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PREFACE

i
H
i
i

This report represents the findings of the work completed under
a nine-month study of programmable data collection platforms. The sys-
tem has been implemented with a microcomputer, and the results show
that programmable data collection platforms can carry out all the func-
tions of hardwired data collection platforms with capacity left to
perform a number of desirab]e-computationa] functions.
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1. INTRODUCTION

1.1 BACKGROUND AND PURPOSE

Data collection by satellite is a rather young branch of science
which was first demonstrated in 1967 using the ATS-1 satellite. This
first NASA demonstration was the Omega Position Location Equipment Sys-
tem (OPLE) which primarily determined that an accurate position fix
could be obtained from platforms in remote locations. This system was
followed by the Interrogation, Recording and Location System (IRLS)
flown on the Nimbus-3 satellite in 1969. The IRLS was closely followed
by the French Eole satellite which was solely devoted to the tasks of
data collection and position location for remote platforms distributed
around the globe.

One fact that stood out from these early experiments wés that the
user costs for platform and data reduction must be kept low if the sat-
ellite data collection concepts are to be utilized on a large-scale
basis. A way .to reduce costs was incorporated by the Landsat data col-
lection system flown in 1972. The platform transmissions were random
rather than ordered. This simplified the platforms by e]imihating
on-board receivers and reduced the costs substantially. In 1974 the
GOES satellite carried a data collection system which again utilized an
ordered system, but costs were kept low because of improvements in
semiconductor technology. |

In 1975 the Nimbus-6 satellite carried the Tropical Wind Energy-con-
version and Reference Level Experiment (TWERLE) into orbit. The TWERLE
utilized the low cost of the random transmission system combined with
new low-cost integrated circuits to maintain a still lower platform
cost.

In 1977 the TIROS-N satellite will be launched carrying a data col-

lection system designed by France. The system will use the random trans-
mission feature which will help to lower user costs and aid in making
the system internationally acceptable.

1-1



1-2

A primary purpose of this study is to determine if the recent
advances in semiconductor technology can be incorporated in the design
of data collection platforms to further reduce their cost and, conse-
quently, make their application more desirable to the user.

At the time of tﬁe instigation of this study, all data collection
platforms used hardwired logic circuitry to implement the identification
and formatting of the data collected by a platform. Hardwired circuitry
was also used to control the sensors and the transmitter. In the last
two years, a new.semiconductor device which has the potential of dras-
tically reducing hardware costs while increasing the capability of the
data collection platform has appeared on the commercial market. The
device is the micrbprocessor. The microproceésor is a computer:
central-processing unit (CPU) on a single integrated circuit-chip.’ The
equivalent of thousands of discrete electronic componehts are fabricated. =
on a single microprocessor chip with unit costs projetted to be in the
ten-dollar range.

The goals of this study are to determine what present data collec-
tion functions can be accomplished by substituting a microprocessor for
most of the hardwired logic, to uncover new tasks which would enhance
the utility of data co]]ection_p]afforms by virtue of having a micro-
processor available, and to determine if the programmable feature of the
microprocessor will allow future platforms to be compatible with more
than one satellite data collection system. To prove the concepts devel-
oped in achieving these goals, a model programmable data collection
platform (PDCP) development system has been implemented. The details
of the University of Tennessee (UT) PDCP development system are des-
cribed in Section 5 of this report. |

1.2 SUMMARY

This report describes the results of a study of the feasibility of
incorporating microprocessors in data collection platforms (DCP's). An
introduction to microcomputer hardware and software concepts i1s provided
in Section 2. Thus, readers who are not familiar with the microprocessor
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- .field are furnished necessary background information on the basic organ-
ization of a microcomputer and software development techniques. ’

Programmable data collection platform (PDCP) hardware design goals
include minimizing power consumption, maintenance, weight, and cost
while providing accurate and reliable operation. Section 3 discusses
the influence of microprocessor technology on the design of PDCP hard-
ware. A standard, modular PDCP design capable of meeting the design
goals listed above is proposed. The microprocessor contributes to this
design by minimizing PDCP control logic and simplifying sensor inter-
faces.. Also, standard PDCP sensor and transmitter interfaces will pro- .
mote further cost reductions.

Although the standard, modular PDCP design proposed in Section 3 is
economically desirable, the PDCP must be sufficiently flexible to oper-
ate efficiently with a number of different sensors, data compaction
techniques, and data transmission formats. The PDCP software described
in Section 4 is the key to attaining these goals. Numerous examples of _
~potential “PDCP -programs are -presented ‘to demonstrate that a micropro-
cessor is capable of performing all tasks of current DCP random logic
control units. Furthermofe, the PDCP software system will contribute

to reduced hardware costshby replacing random logic and complex sensor
interfaces with inexpensive program memory. In addition, a PDCP can
economically perform data compaction operations that are impractical for
random logic implementation. This will allow users to obtain more
information from each PDCP without exéeeding transmission channel band-
width limitations.

Section 4 also discusses the process of developing PDCP programs.
A specific PDCP software organization designed to minimize software
development costs is described. Traditional program development tech-
niques are inadequate for PDCP software development by applications
oriented users. A PDCP software development system which would allow
applications oriented users to define the software structure of their
individual PDCP's in familiar terms is recommended for a future study.
The proposed editor/translator software deve]bpment system retains the
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efficiency of assembly language programming because users are allowed to
create software systems from a library of subroutines written by experi-
enced assembly language programmers.

An integral part of this study was the design and construction of
the UT PDCP deve]opmenf system described-in Section 5. This system is
useful in the development, evaluation, and demonstration of potential
PDCP programs. The UT PDCP provides all the capabilities of a PDCP
control unit. Programs developed for use on the UT PDCP include sensor
data input subroutines, data compaction subroutines, and data trans-
mission subroutines. The UT PDCP is intended for use primarily as a
program development and demonstration system. Therefore, the design of
the system is not intended to represent the desﬁgn of an actual PDCP.
The system will serve as a machine through which NASA personnel can
acquaint themselves with the details of PDCP software and PDCP software
development.

A PDCP design should be based on a knowledge of currently available
-microprocessors -and projected future microprocessors. Section 6 des-
cribes a weighting matrix technique for evaluating microprocessors and
provides a microprocessor'technology forecast covering the next five
years. The weighting matrix provides a systematic procedure for gen-
erating PDCP application performance measures for the various micropro-
cessors.



2. MICROCOMPUTER HARDWARE AND SOFTWARE

The control logic found in most current data collection platform
designs is an example of the custom random logic approach to process
control system design. Custom random logic combines individual logic
elements (such as flip-flops, gates, counters, etc.) to perform a par-
ticular system control task. The primary tasks of the random logic of
a DCP are to control the sensors, input sensor data, format the data,
and control the DCP transmitter. CMOS logic is prevalent in current DCP
designs due to the extremely low power requirements for CMOS circuits.

A major disadvantage of current hardwired DCP's is that they are
based on customized designs which are intended to perform only specific
tasks. In practice, applications for DCP's vary considerably due to the .
diversified requirements of the various users. As a result, the intro-.
duction of new DCP applications or a new data collection satellite can
require the development of a new DCP design. This increases DCP costs
due to both the increase in direct development cost and the increase in
manufacturing cost resulting from the production of smaller quantities
of each specific design.

What are the alternatives for a state-of-the-art, cost-effective
DCP design? A close look at modern process control systems suggests an
answer. Until the introduction of the microprocessor, state-of-the-art
process control systems depended on custom built random logic designs or
the dedicated minicomputer.

Custom built random logic can be cost.effective if a large number
of identical systems are required where the initial high design costs
can be effectively shared by a large number of users. This approach
certainly has merit in the DCP field, but the question still remains as
to whether a more versitile and perhaps more cost effective approach
exists with modern technology. Also, a DCP user requiring only a small
number of platforms must pay an extremely high price for a new design
unless a present design can satisfy his requirements.

2-1
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The dedicatéd minicomputer approach would provide versitility in a
DCP design as modification of the DCP tasks could be implemented in soft-
ware. - Unfortunately, the minicomputer is physically too large and heavy
to be practical in a DCP design. Also, power requirements for the mini-
computer cannot be met by the typical DCP power supply.

—

The microprocessor is causing a revolution in the process control
field [1-4].* A microprocessorized DCP would be programmable like the
minicomputer, yet cost, size, weight, and power requirements would be
greatly reduced. Produced in quantity, a microprocessorized process
control system provides reduced hardware costs over an equivalent custom
random-logic process-control system. This is due mainly to a reduction
in the number of components required [173, 5-7j.

A microprocessor-based DCP could not only provide reduced hardware
costs, but later modification of the DCP task could be achieved at a
significantly lower cost compared to a custom random-logic design. The
cost of redesigning a custom random logic system could well exceed the
- “initial design cost. The microprocessor-based DCP would probably require
only a software revision. Hardware cost would be limited to replacement
or reprogramﬁing of one or more read-only memories (ROM's). Software
costs should in general be Tow compared to high redesign and hardware
costs for a cuStom random logic-system. . .

Besides providing great‘flexibility [3, 4] in altering the task
performed by the DCP, a microprocessor-based design offers the added
advantage of providing data processing capability at a small additional
cost. Providing data processing capability would require adding the
necessary software to perform the additional task. Again, hardware cost
would be minimal requiring only the addition of one or more ROM's.
Software cost could be spread out among the large number of DCP users.
Field programmable ROM's would be used in prototype models, and cost
effective mask-programmed ROM's would be used in production DCP's to
minimize hardware costs. Further hardware aspects of the proposed pro-
grammable DCP (PDCP) are discussed later in this report (Section 3.2).

*
References are located at the end of each chapter.
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To fully appreciate. the potential capabilities and advantages of a
microprocessor based DCP, one must be familiar with the basic concepts

of a general computer system and the specific hardware and software char-

acteristics of a microprocessor. Therefore, the remainder of this sec-
tion is devoted to a discussion of the basic characteristics of a
microcomputer.

The definition of a microcomputer differs from author to author;
however, a suitable definition for the purpose of this study is that a
microcomputer is a computer whose major component, the central process-
ing unit, is a single microprocessor chip or microprocessor chip set.
To complete the definition, the term computer mgst be defined.

Briefly, a computer is a device or machine which performs a pro=
grammed sequence of operations on data. A computer is comprised of
three major components:

e Central Proceséing Unit (CPU)
e Memory
e Input/Output (I/OX

Instructions and data are placed in the computer memory. The cen-
tral processing unit (CPU) fetches instructions from the memory and
executes the instructions. The instructions are programmed to cause the
CPU to process data. The set of instructions executed by the CPU is
called a program. Data may be initially in memory, processed by the
CPU, and results returned to memory. Input/output ports of the computer
provide a means of entering and retrieving the data from the CPU and/or
the memory. Note that data can be control words or signals as well as
numerical quantities. Thus, the computer is capable of performing the
following tasks:

1. Input data and control signals

2. Process and format data

3. Output control signals and data

e .
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In particular, a computer could input DCP sensor data; process the
data (convolutional encéding, Manchester encoding, data compaction, etc.);
provide and recognize DCP control signals; and format the platform data
to emulate any of the typical DCP data formats.

Sections 2.1 and 2.2 discuss the hardware architecture and software
aspects of the typical microprocessor. These sections reveal the pro-
cessing and control capabilities of the microcomputer and provide insight
into the question as to whether the microcomputer is indeed capable of
perfofming the task of a typical DCP.

2.1 HARDWARE ARCHITECTURE OF THE MICROPROCESSOR

There are three basic components of the typical central processing
unit (CPU) as depicted in Figure 2.1(1).

e Arithmetic/Logic Unit (ALU)
¢ Registers (Temporary Storage)
e Control Logic

The arithmetic/logic unit.(ALU), as the name implies, performs the
arithmetic and logical operations on the data processed by the CPU.
Registers provide temporary internal storage for operands and results
as well as address pointers for input/output and memory. The control
logic provides the various signals for initiatihg processor functions
and controlling external circuits. Recognition of exferna] control
signals is also a function of the control logic. The next three sub-
sections explain in detail the functions of the ALU, registers, and
control logic.

2.1.1 Arithmetic/Logic Unit (ALU)

A1l microprocessors have an arithmetic/logic unit (ALU) which per-
forms the arithmetic and logical operations. As shown in Figure 2.1.1(1),
the ALU generally has two multibit inputs.
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One input (Operand No. 1) to the ALU is usually the output of an
accumulator buffer. The buffer stores the accumulator data throughout
the ALU operation. Typically, all arithmetic operations are performed
between the accumulator register and a temporary register, which in some
CPU's may be a second accumulator. Input to the accumulator or second
operand register may be memory data, an input port, or some other hard-
ware register. The result of the operation is placed on the internal
CPU data bus. Often the result is returned to the accumulator. In this
case, the accumulator requires a buffer so that the original data in the
accumulator can be stored and applied to the ALU while the arithmetic or
logical operation is being performed. Thus, the result can be returned
to the accumulator even though the result is a function of the accumu-
lator's original contents.

A11 ALU's perform the basic arithmetic function of binary addition.
Additional arithmetic/logical operations performed by most CPU's include
binary subtraction, logical AND, logical OR; logical exclusive OR, com-
plement and register bit shift. Although not yet common functions, some
of the more recent microprocessors such as Texas Instruments' TMS 9900 -
also include binary multiplication and division. '

A very simple ALU may only provide binary addition. In this case,
binary subtraction, multiplication, and division may be performed only
after the programmer has written software routines to perform these
~functions. Routines can be written to perform binary subtraction, mul-
tiplication, and division with only the basic binary addition instruction
in conjunction with the ALU flags. Algorithms for performing various
binary operations in terms of simpler binary operations can be written
as needed for a given processing task. For example, multiplication by
two is equivalent to a single bit shift left, and division by two is
equivalent to a single bit shift right.

Although even the simplest ALU provides binary addition, the number
of additional binary operations provided varies widely from microprocessor
to microprocessor. One of the fundamental problems in selecting a micro-
processor for a particular task is deciding how much power in performing
arithmetic/logica] operations is sufficient.
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Referring again to Figure 2.1.1(1), notice that the data path
between the flag register is bidirectional. The operations performed by
the ALU produce an output which may be zero, have a carry or borrow,
have even or odd parity, or have positive or negative sign. These aux-
iliary outputs are called flags and are stored in the flag register for
subsequent ALU operations. The flag reg{ster is thus a source and
destination register.

Besides providing additional data to the ALU, the flag register
often provides information for the control logic. Program branching may
be conditional on the result of an ALU operation (value of a flag). For
example, the programmer may wish to call an overflow subroutine if an
ALU operation produces a carry. By placing a call on carry instruction
after the ALU operation instruction, the overflow subroutine would be
called only if the result of the operation produced a carry. References
10-14 discuss the use of flags and conditional branching in more detail.

2.1.2 Registers

The hardware registers internal to the CPU provide temporary stor-
age locations for data, instructions, and address pointers. The number
of bits per register is usually an integer multiple of the characteris-
tic word length of the CPU. A1l computers have a characteristic word
length. The characteristic word length is generally determined by the
size of the internal storage elements (registers) and the interconnect-
ing buses. As an example, a CPU that has mostly eight-bit registers and
eight-bit buses that transfer information between the registers is said
to have an eight-bit word length. Some confusion results when the
address bus is other than the characteristic word length.

Perhaps a better indication of the word iength of the CPU is the
maximum number of data bits stored at a single memory address. Most
hardware registers of the CPU are usually equal in size to the memory
word Tength. An example is the 8080A used in the UT PDCP development
system. The word length of memory is eight bits. The internal gen-
eral purpose registers in the 8080A CPU are eight bits. Certain
éddress registers such as the program counter and stack pointer are



2-9

comprised of 2 eight-bit registers. Registers, then, are simply tempo-
rary storage elements in the CPU. There are many types of special
purpose registers which are summarized below.

2.1.2.1 Program Counter Register - A1l CPU's contain a program

counter register. This register stores the memory address from which
instructions are fetched from memory. Each time an instruction is
fetched, the program counter is normally incremented by one to point to
the memory location where the next instruction is located. Multibyte
instructions may require multiple ihcrementing of the program counter
in order to read the entire instruction (usually accomplished automat-
ically). Some instructions contain immediate data stored sequentially
following the instruction. In this case, the program counter is
incremented one or more times so that the entire instruction is read in.
After the last byte of the instruction is read, the program counter
register is incremented again to point to the first byte of the next
instruction.

“~Most 'CPU's "provide at Teast "two ‘means to alter an otherwise sequen-
tial fetching of instructions. The jump-type instruction alters the
program counter register éontents according to a particular addressing
mode specified by the jump instruction (see References 10-14). The
subroutine call instruction allows program flow to another area of
memory, and upon completion of the "called subroutine" the program
returns to the instruction following the call. Execution of a subrou-
tine call requires a stack to store the address of the instruction fol-
lowing the call instruction. When a call instruction is encountered, |
the address of the instruction following the call instruction is stored
in the stack. Then the program counter is loaded with the address of
the subroutine and the subroutine is executed. Upon completion of the
subroutine, the address previously stored in the stack is returned from
the stack and placed into the program counter. This action is initiated
by placing a return from subroutine instruction as the last executed
instruction at the end of the subroutine. This causes program execution
to return to the calling program.
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2.1.2.2 Stack and Stack Pointer - A CPU that provides subroutine
calls must have a stack. A stack is a last in, first out (LIFO) buffer
storage element; that is, the last value stored is the first to be read

out.

Two types of stacks are found in microprocessors. The hardware. ..
stack (e.g., the Intel 8008) is a LIFO buffer storage element internal
to the microprocessor integrated circuit. The software stack (e.g.,
Intel 8080A or Motorola 6800) is a LIFO buffer storage element imple-
mented in the computer random-access memory or some memory external to
the CPU integrated circuit.

An advantage of the software stack is that stack size is 1limited
only by the amount of external memory the programmer dedicates to the
stack function. In the case of a software stack, an internal (to the
CPU) address register called a stack pointer register is used to address
the memory area which is software programmab]e‘to serve as the CPU stack.
The stack pointer register is generally the same size as the program

-counter -register.

Besides storing addresses for subroutine calls, the stack may also
serve as a data storage element. For example, in the 8080A, there are
"push" and "pop" instructions which provide for storage of the contents
of the various hardware registers. An instruction set possessing this
capability has a significant advantage over the ones that do not. Sup-
pose anlexternal interrupt request occurs while the CPU is executing a
main program. Further, suppose the interrupt service routine may change
CPU register contents depending on which device issues the interrupt.
Without stack storage of processor status (contents of CPU registers),
the interrupt may have to be delayed until a point is reached in the
main program where loss of CPU status is not critical. With stack stor-
age of CPU status, the interrupt can be processed almost immediately
with processor status "pushed" onto the stack at the beginning of the
interrupt service subroutine and CPU status restored by "popping" the
stack at the end of the interrupt subroutine.
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2.1.2.3 Accumulator and General Purpose Registers - One of the

operands used in ALU operations is generally the current contents of the
accumulator. The number of bits in the accumulator register is a good
indication of the characteristic word length of the CPU.

During an ALU opefation, the accumulator register's contents and
some other register's contents are applied to the inputs of the ALU
[see Figure 2.1.1(1)]. The result of the operation is usually returned
to the accumulator via the internal data bus of the CPU.

In contrast to other operand registers which may be input to the
ALU, the accumulator contents are, in general, altered following the com-
pletion of an ALU operation. The accumulator is a source for operands
and, in most cases, also a destination for results. The buffer register
following the accumulator provides the temporary storage of the accumu-
lator register data while the ALU operation takes place. This allows
the result of the ALU operation to be returned to the accumulator.

Other hardware registers which serve only as a source or destina-
tion register (but not both simultaneously) are called general purpose
registers. Some microprocessor architectures do not provide general
purpose registers, thus requiring all ALU or other CPU operations to be
performed between accumulators, memory, and I/0 only. Microprocessors
lacking general purpose registers often provide more flexible memory
addressing modes to allow single or double byte instructions to execute
ALU or other operations with different memory locations. In other
words, external memory is used for general purpose registers.

2.1.2.4 Instruction Register - The instruction register is used

for temporary storage of the instruction fetched from memory. At the
beginning of the instruction cycle (see Section 2.1.3), the instruction
is fetched from memory and loaded into the instruction register. The
word length of the instruction register is thus equal to the word length
of memory. :

Corresponding to each particular operation the CPU must perform is
a unique code called the instruction or operation code. For an n-bit
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machine, there are 2" unique instruction codes that could be used. Thus,
an eight-bit machine allows for up to 28 (256) unique instruction codes.
The codes are stored sequentially in memory and are fetched one by one
into the instruction register where they are stored during decoding and
 execution of the instruction.

2.1.2.5 Address Registers - The stack pointer and program counter

are examples of special function address registers. Some CPU's have
other address registers which provide absolute memory pointers, relative
memory pointers, input port address pointers, and output port address
pointers.

In some CPU's, a general purpose address register may be used for
many functions. For example, the 8080A has two general purpose registers
(H and L) which are absolute memory address pointers; yet, they may also
be used for data storage, stack pointer storage, and even double preci-
sion shift left and add.

-Memory reference instructions require.an.address register to hold
the address of the memdry Tocation to be referenced by the instruction.
Sometimes this address register is loaded with an address fetched.by:
memory as part of a multibyte instruction. Some CPU's such as the
Motorola 6800 provide an address index register which is used as an
indexed memory pointer. Data can be stored or retrieved from the address
specified by the index register plus or minus a fixed amount (relative
addressing).

2.1.3 Control Logic

The primary and ﬁost complex component of the CPU is the control
logic. The control logic provides the sequential signals that perform
the various processing tasks.

A necessary input signal to the control logic of all CPU's is a
master clock. Some microprocessors such as the MOS Technology MCS 6502
have an internal clock while others require an external clock. The
popular Intel 8080A used in the UT PDCP requires an external two-phase
clock. '
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Other inputs to the control logic include decoded instructions from
the instruction register, flags generated by previous ALU operations,
and external control signals such as interrupt, wait, or DMA (direct
memory access) requests. The function of the control logic is to take
all these input signals and output the necessary signals in the proper-
sequenEéAso as to execute the appropriate processing task.

