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INTRODUCTION

The Grant NGR-06-002-147, "Theoretical Investigations on Plasma

Processes," is concerned with i) the system analysis of plasma centrifuges
i`

for isotope separation, and ii) the deposition of the sputtered atoms on

system components such as the solar energy collectors of ion propulsion

systems. The progress made on these subjects in the period from 9.1.75 to

11.1.76 is communicated herein.

The present report consists of three papers, two of which have been

accepted for publication. By means of system analyses, it is shown that

plasma centrifuges at high plasma and power densities are technically

t

3

promising for isotope separation. The largest spatial isotope separation

is obtained by maximizing the Hartmann number and the Hall coefficient of

the isotope mixture plasma of the centrifuge discharge
.
. Furthermore, it

is shown that induced magnetic fields have no effect for small Hall-

coefficients and little effect for large Hall-coefficients on the plasma
3

3

rotation and the isotope separation efficiency. A new approach to the

deposition problem of sputtered atoms is given. Its solution Leads to ap	 E	 P	 ^	
3

i
simpler, but still. mathematically difficult integral equation.

Ai
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BOUNDARY-VALUE PROBLEM FOR PLASMA CENTRIFUGE

i

AT ARBITRARY MAGNETIC REYNOLDS NUMBERS*^ r

_	 H. E. Wilhelm and S. H. Hong

Department of Electrical Engineering
Colorado State University
Fort Collins, CO	 80523

ABSTRACT

The boundary-value problem for the partial differential; equations,

which describe the (azimuthal) rotation velocity and induced magnetic

l:ields in a cylindrical plasma centrifuge with ring electrodes of dif-

ferent radii and an external, axial magnetic field, is solved in closed

form.	 The electric field, current density, and velocity, distributions

are discussed in terms of the Hartmann number H and the magnetic Reynolds

number R.	 For small Hall-coefficients, wT << 1, the induced magnetic

field does not affect the plasma rotation-. 	 As a result of the Lorentz

forces, the plasma rotates with speeds as .high as '10 5 cm/sec around its

axis of symmetry at typical conditions, so that the lighter (heavier)
i

ion and atom components are enriched at (off) the center of the discharge

cylinder. r

A

*) Supported in part by NASA.
4
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On principle, electromagnetic forces allow to rotate plasmas up

to relativistic speeds.	 Theta pinch experiments show that the plasma

rotates during the discharge pulse at such high speeds that the energy

distribution of the emitted neutrons is shifted.-	 From the theoreti-
r

cal point of view, the basic mechanism for plasma rotation by means

of crossed electric and magnetic fields and Lorentz forces in rare--

r
fled ]-11 and dens le 6-17 plasmas is understood qualitatively. Experi-

mental evidence on isotope separation in rotating plasmas has been

reported among others by Bonnevier, 10-11 Guilloud,2- Heller and Simon, 21

James and Simpson,22 and Ban and Sekiguchi23 24.	 Exact solutions for

the boundary-value problems describing plasma centrifuge systems are

not known, neither for 'collision-dominated 25-26
 nor for collisionless2 4

plasmas.

A	 simple model for an electrical discharge centrifuge with an

axial, external magnetic field Bo is shown in Fig. 1.	 This plasma

-	 centrifuge employs electrodes of , different radii R+ -and R	 (R+»R ) in

the end plates z = ±c of an electrically isolating discharge chamber of
a

radius Ro so that the field lines of the current density j and of the

external axial magnetic field B	 cross under a nonvvanishin	 angle (exceptpo	 -g	 g

at the chamber axis):_	 The resultant Lorentz force j x B	 rotates the

o
discharge around its axis of symmetry.	 In steady state, the magnetic r

y

body forces in the azimuthal direction are balanced by the viscous forces

(boundary layers at the chamber walls).	 As opposed to the centrifuge

with radial electric current flow between an inner and outer cylinder

e;iectrode, the centrifuge scheme in Fig. 1 avoids the boundary, layer

fi	 -3-

S
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THEORETICAL FORMULATION

T

For a purely azimuthal flow field, v = {0, v(r,z),0}, the plasma

behaves incompressible, o	 v = 0.	 From the continuity equation,

0	 (pv) _ v • op _ 0, it follows then that the density gradient Op is r

everywhere perpendicular to the flow field v. 	 In accordance with the

magnetogasdynamic equations,— Maxwells equations	 and Ohms law— [which =

imply n2	 _ -It
o
°Vx(vxB)}, the plasma in the centrifuge with homogeneous

iwigtiet le flold	 (Fig.	 1) is described by f ho bcnmd.ary-value problem

for the azimuthal velocity 
V0

(r,z) and azimuthal. induction B
e
(x,z) fields

(r,0,z = cylindrical coordinates):

-1 	aVe	 Ve	 a2Ve	 Bo aBe

(r	

+

az	
(1)

r Br	 ar)	 2	 2 	
PPr	 az	 o

a	
1138
	 B0	 a2Be 	

av0
1	 _

+r ar (r ar )	 - u0 o	 az	 '	 (2)
r2	 az 2

where

I

VO(r,z)r=R	 0,	
- c < z < + c	 (3)

—	 —J	 °

VO(r,z)z= 
is 	

0 '	0 < r < Ro	 (4)

and
u I

B6 (r,z) r=R 	 27rR	
-c < z < + c	 ,	 (5)

0	 0

P 18(r-R+)
a	 [rB (r^z)]	 _	 °	 0 < r < R	 (6)

r	 -r ar	 0	 z=i'c	 27r	 -	 o

Eqs.	 (1) and (2) are the azimuthal components of the equations of }

plasma motion and magnetic induction, respectively (u = viscosity,

110 = magnetic permeability, o = electrical conductivity). 	 The

-5-
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boundary conditions (3) and (4) consider that the plasma does not slip

at the walls r	 Ro and z = ±c.	 The boundary conditions (5) and (6)

follow from Maxwell's equations for a total discharge current of III
S.

amps flowing from the ring "anode" (r=R+) to the ring "cathode" (r=R_)

of vanishing radial width [6(r-R+) = Dirac function] if I < 0 (Fig. 1).

According to Eq.	 (6), the net current sustaining the discharge is

R	 Ro	 0
21Tf (r,z=±c) rdr	 Ij	 6(r-R+ )dr	 I.	 The pressure distribution0	 0

'	 g=p(r,z) in the rotating plasma is determined by the r- and z-components

of the equation of motion, j

2

(7-8)-P	 e

	

Dr	 J zBe ,	 Q	
az	 +	 rBe 	 '

P r

where

^.	 a	
dRe	 _

(rB	 u	 -	 = U	 (9-10),
Dr	

6)	 a z 	'
r	 0 Z,	 o 

r
i	

s

in accordance with Maxwell's equations. 	 In absence of the Hall effect,-

i	 wT «l, it is OxB = p o Q	 0, 1 Z ).	 Hence, Br = 0 and BZ = 0 because of

the homogeneity of the boundary conditions for Br and B z , whereas

B8 # 0 since j
r,

z 	 0[B e (r,z `_ +c) _ (uoI/ 2frr ) H (r-R+)].	 Sinre the

induced magnetic field is azimuthal, B = {O, B e , Bo, the induced
i	 }

electric field is independent of B e , i.e. VkB = VBBaer,

i

i ..

-6-
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NONDIMENSIONAL BOUNDARY-VALUE PROBLEM

The characteristic nondimensional parameters of the magnetog.as-

dynamic centrifuge under consideration are obtained by introducing the

r'
nondimensional independent and dependent variables,

p= r/R0	 0< P? 1	 '	
(11)

r = z/c , -1 < 4 < + 1	 (12)

and

V (P,4) = e(r ,z ) /Va, B(P , ^)	 Bsr , z)/Bo 	,	 (13)

where

V
0	 0 0

= I/27TR B cc, B
0 - 

B 

0	
(14)

In terms of the nondimensional space variables and fields, the

boundary-value problem defined in Eqs. (1) - (6) assumes for V(p,t)

and B(p,C) the form:

2	 2

P -5 _p (PaP) - 2 + N 
2 a 

2	 R aB	 (15)
	P 	 a;

1 a {P aB )- B+ N 2 D B	 R aV
P 

ap	 ap	
p2	 a^2	

N2 a	 (16)

where	 1
3

V(P,) p^x	 0,	 -1 < s < + 1	 (17)

V(P1)^=+1 = 0,	 0 < P < 1	 ,	 (18)

and

B(P,4)p=1 = R,	 -1 < 4 < + 1	 (19)

P ap 
[PB(P,^)] +1 - R 6 ( p -P+ )/P, 0 < p < 1,	 (20)

-	 —

fwith

-7-



H = 0/0 0R0 , N c /Ro ,
	 R = uoL/21rR Bo ^^odVoc ^ 0.	 (21)

7

i
i

The Ilartmann number H, N, and the magnetic Reynolds number R characterize

the ratio of Lorentz to viscous forces, the geometry of the centrifuge,

and the intensity ratio of the induced and external magnetic fields, respectively.

