Ats k'
oo _<T> 6 (aL)n s;) D j; e z |:Zn<z>] dz (C8)

Equation (C8) is an explicit algebraic equivalent of equation (6.19) for
a Morse oscillator, and the reduced integral to be solved is readily apparent.
Several exact analytic solutions of equation (C8) have been obtained in the
past, but only for specific values of n. For example, Herman and Schuler98

found a solution for n = 1 that may be written as

(1) _Te Nov! (k' ~ v)I'(k' - v) rk' - v")
o' 1L va' TTaL vI(v' - W& - v-v -DYI& - v (€9)

where v' > v. Heaps and Herzberg99 extended the solution to n =2 and
indicated a procedure for obtaining solutions with larger n. However, the
formulation for n = 2 1s extensive and the implied formulation for larger
n appears impractical for the required calculation of numerous n terms.
Generalization of the solutions for arbitrary n also appears impractical.
Hence, further considerations of exact analytic solutions to equation (C8)
were abandoned. The iterative numerical procedure of Cashion!?? was also

rejected for similar reasons. Instead, we seek an approximate analytic

solution based on the observation that the integrand in equation (C8) is a
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lqgalized-ﬁqnctioq,nggﬁineqito a.narrow range of z Wh%ng¢k;;15$13?8€;;3,5,;
Since the value of. A, 1s dominated by the parameter k' and anharmonicity .
is a second-order feature of all diatomic_qolgculgs,_kﬂ{i1§ always large
compared to unity. Hence an apprdximation_baggd;pn %u?? l_Vill be_ggnerai%y _
applicable.

The generality of the approxiﬁation fb'bé made 1s demonstrated in another

sense, by writing, the integral in equation (C8) in the generalized form:
I =./$.e_zzau(z) dz 0 (cioy”
()
where u(z) 1is an arbitrary function. The integration of equation (ClO)b

by parts proceeds according to

(o) =f u(2) 'd‘il% dz’
o,
= u(z)viz) —fi‘jizﬂ u(z) dz (c11)
: Co 0 0
where
v(z) = fe_zza dz (C12)

and the integral in equation (Cl2) is indefinite. To evaluate equation (C12),

repetitive integration by parts leads to the series solution

O [ P R (c13)

which may be recognized as the asymptotic expansion for the incomplete

gamma function’3:

u(z) = -T(a + 1,2) (C14)
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Equation (Cl4) is an exact relation, butfit does not simplify the solution of
equation (Cll). We now seek an approximation to v(z) that is integrable in
equation (Cll). The nature of the approximation is indicated in figure C.1.

No;g 1n figure C.1(a) that the derivative

duézz - e-zza

is véry localized for large ao. It has maximum at z = o and a half-width
at a half-height of Az/z = v2 In2/a. Thus, the range of the integrand in
equation (Cll) becomes narrower as a increases. Noting these features

of dv(z)/dz and the fact that v(=x) = 0 from equation (Cl4), the function
v(z) approaches a step function as sketched in figure C.1l(b). Thus, we can
approximate v(z) by introducing the Heaviside step function:

0 for y <0
H(y) = (C15)
1l fory>0

dv(z)
dz
z
v(z) :
z
RiL:) Z-pvio)

Figure C.1l.- Propertiés of .u(z) and its derivative du(z)/dz = zae—z.
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and writing

v(z) ® -v(0)H(a - 2) (c16)
where
u(0) = ~-T(a + 1,0)
= -T(o + 1)

from the definition of the gamma function.”3 Hence, we have, for o >> 1,
v(z) = -T(a + 1)H(a - 2) (c1i7)

Substituting equation (Cl7) into the expression for I(a) by equation (Cll)

and invoking the step-function properties then leads to

I(a) = -T'(a + 1) l:-u(o) - Iadzfi(:) dz]

0
or, finally,

I(a) = ~T'(a + 1)u(a) (C18)

Equation (C18) is a generalized approximate solution of equation (C1l0)
for arbitrary wu(z) with only the stipulation that a >> 1., It may be

applied to the solution of equation (C8) for X >> 1 with the result:

@) ~ (T} Nov! E g \|
n) _{ e
r Y & <—I-J—> vau + (aL)ns=0 DSF(A + s + 1) |}n<}\ + S>:| (C19)

From the definition of A given by equation (C6), we see that the require-

ment, A >> 1, is met when
k' = (v+v') > 3 (c20)

Since k' is always much larger than 3, the accuracy of equation (Cl9) will
depend primarily on the sum v+v' and will decrease as the sum increases.