The CPU operates in a cycle. That is, the processor fetches an
instruction, decodes the instruction, executes the instruction, fetches
the next instruction, etc. The master clock provides a reference timing
signal to synchronize the events in a processor cycle.

An instruction fetch, instruction decode, and instruction execution
is often called an instruction cycle. The instruction cycle generally
requires one or more subcycles called machine cycles. Each distinct
function performed during a machine cycle is called a state. A state
generally requires one or more periods of the master clock. The first
state of every instruction cycle is an instruction fetch. During the
dinstruction fetch state, theﬁprogram counter provides the address of the
next instruction, and a memory read subcycle places the instruction
fetched from memory on the internal data bus. From the data bus, the
instruction is loaded into the instruction register. The instruction
remains in the instruction register throughout the instruction cycle.

Following the decoding of the instruction, cycle status information
is provided by the control Togic. Cycle status signals indicate the _
type of machine cycle that is to be performed. For example, the instruc-
tion cycle may be input/output (I/0), memory referencing (memory read or
write), internal CPU processing, or a combination of these.

Input/output cycles may not be provided by some microprocessors.
This class of microprocessors relies on a technique called memory-mapped
I/0. That is, input and output ports are treated like any other memory
location. Data sent to or from a memory-mapped I/0 port appears to the
CPU to have been written into or read from memory. All microprocessors have
the capability of memory-mapped I/0. Those microprocessors providing
I/0 cycles offer a second method to input and output data to and from
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the CPU. The I/0 cycle is flagged by I/0 status bits following the
decoding of an I/0 instruction. The I/0 flag bits combined with the I/0
port address provide the signals to select the external I/0 ports and
whether the operation is to be an input or output. Memory mapped I/0

uses memory read or write flag bits combined with reserved memory addresses '
to operate the external I/0 ports.

Memory reference subcycles are either memory read (data is returned
from memory) or memory write (data is stored in memory).' Several machine
states are usually required to execute a memory reference subcycle. For
example, in a memory read subcycle status information is first provided
by the control logic, indicating a memory read cycle is to be excecuted.
Following status information, the memory addre§s is sent to the external
address bus. At this point in the subcycle, depending on the capabilities
of the microprocessor,. the memory read signal is issued or delayed if .
necessary to allow for minimum memory access time. Finally, data is
returned from memory on the external data bus and routed to the appro-
priate destination register within the CPU.

For a memory write subcycle, the sequential operation is reversed
slightly compared to the memory read subcycle. In this case, the first
and second steps are similar; that is, status information is sent out by
the control Togic indicating a memory write subcycle is to be performed.
Then, the memory address is placed on the external memorv address bus.
The third step differs in that data (instead of a control signal) is
sent out by the CPU to the external memory data bus. Finally, the mem-
ory write signal is sent out by the control logic. Again, some micro-
processors provide a means to delay the memory write signal to allow for
minimum memory access time.

Microprocessors providing delay for slow memory or I/0 have what is
called a ready control signal input and a special machine state called a
wait state. As long as the ready control signal input is true, CPU
operation takes place at full machine speed set by the CPU master clock.
Making the ready input false temporarily freezes CPU operation while
retaining all CPU status. Usually, the ready input is checked just pribr
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to the memory or 1/0, read or write control signal. Thus, address and
data are held constant while in the wait state. If memory or I/0 is too
slow when the CPU operates at full speed, a wait-cycle generator can be
used to place the CPU in the wait state for a minimum period of time
required for memory or I/0 access. Memory or I/0 that is fast enough to
operate with the CPU at full machine speed is said to be capable of
operafing synchronously with the CPU. Memory or I/0 which is not fast
enough and requires the CPU to synchronize with the external memory or
I1/0 cycle is called asychronous memory or I/0. Assuming the micropro-
cessor has a ready signal input, slow memory requires an external
wait-cycle generator to delay the appropriate read or write control
signal.

. The class of microprocessors that do not provide a wait state require
additional hardware to operate with asynchronous memory or I/0. First,
a circuit is needed to recognize the memory or I/0 cycle. The problem
arises at this point as the only alternative to suspend CPU operation,
yet retain data on the address and data buses, is to provide external
address and data storage and place the CPU in DMA if indeed DMA is pro-
vided. A possible second alternative is to stop the CPU master clock.
Stopping the clock, however, is usually not a solution since many pro-
cessors are dynamic and internal status requires clock refresh cycles.
In practice, the clock pulse is stretched just long enough to allow the
memory or I/0 access. The hardware to provide this operation is con-
siderably more involved than a wait-cycle generator circuit.

Using sTow memory or I/0 with a microprocessor may be possible
without any external wait-cycle generation circuitry. 1f the application
does not require the microprocessor to be run faster than the memory or
1/0 access times, the CPU clock frequency can be reduced to meet memory
or 1/0 access times. This solution is applicable only if the minimum
CPU clock frequency requirement is met. For example, fhe Pro-Log MPS
system used in the UT PDCP (see Section 5.1) uses a 1.6666 pusec state
time which allows the use of slow ROM without need for a wait-cycle
generator.
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Internal processing subcycles generally require the least amount of
time (fewest number of states) to execute. Typical internal processihg
cycles are register-to-register move, arithmetic operations between
registers, and increment a register's contents. Since the internal
operations involve only internal storage elements, no time is required
for access of external I/0 or memory. The minimum cycle time specified
for a particular machine is usually the minimum time in which some simple
internal CPU operation can be performed. Minimum cycle time for a CPU
is not necessarily a good criteria for evaluation of a particular micro-
processor. Although the minimum cycle -time of two microprocessors may
be the same, one may perform a larger function than the other during the
minimum cycle time.

As presented earlier, some instruction cycles may be a combination
of basic I/0, memory reference, or internal CPU operation subcycles.
For example, one instruction may involve reading data from memory and
adding the data to the internal accumulator register. Usually two
machine subcycles are required to perform an add memory to accumulator
type instruction. The first machine subcycle would fetch the add memory
instruction, decode the instruction, send out the memory address of the
data to be added, and fetch the data to an internal temporary storage
register. Several machine states would be required to perform this part
of the instruction. The second machine subcycle would be an internal
CPU operation subcycle which would be to input the accumulator and the
temporary storage register contents to the ALU; direct the ALU to add
the operands; and finally, place the result in a destination register
(usually the accumulator). Many combinations of machine subcycles can
be generated to perform various instruction cycles. The programming of
machine subcycles comes under the topic of microprogramming which is
discussed in Section 2.2.2.3.

Interrupt and hold control signal inputs are provided by most micro-
processors. An interrupt, as the name implies, allows temporary inter-
ruption of main program processing to allow for execution of some sub-
routine. The principle advantage of interrupt capability is evident
when using a peripheral much slower than the CPU. Suppose output to a
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slow peripheral is required. Without interrupt provisjon, the processor
must wait for the slow output device. With interrupt capability, the
processor can be continuously processing, and when the slow output device
is ready to take data, an interrupt request is sent to the CPU. The
output routine to service the interrupt is executed, and the processor
returns to the main processing task. The CPU need never wait for a slow
periphefa].

The hold signal input provides just the opposite speed difference
capability. Suppose an external peripheral is capable of outputting or
inputting data faster than the CPU can process or generate data. If the
processor provides a hold cycle, data may be passed between memory and
the external device at a rate equal to the accéss time of the memory
plus the-time required for the CPU to recognize a hold request. When
the control logic recognizes a hold request, the address and data buses
are placed in the tri-state mode (floating), and a flag is generated by
the control logic to indicate to the external circuitry that the address
and data buses are now available for use by the external device that
requested the CPU hold cycle. The external device may then address
memory directly and perform a memory read or write cycle independent of
the CPU. This operation is called direct memory access or simply DMA.

In PDCP applications, the data rate between CPU and sensors, or CPU
and the platform transmitter, is generally slow compared to the process-
ing speed of the microprocessor. Therefore, in PDCP applications, the
DMA or hold capability will probably not be required.

The only remaining topic of the hardware architecture of the micro-
processor that must be considered is the problem of system start-up.
A1l microprocessors have the capability to load the program counter with
some particular address upon the application of an external start-up
signal. This is equivalent to initiation of a program since the program
counter is loaded with the starting address of the program. Perhaps the
best way to discuss hardware start-up is through examples.
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The 8080A microprocessor provides three techniques for initiating a
program. The most fundamental of these is application of an external
reset signal to the reset control signal input of the 8080A chip. The
control logic recognizes a reset request and places zero in the program
counter. A1l other CPU status is unchanged. Thus, a vectored start-up
to absolute address zero is performed. The problem with this method is
that either Tocation zero must be the starting point of the start-up
program or the Tocation must be preloaded with a jump instruction to the
desired location. If location zero is ROM, then on power-up, the system
may be started immediately with only a reset pushbutton required. If
location zero is volatile RAM, location zero must be preloaded. A fur-
ther complication results if all memory is volatile; in this case, a
short boot-strap loader program must be toggled in by hand, and system
start-up would include jumping to the boot-strap loader program which
loads the system program(s). Usually, the simple boot-strap loader is
used to load a more complicated loader with some sort of error checking.
The more complicated loader then loads the system program(s) and passes
control to the system program(s) at the conclusion of the loading
routine. One microprocessor, the RCA CPD 1802 provides a hardware
boot-strap. The CPD 1802 provides a special DMA cycle which permits
sequential memory loading starting at location zero.

The second and third methods of starting the 8080A series micropro-
cessors involve the interrupt capabilities of the device. There are
eight single-bit restart instructions which cause an unconditional call
to eight particular locations in memory (locations 0, 10, 20, 30, 40,

50, 60, and 70 octal). That is, the present value of the program counter
is saved in the stack, and the program counter is loaded with one of the
eight appropriate restart locations. All other CPU status is unaffected.
The restart @ (restart to location @) is similar to a reset, only addi-
tional hardware is required to jam the interrupt restart instruction onto
the data bus. Also, the stack is affected by the restart instruction.
The original 8080 provides only the reset and restart interrupt methods
of system start-up. The newer 8080A series of microprocessors permit a
three-byte instruction interrupt. That is, a three-byte instruction may
be jammed onto the data bus during the interrupt. This permits unlimited
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vectoring of the program counter since a call or jump instruction can
specify a branch to any of the 216 (65,536) possible memory locations.
Of course, additional hardware is required to interrupt with three bytes
since three bytes must be presented sequentially to the CPU data bus
instead of only one. '

Most microprocessors provide some sort of reset input that vectors
the program counter to a particular location although the location is
not always zero. The Motorola 6800 provides an interesting start-up
technique which differs from the three methods just described. The
desired program starting address is preloaded in the top two locations
of memory. The reset signal initiates a special machine cycle which
loads the program counter with the address stored in the top two memory
locations. The resulting operation is equivalent to an unconditional -
jump to the memory location specified by the contents of the top two
memory locations. Again, the top memory locations must be either
non-volatile or pre-programmed.

“272:”MTCROCOMPUTERNSOFTWARE'ASPECTS

A microcomputer must be programmed in order to perform a process
control task. In the case of a microprocessorized DCP, the DCP system
algorithms must be converted into a set of instructions (the microcom-
puter program) that can be directly 1oaded into the system memory. The
process of converting system algorithms into machine executable instruc-
tions is often called coding.

As depicted in Figure 2.2(1), there are many levels of microcom-
puter coding. At the top of the scale are compilers and interpreters
such as FORTRAN, PL/1, and BASIC. These high-level languages are
machine independent in that a program written in any high-level language
can be executed on any machine which supports that particular high-level
language. For example, one could write a FORTRAN program to run on a
DEC PDP-11/45 and also execute the program on an Intel 8080A microcom-
puter with 1ittle or no change in the original FORTRAN source program.
0f course the original program would require recompiling using an 8080A
FORTRAN compiler.
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Figure 2.2(1) Coding Levels.
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Intermediate-level programming is a more complex process than
high-level programming. An assembly language programmer must have a‘
thorough knowledge of the particular microprocessor's instruction set
and a complete understanding of the particular microcomputer's hardware
architecture. Assembly language programming is called machine dependent
programming since instruction sets vary greatly from one microprocessor
to another.

At the bottom of the coding scale is low-level programming. Machine
language programming is extremely time consuming and should generally be
.avoided. Machine language programming is the process .of hand loading
the machine binary digits representing the various instructions the pro-
grammer wishes the CPU to perform. The binary digits are literally
"toggled in" from a switch register or typed in as numbers from a key-
board. This process requires considerable time and effort from the
programmer. Machine coding should not be required for PDCP applications
since assembly language programs are available for mdSt:CUrrent micro-
processors. The UT PDCP system described in Section 4 provides machine
level coding capabi]it%es as well as simplified symbolic assembly lan-
guage programming.

The most basic level of microcomputer coding is a highly machine
dependent technique called microprogramming. Microprogramming is some-
times referred to as the bridge between hardware and software [8].

This is because a microprogram consists of the control words used to
decode machine instructions (software) into machine operations (hard-
ware). The microprogram resides in the control storage element of the
CPU. The control storage device is either a read only memory (ROM) or
programmable logic array (PLA). Some microprocessor manufacturers allow
the user to specify the microprogram. Since the microprogram defines

the instruction set of the microprocessor, this allows the user to develop
the optimal software structure for a particular application.

In addition to programming languages, the microcomputer programmer
requires several utility programs to complete the programming task. A
text editor program is useful in preparing the source code of a program.
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Source code is the name given to the human readable program. Source

code is compiled or assembled into equivalent machine executable object
code. Another required utility program is a loader which is used to

load the object code output of a compiler, interpreter or assembler pro-
gram directly into the microcomputer memory. Finally, debugging and
simulator programs aid in testing the object program. The remainder of
this section provides a more detailed description of the software aspects
of the microcomputer.

2.2.1 Microcomputer Instruction Sets

A microcomputer instruction provides the binary information required
by the control logic of the CPU to perform a particular processing task.
According to Weiss [9], microprocessor instructions can be conveniently
grouped into four basic categories:

'1. Data Movement
2. Data Manipulation

3. Decision and Control

-

Input/Output

Data movement instructions control the movement of data from
register-to-register, register-to-memory, memory-to-register, and
memory-to-memory. Figure 2.2.1(1) graphically illustrates possible
sources and destinations for data movement. Note that data flow to and
from input/output ports is also depicted in Figure 2.2.1(1). Input/out-
put data movement is a special case of the general class of data move-
ment instructions.

Data manipulation instructions provide arithmetic and logical
operations on data. Arithmetic instructions include add, subtract,
multiply, divide, and increment/decrement. Typical logical operations
are logical AND, OR, exclusive OR, complement, compare, and rotate/shift.
A1l microprocessor instruction sets provide the basic binary add instruc-
tion. If other data manipulation instructions are required but are not
included in the instruction set, the needed instructions can usually be
implemented with a subroutine.
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Microprocessors execute instructions in a sequential manner unless
otherwise directed by a decision and control instruction. Non-sequen-
tial alteration of the program counter is a result of the execution of a
conditional or unconditional jump, jump to subroutine, return from sub-
routine, or skip instruction. Unconditional jump or call instructions
are sometimes called branch instructions. Also, some authors prefer
the use of the simpler term “call" to indicate a jump to subroutine type
instruction.

The choice of input/output device interfacing depends largely on
the nature of the input/output instructions provided by the particular
microprocessor. Many microprocessors provide no formal input/output
instructions. Instead, memory referencing instructions must be used
with a technique called memory-mapped I/0 (see Section 2.1.3). Input/
output instructions provide data transfer between the microcomputer and
external I/0 devices.

An explanation of the instruction set of a particular microprocessor
~-can~generally be ‘found ¥n ‘the user's manual published by that micropro- -
cessor's manufacturer. A complete description of the Intel 8080A
instruction set used in the UT PDCP development system is contained in
the Intel 8080A User's Manual [10]. A copy of the Intel 8080A User's
Manual is included with the UT PDCP System Operation Manual. ‘

Microcomputer instructions are similar to typical minicomputer
instructions. The major difference is that the execution speed of
instructions is generally much faster for a minicomputer. Recent tech-
nological advances, however, are narrowing this speed gap. Since the
form and resulting operations of microcomputer instructions are similar
‘to minicomputer instructions, texts and papers discussing general mini-
computer instruction sets are applicable to microcomputer instructions.
References 9, 11, and 12 provide excellent discussions of typical mini-
and microcomputer instruction sets.

Microcomputer instructions sets vary considerably from manufacturer
to manufacturer. The ability of a particular microprocessor to effi-
ciently implement a PDCP is primarily a function of that particular
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microprocessor's instruction set. Evaluation of the microprocessor's
instruction set must be a primary consideration in the selection of a
particular microprocessor for a PDCP design. As a result of the soft-
ware development incorporated in this study (see Section 4), certaih
types of instructions appear to be highly desirable for PDCP applica-
tions. Choosing a microprocessor that contains as many of the desirable
instruction types as possible will result in reduced memory costs due to
more efficient coding. These desired instruction types are given higher
weighting factors in the microprocessor evaluation presented in Section
6 of this report.

2.2.2 Microcomputer Programming

» ‘As indicated at the beginning of Section 2.2, the procedure for
converting process control system algorithms to machine executable
instructions is often called coding. Efficient coding requires a well
structured algorithm. Flowcharting is a useful technique for reducing
the algorithm to a form which can easily be converted to a computer
“program. The flow chart is a graphical representation of the distinct
operations required to implement the computer program. Numerous
examples of program flowcharting appear throughout Section 4 of this
report. Typical flow chart symbols are presented in Figure 2.2.2(1).
Once the flow chart for a program is developed, the programmer proceeds
to implement each block of the flow chart using an appropriate program-
ming language.

The basic programming tools available to the microcomputer programmer
are:

1. Programming languages
2. Utility programs
3. Microprogramming

The first two tools are programs that are actually run on the particular
microcomputer (resident program) or on some other computer (cross program-
ming). Programming languages and utility programs are discussed in
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Sections 2.2.2.1 and 2.2.2.2, respectively. The third tool, micropro-
gramming, is discussed in Section 2.2.2.3 of this report.

2.2.2.1 Programming Languages - Programming languages are con-

veniently grouped into three classes [see Figure 2.2(1)]:
1. High-level languages (compilers and interpreters)
2. Intermediate level languages (assemblers)
3. Low-Tlevel languages (machine language -and microprogramming)

High-Tevel languages include compilers and interpreters such as FORTRAN,

PL/M, COBOL, FOCAL, or BASIC. A1l five of these languages are currently

available for one or more microprocessors. -For example, the Intersil
6100 will suppeort all software available for the DEC PDP-8E minicomputer
including FOCAL, BASIC, COBOL, and FORTRAN. The Intel 8080A used in the
UT PDCP development system is supported by FORTRAN, PL/M, BASIC,

FOCAL, and COBOL. The significant advantages of high-level programming

are machine independence and a reduction in programming time. High-level

languages can reduce programming time by 50 to 80 percent. Also, exist-
ing high-level language programs can be recompiled to run on a micropro-
cessor which supports the particular high-level language used. The
high-level programming languages were each developed for particular
programming tasks. FORTRAN is designed primarily to solve mathematical

problems and thus may be useful for PDCP data processing. COBOL, however,

is a business oriented language and would have little application in the
PDCP field. PL/M, a microprocessor compiler originated by Intel, is a
subset of IBM's powerful PL/1 compiler. PL/M provides instructions
oriented toward commercial control and scientific problem solving.

BASIC is an interpretive language in that each 1ine of source code is
compiled as the program executes. BASIC requires a relatively large
amount of memory to execute even short programs. This is because the
BASIC source program and the BASIC interpreter program must both be
resident in memory during program execution. A compiler differs from an
interpreter in that the final compiled program is machine executable
object code. The compiler is not needed once the object code is
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generated., Finally, FOCAL is a language which was developed by Digital
Equipment Corporation to fill the gap between BASIC and FORTRAN. Like
BASIC, FOCAL is an interpretive language that requires considerable
memory overhead to run even short programs. Neither BASIC nor FOCAL are
recommended for potential PDCP application due to their high memory
requirements.

The principle disadvantage of using any high-level language for
PDCP programming is the inefficiency of the compiled object code.
Another significant disadvantage is inadequate input/output flexibility.
Also, program execution times are generally unknown and uncontrollable.
PDCP software timing routines require precise knowledge of the number of
machine states required to execute various subroutines. Even interrupt
timing techniques (see Section 4) require knowledge of execution times.
In this case, worst case execution times must be known to guarantee that
the subroutine will be completed within the alotted time span.

Assembly languages are intermediate level languages. An assembler
translates symbolic machine instructions or mnemonics directly into
machine executable object code. A mnemonic is a short form symbolic
name given to each instruétion in the instruction sét of a particu]ar
microprocessor. Mnemonics used to represent instructions vary greatTy
from manufacturer to manufacturer. This is due to the wide variation in
microprocessor instruction sets. Since microprocessor instruction sets
vary from machine to machine, assembly language programming is machine
dependent. A primary disadvantage of assembly language programming is a
direct result of the variation of instruction sets. The microcomputer
programmer must be thoroughly familiar with the instruction set of the
machine to be programmed. Furthermore, efficient assembly language
programming requires complete understanding of the particular microcom-
puter's hardware architecture.

Many types of microcomputer assemblers are available. Cross assem- .
blers are run on a machine other than the microcomputer for which the
program is written, whereas resident assemblers are run on the machine
for which the program is written. A1l assemblers translate symbolic
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instructions to their equivalent object code. Several additional fea-
tures are often found on current microcomputer assemblers. The most
useful feature is a provision for symbolic addresses and constants.
These symbolic names and labels can be used to represent address and
data constants. This feature reduces programming errors by freeing the
programmer from the burden of keeping track of absolute addresses and
constants. Some assemblers even provide algebraic manipulation of
address and data expressions. Recognition of pseudo assembly directives
is provided by most assemblers. For example, the pseudo directive "END"
informs a typical 8080A assembler that the location of the END directive
marks the end of the source code to be assembled. Macroassemblers
usually provide for all the above features plus the assembly of macro-
instructions. A macroinstruction is a single line instruction used to
represent a multi-instruction sequence. This feature supplies some of
the programming simplicity of a high-level 1anguagé since a single line
of source code can replace many machine instructions. Note, however,
that assembly language efficiency is retained. Other features provided
by some microcomputer .assemblers include.conditional assembly directives,
relocation and linkage of multiple program segments, optional assembler
listing formats, and loading of object code output directly into memory
or to some external storage device for later loading into memory.
Microcomputer assemblers are quite similar to typical minicomputer
assemblers. References 13 and 14 provide general discussions of typica]
mini- and microcomputer assemblers.

