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INTRODUCTION

The Grant NGR-06-002-147, "Theoretical Investigations on Plasma

Processes,"

is concerned with i) the system analysis of plasma centrifuges
for isotope separation, and ii) the deposition of the sputtered atoms on
system components such as the solar energy collectors of ion propulsion
systems. The progress made on these subjects in the period from 9.1.75 to
11.1.76 i1s communicated herein.

The present report consists of three papers, two of which have been
accepted for publication. By means of system analyses, it is shown that
plasma centrifuges at high plasma and power densities are technically
promising for isotope separation. The largest spatial isctope separation
is obtained by maximizing the Hartmann number and the Hall coefficient of
the isotope mixture plasma of the centrifuge discharge. Furthermore, it
is shown that induced magnetic fields have no effect for small Hall-
coefficients and little effect for large Hall-coefficients on the plasma
rotation and the isotope separation efficiency. A new approach to the
~deposition problem of sputtered atoms is given. Its solution leads to a

simpler, but still mathematically difficult integral equation.



BOUNDARY-VALUE PROBLEM FOR PLASMA CENTRIFUGE

AT ARBITRARY MAGNETIC REYNOLDS NUMBERSY)

H. E. Wilhelm and S. H. Hong
Department of Electrical Engineering

Colorado State University
Fort Collins, CO 80523

ABSTRACT |

The boundary-value problem for the partial differential equations,
which describe the (aziﬁuthal) rotation velocity and induced magnetic
fields in a cylindrical plasma centrifuge with ring electrodes of dif-
ferent radii and an external, éxial magnetic field, is solved in closed
form. The electric field, current density, and velocity distributions
are discussed in terms of the Hartmann number H and the magnetic Reynolds
number R. . For small Hall—coefficiénts, wt << 1, the induced magnetic
field does not affect the plasma rotation. As a result of the Lorentz
forces, the plasma rotates with speeds as high as lO5 cm/sec around its
axis of symmetry at typical conditions, so that thellighter (heavier)
ion and atom components are enriched at (off) the center of the discharge

cylinder.

*) Supported in part by NASA.



On principle, electromagnetic forces allow to rotate plasmas up
to relativistic speeds. Theta pinch experiments show that the plasma
rotates during the discharge pulse at such high speeds that the energy
distribution of the emitted neutrons is shifted;l From the theoreti-
cal point of view, the basic mechanism for plasma rotation by means
of crossed electric and magnetic fields and Lorentz forces in rare-
fjedl:li and denselﬁ:lz plasmas is understood qualitatively. Experi-
mental evidence on 1sotope separation in rotating plasmas has heen

10-11 0 1110ud,2? Heller and Simon,2:

reported among others by Bonnevier,

23-24

James and Simpson,zg-and Ban and Sekiguchi: Exact solutions for

the boundary~value problems describing plasma centrifuge systems are

not known, neither for collision-dominate nor for collisionlessg:é——
plasmas.

A simple model for an electrical discharge centrifuge with an
axial, external magnetic field ﬁé is shown in Fig. 1. This plasma
centrifuge employ; électrodes of ‘different radii R+ and R_ (R+>>R_) in
the end plates z = #c of an electrically isolating discharge chamber of
radius R.o so that the field lineé of the current density ? and of the
external axial magnetic field %5 cross under a nonvanishing angle (except
at the chamber axis). The resultant Lorentz force ? b'4 ﬁ; rotates the
discharge around its axis of symmetry. In steady state, the magnétic_
body forces in the azimuthal direction are baianced by the viscoﬁs forces
(boundary iayers at tﬁe chamber‘walls). As opposed to the centrifuge

with radial electric current flow between an inner and outer cylinder

eiectrode, the centrifuge scheme in Fig. 1 avoids the boundary layer



and losses at the inner cylinder surface. In the following, the boundary-
value problem for this centrifuge is solved in closed form based on the
magnetogasdynamic eQuations for dense isotope plasmas with negligible

Hall effect.



THEORETICAL FORMULATION

For a purely azimuthal flow field, ; = {0, v(r,z),0}, the plasma
behaves incompressible, V * ; = 0. From the continuity equation,
v . (p$) = 3 + Vp.= 0, it follows then that the density gradient Vp is
everywhere perpendicular to tﬁe flow field v. In accordance with the
magnetogasdynamic equations,gl-Maxwells equations and Ohms lawgl [which
imply V2§ = —uoon(giﬁ)]. the plasma in the centrifuge with homogeneous
magnetic fleld ﬁb (F1g. 1) 1s described by the boundafy—va]uc problem
for the azimuthal velocity Ve(r,z) and azimuthal induction Be(r,z) fields

(r,8,z = cylindrical coordinates):

2
1p 8V “Y_Q.Fave:_ B, 9B, )
r or or r2 8z2 HH 9z
9B B 82B oV
r or L a3 2 2 9z ?
0z
where
Vo(r,z)_p =0, —c<zs+e TG
s
" = < . 4
Vo(rsz) .. =0, oir__go (4)
and
UOI
Be(r,z)r=R‘ = 3R , =c<z<+e¢c s (5)
o o
¥ I §(r-R,) :
1.8 =0 ¥ <r <R : ‘ 6
r or [rBe(r,z)]z=ic 27 T » 0=r SR : (6)

' Eqs. (1) and (2) are the azimuthal components of the equations of
plasma motion and magnetic induction; respectively (u = viscosity,.

My = magnetic permeability, ¢ = electrical conductiVity). The



boundary conditions (3) and (4) consider that the plasma does not slip
at the walls r = Ro and z = tc. The boundary conditions (5) and (6)
follow from Maxwell's equations for a total discharge current of ‘Il
amps flowing from the ring "anode" (r=R+) to the ring '"cathode" (r=R_)
of vanishing radial width [6(r—Ri) = Pirac function] if I.< 0 (Fig. 1).

According to Eq. (6), the net current sustaining the discharge is
R R
o o v
2nf jz(r,z=tc) rdr = If 6(r—R+)dr = I, The pressure distribution
0 0 -

p=p(r,z) 1in the rotating plasma is determined by the r- and z-components

of the equation of motion,

2
Yo 3p 3p
-pP ;~.= T er JzBe’ 0=- oz + JrBe ’ (7-8)
where
l-.?—(rB):uj ..ﬁ:uj (9_10)
r 3r ] oz’ oz o'r i '

in accordance with Maxwell's equations. In absence of the Hall effect,
wr<<l, 1t is UxB = uo(jr, 0, jz). Hence, Br = 0 and Bz = 0 because of
the homogeneity of the boundary conditions for Br and Bz, whereas
BB # 0 since jr,z # O[Be(r,z = #¢) = (UOI/Zﬁr)H(r-Ri)]. Since the

induced magnetic field is azimuthal, B = {0, B s BJ, the induced

6

> >
e

electric field is independent of Be, i.e. VxB = VeB0 .



NONDIMENSIONAL BOUNDARY-VALUE PROBLEM

The characteristic nondimensional parameters of the magnetogas-

dynamic centrifuge under consideration are obtained by introducing the

nondimensional independent and dependent variables,

p = r/R0

» 0<p <1

t=2zfc,=1<r5<+1

and

Vip,z) = Ve(r’z)/V09 ’B(P,C) = Bér’z)/Bo

where

V =1I/27R B oc, B
o oo o

=B
o

b

In terms of the nondimensional space variables and fields, the

boundary-value problem defined iz Eqs. (1) - (6)

and B(p,r) the form:

10 oV v

o3 P3p) T 7t N
P

1 93 9B B -2

5 55‘(93p)' p2 +N

VTl gy = 05
and
B(p,c)p=1 = R,
13
. p.op

 with

-—"*[9B(p,§)]c=il =R 8(p-p)/p, 0<p<1

assumes for V(p,Z)

3

(11)

(12)

(13)

(14)

(15)

. (16)

a7)

(18)

(19)

(20)



-

= = z 4y I/2rR B = >
H = (o/p) BORO, N c/Ro, R uoI.ZﬂRoBO pooVoc 2 0. (21)

The tlartmann number H, N, and the magnetic Reynolds number R characterize

the ratio of Lorentz to viscous forces, the geometry of the centrifuge,

and the intensity ratio of the induced and external magnetic fields, respectively.
The linear statement,