The linear statement,

B(P,C)	 RP + 'Y(p,C)	 (22)

reduces the Eqs. (16), (19), and (20) for B(p,^) to equations with

a homogeneous boundary condition (24) for T(p,C):

1 a (pa^Y ) 	Y' + N
-2 a2T__	 R 8V

P ap	 aP	 p2	 ar2	

- 
N2 a^

where

Y(P,OP=1	 0,
_1'< ^ < + 1

(23)

(24)

(P`P+)

Pap [PY(P,01^_±1 Rj	
p	

-21, 0 <_ p < l	 (25)

In view of Bessel's differential equation, Zm + 
p-1Zm +

2	 -2 2
(kn - p m )Zm =-0, for cylinder functions Zm(k np), partial solutions

of the coupled inhomogeneous Eqs. (15) and (23) are sought in the form,

Vn(P,O J1 (knp ) fnO	 (26)

Tn{P,C) = Jl ( nP ) gn(C)	
(27)

where the eigen-values k > are determined b the homogeneousn 0	 y	 g

boundary conditions(17) and (24) as the real roots of the transcen-

dental equation,

J1(kn)	
0 , n = 1,2,3,....	 (28)	 d

Thus, the general solution of the coupled Eqs. (15) and (23) obtains a

by linear superposition as the Fourier Bessel series:28
-8-
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m

V (P ' O =	 E	 Jl (k p) fn W	 , (29)
n-1

m

T (P,C)	 E	 Jl (knp) 8n ( ) (30)
n=l

Substitution of Eqs.	 (26) - (27) into Eqs. 	 (15) and (23) yields

ordinary coupled differential equations of second order for f
n

and

f"- 
k2 N2 f	

_H2N2R-1
	 ,

- -	 gn (31)n	 n	 n

g"- k2 N2 g	 = -Rf'n	 nn	 n
(32)

By elimination, Eqs.	 (31) - (32) are reduced to decoupled differentail

equations of fourth order,

f'"'- (2k2 + H2 )N2f'' + k4 N4 f	 = 0 (33)n	 n	 n	 n	 n

gu,	 (2k2 + H.2)N 2g" + k4 N' g	 _ 0	 ,'n (34)n	 n	 n	 n

with

n-ili
1

gn(^)_+^ = 2Rknl Jo(knP+)/Jo(kn)
(36) s

as boundary conditions, by Eqs.	 (18) and (25), respectively. 	 In
r

deriving Eq.	 (36,), the Dirac function in Eq. 	 (25) has been expanded

28
in the Fourier-Dini series,—'

CO

d CP - P +) /P=2 + 2 E [Jo (k	 +)/j o (k )1 ] Jo (k P)1P (37)

n=1

In addition to Eqs„ 	 (35) - (36), f (C) and g	 have to satisfyn	 -n
also .

j	 the	 coupled Eqs'.	 (31) - (32).	 With the four real roots of Eqs. (33)	 -

(34)	 [fn'	 gn " exp(w^)],

-9-
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W	 w+ , w	 w	 w	 -w+ w	 -w^	 ,	 (,38)
In	 n	 2n	 n ' 3n	 n	 4n	 n

where

	

Wn = 2
-i 
^ N{(2k2 + H2 )±[(2k2 + H2 ) 2 4kn}k }	 (39)

the general solutions for fn(^) and g n(^)-of Eqs. (33) - (34) can he
r

written as

_	
+ Binh wn	 + cosh wn^

+ B
fn(^)	 An. nsinh wn 	cosh wn (40)

sink w t	 cosh w
_
-C

a

_ n
n sinh wn	 n cosh wn

g (r) = C
+ sinh wng	 + cosh wn^

n
+ D

n inh urn	 cosh wnn
(41)

sinh w	 cosh w
+ C^ n + D —	 n

n sink wn	 n cosh wn

Only four of the eight integration constants An, ... D± are independent.
n

Substitution of Eqs.	 (40) - (41) into Eq.	 (31) and Eq. (32) yields

{
j

Ai	 [(a,+ ) 2 - k2N2 ]/w± _ -H2N2R- 	tghw±	 D± (42)n	 n n	 n	 n	 n

Ba [(w*)2 - k2N2 }/w	 _ -H2N2R 
l 

cth wl 	 C* 	, (43)n	 n n	 n	 n	 n

and

C± [w±)2 +	 +	 +
_ k 2 N 2 

J/w_ _ _ R tgh w_	 B- (44) 1
n	 n n	 n	 n	 n

D± ^^w±)2_
_ k2N2}/w± _ - R cth w± 	A (45)

n	 n n	 n	 _n	 n

respectively._ The coefficient determinant of Eqs. 	 (42) and (45) or

Eqs.	 (43) and (44)vanishes (condition for existence of nontrivial solution),

0± 
y {(w± ) 2 - k2N2 }2 - H2N2 (wl^?	 Q

(46) 1
n n	 n "s

f
j Y7^

R^,
I

RO,T
TDU(i^

DÂ̂^vv
I
TS I
^

L*

a^y t^tHIJ
ln"

0AI G AL	 UB b Pkj ,

r
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in agreement with Eq. 	 (39).	 From the latter or Eq. (46) one deduces

the relations.,

[0 ► F)2 - k2N2]/w- _ ±NH
n

(47)
n	 n

which simplify the left sides of Eqs.	 (42) - (45).

Application of the boundary conditions (35)	 to Eq.	 (40) shows that

-A = +A+ E A- B	 +B+ __ B (48),
n	 n	 n	 n	 n	 n

Substitution of Eq. 	 (48) into Eqs.	 (40) and (41) gives

sinh wn	 sinh wn
n	 ,

f O _ A[	 -n	 n	 +	 -^
sinh w	 sinh m-	 n	 n (49)

cosh wnC	 cosh wn
+ Bn [	 +

cosh wn	 cosh wn

and

R	 cost, wn^	 wn^
r

+ cosh
_ -	 —	 _Agn	 )	 NH--	 n	 sinh wn	 sinh wn

(50)
i

sinh w+C	 sinh w

n NH	 cosh wn	 nosh wn

the latter under consideration of Eqs. 	 (44) - (45) and Eq.	 (47).

Application of the boundary conditions (36) toEq. (50) yields, upo n.

elimination,

J0(knP ) + JO(knp+)
_A	 - NH

(51)-

w	 n	 k 	 (cth w+ + cth w ) 12(kn ,	 n	 o	 n

J o (k n p - ) - J 
o (k n R +)

=	
NH

B	 + (52)n n (tgh % + tgh wn) J2 (k

By combining "Eqs.	 (49) - (52),, we obtain the solutions for

'	 fn(C) and gnO in final form;

-^	 - 	 V, r	 __.



'

,

D

'

	

ioh ~
	 '

f (^) /0B = -	 -	 '
n	 +-	 ^	 .r	 -

(ctb m f ccb m.)k J (^_^ oiub m	 ainh m
o	 o o o o	 n.	 u

l	 /	 1	 (	 uoou m
"	

coeu W	 ^

^	 ^	 -	 2	 ^	 -	^ +	 -	 ,	 (53) ,

' 	 |	 '	 (tgh 
m' 

f tg6 m )k ` J	 (k_^	 cosh m'
	

cosh u.
o	 u' o	 o 'o	 o	 o	 r

^ and
'

~	 /	 '

" 
.	

-	 `	 u	 ^
cosh	 ^

	
cosh m

'	
Q_(^)^^ ^ +	

~	 f	
^

u	 `'	 -	 ^	 '	 -
(c^^ m' f ctb m )^	 J (k \	 alob m	 oiab m^	 o	 u'	 u	 o' nr	 o	 u ^

^'	
)	 J	 oiob m_

f 
C	 oiub '	 u.	 --	 `	

`	 -	 `

_	 .+	
o	 .	 ^54)

,	 (tgb 
m' 

+ tQb m \lc	 J^(k.)	 cosh   +	 onab m
  ~-	 ^	 '	 ^

o	 zz' ^n	 o	 u	 o	 o
|	 ~	 `^

/	 Below, also the ^-derivative of g(^\ is 	 * which is ^^6y
u 

J	 oinu 	 oiuu m,^

' (55)

^l 	 '	 '	 '

`	 .	 .	 -	 -	 _	 -	 -

In terms of f.	 -	 -	
gn'(0, the solutions for the non-

^\i	 p	 C
^

zo	 v =t	 of the p+~s"= "=n `r^fws= are by ~qs^ `^^/	 and ` 2 9 '	 ,'

CO

_-

^
'	 u\P 4/	 uP +	 7, 	 J	 (	 /	 '	 '/

-	 '

^^	 ^^	
`

'

[(p

_
J	 ) =	 -^^-

	 (5D)
P	 "^	

~ 	 `~	 -I~~n,~^o`~,	
'	 .	 '

o=I

|!l 	
'	

u 

=.
2-^I1	 2	 ^ ^	 (^_ p l8" (^)	 ,	 '	 `, 	 (59)

^|	 `	 n=l	 '^ -o 	 ^^. -'^	
~	 '^	 '/	 .'	