2.2.2.2 Utility Programs - Once a program has been written and

translated to object code, the object code must be loaded into the sys-
tem memory and the program must be checked for correct operation. A
loader program is used to load the object code directly into memoky. A
loader program is not required when using a programming language that
outputs object code directly to memory. This feature is provided by
some microprocessor assemblers. Certain high-level languages do not
have object code output (such as BASIC). In this case, a loader is
required to enter the source code. Several types of program loaders are
available for current microcomputers. The simp1est is a boot-strap
loader. The boot-strap loader program is purposely very short and
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provides none of the error checking or other advanced features typical
of the more complex general purpose loaders. A simp]é boot-strap loader
could be used to load any program; however, the boot-strap loader is
typically used to read a more sophisticated loader. Control is then
transfered to the second loader which usually provides error-checking
and automatic program start-up following the loading process. Unless a
machine has non-volatile memory pre-programmed with a loader, the pro-
grammer.must manually load a boot-strap loader program to initiate sub-
sequent program loading. The UT PDCP development system includes an
error-checking cassette loader routine as an integral part of the system .
monitor program (see the System Operation Manual). The loader routine

js stored in PROM (programmable read only memory) and is available to
the user at all times.

Once a user program is loaded into memory, the program can be
executed and checked for correct operation. If the program runs cor-
rectly, the software task is complete. Typically, however, programs
contain "bugs" which prevent correct operation of the program. The bugs
"must be removed by a teéchnique called program debugging. Microcomputer
programs which allow examination and alteration of memory contents to
assist the programmer in debugging and correcting the program are avai1¥
able. Often these programs include a routine which will print the CPU
status (register contents). Breakpoints may be set in memory to tempo-
rarily suspend program execution when a specified point in the program
is encountered. Thus, breakpoints permit the programmer to examine CPU
status and memory at any point of program execution. This enables the
programmer to debug the program in small sections. As bugs are found,
they are corrected, if possible, by altering the instruction sequence in
memory. Often the programmer will initially .insert "no operation"
instructions throughout an untested program. This provides memory space
between the original program instructions so that additional instructions
can be inserted if they are required. The UT PDCP system monitor con-
tains extensive program debugging aids.

A simulator program provides a very powerful technique for testing
and debugging a microcomputer program. A simulator program, as the name
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implies, simulates the operation of the microcomputer. Program develop-
ment and testing is simplified by using a large computer system supported
by peripherals such as a video display terminal, a high-speed line
printer, and a disk drive. The full potential of a simulator can only

be realized by using such a developmental system.

The simulator provides the basic function of program instruction
tracing. That is, the result of executing each instruction can be dis-
played and verified by the programmer. Any discrepancy between what the
program actually does and what the programmer feels should be happening
is immediately evident. The programmer can then patch the program to
correct errors as they are found. The process continues until the pro-
gram runs without error. Some simulators provide additional features
such as counting machine states required to execute a program segment,
optional tracing and listing modes, and simulated memory examination and
alteration. Final program verification must be performed on the actual
PDCP system since the simulator cannot verify correct operation of 1/0
and control interfacing. For example, external A/D conversion may be
dependent on software timing which must be verified on the actual PDCP
hardware system. Full simulator potential plus final checkout could be
achieved simultaneously by using a microcomputer development system that
includes the same hardware interfaces that are used on the PDCP system.

2.2.2.3 Microprogramming - A microprogram is an integral part of

the control logic of most microprocessors. In a microprogrammed control
unit, the numerous individual operations required to execute each
instruction cycle are defined by microinstructions fetched from a
read-only-memory or a programmable logic array. Therefore, each macro-
instruction written by a user is actually executed by a microprogram,
and the instruction set of the microprocessor is defined by the set of
microprograms stored in the CPU control unit read-only-memory.

Some microprocessor organizations are designed to permit users to
specify the microprogram. These microprogrammable microprocessors offer
users the potential advantage of defining an optimal instruction set for
their particular application. Microprogramming essentially extends the
advantages of programmed logic one step further down the quantum ladder.
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The constraint of a predefined instruction set is removed leaving only
the basic constraints imposed by the hardware architecture of a partic-
ular microprocessor.

The PDCP software development portion of this study (Section 4)
provides some insight {nto the problem of defining an optimal microcom-
puter instruction set for a PDCP. In Section 4.3, the potential contri-
butions of microprogramming to the development of block operator
subroutines for the library of an applications-oriented software devel-
opment system are outlined. General microprogramming concepts are
discussed in References 8, 15, 16, 17, 18, and 19.
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3.- PDCP SYSTEM HARDWARE

PDCP system hardware must be designed to satisfy the constraints
imposed by the remote data collection application. Typically, design
goals include minimizing power consumptioh, weight, maintenance, and
cost while providing accurate and reliable operation. As illustrated
in Figure 3(1), DCP hardware can be partitioned into three systems con-
sisting of the sensors, the digital control logic, and the transmitter.
This section discusses the influence of microprocessor technology on the
design of each system of a PDCP. In addition, standards which could
promote lower PDCP costs are recommended, and the development of a stan-
dard, modular PDCP design is proposed.

3.1 SENSOR CLASSIFICATION AND INTERFACING

The most variable elements in data collection systems are the sen-
sors. With measurements being made in such diverse fields as agriculture,
ecology, hydrology, and search and rescue, many types of sensors must be
.accommodated by the data collection platform. A signal conditioner is
generally placed between the sensor output and the DCP to convert the
sensor output to a standard electrical signal which is compatible with
the DCP. In previous systems, this signal has been a voltage, a fre-
quency, or a digital logic Tevel depending upon the particular design of
a data collection platform telemetry system. For programmable data col-
lection platforms, the ideal interface occurs at digital logic levels.
For analog sensors, an analog-to-digital converter is required as a
signal conditioner. The sensor interface is then made at the input to
the analog-to-digital converter.

3.1.1 Sensor Classification

User requirements have been documented in recent studies [1].
Table 3.1.1(1) gives a list of the disciplines which have a need for
data collection by satellite. Table 3.1.1(2) provides a list of para-
meters for which sensors are required and the discipline in which the
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TABLE 3.1.1(1)
SATELLITE DATA COLLECTION DISCIPLINES

Disciplines

Agriculture ‘ Meteorology
Biological Behavior Navigation
Ecology Oceanography
Geology Search and Rescue

Hydrology Transportation
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TABLE 3.1.1(2)

SENSOR MEASUREMENT PARAMETERS AND
ASSOCIATED DISCIPLINES

Parameter

Discipline

Acceleration

Acoustic Noise

Acoustic Output

Activity (Time Up and Down)
Aerosols |

Air Particles

Air Pollution
Albedo
Bioluminescence
Blood Pressure
Body Position
Cargo Security
Chlorine

Cloud Cover
Conductivity

Creepmeter

Crop Condition

Dew Point/Front Point
Dissolved Oxygen (Water)

Diving Depth
EKG

Evaporation
Geographical Fix

Biological Behavior
Oceanography
Biological Behavior
Biological Behavior
Meteorology

Biological Behavior
Ecology

Agriculture

Geology
Oceanography
Biological Behavior
Biological Behavior
Transportation
Oceanography
Agriculture

Ecology
Geology

Geology
Agriculture
Hydrology

Ecology
Hydrology

Biological Behavior

Biological Behavior
Ecology

Hydrology

Agriculture
Biological Behavior
Ecology

. Geology

Oceanography
Search and Rescue
Transportation



TABLE 3.1.1(2)
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(continued)

Parameter

Discipline

Heading (Compass)
Heart Rate
Humidity (Relative)

Ice Presence

Ice Thickness

Light at Surface
Light Penetration
Magnetic Field
Oxidents

Oxygen Concentration
Particle Counts (Airborne)
pH (Soil)

pH (Stomach)

pH (Water)

Phytoplankton Counting

Pipeline Current
Pipeline Voltage
Pitch Angle

Pore Pressure
Precipitation

Pressure, Atmospheric

River Stage
Salinity

Biological Behavior
Biological Behavior

Agriculture
Ecology
Geology
Meteorology
Oceanography

Hydrology

Hydrology

Ecology

Ecology

Geology

Meteorology
Agriculture

Ecology

Ecology

Biological Behavior

Ecology
Hydrology

Ecology
Oceanography

Geology
Geology
Biological Behavior
Geology

Agriculture
Ecology
Hydrology
Meteoroliogy

Meteorology
Oceanography

Ecology

Agriculture
Ecology
Oceanography



TABLE 3.1.1(2)

(continued)

Parameter Discipline

Sediment Ecology

Seismometer Geology

Snow Cover Agriculture
Meteorology

Snow Depth Agriculture
Hydrology

Snow Moisture Equivalent Hydrology

Soil Moisture Agriculture
Ecology
Hydrology

Solar Radiation

_(Surface and Depth) Ecology

Solar Radiation

(Net Allware) Agriculture

Specific Conductance

Storm Surge

Strain, Biaxial

Strain Gage

Speed, Swimming

Tail Beat (EKL)

Telluric Current (On Pipe)
Telluric Current Frequency
Temperatire, Air

Temperature, Body Surface
Temperature, Cargo
Temperature, Deep Body

Biological Behavior
Ecology

- Hydrology

Meteorology
Hydrology
Meteorology

Geology
Oceanography
Biological Behavior
Biological Behavior
Geology

Geology

Agriculture
Biological Behavior
Ecology

Geology

Meteorology
Oceanography

Biological Behavior
Transportation

Biological Behavior

3-6
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TABLE 3.1.1(2) (continued)

Parameter Discipline
Temperature, Sea Surface Meteorology
Temperature, Soil Ecology

. Meteorology

Temperature, Stomach
Temperature, Surface
Temperature, Water

Tide Height

“Tilt, Biaxial

Time

Time In and OQut of Water
Total Organic Carbon .
Tsunami

Turbidity

Vapor Pressure

Water Current Profile
Water Depth

Water Direction

Water Level

Water Table Depth
Water Velocity

Wave Height
Wave Spectra
Wildland Fire
Wind Profile

Biological Behavior
Biological Behavior

Biological Behavior
Ecology

Hydrology
Oceanography

Ecology
Geology
Biological Behavior
Biological Behavior
Ecology
Geology

Ecology
Hydrology
Oceanography

Agriculture
Oceanography
Biological Behavior
Oceanography

Geology
Hydrology

Hydrology

Biological Behavior
Ecology

Hydrology
Oceanography

Transportation
Oceanography
Ecology

Agriculture
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TABLE 3.1.1(2) (continued)

Parameter Discipline

Wind Speed Biological Behavior
Ecology
Geology
Hydrology
Meteorology
Oceanography

Wind Vector (Direction) Agriculture
Hydrology
Meteorology
Oceanography




3-9

sensor could be utilized. Among this list are sensors which have already
seen service in satellite data collection systems. A typical group com-
posed of hydrology sensors is listed in Table 3.1.1(3) along with their
signal conditioner outputs. While the direct output of each sensor may
be a measurement in volts, amperes, or ohms with nonlinear and suppressed
zero scales, the signal conditioners have conveniently translated the
output ranges to lie between zero and plus five volts.

3.1.2 Sensor Interfacing

A number of sensors already exist which could interface directly
with a programmable data collection platform including those in Table
3.1.1(3) with the addition of an analog-to-digital converter. Some
sensors include their own signal conditioning equipment which converts
the basic sensor output to a digital logic level. For example, the
temperature sensor in the TWERLE experiment converts the measured tem-
perature to a frequency output. A counter measures the number of cycles
of this frequency over a fixed period; the contents of the counter regis-

-+ters .are a digital representation of -the temperature value.

Two basic classes of signal conditioners will probably be required
in a PDCP system. One class converts the non-standard basic sensor
output to a standard output. This will normally be the responsibility
of the sensor designer. A second class of signal conditioners converts
the standard output to digital logic levels which are compatible with
the microcomputer. In many cases, the second class of signal condi-
tioners will be time-shared between a number of sensors and would be
provided as a standard module by the PDCP designer. Of course, a direct
conversion of the basic sensor output to a logic level is very desirable
since this eliminates the need for the second class of signal condi-
tioners; however, the second class of signal conditioners will be
required to utilize existing sensors. Fortunately, these signal condi-
tioners convert from a standard input to a standard output; therefore,
their cost is low.



TABLE 3.1.1(3)
TYPICAL SATELLITE DATA COLLECTION SENSORS

Signal Conditioning OUtput

Sensor Specification
Dissolved Oxygen 0.0 to +5.0 Volts dc
pH 0.0 to +5.0 Volts dc
Specific Conductance 0.0 to +5.0 Volts dc

Temperature 0.0 to +5.0 Volts dc
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3.1.2.1. Sensor Interface - Little can be said about the basic

sensor output since this can be almost any variable. The sensor signal
conditioner takes this output and converts it to a standard output.
Traditionally, for analog sensors this output has been zero to plus five
volts dc. Another standard range for low-voltage or low-current devices
has been zero to 50 millivolts dc. If at this point in time a recommend-
ation were to be made for a standard output range for analog sensors,
it would have to be zero to plus five volts. This, however, may present
a problem if some of the newer technologies are used in fabricating the
microprocessor. The integrated injection Togic (IZL) technology (see
Section 6.1) can operate at voltages lower than one volt, and operating
the signal conditioner from the same power supply voltage would be advan-
tageous. This would require a low-voltage output from the sigha]
conditioner.

As previously mentioned, some sensors produce a digital output directly.
The analog-to-digital conversion process may be built into the sensor. The
output of such a sensor should have an interface compatible with CMOS logic.
Incontrast to -the analog output -of zero to plus five volts dc, the
digital sensor output should be as follows: a zero would be represented
by a level between zero and 0.8 volts, and a logical one would be repre-
sented by a level of 3.5 to 5 volts dc. Until more experience is gained
with 12L devices, the above specification for the output of the digital
sensor would be a reasonable recommendation.

3.1.2.2. Microprocessor Interface - The second level of signal con-

ditioning converts the standard interface signals to signals which match
the logic characteristics of the microprocessor. The most common signal
conditioner of this type is the analog-to-digital converter (ADC). This
device takes a zero to plus five-volt dc analog signal and converts it
to an equivalent digital word. For the PDCP application, the ADC output
should be coded in natural binary at CMOS compatible logic levels. A
parallel output word will generally be required for direct interface to
the microprocessor data bus. However, in some applications where the
ADC and sensor must be located in an area remote from the PDCP a clocked
serial output is desirable to minimize the number of wires required for
the data link. Both the parallel and serial outputs should be three-
state outputs to permit the signal lines to be shared with other devices.
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In a three-state device two states are the usual high or low output
(input) states. A control signal converts this output (input) to a
high impedance state effectively removing the device from the bus.
Suitable Tow-power CMOS-logic ADC's which would interface directly to
the bus of a CMOS microprocessor-based PDCP are commercially available.

Similar to the analog-to-digital converter is the frequency-to-
digital converter which is needed by sensors having an output frequency
proportional to the measured variable. This conversion of frequency to
a digital signal can be performed by the microprocessor with no external
hardware. Using the Intel 8080A-1 microprocessor, sensor frequencies
up to approximately 20 kilohertz can be digitized. The frequency-to-
digital conversion capability of the microprocessor provides a low cost
interface to a variety of sensors since most sensor outputs can conven-
jently be produced as a frequency. ’

A big advantage in interfacing the microprocessor with a set of
sensors is that sensoks with different resolution requirements can easily
be accommodated. For example, one sensor may require a resolution of
eight bits and another require a resolution of sixteen bits from a time-
shared ADC. For the eight-bit resolution sensor only the eight highest-
order bits need to be multiplexed from the ADC while the whole sixteen
bits of the high resolution sensor would be transferred to the micro-
processor. This is easily accomplished through program control.

3.2 DIGITAL CONTROL LOGIC AND MEMORY

In current DCP designs, the digital control system is generally a
hardwired logic circuit manufactured with standard CMOS integrated cir-
cuits. Because of the cost and complexity of the random logic désign,
control functions are limited to elementary sensor control, data format-
ting, and transmitter control. A microprocessor-based PDCP will be
capable of performing additional tasks such as data compaction and data
preprocessing without excessive cost increases (see Section 4).

A block diagram of a microprocessor-based PDCP control system is
illustrated in Figure 3.2(1). The number of integrated circuits
required to implement this system will depend upon input/output require-
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ments, memory requirements, and the microprocessor architecture.
Already, two-chip microprocessor sets containing a clock circuit, 64
bytes of RAM, 1024 bytes of ROM, and several input/output ports are
available. Thus, a minimal PDCP control éystem may require as few as
two integrated circuits.

Future DCP user requirements are expected to range from basic plat-
forms éapab]e of performing the tasks of current DCP's through advanced
platforms capable of extensive data preprocessing and data compaction.
From the standpoint of economics, a standard, universal DCP design is
desirable. This-goal is impractical for a random logic design but is
practical for a microprocessor-based PDCP design. As illustrated in
Figure 3.2(1), the microprocessor-based PDCP control system organiZation
is based upon address, control, and data buses. This organization pro-
duces a system which is modularly expandable. A basic PDCP capab]e of
replacing current DCP designs will utilize-all of the functions shown
in Figure 3.2(1). An advanced PDCP with extensive data compaction capa-
biTities will utilize the identical functions. The distinction between
these systems will be the amount of ROM, RAM, and I/0 provided and their
software organizations. Section 4 demonstrates that a unique PDCP soft-
ware organization can be defined for each user by plugging a different
ROM into the system. Thus, a PDCP design which will function efficiently
as a basic DCP but which can easily be expanded to form an advanced
processing PDCP can be developed.

Physically, the standard PDCP design could be implemented as a modu-
lar set of printed circuit (PC) boards. A basic PDCP system would prob-
ably require one or two small PC boards. The system could be expanded
by adding extra integrated circuits in spaces provided on the basic PC
card set. Large scale expansion would involve adding standard memory or
I/0 cards and, possibly, bus driver circuits. This implementation of
the standard PDCP design would provide most potential users with the
capability they require at a minimum cost since the design and develop-
ment expenses could be prorated. If a potential user did require a
unique PDCP construction, the electrical design would not necessarily
have to be changed. Additional PC board development cost would be
incurred, but additional circuit design cost would not be incurred.
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3.3 TRANSMITTER, RECEIVER, AND ANTENNA

Section 4.4.3 demonstrates that a microprocessor-based PDCP can
easily control transmitter modules which have been developed for current
DCP designs. Transmitter control inputs should be digital signals com-
patible with the technology chosen for the PDCP control system. Other-
wise, no constraints are imposed upon the electrical design of trans-
mitters and antennas for PDCP's. Traditional design techniques are
satisfactory.

Since the sensor interface and digital control systems'of a PDCP
will be developed as modular PC board sets, the transmitter system
could be similarly designed. One approach is to provide individual
transmitter modules designed specifica11y for each data transmission
technique. The PDCP user could then customize the modular system by
selecting a transmitter module (Landsat, GOES, TWERLE, or TIROS-N), a
basic or expanded control module, and various sensor interface modules.
For data collection platforms installed near Tand 1ines, a telephone
modem module could be chosen instead of a specific transmitter module.

A better approach would be to utilize the flexible nature of
the microprocessor to control a single modulator which can emulate
the modulation of all of the data collection systems. A standard
PDCP system will be capable of operating with all current data trans-
mission formats under software control by using the techniques demon-
strated in Section 4.4.3. As a result, a universal transmitter design
that can switch between the various data transmission modes under
software control could be designed. The required carrier frequencies
might be developed from a standard frequency reference by a phase-locked
loop containing a programmable frequency divider. This system would
eliminate the requirement for multiple transmitter modules and would
be more adaptable to any future changes in data transmission techniques.
A further study will be required to determine the potential cost effec-
tiveness and performance of the two transmitter construction techniques
outlined above.
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Some DCP's have been developed with receivers for-remote command
applications. A PDCP with this capability can be produced by adding a
receiVer module to the system. The receiver should be interfaced to
the PDCP buses at standard logic levels. PDCP software can be devel-
oped to poll the receiver and decode the command signals as they are
received. Alternately, the receiver can provide a signal to the
interrupt line of the microprocessor to indicate that a command signal
is being received. The microprocessor would then suspend data processing
operations temporarily to input and decode the control message.

3.4 SUMMARY

The problem of standardization of sensor output and microprocessor
input is a difficult one to solve; however, attempts should be made
towards standardization to reduce the types of signal conditioners
required.

It is recommended that new designs for analog sensors have outputs
which are 0.0 to +5.0 volts dc. The recommendation for digital interface
for CMOS logic is zero to 0.8 volts for a logical zero and 3.5 to 5 volts
dc for a logical one.
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4. PDCP SYSTEM SOFTWARE

As demonstrated in Section 2, significant advantages can often be
obtained by replacing a hardwired circuit with a software-controlled
microprocessor system. The potential advantages of a programmed logic
system arise from substifution of relatively inexpensive software stor-
age for complex hardwired circuits. Therefore, the flexibility and cost
effectiveness of a PDCP will be highly dependent upon the system soft-
ware and the extent to which PDCP functions can be software controlled.
Unfortunately, system constraints can preclude the use of programmed
logic, and, as shown in Section 2, the cost of developing special pur-
pose software for low quantity applications can.be excessive. This
section will demonstrate that microprocessors are capable of performing
PDCP tasks and describs a potential PDCP software package organization
designed to minimize software development cost. Included also are dis-
cussions of the effects of various PDCP system constraints on the soft-.
ware package and descriptions of subroutines which have been developed
. .for typical PDCP applications.

4.1 PDCP SOFTWARE ORGANIZATION

Standardization is the key to minimum PDCP system cost. However, a
PDCP design must be sufficiently flexible to operate efficiently with a
number of different sensors, data compaction techniques, and data trans-
mission formats. In addition, a software system organization which pro-
vides a simple technique by which individual experimenters and organiza-
tions can create special purpose PDCP programs is desirable. The PDCP
software system organization outlined in Figure 4.1(1) is designed to
meet these goals.

