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ABSTRACT 

Significant problems are presented in the vibration and rotation 

analysis of spacecraft with distributed structural flexibility and 

momentum exchange controllers. These systems exhibit gyroscopic cou­
# 

pIing which depends on the rotor speed and orientation, which must 

remain explicit in the analysis as control variables. 

An investigation is made into floating reference frames in order 

to allow first order vibration analysis in the presence of large system 

rotations. When the deformations of an elastic continuum are expanded 

in terms of the free-free modes of an unconstrained system, the rigid 

body modes are found to be fixed relative to the Tisserand frame, with 

respect to which the relative momentum is zero. The proof presented 

for this is based on the orthogonality condition for modes with distinct 

natural frequencies. This result also guarantees the independence of 

coordinates for all modes with nonzero natural frequencies. A Modified 

Tisserand Constraint is introduced in order to define a floating refer-

ence frame with similar properties for an elastic body which contains a 

spinning rotor. 

Finite element equations of motion are derived for a completely 

flexible spacecraft with momentum exchange controllers, using a Modified 

TiGserand Frame. The deformable systems covered in this application 

are assumed to undergo only'small rotations, and therefore the rotor 

torques must formally be small, although in engineering applications it 

may be possible to relax this constraint. A mod£'ll analysis is performed 

for the system and the resulting set of equations is reduced in number 

by a truncation procedure for more efficient system simulation. 
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In order to gain insight into system behavior, a continuum 

analysis is performed for a simple physical system consisting of a 

uniform beam and an axisymmetrIc rotor,. Equations are derived using 

Hamilton's principle and closed form solutions are obtained using 

generalized methods of separation of variables. 

Numerical examples are presented for both the finite element and 

continuum equations of motion. 
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CHAPTER 1 

INTRODUCTION 

1.1 Statement of Problem 

Modern spacecraft design relies on the successful dynamic analysis 

of the system in order to provide attitude stabilization. This is true 

for both active and passive attitude control systems. Present systems 

emphasize active control techniques with momentum exchange controllers 

being the most popular because of their greater accuracy potential. 

Momentum exchange controllers fall into three general categories: 

dual spin, momentum (or reaction) wheel and control moment gyro systems. 

The dual spin spacecraft typically has a large rot0r spinning at a 

nearly constant speed and a despun platform. For communications satel-

lites, the antennas are mounted on the despun platform, which is aimed 

at a point on the earth. The platform orientation about one axis is 

controlled by changes in the rotor speed, and orientation about the 

other two axes is passively controlled by a nutation damper. An example 

of this type of system is the Intelsat IV spacecraft. The second type 

is the-momentum wheel or reaction wheel system. The reaction wheel has 

a nominal spin rate near zero. There may be three or more rotors, and 

control about each axis is accomplished actively by controlling rotor 

speeds. This is often referred to a's a type of a three axis stabilized 

system. An example of this system is the Orbiting Astronomical Obser-

vatory (OAO). The third type of system uses the control moment gyro 

(CMG). This device consists of a gimballed constant speed rotor. 

Torques are applied to the vehicle by driving the gimbals and changing 
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the orientation of the rotor. An example of a spacecraft with this 

system is SKYLAB. A mixture of the above and active control using gas 

jets has also been incorporated in spacecraft design. 

To analyze these systems, many powerful techniques and form,~lations 

are available. If the system is treated as a group of interconnected 

rigid bodies, Newton's laws may be used to solve for the equations of 

motion. Advanced formulations exist for general classes of configura-

tions which use nested body techniques to eliminate the constraint 

forces. An example of this is the Hooker-Margulies-Hooker system of 

equations. If t,he bodies are not rigid, flexibility of terminal appeud-

ages may also be analyzed by using the "hybrid coordinate" method. This 

approach utilizes a combination of discrete and modal coordinates. The 

underlying finite element formulation allows truncation of the number of 

degrees of freedom after a modal analysis and therefore has the very 

great advantage of computational ease. Appen?_ix D contains a simpli-

fied example of this approach. 

Ongoing developments are causing the rigid body model of a space-

craft to be less acceptable. The effects of distributed structural 1 
I 
1 
1 

flexibility need to be included to reduce spacecraft weights and to meet '1 , 
1 

\ 1 
l 

1 
1 

ever more stringent accuracy requirements. The increase in size of 

spacecraft due to the advent of the Space Shuttle will also make rigid 

body models less precise. This research was motivated by the attitude 1 
I 

control problems associated with the proposed Large Space Telescope 1 

j, 
'! 

(LST). 
'j 
I 
~ 

The incorporation of o.lstributed structural flexibility for the 
'i 
1 
~ entire vehicle introduces great complexity to the dynamic analysis. The , 
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linearized equations of motion for a finite element model with momentum 

exchange controllers contain time varying coefficie'ots. Thus, an eigen-

value analysis to find vehicle normal modes is not possible. If the 

spin speeds are constant, a modal analysis results in complex modes; 

that is, the eigenvectors are represented by complex numbers. If a " i 

continuum model is adopted, the resulting partial differential e~uations 

are coupled and have time varying boundary conditions. 

1.2 Motivation and Objectives 

The motivation for this study was a desire to address the 

difficulties posed by spacecraft of the next level of complexity. A 

review of the present techniques does not indicate an appropriate 

course of action for the dynamic analysis of spacecLaft with both dis-

tributed flexibility and momentum exchange controllers. A finite e1e-

ment model must be adopted to allow for arbitrary mass and stiffness 

properties. A modal analysis will allow the introduction of distributed 

coordinates and the truncation to a smaller number of coordinates. A 

modal analysis can be accomplisbed only for nearly constant speeds, and 

then the complex mode shapes depend on the chosen spin speed and rotor 

orientation. A method of staging mode shapes for different ranges of 

spin speeds or orientations would have to be devised to handle a general 

system. This is not an attractive method. 

The hybrid coordinate method is frustrated by the lack of a 

central rigid body. For this method, the moda1'coordinates are coupled 

to each other through the motion of the central rigid body. If a rigid 

body is designated from among the rigid bodies in the finite element 

model, perhaps the body to Wllich the rotor is mounted, then the mass 
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properties of the body will influence the determination of the modal 

coordinates. This casts the validity of the truncation procedure into 

doubt. 

The principal objectives of this research 011 the vibration of 

spacecraft with distributed flexibility and momentum exchange control-

lers are: 

1. Provide the advantage of a first order vibration analysis 
by adopting a floating reference frame which somehow "moves" 
with the flexible body. 

2. Develop equations of motion for use in spacecraft dynamics 
and control analysis. 

3. Gain insight into system behavior through analysj.s of simple 
physical systems. I.' 

1.3 Scope of the Dissertation 

The body of the work pursued in the dissertation is broken into 

two main parts. The first part consists of the introduction and 

analysis of various floating reference frames. The second part consists 

of the formulation of equations of motion for the class of spacecraft 

characterized by distributed flexibility and momentum exchange ccfntrl:>l-

lers, using both finite element and continuum models. ~1umerical 

examples are developed for both classes of models, using eigenvalue 

analysis and numerical integration for the finite el~:rlent model and 

closed form solutions for the continuum model. The two parts of the 
f 

dissertation are interrelated by the use of a floating reference frame 

in the finite element analysis of a system with momentum exchange con-

trollers. In order to aid in understanding the organization of the 

dissertation, a brief summary of each chapter is presented. 
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Chapter one introduces the problem area and presents the 

motivation for the studies undertaken. The difficult aspects of the 

problem are identified and the existing solution techniques are 

reviewed. The topics covered by the dissertation are discussed. 

Chapter two introduces the concept of a floating reference frame. 

For an elastic body free to rotate, these frames are introduced in 

order to ensure the validity of a first order vibration analysis. A 

review is made of several distinct ways of defining a floating reference 

frame. They all provide for frame motion which somehow "follows" the 

1 overall body. In order to demonstrate how this is accomplished, a very 

simple example problem is worked out to illustrate the motion of 

specific frames when the body is deformed. The chapter concludes with 

a brief historical perspective of the use of floating frames to solve 

problems in the physical sciences. 