'	
'. 	

'''`^	
.	 |^

:.
.	 `

^
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And

.p (Prr)	 - V(P^^) +,N Jp (P^},	 E^(P,r)	 NJ (P,r)	 (60)

The reference vAlues Vo and Bo for V(p,^) and B(p,C) are defined in

Eq.	 (14).	 The non-dimensional fields J
p'
^(p,) and E

pl
^(p,C) are

normalized with respect to ;r

JO = I/2^rR2 ,	 E	 =_ V B	 = I/2ffR cc	 (61)
pp	 p	 p	 o o

j	 If the cathode is in the plane z 	 -c(^ _ -1) and the anode is

in the plane z = +c(C _ +1), then the reference fields V o ,j o , and Eo

[Eqs.	 (14), (61)] are negative, since I < 0. 	 The results are also

applicable to the case where the anode is in the plane z = -c(C

and the cathode is in the plane z = +c(^ _ +1).	 In the latter situ-

ation,- the reference fields Vo, jo sand Eo [Eqs.	 (14), (61) ] are positive,

since I > 0.	 These explanations hold for magnetic fields pointing in

the positive z- direction, B o > 0; Vo changes its sign with the sign

of B	 [Eq.	 (14)].	 Note that the magnetic Reynolds number R in Eq. 	 (21)

ois defined to change its sign with the sign of Vo.

a

]

I

1

Y
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As an illustration, the radial (p) dependence of the nondimensional

discharge fields V ( p ,^), B ( p „), E
P

( p ,^), Jp ( p ,^), and J} (p,^) has

been computed for I < 0 in the cross-sectional planes C _ -0.99

(cathode region), C = 0 (central region), and C _ +0.99 (anode region)

based on Eqs. (56)-(60). The remaining field _E^(p,C) is proportional

to J (p,C) [Eq. (60)]. The characteristic (nondimensional) magnetic

interaction number H is treated as a parameter: 	 H = 1, 10, 100.	 The

geometry parameter N = c/Ro is taken to be N = 1 corresponding to

R	 = c (Eq.	 (21)].	 The radial positions of the cathode and anode are

assumed to be:

p- _ 0.01 (R_	 0.01 Ro)	 p+	 0.9	 (R+ 	 0.9 Ro).

With the exception of Be = B0B, the dimensional fields are negative

everywhere where the nondimensional fields are positive, and vice-versa

since Vo < 0,	 Jo < 0 and Eo < 0 for I < 0	 [Eqs.	 (14),(61)].

The Eqs.	 (56)-(60) indicate that the velocity field V(p,^), 	 the

current density field J
pl
	 (p,^), and the electric field Ep ^^(p,C) are

independent of the magnetic Reynolds number R, whereas the induced

magnetic field_B(p,C) is proportional to R. 	 This is due to the azimuthal

direction of the induced magnetic field 	 B(p,^), which is parallel to the
A

velocity field V(p,C) of rotation [Eqs. 	 (9)-(10)]., Accordingly, the plasma

f	 fields V (p ,C), B ( p ,C)/R , J
p'C

(p ,C), and EP,^(p,^) depend only on the

Hartmann number H, presumed that the Hall effect is negligible 	 (ws le BI/m

and T are the gyration frequency and collision frequency of the electrons),
]

WT << 1 y

_14-
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Central	 Region,	 t	 0.	 In Figs.	 2-6, V((),0),	 [B(p,0) - Rp]/R,

E
l
 (P ► 0), JP (p,0), and J^(p,0) a E (p,O) are shown versus 0 < p < 1

with H = 1, 10, 100 as a parameter. 	 It is seen that IVj increases

y	 considerably at any point 0 < p < 1 as H is increased. 	 Similarly,

(B - Rp)/R and the sources J P ^^ of the magnetic induction increase

in intensity within the main central region 0 < p < 1 - AP as H

1.s hioruosed.	 For large values H > 10, B and J 	 decrease in the
P,C

wall region ap _ Ap(H), so that the electrical discharge becomes more

concentrated in the center 0 < p < I - R Ap of the centrifuge. 	 The

Intensity of H	 increases uniformly in the region 0 < p ! 1 as H is

increased, while E, a J.

Cathode Region, C _ -0.99: ` 	 The Figs. 7-11' show V(p,-0.99),

[B(P, -0.99) - Rpl/R,	 EP (PI-0.99), J (p,-0.99), and J 	 (P,-0.99) a
P

E^(p,-0.99) versus 0 < p < 1 for H = 1, 10, 100. 	 The fields V, Epp,

and 
JP'^ 

increase in intensity at any point 0 < p < 1 with increasing

H, whereas B/R decreases in 0'< p < 1 with increasing H.	 Since the

ring cathode is at p,	 = 0`.01 (	 _ -1), the field distributions are

closer, concentrated at the axis,p = 0 than those in the plane 4 = 0'

(Figs. 2-6).	 Note that the plasma rotates only in the region p _ 0.7.
s

with a significant velocity, since the Lorentz force -j rBo decreases

rapidly with increasing p 	 1.

Anode Region,	 _ +0.99:	 The Figs. 12-16 present V(`P,+0.99),

[B(P,+0.99) - RP]/R,	 EP(P,+0.99),	 JP(P,+0.99)''J^(p,+0.99) a E^(P,+0.99)
y

versus 0 < p < 1 for H = 1, 10, 100.` The velocity field is fully

developed nearly through the entire centrifuge across section 0 < p < 0.9,

since the Lorentz forceBo is strongest in the vicinity p = 0.9 ofr

the ring anode p = 0.9(^ = +1).	 As a result, a thin and steep boundary

-15-
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layer exists close to the cylinder wall (p	 1) wLth pl asma e-olinter.-

rotation at 'sufficiently small H-values. The radial distributions of

B, BpIr , Jp
l
 clearly indicate that, in the plane r, _ +0.99, the electrical.

discharge has shifted to the region p = 0.9 due to the influence of the

(nearby) ring anode at p = 0.9 (^ _ +1).

In the graphical illustrations, the cathode radius R- was chosen -

to be small compared to the anode radius R+ to ensure a large angle

between the current field lines j(r) and the external magnetic field B ,
0

i.e. a significant Lorentz force. A comparison of the Figs. 2 and 7

with Fib;. 1.2 indicates that this choice of electrode radii results in

a radial boundary layer, of large width and low velocity in the lower

half - c < z < 0 of the centrifuge, Hence, R ; << R+ (or R >> R+) is

not the best choice for a centrifuge of maximum efficiency. Fig. 12

demonstrates that a velocity profile raising uniformly with radius r

and decreasing rapidly in a steep boundary layer of narrow width Ar,

is obtained by using a cathode and an anode of the same radius R = R + < Ro,

which is nearly as large as the centrifuge radius R o . Although it is

R	 R+ in this case, the current field lines j(r) intersect with B
0

under a sufficiently large angle Y(T,B )	 0 due to the repulsion ofi	 o

the current filaments. As a result, a net Lorentz torque results for

a centrifuge with R = R+`which is still of the same order of magnitude

as for a centrifuge with R << R+ (presumed that I, and B o) c, and R 

are the same)

The accuracy of the Figs. 2-16 is determined by the number of

terms considered in the Fourier series on the computer and the accuracy

of the eigenvalues kn. The Fourier series solutions were summed

numerically up to n = 100, and the eigenvalues,k n, n = 1,2,3,...1(f0,

were computed up to the 10th decimal point.

1
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centrifuge analysis presented indicates that extremely high

plasma rotation are obtainable already at moderate discharge

I And magnetic inductions Bo , presumed the Hartmann number H

tall, H > 1. As an example, consider a centrifuge discharge

y,

= 102 amp	 IBo1	 10
0
 Tesla,

= 102 mho ml , Ro c = 10-1m.