B(p,z) = Rp + ¥(p,i) , (22)

reduces the Eqs. (16), (19), and (20) for B(p,z) to equations with

a homogeneous boundary condition @4) for ¥(p,z):

2
where
W(p,z;)p=l = 0, -l <g<+1 R (24)
1 3 8(p-p,) ,
Ty [p‘i’(p,C)]F:hl = R[““‘;'_' =2}, 0<p=<1 . (25)
1

In view of Bessel's differential equation, Z; +p Z& +

(ki - p—zmz)zm = 0; for cylinder functions Zm(knp)’ partial solutions
of the coupled inhomogeneous Eqs. (15) and (23) are éought in the form,

V_(p,8) = 3, p) £ (D) , (26)

¥ (p,t) = Ik p) g (2) ‘ (27)
where the eigen—values kn >0 afe determined by the homogeneous |
boundary cohdiﬁions(l7) and (24) as the real roots of the transcen-
dental equation,

3,k =0, 0 =1,2,3,.... . (28)

Thus, the general solution of the coupled Egs. (15) and (23) obtains

by linear superposition as the Fourier-Bessel series:zg



[++]

V) = B I (kp) £ , (29)
¥(p,z) = nil Jl(knp) 8. (z) . . (30)

Substitution of Eqs. (26) = (27) into Eqs. (15) and (23) yields
ordinary coupled differential equations of second order for fn(c) and

gn(c):

2 2.2

N £ = -HN°RT
n

1 _ |
fn k 8. R (31)

N BN

2
ve_
8n kn N gn

- 1]
RE! . (32)
By elimination, Eqs. (31) - (32) are reduced to decoupled differentail

equations of fourth order,

g ok + ENE T PNt e =0 , (33)

n n n n n

"y 2 2.2 1y 4 4 -

g (an + HO)N g, + kn N g, = 0 , (34)
with

£(8) iy = O , (35)

g (0) _.. = RK T (kp,)/IE(k) (36)

n g=t1 n o'n £ o' n 2
as boundary conditions, by Egqs. (18) and (25); respectively. In
deriving Eq. (36), the Dirac function in Eq. (25) has been expanded

28 '

in the Fourier-Dini series, ™

§p - p)/p=2+21 [Jo(khpi)/Jo(kn)]Jo(knp) . (37)

n=1
In addition to Egs. (35) - (36), fn(c) and gn(c) have to satisfy also
the coupled Eqs. (31) - (32). With the four real roots of Eqs. (33) -

B4) [£, 8 = exp(wg) ],



—— + = - = - + A - (38
“1n =% * Y21 T “n2 Y “a * “4n “n ’ - )
where
_1 11
wt =z 27 N{(zkf1 + uz)t[(zkf; + u2)? - 41{‘1]"2}4 , (39)

the general solutions for fn(c) and gn(;) of Eqs. (33) - (34) can be

written as:

sinh w+c cosh m+§
+ n -+ n
fn(;) = An + + Bn + ‘
" sinh w cosh w
n n (40)
sinh w_r  _ cosh w_g
i LNy :
n sinh w cosh w
n n
+ sinh w:; + cosh m:g
g (t) = C ————+D, -
einh wn cosh wn
. (41)
_ sinh 0 ¢ _ cosh w_
+¢ ——=B 4p 1 .
% sinh w” n cosh w_
n n

. + +
Only four of the eight integration constants*A;, ‘e D; are independent.

Substitution of Egs. (40) - (41) into Eq. (31) and Eq. (32) yields

2 2.2

A: [(mi) - kiNZ]/mi = -H°N Rt tghwi . Di R (42)‘

8 Kmi)z - kiNZ]/mi = ¥R eth ol - G : (43)
and

Cilﬁ(mi)z - kiNz]/mi = - R tgh m§ . Bi E (44)

pE [wh? - kiNz])wi =-Rethu® + A . (45)

respectively. The coefficient determinant of Eqs. (42) and (45) or

Egs. (43) and (44)vanishes (condition for existence of nontrivial solution),

. £2 0222 22 #2
A5 (@) - KNI - BN @) = 0 | , (46)

REPRODUCIBILITY OF THE ~10-
ORIGINAL PAGE I8 Pty
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in agreement with Ey, (39). From the latter or Eq. (46) one deduces
the relations,

(@ - kN1l = B . 47)

which simplify the left sides of Egs. (42) - (45).

Application of the boundary conditions (35) to Eq. (40) shows that

-— += _”—— +=
A= HA = A, B_ = +B] = B . (48)

Substitution of Eq. (48) into Eqs. (40) and (41) gives

sinh wic sinh w

- _ n
£ (0) = A [— - —]
sinh w sinh w
n n
N _ : (49)
cosh w g cosh w ¢
+ B[ —- ]
cosh w cosh w
n n
and
+ -~
R cosk; wnc cosh wnc
8, (8) = -A 7 | i —1
sinh mA sinh w_
; (50)
v + - .
s R [sinh mn; N sinh mn;]
n NH cosh w+ cosh w_
n n
the latter under consideration of Eqs. (44) - (45) and Eq. (47).
Application of the boundary conditions (36) to Eq. (50) yields, upen
elimination,
NH Jo(knp—) + Jo(knp+) '
An=_-k_— + — 2 ’ (51)
' n (cth @ + cth w ) J (k)
~ n n’ “o'm
J(kp)-J (kp.)
Bn -+ %g_ o n o 'n+ (52)

v + - 2
n (t}ghui1 + tgh mn)' Jo(kn)
By éombining Eqs. (49) - (52), we obtain the solutions for
fn(c) and gn(t) in final form:

-11~
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+ ) -
J (ko )+ (kp) sinh w § sith w ¢
£ (o)/NE = - —2-2 oAt | 5 - |
(cth w 4+ cthw )k J(k) sinhw sinh w
n n"n o' n n n
+ -
. Jo(knp_) - Jo(knp+) [cosh wnc ) cosh wn;] 53)
(tgh w o+ tgh w_)k Jz(k ) cosh wh cosh w_ ’
n n'n o'n ) n n
and
J(kp)+JT (kp) cosh w+E cosh w ¢
g @/R=+—2 B 0 BT 4 2]
(cth w_ + cth w )k J"(k ) sinh w sinh w
n n"n o'mn n n
+ -
) Jo(knp_) - Jo(knp+) [sinh wn; N sinh an] (59
(tgh w+ + tgh w_ )k Jz(k ) cosh w+ cosh w_ .
n n”n o' n n n

Below, also the g-derivative of gn(;) is required, which 1is given by

+ e
' ) Jo(knp_) + Jo(knp+) + sinh mn; _ sinh mnc
gn(C)/R = + T — 5 [mn — + wn ) — ]
(cth w + cth w )k I (k) sinh w sinh w
n n"n o' mn n (55)
+ -
) Jo(th—) - Jo(knp+) [w+ cosh w o . m—COSh wnc]
+ - 2 n + n -
(tgh w + tgh mn)kn Jo(kn) cosh W cosh W
In terms of fn(c), gn(;), and g&(c),’che solutions for the non-
dimensional fields ¥ = {0,V,0}, % = {0,B,1}, J = 0,0, } and E=
{Ep’O’EC} of the plasma centrifuge are by Egs. (22), and (29) - (30):
Vip,z) = & I (kp)E () s (56)
n=1
B(p,0) = Ro + I J (kp)e (©) | ; C)
n=1
TR 1 R :
p 1% n
n=1
1o |
I ,z) =2 +R nzl ko JO(knp)gn<c) s (59)

-12-
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and

Ep(p,c) = - V(p,z) + N Jp(p.c), Ec(p,c) = NJC(p.c) . (60)
The reference vilues Vo and BO for V(p,z) and B(p,r) are defined in
Eq. (14). The non-dimensional fields Jp,c(p,c) and Ep’c(p,c) are

normalized with respect to

- 2 - -
jo = I/ZuRo, Eo = VoBo I/ZwRooc . (61)

If the cathode is in the plane z = -c(f = -1) and the anode is
in the plane z = +c(f = +1), then the reference fields Vo,jo, and Eo
[Eqs. (14), (61)] are negative, since I < 0. The results are also
applicable to the case hhere the anode is in the plane z = -c(g = -1)
and the cathode is in the plane z = +c(f = +l).‘ In the latter situ-
.ation, the reference fields Vo,jo,and Eo [Eqs. (14), (61)] are positive,
since I > 0. These explanations hold for magnetic fields pointing in
the positive z- direction, Bo > 03 V0 changes its sign with the sign
of Bo [Eq. (14)]. Note that the magnetic Reynolds number R .in Eq. 2D

{s defined to change its sign with the sign of Vo.