Correspondingly, the accuracy of equation (Cl9) is nearly independent of n
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since its derivation was done for an arbitfary function u(z), in this case,
equated to [IZn(k'/z)]™. Thus, we can use the exact solution for n = 1
given by equation (C9) to evaluate the accuracy of equation (Cl9).

An instructive first step in assessing the accuracy of equation (Cl9)
is to examine its variation with k'. We do so most easily by choosing the
simplest and most frequently applied case of v' = 1 and v = 0. The exact

solution for n =1 i1is then

1)
1

ré [exact]

while equation (C19) gives

(1) .
Tl [approximate] ) i

=S

The relative error is simply
' k' -2
Error = (k' -~ Z)Zn'ET~:—§ -1 (C21)

Sample error values are tabulated below for some diatomic molecules covering

a broad range of k'.

Species k! aLrgi)[exact] Error
H2 37.25 ~0.1660 0.0144
Co 161.22 -.0790 . 0032
N, 163.23 -.0785 .0031
Br2 302.05 -.0576 .0017

Comparisons for H, (the worst case) at higher v and v' (smaller 1) are
shown in figure C.2. As the figure shows, equation (Cl9) is acceptably

accurate for single~quantum transitions (i.e., vi-v = #1) in H2 for all
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\;»APPROXIMATE, EQ. (C.IQ)} I'm

\_EXACT, EQ.(C.9) v+l

Figure C.2.- Radial integrals and their approximation for Hz;
k' = 37.25, aL = 0.509.

initial eigenenergies at least up to half the dissociation energy of H2
implied by the Morse potential. For other molecules with larger k', a much

larger fraction of the total number of vibrational states will be treated

accurately by equation (C19).
The final consequences of using_equation (C19) to approximate rézz

are shown in figure C.3 where, again using H, as the worst example, we

)]

compare the radial matrix element R ;, computed using equation (Cl19), with

vv
numerically exact values obtained from a Gauss-Laguerre quadrature solutionl01-103

(n)

of equation (6.19). This comparison then encompasses values of r 7 for a

vv
wide range of n. Recall that small J values correspond to small changes

in angular momentum since ll‘-ll < J < & + &3 we showed in chapter 6 that

small |l'—l| contribute most to the energy-transfer process. As figure C.3
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J

Figure C.3.- Exact and approximate radial matrix elements for HZ;
k' = 37.25, aL = 0.509.

1llustrates, equation (Cl9) is exceptionally accurate for small J where
R(Je is the largest and most effective. Furthermore, the accuracy is not
strongly degraded even for large v where rsze is poorly approximated.

Finally, in applying equation (C19) in a numerical calculation wiﬁh
large k' and increasing v+v', we find that the practical limit to its use
1s not due to the error of the approximation but rather to the loss of
numerical precision. More specifically, when k' 1is large, as for CO or Nz,
the approximation is basically very accurate to v+v' < 150, thus including

single-quantum transitions from initial states to v = 75. However, the terms

in the summation of equation (C19) alternate in sign and the numerical range
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between the largest term and the final value of the sum can exceed the largest
number (with all digits significant) possible in most computers (i.e., as

viv' increases, we require decreasing differences between increasing numbers).
For example, using a CDC-7600 computer with 28 digits in double precision,
meaningful values of r§?3+1 from equation (C1l9) for CO (k' = 161.22) were
obtained only up to v < 12 before all significant digits were lost. The
numerical quadrature solutions were developed to obtain matrix elements for

)

larger v. However, the orthogonality properties of r(n, are retained in
v
the approximation and they may be used to at least monitor the numerical

precision when using equation (C19). To do so, one simply calculates

r(oz =4

vv vv!