Rn f4G1

Vo = I/2rR
0
 oB	 c _ (51r) X 10- m sec - ^

and, by Fig.	 2,

0[V e J	 0[Va ]	 103 m sec-	 for H = 100.J

If the working gas of the centrifuge discharge consists of two isotope

gases, then the centrifugal forces would concentrate the lighter isotope

ions and atoms in the central region and enrich the heavier isotope atoms J

and ions in the peripheral region of the discharge. 	 According to the

and m., the isotopeequations of motion for two isotopes of masses mi	
J

density ratio at distances 0 < r < Ro -Ar, where'Ar is the viscous

boundary layer thickness, is approximately (T o = temperature of the

isotope ions)'

ni (r)	 ni (0)	 +11dmi.v(r)2/kTo
_	 =	 e	 J	 Amid = mi - 

mJn^ (r)	 n^ (0)

where the bar designates a spatial average over the region IZI < c.	 As }

a specific example, consider an uranium plasma centrifuge containing the

isotope ions (i) 
U237 and (j) U235 at a temperature TO = 103 °K (and

electrons at a temperature Te > To). 	 In this case, one has Amid -

m(237) - m(235) = 3.320 x 10- 27 kg, `kT = 1.381 x 10
-20 Joule.;,	 Hence,

-17-
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PLASMA ROTATION BY LORENTZ FORCES

IN AN ELECTRICAL DISCHARGE CENTRIFUGE WITH HALL EFFECT*

H. E. Wilhelm and S. H. Hong

Department of Electrical Engineering
Colorado State University

Fort Collins, Colorado 	 80523

A system analysis for an electrical discharge centrifuge is presented

-	 in which the plasma rotates under the influence of the Lorentz forces
Y

due to the interaction of the nonuniform current density fields with an

axial external magnetic field.	 The associated boundary-value problem

for the coupled partial differential equations, which describe the

electric potential and the plasma velocity fields, is soled in closed a

form.	 The electric field, current density, and velocity distributions
are discussed in terms of the Hartmann number 	 H	 and the Hall coeffici-

ent	 WT.	 As a result of the Lorentz forces, the plasma rotates with

speeds as high as 106 cm/sec around its axis of symmetry at sufficiently

large values of	 H	 and	 WT.	 It is remarkable that the Hall effect

supports the plasma rotation. 	 As a result of the centrifugal forces

(in the system of reference rotating with the plasma), the heavier

(lighter) atom and ion components are enriched in the peripheral

(central) region of the discharge centrifuge.

*Supported in part by NASA.
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An electrical discharge in a cylindrical container rotates if the

Lorentz force has a nonvanishing component in the azimuthal direction.

For example, arc experiments in an acial external magnetic field Bz

indicate that the discharge plasma rotates— since the current field

lines j have a nonvanishing radial component j r so that (j x B)8

-j B 0 0. In a stable arc dishcarge, the j -component is caused by
r z	 r

the concentration of field lines (j) at the electrodes and a dilatation

(repulsion of currents in the same direction) of the field lines j in

the interelectrode space. l) In an unstable arc discharge, significant

radial current components j r are associated with the m = 0 and higher
t'

order (m > 1) instabilities. 2)

A simple model for the production of.an,,electrical discharge

centrifuge, which has a radial current density jr which is in magnitude

comparable with the axial current density j z , iiS shown in Fig. 1. The
t^

radial spreading of the current field lines j is forced by means of

electrodes of considerably different radii Rl and R2 (R2 » R1 ) in

the end plates z ±c of an electrically isolating discharge chamber

of radius Ro . The field lines of the current density j and of the

external axial magnetic field Bo cross under a nonvanishing angle

(except at the chamber -axis) -so that the resultant Lorentz force j x 
$o

rotates the discharge around its axis of symmetry. In steady state,

the magnetic body forces in the azimuthal direction are balanced by

the viscous forces (boundary layers at the chamber walls).

In the literature, the observed rotation of various electrical

discharges in axial magnetic fields appears to be understood qualitatively

in simple cases.l'-2} Exact solutions for plasma .centrifuges, are apparently

not known. either in the case of collisionless or collision-dominated=-,-6)

r

1	 plasmas.	
-38-
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In the following, the steady state rotation of the spatially diverging

discharge contained by an insulating cylinder in the external axial magnetic

field Bo (Fig. l) is treated theoretically. The analysis is based on the

magnetogasdynamic approximation, in which two characteristic nondimensional

parameters occur, the Hartman number H and the Hall coefficient wT,

H	 (a /W;1 onto, wT	 (j e j Bo/m)T.

The symbols designate the electrical conductivity (a), the viscosity (u),

the electron gyration frequency (w), and the electron momentum relaxation

time (T). H and wT are a"measure for the strength of the Lorentz force

relative to the viscous force and for the reduction of the current flow -

i transverse to the magnetic field Bo , respectively. The magnetic fields

associated with the discharge currents	 {J.' J- ' 
jz} are neglected for

small magnetic Reynolds numbers [ a.L a/(1 + w2T2)],

Rr 0[Br/Bo ]	 uowTa-Cvr.«l	 ,

Re	 0[B8 /Bo] _ I'll 1/2^rRoI/Bo«1'	 y	 (l)

R _ 0[BZ /Bo ]	 uowTajvRo«1'
z

]
where v is the characteristic velocity of rotation and I the discharge

current. These inequalities are satisfied in many cases, e.g., if

R 8 <<l for i) wT>>l and R51 or ii) R«1 and 0 < wT < W, where Ru oav max

(R ;c)•o

	

RE.PPODUCIBILITY OF TD' 	 .

	

OR,ItAL PAGE IS POOR,	 a ,

j

r	
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THEORETICAL FORMULATION

For a purely azimuthal flow field, v = {0, v(r,z),0}, the plasma

behaves incompressible, 0 ' v - 0. 	 From the continuity equation,

V	 (pv) _ v	 qp - 0, it follows then that the density gradient Op is #

everywhere perpendicular 	 to the flow field v.	 These ideal conditions

are realized if secondary flows are absent or at least negligible.Z)

In accordance with the magnetogasdynamic equations,$) Ohm's law with

Hall effect,$) and the conservation equation for the electric charge

density (0 0), the rotating discharge in a homogeneous magnetic

field 10	
(Fig. 1)	 is described by the following boundary-value problem

for the azimuthal velocity v(r,z) and electric potential ^(r,z) fields

[induced magnetic fields neglected, Eq.	 (1)1s

0 a p	
a	 [ 1	 8	 (rv) ] +	 2 }-QLB (-	 + v B) ,	 (2)

8rar	 r ar	 8z	 o	 o

L ^
(r	

+	 -8' Z 
= 

Bo 
_ — (r v)	 3

r ar	 8r ) 	Q1 r ar

where

v(r'z)r=R	
0 , -c < z < + c	 ,	 (4)

o

v(r'z)z=
s
 0	 0 < 

r < 
R	 (5)+c 	 '

and
3

- Q[8$(r,z)/8z]z-+c = I 6(r - R1,2)/27rr	 _ 0 < r < Ro	 (6)

[8$(r,z)/8r]r- 0 	
-c < z < + c	 (7)

=R
0

•	 The boundary conditions (4),, (5), and (7) consider that the plasma

does not slip at the walls r = R o and z = ±c, and that no current

flows into the cylinder wall r = Rrespectively. 	 The boundary con-0

ditions in Eq.	 (6) imply that the cathode (R l) and anode (R2 ) are ring

electrodes of vanishing radial width, Ar -r 0[6(r - Rl 2 )/27r = radial

Dirac function].	 The net current flowing through the discharge is by

s

1

1 ,^



R	 R
-<2na jo a^ (r Bz = *c) rdr	 I f 0 6 (r-Rl	 dr	 I < 02)

0	 0	 ' t:

since the positive current (I < 0) flows from the anode to the cathode

(Fig. 1).	 Theressure distributionp	 p	 p(r,z) is determined by the

r- and z-components of the equation of motion,

2
n	

-pM	
_	 + WT Q1 Bo (-	 + v Bo )	 ,	 (8r)r

f
r

8z	 j rB e 	 Je Br } 0 , Brie -* 0	 (8z)

According to Eq.	 (8z), it is ap/az	 0 if the induced fields Br and Be

are neglected [Eq. 	 (1)].	 This means that momentum cannot be exactly

balane?d in the axial direction if induced magnetic fields are neglected

(in absence of secondary flows)- 7) 	Eq.	 (8z) is in accord with the boundary-

'layer approximatiorr according to which the normal pressure gradient is

ap/az_	 0 at the electrode plates z 	 ±c, 0 < r < R_	 _ o

In absence of the Hall effect, wT«1, it is oxB = uo (fir' 0 ' 3z)'

Hence, Br ` 0 and Bz . 0 because of the homogeneity of the boundary con-

aitions for B	 and B , whereas B	 0 0 since J	 # O[B6 (r ' z	 ±c)
r zr	 ez

OP I/27rr)H(r-R2 l )].	 Consideration of the induced field B = {O,Be,O}

leaves Eqs. (2)-(3) unchanged. 	 This means that the boundary value prob-

lem in Eqs.	 (2)-(7) and the solutions v(r,z) and ^(r,z) derived from it

remain valid even in presence of a, significant induced field B = {O,Be$o},

Re?1, as long as the Hall effect is negligible, wT «1.