Chapter three deals with a specific floating frame, the Tisserand 

frame, which is defined in terms of angular momentum relative to the 

frame. An examination of the constraint relationship reveals a rather 

elegant solution form which involves the free-free modes of an uncon-

strained system. This is called the Mode Shape Constraint. An example 

is worked out in order to illustrate the application of the Mode Shape 

Constraint to a simple problem. The last section of the chapter expands 

the concept of the Tisserand frame to systems containing spinning rigid 

rotors. This is done with the introduction of the Modified Tisserand 

Constraint. 

Chapter four begins the second main part of the dissertation. 

The focus now turns to the derivation of equations of mOLion for systems 

5 
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cC)ntaining a spinning rigid rotor. System behavior is limited by the 

requirement that variations in rotor angular momentum be first order. 

The deformable body is also assumed to undergo only small, first order 

rotations. This chapter uses a Finite Element Model and applies the 

M,odified Tisserand Constraint. A modal analysis leads to a system of 

equations which are still coupled, but which may be truncated to a 

smaller number of coordinates. 

Chapter five defines a very simple physical system consisting of 

a uniform beam and axisymmetric rotor for analysis as a continuum. 

Hamilton's Principle is used to derive the governing partial differen-

dal equations with boundary conditions. Generalized separation of 

vari.ables techniques are used in order to solve for the system natural 

f:requencies and system normal modes. Numerical solutions are provided 

for a specific choice of parameters in order to illustrate the system 

behavior. 

Chapter six presents numerical results for the Finite Element 

Model equations of motion. The strategy is quite simple. The simple 

physical system introduced in Chapter five is modeled by finite elements 

and initial conditions are chosen for a vehicle normal mode as deter-

mined by the continuum analysis. Numerical integra.tion of the Finite 

Element Model equations of motion should then demonstrate periodic 

behavior corresponding to the system natural frequency. The method of 

truncation to a smaller number of modal coordinates is investigated. 

Chapter seven summarizes the dissertation problem, techniques and 

contributions. The principal conclusions of the research are assembled 

and areas of future work are outlined. 
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CHAPTER 2 

FLOATING REFERENCE FRAMES 

2.1 Chapter Summary 

The problem of specifying a set of axes for a deformable body is 

a difficult one. The use of a moving or "floating" set of axes is 

introduced here. The choice of a floating reference system is not 

unique and several alternative methods are described. In particular, 

there are the locally attached frame, the principal axis frame, the 

Tisserand and Buckens frames, and the rigid body mode frame. The 

advantages of each different type of floating frame are discussed and 

a simple example is used to illustrate the motion of the different 

floating frames. The historical origin of the principal axis and 

Tisserand reference frames is briefly discussed to demonstrate their 

application to past problems in the physical sciences. 

2.2 Floating Frames for Deformable Bodies 

For the problems discussed here, we are concerned with small 

deformations of elastic bodies. Specifically, we will define a deform-

able body to be a body for which the relative displacements are so 

small that only first order terms need be retained in the analysis. 

The body is allowed overall motion which is completely unrestricted; 

that is, the body has complete freedom of motion in responding to 

impressed moments and forces. 

For such a body, it is difficult to specify a set of axes from 

which to measure deformations. If an inertially fixed set of axes is 

chosen, the displacements T.'elative to these axes may grow large if the 

body undergoes any appreciable rotation due to an externally applied 
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moment. Then the dynamic analysis of the system using tpese 

displacements would require more than.a·first order analysis. In order 

to sirnplify-1the analysis, the idea presents itself to use a frame that 

somehow moves with the body. If a frame moves with the body, or 

"floats", in the proper way, then the displacements measured relative 

i 
to this floating frame' will l>e small. The dynamic analysis of the·· 

system may then be pursued using a first order analysis. It is this 

property, the uSe of a first order analysis, that makes a floating 

frame attractive. 

There are five types of floating frames that will be treated 

here; they are: 

• Locally attached frame 

• Principal axis frame 
i 
I 
• Tisserand frame 

I 

• Buckens frame 

• Rigid body mode frame. 

Before these different types of frames are discussed in detail, several 

general characteristics 9f floating frames will be discussed. A 

deformable body experiences relative displacement and therefore the 

system inertia quantities do not remain constant. In the formulation 

of equations of motion, the system angular momentum and kinetic energy 

are a function of the relative displacements and possess a more com-

plicated structure than for rigid bodies. The system angular momentum 
I 

fora deformable body about its center of mass is written as: 

H =[ ..e. x p dm 
D 

8 

(2.1) 
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where 

.E. = . 

.E. = 

vector from the center of mass to a generic mass element 
id 
dt .E. = time derivative of .E. relative to inertial space 

dm = generic mass element 

D = integration over the deformable body 

H = angular momentum of the system about the center of mass. 

If a floating frame, f, is introduced with-its origin at the center of 

mass, then 

P = E. + w
fi 

x .E. (2.2) 
where 

o fd 
.E. = dt.E. = time derivative of .E. relative to floating frame f • 

W
fi 

= angular velocity of frame f relative to inertial space. 

Using this relationshfp to evaluate the angular momentum yields 

H. = D· w
fi + f .E. x p dm 

D 

since 

(2.3) 

(2.4) 

where 0 is the inertj,a dyadic for the mass center. The second quan-

tity in Equation (2.3) is the angular momentum relative to the floating 

fram~. This is referred to as the internal angular momentum. The 

first term of Equation (2.3) is structurally ~dentical to the rigid 

body angular momentum, but since the body is deformable, the inertia 

dyadic is not constant. It should be noted that for small (first order) 

displacements relative to the floating frame, the variations in the 

inertia dyadic will be first and higher order terms. 
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The kinetic energy of a body with an inertially fixed center of 

mass may be written 

1 i'· . T=- p·pdm. 
2 --J) 

(2.5) 

Using the relationship for the time derivative in Equation (2,.2) allows 

the kinetic energy to be rewritten using a floating frame as 

r . 0 1·(0 0 

'- (.E. x ..e.) dm + '2 ,-..e. • ..e. dm 
D D 

(2.6) 

where 

1 tii ~D .wf-i = 1. /<wfi x p). 
2- .' - 2 D- -

fi 
(w x..e.) dm. 

I 

The first term of this equation has the same structural form as the 

kinetic energy of a rigid body. Again, this quantity differs from the 

rigid body quantity because the inertia dyadic is not constant. The 

second term includes the same internal angular momentum expression 

found earlier in ,Equation (2.3). The last term could be called the 
I 

internal kirteticenergy, since it t;epresents kinetic energy contributed 

by the dot product of velocities relative to the frame. 

2.3 Description of Specif~oating Frames 

This next section will now deal with the specific definitions for 

the most commonly available floating frames. The first type to be 

discussed is the locally attached frame. For this frame, a sub-body 

or mass element is identified in the deformable body, and a frame is 

defined that follows the motion of this sub-body or mass element. An 

example of this type of tra~e may be associated with a spacecraft with 

a rigid central body and a flexible appendage. A reference frame may 

be attached to the central rigid body. Also, if the appendage is 
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driven, that is, its orientation relative to the central rigid body 

varies as a specific function of time in addition to small disp1ace-

ments, a floating reference frame may be attached to a mass element in 

the appendage. This would most commonly be a set of axes fixed in the 

appendage at the mounting point. The angular momentum and kinetic 

energy for a locally attached frame would be given by equations (2.3) 

and (2.6) respectively. As a general rule, no simplification of these 

expressions could be guaranteed for the locally attached reference 

frame. 