-13-
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APPLTCATTIONS

As an 1llustration, the radial (p) dependence of the nondimensional
discharge fields V(p,Z), B(p,%), Ep(o,c); Jp(D,C), and J%(D.C) has
been computed for I < 0 in the crosé-sectional planes ¢ = ~0.99
(cathode region), £ = 0 (central region), and ¢ = +0.99>(anode region)
based on Egs. (56)-(60). The remaining field EC(D’C) is proportional
to Jc(p,C) [Eq. (60)]. The characteristic (nondimensional) magnetic
interaction number H is treated as a parameter: H = 1, 10, 100. The
geometry parameter N = c/Ro is taken to be N = 1 corresponding to
RO = ¢ [Eq. (21)]. The radial positions of the cathode and anode are
assumed to be:

p_=0.01 (R_=0.01 RO) 3 p, = 0.9 (R

+ . = 0.9 RO).

With the exception of B

6 " BoB’ the dimensional fields are negative

keverywhere where the nondimensional filelds are positive, and vice—versa
sifice VO < 0, jo < 0 and Eo <0 forI <0 [Eqs..(lé),(61)].

The Eqs. (56)—-(60) indicate that the velocity field V(p,z), the
current densiﬁy field Jp

C(p,c), and the electric field Ep E(p,g) are

> b ]

independent of the magnetic Reynolds number R, whereas the induced

mdghetic field B(p,z) iskproportional to R. This is due to the azimuthal
direction of the induced magnetic field B(psz), which is pafallel to the
velocity field V(p,%) of rotation [Eqs. (9)-(10)]. Accordingly, the plasma

fields V(p,r), B(p,C)/R, I, C(p‘,;), and E_ _(p,%) depend only on the
. b . .

0,C :
. ) ' 5
Hartmann number H, presumed that the Hall effect is negligible (wsle B|/m»

and T are the gyration frequency and collision frequency of the electrons), -

wt << 1

~l4-
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Central Region, § = 0. In Figs. 2-6, V(p,0), [B(p,0) - Rp1/R,

Ep(p,O). Jp(p,O), and Jc(p,O) x Ec(p,O) are shown versus 0 < p < 1
with H = 1, 10, 100 as a parameter. It is seen that [Vl increases
considerably at any point 0 < p < 1 as H isvincreased. Similarly,

(B - Rp)/R and the sodrces J , of the magnetiéﬂinduction increase

in intensity within the main central region () < p < 1 = Ap as H

Ls Increased. For large values H > 10, B and JD,C decrease in the
wall region Ap = Ap(H), so that the electrical discharge becomes more
concentrated in the center 0 < p < 1 = Ap of the centrifuge. The
Intenslity of Ep increases uniformly in the region 0 < o < 1 as H is
increased, while EC o« JC'
Cathode Region, £ = -0.99: The Figs., 7-11 show V(p,-0.99),

[B(p,~0.99) = Rpl/R, Ep(p,—0.99), Jp(p,—0.99), and Jc(p,—0.99) «
Ec(p,—0.99) versus 0 < p <1 for H = 1, 10, 100. The fields V, Ep L’
3 . b

and J r Increase in intensity at any point 0 < p < 1 with increasing
s ,

H, whereaskB/R decreases in 0 < p < 1 with increasing H. Since the

[

ring cathode is at p_ = 0.0l (¢ = -1), the field distributions’are

0

closer concentrated at the axis p = 0 than those in the plane g

IF2

(Figs. 2-6). Note that the plasma rotates only in the region p = 0.1
with a significant velocity; since the Lorentz force -jrBo decreases

-rapidly with increasing p = 1.

Anode Region, £ = +0.99: The Figs. 12-16 present V(p,+0.99),
[B(p,+0.29) - Rpl/R, Ep(p;+0.99), Jp(p,+0599), Jc(p,+0.99) = Ea(p,+0.99)
versus 0 < p <1 fér H=1, 10, lOO. The velocity field is fully
developed nearly through the entire centrifuge across section 0 < p < 0.9,

since the Lorentz force _jrBo is strongest in the vicinity p = 0.9 of

the ring anode p = 0.9(C = +1).' As a result, a thin and steep boundary

_15...
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layer exists close to the cylinder wall (p = 1) with plasma counter-
rotation at sufficiently small H-values. The radial distributions of

B, E clearly indicate that, in the plane § = +0.99, the electrical

J
PyT’ TP,yE
discharge has shifted to the region p = 0.9 due to the influence of the

(nearby) ring anode at p = 0.9(z = +1).

In the graphical illustrations, the cathode rtadius R_ was chosen -
to be small compared to the anode radius R.+ to ensure a large angle

between the current field lines 3{?) and the external magnetic field go’

i.e.. a significant Lorentz force. A comparison of the Figs. 2 and 7

with Tig, 12 tndiéntcs that this choice of electrode radii results in

0 radial boundary layer of large width and low velocity in the lower
half - ¢ < z < 0 of the centrifuge, Hence; R << R+ (or R_ >> R+) is
not the best choice for a centrifuge of maximum efficiency. Fig. 12
demonstrates that a velocity profile raising uniformly with radius r
and decreasing rapidly in a steep boundary layer of narrow width Ar,

. is obtained by usiﬁg a cathode and an anode of the same radius R_ =R, <R
which is neérly as large as the centrifuge radius RO. Although it is
R = R+ in this case, the current»field lines ?(?) intersect with gé
under a sufficiently large angle 3(?,%&) # 0 due to the repulsion of
the current filaments. As a result, a net Lorentz torque results for
a centrifugé with R = R_which is still of the same order of magnitude

+

as for a centrifuge with R_ << (presumed that I, and Bo’ ¢, and RO

Ry
are the same).

| The accuracy of thé Figs. 2-16 is determined by the number of
terms considered in the.Fouriér serieé on the computer and the accuracy
of the eigenvalues knf The Fourier series solutions wére summed
numerically up to n = 100, and the eigenvalues kn, n=1,2,3,...100,

were computed up to the 10th decimal point.

~16-
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The centrifuge analysis presented indicates that extremely high
speeds of plasma rotatici are obtainable already at moderate discharge
currents I and magnetic inductions Bo’ presumed the Hartmann number H
is not small, H > 1. As an example, consider a centrifuge discharge
with:

1| = 102 amp , lBol = 100 Tesla,

o = 10% mho m_l, R, =c-= 1071,

Hence, by Eq. (14)
V = I/27R B gc = (5/7) X% 101 m sec_1
o oo ?

and, by Fig. 2,

0[ve] = O[VOV] =10° m sec"l, for H = 100.