-41-
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ANALYTICAL. SOLUTION

The characteristic nondimensional parameters of the magnetogasdynamic

discharge problem under consideration are obtained by introducing the

nondimensional independent and dependent variables,

Pr/Ro, 0<P<1

<+1	

,	 (9)

_z/c	 -1<^

	

_	 (10)

and

V(P,4)	 v(r,z)/vo, ^(P,4) ' ^(r ,z)/ o s	 -(11)

where

IV	 /R0 B0	 o	 Ic /2naRo	 (12)

In terms of the nondimensional space variables and fields, the

	

boundary-value problem defined in Eqs. (2) 	 (7) assumes for V(p,^)

and 4^(P,O the form:

1 a	 54)	 -2 924, _ 1 a
P 3P(P ap) + M a^2 P BP (PV)	 (13)

a 
[1 

a 
(PV)] + N-2 a?° — x2v = —x2 

a^
(14)

ap P 8P	 Z	 L	 L a 

where

i 0 , -1 <	 < +1	 ,	 (15)V(p,)Pm1 

i

V(P,O=+1 = 0	 0 < P < 1	 ,	 (16)

and

[a(P,^>/a^1=+1

	

6(P-P2,1)/P	 0 < P < 1 ,	 (17)

[N^(P,;)/aP]	 = 0_ , -1 <	 < 1	 (18)

	

P=1	 —

with P2,1 = R2,1/R0 . The nondimensional constants M, N, and Hl are

defined by

-42-
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M-2 a (1 + w2T2)(R0/02	 N-2	 (Ro/c) 2 ,	 (19)

HI ' (C2v)BoR2 H2 /(1 + w2T 2 )	 (20)

In view of the similarity of the left sides of Eqs. (13) - (14)

with Bessel ' s differential equation, Z" + p-1Z' + (k2 - p-2m2 )Z . 0,
m	 m	 v	 m

for cylinder functions Zm (k,p), partial solutions of the coupled

inhomogeneous equations are sought in the form, 	 r

w(P,4) s Jo (kvO fv W ,	 (21)	
t

Vv (P,4)	 J1(kvP)gv W ,	 (22)

where Jo (kvp) _ -J1(k^p) and Ji(kvP) + (k p ) 1J1{kvP) = Jo(kVP)•

Substitution of Eqs. (21) - (22) into Eqs. (13) - (14) yields

d2f

d	
- k2 M2 fv	 k  M2 gv	 ,	 (23)

d2

d2v	
(kv ± H2)N2gv "v H^N2fv	 (24)

1
where the eigen-values kV 

> 0 are determined by the boundary conditions

(15) and (18) as the real roots of the transcendental equation,

J1 (k
V
) 	 0 , v = 1,2,3,....	 (25)

Thus, the general solution of the coupled equations (13)	 (14) obtains

by linear superposition as:
CO

-24 + E Jo (kvOfv ( )	 (26)
V=1

CO

V(P,4)	 E Jl(kvp)gvO	 (27)
v=1

in view of Eq. (25), Eq. (26) is a Fourier-Dini series in which a zero-

order term, =2C, has to be included, in accordance with the Fourier-Dini

expansion [Eq. (32)] of the boundary value in Eq. (17), whereas Eq. (27) is

a Fourier-Bessel series. By decoupling Eqs. (23) - (24) one finds for

fvO and gv (C) the differential equations of 4th order,

-43-
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d4f	 d2 f

d--r - [k2(M2 + N2 ) + N2H2 ] d=	 + kvm N2 
fV	

0,l (28)

2

-- V - [ k2 (M2 + N2 ) +N2H ] a	 + k^MZN2 gV; = 0, (29) !d
Z 	 Z

x
with

- [df	 (4)/d;]	 2J (k p 2 1 )/J (k ) 2	 ,
V =±1	 o	 v+	 o	 v (30) .

g ( 0 4 -± 1	 0 (31)

as boundary conditions by Eqs. (16) - (17). 	 In deriving Eq. (30), the

Dirac function in Eq., (17) has been expandeda,as the Fourier-Dini series,

a (P - P2,1) /0: 2 + 21	 '[ Jo (kVP2/Jo (kV)1Jo (kV P)+ 1) (32)
V-1

In addition to Eqs (28) - (31), fV (Z)	 and	 gV	 have to satisfy also
i

the uncoupled Eqs.	 (23) - (24).	 With
:.

w lv - wv+' w2v - wv -' LLA	 - -wV+' w4v = 
-w

V^
; (33)

wV+ ^^-[kv(M2 + N2 ) +N2H?] ± {[k2 (M2 + N2 ) + N217212
1.

4k4M2N2 } }^ (34 )
V

the general solutions for	 fV	 eW;	 and	 gv	 e^^	 of Eqs. (28) -

(29)+ can be written as:m
x'

sinh w 1j	 cosh,w,,^
fvO	 A1v	 sinh w	 + B IV	 cosh w1v	 lv

sinh w2v ^	 cosh 
w 2

=a
+ A

2v	 sinh w	 + B2v	 cosh w (35) 3
2v	 2V

I	
sinh w 1v ^ 	 cosh w1v^ `a

g O	 C1V	 sinh w	
+ D

V	 IV	 cosh w1v	 lv

sinh w2V ^	 cosh w2v =
+ C2v	

sinh w	
+ D2v	 cosh w (36)

2V	 2v a

—44- 1
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Only four of the eight integration constants 	 Alv,..., D2v	
for any

v > 1	 are independent; by Eqs (23) - (24),

(w2v - k2M2 ) A l ^ ' k^M2Cl
V

(w2v 
_

kvM2 )A2v	 kvM2C2V

(37)
R

(wlv -
k2M2 )Bl

y = 
k M2D 1

V	 v	 V r

(w2v - k2M2)B2v 	
kM2D

2%)V

and

[W (k(kv + Hl)N2)Cly a kVN2HIAly_

[w2V -
(kv + H2 

N2]C2v a kvN2H2A

_

[wlv -
(k^ + H1)N2 ] D v s kvN2H2B

(38)

[w2v - (k2 + H?W`] D2v	 kvN2 H B

where the coefficient determinants of the pairs of corresponding

equations in Eqs. (37) and (38) vanish owing to Eqs.	 (33)	 -	 (34).
l

Uponp application -of the four relations in Eq.	 (38), which are r

equivalent to Eq. (37) by Eqs.	 (33) - (34), and the boundary conditions

(31), which give

s

3

- 

C2V Civ - Cv	
D2v	 D1v = D

(39)

Equations (35) - (35) becomes

C
V
	 sinh w lv^ 	 sinh w2V^,

_fV (^) -kVN2H2) ^1V	 sinh w lv	 ^2v sinh w2V`

' D	 cosh w
v	 iV

cosh w
2V

'

+ k N^H(̂ 	lv	 cosh w	 ^2v
V	 IV cosh w

2V
(40)

3L
q
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1V

sinh wly^ sinh w2vz 1

SV	
lv	 2v

(G)	 Ov [ sinh w	 Binh w J

	

.cosh w,,Z	 cosh w2v^

	

Dv cosh 
wIV	

cosh w 2

where.

iv _ 
w V

	

(kV + HZ )N2 , i - 1,2	 (42)

	

conditions	 applied to E	 40C	 The boundary co	 (30) pp	 Q ( )ieldY

(	 k ,N2H
	_ v	 2	 [J(k^Pl) + Jo(k^P2)]

CV
	

o

 32 (k) [w Q cthw - w Q cthw ]	
(43)

	

o V	 1v lV	 lv	 2v 2v	 2v

2 2

D	
+k VN H1	

[Jo (kvPI)	 Jo(kvp2)]
v	

J2(k)	 {w Q tghw - w 0 tghw ]	
(44)

	

o V	 IV lv	 1V	 2V 2v	 2v'

Ii
Substitution of Eqs. (43) -_(44) into Eqs. (40)	 (41) gives as

	

solutions for f^(^) and gVW:	
;.