The next type of floating reference, the principal axis frame, 

does offer some simplification of the expressions for angular momentum 

and kinetic energy. For this frame, the origin of the axes would be 

the center of mass and the orientation of the axes would be such that 

the inertia matrix of the deformable body would be diagonal. This 

defines the location of the principal axes of inertia. The components 

of a diagonal inertia matrix are called the moments of inertia for 

principal axes and the products of inertia are all zero. Because the 

inertia matrix contains only three components, the calculations for 

angular momentum and kinetic energy are simplified. However, this is 

done at the expense of introducing three constraint relationships that 

require the products of inertia all to be zero. The constraint re1a-

tionships are 

112 = 121 = - f'Pl P~ dm = 0 
D i 

113 = 131 = -1 Pl P3 dm = 0 
D 

(2.7) 
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where (PI' P2' P3) are the components of £ in the floating 

frame 

For the Tisserand frame, the expressions for angular momentum 

and kinetic energy are structurally simplified by moving the axes so 
i I 

as to set the internal angular momentum alwa~s to zero. The requ~re-

ment is also made that the internal linear momentum be zero. This is 

accomplished by the simple requirement that the origin of the frame 

be located at the center of mass. In order to set the internal angular 

I momentumito zerc, a constra;i.nt relationship is introduced: 

I £ x p dm = 0 
D 

(2.8) 

Referring back to Equation (2.3), the angular momentum is thus 

H = 0 . wfi (2.9) 

This is structurally identical to the rigid body form, although as 

noted, the inertia matrix is not a constant for a deformable bCldy as it 

would be for a rigid body relative to axes fixed in that body. Going 

back to the constraint relationship, let us evaluate this in greater 

detail. First we introduce a new expression for the position relative 

to the center of mass 

(2.10) 

where p is the position of a generic mass element in the undeformed 

state. This vector, p, is fixed in the floating reference frame and 

may be thought of as the station location of a mass element. The 

vector ~ represents t~~ deformation of a generic mass element. For a 

deformable body, this will be a first order quantity. The derivative 
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of the position of a generic mass element relative to the center of 

mass is then written as 

o a 0 0 

£.=£.+~=u (2.11) 

since p is fixed in the frame and has no derivative relative to the 

frame. The constraint relationship is then 

In £. x ~ dm = 0 (2.12) 

This is equivalent to the three scalar equations 

(2.13) 

where (x, y, z) are components of p in the floating frame. The next 

step in our examination of the constraint relationship is to introduce 

a separation of variables for the deformations. Then the deformations 

may be written as 

n i - , u2 = E cP 2 (p) ni{t) 
i=1 

n 
i -u = E cP 3 (e,) ni (t) (2.14) 3 i=l 

( i ,j,i ,j,i) ,/,i where the variables CP1' 0/2' 0/3 are the components of the mode shape ~ 

and depend only on the spatial variables. The variable n
i 

is the. modal 
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coordinate and depends on the time. This separation of variables may 

be written in vector form as 

u = (2.15) 

Using the separation of vari~bles in the constraint relationship Y1~lds 

This is ~ v.ector constraint of the Pfaffian form 

where 

n 
1: ~ (n) n = :0 
j=l .I 

(2.16) 

(2.17) 

(2.18) 

If the constraint relationship (Equation (2.16» possesses an integral, 

then the constraint is holonomic. It is important to note that if a 

Tisserand constraint is used in a Lagrangian formulation, then the 

equations of motion must include Lagrange multipliers fot the generai 

case. The Tisserand frame is a general concept and may be applied to a 

system where the deformations are large. In the case of a deformable 

body as previously defined, the relative displacements are small and 

may be treated analytically as first order quantities. The analysis 

may then pr9ceed using first order quantities and may ignore second and 

higher order terms. It is proceeding in this direction which leads us 

to introduce the Buckens frame. The Buckens constraint relationship 

is simply a first order Tisserand constraint. It may be written as 

14 
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o 
u dm = 0 , (2.19) 

Again the origin of the system is placed at the center of mass. The 

Buckens constraint is identical to the Tisserand constraint if this 

relationship holds 

(2.20) 

The justification for the above is that second order quantities may be 

ignored for a deformable body. Introducing a separation of variables 

again yields a constraint: of the Phaffian form 

(2.21) 

The difference is that now the coefficients of the constraint re1ation-

ship are constant and the expression always possesses an integral. 

Thus, the Buckensor first order Tisserand constraint is a ho1onomic 

constraint. Since the Buckens and Tisserand constraints are identical 

for a deformable body as defined above, they will both be referred to 

as the Tisserand constraint. This choice is made because of the 

historical precedence of the Tisserand constraint and the fact that it 

is more common in the literature. This is not to minimize the contri-

bution made by Buckens, for it is the first order form which will allow 

the greater use of the Tisserand frame that is explored in the next 

chapter. 

The last frame to be described is the rigid body mode frame. 

This concept arises in structural dynamics for semidefinite systems. 

A semidefinite system is one for which the strain energy may be zero 
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without the motion being zero. Unrestrained systems, or systems 

without supports, are typical examples of semidefinite systems. A 

rigid body mode is defined as a displacement which results in zero 

strain energy. The rigid body mode frame follows the displacement 

which results in zero strain energy. There is an essential difference 

between the rigid body mode and the equilibrium position of a body. 

The rigid body mode i.s associated with zero strain energy which results 

in the equilibrium position of the body at rest. The body must be 

inertially at rest both translationally and rotationally. If a body 

is spinning at a given rate, the equilibrium position will not coincide 

with the rigid body mode (equilibrium at rest) since the centrifugal 

forces may be thought of as inducing a nonzero strain energy at equilib-

rium. The presence of environmental forces such as thermal gradients 

can complicate the notion of a rigid body mode. The dictum of zero 

strain energy must still be followed in this case, but the effects of 

environmental forces on the strain energy can. be neglected. 

The constraint relationship associated with the rigid body mode 

is simply that the strain energy be zero. The difficulty of working 

with this constraint is circumvented by showing a relationship between 

the Tisserand frame for deformable bodies and the rigid body mode frame. 

This allows the rigid body mode to be easily applied. This is pursued 

in the next chapter. 

2.4 Example of Frame Motion 

In order to give insight into the concept of a floating reference 

frame, a simple example problem has been formulated. This example sys-

tem is shown in Figure 2.1 and consists of two uniform rigid bodies 
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that are connected by a line hinge. All motion is planar. In the 

undeformed position, the two bodies are aligned in a straight line. 

The length of body one is £ and the length of body two is £/~ The 

mass per unit length of body two is twice that of body one. This 

places the center of mass for the undeformed body at the hinge point. 

The above system is made non-uniform in order to separate the motion 

of the principal axis and Tisserand frames. If the bodies were iden-

tical, the t~vo frames would move in the same manner. The coordinate 

systems for the example are shown in Figure 2.2. The deformation of 

the system is specified by the angle ex. between the two bodies. A set 

A A '" 
of axes, with respect to which unit vectors £1' £2' and £3 are fixed, 

is fixed in body two with its origin at the hinge point. The location 

of the hinge point relative to the center of mass is specified by the 

vector R. A floating frame, in which unit vectorsfl' £2' and f3 are 

fixed, has its origin at the center of mass and makes an angle S with 

the body fixed axes. A mass element is located by a vector x relative 

to the hinge point with the subscript specifying the ass0ciated body. 

The cent:er of mass is defined by 

(2.22) 

This becomes for the example 

£ 

{f2 
dx + J

O 
(~ + .!2) 2m dx = 0 (2.23) 

where 

(2.24) 
X 2 = 
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This yields the position vector of the hinge point relative to the 

center of mass 

(2.25) 

Note that the center of mass is at the hinge point for zero deforma-

tions. 