If the working gas of the centrifuge discharge consists of two isotope
gases,’then the centrifugal forces would concentrate the lighter isotope
ions and atoms in the central region and enrich the heavier isotope atoms
and ions in the periphetral region of the discharge. According to the

equations of motion for two isotopes of masses m, and mj, the isotope

i
density ratio at distances 0 < r < R0 ~Ar, where Ar is the viscous

boundary layer thickness, is approximately (TO = temperature of the

isotope ions)

By (0) _ ;00 +1~5Amij\7cr)2/kro )
— = = e s Ami. = mi - m, R
ny (r) n, (0) d ]

where the bar designates a spatial average over the region |z| < c¢. As

a specific example, consider an uranium plasma centrifuge containing the

237 5

isotope ions (i) U and- (3) U23 at a temperature To = 103 °K (and

electrons at a temperature Te > TO). In this case, one has Amij =

27

m(237) - m(235) = 3.320 x 10 2'kg, kT = 1.381 x 10 20 Joule. Hence,

_17_.
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the isotope separation ratio 1is:

37 (r) ) ny 37 (0)

1.128 x 100 for v(r) X 103 m sec:_1 ,

[ B

n
et

fyy5(r)  Bys5(0)

1.617 x 10°% for v(r) x 10° m sec ¥

B2
i
[ Y]

2.950 x 10° for v(r) = 3 x 10° m sec :

|- K3

Based on these examples, one can assume with some confidence that high-
power plasma centrifuges are technically realizable employing dense,
collision-dominated isotope plasmas. The separation of isotopes by

centrifugal forces in low density plasmas has been established experi-
10-11,20-24.

mentally.
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FIG. 1: Scheme of plasma centrifuge of radius Ro and heighth 2c ’
with cathode (R_), anode (R+), and axial magnetic field .
-—)
B (R>>R ).

iy
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FIG. 2: V(p,r) versus p for ¢ = 0, and H =1, 10, 100.
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FIG. 3: [B(p,r)-Rp]/R versus p for £ = 0, and H = 1, 10, 100.
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FIG. 4 Ep(p,c) versus p for £ =0, and H = 1,-10, 100.
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FIG. 8: [B(p,z)-Rp)/R versus p for ¢ = -0.99,

and H = 1, 10, 100.
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PLASMA ROTATION BY LORENTZ FORGES

IN AN ELECTRICAL DISCHARGE CENTRIFUGE WITH HALL EFFECT*

H. E. Wilhelm and S. H. Hong
Department of Electrical Engineering

Colorado State University
Fort Collins, Colorado 80523

A system analysis for an electrical discharge centrifuge is presented
in which the plasma rotates under the influence of the Lorentz forces
due to the interaction of the nonuniform current density fields with an
axial external magnetic field. The associated boundary-value problem
for the coupled partial differential equations, which describe the
electric potentizl and the plasma velocity fields, is solved in closed
form. The electric field, current density, and velocity distributions
are discussed in terms of thc Hartmann number H and the Hall coeffici-
ent wt. As a result of the Lorentz forces, the plasmc rotates with
speeds as high as 106 cm/sec around its axis of symmetry at sufficiently
large values of H and wr. It is remarkable that the Hall effect
supports the plasma rotation. As a result of the centrifugal forces
(in the system of reference rotating with the plasma), the heavier
(lighter) atom and ion components are enriched in the peripheral

(central) region of the discharge centrifuge.

*Supported in part by NASA.
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An electrical discharge in a cylindrical container rotates if the
lLorentz force has a nonvanishing component in the azimuthal directlon.
For example, arc experiments in an acial external ﬁagnetic field Bz
indicate that the discharge plasma rotatesl*g) since the current field
lines 3 have a nonvanishing radial component jr so that (3'8 ﬁ)e =
—jrBz # 0. TIn a stable arc dishcarge, the jr—component is caused by
the concentration of field lines (3) at the electrodes and a dilatation
(repulsion of currents in the same direction) of the field lines 3’ in
the interelectrode space.lg In an unstable arc discharge, significant
radial current components jr are associated with %?e m = 0 and higher
order (m > 1) instabilities.2 g ;

A simple model for the production of.énﬁeiectrical discharge
centrifuge, which has a radial current density jr which is in magnitude

comparable with the axial current density jz’ iy shown in Fig. 1. The
@

radial spreading of the current field lines 3 is forced by means of

electrodes of considerably different radii R1 and R2 (R2 >> Rl) in

the end plates z = *c of an electrically isolating discharge chamber
of radius Rb' The field lines of the current density ? and of the
external axial magnetic field ﬁo cross under a nonvanishing angle
(except at the chamber axis) so that the resultant Lorentz force 3 el ﬁ;
rotates the discharge around its axis of symmetry. 1In steady state,
the magnetic body forces in the azimuthal direction are balanced by
the viscous forces (boundary layers at the chamber walls),

In the literature, the observed rotation of wvarious electrical
discharges in axial magnetic fields appears to be understood qualitatively
in simple cases;l*g) Exact solutions for plasma centrifuges are apparently

not known either in the case of collisionless or collision-dominatedé’fa

plasmas.
-38~



In the following, the steady state rotation of the spatially diverging
discharge contained by an insulating cylinder in the external axial magnetic
field go (Fig. 1) 1s treated theoretically. The analysis is based on the
magnetogasdynamic approximation, in which two characteristic nondimensional
parameters occur, the Hartman number H and the Hall coefficient wrt,

H= (o/p)?

BR,, ut = (|e|B°/m)t.

The symbols designate the electrical conductivity (o), the viscosity (u),
the electron gyration frequency (w), and the electron momentum relaxation
time (t). B and wT are a measure for the strength of the Lorentz force
relative to the viscous force and for the reduction of the current flow
3i_transverse to the magnetic field ﬁo’ respectively. The magnetic fields

associated with the discharge currents ? = {ji’ jé, jZ} are neglected for

small magnetic Reynolds numbers [o; = o/(1 + mzrz)],

Rr - O[Br/Bo] = W WwTo Tr<<l ’
Ry = 0[B,/B ] = )uoz/anOJ/BO<<1 , (1)
Rz = O[BZ/BO] = uowtoi§R0<<l' ,

where ¥ is the characteristic velocity of rotation and I the discharge
current. These inequalities are satisfied in many cases, e.g., if
Re<<l for i) wt>>1 and Rsl or ii) R<<l and 0 < wt < =, where R = uocﬁ max

;Ro;c)'

REPRODUCIBILITY OF Thii

OBlGﬂﬂAl:Pﬁd}E,HBIKXHi
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THEORETICAL FORMULATION

For a purely azimuthal flow field, V= {0, v(r,z),0}, the plasma
behaves incompressible, V * ;’= 0. From the continuity equation,
v (pz) =3 - Vp = 0, it follows then that the density gradient Vp is
everywhere perpendicular to the flow field V. These ideal conditions
are realized if secondary flows are absent or at least negligible.Z)
In accordance with the magnetogasdynamic aquations,g) Ohm's law with
Hall effect;g) and the conservation equation for the electric charge
density (V * T = 0), the rotating discharge in a homogeneous magnetic
field 3; (Fig. 1) is described by the following boundary-value problem

for the azimuthal velocity v(r,z) and electric potential ¢(r,z) fields

[induced magnetic fields neglected, Eq. (1)]:

3 13 82vy p (- 20

0= u{Br [r or (xv)] + 3;2} Cr-1--]30( or TV Bo)’ (2)

18 (o3¢ ,02% 5 13

r or (= ar) * oy dz B r or (¥ v) ’ 3)
where

v(r,z)r“R =0, -c<z<+c . (4)

o

v(r,z)z"ic =0, 0<r :-Ro , (5)
and '

- = - < <

c[Bd;(r,z)/az]z=ic I 8(r Rl,z)/2wr » 02rimr, » (6)
[E)q)(r,z)/ar]l_=R =0, -c<z<+c . 7
o .

The boundary conditioﬁs (4), (5), and (7) consider that the plasma
does not slip at the walls r = R0 and z = *c, and thét no current
flows into the cylinder wall r = RO, respecﬁively. The boundary con-
ditions in Eq. (6) impiy that the cathode (Rl) and anode (RZ) are ring
electrodes of vénishihg radial width, Ar - 0[&8(x - Rl,z)/an = radial
Dirac ﬁunctiod]. The net current flowing through the dischérge is by

“Eq. (6) -40-



R R
°

o
210 f 8¢ (r,z = *c) rdr = I f §(r-R
0 0

Ydr=1I<0 |,

oz 1,2

since the positive current (I < 0) flows from the anode to the cathode
(Fig. 1). The pressure distribution p = p(r,z) is determined by the

r- and z-components of the equation of motien,

2
o, Y w22 - %
,pM = By + wt 01.30( oy + v Bo) , (8r)
3p . - :
3z jrBe jeBr + 0, 131_’e +0 . (82)

According to Eq. (8z), it is 3p/3z = 0 if the induced fields Br and Be
are neglected [Eq. (1)]. This means that momentum cannot be exactly

balanced in the axial direction if induced magnetic fields are neglected

7)

(in absence of secondary flows).—

7)

layer approximation—

Eq. (8z) is in accord with the boundary-
a;cording to which the normal pressure gradient is
9p/3z & 0 at the electrode plates z = *c, 0 < r i_Ro.