or the equivalent surviving terms,
viv'
D, DI(i+s+1) =0 (C22)
s=0

(n)

concurrently with LA The precision with which equation (C22) is

satisfied is then a measure of the precision obtained with equation (Cl19).
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APPENDIX D
SPHERICAL MATRIX ELEMENT INTEGRAL

A general definition of the spherical matrix elements is given by

equation (6.15) as

@

NI (z'm'lPJ(cos 6)|2m) (6,15)

where & 1is defined by figure 6.1 and P is a Legendre spherical poly-

J

nomial of order J. In section 6.1.2.2, the spherical harmonic wave func-
tions of a rigid rotor are then introduced and the matrix elements take the

specific integral form give by equation (6.21) as

,EJI)H o VZJ T f ngv 1(8,8) Y, (6,0) Y, (8,¢)sin 6 do dp  (6.21)

where angles 6 and ¢ are polar angles (also defined in fig. 6.1). The
purpose of this appendix i1s to derive an analytic solution of equation (6.21)
using the properties of spherical harmonic functions commonly applied in
angular momentum theories.l 04,105

We begin by noting that equation (6.21) is similar to the integral of
three spherical harmonics for which the solution is known to be (Edmonds,lou

p. 63):

\I—f I (e 0) Yy o (0,0) Y, o (9,0)sin © o dg

2, 2, N[22, 2
= 1 72 73 1 72 73
= Vr, + 1(2e, + Do+ 1) (0 0 0)(m1 m, ms) (p1)

The bracket symbols are Wigner 3~j symbols. Equation (6.21) may be made to

correspond to equation (D1) by converting Y:,m.(6,¢) to its complex conju-

gate using the spherical harmonic property (Rose,l95 p. 241):
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Y*

2'm' = (-1)m'Y£|’_m' _ (D2)

and by equating YJ o(6,0) to a new spherical harmonic in terms of 6 and ¢.
’

To accomplish the latter, we recall the addition theorem (Rose,105 p. 60):

s Y N
m

where the angles in equation (D3) are related by
cos § = cos 61 cos 62 + sin 6, sin 62 cos(¢1 - ¢5) (D4)

However, from figure 6.1, § is related to the polar angles in equation (6.21)
by

cos § = sin 6 cos(Q - ¢) (D5)

so that, by assigning

the addition theorem may be written
- ‘/ﬂ_ %« (T =
Y5,0(0:0 = Vara1 LY (38) Yyples0) (D6)
m

With the aid of equations (D2) and (D5), the integral in equation (6.21) may

now be correlated with equation (Dl), giving the solution, by inspection, as

AN ) (AR )
J) = (e m' 4 . * (T =
Tomtam = 1) Nggo7 (' +D@E+1) (o 0 o) Z: YJﬁ(E’Q)(-m' @ m) (07)
m

Equation (D7) is further simplified by noting that the 3-j symbol coupling

the projection states m',m and m 1is nonzero only if
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m=mn'-m (D8)

Hence the summation over m reduces to a single term and the matrix element

becomes

AR S AW LI )
(D m Y -
Tortmtem = 1 VaraT (20! + D@+ Y3 mie ( 78 )(o 0 0)(—m’ m'-m m)

(09)

Equation (D9) is the desired analytic matrix element expression, but

it is in a symbolic notation that requires further reduction to obtain an
algebraic equation suitable for calculation. An algebraic form will also
allow the classical time-dependent terms introduced by Q(t) to bé>isolatéd.
To achieve an algebraic formula, we first evaluate the function
Y;ﬁ(n/Z,ﬁ). A comparison of the Rodrigues formula for an associated Legendre
polynomial, Pz(x), with the definition of Yzm(a,B), shows that the two are

related by (Edmonds,lO“ p. 24)

- /2 .
Y, (a,8) = (-1) [22 4 Ei - ;‘; :] Pl(cos o) "™ (D10)
Thus, we have
- G20 +1 @ -@1/2nm LR (L)
Y§ﬁ<3’9> - [ am (T + ﬁ)!] P;(0) e (D11)

- . L e TR e e e e e e
where (from Abramowitz and Stegun,73 p. 334) R

- J+m+1
f o™ T - r( 7 )
PJ(O) = — cos|=(J - 1 — (D12)
YT 2 J- &
X P—z—— +1> -

Equation (D12) may be reduced to simpler algebraic terms by noting that

since J and i are integers, the cosine term has the property:
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J-m
. _ (-1 Z  for J +m even _
cos -E(J - m)| = : - (D13)

0 for J +m odd
Hence, nonzero matrix elements are obtained only for values of J #fi even.
With that stipulation, the gamma functions in equation (D12) are also

reducible as follows: Define a parameter 2z so that

r(J—i'—g‘i—l) = T'(z + 1/2)

Then z = (J + m)/2 is always an integer because J + @ 1is an even integer.