The Tisserand frame will have its origin at the center of mass 

and will obey the constraint relationship 

where 

.( £. x P dm = 0 

P l = R + xl 

£.2 = R + ~2 • 

The constraint then becomes 

(2.26) 

(2.27) 

(2.28) 

Evaluating the vectors in Equation (2.27) in the floating reference 

frame so as to facilitate the derivatives involved yields 

£2 = 

'" where (0 

{f}T 

, 

t cosS + (x - !) cos (a-S) 

- ! sinS + ('K - ~) sin(ct-S) 

o 

-(x - ~) cosS 
.R. - "4 cos (ct-S) 

(x -1)SinS -! sin(ct-S) 

0 

A 

is the 3 x 1 array of vectocs !l' 
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With these relationships and the derivatives of the components, the 

constraint relationship may be evaluated. After the necessary algebra 

and integrations, Equation (2.28) becomes 

(.2342 + .0991 cosa)a - (.3333 + .1982 cosa)S = 0 (2.30) 

This constraint is in the Pfaffian form and since it possesses an 

integral, the Tisserand constraint here is holonomic. If the deforma-

tions are small, then the constraint shows that the frame must move 

relative to the bodies in a specific manner, that is 
. . 
(3 ::: .586 a (2.31) 

For a Buckens frame, the constraint relationship is 

(2.32) 

where 
A 

-
£.2 

= x £1 

- x f -1 

(2.33) 

The constraint can be stated in the form 

,Q, 

fo~m vz: 
Pl·Pl dx + L 2m P2 P2 dx = 0 

x y o x Y 
(2.34) 

Evaluating the derivatives from Equation (2.29) and performing the 

necessary algebra gives the constraint in the form 

cos(a-(3)(a-S) - .7071 cos(3S ::: 0 (2.35) 

For small deformation~, the relationship between the angles will be 
. 

{3 ::: .586 ct (2.36) 

This is the same answer for small deformations that resulted from the 

Tisserand frame. This is to be expected since the Buckens frame is 
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simply a first-order Tisserand frame and they are identical for systems 

undergoing small deformatiops. 

For the principal axis frame, the constraint will set the product 

of inertia to zero 

(2.37) 

The constraint relationship for the example is then written 

9-

Lo
9- ..f2 

m PI PI dx + ( 2m P2 P2 x y Jo x y 
dx = 0 (2.38) 

Using the expressions found in Equation (2.29) which hold for any float-

ing frame, and completing the necessary algebra yields 

-.1367 sinS cosS + .0991 sin(a-2S) + .2341 sin(a-S) cos(a-S) = 0 (2.39) 

For small angles, the relationship between the coordinates is 

(3 = .476 a (2.40) 

The above constraint relationships are holonomic in form since they 

relate the coordinates. The Tisserand and Buckens constraints are of 

the Pfaffian form since they relate velocities. They may be integrated 

in this case and if both angles are zero initially, then they yield 

S = .586 a (2.41) 

This means that the principal axis frame is definitely distinct from 

the Tisserand frame for this example: The Tisserand frame will move 

more relative to the body fixed frame due to a deformation than will 

the principal axis frame for this specific case. The Tisserand frame 

will rotate 1.23 degrees for each degree that the principal a~is frame 

rotates due to a deformation of the system. The rotation of the frames 

22 



discussed above is relative to the body fixed frame. One special case 

of the rotation of the Tisserand frame relative to inertial space 

should be mentioned. For a moment free body with zero net angular 

velocity, the angular momentum will remain zero due to conservation 
" . 

.",H; 

laws. For this case, by reference to Equation (2.9), the frame angular i: 
, .. , 

velocity must be zero since the inertia matrix is positive definite. 
, 

Thus, the Tisserand frame in this special case will be inertially fixed, 
~_ .. ' i 

while the principal axis frame moves. 

2.5 Historical Perspective 

The principal axis and Tisserand frames both had applications to 

problems in the physical sciences during the late nineteenth century. 

The question that was addressed was posed by George Darwin: 

"The subject of the fixidity or mobility of the earth's axis 

of rotation in that body ••• [has] from time to time attracted 

the notice of mathematicians and geologists". The latter 

look anxiously for some grand cause capable of producing 

such an enormous effect as the glacial period. Impressed 

, , by the magnitude of the phenomenon, several geologists 
r j 

have postulated ••. a "Tide variability in the position of 
'.r' 

the poles on the earth; and this, again, they have sought 

to refer back to the upheaval and subsidence of continents."l 

Very minor movement of the poles of perhaps 50 feet is measured 

by modern astronomers and is referred to as the variation of latitude. 

This variation is thought to be due to seasonal changes in thedistribu-

tion of the air masses over the earth. 

IG.H. Darwin, Scientific Papers, (Cambridge, 1910), Volume 3, p. 1. 
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The use of floating frames was introduced in order to formulate 

equations of motion for a body undergoing small deformations due to 

elevation and subsidence of continents and sea beds. The researches 

of George Darwin were the most detailed in the evaluation of specific 

results. He introduced a principal axis frame and derived equations of 

motion for this frame. By adopting a system consisting of a rigid 

earth and a deformable thin shell, he studied the effects of deforma-

tion. The shell was deformed in such a way as to give the maximum 

movement of the poles consistent with geological evidence. He was able 

to show that a movement of the poles of 8 degrees would require one 

half of the earths surface to be deflected by nearly two miles. This 

would effectively make continents out of oceans and vice versa. Darwin 

then concludes: 

"If the geologists are right in supposing that where the 

continents now stand they have always stood, would it 

not be almost necessary to give up any hypothesis which 

involved a very wide excursion of the poles?,,2 

The mean axes which were popularized by Tisserand and which bear 

his name were introduced by Gylden in his study of the rotation of the 

earth. This is stated by Tisserand in Sections 214 and 216 of his 

Traite de Mechanique Celeste. Tisserand derives the equations of 

motion for what we call the Tisserand frame by setting the internal 

angular momentum to zero. He reports then on the work of Glyden in 

using this frame in deriving an expression for the deviation of the 

mean axes from the principal axes of the system. The application of 

2Ibid ., p. 39. 
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the floating reference frame was similar in intent to that of Darwin, 

.J 
but his conclusions regarding the motion of the poles was more analyti-

cal in nature and not as concrete. 

'j 
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CHAPTER 3 

THE TISSERAND FRAJlli FOR A DEFORMABLE BODY 

3.1 Chapter Summary 

This chapter focuses in detail on the use of the Tisserand frame 

for vibration analysis of unconstrained systems. The choice of mode 

shapes to be used for expansion of the deformations rela.tive to the 

floating frame is crucial. With an unwise choice of mode shapes, the 

constraint relationship may depend on all of the coordinates and may be 

difficult to deal with. The simplest constraint relationships result 

from the use of the free-free modes of an unconstrained system. The 

orthogonality of the rigid body modes (zero natural frequency) to the 

deformational modes allows for a rather elegant ~ priori evaluation of 

the constraint relationships. The constraint relationships then 

involve only the rigid body modal coordinates, which must be zero. 

This result may then be interpreted as a requirement that the rigid 

body mode is fixed relative to the Tisserarti frame. The remaining 

coordinates are then independent, a condition which can greatly simplify 

the formulation of equations of motion. This special case of the 

Tisserand conRtraint that uses the free-free modes of an unconstrained 

system is termed the Node Shape Constraint. An example is worked out 

in order to demonstrate the properties of the Node Shape Constraint. 

The classical Tisserand constraint cannot be employed for systems 

with rotating internal members. This class of systems represents space-

L 
craft with momentum exchange controLl-ers. These represent reaction 

;t 

'1·, 
wheel, momentum wheel and control moment gyro con'trol systems. Several 

"r 
alternate extensions to the Tisserand frame are discussed and a Modified 

': ~ 
~ ; 
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Tisserand Constraint is introduced. The properties of this constraint 

relationship are discussed and the applicability of the Mode Shape 

Constraint is demonstrated. 

3.2 Mode Shape Constraint 

There were two requirements made in order to define the Tisserand 

frame for a deformable body. The first \-TaS that the center of mass be 

fixed in the frame. This would then insure that the system possessed no 

linear momentum relative to the frame. But by introducing this con-

straint, three additional variables l~ere required to specify the loca-

tion of the point of the frame occupied by the mass center, which point 

may be referred to as the frame origin. The second defining require-

ment was that the system had no angular momentum relative to the frame. 