A PDCP software package based on the organization proposed in Figure
4.1(1) would contain an executive program and a number of called sub-
routines. The executive program controls the operation of the PDCP by
executing a set of conditional and unconditional calls to various sub-
routines. A different executive routine will generally be required for
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each different application. Major subroutines called by the executive
program control the sampling of a raw sensor data, preprocessing of raw
data,'specia] computations, and data transmission to the satellite. The
executive program and major subroutines share multipurpose minor sub-
routines such as software delay loops. Standard sensor data input, gen-
eral purpose data preprocessing, and transmitter control routines can be
provided to users as firmware ROM options for the PDCP. Using this
approach, most PDCP software development costs can be prorated over a
large number of PDCP's so that the effective software cost will be mini-
mal. The additional program development required for new PDCP software
systems could generally be restricted to an executive routine and, when
necessary, special purpose subroutines. Since complex control and data
processing tasks would generally be controlled by subroutines, the cost
of developing executive programs should be low. Special subroutine |
development costs can be minimized by maintaining a user program library.

4.2 PDCP SYSTEM TIMING

The program organization proposed above is independent of the vari-
ous system constraints imposed upon PDCP software and the actual tech-
niques used for program development. The major PDCP system constraints
which will affect software development is timing. In many cases, the
usual goal of minimum execution time will apply to data preprocessing and
special purpose subroutines. In general, however, sensor control and
transmitter subroutines will require precise timing between specified
events, and the total elapsed time between data transmissions should be
precisely controlled. These constraints must be considered during PDCP
software system development. '

Software and interrupt.timing are the two basic techniques which
can be employed to insure correct PDCP transmission intervals. The micro-
processor and associated support logic must operate continuously if soft-
ware timing is employed. For Tow power CMOS or IZL'devices, this is not
necessarily a disadvantage since maximum throughput can be obtained with
a continuously operating system. In addition, however, the precise
execution time for each PDCP software routine must be known, and provi-
sion must be made for holding the total program execution time between
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transmissions constant. Most programs contain various mutually exclusive
branches which may require different execution times. As a result, delay
" must be inserted within certain program branches to equalize execution
times. Alternately, program execution time can be allowed to vary if
each time the subroutine is called a flag is set to indicate the actual
execution time. The executive program may then use any excess time to
call optional subroutines (for exémp]e, system maintenance or low pri-
ority data input routines) and a variable delay subroutine. Although
average throughput can be increased using this technique, worst-case
throughput is not necessarily improved. The major advantage of software
timing is that neither an interval timer nor interrupt logic is required.

Interrupt timing can be relatively independent of system software
but'requires the use of an external interval timer and interrupt logic.
The microprocessor can be powered-down between transmissions or operated
continuously. Worst-case execution time for each subroutine must be
known in order to guarantee that the microprocessor will either complete
data -input or processing before a new .transmission is required or will
be executing an interruptable routine. In the event that the transmis-
sion request interrupt is allowed to occur before data processing has
been completed, the programmer will have the choice of discarding unpro-
cessed data or completing the processing at the conclusion of the trans-
mission sequence.

Assembly language programming can be used to develop subroutines
utilizing either interrupt or software timing. Programs written in
assembly language generally provide maximum performance while requiring
minimal storage area. Efficient assembly language programming, however,
‘requires a thorough knowledge of the available instruction set and
entails the highest development cost per program. Subroutines which
require precise internal timing, and general purpose subroutines which
will be included in firmware ROM packages provided to PDCP users should
be written in assembly language. This will insure precise timing and
minimal program storage area. Unfortunately, assembly language program-
ming cost for small-quantity, special-purpose systems could be excessive
and should be avoided when possible. ’
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The development of many types of numeric data processing subroutines
could be simplified by using a high-level language such as PL-1, FORTRAN,
COBAL, or BASIC. Each of these languages is represented by a compiler
written for at least one microprocessor. The major disédvantages of
these languages are inadequate input/output structures, inefficient mem-
ory utilization, and poorly defined timing. Subroutines written using
these high-level languages cannot be used in a PDCP software system which
relies upon software timing unless the resulting machine code is investi-
gated to determine all possible execution times. Even for an interrupt-
timed system, the maximum execution time of the subroutines must be
determined to insure that processing can be completed between
transmissions.

4.3 PDCP SOFTWARE DEVELOPMENT

As presented above, neither assembly languages nor standard high-
level languages are ideally suited for the development of PDCP software
systems. This problem is not unique to the data collection field but
is of general concern in the areas of mini- and microcomputer program-
ming. Therefore, a new program development technique which retains the
advantages of both high-level and assembly languages should be developed.

4.3.1 Applications-Oriented Software Development

A simplified technique for microcomputer programming by applications-
oriented nonprogrammers has recently been proposed by Korn [1]. This
technique is based on a software system organization nearly identical to
the one illustrated in Figure 4.1(1). Korn [1] assumes that a set of
well-defined assembly 1anguage, block-operator subroutines are available
to perform each of the subfunctions which may be required by an applica-
tions program. The applications program is specified by means of a
block-diagram employing the standard functions. An interactive editor/
translator program running on a small minicomputer is used to translate
the block-diagram specifications into an address table. The address
table serves the same function as the executive program proposed in
Figure 4.1(1). During program execution, the address table speéifies suc-

cessive jumps to the standard subroutines required to correctly execute
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the applications program. A choice between the address table and execu-
tive program techniques will depend upon the extent to which indirect
addressing and subroutine calls are supported by a particular micropro-
cessor's instruction set.

Korn [1] states that the editor/translator programming system should
satisfy the following requirements:

1. The language used to communicate with the editor/translator pro-
gram should be easy to learn and understand.

2. Simple elementary operations well known to engineers and scientists
should be used to build up complex operations.

3. The language should be entirely independent of the specific
microcomputer used.

4. The editor/translator system should generate microprocessor code
as efficient in the use of time and memory as that developed by
a good assembly language programmer.

These goals are applicable to the proposed PDCP program development
system but are not sufficient. A PDCP program development system should
also satisfy the following requirements:

1. In addition to the elementary operations, as many major PDCP
system programs as possible should be available to the user in
block form. For example, this would include transmitter programs
(see Section 3.3) and the zero-order floating aperture predictor
subroutine (see Section 3.2).

2. Memory requirements should be indicated to the user in a form
that is representative of memory cost. This implies that mem-
ory required for storage of the executive program (usually, user
defined ROM or PROM) should be listed separately from data stor-
age or scratch pad RAM memory. Also, the number of firmware ROM
modules required for storage of the standard subroutines should
be indicated.
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3. Program execution time should be indicated to the user, and an
error should be noted if the program execution time exceeds a

specified transmission interval.

4. Alternate subroutine structures should be available for software
and interrupt-timed systems. This is necessary to obtain maximum
system throughput with minimum program storage area.

A PDCP software development system with the capabilities described above
could significantly enhance usage of PDCP's by applications-oriented
nonprogrammers.

4.3.2 Assembly Language and Microprogrammed Subroutines

To insure efficiency and accurate timing, the functional block sub-
routines employed in the programming system described above should be
developed by experienced programmers using assembly language and/or micro-
programming techniques. Within the constraints of a given instruction
. set, assembly language programming can produce the optimum realization of
a particular software task. Many microprocessors have general purpose
instruction sets which are fixed by hardwired control logic integrated
within the microprocessor chip itself. These 1nstrucfion sets must be
individually evaluated to determine their relative merits in particular
applications such as PDCP programming (see Section 6). In contrast, the
instruction set of a microprogrammable microprocessor can be optimized
for a particular application. A microprogrammed microprocessor utilizes
a programmed logic control unit rather than a hardwired control unit.

This permits the user to define and sequence microprocessor operations at
the most elementary level. As a result, the power of a microprogrammed
instruction set is limited only by the amount of control storage avail-
able and the capabilities of the microprocessor's arithmetic/logic unit.
In fact, when sufficient control storage is available, microprogramming
need not be Timited to the development of a simple instruction set. Those
operations which are used most frequently, or require minimum execution
time, can be imp]emehted as microprogrammed subroutines. Regardless of
whether or not the microprocessor chosen for the PDCP has a microprogram-
mable instruction set, PDCP operations which are not included in the
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machine's basic instruction set can be implemented using assembly lan-
guage programming. Examples of assembly language subroutines which could
be included in the library of the editor/transiator program are presented
in the following section.

4.4 PDCP PROGRAM EXAMPLES

The hardwired logic control units used in most current DCP designs
perform four basic tasks: data input, elementary sensor control, data
formatting, and transmitter control. In this section, example programs
are presented to demonstrate the ability of a microprocessor based con-
trol unit to perform each of these tasks. These example programs show
that, even when a microprocessor based control unit is used to perform
all basic DCP tasks, excess computational capability exists. This capa-
bility can be used for data preprocessing or special computations which
would reduce the load on the satellite data link. Fourier analysis of
seismic data is presented as a potential special computation. Examples
of data preprocessing subroutines are also shown.

Unless otherwise indicated, the programs listed in the following
sections have been written to be executed on the 8080A-based PDCP demon-
stration system (see Section 5). Standard Intel Corporation 8080A
mnemonics [2] have been used except within macroinstructions. Instruc-
tions such as NOP and MOV A.A are sometimes used to produce a required
delay without otherwise affecting program execution. Macro delay
instructions have been defined so that this usage of an instruction will
be clear within the context of the program. The mnemonic DLY XX is used
for these macroinstruction groups. The decimal number which replaces XX
indicates the length of the delay in states. Since the assembly language
program 1listings were produced using a PDP 11/40 minicomputer, constants
and addresses are represented as octal numbers except as noted by the
use of a decimal point.

4.4.1 Data Input and Sensor Control

Data input and elementary sensor control are two of the four basic
tasks performed by the hardwired control logic currently used in most
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DCP designs. A microprocessor based control unit is ideally suited to
performing these tasks. Each PDCP sensor can be serviced by a simple
subroutine which provides the functions of data input and sensor control.
Because of the versatility of the microprocessor, the cost and complex-
ity of the data acquisition channels can potentially be reduced without
a significant increase in control logic. Subroutines which demonstrate
microprocessor control of the data input and sensor control functions

are listed below.

4.4.1.1 Frequency Measurement - Many sensors currently in use on

DCP's produce an output signal whose frequency is proportional to the
parameter of interest (temperature or air pressure for example). Pro-
gram 4.4.1.1(1) has been developed to demonstrate that a PDCP can dig-
itize the output of these sensors directly. A flow chart for Program
4.4.1.1(1) is illustrated in Figure 4.4.1.1(1). This frequency counter
program is presented in the form of a subroutine which is suitable for
use as an input block operation in the programming system described in
.Section 4.3.1. The sensor output signal is input to the microprocessor
on one bit of input port zero. Signal frequency is determined by count-
ing 0 to 1 logic Tlevel transitions for a preset interval of time. Two
parameters, the number of samples to be taken and the input bit assigned
to the sensor, are passed to the subroutine from the calling program.

The input bit assignment for the sensor is specified by a mask byte in
register C. This byte contains a one in the bit position corresponding
to the bit position of the input signal and zero's in all other bits.
Thus, a single frequency counter subroutine can service up to eight sens-
ors without multiplexing. The number of samples to be taken is specified
by the contents of register pair DE. Since the number of samples is
proportional to the measurement interval, the resolution and scale factor
of the digitization process are determined by the number of samples
taken. With a measurement interval of one second, the sensor frequency
is measured directly in units of Hertz (Hz). The binary output is
returned to the calling program in register pair DE.

The sampling interval establishes an upper bound on the frequency

which can be measured using this subroutine. A minimum sampling interval



4-10

*autganouagns anduj aosuas§ Aduanbaud (L)L L v b wedboud

e n e e § = P

DT R P N T o

SAHONGUA IWIL "IN 4Uod AYT3Ea ¢ sSA7a
ANAGCS ANIWIUINI 38 'A0037 'S0d U ONY NOILISNYYL ¥ .01 ¢ il XNT
ANNBD INZWDUSNDI L.NOO 02 NOTLISNUML ¥ LON !¢ . €3 r
IaWyS LEYT OL JUSdlkoD ¢ 3 W3
INAGD INIWHIINI LoNOO ‘530073 SATLISO LON e} r
Q HLIM ONINESUW AQ LI14 ALY TYAOMIAY 440 MITo a UNY
TUNSIS 40 JTHWUS LOdNT ! 0 NI

Hels!
G CANI 3AILAZIXIT WoM:d QOscsdd sisvld LI1g Ll ! v'a AGW
a Lo Tt 13 AW
SMILSIOIY LNOCD M3z ¢ c it X7
SHUIVY NILZI0TY ¢ 12 HEN
“HANY 3 40 SOLYLS OdD JAYS ! 2 HSTL

*ANMGJ

¢ TIAVLE !

t SALAG 27 UNY WO SALAT 20 'SILVLS INIHIYW NIDIYL STTJWUSHRLL + 90 ¢

t 4

t TATAUZSINEG SUTLSTOTU T H'3'a !

4 40 SLVLS 3 A30dWes 3g L 31 O FLO; LOGNT 40 LT3 HIUHM !

t STANIWMILEA MoUW 3 TANILAOY LNOICTS 3L SNITTIVD 0L WUoINd f

t -~ v BIL NI WoLTG 3L J3UTd LS0OW 3ATLAIIXNT JHL TIWIL t

t Y o4y uza _auJ;ECU Ja NUTH STENNVHS LOGNT ANEMI 410 LHSIR t

f aL dJn L ONT OTINMOLIEN SU LNNOS JHL 40 {

! RN AN IS i ANITRIOU OWY SOLYLS INTHIUKW t

4 L2 a DU ST NINYL WG t

. t Biw A M OST WL AT LNCIOKY !

t aaxty LONT 3ATAI3aXT 3L Ag t

4 unCD_. TETTONYG 4

' oL LNJding u;a “w .LLC.ﬁD??L Sivd

'

000

000

000

000

100

600

L01

o0

OO0
. O
o

<
Cr O

[é)
> DO

(&)
[

[a NG INGNGIRG N e ]

D

D000 0O0QCO QOO0
(RN e RoNON RN NN NG NONOIERE
QOO0 OQCQCOO0O0LQCOQ

Cr

[

CQOvm = NMUDNDNHELNOOOMNHDOQDOINMNE
<

QO OOAOQCDOQOQO O vt vt v4 vt ¥4 59 74 34 vt ve 2
QOO0 OQ

OO
o]



4-11

(Panutiuood)

AZIM BAIL SWNB3

aUY Srilvd A3UHL 0% AYT3G QaQu
SATLOD3XT QL NUNL3Y

SOLVLS N 3uoLsay

30 OANT T WOMd LNAGCT Lt

NIVOY IAWYES 02 LMo 3WIl OM3AZ LON

I ONT QU3 &

INGOD ZAWIL ANIWN22A

TONI JTEUE SWOLE

(L)Ll b v weuboud

t 13

<
a

W

LU
dd
<l
AH3X
N
V0
ADW
X3aa

AOW

jots!

-
o

‘13

000

000

010

otelol

S¥Q000

Z¥0000
<H0000
1¥3600
£LCGO00
yaoielelole]

FLOO0C
720000
SE00U0

-

O

SO0 Q000

~NOOCODC N
UODDONO0N
ke
cGocado
S0006

[eN e NN e NN

QOO

L0000
925000
786000
So0O00
SZ0000
LEGOLT
YZOO00
#eislete)



< START )

PRESET TIMING REGISTER
FOR 1 SEC. PERIOD.
ZERO COUNT REGISTER AND
PRESET SAMPLE VALUE
REGISTER.

TIMING

NO REGISTER = 0

INPUT
SAMPLE
OF SIGNAL

VALUE OF
SAMPLE = "0"

VALUE OF
SAMPLE = PRE-
VIOUS VALUE OF

IMPLIES 1 SECOND
ELAPSED

DECREMENT TIMING
REGISTER AND STORE
VALUE OF SAMPLE

(c1)

BLY 10
(ounpP)

(C3)

DLY 14

YES

(c2)

SAMPLE

SAMPLE = 1, PREVIOUS
SAMPLE = 0, THEREFORE,
POSITIVE EDGE OCCURRED,

SO INCREMENT COUNT
REGISTER

DLY 5

BRANCH A

Figure 4.4.1.1(1) Flow Chart for Frequency Sensor Input Subroutine.
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is desirable, but the interval must be constant. As shown in Figure
4.4.1.1(1), the program executes one of three branches depending upon
the value of the current and the preceding sample. The longest natural
program branch (Branch A) occurs when a positive signal transition is
detected. Delay must be added to the other two program loops so that

all three loops will execute in the same number of states. Unfortu-
nately, arbitrary delays are not possible because the microprocessor is
synchronized to a constant frequency clock. As a result, a minimum

delay of five states must be added to Branch A so that the execution time
of all three branches can be equalized.

Program 4.4.1.1(1) requires 77 states between samples of the input
signal. Each state is a minimum of 500 nsec for an 8080A microprocessor
or 325 nsec for a high speed 8080A-1 microprocessor. Thus, the maximum
sampling frequencies are 25,974 Hz and 39,960 Hz, respectively. From
the sampling theorem [3], these sampling frequencies establish upper
bounds on the input signal frequencies of 12,987 Hz and 19,980 Hz,
respectively. Frequency prescaling will be required for sensors which
produce higher output frequencies.

4.4.1.2 Autoranging - In some PDCP applications, the parameter of
interest is a relatively slowly changing function of time which can vary
over a wide range. The design of an accurate data acquisition channel
for parameters of this type is difficult because Tinearity must be main-
tained over a wide dynamic range. If the data acquisition channel gain
is set to produce a detectable signal level for the minimum sensor output,
the Tater stages of the data acquisition channel may saturate as the
sensor output increases. A solution to this problem is to vary the gain
of the data acquisition channel so that the signal is always within the
most linear and accurate system dynamic range. This can be accomplished
by including a logarithmic amplifier in the front end of the data channel.
The logarithmic amplifier, however, introduces a log conformity error
which is unsatisfactory for systems requiring high resolution throughout
the voltage range. In addition, the logarithmic scaling of the digitized
data is inconvenient for most PDCP data preprocessing subroutines. These
problems can be avoided by using a variable gain amplifier in place of the
1ogarithmic amplifier.
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The concept of a microprocessor-controlled variable gain amplifier
is illustrated in Figure 4.4.1.2(1). A block-diagram of a typical data
acquisition system using the variable gain amplifier is shown in Figure
4.4.1.2(2). Channel 1 is designed to acquire data from a sensor which
produces a slowly varying, wide-range (200:1) output voltage. This sig-
nal is digitized by the analog-to-digital converter and input to the
PDCP's microprocessor. Program 4.4.1.2(1) controls data acquisition on
Channel 1. A flow chart for Program 4.4.1.2(1) is shown in Figure
4.4.1.2(3). Each time the executive PDCP program calls the data acquisi-
tion subroutine for Channel 1, a sample is obtained. If the sample is
between 10 percent and 90 percent of full scale, the value of the sample
and a code representing the current channel gaih'are stored in memory
for.later transmission. Whenever the sample is not within the ideal
range of 10 percent - 90 percent of full scale, the gain of the ampli-
fier is adjusted and another sample is obtained. Thus, a maximum system

accuracy and an eight—bit resolution are maintained over a 200:1 dynamic
range.
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Figure 4.4.1.2(2) Analog Data Acquisition System for a PDCP.

4.4.1.3 Software Controlled Analog-to-Digital Conversion - The

traditional analog-to-digital converter (ADC) consists of a digital-to-
analog converter, a comparator, and some control logic. A digital word
loaded into the digital-to-analog converter (DAC) produces an analog
output signal (voltage or current) which is applied to one input of the
comparator. The second comparator input is the analog signal which is
to be digitized. The comparator output signal indicates whether the
analog input is greater than or less than the reference signal produced
by the DAC. This signal is fed back to the control logic which uses a
fixed algorithm to update the DAC input. The above process continues
until the DAC output equals the analog signal input. At that point, the
digital word in the DAC is the digital representation of the analog input
voltage. ‘ '

A number of different algorithms can be employed in the analog-to-
digital conversion process but one of the most widely used is successive
approximation. In a successive approximation ADC, the unknown analog
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input is compared to the DAC output with only the most significant bit
(MSB) true. This DAC output corresponds to one-half of full scale. If
the input is greater than the MSB, the MSB is left in the logical "1" or
true state and the next bit (which corresponds to one-quarter of full
scale) is set to a logical "1". If the second bit does not cause the DAC
output to . exceed the unknown analog input, it is left in the logical "1"
state and the next bit is set to "1". If the second bit causes the DAC
output to exceed the unknown analog signal, it is set back to a logical
"0" as the next bit is set to a logical "1" for another comparison. This
process continues in order of decending bit weight until the proper state
of the last bit has been determined. At that time the digital input to
the DAC represents the correct digitization of the previously unknown
analog voltage or current.

A1l of the digital control logic normally found in the successive
approximation ADC can te replaced by a software subroutine using the
microprocessor. Program 4.4,1.3(1) is a successive approximation
analog-to-digital conversion subroutine written for the UT PDCP devel-
opment system. A flow chart for this program is illustrated in Figure
4.4.1.3(2) and a simplified schematic of the ADC hardware used in the
development system is shown in Figure 4.4.1.3(3).

The successive approximation subroutine uses only 34 bytes of ROM
and six bytes of RAM. As currently implemented, the analog-to-digital
conversion requires a fixed time of 748 states. For a standard 8080A
operating with a 2-MHz clock, this corresponds to 2673 conversions per
second, a rate which should be more than satisfactory for the PDCP
application.

4.4,2 Data Compaction and Preprocessing

The amount of data which must be handled by data collection satel-
lites is constantly increasing. The major factors contributing to this
increase are the use of high sampling-rate sensors and a general growth
in the number of DCP's. PDCP's can be expected to contribute substantially
to the increase in remote data collection activities by opening new
areas of application. In addition to taxing the bandwidth Timits of
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present data collection satellites, significant increases in data flow
would require corresponding increases in the capacity of present ground-

~ to-ground communication lines, data storage areas, and data processing

facilities. Therefore, techniques should be developed for reducing the
volume of data flow without significantly reducing the amount of informa-
tion acquired.