In absence of the Hall effect, wr<<l, it is VxB = ud(jr, 0, jz).
Hence, Br = 0 and Bz = 0 becéuse of the homogeneity of the boundary con-
déitions for B, and B , whereas By # 0 since jr,z # 0[By(r,z = #c) =

(0 _I/27r)H(r-R Consideration of the induced field B = {0,B_,0}
o] 6

2,1>]'
leaves Eqs. (2)~(3) unchanged. This means that the boundary value prob-
lem in Eqs. (2)~(7) and the solutions v(r,z) and ¢(r,z) derived from it

remain valid even in presence of a significant induced field = {O,BB,O},

Rezl, as long as the Hall effect is negligible, wt<<l].
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ANALYTICAL SOLUTION

The characteristic nondimensional parameters of the magnetogasdynamic
discharge problem under consideration are¢ obtained by introducing the

nondimensional independent and dependent variables,

p’r/ROv inil . - ) ¢))

g =2z/c, =-l1<ig<+l ’ v ’ (10)
and

Vip,5) = v(r,2) /v, o(p,3) = ¢(r,2)/¢, . (11)
where

" < 2

v, E ¢°/ROB° , ¢° H Ic/21roRo . (12)
In terms of the nondimensional space variables and fields, the
boundary-value problem defined in Eqs. (2) - (7) assumes for V(p,Z)

and  ¢(p,z) the form:

13 59 - 920 1 3

== (p =) + == = (pV : 13

3 (13 -2 3%V o 2 9%

= [= = (pV)] + N"2 == - H?V = -H% — 14
where

V(p.c>p_l =0, -l<rc<+l ) (15)

V(Psr,);:ilj’ 0, O <p = 1 ’ (16)
and

-[eé(p,c)/azlcql' = 8(p-p2,1)/p, 0<p=<1 , (17)

[8¢(p,c)/3p]p=l =0 , -1< <1 , a1’

with pp 1 = Rz,l/Ro. The nondimensional constants M, N, and Hl. are

defined by

40~



M2 = (1 + mzrz)(Ro/c)z , N2 = (Ro/c)2 . (19)
gi - (cl/u)Bgng = H2/(1 + w2r?) . (20)

In view of the similarity of the left sides of Egqs. (13) - (14) :
with Bessel's differential equation, z; + p-lz& + (ks - p'zmz)zm =0,
for cylinder functions Zm(kvp), partial solutions of the coupled

inhomogeneous equations are sought in the form,

,(p,5) = Jo(kvp)fvgc) s ? (21)
V,(p,5) = Jl(kvp)gv(C) , (22)

1 I ] -1 =
where Jo(kvp) Jl(kvp) and Jl(kvp) + (kvp) Jl(kvp) Jo(kvp).
Substitution of Eqs. (21) - (22) into Eqs. (13) - (14) yields

a2f

Vo_o,2 2 - 2
EET- kv M fv kv Me g (23)

v ’

é%g, 2
Freaial v Hi?Nzgv = &, HIN?E A (24)

where the eigen-values kv > 0 are determined by the boundary conditions

(15) and (18) as the real roots of the transcendental equation,
Ji(k) =0, v=1,2,3,.... (25)

Thus, the general solution of the coupled equations (13) - (14) obtains

by linear superposition as:
— . : 2 6 '
2g +v2 Jo(kvp)fv(c) s ‘ (26)

1]

o(p,z)

(o]

V(p,2) = I I,k 0)g (7). (27)
v=1

Tn view of Eq. (25), Eq. (26) is a Fourier-Dini series in which a zero-
order term, -2, has to be included, in accordance with the Fourier-Dini
expansion [Eq. (32)] of the boundary value in Eq. (17), whereas Eq. (27) is
a Fourier-Bessel series. By decoupling Eqs. (23) - (24) one finds for

fv(g) and gv(g) the differential equations of 4th order,

—43~



aktf d?f

T - DE0R + 82+ wenf] ot + 2 £ = o, (28)
d's dg, 4 22
T - K202 +N2) + NHE) gt 4 KON g = O, (29)
’g with
o - ) - 23 (k)2
[a€ (20 /48]yy = 23 (kip2, 1) /3 (kD2 (30)

as boundary conditions by Eqs. (16) - (17). 1In deriving Eq. (30), the
li Dirac function in Eq. (17) has been expanded,as the Fourier~Dini series,
«©
- = 2
6(p ~ p2,1)/pui2 +-3§1 (3 Ckyp2 1) /TECkDIT (K p) - (32)
In addition to Eqs (28) - (31), fv(c) and gv(;) have to satisfy also

the uncoupled Eqs. (23) -~ (24). With

Wiy = Wygr Wpy B 0y s gy 5 T By = 70y 3 (33)
=Lz om2 + N2 2027 4 (2 (M2 4+ N2 24212
W, 5[?{[kv(M + N%) + N gl} t {[k2Q + N%) + N»Hj}

: 1
- akgnznz}l’i]r]1 , (34)

the general solutions for fv(C) ~ %% and gv(;) - &% of Eqs. (28) -

(29), can be written as:

| £ = b sinh wy B Ve cosh‘wlvc
: i Y g v sinh W, 1v cosh w
i v » liv
sinh w t cosh w. T o
2v 2V
+ A2v sinh w + B2v cosh w ’ (35)
2v PAY
? , o - sinh wlvc D cosh wva
: : &y ¢ 1v  sinh w 1v . cosh w
B ; v v
{ sinh w ’C cosh w, g
L 2y 2v
+ C2v' sinh w + D2v cosh w, ' ‘ (36)

2y 2v

—4



Only four of the eight intégration constants Alv""’ DZv for any
vV > 1 are independent; by Eqs (23) - (24),
2 o 12M2 = 2
(wlv kvM )Alv kVM Clv
2 . M2 - 2
Wy = KGMOIA,, = K M7C)
2 22 2 (37
(wlv - kvM )Blv = kvM Dlv
2 122 -k M2
(w2v kvM )Bzv kvM Dzv
and
2 - (L2 2yn2 = 2132
[wlv (kv + Hl?N ]Clv ka Hlﬁlv
[w2 - (k2 + B5)N2]C, = k N2H?A
2v v oo 2v - v P2y ;
| (38) :
2 - (12 29821 = 242 5
[wlv (kv + HL?N ]DIv ka Hl?lv ;
[w2 - (k2 + H5)N4]D, = k N2HB :
2y v oo 2v Ty 2v i

where the coefficient determinants of the pairs of corresponding
equations in Egs. (37) and (38) vanish owing to Egs. (33) - (34).

Upon application of the four felations in Eq. (38), which are
equivalent to Eq. (37) by Eqs._(33) - (34), and the boundary conditions

(31), which give

“Cpy = Cy=C, s Dy, =D, ED (39)
Equations (35) ~ (36) become:
i . C2>2 sg sinh w5 S sinh w, % }
v k N gL l v sinh w 2v sinh o,
N Dv o cosh “1u‘ g cosh wzvc (40}
k N2HZ ) *1v “cosh w “2v cosh w i
v l_ 1v : 2y
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sinh wlvc sinh wZvc]

s(c)-c[
v v sinh wy sinh sz

\Y

cosh w, % cosh w,
+D, [ v_ . 2y ] : (41)

cosh wlv cosh wZv

where

= w2 - (K2 2yN2 =
£ - in = wy, (kv + Hl?N y 1=1,2 . (42)

The boundary conditions (30) applied to Eq. (40) yield

. k_N2H?
ﬁ C = - v L

. [3,(k o)) + I_(k p,)]

cthwlv-wwQOZvcthmZv]

=y ’ (43)
Jg(kv) [“1v91v

2,,2 .
kN [3,(k py) = 3 (kp,)]

tghsz]

D, =+

. (44)

2
Jo(kv) .[w tghw1

1y v "9y

Substitution of Eqs. (43) - (44) into Egs. (40) - (41) gives as

solutions for fv(c) and gv(c):

[3 (kp1) + I (kp2)]

£,(2) + B2k = -

[w cthwlv-—mZVQZvctthV]

lvnlv

- 1
) sinh w, T sinh w, ¢ [Jo(kvpl) Jo(kvpz)J
v [w

—_— 0 X
sinh Wiy 2v  sinh @y tghw, tghsz]