This constraint then introduced an additional three coordinates to 

specify the angular orientation of the frame. The net result of 

injecting the Tisserand frame into the problem for a deformable body 

is to expand the dimension of the problem by six and to interrelate 

the coordinates by six scalar equations (two vector equations). It is 

the interrelation of the coordinates, and the resulting fact that they 

are no longer linearly independent, which can prove troublesome in 

the formulation of the equations of motion. Constraint relationships 

require the use of Lagrange multipliers when Lagrange's equations are 

used. It would be extremely advantageous to evaluate the constraint 

relationships and reduce the order of the system before the equations 

of motion are formulated. 

There exists a very intimate relationship between the Tisserand 

frame and the free-free modes of an unconstrained system; this special 
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relationship we call the Mode Shape Constraint. This relationship 

employs the orthogonality conditions that exist between the rigid body 

modes and the deformational modes (which have nonzero natural frequen-

cies) to allow a rather elegant ~ priori evaluation of the Tisserand 

constraint. This is accomplished by setting all rigid body modal coor-

dinates to zero. This effectively reduces the order of the'system to 

the original value and the remaining coordinates are all independent. 

The constraint relationships that define a Tisserand constraint 

for a deformable body (which by virtue of small deformations are also 

the Buckens constraints) are given by 

(3.1) 

and 

(3.2) 

where £ and £ are now measured from the frame origin to the generic 

mass element. A separation of variables is introduced uSing the free-

free mode shapes of an unconstrained system 

u = (3.3) 

where the mode shapes for distinct eigenvalues are orthogonal 

i :I- j • (3.4) 

The constraint relationships are then written as 

n ii, j E ,1. dm 11j = 0 
j=O . 

(3.5) 
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and 

t I' px¢j dmnj =0 
j=O D-

(3.6) 

where p is the undeformed location of the generic mass element. In the 

above, the zero subscript has been used to refer to all of the rigid 

body modes. These consist of a total of six modes. The three transla-

tional rigid b')dy modes are tal':en as uniform translation along each of 

the axes. They may be written as 

¢~ = ct.l 
!~ = ct.2 

,I. 
0 = Cf 

.:!3 -3 (3.7) 

where C is a constant. The three rotational rigid body modes are taken 

as small rotations about each of the axes. They are pictured in Figure 

3.1 and are written as 

,1.0 Z Af X Af 
~5 = I-I - I-3 

~ = ~ f2 - f £1 (3.8) 

The translational rigid body modes are orthogonal to the rotational 

rigid body modes since the undeformed position has its origin at the 

center 'of mass and 

1 p dm = 0 • 
D 

(3.9) 

It will be most fruitful in the evaluation of the constraint relation-

ships to investigate the orthogonality properties of the free-free 
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Figure 3.1. Rotational Rigid Body Model. 
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modes further. Let ~j be a deformational mode corresponding to a 

nonzero natural frequency. 

~j 
1 

~j = {f}T ~j 
- 2 

~~ 

(3.10) 

This mode will be orthogonal to the translational modes, yielding the 

relationships 

1 ~ 0 • ~ dm = c£ ~j dm = 0 
D -1 -j D 1 

~ *~ . ~ dm = C ~ ~~ dm = 0 

(3.11) 

This may be ~vritten in the vector form as 

(3.12) 

This is recognized as the coefficient in the center of mass constraint 

of n. Coupled with the orthogonality of the rigid body translational 

modes to the rotational modes shown in Equation (3.9), the center of 

mass constraint can be rewritten as a relationship involving only the 

translational rigid body modal coordinates 

(3.13) 

Evaluating the integrals will yield the three scalar equations 
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(3.14) 

where .;If is the total system mass. It is now quite clear that the 

center of mass constraint requires that the translational rigid body 

modal coordinates be zero 

= 0 

(3.15) 

Now we shall turn to the constraint setting the internal angular 

momentum to zero by studying the orthogonality of a deformational mode, 

!tj , to the rotational rigid body modes. The following orthogonality 

conditions hold 

[ ~O 
n.L4 

~j dm = 0 

[ ~O • ~j dm = 0 -5 
D 

[ ~O • 
n.:!:.6 

~j dm = 0 (3.16) 

When the expression for the rigid body modes (Equation (3.8» are 

substituted into the above, we have 

1 'I ' 
D (z~il- x¢~) dm = 0 

l(x¢~ - ycpi) dm = 0 
n (3.17) 
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t·~h~re the factor of )l, inverse has been eliminated. If the three scalar 

equations are considered as components of the vector bases of the float-

ing frame, then one vector cross product relationship results from 

Equation (3.16) 

[ p x cpj dm = 0 
D 

where .e. is the position of the undeformed generic mass element 

(3.18) 

(3.19) 

This vector cross product expression (Equation (3.18» is recognized as 

the coefficient of the modal coordinate velocity nj in the constraint 

relationship (Equation (3.6». The constraint relationship can then be 

written without the deformational modal velocities and also without the 

translational rigid body modal velocities. These latter are set to 

zero as a result of the center of mass constraint (Equation (3.15». 

Writing the simplified expression for the constraint Jives 

r £ x ~ dm n04 + f p x f~ dm nOS + I .e. x ~ dm n06 = 0 
{ D D 

(3.20) 

Substituting the expression for the rigid body modes into the above 

yields 

.(-y x dm 

i-z x dm 

~-x y dm 

-z y dm 

1- y z dm 
p 

I 2 2 
(x +y )dm 

D 

= 0 

(3.21) 
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] 
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The moments and products of inertia of the undeformed system are readily 

identified in the above. Writing the resultant scalar equations in 

matrix form yields 

= 0 

(3.22) 

Since the inertia matrix is positive definite, the only solution of 

this constraint equation is 

= o 

= o 

= o (3.23) 

This evaluation of the constraint relationship using free-free modes 

states definitively that the rigid body mode frame is fixed relative 

to the Tisserand frame. If initially aligned, the tw'O frames will 

remain coincident. This is the prime advantage of the Mode Shape Con-

straint and is the connection between the rigid body mode and the 

Tisserand frame that was mentioned at the end of Section 2.3. Thus the 

Mode Shape Constraint, which involves a Tisserand frame, can be used to 

define a rigid body mode frame. This result has been discussed by 

1 
Likins, but has been expanded upon here. The mention of the conrrection. 

between the orthogonality of the rigid body and deformational modes and 

the momentum expression ~,?as made by Buckens. He used it only to set 

~eter H. Likins, "Analytical Dynamics and Nonrigid Spacecraft Simula­
tion" (JPL TR 32-1593) p. 22. 
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total momentum to zero. Although the frame introduced by Buckens is 

crucial in the above arguments since it neglects second order terms, 

.i3uckens did not use the orthog'lnality properties in order to evaluate 

the constraint relationship for a: floating frame} 

3.3 Discussion and Example of the Hode·Shape Constraint 

The development of the M~de Shape Constraint in the previous 

section has been quite detailed and may seem complex. A discussion 

and summary of the pertinent results are in order. The example problem 

from Section 2.4 will be expanded in order to demonstrate the Hode 

Shape Constraint in a concrete manner. 

The Mode Shape Constraint is defined as a specific case of the 

Tisserand constraint where the deformations are expanded in terms of 

free-free modes of the unconstrained system. The main property of the 

Mode Shape Constraint is that it eliminates the rigid body modal coor-

dinates from the problem and leaves the remaining coordinates indepen-

dent. If an arbitrary choice of mode shapes is made, then the Tisserand 

constraint will render the modal coordinates dependent on each other. 

The specific structure of the interrelation of the modal coordinates 

depends on the choice of mode shapes. This may be determined from 

examining Equation (2.21). 

The procedure that results from applying the Mode Shape Constraint 

is to expand the deformations in terms of the deformational modes only, 

ignoring the rigid body modes, which have zero natural frequency. The 

constraint relationship is fulfilled because each coefficient in 

2F• Buckens "The Influence of Elastic Components on the Attitude Stab­
ility of a Satellite," Proceedings of the Fifth International 
Symposium on Space Technology and Science (Tokyo, 1964), p. 196. 
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Equation (2.21) is set to zero. The coordinates are then independent 

because of the specific choice of mode shapes. This interpretation 

gives rise to the name "Mode Shape" Constraint. The Mode Shape Con-

straint may also be viewed as a straightforward way of working with 

the rigid body mode frame. As noted before, the constraint relation-

'ship requires that the rigid body modes do not move relative to the 

Tisserand frame. Thus, the mode shape constraint may be used to locate 

both frames. This is a much easier method to locate the rigid body 

mode frame than a requirement involving zero strain energy. 