[Jo(kvPl) + 
Jo(kvP2)]	

E

(^)	 J2(k)	 x^	 f	
1

V	 o v	 [w Q cthw	 w	 cthw ]
1v lv	

S2
1v 	2v 2v	 2v

	sinh wlv;	 sinh w2V ^ 	 [Ja(k^P11	 JO(kvP2)'
xx

C^IV sinh w	 ^2v sinh w	 + [w E2 tghw	 w 2 tghw ]IV	 2V	 lv IV	 1V	 2v 2v	 2V

	cosh w,V;	 cosh w2v^
k SZ S2-	 (45)

	

lv cosh w	 2v cosh w2 V

and

1v 

and

j

46

(41)
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	J 2 (k 	
[Jo(kvpl) + Jo(kvp2)I

g	
o

v

	

	
x

kvN%2 • [w IVSl lv
cthw l

y - 
w2vQ2v cthw 2v] 

X sinh w 1v4 _ sinh w2V 4	 +	 {Jo(kvpl) - 10(kvP2)I
x

[Binh w	 sinh w	 [wl
V

 S21 
v 
tghwly	

2 V
- w SZ2v	

2
tghw 

V ].	 lv	 2v

cosh 
wly; 

cosh w2v;
X [ cosh w	 cosh w	

(46)

	

lv	 2v

Equations (45) - (46) form, together with Eqs. (26) - (27), the closed

form solution of the problem of the rotating gas discharge in an axial

magnetic field Bo:

00 Jo (kup)	 (10(kVP1) + 10(kVP2)]
2^ - 
	 [w 0 cthw -w SZ cthw ] x

V 1.j20
(kv)	 1V 1V	 lv	 2v 2V	 2v

sinh w	 sinh w	IV 	 TV2v^

	

x lv sinh w	 2V sinh w

	

1V	 2v

	[Jo (kVPl) - J0
(kvp2)]	 cosh wlv 	 cosh w2V^

	[w 0 tghw - w a tghw ]	 1V cosh w	 ^2V cosh w2vIV 1V	 IV	 2V 2V	 2V	 1V
(47)

and

	

°° kvJ 1 (kvP) 	 [10 (kVP1) + 10 (kVP 2) ]

I [ w Q cthw -w Q cthw ]n 2L	 1	 2v	 vv l Jo(kv )	 V 1V	 lv	 2V	 2

	sir,.h 
wlvC	

sinh w2v
X	 _	 f
Isinh w	 wsinh	 J

	

1V	 2V

	[J(kPl) - J(k
vp 2 )) 	 w1v ^	 cosh w

o v	
o	 2V

x	 _	

J	
(48)

{w 1 Q l tghw ly - w2 SZ 2 tghw2 ] 

-cos

[cosh w' v 	cosh w v
v V	 V v	 V	 1	 2

The remaining nondimensional discharge fields E 	 - VO/Eo and

J	 /o are given in terms of the solutions for (D(p,;) and V(p,^)t	 x

Er = ^w 8^/8p	 Ee	 0 , EZ 	 -N1' 8^/8c	 (49)

-47-



12

1	
aDJr - 1	 -Tz(- ap + V), J e =

WT 	 aO	 1 a(P
lam( ap + V), 

Jz 
N ac

(50)

where Eo = 0 JRo , J o s ao
o/Ro , and N = c/Ro (Eq. (12)].

If the cathode is in the plane z = —c(^ = -1) and the anode is

in the plane z = +c(^ - +1), then the reference fields v  and ^o

[Eq. (12)] are negative, since I < 0. The results are also applicable

to the case where the anode is in the plane z = - c(C = -1) and the

cathode is in the plane z = +c(4 = +1). In the latter situation, the

reference fields v  and o [Eq. (12)] are positive, since I > 0.

These explanations hold for magneticfields pointing in the positive

z direction, Bo > 0; V  
changes its sign if Bo < 0 [Eq. (12)).

l
1	 ,.
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NUMERICAL ILLUSTRATIONS

As an illustration the radial (p) dependence of the nondimensional

discharge fields	 V ( p ,S),	 0(p ,^),	 Er(p,t),	 Ez
(P,C,),	 and	 Jr(t) ► t')	 has

been calculated for	 I < 0	 in the cross-sectional planes 	 C _ -0.99

(cathode region), C = 0 (central region), and 	 _ +0.99 (anode region)

based on Eqs.	 (47)-(50).	 The remaining fields	 J 8 (p,C)	 and	 Jz(p,0

are proportional to 	 Jr (p,^)	 and	 Ez (p,C), respectively [Eq.	 (50)].

The characteristic (nondimensional) magnetic interaction numbers are

treated as parameters:

WT - 1, 10 ;	 H = 1, 10, 100.

The geometry parameter 	 N	 is taken to be	 N	 1	 so that	 M 2 = 1 + W T2,

corresponding to	 Ro = c [Eq.	 (20)]	 The radial positions of the

cathode and anode are aseumed to be:

p l = 0.01	 (R1 = 0.01 Ro )	 p2 = 0.9	 (R2 = 0.9 Ro).

The dimensional fields are negative everywhere where the noadimensional

fields are positive, and vice-versa [Eq. 	 (11)] since	 vo < 0	 and

¢o < 0	 for	 I < 0	 [Eq.	 (12)].

Central Region,	 _ 0:	 In the Figs. 2-6, the azimuthal velocity field

V(p,0), the electric potential 	 ((p,0), the radial and axial electric

fields	 E (p,0)	 and	 E (p,0)-J (p,0), and the radial current density']r	 z	 z

Jr (p,0) are represented versus 	 p, with (wT,H) _ (1,1), 	 (1,10),(1,100),

(10,1),	 (10,10),	 (10,100) as parameters. 	 It is seen that	 IV I

increases considerably at any point 	 0 < p-< 1	 if either	 H	 or	 WT

are increased.	 In the region	 p > 0	 sufficiently close to the axis,.

; 0 1,	 I Er 1,	 I Ez - 2N-1 1, and 	IJrI	 increase with increasing	 H	 or	 WT. j

a	 _^

The field distributions move towards the axis 	 p = 0	 as _ WT	 becomes

-49-
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larger. The "hump" developing at p 0.9 (Figs. 4-6) with increasing

wT shows the influence of the ring anode (p = 0.9, _ +1) in the

plane t, - 0.
a

Cathode Region,	 _ -0.99: The Figs. 7-11 show V(p, -0.99),

^P (P, -0.99), Er (P, -0.99), Ez (P, -0.99)-Jz(P, -0.99), and Jr(P, -0.99)

versus p with (wT,H) _ (l,l),...(10,100),as parameters. These fields

increase in intensity at any point 	 0 < p < 1	 if	 H	 or	 wT	 is

increased.	 Since the ring cathode is at 	 p l = 0.01 (	 _ -1), the field

distributions are closer concentrated at the axis 	 p	 0	 than those
3

in the plane	 C _ 0 (Figs. 2-6).	 Note that the plasma rotates only

in the region	 p = 0.1	 with a-significant velocity, since the

Lorentz force	 -JrBo ,decreases rapidly with increasing	 p4l.	 A <^

comparison of the corresponding fields in Figs. 2-6 and Figs. 7-11

Indicates that the discharge spreads slightly in radial direction

with increasing	 -1 < ^ < 0.	 In particular, an increasing radial

section of the plasma rotates with a significant speed as --1 <	 < 0

increases.

Anode Region, C _ +0.99: 	 In the Figs. 12-16, V(p, +0.99), (DO, +0.99),

E (P, +0.99), E (P, +0.99) MJ (P, +0.99), and	 J (P, +0.99)rr	 z	 z aid

are plotted versus 	 -p- with (wT,H) _ (1,1),...(10,100)

as parameters. 	 The dependence of these fields on	 H	 and	 wT	 is as

in the previous cases for	 C = 0	 and	 _ -0.99.	 The velocity

y	 distributions are fully developed nearly through the entire chamber

across section	 0 < p < 0.9, since the Lorentz force 	 -JrB	 is

strongest in the vicinity	 p = 0.9	 of the ring anode, p = 0.9(C _ +1).

As a result, a thin and steep boundary layer exists close to the
r	 .

-50-
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cylinder wall (p s 1) with backflows at sufficiently small 	 wT-values

(Fig.12).	 The radial distributions of	 0, Er , Ez¢J z , and	 Jr (Figs. 13-16)

clearly indicate that, in the plane	 r, - +0.99, the electrical. discharge

has shifted to the region	 p = 0. 9 	due to the influence of the

nearby ring anode, p - 0.9(^ _ +l). 	 This shift occurs first slowly in

the region	 -1 < ^ < +1 - a^, and then rapidly in a relatively thin r

layer	 a ^ << 1	 close to the anode plane 	 _ +1.