With integer 2z, the duplication formula for gamma functions gives73
V1 (22))
Nz + 1/2) = 24 22}
922 z!
or
+ m) !
1,<J 2m+1>= V1 (J + m)! (D14)
2

JHA (J + IT1>'
2 L)

Furthermore, for J + m even, the other gamma function in equation (D12) becomes

ey - ()

so that

1,<J+rn+1>
2 /T (J + @)!

— = T . = — — ) N (DlS)
(=B 1) 2™ a5
2 | !
2 . 2 )
Hence, nonzero values of Yjﬁ(n/Z,ﬁ) are given for J im even by
S 27 +1 Vi ! ! im0
Y* (2’ ) = (-1) > 42J 1 /(T +@)!1(J - m! -th(t) (D16)

4w ZJ(F + é)ﬂﬁ - m>'
2
With equation (D16), the time-dependent terms are easily isolated in the matrix
element formula by defining a new matrix with constant elements given by
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(3 = Hm T F I = ] - L' J e\/L' T2
“ll'm'lm = (-1)y Z- ZJ(J _; m)! 3 ﬁ)! V(20" + 1) (22 + 1)(0 ool = o

(D17)
Again, the stipulations on Jlifi,lm are that J #ii dis even and @ = m' - m.
Equation (D9) may then be written
7 (m" -m) O

2'm'm 2£'m"m

thus obtaining the results given by equations (6.22) and (6.23).
Equation (D17) has been maintained in terms of the symbolic 3-j

coefficients to simplify the notation, but they may be evaluated by the well-

known formulas to follow!04,105.

L' J 2

The coefficient ( 0 00

) is nonzero only for L = &' + J + & even. With

that stipulation,

TLIN ) L/2f@ - 2001 - 2@ - 20)1 |t/
] .
(0 o 0) @+ !

(L/2)!
@2 = INTW/Z - DIWIZ = 1 (D19)

For even values of &' 4+ J + &, we can also equate
-m' G m

&' J 8 ,
( >==(—1)’L—J+In (22" + 1)'1/2c(sz':m mm')

where C(2J%':m i m') is a Clebsch-Gordan coefficient defined by Rose, 105

(p. 39), with a convenient algebraic expression. The result then leads to
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v - (_1)"‘ (' + 2= DIE - 2+ DI + J - i’)i(l' ; m'j!(z; - .ng /2 .
C+I+ 0+ DIC + It - i@ + W0 - W G, m'-m *

1) J+ 2 +m- VIR -m+ v '
ZVI(L'-L+J-V)!(£'+m -v)(:+:—J-m)! (D20)

where v ranges over all integer values giving nonnegative factorial argu-

ments. Since the zndzce constraints giving nonzero values of the vector-

coupling coefficients (3~j symbols) are

2" = 2] s T <2 +2 | } . (p21)

-

the summation limits in equation (D20) are those that define the narrowest

range of v within

 Minimum vy 20 , J - £ + m'

Maximum v £ J + &' + 2 , &' + m'

Equations (D17) to (D20) are sufficient to calculate T<J) "om for all

J,2',m',£,m combinations satisfying equation (D21) and

L'+ J + 2 even
J M even

All other matrix elements are zero.
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APPENDIX E
ANALYTIC TRAJECTORY EQUATIONS FOR NONZERO IMPACT PARAMETER

We have defined a trajectory function in chapter 6 by equation (6 33) as

w0 - o [1 o)) <G e 5.

where the constants,are specified by the'éﬁhéti&éify aVéfaéé& iﬁtéiéétién:'b"ﬂ'

potential . L
v,. (E1)