The discussion will now take up the example problem first intro-

duced in Section 2.4. This is a case of planar motion of a long slender 

member, so the constraint relationship will simplify to the scalar form 

.( x u dm = ° (3.24) 

If the velocity is expanded in terms of mode shapes, then 

(3.25) 

The mode shapes for the system shown in Figures 2.1 and 2.2 are the 

rigid body mode and one deformational mode relative to the Tisserand 

frame. They are shown in Figure 3.2. The mode shapes are 

cpO x Q, 
= - --<x<.R. Q, /2- -

cpl Q, 
.586 x 

Q, 
= -"4 - --<x<O /2 - -

9" .414 x O<x~Q, --+ (3.26) 4 
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(8) RIGID BODY MODE 

(b) DEFORMATIONAL MODE 

Figure 3.2. Example Problem Mode Shapes. 
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Several characteristics of the mode shapes must be mentioned. 

They represent only small deformations and always place the origin at 

the center of mass (Equation (2.24)). The deformational mode resulted 

from setting the relative deformatiqn, a, to one. The rotation of the 

body fixed frame relative to the Tisserand frame, S, would then be .586 

(Equation (2.41)). The resultant movement of the center of mass would 

£ 
be - 4" The essential property of these two modes is that they are 

orthogonal. 

(3.27) 

Thus the mass matrix is diagonal. Since the"re1ative deformations of 

the system result from only the second mode shape, the stiffness matrix 

is zero except for k22 • The modes chosen therefore are the natural 

modes of the unconstrained system which we call the free-free modes. 

The system is unconstrained as the singular stiffness matrix would 

indicate. 

Now let us use the free-free modes in order to evaluate the 

coefficients of the Tisserand constraint relationship shown in Equation 

(3.25) • 

~ x <jJ0 dm = 

2 
= 2.218 m £ 

L x <jJ1 dm = 0 
D 

2 
m~ dx 

£ 

(3.28) 

The last coefficient is set to zero because of the orthogonality condi-

tion. The Tisserand constraint for this system may be written 
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The constraint requires that the rigid body modal velocity be 

zero. Thus the rigid body mode does not move relative to the Tisserand 

frame. Since the original choice of axes is arbitrary, the modal co or-

dinate may be set to zero and will rem,ain zero because of the constraint. 

3.4 Hodified Tisserand Constraint 

This section will deal with an extension of the Tisserand frame 

for deformable bodies to cover a new class of systems. Consider a 

deformable body with small relative displacements to which. is added a 

spinning rigid rotor. The new system will no longer be a strictly 

deformable body, since the movement of the rotor will involve large 

relative displacements. If the classical Tisserand constraint is 

applied to this system, the frame itself must rotate relative to the 

system. The system angular momentum will consist of a component from 

the deformable body and a component from the rotor. The frame must 

rotate in such a way as to carry the total system angular momentum and 

thereby set internal angular momentum to zero. The frame motion cannot 

coincide with deformable body component of the system and large deforma-

tions result. 

Two methods of modifying the Tisserand constraint present them-

selves. The first is to define a Tisserand frame for the deformable 

body only. This approach ignores the rotor altogether when the internal 

angular momentum relative to the deformable body center of mass is set 

to zero. The constraint relationship is then written 

t 40 
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o 
X u dm = 0 (3.30) 

l'lhen E.c is the undeformed location relative to the center of maSB of 

the deformable body. This approach is not used because it does not 

achieve the greatest simplification. 

The second method to be considered is to examine the expression 

for the system angular momentum. The constraint relationship can then 

be made to simplify the structure of the angular momentum as much as 

possible ~.,hile still assuring small deformations. 

Before we write the expression for the system angular momentum, 

let us define several vector bases: 

.... 
{i} : Inertially fixed reference axes 

.... 
{f}: Axes fixed in the floating frame 

.... 
{b}: Axef: fixed in the mass element at the rotor mounting point 

{~}: Axes fixed in the rotor 

The angular momentum of the system about its center of mass is 

H = f E.. x p dm 
S 

(3.31) 

where S represents integration over the entire system, both the rotor 

and the deformable body. Evaluating the angular momentum for the 

deformable body will give 

[ .2. x E.. dm = 
n 

O f' f D • ~ 1 + E.. x ~ dm • 
n 

(3.32) 

where Dn is the deformable body dyadic about the system center of mass. 

For the rotor, static balance has been assumed. The similar expression 

integrated over the rotor, R, is 
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• x £. dm (3.33) 

where 

OS. R' Rotor inertia dyadic about the system center of mass 

DR: Rotor inertia dyadic about its own center of mass 

~: Rotor mass 

E.R: Location of rotor center of mass relative to system center 

of mass. 

By combining these two quantities, the system angular momentum is found 

to be 

(3.34) 

The total system inertia dyadic is given by 

(3.35) 

The total angular momentum expression can be significantly simplified. 

In order to do this, we introduce a Modified Tisserand Constraint. 

(3.36) 

Here we have made use of the chain rule for angular velocities 

vf vb + wbf w = w (3.37) 

The system angular momentum then becomes 

(3.38) 

The above has the same structure as a rigid body with an attached rotor. 

The essential difference is that the inertia dyadic is not constant and 
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that the relative angular momentum of the rotor (the second term) is 

affected by the deformations. It is important to understand that rota-

tions of the axes at the mounting point will reorient the rotor axes. 

The internal angular momentum of the system relative to the frame 

is no longer zero, 

o 
X U dm = ~ • (3.39) 

This is a very simple result and may be verified by direct computation. 

Alternatively, a quick comparison of the above angular momentum expres-

sion (Equation (3.38» and the general angular momentum expression 

(Equation (2.3» will give the same result. The one term evaluation of 

the internal angular momentum will facilitate the evaluation of the 

equations of motion. In order to demonstrate this, let us evaluate the 

kinetic energy. We start with the general result given above (Equation 

(2.6» vlhich is now evaluated over the entire sys tem 

T = ~ .( p • E. dm + ~ wfi 
• 0 . wfi + wfi 

• .(.e. x P dm (3.40) 

The first terrn must be evaluated over the deformable body and the rotor • 

. p dm = 1. f ~ 
2 D-

o 
• u dm 

1 f p . 
2 R 

o 1 0 0 1 vb 0 vb .e. dm = 2" ~ E.R • E.R + 2" ~ •. R . ~ 

(3.41) 

Making the substitutions indicated will yield the kinetic energy for a 

deformable body and attached rigid rotor with static balance when the 

Modified Tisserand Constraint is employed. 
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110 0 1 fi T = - u· u dm + - CJ.l 2 - - 2-
D 

D 

D . ",bf + 1. ",bf • 0 bf 
R ~ 2~ R· w 

(3.42) 
Even with the simplification that comes from the Modified Tisserand 

Constraint, this system has a complicated structure for the kinetic 

energy. 

The Modified Tisserand frame is distinct from the frame created 

by applying the classical Tisserand constraint to the deformable body 

only (Equation (3.30». In order to demonstrate this, the internal 

angular momentum of the deformable body relative to its own center of 

mass will be calculated for the Hodified Tisserand Constraint. Starting 

with Equation (3.39) we may write 

vb . w (3.43) 

Each component of internal angular momentum may be evaluated by rewrit-

ing the expression relative to its own center of mass rather than the 

system center of mass. 

o 
x r ..::.c 

! p x p dm =0 . (})vb + DR . wbf + ~ p x P 
R - - R - -~ ..:.c -R 

0.44) 

~vhere ..,I( is the system mass and E.c is the location of deformable body 

center of mass relative to the system center of mass. By using the 

center of mass expression 

0.45) 
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we may evaluate the internal angular momentum of the deformable body 

relative to its mm center of mass 

i p x 
n..!:-C 

o 
u dm = D . wbf 

-R -
o 

x~ (3.46 ) 

This quantity Hill not generally be zero, and the deformable body tvi1l 

have a net internal angular momentum relative to its own center of mass 

when the Nodified Tisserand Constraint is employed. This result also 

shows that the Modified Tisserand Constraint involves an extension of 

the classical Tisserand constraint for deformable bodies. 