It is remarkable that the discharge remains concentrated in a

radial region close to the cylinder axis with little radial spreading

of the current density	 1, except in a layer	 a^	 close to the ring

electrode of large radius 	 (R2 > R1) in which the radial current

component	 Jr 	dominates the axial current component 	 JZ .	 This

spatial concentration of the discharge is the more pronounced the

larger	 H	 and	 WT	 are, since the axial magnetic field	 Bo	 reduces

the radial current flow 	 Jr	 for increasing.	 WT.	 The speed of

plasma rotation	 V(p,^)	 increases with increasing magnetic induction

Bo	 by orders of magnitude over the reference speed 	 vo	 as the

Figs. 2, 7, and 12 indicate which show 	 V(p,^)	 for increasing	 WT

and	 H.	 The theoretical electric field and current density distribu-

tions are in qualitative agreement with experiments.l)

The graphs in Figs. 2-16 are based on the Fourier-series solutions,'
j

in which the first 100 terms were considered and the eigenvalues	 w

were calculated up to the 10th decimal point. 	 An even larger number of

terms in the Fourier series solutions has to be taken into account if

one wishes to compute	 .pproximately) the discharge fields extremely

close to the ring ,cathode (p 	 0.01,	 -1) and ring anode

(p = 0.9,	 = +1) where	 changes discontinuously with 	 p

due to the electrode boundary conditions.
3

-51-
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APPLICATION

The system analysis presented indicates that extremely high

speeds of plasma rotation are obtainable already at moderate discharge

currents	 I	 and magnetic inductions	 Bo, presumed the magnetic inter-

action numbers are not small, H > 1, tut > 1. 	 As an example, consider

a rotating arc discharge with:

III = 10 2 amp	 ,	 +B0 1 = 100 Tesla,

1 ,	 =	 = 10 lmv	 = 102 mho m	 Ro	c

Hence, by Eq.	 (12)

vo	Ic/2noB0R3 s (5/1) x 10 1 m sec-1,

and, by Fig.	 2,

O[v] - 0[v V] = 104 m see	 , for	 wT = 10, H = 100.
0

Speeds of plasma rotation 	 v, which are by orders of magnitude larger {

than 10 6 cm sec -1 , can be produced if the order of magnitude of the

parameters	 wT	 and	 H	 is increased.	 The viscous forces reduce,

s	 o	 always in the layers close tohowever, the speed of plasma rotation a	 y	 y ,

the walls	 (z _ +c; r	 R ).0 $a
One recognizes that the torque of the Lorentz forces is a large

1

physical effect which can be readily used to build an electrical

"discharge-ultra-centrifuge" for isotope separation. 	 If the working

gas of the electrical discharge consists of two isotope gases, then

the centrifugal, forces would concentrate the lighter isotope ions and

atoms in the central region and enrich the heavier isotope atoms and

r`	 l

t
i

ions in the peripheral region of the discharge.

-52-
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As an illustration to the plasma centrifuge, Lhe isotope

separation ratio is calculated. According to the equations of motion

for two isotopes of masses	 mi	 and	 mj , the isotope density ratio at

_.	 distances	 0 < r < Ro - d, where	 6	 is the viscous boundary layerw

thickness, is approximately (To	temperature of the isotope ions)
s

-	 ni(r)	 ni (0)	 +'Ami v(r)2/kT0
=	 e 	 Amid	 mi - min^ (r)	 Ti^ (0)

where the bar designates a spatial average over the region 	 jzj < c.	 As

a specific example, consider an uranium plasma centrifuge containing the

3
isotope ions (i) U237	 and _(,j) U235

	 at a temperature	 To = 10 °K

(and electrons at a temperature 	 Te > To).	 In this case, one has

Amid = m(237) - m(235) = 3.320 x 10
-27 

kg, kT	 1.381 x 10-20 Joule.

Hence, the isotope separation ratio is:

n(r)	 n(0)237	 237 	 0	 -	 3	 -11.128 x 10	 for v(r)	 10,	 m_sec

n235 W	 n235(0)
_	

_

= 1.661_x 10 5 for v (r)	 104 m sec l .

It should be noted that the magnetogasdynamic -considerations are

only applicable to dense discharge plasmas, for which the mean free
Y

;

paths of the electrons, ions, and atoms are small compared to the

characteristic chamber dimension, min (R;c).	 The evaluation of collision-0

less, rotating plasmas poses a rather different problem, since in this
s

-case - the interactions through the selfconsistent electric magnetic

fields play a dominant role. 9)	The separation of isotopes by centrifugal

forces in low density plasmas has been established experimentally.-
10)

ti
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DEPOSITION OF SPUTTERING PRODUCTS ON SYSTEM SURFACES*

. :,

H. E. Wilhelm and S. H. Hong
Department of Electrical Engineering

Colorado State University
Fort Collins, Colorado 80523

i

ABSTRACT

The boundary-value problem describing the diffusion of sputtered

atoms and their deposition on the surfaces of ion propulsion systems is

treated by means of a model of simple geometry. Based on an integral

theorem of Weber for outer boundary-value problems with an inner

cylindrical boundary, an analytical solution is derived for the density

field of the sputtered atoms which involves a function which is deter-

mined by an inhomogeneous integral equation.

a

M

* Supported by NASA
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In an ideal vacuum, sputtered atoms travel undeflected along

straight paths determined by their initial velocities at the point of

emission. Within this free particle flow, a system surface is reached

by the sputtered atoms only if it can be seen along a straight line from

the emitting surface. In reality, ion propulsion systems are surrounded

by a very rarefied plasma consisting of escaped beam ions, recombined

ions, and electrons. For this reason, always some of the sputtered

atoms will be deflected out of their initial paths by interacting through

long-range forces (polarization forces) with the plasma particles so that

they can reach system surfaces which are not seen along a straight line

from the emitter.

Figure l depicts the geometry of an idealized propulsion system

i

V

which exhibits an emitting pane z - 0, 0 < r < a (accelerating grid),

the rocket surfaces r - a, -c < z < 0 and z = -c, 0 < r < a, and the

plane z	 -d, a < r < b of the solar energy collectors. All these

system surfaces can be reached by the atoms sputtered from the emitter

by diffusion through the rarefied plasma. The diffusion coefficient

D is determined by the Vlasov equatiorr ) for the sputtered atoms inter-

acting through weak long-range forces— with the plasma particles. In

view of the mathematical difficulties associated with the solution of

outer boundary-value problems for the geometry in Fig. 1, a somewhat

simpler system is studied here consisting of an emitting plane	 j

rt	 (z 0, 0 < r < a),, the upper rocket surface (r = a, -c < z < 0) and

the plane (z = -c, a < r < w) of the solar energy collectors (Fig: 2).
u _

The latter is assumed to have infinite radial extension, r	 b }co
max

since in general b>>a and b>>c,d (Fig. 1). Within the model of

Fig. 2, particle deposition on system surfaces in the space z < -c

cannot be analyzed.
-72-
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BOUNDARY-VALUE PROBLEM

In the space z > -c, let the density of the sputtered atoms be

designated by	 n(r,z) [cm
-3 ]	

and the flux of emitted atoms at the

emitter surface by	 I(r) [cm-3 • cm sec-1 ].	 In steady state, the
A

spatial distribution	 n	 n(r,z)	 of sputtered atoms is determined by

the boundary-value problem for the Laplace diffusion equation (Fig. 2);

a2n1 an	 a2n
= +	 (1)+	 0

ar2	
r ar az2

where

[an(r,z)/Dz]z_ —I(r)D 1,	 0 < r < a	 ,	 (2)
=0

n(r,z)r' 0,	 -c < z < 0	 (3)
=a

z=-c

and

n(r,z) } 0,	 (r2 + Z 2 ) -r Co	 (5)

are the proper and improper boundary conditions, respectively. 	 D

9
designates the diffusion coefficient of the sputtered atoms in the

rarefied plasma which represents a spatial average, D = < D(r,z) >.

The boundary conditions (3)-(4) imply that sputtered atoms

arriving at the system surfaces are deposited there, i.e., do not

-return into the diffusion space. 	 This assumption is at least'

approximately correct for nonheated surfaces as long as the number of

atomic layers deposited is not too large.	 The fluxes	 (l = -D Din

of atoms arriving at the system surfaces	 r _ a, -c < z < 0	 and

= z = -c, a < r <	 are given by (Fig. 2):c

-75-
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4)r (r	 a,z)	 -D an(r	 a,z)/ar,	 -c < z < 0	 , (6)

( z (z = -c , r) _ -D an(z s -c,r)/8z,	 a < r < °° (7)

Accordingly,

N= -2fraD j [ an(r = a,z) /ar]dz (8)^
r =a

-c

Nz- -2^D j [ 8n(r,z = -c)/az]rdr (9)=-c a
u

are the numbers of sputtered atoms deposited per unit time on the

system surfaces	 r = a, -c z z < 0	 and	 z = -c, a < r < -, respectively.