Then, to solve the;set of coupled dynémical equations describing the collision,
U(b,t) must be determined explicitly.in terms of time t. One approach would

be to numerically integrate the classical trajectory equation given in appen-

( ='21---(b)] | (£2)

but, as we point out in chapter 6, there are considerable advantages provided

dix B as

by an approximate analytic description of U(b,t) that benefit both the
remaining numerical analysis and future analytic descriptions of the collision
dynamics. In this appendix, we therefore develop an analytic form of U(b,t)
by following the work of Hansen and I_’earson.106

An indication of the functiong}‘for@ of U(b,t) is obtained by noting that
equation (E2), with the potential given b& eéuation {E}), may be solved
exactly for b = 0. The result is 1

[e- (%-%o) /L]b _ sechz(%) (E3)
=0

where io denotes the distance of closest approach. Furthermore, at closest

approach for b 0, all the initial kinetic energy is converted to potential
energy so that V = E, leading to
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%  [avy,
<L>b=0 ) Zn( E ) (=)

In view of equation (E3), the primary nature of solutions to equation (E2)

for nonzero impact parameters should be represented by

EXP[-[R(b,t) - io(b)]/L) = sechz[%b(b,t) %%] (E5)

where ab(b,t) is a slowly varying function of both b and t that can be
approximated by a low-order expansion.

By solving equation (E2) numerically, we can obtain the exact values of
ap (b,t) required to satisfy equation (E5). Some sample results are tabulated
below for a representative collision energy and for small- and large-impact

parameters.

TABLE E1l.- EXACT VALUES OF a(b,t) FOR E/vii =104

b/L Tt/L V/E ap, (b, t)
1.2 0 0.99 0.994
6 .01 . 995
8 0 .38 .70
6 .015 .74
16 0 .0010 .35
6 . 0004 .38

Note that when the change in ay(b,t) with t becomes noticeable, the inter-
action potential is extremely small. We can therefore approximate ab(b,t)
without introducing significant error in the collision dynamics by assuming

ap (b,t)~ ap(b,0). Then, expanding both sides of equation (E5) about t = 0,
we obtain, to first order,

1 - [%(b,t) - X,(b)1/L = 1 - (aput/2L)? (E6)
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Similarly,

- 2 2_.
x(b,t) = X, (b) + t(%%) + %f-(a—g) (E7)
t=0 9t/ =0
From equation (E2),
Bi)
— - 0
Ot femo

and

R e
ot =0 L E X,

Since (BV/at)t_o = -V/L from equation (El), equation (E6) finally leads to

a, (b,0) =~ [1 - [;_(—otz—b)-]“[l - 2L/:'co(b)]}1/2 (E8)

Note that X, (b) must still be computed by iteratively solving equation (E2)
for t = 0. However, as we show in figure 6.6, io(b) is closely approximated
by equation (E4) when the impact parameter is small. Similarly, when the
impact parameter 1s large, the trajectory path is nearly a straight line and
Xo(b) + b. In that case, equation (E8) becomes

a, (=,0) = /2L/b (E9)

All three cases are compared in figure E.1, where we see that a completely

1.0 - -
XO (b) = XQ (0)
8 -
Xo (D) EXACT
s hN - )
ap (b,0) ~ N Ko B =D
4 \
\
\
L2
1 L 1 i - |
0 4 8 12 16 20
b/L
Figure E.l.- Trajectory coefficients for E/AVii = 1074,
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analytical approach would Ee to compute- id(B = 6) from eqﬁ;tion (E4) for

increasing b until it gave values of 'a; equal to those from equation (E9).
Beyond that point, a better approximation is to assume io_z b. In that case,
U(b,t) = 0 according to equation (6.33) and the interaction may be considered

negligibly small.
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APPENDIX F

SYMMETRIES OF VIBRATION-ROTATION MATRIX ELEMENTS

AND THEIR COMPACT COMPUTER STORAGE

Exéeriehce with the collinear collisioﬁ model made clear the facts that:
the_basis set required for a three-dimensional vibration-rotation ﬁodel would
be iargg, it would vary in size with the initial conditions, and it should be
minimized for computing economy. A basic criterion of the computational
schemé was therefore to permit an.arbifrary basis set of vibrational and rota-
tional eigenstates to be specified as part of the inputlinformation. Conse-
quently, the calculation requires a large and variable number of time-

independent matrix elements, Vv' Since the matrix elements are con-

2'm'vim’
stant in time, the obvious procedure was to compute them in advance of the
dynamical solution and store them in the computer memory.