1wy v " Yooy

cosh w,. 5 cosh w,
x [szm 2V 2 ] , (45)

cosh w, - sz cosh w

v 2V

and
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11

[3_Ckp,) + J_(k py)]

J2(k )
v kvuzgi [mlv 1\’ct: Wy, =Yy, 2\)ct: wzv]
[sinh wy 8 ) sinh mZvc ] [Jo(kvpl) - Jo(kvgz)]
sinh Wy sinh Wy [wlvglvtghwlv"wQOthghwzv]
. cosh mlvc ) cosh mZvc 46
cosh Wy cosh W, '

Equations (45) - (46) form, together with Eqs. (26) - (27), the closed
form solution of the problem of the rotating gas discharge in an axial
magnetic field ﬁo:

= J (kp) { (3 (ko) + I (kp,)]

¢<p)C) " - ZC -
v-l.Jg(kv) [wlvnvathwlv"NZszvCChmZv]

[n sinh w, & sinh mzvc ]

—— - ) —
1
v sinh mlv 2v sinh Wy,

[Jo(kvpl) - Jo(kvPZ)] [ cosh wlvc cosh w,,8 }}

- Q. ——t L] e
_ [mlvglvtghwlv"wzvgzvtghmzv] lv cosh Wy 2y cosh W,

(47)
and

X

o k J, (k. p) [J (k ) +J (k )
V(p,z) = - N2HZ v P { 0 4Py o))
[mvaIthhmlv'-mQOZthhwzv]

=1 2
v=l Jo<kv)

x[sinh w8 sinh szc]

sinh wlv slnh wzv

[T (k) = T (kpy)] [fosh w;,¢ cosh mzvc] } . (48)

[wlvﬁlvtghmlv - wZvQZVCgthv] cosh .y cosh W,

The remaining nondimensional discharge fields E o= - qu/Eo and

¥ - 37;; are given in terms of the solutions for ¢(p,z) and V(p,z):

. : e -1 :
E_ = a§/ap » Eg=0, E =-N"30/3 » (49)

—47—
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1 3¢ _ ¢ - ;__g
Jr 1+ szZ( V), Jg = 1+ wZTZ( + vy, J - N 3¢
(50)

where E = ¢0./Ro, i = oqso/Ro, and N = c/no {Eq. (12)].

If the cathode is in the plane z = -c(fZ = -1) and the anode is
in the plane 2z = +c(f = +1), then the reference fields A and ¢o
[Eq. (12)] are negative, since I < 0. The results are also applicable
to the case where the anode is in the plane 2z = -c(fz = -1) and the
cathode is in the plane z = +4+c(f = +1). In the latter situation, the
reference fields v, and ¢0 [Eq. (12)] are positive, since I > O.
These explanations hold for magnetic fields pointing in the positive

z~ direction, B, > 0; v, changes its sign if BO < 0 [Eq. (12)].

THE
+pRODUCIBILITY OF
pg .. sNAL PAGE IS POOR
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NUMERICAL ILLUSTRATIONS

As an 1llustration the radial (p) dependence of the nondimensional
discharge fields V(p,t), o(p,t), Er(p,c). Ez(p,c), and Jr(p,c) has
been calculated for I < 0 1in the cross-sectional planes § = -0.99
(cathode region), ¢ = 0 (central region), and r = +0.99 (anode region)
based on Eqs. (47)-(50). The remaining fields Je(p,C) and Jz(p,c)
are proportional to Jr(p,g) and Ez(p,q), respectively [Eq. (50)].
The characteristic {nondimensional) magnetic interaction numbers are
treated as parameters:

wt =1, 10 ; H =1, 10, 100.

The geometry parameter N 1s taken to be N =1 so that M"2 =1+ mZTZ,
corresponding to R = c [Eq. (20)]. The radial positions of the
cathode and anode are assumed to be:

= 0.01 (R1 = 0.01 RO) 3 =0.9 (R2 = 0.9 RO).

Py

The dimensional fields are negative everywhere where the neadimensional

Pi

fields are positive, and vice-versa [Eq. {11)] since v, <0 and

¢, <0 for I <0 [Eq. (12)].

Central Region, z = 0: In the Figs. 2-6, the azimuthal velocity field

V(p,0), the electric potential ¢(p,0), the radial and axial electric
fields Er(p,O) and Ez(p,O)xJz(p,O); and the radial currenﬁ density
Jr(p,O) are represented versus p, with (wrt,H) = (1,1), (1,10),(1,100),
(10,1), (10,10), (10,100) as parameters. It is seen that ‘Vl
increases considerably at any point 0 < p < 1 if either H or wT
are increased. = In the region p > 0 sufficiently close to the axis,
;¢|, [Er], IEz - 2N-1|, and lJrl increase with increasing H or wrt.

The field distributions move towards the axis p = 0 as wt becomes
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larger. The "hump" developing at ¢ = 0.9 (Figs. 4-6) with increasing
wt showse the influence of the ring anode (p = 0.9, § = +1) in the

plane 1 = O,

Cathode Region, ¢ = -0,99: The Figs. 7-11 show V(p, -0.99),

%(p, ~0.99), E_(p, -0.99), E_(p, -0.99)=J (p, ~0.99), and J _(p, -0.99)
versus p with (wt,H) = (1,1),...(10,100) as parameters. These fields
increase in intensity at any point 0 < p <1 1if H or wr is
increased. Since the ring cathode is at Py = 0.01 (¢ = -1), the field
distributions are closer concentrated at the axis p = 0 than those

in the plane ¢ = 0 (Figs. 2-6). Note that the plasma rotates only

in the region p = 0.1 with a significant velocity, since the

Lorentz force -JrBO decreases rapidly with increasing p~>1. A
comparison of the correspending fields in Figs. 2-6 and Figs. 7-11
indicates that the discharge spreads slightly in radial direction

with increasing -1 < ¢ < 0. In particular, an increasing radial
gection of the plasma rotates with a significant speed as -1 <7 <O

increases.

Anode Region, £ = +0.99: 1In the Figs. 12-16, V(p, +0.99), ¢(p, +0.99),
Er(p, +0.99), Ez(p, +0.99)¢Jz(p, +0.99), and Jr(p, +0.99) |

are plotted versus p with (wt,H) = (1,1),...(10,100)

as parameters. The dependence of these fields on H and w7t is as

in the previous cases for £ =0 and [ = -0.99. The velocity
distributions are fully develcped nearly through the entire chamber
across section 0 < p < 0.9, since the Lorentz force -JrB is
strongest in the vicinity o = 0.9 of the ring andde, p = 0.9(r = 4+1).

As a result, a thin and steep boundary layer exists close to the

-50-
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cylinder wall (p = 1) with backflows at sufficiently small wt-values
(Fig.12). The radial distributions of ¢, Er’ Ez«Jz, and Jr (Figs. 13-16)
clearly indlicate that, in the plane [ = +0.99, the electrical dlscharge

0.9 due to the influence of the

has shifted to the region op
nearby ring anode, p = 0.9(¢ = +1). This shift occurs first slowly in
the region =1 < 7 < +1 - Az, and then rapidly in a relatively thin
layer Ap << 1 close to the anode plane ¢ = +1.

It is remarkable that the discharge remains concentrated in a
radial region close to the cylinder axis with little radial spreading
of the current density 3, except in a layer Az close to the ring
electrode of large radius (R2 >> Rl) in which the radial current
component Jr dominates the axlal current component Jz. This
spatial concentration of the discharge 1s the more pronounced the
larger H and wt are, since the axial magnetic field Bo reduces
the radial current flow Jr for increasing wt. The speed of
plasma rotation V(p,f) dincreases with increasing magnetic induction
Bo by orders of magnitude over the reference speed v, as the
Figs. 2, 7, and 12 indicate which show V(p,t) for increasing wt
and H. The theoretical electric field and current density distribu-
tions are in quélitative agreement with experiments.l)

The graphs in Figs. 2-16 are based on the Fourier-series solutioms,
in ﬁhich the first 100 terms were considered and the eigenvalues Xv
were calculated up to the 10th decimal point. An even larger number of
terms in the Fourier seriéé solutions has to be taken into account if
one wishes to compute \.pproximatély) the discharge fields extremely
close to the ring cathode (p = 0.01, t = =]1) and ring anode

(p = 0.9, ¢ = +1) where 239(p,;)/8¢ changes discontinuously with p

due to the electrode boundary conditions.