One of the most useful ways to reduce data flow to manageable pro-
portions is to apply compression or compaction before the data is trans-
mitted from the PDCP. There are two basic types of data compression
techniques: entropy-reducing and information-preserving [4]. Entropy-
reducing algorithms perform an irreversible transformation on the input
data and therefore cause a preétransmission loss of some information.
Information-preserving algorithms perform a reversible transformation on
the input data. As a result, the information carried by the original
data can be recovered within a specified allowable tolerance or peak
error. Bit compaction rates of two-to-one can normally be achieved by
information-preserving algorithms. Much higher degrees of data compac-
tion can be obtained by using entropy-reducing algorithms.

Data compaction techniques have not been employed in previous DCP
designs because of the extra hardware and expense involved in hardwired
implementations of the algorithms. Many data compression algorithms,
however, can be economically used with PDCP's. In most cases, the only
additional hardware required to provide data compression capabilities
will be the memory used to store subroutine implementations of the vari-
ous data compression algorithms. Data compression subroutines are
excellent candidates for the subroutine library within the applications-
oriented PDCP programming system (see Section 4.3.1). Several examples
of data compression programs are presented in the following sections.

4.4.2.1 General-Purpose Binary Math Package - Most data compression

algorithms are based upon mathematical operations. Therefore, a general-
purpose binary math package has been developed for use in data compaction
operations. The math package consists of subroutines which perform the
unsigned binary operations specified in Table 4.4.2.1(1). Unsigned binary
format is assumed since PDCP data will usually be represented in this
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form. Listings of the math package subroutines are provided as Programs
A(1) through A(12) in Appendix A. ‘

The most important PDCP math subroutines (addition and subtraction)
are available in three formats: double precision (numbers up to 16 bits
long), short multiprecision (mixed 16-bit and 32-bit number operations),
and multiprecision (numbers up to 2048 bits long). This allows the PDCP
programmer to consider memory requirements, execution time, and operand
resolution in selecting the best subroutine for a particular task. Most
PDCP data words will be eight to ten bits long and can most appropriétely
be manipulated using the double precision subroutines. The short multi-
precision subroutines supplement the double precision subroutines and are
intended for use in operations such as summing a large number of data
points where the result could overflow 16 bits (i.e., a result greater
than 65,535). Short multiprecision and double precision subroutines
should be sufficient for PDCP data compaction operations. Multiprecision
subroutines capable of operating on numbers up to 256 bytes long are pro-
vided primarily to illustrate that numbers of any magnitude can be pro-
cessed by a microprocessor based PDCP if sufficient calculation time is
available.

The comparison, mu]tip]ication, division, and square-root subroutines
permit significant data compaction operations such as data averaging to
be performed by the PDCP. Since a special square-root algorithm developed
by Kostopoulos [5] was implemented, a flow chart for the square-root
subroutine is shown in Figure 4.4.2.1(1). The MOVE subroutine is provided
for transferring multiprecision data blocks between temporary storage
and working memory areas when using multiprecision arithmetic subroutines.
EXIT is a general purpose block of code which is used to restore all CPU
status when returning from selected subroutines. The complete binary
math package is 403 bytes long and would occupy only 40 percent of a 8K
ROM.

Normally, a PDCP will not require all of the subroutines listed in
Table 4.4.2.1(1). A basic math package consistiné of double and short
multiprecision addition and subtraction, double precision compare, and
EXIT would be sufficient for elementary data compaction operations. This
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basic math package can be stored in 79 bytes of ROM. Multiplication and
division can be added to the basic math package to supbort more advanced
data compaction operations such as data averaging. A total of 216 bytes
are required to store this form of the math package. Standard deviation
calculations require the addition of a square-root subroutine which
increases the memory storage area used by the extended version of the
basic math package to 300 bytes. Execution times of the PDCP binary math
subroutines are shown in Table 4.4.2.1(2). .

4.4.2.2 Determination of Minimum and Maximum Data Values - Program

4.4.2.2(1) is an entropy-reducing data compaction subroutine which deter-
mines the'minimum and maximum data.samples obtained from a sensor over a
particular time interval. The DMINMAX program ﬁses the double precision
compare subroutine from the binary math package and operates on numbers
up to 16 bits long. Each time the DMINMAX routine is called by the PDCP
executive program, the value of a new data point is compared to previously
established upper and lower bounds. The carry and zero flags indicate
the result of this comparison. If the new data point is outside one of
the boundaries, the data point is stored as a new boundary. Therefore,
just prior to transmission, the upper and lower bounds will represent

the minimum and maximum data samples obtained since the last transmis-
sion. Program 4.4.2.2(1) is 29 bytes long and requires eight bytes of
RAM for stack operations. Worse case execution time is 264 states which
would permit a data rate of over 7,500 samples pér second.

A multiprecision MINMAX subroutine is listed as Program 4.4.2.2(2).
The MINMAX program uses two subroutines from the multiprecision binary
math package and operates on numbers up to 256 bytes long. The value of
a memory location named TMCODE indicates the result of the MINMAX program
execution. Program 4.4.2.2(2) is 120 bytes Tong and requires 20 bytes
of RAM for stack operations. These figures include the required multi-
byte COMPARE and MEMORY-TO-MEMORY MOVE subroutines from the math package.

4.4.2.3 Zero-Order Floating Aperture Predictor - A potentially

more useful data compression algorithm is implemented in Program 4.4.2.3(1).
The zero-order floating aperture predictor algorithm is an information-
preserving polynomial data compression technique [4]. The algorithm is
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based on the prediction that later data samples will be within a speci-
fied tolerance of the first sample. If this prediction is true, the
data sample is considered redundant and should not be transmitted. The
first sample which is not within the specified tolerance is flagged for
transmission and becomes the new reference point for subsequent predic-
tions. The result of the comparison is-indicated by the states of the
zero and carry flags after the program has been executed. The zero flag
must be tested first to avoid incorrect results. A flow chart for the
zero-order floating aperture predictor subroutine is illustrated in
Figure 4.4.2.3(1). This program is 56 bytes long and uses three sub-
routines from the binary math package requiring an additional 34 bytes.
Six bytes of RAM are reauired for stack operations. At present, 100-
piece CMOS ROM prices, the incremental component cost of providing the
zero-order floating aperture predictor subroutine and the required math
package subroutines as part of a standard PDCP ROM, is approximately
$7.21.* As shown in Section 4.4.3.2, the longest data formatting and
transmitter control subroutine (GOES format) is 236 bytes long. There-
fore, the double precision zero-order floating-aperture predictor
algorithm and a transmitter subroutine would occupy only 32 percent of
the capacity of an 8K bit ROM. The remaining 698 bytes of ROM should be
sufficient to contain an executive program and several sensor data input
and control subroutines. For example, the frequency sensor input sub-
routine [Program 4.4.1.1(1)] which is capable of serving eight different
sensors requires only 36 additional bytes of ROM.

Program 4.4.2.3(2) is a multiprecision implementation of the zero-
order floating-aperture predictor algorithm. A flow chart for this pro-
gram is illustrated in Figure 4.4.2.3(2). Program execution times and

*For example, RCA's CDP1831CD 512 x 8 ROM with a 400 nsec access
time and 0.5 mW typical quiescent power dissipation costs $41.00 each
for the first 100 devices, including the mask charge. Therefore,

41.00

A Cost = 512 bytes

x 90 bytes = $7.21.

. —ra S ——
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RETURN
(z=1)

SAVE
STATUS
{Z=0,CY=0)
SET
SAVE
STATUS
(Z=0,CY=1}
STORE
ND+TOL
. AS NEW
U8
STORE
ND-TOL
AS NEW
LB
STORE ~
65,535
AS NEW
uB
STORE
ZERO
AS MENW
L8

Figure 4.4.2.3(1) Flow Chart for the Double Precision Zero-Order
Floating-Aperture Predictor Subroutine.
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Figure 4.4.2.3(2) Flow Chart for the Multiprecision
Zero-Order Floating Aperture Predictor
Subroutine. -
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the results of the multiprecision zero-order floating-aperture predictor
subroutine are indicated by the value returned in the memory location
called TMCODE. This program is 71 bytes long and uses four subroutines
from the multiprecision binary'math package for a minimum storage require-
ment of 178 bytes. Twenty bytes of RAM are required for stack operations.

4.4.2.4 Data Average - Data averaging is one useful form of data

preprocessing which can easily be performed by a PDCP. Normally two
distinct subroutines will be used to obtain the average value of a set
of N data points. A data accumulation subroutine such as Program
4.4.2.4(1) will be called each time a data sample is obtained. When the
average value of the data is desired, a final data averaging subroutine
will be called. As illustrated by the flow chart in Figure 4.4.2.4(1),
the data accumulation subroutine will simply increment the sample count
(N) and add the new sample to the previous sum of samples. Program
4.4.2.4(1) can process up to 65,535 samples of 16-bit sensor data while
using only 18 bytes of ROM and 10 bytes of stack.

“Program 4.4.2.4(2) is an example of a data averaging subroutine.
A flow chart for this program is shown in Figure 4.4.2.4(2). The data
averaging subroutine calls the short multiprecision divide routine to
divide the accumulated sum of samples by the number of samples, N.
The resultant average is returned in register pair DE. Only 24 bytes
of ROM and 18 bytes of stack are required for this subroutine. There-
fore, data averaging can be accomplished by the PDCP at a cost of only
42 bytes of ROM and 18 bytes of stack in addition to the general purpose
binary math subroutines.

4,.4,2.5 Mean, Variance, and Standard Deviation - Much more infor-

mation can be obtained from the mean or average of a number of data
samples if the variance and standard deviation are also known. Programs
4.4.2.5(1) and 4.4.2.5(2) can be used in conjunction with the data accu-
mulation -subroutine [Program 4.4.2.4(1)] to calculate this information
aboard the PDCP. Program 4.4.2.5(1) is called each time a data sample
is obtained. This program prepares the data for the mean, variance, and
standard deviation subroutine by calculating the number of samples, the
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Figure 4.4.2.4(1) Flow Chart for the Data Accumulation Subroutine.

4-42



4-43

‘auLynouagng bBurbedaay eieqg

SALYLS ONINHOY

SATIWRYE # A WNS ASLYTNWOD

NUNLIY

W AUCLSIY

oY 3AIAIA

3ATWL Lo v.ilva

A0 WOS GILYINKWNIIY

SALC--TAUYNTAY 38

SNLVLE 3N

! GALYLS
OIS 40 SALAT 31T

(A0 AAANADN)Y AT ONT

! MCTAWUTINT

DL S3LAg#

HIWVW AT

EMNGLTI

!

’

'

[

14

oA

(2)¥v

2'tv° v weuabouy

L3y
MEJ d0d
a .
M Ao 0%
ALIT 13
a A
SHIX
W AOW
H XNT
W3 AGH
a IRE RN}
H XNI
W A
H XNI
W3 AT
H XNT
W'a AW
M XNI
W AW
Mo MO
a  HEnd
NS HEM oAy
- '
W AIVISH '

Tl WGMA STHLAT T4 4 WoM STLAR S !

2

YLua

OLVTWHNOOY 40 oWN3AY !

(WES

Ciamriy] !

IR t

000

L0

08 19)
701

Yo

‘547000
5¢7000
Y7000
Y¥7000
Y7000
L7000

TSI 0

4
D

R

[Ew

DO NN 99NN
QW N
<

<

SnIO00
127000
127300
CGZT70G0
CZ7000
L 17000

eTels}
{;



4-44

(i START :)

SAVE
CPU
STATUS

|
Y

MOVE NUMBER OF
SAMPLES TO BC

3

MOVE 32 BIT SUM
OF SAMPLES TO
HLDE

é

DIVIDE SUM BY
NUMBER OF SAMPLES

l

RESTORE STATUS

l
(: RETURN :)

Figure 4.4.2.4(2) Flow Chart for the Data Averaging Subroutine.
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sum of the samples, and the sum of the squared samples. A flow chart
for Program 4.4.2.5(1) is provided in Figure 4.4.2.5(1). '

Program 4.4.2.5(2) calculates the mean, variance, and standard
deviation of the data using the formulas ‘

2y .

Variance (S

><
1
S|=

(T X:)%1, and

1
oo L
n-1 =1

i

V2 .

Standard Deviation(S) S

A PDCP with this capability would typically calculate and transmit the
mean and variance of sensor data acquired between transmissions rather
~than “transmitting a Targe number of data points. This will significantly
reduce the load on the satellite data collection system by reducing
bandwidth and data storage requirements. In addition, this data prepro-
cessing operation provides the user with immediate knowledge of the
average size of the sémp]e values and the dispersion of the samples

about the mean.

A flow chart for Program 4.4.2.5(2) is shown in Figure 4.4.2.5(2).
The data accumulation; data preparation for mean, variance, and standard
deviation; and mean, variance, and standard deviation subroutines require
a total of 150 bytes of program storage and 28 bytes of stack.

4.4.3 Data Formatting and Transmitter Control

Data formatting and transmitter control are two of the four basic
tasks performed by the hardwired control logic currently used in most
DCP designs. Special emphasis has been placed on developing data format-
ting and transmitter control subroutines for each of the major data
collection satellites because these are essential PDCP tasks which require
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Figure 4.4.2.5(1) Flow Chart for Data Preparation for Mean,
Variance, and Standard Deviation Subroutine. |

e




Figure 4.4.2.5(2)
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precise timing. Normally, both data formatting and transmitter control
will be provided by a single subroutine in order to reduce the amount of
RAM required for data storage. For example, in the GOES data transmis-
sion format an eight-bit data byte is encoded as two 11-bit ASCII words.
Each ASCII word is then Manchester encoded before transmission, Thus,
as many as 44 bites of RAM would be required to store only eight bits of
data. However, if the microprocessor is sufficiently fast, the RAM
allocation for data storage can be reduced 82 percent by performing both
the ASCII and Manchester encoding in real time during transmission.

The transmitter control programs illustrated in this section assume
transmitter modules which operate in basically the same manner as the
Landsat-GOES convertible transmitter designed by Ball Brothers Corporation
[6]. This transmitter module was chosen because control signal specifica-
tions were readily available. Note that the programs presented in this
section can easily be modified to function with any reasonable transmit-
ter design.

Ball Brothers' ~transmitter control signals INTEGRATE, TRANSMITTER
ENABLE, and 15V POWER ON are designated as INT, XMITE, and XPWR, respec-
tively. To demonstrate the versatility of a PDCP, additional control
signals which could select Landsat (LS), GOES (GO), TIROS-N (TN), or
TWERLE (TW) transmitter modes are provided. Normally, a particular PDCP
would be required to transmit data to only one type of satellite, and
thus a simple modular transmitter designed specifically for that satel-
1ite could be used. In this case, control signals LS, GO, TN, and TW
would not be required. However, if an electrically convertible trans-
mitter is available and a PDCP is required to transmit data to more than
one type of satellite, the LS, GO, TN, and TW signals would enable the

correct transmitter mode.

The 8080A programs listed in this section assign transmitter con-
trol to output port XCNTR (Port 1). Biphase data to the transmitter
appears on the least significant bit of output port XMIT (Port @, see
Section 5.1.1.4). Bit assignments for the individual control signals on
port XCNTR are illustrated in Figure 4.4.3(1). The function of each
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control signal is specified in Table 4.4.3(1). As an example of micro-
processor control of the transmitter, consider the 8080A assembly lan-
guage instructions

MVI A,124
OUT XCNTR .

The first instruction moves the octal byte 124 into the accumulator, and
the second instruction causes the contents of the accumulator to be
latched into output port XCNTR. As a result, power is applied to the
transmitter, GOES mode is selected, and the integrator is disabled as
specified by the binary code 91910100.

Timing is an important consideration in transmitter subroutines.
Correct reception of data at the satellite depends upon the self-clock-
ing characteristic of the Manchester code. The transmission rate must
be held constant during each transmission, and the § >~ 1 or 1 -~ § transi-
tions representing data must occur precisely at the middle of each bit
time. In addition, the transmission rate must be held within a reason-
ably tight tolerance over the operational life of the PDCP, which can be
greater than one year. Because some variation in the frequency of the
PDCP master clock must be expected, the transmitter subroutines should
not be allowed to contribute to the total error budget. The entire error
budget can then be applied to the system oscillator so that the cost of
the clock will be minimized.

Since microprocessor controlled operations can only occur at dis-
crete time intervals defined by the system clock, the clock frequency
must be chosen to provide an integer number of states during each phase
of a data bit. This technique has been employed in the design of the
model PDCP (see Section 5.1.1.1). A low frequency clock was chosen so
that the microprocessor could be interfaced with inexpensive, low speed
memory without the need for a wait-cycle generator. Further, the specific
600-KHz CPU clock was chosen so that an integer number of states will
occur within each phase of the Manchester encoded data for all typical
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TABLE 4.4.3(1)

TRANSMITTER CONTROL SIGNALS

Function

Signal Bit Number
UNUSED BIT provides don't care condition

(UNUSED) g to minimize the number of instructions
required to initialize the transmitter
data port (Port XMIT)

™ 1 Selects TWERLE transmitter mode

INT 2 INTEGRATE inhibits carrier modulation and
thus control clear carrier transmission

LS 3‘ Selects Landsat transmitter mode

GO 4 Selects GOES transmitter mode

XMITE 5 Enables the transmitter RF signal

XPWR 6 Controls power supply to transmitter

TN 7

Selects TIROS-N transmitter mode
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transmission rates. This restriction on the microprocessor clock does
not significantly reduce the potential speed of the microprocessor. For
example, only a 0.225 percent increase in the theoretical minimum cycle
time of the higher speed 8080A-1 microprocessor is required to satisfy
the restriction. Table 4.4.3(2) lists the transmission rates for each
major data collection satellite system and the corresponding number of
states within each phase of the Manchester-encoded data stream for an
8080A with a 600-KHz clock and for an 8080A-1 with a 3.07-MHz clock.
Note that the microprocessor must output to port XMIT at a rate eqdiva—
lent to twice the data rate. )

TABLE 4.4.3(2)

.TRANSMISSION RATES FOR THE LANDSAT, GOES, TWERLE,
AND TIROS-N DATA COLLECTION SYSTEMS

Number of States Between Phases of
the Manchester-Encoded Data Stream

Transmission Rate 8080A uP 8080A-1 wP
System (Bits Per Second) 600-KHz Clock 3070-KHz Clock
TWERLE 100 3000 15,350
GOES 100 | 3000 15,350
TIROS-N 400 750 7,675
Landsat 5000 60 307

4.4.3.1 TWERLE Format Transmitter Subroutine - Specifications for
the TWERLE data transmission sequence are shown in Table 4.4.3.1(1).
Program 4.4.3.1(1) is a-listing of the TWERLE format transmitter routine
written for the UT PDCP. This subroutine provides complete control of

the transmitter and generates a Manchester-encoded data stream at a rate
of precisely 100 bits per second. A simplified flow chart for Program
4.4.3.1(1) is illustrated in Figure 4.4.3.1(1), and a detailed flow chart
for the data transmission block is presented in Figure 4.4.3.1(2).
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TABLE 4.4.3.1(1)

TWERLE DATA TRANSMISSION SEQUENCE
SPECIFICATIONS

Transmission Interval: 1 second nominal

Transmission Rate: 100 bits per second

Coding:

Manchester encoded with a 0 - 1
transition representing a 1

Transmission Sequence:

1.
2.
3.

Transmitter power-up followed by a 1 second warm-up delay
Clear carrier transmission for 0.32 to 0.36 seconds

Data transmission

a. Bit synchronization code (19191918) (8 bits)
b. Frame synchronization cede (119101100000) (12 bits)
c. Address code (assigned to user) (10 bits)
d. Mode bits (2 MSB's of radio altimeter data,
LSB first) (2 bits)
e. Data bits (32 bits, LSB first)
1) Radio altimeter data : (8 bits)
2) Air temperature data ‘ (8 bits)
3) Air pressure data (8 bits)
4) Pressure temperature data (8 bits)

Transmitter power-down
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Simplified Flow Chart for

Subroutine TWXMIT.

4-64



l

OUTPUT FIRST BIT OF
BIT SYNC TO
PORT XMIT

1

ENABLE
TRANSMITTER
MODULATION

O

T

DELAY

|

COMPLEMENT
DATA BYTE

l

OUTPUT FIRST PHASE
OF LSB T0
PORT XMIT

COMPLEMENT
DATA BYTE

I

DELAY

OUTPUT SECOND PHASE
OF LSB TO
PORT XMIT

l

ROTATE DATA BYTE
RIGHT 1 BIT

"LAST BIT
TRANSMITTED?

GET NEXT DATA
BYTE

LAST BYTE
DELAY |

TRANSMITTED

Figure 4.4,3.1(2)
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Each TWERLE DCP is assigned a unique ten-bit address code which is
normally plug-wired [7]. The TWXMIT subroutine assumes a similar arrange-
ment in which the PDCP address is plug-wired on two bits of input port
ADRS1 and eight bits of input port ADRS. These input ports are sampled
during the clear carrier portion of each transmission, and the plug-wired
address is temporarily stored in the RAM data block. The bit and frame
synchronization codes are also moved to the RAM data storage block tem-
porarily so that the data can be transmitted from sequential memory
Jocations. Table 4.4.3.1(2) illustrates the format of the RAM data block.