When specifying the basis set in problems of this nature, the available
size of accessible memory can be as severe a limitation as the computing time
required. In large time-sharing systems, the operating cost is affected by
both factors, while, in smaller systems, adequate memory volume is often not
available. Hence the programmer's task becomes one of minimizing the memory
volume that must be allocated to accommodate matrix elements of the largest
basis set of interest. Since the allocation must usually be done in advance
of any input information, the storage scheme must also_be optimized in advance.

Each matrix element is identified by six quantum numbers for which the

simplest storage scheme would be a six-dimensional array. However, advance

memory allocation for such an array would be extremely wasteful because each
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dimension would have to be set to the largest value of interest. For example,

suppose we choose the random basis set:

ooy

1 4 3

2 4 1 2 (F1)
3 4 0

4 5 2 }
where i is an index identifying the state, and vy and 24 are the vibra;
tional and angular momentum quantum numbers specifyihg the state. -If Vs 2
represents the largest values to be considered, then there are v, + 1, 2, +1
possible values of v, £ and 24, + 1 values of ﬁ. To accommodate the
example, let wvp,&; = 5,3. Then the array would be dimensioned
Vv'¢'m'vim) = v(6,4,7,6,4,7), thus allocating 28,224 memory elements, while
only 256 are filled by the sample basis set above.

On second thought, a more efficient storage scheme is.based on the index i
identifying each state and my, the projecﬁion quantum number. Two small 1-D
(one-dimensional) arrays, vi(i) and 24(i), may be established to give the
v,% quantum numbers when needed and the matrix elements are stored in a square

2-D array, Vv' =V(j',j), where j 1is computed from

£'m'vim

i
3= 2 @y +1) - +m (F2)
k=1

Such a matrix element array for the example basis set is illustrated schemati-
cally in figure F.l. The array dimensions, allocated in advance, are ndw
required to be only as large as the total number of differential equations
that can be solved in a reasonable computing time. Thus, the storage alloca-

tion and the computing time limits are kept compatible. As an example, suppose
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Figure F.l.- A representation of the matrix elements Vi r1grprvo oy correspond-
ing to the sample basis set, equation (Fl). Each group, i or j, repre-
sents a pair of quantum numbers, vy and 2;. The matrix element is then
identified by relating Vgrgrprien to the array V(i,my,j,m3;). The
shaded squares are locations containing zeros. The filled ¢ircles ©
denote primary elements, unrelated by symmetry. The open squares and
‘open circles © are elements related to the primary elements by the
symmetry equations (F9) and F1l). The open circles are additional ele-
ments included in the index equation, equation (Fl7), and stored with the
primary elements in memory.

that the maximum computing time limits the total number of states to 16. That
limit would then encompass the example basis set and require a matrix element
array with 256 elements.

While the preceding storage scheme is a notable improvement, it is still
extremely wasteful. Closer examination of the sample matrix element array in
figure F.l reveals that, as a result of the constraints on rotational state

coupling given by equations (6.24) and (6.25), almost half of the elements are

zeros. In addition, -approximately three quarters of the nonzero values are
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b

" symmetries of Vv

numbers with opposing signs but duplicate magnitudes, as a consequence of the

Yo tm'vim® Hence, there is an obvious opportunity to further

- reduce the storage requirements by storing only the elements of unique and

nonzero magnitude. Such a scheme requires additional computing of indices to
relate an arbitrary set of quantum numbers, v'L2'm'v&m, to the storage indice
containing the appropriate matrix element. But, for large basis sets, that

additional small effort is offset by a reduction in the number of elements

that must be computed and by the savings in storage. We may use, as an

~illustrative example, the largest basis set represented in this study. It was

for a heteronuclear molecule (CO) containing two vibrational manifolds with
rotational states from £ = 0 to 10 in each one. Thus, 242 states were
included and a V(j',j) array of 58,564 elements would have been required.
However, by storing only the unique and nonzero matrix elements, the storage
requirement was reduced to 14,883 elements. While the storage requirement was
still large, the difference decided between possible and impossible storage

allocation. The remaining paragraphs of this appendix are therefore devoted

2

needed to select the

to a study of the symmetry properties of Vv'l’m'vzm

unique elements and a derivation of the index equations for locating the

matrix elements in a reduced storage scheme.