Going back to total system angular momentum (Equation (3.38» it 

will be interesting to examine the frame motion. For the case where 

the system has zero net angular momentum and is free of external 

moments, the relationship will hold whereby 

O . wfi + 0 . w vb = 0 
- R -

(3.47) 

This relationship does not require that the frame be inertially fixed. 

Instead, the frame will move when the internal angular momentum (the 

second term) is altered in value. This is the process of momentum 

exchange that is employed by control systems. 

The most important aspect of the Modified Tisserand Constraint 

has been left till now. We shall now attempt to tie together the 

advantages of the Mode Shape Constraint with the extended systems 

covered by the Modif.ied Tisserand Constraint. The crux of this endeavor 

lies with the physical interpretation of the Modified Tisserand Con-

straint (Equation (3.36». Let us start by discussing the terms present 

in the expression. The first term is the internal angular momentum of 
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the deformable body. It is the last two terms which involve the rotor. 

But neither term involves the rotor spin rate. Rather, these two terms 

represent the internal angular momentum of the rotor if it were indeed 

not spinning relative to the axes fixed at the mounting point. That is, 

the rotor would be fixed in the reference frame b. The constraint 

relationship may now be interpreted as a classical Tisserand constraint 

for a system with a "frozen" rotor. Once this interpretation has been 

made, the Mode Shape Constraint associated with a classical Tisserand 

frame may be applied to a deformable body with an attached rotor. The 

mode shapes used to expand the deformations are found from the free-

free analysis of the system where the rotors have been frozen. Thus 

the rotor mass and inertia properties contribute to the free-free modes. 

The Modified Tisserand constraint will now require only that the rigid-

body modal velocities be zero. This allows them to be ignored, and the 

analysis proceeds with the frame variables and the modal coordinates 

\ 
1 

associated with nonzero natural frequencies. All of these coordinates 

are independent since the constraint relationship was evaluated by 

suppressing the rigid body modes. 
j , 

All of the relationships given above for a system with one rotor 
l~ 

1 

1 
J , 
4 
1 
1 
t 

with static balance will hold if additional rotors are added. The only 

change is that expressions involving rotor quantities are summed for 
~ 

all rotors. ~ 

j 
·.1 , 
1 
) 
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~ 
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CHAPTER 4 

FINITE ELEMENT EQUATIONS OF MOTION 

4.1 Chapter Summary 

ThiE,\, chapter deals with the derivation of a generalized set of 

equations of ~otion for the class of spacecraft with distributed 

flexibility and momentum exchange controllers. The Finite Element 

Model adopted for this discussion consists of a finite number of rigid , 
" ! te 

" bodies interconnected by massless, elastic elements. This model allows 

the equations of motion of a continuum to be represented as a finite 

number of ordin~,ry differential equations instead of a partial differ-

entia1 equation. ~he Finite Element approach is particularly powerful 

for dealing with systems characterized by nonuniform mass and stiffness 

properties. The Finite Element Model introduces six coordinates for 

each rigid body in the model, three coordinates for translation and 

three for rotation. The total number of discrete coordinates is then 

seen to be large even for a system of modest complexity. This suggests 

the adoption of distributed coordinates obtained by a modal analysis 

and the truncation to a smaller number of modes. The process of trunca-, 
" 
L 
~ i 

t', ;: tion is complicated and will be discussed in Chapter 6. 
r 
ii 

~ ; 
H 

The equations of motion developed here deal with a system which 
r , 
P has small, first order displacements and rotations, relative to an 
I' 

I inertial1y fixed coordinate system. This requires that the variation 

I 
I: 

of the rotor angular momentum is also a small, first order quantity. 

Although the equations of motion for this system can be written using 

I' an inertially fixed coordina~e system, a Modified Tisserand Frame will 
j 
1 
1 be introduced. This derivation will demonstrate the process of 
[' 

I 
I" 
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formulating equations of motion when this floating frame is employed, 

as may be necessary for the case of large system rotations. Particular 

attention will be paid to the impact of the constraint relation. 

The equations of motion will be formulated using Lagrange's equa-

tions. The first step consists of the calculation of the system 

kinetic energy. In order to arrive at equations of motion containing 

first order quantities, care must be taken to include all second order 

quantities in the kinetic energy. Because the rotor angular velocity 

is a large quantity, not all terms can be represented by their first 

order approximation. The generalized forces for the system are conser-

vative and the strain energy is a simple quadratic form involving the 

stiffness matrix. 

The use of the Modified Tisserand Frame will involve a constraint 

relationship. Because the generalized coordinates are not independent, 

Lagrange multipliers are introduced in the equations of motion. The 

modal analysis is performed for the free-free system with the rotors 

frozen and the transformation from discrete to distributed coordinates 

does not include the rigid body modes, Thus, the Mode Shape Constraint 

is introduced td the problem and the result is the elimination of the 

Lagrange multipliers. The final set of equations of motion involves 

coupling between vibration and the Tisserand Frame motion. Gyroscopic 

coupling between the vibration coordinates is also present. If damping 

is desired in the system, a term may be added in the final set of equa-

tions to represent modal damping. 

This set of equations could then be truncated to the frame 

variables and a smaller number of necessary modal coordinates. These 
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equations would be representative of the system motion of a spacecraft 

with small displacements from inertially fixed axes. They could then 

be incorporated in a control system de~ign to attain precise pointing. 

4.2 ~stem Kinetic Energy 

The fi~st step in the process of formulating the equations of 

motion using Lagrange's equations i,s the derivation of the expression 

representing the system kinetic energy. Several assumptions have been 

made to facilitate this endeavor. The system is assumed to be free of 

external forces and the system cen~er of mass then represents an iner-

tial reference point. The resul~ing equations of motion will therefore 

not include any expression representing accelerations of the system 

center or mass. The equations of motion representing translation of 

the system center of mass will not appear in the derivation since in 

effect they have been solved ~ priori. The assumption is made that 

the rotor center of mass is located at the center of mass of the 

attached body. This assumption simplifies the structure of the result-

ing equations, but could be abandoned easily if it were judged inade-

quate for analysis of the system at hand. The rotor is assumed to 

be statically balanced. T.he angular momentum of the rotor is also 

assumed to \mdergo only small~ first ordet' variations. This would 

correspond to a requirement that the rotor prodUCES only small, first 

order torque.s. This implies only first order changes in rotor speed 

for a momentum wheel or only first order changes in gimbal angles for 

a control moment gyzo (CMG). A Modified Tisserand Frame is introduced 

for the system. This results in a significant Simplification of the 

internal angular momentum expression tvhich appears in the kinetic energy. 
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As shown before (Section 3.4), the expression for the kinetic 

energy for a deformable body containing a spinning rotor is 

1 (0 0 fi I 0 
T = 2' Jeo p • £. dm + ~ • £. x £. dm 

S . S 

fi • w (4.1) 

If a Modified Tisserand Constraint is introduced to define the floating 

frame, then the constraint is written as follows for a rotor with 

static balance. 