TABLE 4.4.3.1(2)
FORMAT OF THE TWERLE RAM

DATA BLOCK
Memory - Data Byte
Address MSB LSB
TWD-4 ] 0 ] 0 1 0 1 0
TWD-3 0 1 ] 0 1 0 1 1
TWD-2 X3 X2 X] X0 0 0 0 0
TWD-1 A9 A8 X9 X8 _ X7 X6 X5 X4
WD A7 A6 A5 A4 A3 A2 A] A0
TWD+1 T7 T6 T5 T4 T3 T2 T] TO
+
TWD+2 P7 P6 P5 P4 P3 P2 P] P0
TWD+3 Pt7 Pt6 Pt5 Pt4 Pt3 Ptz Pt] Pto
KEY: X - TWERLE PDCP Address Plug-Wired to Ports ADRS and ADRS+]

A - Altimeter Data

T - Air Temperature Data

P - Pressure Data

Pt - Pressure Temperature Data
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TWERLE DCP's transmit to the RAM's system aboard the Nimbus-F satel-
lite. This system relies on time and frequency division multiplexing of
the data from the various DCP's to prevent transmission interference [8].
In present TWERLE DCP designs, time-division multiplexing depends upon
establishing a random variation in the length of the clear carrier
transmission from each DCP. An average clear carrier transmission time
of 0.34 seconds with nominal range of 0.32 to 0.36 seconds is desired.
Currently, an imprecise one-shot circuit which must be manually adjusted
for proper timing is used to control the clear carrier transmission time
[7] and prevent two systems from interferring with each other for an
excessive period. The TWXMIT subroutine listed as Program 4.4.3.1(1)
makes a substantial improvement over this system. A software delay
routine establishes a minimum clear carrier transmission time of 0.31952
seconds which may be increased to a maximum of 0.36048 seconds according.
to the formula e

T = 319.52 + 40A,

where T = clear carrier transmission time in microseconds, and A = deci-
mal equivalent to PDCP TWERLE address. Since each TWERLE PDCP is
assigned a unique address, this technique guarantees that two systems
will not remain in time sequence and interfere with each other. In addi-
tion, the transmission interval for each TWERLE POCP can be computed

from the address assigned to that system. Any variation from the
assigned transmission interval would provide an early warning of possible
system malfunction. Also, the need for manual adjustment of the trans-

mission interval is eliminated.

The TWERLE format transmitter routine uses a general-purpose, long-
delay routine which is 11 bytes long. Only 123 additional bytes of ROM
are required to store the program. At present 100-piece CMOS 512 byte
ROM prices, the incremental component cost of providing the TWXMIT sub-
routine as part of a standard PDCP ROM is approximately $9.85. In addi-
tion, this subroutine utilizes 12 bytes of RAM for data and stack storage,
10 input bits to specify the platform address, and 8 output bits to pro-
vide data and control to the transmitter.

- veam s A o apepr S pee § t n aem
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4.4.3.2 GOES Format Transmitter Routine - Specifications for the

GOES data transmission sequence [6] are presented in Table 4.4.3.2(1).
Program 4.4.3.2(1) is an assembly language listing of the GOES format
transmitter routine written for the UT PDCP. This subroutine provides
all necessary data formatting and encoding as well as complete transmit-
ter control. 1In contrast to the TWERLE format transmitter subroutine,
Program 4.4.3.2(1) assumes that the unique 31-bit address code assigned
to each GOES PDCP is either stored in PROM or plug-wired to a memory-
oriented input port. Both ASCII and Manchester data encoding are accom-
plished in real time during transmission to minimize data storage
requirements.

A flow chart for the basic GOES format transmitter subroutine is
illustrated in Figure 4.4.3.2(1), and a flow chart for the BIPHS sub-
routine called by the GOES subroutine is shown in Figure 4.4.3.2(2).
Since the amount of GOES data transmitted is variable, the first byte
of the RAM data storage block is used to indicate the current number of
data bytes. Twelve additional bytes of RAM are required for stack oper-
ations. The GOES transmitter program,,inc]uding subroutine BIPHS and the
table area required to store preamble data, occupies 225 bytes of ROM.
This program also requires the same 11-byte, general-purpose long-delay
subroutine used by the TWERLE format transmitter routine. Primarily
because of the ASCII encoding requirement, the GOES format transmitter
subroutine is significantly longer than either the TWERLE, TIROS-N, or
Landsat transmitter programs. Nevertheless, the GOES transmitter routine
would occupy only one-fourth of an 8K-bit ROM. The incremental. component
cost of providing this subroutine in a standard PDCP ROM is approximately
'$18.02.

4.4,3.3 TIROS-N Format Transmitter Routine - Program 4.4.3.3(1) is
an assembly language listing of the TIROS-N format transmitter subroutine

written for the UT PDCP. This program is based on the preliminary
TIROS-N DCP specifications [9] presented in Table 4.4.3.3(1). A flow
chart for Program 4.4.3.3(1) is illustrated in Figure 4.4.3.3(1). The
TIROS-N transmitter subroutine provides real-time Manchester encoding
of the preamble and the 32 data bits. Data is transmitted at a rate of
400 bits per second using the standard transmitter control signals
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TABLE 4.4.3.2(1)

GOES DATA TRANSMISSION SEQUENCE
SPECIFICATIONS

Transmission Interval: Selectable up to 24.75 hours in 0.25

hour increments

Transmission Rate: 100 bits per second

Coding:

Preambie - Manchester encoded with a 0 - 1
transition representing a 1

Data and EOT characters - ASCII encoded then
Manchester encoded as above

Transmission Sequence:

1.
2.
3.

Transmitter power-up followed by a 1-second warm-up delay
Clear carrier transmission for a minimum of 5 seconds

Preamble transmission

a. Bit synchronization clock (250 bits minimum)
b. Frame synchronization code (19¢910911019111) (15 bits)
c. Address code (assigned to user) (31 bits)
Data transmission (up to 2000 bits)

EOT code transmission - three ASCII end-of-transmission
characters . (33 bits)

Transmitter power-down
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Flow Chart for GOES Transmitter Subroutine.
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TABLE 4.4.3.3(1)

TIROS-N DATA TRANSMISSION
SEQUENCE SPECIFICATIONS
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Transmission Interval: Variable 40,'60,fo&,80 seconds

Transmission Rate: 400 bits per second

Coding:

Manchester enéoded with a 0 - 1

transition representing a 1

Transmission Sequence:

1.

Transmitter power-up followed by a 1 second
warm-up delay

Clear carrier transmission for 160 2.5
milliseconds

Preamble transmission

a. Bit synchronization clock

b. Frame synchronization code (P@2191111)
c. Address code (assigned to user)

Data transmission - four bytes

Transmitter power-down

(15 bits)
(9 bits)
(24 bits)
(32 bits)
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v
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ROTATE DATA BYTE
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\
RETURN

ADDRESS DATA
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Flow Chart for TIROS-N Transmitter'Subroutine.
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defined in Section 4.4.3. The TIROS-N transmitter program utilizes
eight bytes of RAM for data storage and stack operations and 124 bytes
of ROM for program and preamble storage. In addition, this program also
uses the standard long-delay subroutine.

4.4.3.4 landsat Format Transmitter Subroutine - Specifications for

the Landsat data transmission sequence [6] are presented in Table
4.4.3.4(1). The Landsat data transmission rate of 5000 bits per second
is significantly higher than the data transmission rates used in the
TWERLE, GOES, and TIROS-N data collection systems. Because of this high
data transmission rate, convolutional encoding of Landsat data cannot be
accomplished in real time during transmission from the UT PDCP system.
Instead, a separate subroutine [Program 4.4.3.4(1)] is used to convolu-
tionally encode the data prior to transmission. A flow chart for the
PDCP convolutional encoder subroutine is illustrated in Figure 4.4.3.4(1).
This subroutine is called by the executive program prior to each data
transmission. The convolutional encoding process creates two code bits -
for each original bit of data but provides error detection and correc-

tion capabilities.

Manchester encoding; transmitter control, and actual Landsat data
transmission are provided by Program 4.4.3.4(2). A flow chart for the
Landsat format transmitter subroutine is shown in Figure 4.4.3.4(2).
Together, Program 4.4.3.4(1) and Program 4.4.3.4(2) require 188 bytes
of ROM for program storage and 31 bytes of RAM for data storage and
stack operations.

4.4.4 Special Computations

Remote processing of data is a logical extension of the capabilities
of the microprocessor-based PDCP. The question arises, however, as to
what sort of numerical techniques are practical given the present time
and memory restrictions of a PDCP system. In an effort to answer this
question, the Fast Fourier Transform (FFT) was chosen for implementation.
It is a sophisticated and powerful tool in numerical analysis, allowing
the decomposition of time Signals'into their frequency components. It
has been proposed, for example, that seismic events may be detected by
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TABLE 4.4.3.4(1)

LANDSAT DATA TRANSMISSION SEQUENCE
SPECIFICATIONS

Transmission Interval: 90 or 180 seconds

Transmission Rate: 5000 bits per second

Coding: Convolutional encoding, rate 1/2,
constraint length 5
Manchester encoded, 1.- 0 transition
representing a 1

Transmission Sequence:

1. Transmitter and platform power-up for 50 milliseconds

2. Turn on RF power simultaneous with first serial data bit

‘3. Data transmission

a. Message preamble (PP000RP0PPPPDP0D) (15 zeroes)
b. Platform address (assigned to user) (12 bits)
c. Sensor data 1-8 eight-bit words (8-64 bits)
d. Runout bits (pppg) (4 zeroes)

Total 39-95 bits

4. Transmitter and platform power-down

NOTE: The 39-95 bits of Landsat message are before.convolutional
and Manchester encoding. The actual transmitted message is
4 x (39 to 95) bits.
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4 START

POINT (DE) AT DATA
BLOCK, FETCH # CYTLS
TO BE CONVOLVED FROM

FIRST BYTE IN DATA

BLOCK

'

LOAD P'S OF PREAMBLE
AT BEGINNING OF DATA
BLOCK AFTER BYTE
COUNT

i

GET PLATFORM ADDRESS
FROM ROM AND LOAD
IN DATA BLOCK RIGHT
BEFORE ACTUAL DATA BYTES

{

PRESET POINTER AT
FIRST DATA BYTE
T0 BE COHVOLVED

(PLATFORM ADDRESS)

FETCH A BYTE OF
DATA AND COMVOLVE
INTO 2 BYTES, RETURN
CONVOLVED BYTES TO
DATA BLOCK

!

DECREMENT BYTE COUNT

LAST
BYTES
CONVOLVED

FETCH ¢ BYTES CONVOLVED
FROM BEGINNING OF DATA
8LOCK

!

CONVERTS TO NUMBER OF
BITS TO BE BIPHASED
AND STORE AT BEGINNING
OF BLOCK

RETURN

Figure 4.4.3.4(1) Flow Chart for the PDCP Convolutional

Encoder Subroutine.
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APPLY TRANSMITTER
POWER IN LANDSAT
MODE RF POWER OFF

!

DELAY 50 MSEC. FOR
WARM-UP. SET UP DATA
ADDRESS POINTER ) @

1 DELAY FOR 10-KHz
GET # BITS TQ BE

TRANSMISSION RATE

BIPHASED FROM FIRST
BYTE OF DATA BLOCK. *
INCREMENT DATA
ADDRESS POINTER . SHUT-DOWN
; TRANSMITTER

"OUTPUT FIRST PHASE OF

FIRST DATA BIT JUST RETURN
PRIOR TO RF POWER-ON -

RF POWER-ON

. ) OUTPUT FIRST
DELAY FOR 10-KHz PHASE OfF BIT
TRANSMISSION RATE T

1 ' DELAY FOR 10-KHz
TRANSMISSION RATE
OUTPUT SECOND

PHASE OF DATA BIT f

l GET NEXT BIT TO BE
DECREMENT BIT COUNT : BIPHASED

3

LAST
BIT
OUTPUTTED

NO

Figure 4.4.3.4(2) Flow Chart for the lLandsat Transmitter
: Subroutine.
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an analysis of their frequency components, and with this in mind a classi-
fier based on the Bayes decision rule was investigated for its possible
practical application to seismic event detection. Figure 4.4.4(1) shows
how the FFT and Bayes classifier would work together in a detection
scheme.

4.4.4.1 The FFT Program - The implementation of the fast Fourier

transform (FFT) program was carefully studied. Because of limitations
in execution time and memory size imposed by the PDCP, the commonly used
forms of the algorithm were unacceptable. Most involve considerable
manipulation of‘complex numbers, in particular, complex multiplication.
Also, most existing FFT programs require the calculation of weighting
factors, which are themselves complex and trigonometric in nature.

| A method which avoids these time consuming problems was reported in
a short paper by Dr. C. M. Rader and N. M. Brenner [9]. It outlines an
approach whereby only pure imaginary weighting factors are required,
thus decreasing the total number of mu1t1p1ications necessary. In addi-
~tion, "the ‘weighting - factors “fall in a convenient range of values, from
j0.5 to j5 (for 64-point transforms or less).

The derivation of the Rader-Brenner form is outlined in Appendix B
and need not be repeated here. However, it is helpful to see the flow of
the process. Figure 4.4.4(2) outlines the sequence of events graphically
for each data byte pair (complex data value) of a 16-point transform.
First is the summation stage where h is calculated for the two-point,
four-point, and eight-point cases. Recall from the derivation that C, =
AN+ + aN-1 + Q, where n =0, 1, ..., N/2-1. Next, the data values are
permuted so that the final output data will be in numerical and not bit-
reverse order [10]. That is, cell one will contain the first Fourier
coefficient, cell two will contain the second, and so on. Finally, the
two-, four-, eight- and 16-point transforms are calculated.

As can be seen from the 8080A FFT program source listing, (Program
C(1) in Appendix C) a FORTRAN program is used as the logical model for
the assembly language program. There are several advantages to this
approach. In the first place, FORTRAN offers a clear way to logically
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break down the operations of the program. Secondly, a program written
in FORTRAN (with certain hard-to-implement instructions like DO omitted)
can be reduced to minimum complexity and debucged on a logical level
before assembly language programming begins. Thus, one is assured of
the integrity of the logic before proceeding to assembly language pro-
gramming. The 8080A fast Fourier transform subroutine (FFT80) requires
1102 bytes of ROM.

After the FORTRAN framework is decided upon, compilation to assembly
language can begin. However, assembly by a FORTRAN compiler would be
quite unsatisfactory. Very great increases in efficiency and speed can
be achieved by taking advantage of the architecture of the 8080A CPU.
For example, instead of storing commonly used pfogram variables in mem-
ory, which would require time consuming memory read/write operations,
these values can be retained and operated upon using internal registers.
It is, of course, occasionally necessary to free registers for other
uses, which is achieved by pushing and popping the variables on the
stack. The total time required for these operations is small cbmpared
to the time required for repeated memory accesses.

It would have been preferable to use a word length of 16 bits in this
program as it allows greater resolution of incoming signals and removes
the fear of overflow errors. This would mean complex data values would
be 32 bits long. Unfortunately, the 8080A's double word (16 bit) instruc-
tion set is quite limited and very time consuming, while separately man-
~ipulating each byte of a double word is even more inefficient. The only
reasonable approach then is to use 8-bit values, thus trading resolution
for speed. In a few intermediate steps of the program it is necessary to
expand to double words, such as in manipulation of the variable SUM in
the add up stage of thz program. SUM is a mean value which first con-
tains a sum of values and then is divided by the number of values summed.
Before division, SUM can easily grow to a value in excess of eight bits
in length, so the word length is increased. After division, of course,
eight bits is sufficient since an average cannot be larger than the
largest of the averaged values.
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The 8080A does not provide hardware multiplication, and conventional
software multiplication is quite time consuming especially considering
the non-integer factors involved. Thus, an alternate multiplication tech-
nique has been developed. From the development in Appendix B, it is seen
that the weighting factors are pure imaginary and have the values:

W, = 0.5 cosecant(2nk/N)j, k # O,N/2 .

In Program C(1), 2k is defined M1 and N is defined M2. That is, Wy =
0.5 cosecant(wM1/M2)j. The sequence M1/M2 is:

MI/M2 = m/2"

wherem=1, 3, 5, ..., Zn']—] for eachn=1,2, 3, ..., (logzN)-l
(where N = number of points of the transform). For a 64-point transform,
M1/M2 is the sequence 1/2, 1/4, 1/8, 3/8, 1/16, 3/16, 5/16, 7/16, 1/32,
3/32, 5/32, 7/32, 9/32, 11/32, 13/32, 15/32. A 16-point transform would
require only the sequence M1/M2 = 1/2, 1/4, 1/8, 3/8. Table 4.4.4(1)
de]ineatgs the ratios and consequent values of W '

The shifts listed in the table are used by the special multiplica-
tion subroutine MULCON (TEMP,K). MULCON multiplies by shifting the value
in TEMP right or left a number of times and adding or subtracting the
shifted value with the original value of TEMP. The number of shifts and
the decision as to whether the resulting shifted value is to be added to
or subtracted from TEMP is stored in a look-up table (called TABLE in the
program). K is the index for TABLE. For example, suppose K = 108 when
MULCON is called. M1/M2 = 3/8 and We = 0.54. The value in TEMP is to be
multiplied by 0.54, thus TABLE (108) = -1,+5. TEMP is duplicated in
TMPROD and shifting proceeds on TMPROD. The 1 value in TABLE indicates
that TEMP is to be shifted right one time, yielding 0.5 TEMP, and the
minus sign means that the shifted value is to be subtracted from TMPROD.
Recalling that TMPROD = TEMP originally, we now have TMPROD = TMPROD -
TEMP/Z] = 0.5 TEMP. Next, TEMP is shifted right five times and the shifted
value is added to TMPROD, which equals 0.5 TEMP from the last operation. Five
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shifts yield 0.031 TEMP and TMPROD = TMPROD + TEMP/Z5 = 0.5 TEMP +
0.031 TEMP = 0.53 TEMP. From Table 4.4.4(1) it can be seen that the
exact answer is 0.54; the error is less than 0.01 TEMP. This is

usually less than round-off error when working with integer arithmetic.

Upon completion of the FFT portion of the program, the array DATA,
which initially held the time domain data, now contains the Fourier
series coefficients. These transform values, however, are complex and
for -the purposes of Bayes classification, only magnitudes are of interest.
The normal procedure for finding the magnitude of some value (a+jb) is
to take the square root of the sum of the squares of the coefficients,
that is, /;?'I_E7 . To speed up this computation for a microprocessor
application, a method is used which does not require the squaring and
square-root routines; only the division routine is required. This method
is described in the following paragraph. |

A complex number can be visualized as a vector of maghitude m hav-
ing two orthogonal components. Since m is always positive, the signs of
.these components are irrelevant; only the absolute values need be con-
sidered. The absolute value of the smaller component is defined here as

a and the larger as b, so m is graphed.

Larger Component Axis

Smaller Component Axis

It is clear that for these conditions, 45° <0 5_900. What is needed is
some function, C(a,b), such that a*C = m, that is, some function that
relates the smaller component to the magnitude. It is apparent that
a*secant(é) = m, but this is a function of 0. The next step is to
express 0 as a function of a and b. Of course, o = arctan(b/a), so the

above expression becomes:

a*secant[arctan(b/a)] = m, 1 <b/a <.
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Kyo(Kg)

M1/M2 K Right Shift Left Shift

1 (2) 1/2 0.500j -1,0

2 (4) 1/4 0.707; -2,-5

37 (6) 1/8 1.307j +2,+4

4 (10) 3/8 0.541j -1,+5

5 (12) 1/16 2.563j +1,+4 Shift left but do

not add to original

6 (14) 3/16 0.900j -4,-5

7 (16) 5/16 0.601j -1,+3

8 (20) 7/16 0.510] -1,0

9 (22) 1/32 5.101j +3,0 +2
10 (24) 3/32 1.7225 +1,+2
11 (26) 5/32 1.061j +4,0
12 (30) 7/32 0.788j -2,+5
13 (32) 9/32 0.647] -1,+3
14 (34) 11/32 0.567] -1,+4
15 (36) 13/32 0.523j 1,45
16 (40) 15/32 0.502j -1,0

*

Wy = 0.5 cosecant(nwM1/M2)j
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Thus, C = secant[arctan(b/a)]. Now the calculation of C for each b and
a would be as difficult as the RMS method, but this ca]éu]ation is not
necessary. Instead, a "window" technique is used, whereby a value C is
associated with a certain range of values of b/a. In the actual program,
- the value 8b/a is calculated using a standard division routine as this
preserves more significant digits in the quotient.

Because it is desired to perform the effective "multiplication" of
C*a by successive additions of a, integral values of C are desired.
Further, since the value 0.5a can be easily found and stored, then C can
take the values 1.5, 2, 2.5, 3, ..., 9, 9.5.

What must now be found is the range of values of b/a for which a
particular value of C will be chosen.” It seems reasonable, where the
possible values of C are 2, 2.5, 3, 3.5, etc., that those values of b/a
which yield a 2.25 < C < 2.75 should be assigned the value C = 2.5, or
where 2.75 < C < 3.25, then C = 3. Using this method, the absolute error
in the resulting magnitude is less than 0.25 times the smallest compon-
ent. ‘The magnitude,’theréfore; is"an approximation; however, this
approximation is adequate for most purposes.

The FFT program composes what can be called the preprocessor part
of the classification scheme. It receives the incoming data and finds
in it certain parameters or features of interest, in this case frequency
components. The next step is to extract those features which can be
used fo assign the data to a particular class. For FFT80, feature extrac-
tion merely means taking certain pre-determined complex frequency compon-
ents, finding their magnitudes, and storing these magnitudes in a stor-
age array, called MTUDE. The contents of the MTUDE array become the
input data to the pattern recognizer stage of the program.

4.4.4.2 The Bayes Classifier - The classification scheme investi-

" gated uses the Bayes decision rule. In order to understand how this
process works, it is helpful to visualize a space in which every pattern
(input value) is a point in space. Thus, the space has as many dimensions
as the pattern. For example, suppose the three low frequency components
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X1, X2, and X3 are being used to classify a signal. Then for each frame

pattern, X has three components as seen in Figure 4.4.4(1). Each point,
X(F2,F3,F4), represents a pattern in three-space. If, after a sufficient
number of trials (points plotted), the points are observed to cluster in
groups, the Bayes decision rule can be applied. The clustered groups are
called classes and some decision must be made as to what constitutes a
class boundary. Once the boundaries are defined, each succeeding pattern
will be classified according to which side of a boundary it falls upon.
The Bayes method does not assure that misclassifications will not be made,
but it does assure a minimum average loss in classification; that is, it
assures statistical optimization [11]. The average loss in assigning a
pattern x to a class j given m classes is

ri(x) =

Hes-13

] Lijp(Y/wi) p(w,)

j
where p(?]wi) is the probability density function of W s p(wi) is the

" - probability of the occurrence of the class wi'and Lij is a "loss matrix"
which assigns a loss of zero for correct classifications and a loss of
one for misclassifications. A pattern is assigned to the class offering
the smallest average loss. Consider a simple example. Suppose we are
receiving a signal that has been corrupted by Gaussian noise. The sig-
nal is made up of 1's and 0's, so the actual received signal has a
probability density

while p(wo) is the probability of a 0 being sent and p(w]) is the prob-
ability of a 1 being sent. A reliable classifier can be implemented
only if the two density curves do not significantly overlap.
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In separating seismic signals into normal (background noise) and
abnormal (seismic activity) classes, based on spectral composition,
several things must be known. The values of p(normal) and p(abnormal)
are not critical and can be arbitrarily set to p(normal) = 0.9999 and
p(abnormal) = 0.0001. However, calculating values for the probability
densities of normal and abnormal classes is more difficult. To an
extent these are functions of the location of the seismic sensor. A
PDCP located near a highway, for example, would have a noise spectrum
and probability density different from one located in a more remote
area. The factors affecting the probability density of seismic spectral
components are not well understood and there is a dearth of information on
the subject [12]. But perhaps the greatest problem encountered in the
use of the Bayes classifier on spectral components of signals is that
the signals of both classes are largely impulsive in nature. Impulses,
when transformed, exhibit all frequencies equally, and, seismic and
noise signals, while not pure impulses, are similarly sharp, fast-
changing time functions. The problem then is that any given combination
of frequencies that can be extracted from PDCP processing will be similar
for both noise and seismic signals. That is, their probability density

curves overlap to an extent that they cannot be reliably separated.