F.1 Symmetries of Vv'z'm'vlm

The symmetry properties of Vv' are revealed by the terms defin-

£'m'vim
ing it. According to equation (6.26),
L'48

= J) L,
Vv'%'m'vlm - (23 + 1)va' “cl'm'lm (F3)
J=[2'-¢|
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¥'m’im | ZJ(J T ﬁ), (J ), o 0ol s
| t o), (1 .

- m m
(F4)
m=m' -m . (F5)
R‘(’_‘\I} = (v'|£(, )|V _ (F6) .

and £(r,J) 1is an algebraic function of r and J given in equation (6.16).

We first note that the vibrational states are freely interchangeable
because the vibrational wave functions are purely real and not operated upon
by the algebraic function f(r,J). Thus, equation (F6) may be rewritten to
give

N&

@ _ ry —
RVV' = (vlf(r,J)'v ) = ol

(F7) -

for all J.
Next, the summation limits in equation (F3) are seen to be unaffected by

an interchange of £ and &'. Hence, all the remaining symmetry properties of

(D

are determined entirely by the rotational coupling term,_xfg.m.lm.

Vv'z'm'vzm

Furthermore, having generalized the vibrational symmetry, only three possible

elementary symmetry operations remain: (1) an exchange symmetry between rota-

6))

tional states to relate “(l'm'zm

J
and ”‘imi'm" (2) a sign reversal of m only,
and (3) simultaneous sign reversals of m and m'. All other operations would
correspond to combined applications of the above. In the following, we deal

with exchange and sign-reversal symmetries separately.
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F.1.1 Exchange Symmetry

The relation of Vﬂé?) and “déii'm' is easily shown in a general:

m'2m

fashion by starting with its definition in symbolic notation. From chapter 6,

Jfégi,gm is equivalent to
I yex : ) Z(m'-m)Q o
Mg = (Yl,m, IPJ(cos 8) IYzm e (F8)

where the combination of terms containing the time-dependent variables, § and
5, render the result constant in time. (Note that the bracket notation in
eq. (F8) implies the integration over all configuration space.) Again,

the operator PJ(cos §8) dis algebraic and hence not operable on the wave func~

tions. Thus, equation (F8) is unchanged when rewritten as

()] 5 * 2(m"-m)Q
Morntom T (YzmlPJ(wS §) IYSL'm') e "

{(hlp teos )1,) @D

- *
[Vd&ml'm']
But equation (F4) shows that the rotational coupling terms are always real so
() * (J) (I TG )]
that Ljamm,m,] = “dkml'm' leading to M\ ¢, = “dimz'm" Correspondingly,

Vv’%'m'vlm - Vvav'Z’m'

(F9)

F.1.2 Projection-State Sign-Reversal Symmetry

As indicated previously, sign reversal may be implemented in two ways.
The first, a sign reversal of m alone may be immediately dismissed as an
unsymmetric operation by noting that it would induce a change in the magnitude
of T via equation (F5) and thereby lead to different magnitudes for
JJ(L:T;' pm 20d A o

2'm'L . ~m The second case is a simultaneous sign reversal of
’
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both m and m'. Only the sign of m 1is then reversed and equation (F4)

leads to

| o | /2t T L\ [/ T g o
“‘g)-m'. L _m/l ,E?T;' tm " (-1)"“( ) / ( ) (F10)
’ i : : m' -& -m -m' & m

Thé corresponding'3-j symbbl symmetry is given by Edmonds10% (p.47) as

L L L L, - & L
1 2 3 - (_1)214‘224‘23 1 2

m my; my S\ Ty Ty
but 42' +J+ 2 (1.e., L, + 8, + 2, in the above equation) must be even to
ébtain nonzefo valués of (%; g 3) in equation (F4). Thus, the rafio of
3-j symbols in equation (F10) is always unity and we are led to the final
result:

m-m'
Vere'm'vim -1 Vv',l',-m',v,l,—m (F11)