..51._
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APPLICATION

The system analysis presented indicates that extremely high
speeds of plasma rotation are obtainable already at moderate discharge
currents I and magnetic inductions Bo, presumed the magnetic inter-
action numbers are not small, H > 1, wtr > 1. As an example, consider

a rotating arc discharge with:

1]

100 Tesla,

1

102 amp , |B

ol

102 mho m_l, Ro

c = lO_lm.

]
i

a

Hence, by Eq. (12)
v_ = Ic/2moB R = (5/m) x 10" m s;ec_l
(o] [e) [s) 9
and, by Fig. 2,
4 -1
0[v] = O[VOV] = 10" m gec =, for wr = 10, H = 100.

Speeds of plasma rotation v, which are by orders of magnitude larger
than 106 cm sec_l, can be produced if the order of magnitude of the
parameters wt and H 1s increased. The viscous forces reduce,

however, the speed of plasma rotation always in the layers close to

the walls (z tey ¥ = Ro)'

One recognizes that the torque of the Lorentz forces is a large
physical effect which can be readily used to build an electrical
"discharge-ultra-centrifuge" for isotope separation. If the working
gas of the electrical discharge consists of two isotope gases, then
the centrifugal forces would concentrate the lighter isotope ions and

atoms in the central region and enrich the heavier isotope atoms and

ions in the peripheral region of the discharge.

—-52~
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As an illustration to the plasma centrifuge, ihe isotope
separation ratio is calculated. According to the equations of motion
for two 1sotopes of masses mi and mj, the isotope density ratio at
distances 0 <r i,Ro - 6, where &8 1s the viscous boundary layer

thickness, is approximately (To = temperature of the isotope ions)

G(r)z/kmo

n, (r) . n,(0) Hsbo, | _
e N Am =m, —m Y

O 371

where the bar designates a spatial average over the region |z| < c. As

a specific example, consider an uranium plasma centrifuge containing the

237 35

3
isotope ions (1) U and (j) U2 at a temperature ’1‘0 = 10 °K

(and electrons at a temperature Te > To). In this case, one has

27 20

Am,, = m(237) - m(235) = 3.320 x 10 “‘kg, kT = 1.381 x 10 ° Joule.

13

Hence, the 1sotope separation ratio is:

1) 47(1) ) 037 (0)

1.128 x 10° for ¥(r) = 10> m sec”t,

fyg5(r)  1y55(0)

e
]

1.661 x 10° for w(r) = 10* m sec T,

It should be noted that the magnetogasdynamic considerations are
only applicable to dense dischérge plasmas, for which the mean free
paths of the electrons, ibné, and atoms are small compared to the
characteristic chamber dimension, min (Ro;c). The evaluétion of collision-
less, rotatiag plasmas’poses a rather differentkproblem, siﬁce in this
case the;intefactions through the éeifconsistent electric mégnetic

9)

fields play a dominant role.®  The separation of isotopes by centrifugal

10)

forces in low density plasmas has been established experimentally.=—

- =53-
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DEPOSITION OF SPUTTERING PRODUCTS ON SYSTEM SURFACES™®

H. E. Wilhelm and S. H. Hong
Department of Electrical Engineering
Colorado State University
Fort Collins, Colorado 80523

ABSTRACT

The boundary-value problem describing the diffusion of sputtered
atoms and their deposition on the surfaces of ion propulsion systems is
treated by means of a model of simple geometry. Based on an integral
theorem of Weber for outer boundary-value problems with an inner
cylindrical boundary, an analytical solution is derived for the density
field of the sputtered atoms which involves a function which is deter-

mined by an inhomogeneous integral equation.

*
)Supported by NASA
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In an ideal vacuum, sputtered atoms travel undeflected along
straight paths determined by their initial velocities at the point of
emission. Within this free particle flow, a system surface 1s reached
by the sputtered atoms only 1f it can be seen along a straight line from
the emitting surface. In reality, ion propulsion systems are surrounded
by a very rarefied plasma consisting of escaped beam ions, recombined
ions, and electrons. For this reason, always some of the sputtered
atoms will be deflected out of their initial paths by interacting through
long-range forces (polarization forces) with the plasma particles so that
they can reach system surfaces which are not seen along a straight line
from the emitter.

Figure 1 depicts the geometry of an idealized propulsion system
which exhibits an emitting plane z = 0, 0 < r < a (accelerating grid),
the rocket surfaces r = a, -c < 2 <0 and z=-c, 0 <r < a, and the
plane z = -d, a < r <b of the solar energy collectors. All these
system surfaces can be reached by the atoms sputtered from the emitter
by diffusion through the rarefied plasma. The diffusion coefficient
D 1is determined by the Vlasov equation;) for the sputtered atoms inter-

1)

acting through weak long~range forces=’ with the plasma particles. In
view of the mathematical difficulties associated with the solution of
‘outer boundary—vélue problems for the geometry in Fig. 1, a somewhat
simpler system is studied here consisting of an emitting plane
(z=0,0<r <a), the upper rocket surface (r = a, -¢c < z < 0) and

the plane (z = -c, a < r < =) of the solar energy collectors (Fig. 2).

The latter is assumed to have infinite radial extension, rmak =b > w,

since in general b>>a and b>>c,d (Fig. 1). Within the model of
Fig. 2, particle deposition on system surfaces in the space z < -=c

cannot be analyzed.
—77
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BOUNDARY-VALUE PROBLEM

In the space 2z > -c, let the density of the sputtered atoms be
designated by n(r,z) [cm_3] and the flux of emitted atoms at the
emitter surface by I(r) [cm_3 s cm sec‘l]. In steady state, the
spatial distribution n = n(r,z) of sputtered atoms is determined by

the boundary-value problem for the Laplace diffusion equation (Fig. 2):

3 n 1 on an _
2yt 270 1)

or 9z
where

[an(r,z)/az]z=0 = -I(r)D—l, 0<r=<a R (2)

n(r,z)r___a =0, =-c<z<0 , (3)

n(r,z)z=_C =0, a<r<o R (4)
and

2 2
n(r,z) -+ 0, (r™ + z ) > ® ’ (5)

are the proper and improper boundary cbnditions, respectively. D
designates the diffusion coefficient of the sputtered atoms in the
vrafefied plasma which represents a spatial average, D = < D(r,z) >.
The boundary eonditions (3)-(4) imply that sputtered atoms
arriving at the system surfaces are deposited there, i.e., do not
return into the diffusion space. This assumption is at leasf
appfoximately correct for nonheated surfaces as long as the number of
atomic layers deposited is not too large. The fluxes @i = =D V.n

1

of atoms arriving at the system surfaces ¥ = a, -¢ < 2 < 0 ‘and

z=-c,a<r < are given by (Fig. 2):
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Qr(r = a,z) » =D dn(r = a,z)/dr, -c<z2<0 , (6)
®z(z =z -c,r) = =D In(z = -c,r)/dz, a<r<w , @)
! Accordingly,
. . Nr=a = —ZWaD-Z [on(r = a?z)/ar]dz s (8)
; Nz=—c = =27D Z [an(r,z = =c)/dz]rdr R (9)

are the numbers of sputtered atoms deposited per unit time on the
system surfaces r =a, -c <2 <0 and z = -c, a <r < =, respectiv
The above boundary-value problem cannot be soived directly, i.e.,

i requires a decomposition of the space 2z > -c into appropriate
subregions for which the associated boundary-value problems are

solvable. In this approach, the common boundary value [¢(r)] at the

| decomposition plane is determined by an integral equation.
Let nondimensional independent and dependent wvariables
be introduced in accordance with:

p =r/a, 0<p <=, t = z/lc, -1 < <o, (10)

and
N(p,L) = n(r,2)/n,  S(p) = L(r)/I, . an
with
: no’E cIO/D, IO = I(x=0), Y E ¢/a . (12)

The boundary-value problem defined in Egs. (1)-(5) reads in

-nondimensional form:

=

18N , -2 3%y
t=—+y " 20 3

|

N

R T e e e et

ely.
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where
[aN(p,L)/3z], o = -S(p), 0<p=x1l ’ (14)
N(D,C)p=l = 0: -1 __<_ g _f_ 0 ’ (15)
N(p,;)C"—"—l =0, 1 2P ’ (16)
and
, 2 2
N(p,z) » O, (" +g7) + o . 17)

In Fig. 2, the space is decomposed into the regions
I(0 <p<® 0<g <o and II(l <p <=, -1 <7 <0). At the
interface g =0, 1 <p < =, the paftial ON(p,z = 0)/3z = y(p)H(p-1)
is introduced as the common (unknown) boundary value y(p) of the
adjacent regions I and II, 1 < p < =, 'Thus, the boundary-value problem

in Egs. (13)-(17) can be decomposed into boundary-value problems

for the regions I and IT.