The above boundary.-value problem cannot be solved directly, i.e.,
r

c	 requires a decomposition of the space 	 z > -c	 into appropriate

subregions for which the associated boundary-value problems are
w
X^

N

solvable.	 In this approach, the common boundary value 	 [^(r)] at the

decomposition plane is determined by an integral equation. c

I	 Let nondimensional independent and dependent variables:
y

be introduced in accordance with:

p = r/a ,	 0 < p <	 z/c,	 -1 < r, < (10)

and

N(p,^)	 n (r,z)/no ,	 S (p) = I(r)/I (11)
7

0

with

no - cIo /D,,	 Io = I(r=0),	 Y	 c/a (12)

The boundary-value problem defined in Eqs. (1)-(5) reads in

nondimensional forms

^.	 a2N + 1 @N_ + Y 2 32 
- 0 (13)pap t 	 ^p	 2

ar,^

i
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where

[DN(p,C) /as]=o 'er -S( p ),	 0 < p < 1 (14) R
.j

N (p ,;) p
=1 	0,	 -1 <	 < 0 (15)

z

N(p `^) =-^	
0,	 1 < p <

(16)

and

N(p q^) -} 0,	 (p2 + C2) + 00 (17)

In Fig. 2, the space is decomposed into the regions

I(0 < p < -, 0 < ; < -)	 and	 II(1 < p < oo, -1 c ^ <0).	 At the

interface	 C = 0 9 l < p < -, the partial 	 M(p,^ = 0)/DC = W(p)H(p-l)

is introduced as the common (unknown) boundary value	 ^(p)	 of the

adjacent regions I and II, ,1 < p < -,	 Thus, the boundary-value problem

in Eqs. (13)-(17) can be decomposed into boundary-value problems

for the regions I and II._

I.	 In region I, N = NI (p,) is described by the "regular"

boundary-value problem:

2

1 IN,N^	

a^2
+ 	 Y-2+	 0,	 0 < p < 00,	 0 < C < W	 ,

ap	
p	 P	 a

(18)

[aNI(p,0/a^1 =0 = -S(p), 	 0 < p < 1 - 0,

= TO),	 1 + 0 < P < O0 (14)

NI 0,C) + 0 9	 (Q2 +	 2 ) (20)

where

S (P=l ) _ T (p=1) _ 0 (21)
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for physical reasons. Since region I is the upper half of the

infinite space (0 < ^ < -), the general solution of Eqs. (18) and

(20) is given by the Fourier integral,

Go	

k4N I (P,0	 f A(k)e -Y 	10 (kp)dk , (22)
0

which satisfies the improper boundary condition for	 p -> and

4 + -.	 The Fourier amplitude	 A(k)	 is determined by the boundary'

condition	 19)

f A(k) Jo (kp) kdk = - S(P) H ( 1-P) + `Y(P)H(P-1) (23)
..n

0

Application of the inverse Hankel transform to Eq. (23) gives:

OD

A(k) = y-1 f S(a)Jo (ka)ada - Y-^ T(a)Jo (ka)ada , (24)
1

Substitution of Eq.(24) into Eq.	 (22) results in the solution for

region I:

1

'	 NI(P, ) _	 -1 f dke_
Yk 	

Jo(kP)[f S(a)Jo(ka)ada - f T(a)Jo(ka)ada],
0 	 0	 1

B

0 < p < ^,	 0 <	 < Co (25) z

II.	 In region II, N = NII	 is described by the "outer"

boundary-value problem:

2	 2_2 a NIIa NII aN
II

3

+ l +	 0	 0 <	 <

2	 a	
Y	 2=	 P	 ,	 -1 << 0 31 (26)

aP	
P	 P	

a^

[aNii (p ,^)/3y14 =0 = T(P)	 1 < P < °° (27)
M

NIZ(P,^)P=1	0,	 -1 <	 < 0 - , (28)

a
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NII(P 
	

0,	 l < P < W (29)

NII(P,0	 0,	 p -► 	 -1 <	 < 0 (30)

According to Eq.	 (28), region II has an inner, cylindrical boundary

at	 p = 1	 where	 NII (p,C)	 vanishes.	 For this reason, a Fourier

integral representation of 	 NII (p,C)	 is needed for	 1 < p <

which vanishes at	 p = 1.	 According to Weber's integral theorem, an

arbitrary function	 ^(p), a < p <	 with	 V (p = a,	 ) = 0	 satisfies

the integral equation: 	 2'3)

«o	
kdkWk(P)

a

V (P) J	 ^ (a)W (a )ada ,	 a < p < °'

f

(31)
2	 k

0 	 (ka) + Y^(ka) a

where

Wk(P) = J V (kp )YV (ka) - J V (ka )Y V (kP) (32)

and	 JV (kp)	 and	 Y IV (kp)	 are Bessel	 functions of order 	
v	 of the

first and second kind, resepctively.	 In view of Eqs. (31)-(32), a

Fourier integral solution o4 Eqs. (26)-(30), is sought in the form,

N IL (P,0 _ f B (k)Wk(P) sinkyk(^+1) dk	 , (33)
Q a

Wk (P) = J o (kp)Y o (k) - Jo(k)Y o (kp)	 , (34)

which obviously satisfies the boundary conditions (28)-(30). 	 The

Fourier amplitude -B(k)	 is determined by the boundary condition <(27),

Go

Y f B(k)Wk (P) cosh^yk kdk = `Y ( p ) ,	 1 < p < °° (35)

Q;

which gives	
m

0

B (k) _ 'y-lcosh 1 a) W (a) ada / LJ 2 (k)` + Y2 (k)	 ,
Ykf	 (	 k

(36)
o	 o
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by Eq.	 (31).	 Substitution of Eq.	 (36) into Eq.	 (33) results in the

solution for region II:

N	 (P. )	 y
-

1 f 
dk sinhykK;+1)	

Wk(P)	

r Y(a)w(a)ada,
II	 0	 coehyk	 10(k)+Y0(k)	 1	 k

1 < p < 0,	 -1 < ^ < 0 (37)

The solutions	 NI(p,t;), Eq.	 (25), and	 NII (p,^) Eq.	 (37), contain

the yet unknown boundary-value 	 T(a), 1 < a <	 T(a)	 is determined

by the continuity condition at the interface of regions I and II,

i
l

NI	 (P,;) =0	 NII(P,^)	 1 < p < CO,
=0' (38)

which gives

1
fdkJo (kP)CfS(a)Jo (ka)ada - f`Y(a)Jo(ka)adaj
0	 0	 1

m	 W	 (P)	 00kfdktghyk	 If (a)W (a)ada,	 1 < p <
k

(39)
0	 12(k)+Y2(k) 1

Eq.(39) indicates that	 T(a)	 is determined by an i.nhomogeneous integral

equation. a

Because of the boundary conditions (19) and (27), the remaining

continuity condition at the interface of regions I and II,

[3N 0,0 /30 =0	 [ax II(p,^) /afl^=0,	 1 < p < CO

l

has already been satisfied.	 Indeed, substitution of Eqs. (25) and	 (37)
_

into Eq.	 (40) yields

-80-
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(43)

11

00	 1	 00

-0 kdkJ 0 (kp)[fS(a)J 0 (ka)ada - fY(a)J0(ka)ada]

Wk(p)	 m
n j kdk	 1 'Y(a)W (a)ada,	 1< P <

0	 10(k)+Y0(k) 1	 k

,.

Since,
Co

OJ0 (kp ) J0 (ka ) kdk = 60-0/a

°° Wk(P)Wk(a)
kdk d(a-p)/a

0 10(k)+Y0(k)

Equation (41) reduces to the expression [S(a-.p) = Dirac function]

1	 00f S (a) S (a-p) da + f T (a) 6 (a-p )da
0	 1

00

f'Y(a)5(a-c.)da, 	 1 < p < 00	 (44)
1

which gives the expected ifjentity, Y(p) 	 T(P)

INTEGRAL EQUATION

By introducing the kernel K(a,p) and the source Q(p), the

integral equation in Eq. (39) can be rewritten in the convenient form:

f T (a ) K (a , p ) ada	 Q(p ),	 1 < p <	 (45)

1
where	

_ .s

!	
ao	 Wk(a)Wk(P)

K(a,P)	 j [J (ka)J (kP) + tghyk	 -]dk	 ,	 (46)0 0	 o	 1 (k)+Yo(k)
t

1

	

Q(P) '= OdkJ o (kp) O S(a)Jo (kr,)ada	 (47)

a
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For simple particle emission distributions S(a),, e.g., in the case of

a homogeneous and a parabolic emission distributions, respectively, the

source integral Q(p) is readily evaluated,

Q(P) _ 2 PL E (p) - (1 - 12 )K( p )],	 1 <_ P <

P

for .S(a) = 1,	 0 < a < 1	 ,	 (48)

>r

for S(a) = 1 - a2 ,	 0 < a < 1	 (49)

1	 1
where K(p) and E(p) are the complete elliptic integral is of the first and

second kind, respectively.

Eq. (45) reduces the deposition problem to the resolution of an

integral equation for tha unknown boundary-value `Y(p), l < p < 	 Once

'Y(p) is determined, the particle distributions NI (p,) and N 11(p,^) are

given by Eqs. (25) and (37), respectively. From the solutions for NI(P'0

and NII(p,) follow then the deposition rates at the system surfaces in

accordance with Eqs. (8) - (9).

Unfortunately,

	

	 leads tointegral equation 1i	 he i to	 ethe resolution of t	 ny ,	 g	 q

considerable mathematical difficulties. 'Both analytical and numerical

methods, for solving Eq. (45) have not produced final results because

of convergence and uniqueness problems, which are typical for integral

`	 equations of this type.

a

L

f	 ;
-82-
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