With the symmetries given by equations (F9) and (F1l), one choice of pri-
mary matrix elements is illustrated in figure F.1l by the filled circles. 1In
the notation of figure F.1, V(i,mi:j,im ) are included for each i and all

3

m, from -21 to zero. All j and imj are included that fall to the right

of the diagonal, with the exception of those related to preceding mﬁ in the
same row by symmetry. All other matrix elements (indicated by open spaces and
open circles in fig. F.l) are then obtained by the symmetry relationms,

equations (F9) and (Fll).

F.2 Primary Matrix Element Storage

The remaining task is now to devise a scheme of indexing the primary
matrix elements so that they may be stored and retrieved using the identifier
set (i, m,, j, m,). The method chosen here 18 to index them sequentially froq

J
left to right in figure F.1l, starting with the top row and continuing, row by

225



row, toward the bottom. The priﬁary elements may then be‘s;ored in a minimum
memory volume by computing the index P(i,mi’j,mj) and locating them in a 1-D
array, V(P). Similarly, the matrix elements are retrieved during the dynami--
cal solution By again computing P(i;mj,j;mj)-aﬁd applying the symmetry equa-
tions (F9) and (Fll1) when necessary. Hence, we need only define P(i,mi,j,nﬁ)
explicitly in terms of the identifiers to complete the storage scheme.

Before developing the index equation, we first note that the formulation
will be somewhat simplified if we slightly relax the requirement that all
matrix elements related by symmetry be excluded from. the primary set. Very
little redundancy is introduced by reinstating the few excluded matrix ele-
ments to the right of the diagonal in figure F.l1 in rows where -zi < m, < 0.
Such elements are indicated in figure F.l1 by open circles. With those ele-
ments included, we compute P(i,mi,j,uﬁ) by first defining the following
component terms:

An operator is required to be identified with each (i,mi) row and with
the properties
[ 1 for 21 + m,  even

0 for %, + m, odd
i i

Then the total number of primary and symmetric nonzero elements in row (i,mi)
is

m

T
= i

‘ (Rj + 6i, )

j=1

where I is the total number of (vi,li) states in the basis set. Similarly,

the number of nonzero symmetric elements to the left of the diagonal in row

(i,mi) is
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i i,m

i-1
Z(zj+aim)+(zi+m + & - 1)/2 (F12)
j=1 i i |

so that the total number of primary elements in row (i,mi) is

+ si’mi) - (R.i + m, + Gi,m -1/2 (F13)

i

T
N(i,mi) = };1 (zj

h!
The number of rows preceding row (i,mi) is

.i

.n(i,mi) = El (20, +1) +m -2, -1 ) (F14)

so that the total number of primary elements in rows preceding row (i,mi) is

then

n(i,mi)
N(r,my) (F15)

r=1
Now choosing a specific element in row (i,mi), the number of nonzero primary
and symmetric elements preceding V(i,mi,j,nﬁ) is
j=1

k=1

(2

K + si’mi) + (2j + m, + 61 -1)/2

h | sy

while those symmetric elements to the left of the diagonal are again given by
equation (F1l2) but rewritten as

11

1§1 (2, + si’mi) + (2 +my + si’mi - 1)/2
The difference in the two terms above is then the number of primary elements

preceding V(i,mi,j,mj) in row (i’mi)’ given by

i-1
E (zk + é;i o ) + (zj -2+ my - mi)/2 (F16)
k=1 ]
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The index of V(i,mi,j,mj) is now a combination of terms (F15) and (F16) with

the result

- n(i,m) ‘
PUimg,dm) = 1+ (1 = #y 4wy - m)/2 % T Gy 46y )+ E;a N(r,m,)

(F17)
Equation (F17) requires that j 2 i. The identifiers may be exchanged to read

P(j,mﬁ,i,mi) if 1 > j. Note that the summations in equation (F17) may also

be reduced to more efficient forms for computer calculation.
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