I. In region I, N = NI(p,c) is described by the 'regular"

boundary-value problem:

2
9°N N 2
£+_1LBI+'Y—2-§-—I%=O, 0<p<°°’ O<C<°° ) (18)
ap .o 14
[oNy (p,8) /381 = ~8(p), 0<px21-0,
= ¥(p), 1+0<pse > A9
2 2
N (p,8) +0, (o +%) > ; , Qo)
where
S(p=1) = ¥(p=1) =0 " (21)
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for physical reasons. Since region I is the upper half of the
infinite space (0 < § < ), the general solution of Eqs. (18) and

(20) is given by the Fourier integral,

Np(0,8) = [ AG)e " 5 _(kp)dk ,  (2)
0 0

which satisfies the improper boundary condition for p + © and
t + «, The Fourier amplitude A(k) 1is determined by the boundary

condition (19),

-y (f) A(k) J (kp) kdk = - S(p)H(L-p) + ¥(p)H(p-1) . @3)

Application of the inverse Hankel transform to Eq. (23) gives:
11 15 |
Ak) = ¥ [ S@)J (ka)ada = vy [ ¥(@)J_(ka)ada s (24)
0 1 .
Substitution of Eq.(24) into Eq. (22) results in the solution for

region I:
-1 7 . ~yke 1 : ¥
NI(p,c) = vy f dke Y<% g3 (kp)[f S(a)J (ko)oda - f ¥(a)J (ka)ada],
0 ° 0 ° 1 ©
0<p<», 0<p<w . (25)

II. In region II, N = NII(p,c) is described by the "outer"

boundary-value problem:

2 2
N N 3°N
Tty 5t =0, O<p<w, l<r<0 , (26
ap ag
[BNII(P,C)fM],;:O = ¥(p), 1<pz<w s (27)
NII(p’c)p=l = 03 —l < C < O ' s (28)
OF THE ~78~
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NII(p’C) o, l1<pxw™ ’ (29)

gu=l

Np(ps2) + 0, P+, 1<z <0 - (30)

According to Eq. (28), region II has an inner, cyiindrical boundary
at p = 1 where NII(p,c) vanishes. For this reason, a Fourier
integral representation of NII(p,c) is needed for 1 < p <=
which vanishes at p = 1. According to Weber's integral theorem, an

arbitrary function Y(p), a < p < », with Y(p = a, «) = 0 satisfies

the integral equation: 2,3)
kdkW) (p) '
p(p) = J 5 5 J w(a)wk(a)ada, a<p<o , (31)
0 Jv(ka) + Yv(ka) =
where
We(p) = 3 (kp)Y (ka) - J (ka)Y, (kp) . @)

and Jv(kp) and Yv(kp) are Bessel  functions of order v of the
first and second kind, resepctively. In view of Eqs. (31)-(32), a

Fourier integral solution of Eqs. (26)-(30), is sought in the form,
B} .
N.-(p,5) = [ B(k)W, (p) sinkyk(z+1l) dk , o (33)
11 0 k

W (p) = J'o(kp)Yo(k) - Jo(k)Yo(ko) s (34)

which obviously satisfies the boundary conditions (28)-(30). The

Fourier amplitude B(k) is determined by the boundary condition (27),

v [ B(k)Wk(p) coshyk kdk = ¥(p), 1<p < , (35)
0

-

which gives

B(k) = ¥ “eash Myk| ¥()W, (@ada/[32 (k) + Y2 (k)] . (36)
| 4 Ao

=79
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by Eq. (31). Substitution of Eq. (36) intc Eq. (33) results in the
solution for region II:

o0

. f ¥ (o)W, (a)ada,
Jg (k)wg(k) 1 k

sinhyk(5+1) | wk(p)
coshyk

..1 @
Npp(Pag) = v (f)dk

l_<_p_<_oo, -1<2<0 . (37)

The solutions NI(p,c), Eq. (25), and NII(p,;) Eq. (37), contain
the yet unknown boundary-value ¥(a), 1 < a < ». ¥(a) is determined

by the continuity condition at the interface of regions I and II,

Ny (PsB) g = Nyp(esB) g 1<p =, > (38)

which gives

0o 1 : [
Jakd (kp) [[S(a)T (ka)ada - [¥(a)J (ka)ada]
0o ° 0 © 1 ©
© W, (p) o
= gdktghyk.~2r—-—~??——— fW(a)Wk(u)uda, l<p<w . (39)

Jo(k)+Yo(k) 1

Eq. (39) indicates that ¥(a) 1is determined by an inhomogeneous integral
equation.ﬁ)
Because of the boundary conditions (19) and (27), the remaining

continuity condition at the interface of regions I and II,

[N  (py2) /B8] g = [N (pyT) /O8], 4 1 <p 2 > (40)

has already been satigfied. Indeed, substitution of Eqs. (25) and (37)

into Eq. (40) yields

-80~
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0 1 ©
- kdkJ (kp)[[S(a)J (ka)ada - [¥(a)J (ka)ada]
0 o) 0 o 1 o

o W, (p) o
= [ kdk ——— [ ¥(a)¥, (0)ada, l<p<w . (41)
0 JERHYC (k) 1

Since,
JI (kp)J (ko) kdk = §(a-p)/a s (42)
0° °
W, (p)W, (a)
k k" Wk = §(a-p)/a . (43)

2 2,
0 Jo(k)+Yo(k)
Equation (41) reduces to the expression [8(a-p) = Dirac function]

1 ©
- [S(a)8(a=p) da + [¥(a)§(x-p)da
0 1

= [¥(a)8(a-p)do, 1<p<w , (44)
1

which gives the expected identity, ¥(p) = ¥Y(p)

INTEGRAL EQUATION
By introducing the kernel K(o,p) and the source Q(p), the

integral equation in Eq. (39) can be rewritten in the convenient form:

[¥(@)K(a,p)oda = Q(p), l<ps<w N %))
1
where
°° W, (@)W, (p)
K(a,p) = [ [J (ka)J (kp) + tghvk ———5——]dk » o (46)
0 IT(R)HY (k)
(o] 0.
w 1
Qp) = [dkJ_(kp) [S(a)J_(ke)ada . (47)
0 0

REPRODUCIBILITY OF THH

rRIGINAL PAGE IS POOR -81-
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For simple particle emission distributions S(a), e.g., in the case of
a homogeneous and a parabolic emission distributions, respectively, the

source irtegral Q(p) is readily evaluated,

2 1 1 1
Qp) = ;‘p[ECS) - (1 - ;E)KCE)]’ 1<p<m» s
for .S(a) =1, 0<ac<l , (48)

and

Q) = 2 otx - @ - i—z-m—z—) - L+ 4pPED) - (3 + beP)(L - -i;)x(%m

for S(a)=1-0°, O<a<l ,  (49)

where KC%) and E(%) are the comﬁlete elliptic integrd&;of the first and
second kind, respectively.

Eq. (45) reduces the deposition problem to the resolution of an
integral equation for the unknown boundary-value ¥(p), 1 < p < =. Once
Y(p) is determined, the particle distributions NI(p,C) and NII(Q,C) are
given by Eqs. (25) and (37), respectively. From the solutions for NI(p,c)
and NII(p,c) follow then the deposition rates at the system surfaces in
accordance with Eqs. (8) - (9).

Unfortunately, the resolution of the integral equation leads to
considerable mathematical difficﬁlties. Both analytical and numerical
ﬁethods for solving Eq. (45) have not produced final results because
of convergence and uniqueness problems, which are typical for integral

equations of this type. -’

—-82—
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