It is possikle, however, to use the Bayes classifier to separate
patterns with high frequency (impulsive-type) components from those with
only Tow frequency components. This would enable noise and seismic sig-
nals to be differentiated from calm background activity; but if this
were all that was required, a simple high pass filter would be the
obvious choice.

While the use of Bayes classification of spectral data cannot be
removed from consideration, it is suggested that to be of practical value
very high resolution (multiple point) transforms are required. In addi-
tion, PDCP's must be trained individually with data taken from the sites
on which they will be placed.

The implementation of a fast Fourier transform subroutine on an 8080A
microcomputer requires the addition of 1.1K of memory. It will execute
16 point transforms in 39 ms, 32 point transforms in 96 ms, and 64 point
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transforms in 228 ms at a CPU clock rate of 2 mHz. This demonstrates the
feasibility of performing sophisticated and complex mathematical functions
remotely on PDCP. With the advent of new miéroprocessors with increased
speed, indirect addressing, and hardware multiply/divide, such as the

- Texas Instruments TMS 9900, multipoint FFT subroutines will become
practical.
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5.  PROGRAMMABLE DATA COLLECTION PLATFORM DEVELOPMENT SYSTEM

The University of Tennessee programmable data collection platform
development system includes an Intel 8080 based special-purpose micro-
computer, a video display terminal, a cassette bulk storage device, and
supportive system software.

5.1 UT PDCP DEVELOPMENT SYSTEM HARDWARE

A major objective of the PDCP study is to conceive and describe a
programmable data collection platform. To aid in achieving this goal,
the UT PDCP development system using the Intel 8080 microprocessor has
been built. The UT PDCP is designed to serve as a developmental tool
which will aid in determining -the feasibility of using a microprocessor
to perform all current DCP tasks as well as additional tasks which are
not possible with contemporary DCP designs. The UT PDCP includes the
capability of simulating the transmitted data messages for typical
Landsat, GOES, TIROS-N and TWERLE data collection platforms. In addi-
tion, the UT PDCP is interfaced to a video display terminal and keyboard
permitting user intervention with the various PDCP demonstration pro-
grams. The UT PDCP is not intended to reflect a choice of microproces-
sors for an actual PDCP; this choice will depend on many factors which
are described in Section 6.

The basic hardware system consists of eight 11.43cm x 16.51cm (4.5"
X 6.5") printed circuit cards manufactured by Pro-Log Corporation. There
are three 4K RAM cards, two 2K ROM cards, one 32-line input card, one
32-1ine output card, and the CPU card. The eight Pro-Log MPS components
cards supply 32 parallel input and output lines for interfacing simula-
ted sensors, the system memory (12K RAM and up to 4K ROM), and the micro-
processor chip and support logic. To complete the UT PDCP, four printed
circuit cards héve been added to the basic Pro-Log system. The addi-
tional cards include a dual serial I/0 card, an analog interface card, a
cassette‘ana1og interface and baud-rate timing card, and a utility card
containing hardware system start-up, a baud-rate clock and current loop
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interface for the video terminal, and single step control logic. A1l
printed circuit cards plug into a small 12.7cm x 25.4cm (5" x 10") rack
with a wire-wrapped back plane. The rack is mounted inside an attrac-
tive gray cabinet. Power is provided by a small external power supply.
The front panel switches are minimal as control of the UT PDCP is inten-
ded to be from keyboard commands issued from the video terminal. Jacks
for interconnection of the video terminal and cassette recorder are on
the rear panel. Simulation of several DCP functions is provided by LED's
mounted on the front panel. All connections between the cassette
recorder, video display and the UT PDCP are via plug-in cables for ease
of interconnection of the three system components. The only additional
hardware needed to completely demonstrate the capabilities of the UT

PDCP system are a laboratory dual-sweep oscilloscope and a frequency
counter with period measurement capability. A description of the oper-
ating procedure for these instruments is included in the System Operation

Manual. The following sections describe in detail the individual com-

ponents of the UT PDCP system. A block diagram of the major components
of the UT PDCP system hardware is depicted in Figure 5.1(1). Figure
5.1(2) presents a more detailed view of the PDCP microcomputer system
components. ’

5.1.1 Basic Pro-Log System

An 8080 based microprocessor system was selected for the UT PDCP.
There are several reasons for this choice. +The 8080 microprocessor has
an eight bit word size which should be optimal for the PDCP application.
Extensive software,support packages including resident text editors,
assemblers, simulators, BASIC, FOCAL, and FORTRAN are available for the
8080. In addition, cross-assemblers, a cross-simulator, and a FORTRAN
cross-compiler are also available. A few recent microprocessors have
extensive software support available now; however, at the beginning of
this study only the 8080A had extensive software support. Due to the
short period allotted for this study, extensive software support was
required to enable development of a large number of PDCP programs.
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RK-725 [/ VT-50/CA

DUAL-CHANNEL CASSETTE RECORDER VIDEQ DISPLAY TERMINAL
(for bulk program storage) (for user interaction with system)

UT PDCP MICROCOMPUTER

Figure 5.1(1) Major Components of the UT PDCP DEVELOPMENT SYSTEM.
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The 8080 based Pro-Log Corporation Microprocessor System (MPS) card
components offer a stripped-down, cost-effective basic system. With the
addition of four specially designed cards, a powerful PDCP development
-system is obtained. Other companies were interviewed as a source of
basic system hardware; however, on the basis of economics and availa-
bility, a decision was made to use a set of eight basic cards made by -
Pro-Log Corporation and add to them .four specially designed cards to
create a special purpose microcomputer. Perhaps a better PDCP develop-
ment system could have been designed starting with only a microprocessor
chip set and no commercial cards. However, due to the short time span
of this study, the ideal approach had to be compromised. Thus, the
Pro-Log MPS cards provide the basic microcomputer system functions, and
four add-on cards were designed to form a powerful PDCP development
system.

5.1.1.1 Central Processing Unit Card - The major component of the
Pro-Log system is the 8811 Central Processing Unit (CPU) card. The CPU
card contains an Intel 8080 microprocessor, a two-phase clock, a power-up

‘reset circuit, and data, address, memory, and I/0 control logic. A few
timing signals needed for special functions were not brought out to the

. edge connector on the stock CPU card. Thus, these signals were either
brought out on spare edge connector pins or generated externally on the
utility card (see Section 5.1.3). To facilitate accurate timing for

PDCP transmitter demonstration programs, the crystal in the clock cir-
cuit for the CPU was changed from 5.0 MHz to 4.8 MHz. The 4.8 MHz clock
provides a basic 1.6666 microsecond (usec) state time for all instruc-
tions. This state time was chosen to provide an integer number of states
between phases of a Manchester encoded data stream transmitted at the
typical DCP rates (100, 400, or 5000 bits per second). Note that a 1.6666
usec state time is over three times slower than the nominal 500 nanosec-
ond (nsec) state time for a full speed 8080 system. The slower state
time also permits the use of low speed, inexpensive memory without the
need for wait-cycle generation circuitry.

5.1.1.2 Random-Access Memory Cards - There are three 8117

Random-Access Memory (RAM) cards in the basic Pro-Log system which
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provide a total of 12K of RAM. Each RAM card provides 4K by eight bits
of statis RAM (2102 type, 1.0 usec access time). An actual PDCP would
not require such a large amount of RAM. The UT PDCP is provided with
12K bytes of RAM to facilitate program development and to provide a
storage area for the text of the extensive comments which accompany the
PDCP demonstration software. The 12K of RAM permits all the programs of
the PDCP demonstration package to be resident simultaneously with room
for additional programs.

Although the access time of the 2102 type RAM's used on the three
8117 RAM cards is faster (1.0 usec compared to 1.6666 usec state time)
~ than the basic state time of the CPU, the frequency of the system clock
is limited by the access time of the read-only memory (ROM). A
wait-cycle generator circuit could have been added to obtain maximum
overall system speed; however, different cycle times for RAM, ROM, and
non-memory referencing instructions would have complicated software
timing routines. Maximum system speed is not needed to simulate all DCP
functions performed by current DCP's. The three 8117 RAM cards are
assigned absolute memofy addresses 0-12K.

5.1.1.3 Read-Only Memory Cards - The two 8116 Read-Only Memory
(ROM) cards provide non-volatile program storage. A powerful system

monitor program resides in slightly less than 3.5K of ROM. General pur-
pose binary math subroutines occupy the remaining 0.5K of ROM. Both

ROM cards accept up to eight 256 x 8 bit Intel 1702A type PROM's. Thus,
each card. can accommodate up to 2K of ROM. To keep costs Tow and still
meet maximum data rate specifications, 1.7 usec maximum access time
1702A ROM's are used.

The ROM's are ultraviolet-eraseable memories and are programmed
with the department's Intellec 8/Mod 80 microcomputer. The two 8116 ROM
cards have been assigned the 16-20K absolute memory addresses.

5.1.1.4 Latched Parallel Qutput Card - Thirty-two parallel latched
output lines are provided by a Pro-Log 8115-1 Output Card. The parallel ’
output card is organized as four 8-bit parallel output ports. Execution
of an "OUT" instruction causes the eight bits in the accumulator to be
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latched into a particular eight-bit output port depending on the port
address specified by the "OUT" instruction. The output lines are TTL
compatible with a fanout of 10. The four 8-bit parallel output ports
are assigned the absolute output port addresses §-3. Output port @ is
normally used for PDCP data output. Bit P of port § is normally a serial
data output for PDCP transmitter formatted data. Other bits of port 9
provide scope data and synchronization signals as well as front panel
LED data displays. Output port 1 is normally used to drive PDCP status
displays and PDCP transmitter control signals. For example, four bits
are used to drive the front panel PDCP mode displays (Landsat, GOES,
TIROS-N, or TWERLE mode). Other bits of output port 1 represent signals
to control platform functions such as platform power on and off, RF
power on and off, data enable, and data integrator initial conditions
control. Presently, output port 2 controls the cassette read/writé

flag LED, while port 3 is brought out to the rear panel for transmitter
timing verification.

An additional parallel output port is provided on the dual serial |
I/0 card (see Section 5.1.2.1) to control the cassette recorder interface.

5.1.1.5 Parallel Input Card - The last member of the Pro-Log MPS
components card family is the 8113, 32-line parallel input card. Like
the parallel output card, the input card is organized as four 8-bit
parallel ports. The parallel input card provides parallel data input.

The input ports are assigned absolute addresses P-3, the same as the
parallel output ports. The eight-bit data switch register on the front
panel is connected to input port p.

The switch register serves as simulated parallel sensor data. The
eight-bit byte loaded on the data switch register is input to the accu-
mulator of the CPU upon execution of the "IN @" instruction. The remain-
ing three parallel input ports provide additional simulated sensor.
inputs. '

The dual serial I/0 card also has a parallel input port (see Section
5.1.2.1) which is used to input status of the cassette recorder interface,
the digital-to-analog converter, and the two Universal Asynchronous
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Receiver Transmitter (UART) chips used to interface the serial data of
the video display terminal and the cassette recorder.

5.1.2 ‘Special Purpose Interface Cards

The eight 8080 based Pro-Log MPS components cards provide the basic
functions of a microcomputer: CPU, memory, and parallel input/output.
Four special-purpose interface cards have been added to the basic Pro-
Log system to create a powerful special-purpose microcomputér system
capable of simulating all the tasks performed by present DCP designs
[see Figure 5.1(2)].

The dual serial I/0 card was developed-to interface the serial data
format of the video display terminal to-the parallel bus structure of
the CPU. The second serial interface provides serial/parallel conver-
sions for the cassette recorder interface to and from the CPU bus. A
parallel input and output port is included on the dual serial I/0 card
to input status from the serial interfaces and cassette recorder and to
output control signals to the cassette interface card and the external
frequency counter.

The analog interface card provides simulated sensor input of analog
data. The card contains an eight-bit digital-to-analog (DAC) converter,
a comparator, a voltage-to-frequency converter and the necessary handshake
logic to permit software analog-to-digital conversion.

The cassette interface card uses a frequency shift keyed (FSK)
technique to store and retrieve data from an inexpensive cassette
recorder. A subharmonic of the baud rate clock used to clock data to
the cassette is also recorded. Thus, on playback, the subharmonic of
the baud rate clock is used to phaselock the baud rate clock decoding
the data. This technique permits large speed fluctuations from the
cassette with no effect on the error rate of the data.

The general purpose utility card provides several special functions
including hardware system start-up; baud rate clock and current loop
interface for the video terminal; and single step control logic. A more
detailed description of the four special purpose cards is provided below.
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5.1.2.1 Dual Serial 1/0 Card - The dual serial 1/0 card and the
other three special-purpose cards were designed to be directly compati-
ble with the address and data-bus structure of the Pro-Log 8811 CPU
card. The bus inputs and outputs are buffered so that the CPU bus driv-

ing capability is preserved. Two serial input and two serial output
ports are implemented on the dual serial I/0 card as well as a parallel
input and output port.

The major component of the dual serial I/C card is a MOS, LSI
device called a Universal Asynchronous Receiver Transmitter (UART). The
UART performs serial-to-parallel and parallel-to-serial data conversion
as well as providing status information on the states of the input and
output buffers included in the device. The UART can be programmed to
receive and transmit five to eight bit words, with or without parity
and with one or two stop bits. The UART interfacing the video terminal
is hardwire programmed for an eight-bit word, one stop bit and no parity.
The second UART interfaces the serial data format of the cassette recorder
and is programmed under software control via the paraliel output port.
included on the dual serial I/0 card.

The parallel output port also controls the motor of the cassétte
deck. Also provided on the dual serial I/0 card is an eight-bit paral-
lel input port used to input UART status. Port absolute-address decod-
ing is included on the card, making it a stand-alone card except for
baud rate clocks needed to drive the UART's. A standard Pro-Log single
serial interface card would have required connection to the Pro-lLog par-
allel input and output cards due to inadequate buffering of their serial
interface card and the lack of address decodina. The specially designed
dual serial I/0 card not only provides two serial I/0 ports and all the
CPU handshaking required, but it is independent of the parallel I/0 cards
thus freeing all 64 parallel I/0 lines for special purpose use.

The serial I/0 data absolute port address assignment for the video
display terminal is port 7. Input status and output cassette control
and UART programming has been assigned to port 6.



5.1.2.2 Analog Interface Card - The analog interface card contains

an eight-bit CMOS digital-to-analog converter (DAC), a comparator, a
voltage-to-frequency converter, and CPU handshake logic. The eight-bit
DAC and comparator are used in a software successive approximation
analog-to-digital conversion technique. The voltage-to-frequency con-
verter provides a second, less expensive technique for analog-to-digital
conversion. The frequency output is counted with a software frequency
counter routine resulting in a digital conversion of the analog input.
The software routines for the successive approximation analog-to-digital
conversion (ADC) and the voltage-to-frequency to digital conversion are
included in PROM.

- 5.1.2.3 Cassette Analog Interface and Baud Rate Clock Card - The
audio interface to and from the cassette recorder is provided by the

cassette analog interface and baud rate clock card. Serial data from
the cassette serial data output port of the dual serial I/0 card is con-
verted to AFSK tones of 4,500-Hz (space tone) and 5,500-Hz (mark tone).
The AFSK signal is created on the cassette analog card and is recorded
on the right channel of the cassette recorder. In playback, the recoV—
ered AFSK tones from the right channel are converted back to serial TTL
compatible levels with an EXAR-210 FSK demodulator integrated circuit.
The recovered serial data from the cassette analog card is then applied
to the dual serial I/0 card's cassette serial 1nput port.

Simultaneous recording of a 600-Hz tone on the left channel is pro-
vided'by a baud rate timing circuit on the cassette analog and baud rate
timing card. A master clock frequency of 57,600-Hz is divided down to
600-Hz. The divider chain provides optional baud rates of 300, 600,
1200, and 1800 baud. The 1200 baud clock was selected for reliable,
fast data recording.

The master 57,600-Hz clock is derived from two sources. In record,
a 555 Timer IC operating as a fixed frequency astable oscillator supplies
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the master clock frequency. In playback, the recovered 600-Hz subhar-
monic tone is used to phase-lock a VCO to 96 times the recovered 600-Hz
tone. The synthesized recovered baud rate clock provides timing for the
serial decoding of recovered data. Since the recovered baud rate timing
suffers approximately the same timing errors as the recovered data,
overall serial data decoding is relatively immune to timing errors due
to the speed variations of an inexpensive cassette recorder.

5.1.2.4 General-Purpose Utility Card - This card contains:

1. Hardware monitor start-up circuit.-

2. Baud rate clock ‘for the video display terminal.
3. TTY current interface for the video display terminal.
4. Single step and other control logic.

A single push button switch is used to activate a hardware start-up
-circuit. In.addition, a power-up circuit on the CPU card also activates
the start-up circuit so that application of power starts the system.

The dual serial I/0 card provides TTL logic level serial data. The
utility card interfaces the standard 20mA current loop of the video dis-
play terminal to the TTL logic levels of the dual serial I/0 card. A
baud rate clock for the video terminal is included on the utility card
providing switch selectable standard baud rates.

Synchronous run, wait, and single step logic is provided for hard-
ware control of the UT PDCP. In addition, a special "slow-run" circuit
is provided to permit s]ow'execution of a program. This feature is par-
ticularly useful for demonstrating PDCP transmitter routines.

5.1.3 Miscellaneous Hardware Components of the UT PDCP
Development System

The eight Pro-Log MPS components cards and the four special purpose
interface cards plug into a small 12.7cm x 25.4cm (5" x 10") rack with
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wire-wrapped edge connectors. The cards are powered by three voltages
(+5, +12, and -9 volts) obtained from two commercial short-circuit proof
power supply modules which were made specifically for the Pro-Log MPS
components cards. The analog interface card also utilizes a -12 volt
power supply which was added to the system.

—

An attractive gray cabinet houses the small rack containing the 12
system cards. The AC power supply is external and connected via a long
flexible cable. The front panel of the cabinet contains a minimum num-
ber of switches and displays in an effort to simplify use of the UT
PDCP system. A set of eight switches provides a fixed value data input
source and is useful in simulating a sensor data source. The value tog-
gled on the data switch register is input to the accumulator of the CPU
upon execution of an "IN §" instruction. Other switches on the front
panel include wait, single step, slow-run, start, power-on, and cassette
motor-on. The function of these switches is explained in the System
Operation Manual. Several LED's are included on the front panel to simu-

late special functions being performed by PDCP software routines. Finally,
BNC-type jacks located on the front panel are used to display signals on

an external oscilloscope, and one jack can be connected to an external
frequency counter to provide timing verification of PDCP functions. The
LED indications and signals appearing at the BNC jacks are explained in
detail in the System Operation Manual.

The rear panel of the UT PDCP contains a jack for interconnection
of the cassette recorder. Another connector provides interconnection to
the video-display terminal. A baud rate select switch for the serial
teletype interface also appears on the rear panel. The terminal baud
rate switch allows connection of a hard copy teleprinter (such as an
ASR-33) in place of the video terminal in the event hard copy is desired.

User interaction with the UT PDCP system is provided by a Digital
Equipment Corporation VT-50/CA video diesplay and data entry terminal.
The VT-50/CA communicates via a full-duplex serial TTY current loop. A
TTY current Toop interface is included on the general-purpose utility
card. Full duplex operation is maintained to achieve maximum versatility
of the VT-50/CA. The VT-50/CA provides an 80-character per line, 12 Tine
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alpha-numeric display and a multimode ASCII two-key rollover keyboard.

The connector feeding the VT-50/CA could be used to operate any
other ASCIT TTY 20mA current-loop device such as the industry standard
]oW—speed ASR-33. Most applications for the UT PDCP system are best
suited to a high-speed video terminal with cursor control like the DEC
VT-50/CA; however, hard copy of program 1istings and data can be obtained
using an ASR-33 teletype if desired.

Several cassette recorders were tested for suitability as a bulk
program storage device. Of all the recorders tested, the Lafayette
RK-725 stereo cassette deck exhibited the best frequency response
(approximately twice the frequency response of all other units tested).
Since a speaker and high-power audio amplifier are not needed, a cassette
deck is preferable to a cassette player. The high-frequency data audio
tones for the cassette interface take advantage of the high-frequency
response of the Lafayette RK-725. Higher frequency AFSK tones reduce
jitter from the phase locked 1obp demodulator. Also, having two chan-
nels permits excellent isolation between the AFSK tones and the baud
rate subharmonic tone. No filter is required to separate the tones as
would be the case for a monaural recorder. Frequency jitter on playback
(a common problem of inexpensive recorders) was not substantial and as
discussed in Section 5.1.2.3, a 600-Hz baud rate subharmonic tone record-
ing is used to eliminate timing errors in decoding the data.

In summary, the hardware for the UT PDCP development system consists
of a special purpose 8080-based microcomputer, a DEC VT-50/CA video ter-
minal, and a cassette recorder and interface for program storage.

5.2 UT PDCP DEVELOPMENT SYSTEM SOFTWARE PACKAGE

To develop a large number of PDCP demonstration programs in the
short time period of this study, software support must be extensive. At
the beginning of this research period, the only microprocessor family
possessing substantial software support was the Intel 8080 microprocessor




family. Since then, several companies have second-sourced the 8080
including improved versions. Several software firms have also added
software support. Intel's user's library contains many useful programs,
including a Macro Cross Assembler which runs on the DEC PDP-11 minicom-
puter.  Dr. Steve Olsen of the University of Utah supplied a paper tape
of his cross assembler, and all of the PDCP programs written during the
research period were assembled on the department's PDP-11/40 using a
modified version of Dr. Olsen's cross assembler.

Microcomputer software is often developed using the hexadecimal or
octal number systems. The PDCP programs developed on the PDP-11/40 use
an octal format whereas standard Intel 8080 software is provided in a
hexadecimal format. In addition, non-programmers may not be familiar
with either hexadecimal or octal and, thus, would prefer to work in deci-
mal. To facilitate the development of PDCP programs a multiradix sys-
tem monitor was developed for the UT PDCP development system. This
monitor will execute commands in octal, hexadecimal, or decimal. For
example, programs can be listed in any of the three radices.

The PDCP resident system monitor provides several key functions for
the operation of the UT PDCP system. Examination and modification of
memory contents, cassette storage and retrieval of bulk data, radix con-
versions, and program execution commands with debugging techniques are
among the many system monitor functions which have been incorporated
under this study. In addition, a special keyboard assembler command
permits progrémming of the UT PDCP directly from the keyboard using stan-
dard Intel instruction mnemonics. Finally, memory contents may be dis-
played symbolically using a special list symbolic command. The PDCP
resident monitor resides in non-volatile ROM and is available immediately
on system start-up. The two 8116 Pro-Log PROM cards contain the entire
PDCP system monitor. The System Operation Manual support software section

describes in detail the resident monitor software and commands.

The system monitor requires about 3.5K of the available 4K of PROM.
The remaining 0.5K of PROM contains general purpose PDCP subroutines.
Having these often used subroutines resident in non-volatile memory
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simplifies source program writing as the routines are simply called when
needed instead of repeating the source code of the entire subroutine.
Source 1listings and explanations of these PDCP subroutines are described
in the System Operation Manual support software section.




6. FUTURE PDCP SYSTEMS

The last five years have witnessed the birth, development, and appli-
cation of the microprocessor. It is difficult to accurately predict what
will happen during the next five years in this field. Semiconductor manu-
facturers are already working on third-generation microprocessors. The
designers of data collection system platforms should have available to
them a prediction or reasonable projection of the future characteristics
and capabilities of the microprocessor if a programmable data collection
platform is to be considered. The purpose of this section of the report
is to provide a method of microprocessor selection and to furnish the
designer with a microprocessor capability forecast for the next five-year
period. | '

6.1 EVALUATION OF AVAILABLE MICROPROCESSORS

The research proposal for this contract projected the source-des-
tination matrix [1] for evaluation of microprocessor instruction sets.
In this technique, an instruction is considered as the transfer of data
from a selected source to a selected destination. By constructing a
matrix in which the sources are in rows and the destination in columns,
the instruction set and functional operations of the microprocessor can
be depicted in a concise format. However, the source-destination matrix
has two significant disadvantages. First, no accepted methods exist for
evaluating or establishing a performance measurement for the microproces-
sor from the source-destination matrix such that a comparison of differ-
ent microprocessors can be made. Secondly, the source-destination matrix
does not integrate other system characteristics into the evaluation.

Present trends in system evaluation are toward the development of
classification and performance measures which integrate all the operat-
ing characteristics of a system. For a microprocessor system, this
includes system constraints, hardware organization, memory hierarchy,
software structures, and application directorates. In fact, most of
these considerations can be represented by the following functional form:

6-1
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: A

Performance Measure = f(system constraints,
application constraints,
software constraints) .

System constraints include power, weight, size, and speed considerations,
while application constraints focus on ‘the specific computational tasks

to be executed. Thus, application constraints more clearly define the
capability of various microprocessors to meet computational requirements.
Software constraints are imposed by the failure to provide software sup-
port for the system. For instance, new applications are difficult to
program and 1mp1ement for a microprocessor system with no cross assembler,
editor, or simulator.

~ This research has directed effort toward generating performance
measures relating to system, application, and software constraints. A
systematic procedure for generating a performance measure is implemented
by constructing a system for matrices relating these constraints to the
different microprocessors. Consider the following matrix form:

Importance Weighting

Constraints Matrix ] vee n
System w] R]] . Rn1
Application N2 R]2 an
Software w3 13 n3

K& is a weighting matrix associated with the importance of a particular
constraint; whereas, ﬁﬁi is a rating or measure matrix for tu (the jth
microprocessor) which evaluates the capability of the microprocessor to
satisfy the conditions imposed by the constraint. The performance mea-
sure, PMj, for tu is given by
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pH; = 0] (R
= [y W W3]' Ry
ﬁjz‘
§53
3
) izl M Ry

Within each general constraint there are numerous conditons for which
the measure matrix, ﬁji’ must be established. For instance, consider
the submatrix formed for the general system constraints in Table 6.1(1). "

A weighting factor, W is associated with the importance of the ith

1i° ,
parameter. In evaluating a given microprocessor. a measure (rj]i) of
the ability of the microporcessor to satisfy the parameter requirement
can be established. Similar submatrices are formed for the applications

constraints of Table 6.1(2) and the software constraints of Table 6.1(3).

To provide an example of this method for microprocessor evaluation,
a comparsion of the INTEL 8080A and RCA COSMAC microprocessors is devel-
oped. In generating each measure matrix, the difference in performance
measures is the dominant consideration. The absolute values of the mea-
sures would be adjusted as additional information about other micropro-
cessor families is included. Each measure value is established on a
scale from 1 to 100. The larger measure values indicate the micropro-
cessor to be more suitable in satisfying the parameter constraints.

If a large number of microprocessors are included in the evaluation,
the system lends itself to computer implementation for bookkeeping purposes.
A computer with higher-order language capability and containing matrix
-multiplication features such as APL is ideally suited for the bookkeeping
task. Changes in absolute value of the measures can be easily entered
and the performance measures can be quickly recomputed.



e TABLE 6.1(1)

SYSTEM CONSTRAINTS
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Weighting Matrix

Measure Matrix

Parameter w] Rj]

Power Consumption w]] rj]]
"Number of Power Supplies w]z rj]Z
Weight w13 rj]3
Size w]4 rj]4
Cost w]5 rj]5
Minumum System Complexity w16 rj16
Availability of MSI and LSI

Support Logic w]7 rj]7
Second Sourcing w]8 rj]g




TABLE 6.1(2)
APPLICATION CONSTRAINTS

Weighting Matrix Measure Matrix
Parameter Wé ﬁjz
INSTRUCTION SET
Arithmetic Inst.
ADD, SUB, AND,
EX-O0R, OR w21 rj2]
Multiply Divide Wyy 2
Addressing Modes w23 ‘ rj23
Subroutine Linkage w24 rj24
Bit Manipulation w25 rj25
1/0 Operations w26 rj26
Conditional Inst. w27 r527
MICROPROCESSOR ORGANIZATION
Accumulators, Working
Registers w28 rj28
Hardware, Software Stack w29 rj29
Control w2A T52A
Interrupt Structure
Software, Trap Vector WZB rj28
BENCH MARK PROGRAMS '
Program Storage wéc erC

Execution Time W




TABLE 6.1(3)
SOFTWARE CONSTRAINTS

Weighting Matrix Measure Matrix
Parameter Wé §53
.Resident Assembler w3] rj3]
Resident Editor w32 ri32
Cross Assembler w33 ri33
Simulator w34 i34
PL-1 w35 rj35
FORTRAN Wag ri36
BASIC Was - Ty37
Other High-Level
Languages W

38 38
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The system measure matrices, Fi] and ﬁk], from Table 6.1(1)

for the INTEL 8080A and the RCA COSMAC is determined to be

[ rm | [20] and ] %
g 40 "R12 100
Fl13 40 "R13 20
I 40 _ "R14 %0
Ry = rgs || 60 L A
"6 >0 | "Ri6 %
riy7 75 | Ry >0
" | %0 | L R

In an attempt to justify a few of the measure values, the following com-
ments are provided. Notice that M " 20 and reyy - 95. The justifica-
tion of this difference is simple. COSMAC consumes an order of magnitude
less power than the 8080A. Next, 112 = 40 and rRi2 = 100. The 8080A
requires three power supplies while COSMAC requires only one unregulated
supply. On the other hand, 'y c 75 and rR17 " 50. INTEL provides
support hardware in a family of integrated circuits which is superior to
that provided by RCA at this time. There are similar considerations for
establishing each measure value in ﬁi] and Ek].

Next, consider the system constraints performance measure, SPMj =

EH §51' If the weighting matrix, W], is chosen as unity,
W,'R
sem, = ——11 = 60,00
I z W
In

and
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where the product W&' Rji has been normalized to a value of 100 for the
ideal microprocessor by dividing the result by the sum of the system ¢con-
straint weights, } Wy '

COSMAC makes a somewhat better showing; however, a more realistic
weighting matrix for DCP applications is

Wy ] [0
Wio 5 |
w13 3
W} i Wig i 1
Wig 10
W6 8
Wyq 8
_w]g 15
w]] is weighted more heavily thanAa11 other factors combined since power

consumption is the most important consideration. Among the remaining
system constraints, the availability of second sources for the micro-
processor is the most important since this provides some protection
against long delivery delays and premature removal of the product from
the market. N]S = 10, indicating cost is not as important when compar-
ing microprocessor-based systems. This weight could become increasingly
more important if a microprocessor-based PDCP was being compared to a
hardwired DCP.

‘Using the more realistic choice of weights for the weighting matrix,

the system performance measures become
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SPM 35.90

and

SPM 84.47 .

The superiority of COSMAC to satisfy system constraints in PDCP applica-
tions becomes more evident.

Generating the measure matrix, §32’ for the application constraints
of Table 6.1(2) yields the following two matrices:

rio] 100 and i R21 100
"122 0 TR22 0
123 70 rR23 70
P124 95 FR24 60
125 40 "R25 35
R, = |26 | = | | Rpp = | TRe6 | = | %
"127 %0 reo7 75
"128 80 L 65
129 80 "R29 40
"12A 80 TR2A 80
| 128 |90 | R2B | |50 |

The measures relating to bench mark programs are not included since pro-
grams for COSMAC have not been sufficiently developed to provide a

realistic comparison. Note that ripp = 0 = rRoo- Neither microprocessor
provides a hardware multiply or divide at the present time. Since the
8080A has superior subroutine linkage, r = 95 and reoa = 60. On the

124
other hand, COSMAC provides for better I/0 communications; therefore,

rio6 50 and *R26 " 80. The stack operations of the Intel 8080A are far

superior to those of COSMAC, resulting in r = 80 and r = 40.

129 R29
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Considering the importance of the measure in the application con-
straints of PDCPs, the weighting matrix, Wé, is determined to be

Wy, ] [ 100 ]
Wy 20
Wy 75
Woy 75
Wy 75

W, = Wpe | 65
Wy 55 -
Wog 50
Wog 60
Wy 60
Wop 20 |

The comparison of the application constraints performance measure, APMj =

WZ' ﬁ.z, _
£ I for the two microprocessor yields
z w2n
W,' R
apM, = 212 - 74 77
I J W
2n
and
W,' R
apM, = 2 R2 - g5 g5
R T W
2n

These results indicate that the Intel 8080A is a better choice in satis-
fying application constraints.
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Finally, the measure matrices for the software constraints of Table
6.1(3) are determined. ’

131 90
- 132 0
ri33 90
§&3 i 134 i 90
ri35 60
136 50
r137 ] 90
I ri3g ] I 50 J
and
[ "r31 | [ 80 ]
rp3o 80
"R33 95
§ﬁ3 i R34 i 90
"R35 0
"R36 0
"R37 0
| "R38 | | 0]

At the present time, INTEL provides better software support than
RCA, especially in compiler design. However, compiler design is less
important in PDCP applications than the availability of a cross assem-
bler and simulator programs. Thus, the weighting matrix, Wé, for soft-
ware constraints is determined to be
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”w317 [ 75
Wy, 75
Wag 90
N Wy 80
Wy = Wye |~ | 30
Wae 10
Wys 0
| Y8 | '

The software constraints performance measure for the two microproces-

sors is
W, R
SOPH, = 3 13 . g6.29
w3n
and
W' R
SopM, = S R3 - 76 87 .
Ry
3n

The software support performance measure of the 8080A is not really that
superior to COSMAC.

Linearly combining the results generated from these considerations,
the overall performance measure for the two microprocessors is evaluated
to be

and



The RCA 1802's performance measure is only ten percentage points higher
than the INTEL 8080's. However, in PDCP applications, system constraints
will generally be considerably more important than either application or
software constraints. A typical importance weighting matrix for the |
PDCP application is

100
40
20

=|
I

The overall performance measures for the 8080A and 1802 microprocessors
are

“PM

51.92

and

PM

1)

78.87 .

The 1802 now has a clear performance advantage of nearly 27 percentage
points.

The attempt here is not to conclusively state which of the available
microprocessors is better suited for a microprocessor-based PDCP, but
rather, to emphasize this technique as a method for evaluating and com-
paring microprocessors for suitability in PDCP applications. Perfor-
mance measures derived using this technique are primarily intended to
aid in choosing between two or more microprocessors which are known to
meet the basic constraints of the application. Invalid results can be
obtained if one attempts to make an "apples to oranges" type comparison
by failing to eliminate machines with unacceptable characteristics before
proceeding with the performance evaluation. For example, a bipolar
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microprocessor should be eliminated on the basis of unacceptable power
consumption even though program execution time would be much shorter
than for a CMOS or NMOS microprocessor. This limitation of the perfor-
mance evaluation procedure is not a significant handicap since the
initial screening process is relatively easy to accomplish. The final
screening, which is much more difficult to perform, can be simplified
by applying the performance evaluation procedure developed in this
section.

6.2 TECHNOLOGY FORECAST

In selecting whether to include the programmable feature in a data
collection platform system, the designer should have available any pro-
jections which indicate the characteristics and capabilities of sémi-
conductor devices for a period covering the next five to ten years.
While these predictions are difficult to obtain, reasonably accurate
models can be developed which yield satisfactory results over this time
span.

There are a number of methods of technology forecasting [2] which
will Tead to the development of a set of performance characteristics of
components during a particular period in the future. These different
methods can be reduced to two basic classes of forecasting techniques.
One method, called trend forecasting, involves the development of a
mathematical model which utilizes past history as a guide for the pro-
jection in the future. The second utilizes the judgement of experts in
the field to predict the changes in future technology. This is termed
intuitive forecasting.

There are essentially two components which will have the greatest
effect upon the design of a programmable data collection system. One
component is the microprocessor chip itself, and the other is the memory
associated with the microprocessor.- Already microprocessors are begin-
ning to appear with clock, input/output buffers and control logic on a
single chip. There is even some -attempt to include a small memory area
on the microprocessor substate making a true single-chip microcomputer.
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Trend forecasting has predicted that the average computer add time
will decrease by one order of magnitude in a decade [3]. Five years
from now, one could expect the average computer add time to be one-third
that of the present day average add time. The same performance improve-
ment can be expected in microprocessors. The average present day micro-
processor has an add time of two microseconds. In five years, the aver-
age add time is expected to be 670 nanoseconds.

Semiconductor memories have taken a more dramatic reduction in chip
area, power, and cost requirements. The area of the memory cell is
decreasing at the rate of one order of magnitude in seven-.years. Some
experts believe that a 128K-bit memory chip could be available in 1980.
Therefore, it seems reasonable to predict that a microprocessor with a
600-nanosecond add time and 8K of eight-bit words could be fabricated
on a single chip within five years. The cost of such a device will be
in the $25 range. With powerful computational capabilities such as
these becoming available in the not too distant future, the programmable
data collection platform should be a viable element in-data collection
systems.

The most promising low power technologies for use on future PDCPs
appear to be silicon-on-sapphire CMOS (SOS), closed cell COS/MOS logic

(CZL), and integrated injection logic (IZL). 12

L is a bipolar circuit
design technique which significantly increases the density of bipolar
circuits and permits operation at any point along a constant speed-power
product line spanning several decades of propagation delay and power
consumption. Thus, low power operation can be achieved at the cost of
increased propagation delay or speed can be improved if higher power
consumption is acceptable. Although future production of low power
microprocessor systems using IZL is feasible, most manufacturers are
currently concentrating IZL development efforts in the areas of
linear-to-digital interface circuits and combinations of linear and
digital processing on a single chip. Many 12L designs use a level con-
version circuit to provide a simple interface between the 12L I/0 signals
and standard TTL logic. A CMOS to 12L interface should also be feasible

since most new CMOS designs are capable of driving a TTL load. Thus,
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: 12L circuits may provide LSI combinations of digital and analog periph-
eral functions for future microprocessor based PDCPs.

The standard bulk CMOS process has recently been improved by two
different techniques which both have excellent potential for providing
future advances in microprocessor systems. Commercial products using
S0S and C2L technologies are already available. SO0S integrated circuits
are manufactured using many of the standard bulk CMOS processing pro-
cedures. The main distinction between SOS and bulk CMOS is that a
sapphire substrate is utilized in SOS processing to reduce load capaci-
tance and improve circuit density. Propagation delay is also reduced.
High speed, low power, SOS memories which are compatible with the 1802
microprocessor are currently manufactured by RCA. These devices exhibit -
lower power consumption than bulk CMOS devices for operating speeds
above approximately 1KHz but consume more power than bulk CMOS devices
in static operation.

The most recent advancement in CMOS processing is the closed cell
COS/MOS, or C2L, proceés developed by RCA for the 1802 microprocessor.
CZL is a circuit design technique that permits a common source struc-
ture for 200 to 300 transistors. The transistor's gate electrode forms
a closed circle which provides gate termination and eliminates thé need
for guardbands. As a result, circuit densities are approximately the
same as for SOS. C2L also results in a higher transconductance-to-drain
capacitance ratio. In conjunction with a self-aligned silicon gate which
reduces Miller capacitance, CZL offers significant speed improvements
over bulk CMOS. Additional refinements in the C°L and SOS technologies
are expected to provide continued improvements in microprocessors and
associated devices which exhibit the low power consumption required by

the PDCP application.
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A NEW PRINCIPLE FOR FAST FOURIER TRANSFORMATION

by
C. M. Rader, N. M. Brenner

Let {an} be a sequence of N = 2" data, whose Discrete Fourier Trans-
form is {Ak}. Let W = exp(-j2«/N). Present FFT algorithms are derived
*
from an equation like (1) or its dual

_ k v
Ak = DFT{aZn} + W ox DFT{a2n+]} . (1)

Each of the DFT's in (1) is a DFT of a half-length data sequence, and can
be expressed as two still shorter DFT's. After m such stages of simplifi-
cation an algorithm is evident which reguires 5 (N 1092 N) operations to
execute.

. This note presenis an alternative to Equation (1) which may similarly
be applied iteratively to itself leading to an FFT algorithm. The new
algorithm which so results has the peculiarity that none of the multiply-
ing constants is complex. Its advantages would therefore seem to be most

pronounced in systems for which multiplications are most costly.

*
Equation (1) is too specialized, leading to radix-2 algorithms.
It portrays the essence of the derivation, however.

B-1
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Derivation

Let {bn} and {cn} be the sequences

o
t

n a2n
n=0,1, ..., N2 -1 (2)
Co ~ %2n+1 T %2n-1 *Q

where

1

| =

2
Q=g a

N =0 2n+1
The gfpoints DFT's of these sequences are {Bk} and {Ck}. It is

helpful to consider the sequence {dn} and its DFT, {Dk} defined by

d = a, . n=0,1, ..., N2 -1 | (3)

so that {Bk} and {Dk} are the DFT's in Equation (1).
Ck and Dk can be simply related. Since Q is a constant, it appears
in Ck in only one term, Co. Furthermore, C0 is exactly equal to Do' For

other values of k, Ck can be expressed by the circular shifting theorem

for DFT.
_ 2k
C, = Dk(l - WY
= w’knk(wk - w'k)
_ N
k=1, 2, vy - 1 (4)
Hence,
wknk . ck/(wk - Wk k' 0 (5)



and we can rewrite Equation (1)

) kK -k
Ak-Bk+ck/(w -W")
N N N :
- k=],2, ,_2"']9§+],.2—+2’ ’N-] (63)
A0=BO+C0
(6b)
A2 = Byy2 = Cny2

Since wk and w‘k are complex conjugates, their difference is twice the

imaginary part, e.g.,

WK - Wk = 225 sin 2nk/N

so that (6a) may be written

-p + L

csc(%g-k) C,

Equations (6a) and (6b) are the replacements for Equation (1) promised.
A fast Fourier Transform algorithm based on (6a) and (6b) requires only

multiplication by pure imaginary constants.

Comments
gQ could have been added to the output terms Ao, AN/2 rather than to

each of g-input terms as in Equation (2) but this would have made the

substitution of Equation (2) recursively into itself, to produce an FFT

algorithm, a difficult matter. In hardware implementation, e.g., "pipe-

Tines" this may not be a consideration.
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If, in Equation (2) we had used aors1 ¥ 3010 the minu; sign would change
to + in Equations (4), (5), and (6a), thus changing %j csc(2nk/N) to
& sec(2nk/N). The exceptional cases for k would then be k = N/4, 3N/4 and
these would involve +j, the only non-real operation encountered. We
judge that the secant form offers no advantages over the cosecant form.

Whereas the constants wk used in Equation (1) have unity magnitude,
csc(2nk/MN) can get very large. Therefore, small computation errors can
lead to large output errors. Experience verifies that this is the case.
We recommend that the method be modified if more than 8192 points are
used. A conventional factoring can reduce a DFT to shorter DFT's and
each of these can be computed by the cosecant method.

Substantial savings in multiplications can be made in the conventional
FFT by deriving the algorithm in a higher radix. The method proposed here
~can—-also-be -developed for-radices other than two. - The (p-1)-sequences to
(a) = a Q . We have no idea

- a +
n pntq pn-q q
~ whether computational savings can result from higher radix methods.

be formed are of the form c
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