The resulting expression for the internal angular momentum is 

! pxPdm=D 
- - R S 

The kinetic energy can now be put in the form 

1 [ 0 0 fi 0 T = - p. p dm + w· . 
2 - - - R S 

1 fi + - 1J.l • 
2- o· fi w 

(4.2) 

(4.3) 

(4.4) 

In order to analyze the first expression in the kinetic energy, the 

location of the generic mass element relative to the system mass center, 

£., is defined for each body as in Figure 4.1 

(4.5) 
-i 

where £. is the undeformed position of center of mass of body i and is 

fixed in the frame ·f. 

o 
-1 = 0 £. (4.6) 

50 

I 

I 



Figure 4.1. Location of Generic Mass Element. 
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The displacement in frame f of the center of mass of body i is 

i represented by the vector, ~. The location of a generic mass element 

of body i relative to the body center of mass is ri and therefore obeys 

the constraint 

where the integration is taken over body i. A similar expression 

results for the location of a generic mass element of the rotor 

-(4.8) 

where the superscript R refers to the rotor. The derivatives of the 

mass element expressions relative to the floating frame give 

oR oR vf x rR E. = u + w (4.9) 

where the reference frame bi is fixed in the body i, the reference frame 

v is fixed in the rotor and f is fixed in the modified Tisserand frame. 

Remembering the center of mass constraint (Equation (4.7)) and the chain 

rule for angular velocities 

(4.10) 

we may now write the vector-dyadic expression for the system kinetic 

energy 
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n (1 . oi 1 bif • Oi • w
bif

) T = E - m ~l. • U +-w 
i=l 2 i- 2-

+ 1:. ~ ~R 
R 

DR vbR oR + 1 vb 'u -w . w 
2 - 2-

R 
• OR 

bRf bRf • OR • bR 
+ 1:. wb f 

2-
. w + w Wv 

(4.11) + wfi . DR . wvbR 
+ ~ wfi . 0 . wfi 

R 
In the above expression, the reference frame b is fixed in the body to 

which the rotor is attached and the inertia dyadics 0 i and DR are for 

body i and the rotor, respectively, about their individual centers of 

mass. The body i and ~otor masses are mi and MR respectively. The 

number of bodies in the model is n, not counting the rotor. 

The next step in the evaluation of the system kinetic energy is 

to adopt a set of vector bases and express the kinetic energy in matrix 

form. The following set of vector bases are adopted: 

{i}: Fixed orientation relative to the inertia11y fixed reference 
frame. 

{f}: Fixed orientation relative to the Modified Tisserand frame. 

{bi}: Fixed orientation relative to the locally attached frame 
in body i. Superscript R refers to the body to which the 
rotor is attached. 

{~}: Fixed orientation relative to the rotor attached frame. 

Care must be taken in representing the vectors present in Equation 

(4.11) in terms of first order approximations. This cannot be done for 

vbR 
the following terms since w is not a first order quantity 

(4.12) 
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bRf fi 
The angular velocities, wand w , present here must include second 

order terms in order to keep all the second order terms present in the 

kinetic energy. Referring to Appendix B, these terms may be written 

(4.13) 

The other vectors in the kinetic energy may be represented by their 

first order forms 

oi {f}T {tii } u = 

w 
bif 

= {bi}T {Si} 

Oi = {bi}T [Ii] {fi} 

oR {f}T {uR} u = 

vbR 
{£R}T {~} w = 

DR {bR}T [I ] {£R} = - R 

0 {f}T 
A 

= [I] {O (4.14) 

The matrix expression for the system kinetic energy may now be written 

in a form which includes all second order terms 

+ {SR}T[IRH~} + {SR}T[S~]T[IR]{~} + {S}TrSR][IRHs} 

+ {S}T[IR]{~} + {s}T[eA] [IR]{S} + ~ {S}T[I]{e} 
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In the above expression the "tilde" operator represents a skew symmetric 

matrix as typified by 

0 -Il rl 3 2 

[SR] = SE 0 -SR 
3 1 

-SR 
2 

SR 
1 0 (4.16) 

The requirement that the variation of the rotor angular momentum be a 

small, first order quantity may now be applied to the components repre-

sented in Equation (4.14). The rotor angular momentum is written 

D vi H = • w 
-R R- (4.17) 

Since the angular velocity relative to inertial space includes the 

first order terms w
bRf 

and wfi 
they can only contribute first order 

quantities to the rotor angular momentum. The variation of the rotor 

angular momentum which must be kept first order is: 

(4.18) 

For a reacti.on wheel or momentum wheel, the inertia matrix will be 

constant and the first order requirement will be 

.. 1 
{s} = 0 

(4.19) 

For a control moment gyro (CMG) , the rotor speed will be constant. 

Then the first order requirement will be 

(4.20) 

These first order requirements will prove important when the equations 

of motion are derived using the kinetic energy. 
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4.3 Constraint Equations 

Since the kinetic energy was evaluated in terms of a Modified 

Tisserand Frame, the next step in the formulation of equations of 

motion is the evaluation of the ~@tlociated constraint relationship. 

As given before (Equation (4.2», the Modified Tisserand Constraint 

for a deformable body and a rotor with static balance is 

(4.21) 

If the same conventions are adopted as in the previous section (Figure 

5.1), the first term may be evaluated by using Equations (4.5) and 

(4.9). The resulting first order expression is then 

o (4.22) 

The vectors and dyadics may be expressed in the same manner as 

before (Equations (4.13) and (4.14» when a system of vector bases is 

adopted. To this representation we must add 

pi = {f}T {xi} 

pR = {f}T {xR} 

A common vector basis may be adopted, because to the first order 

(4.23) 

(4.24) 

where [E] is an identity matrix and the "tilde" is the skew-symmetric 

representation shown in Equation (4.16). The resulting three scalar 

constraint equations can be written in the form 

(4.25) 

Here the "tilde" skew-symmetric operator is a representation of the 

cross product. 

, . 



.1' ): 

,: 

J 

4.4 Equations of Motion-Discrete Coordinates 

The equations of motion may now be formulated using Lagrange's 

equations. For this discussion, the generalized coordinates are not 

independent and Lagrange multipliers must be introduced. The form of 

Lagrange's equations to be used here is 

k = 1, ... , \! (4.26) 

where \! is the number of generalized coordinates. There are m con-

straint relationships of the form 

S = 1, ... , m (4.27) 

For our problem, v is equal to 6n + 3, and m is equal to 3. The resul-

tant equations of motion are first order only. It is important to 

realize that the application of Lagrange's equations to the system 

kinetic energy (Equation (4.15» yields some second order terms. A 

crucial part of the equation derivation process is the identification 

and elimination of all second order terms; the requirement that the 

variation of the rotor angular momentum be first order will identify 

many second order terms to be eliminated by recognizing as first order 

quantities the terms in Equations (4.19) and (4.20). 

The equations will be derived in groups of three. The first set 

of equations is for the Tisserand frame variables, {e}. As shown in 

fi Appendix B, the second order term in the angular velocity, ~ ,can 

be written in two forms to facilitate the taking of derivatives 
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(4.28) 

The second order terms have a very interesting structU1 :,";which will be 

used here 

(4.29) 

Once the abov~ are recognized and all second order terms are eliminated, 

the system rotation equations (for rotation of the Modified. Tisserand 

Frame) are written 
, ~ 

[I]{e} - ([IR]{~}) {El} 

(4.30) 

where {TE} represents externally applied torques. 

The next sets of equations will deal with the translation and 

rotation of body i. This body represents all bodies in the model which 

do not have attached rotors. The translation equations are 

(4.31) 

Here the coordinates are present in the constraint relationship and the 

three Lagrange multipliers are introduced in a column matrix {A}. The 

generalized forces are represented in a column matrix {Qi}. The rota-

tion equations for body i are 

(4.32) 

Equations will now be written for body R, which does have an attached 

rotor. The translation equations are 

(4.33) 

58 



f 

r<~ - '1'"<-' '-«-<'-«- < ___ ~'~_--,'--~-'p<-n--'~<m~~~ __ ,~-~C'dn.' ",..... "'W"i<'~= 

1-' 

i. 
!' 

- , 

The rotation equations for body R are more complicated. Use must be 

made of equations similar to Equations (4.28) and (4.29). When all 

second order terms have been eliminated, these equations can be written 

~ 

([I
R]'+ [IR]){SR} - ([IR]{s}){~R} + [IR]{;} + [iR]{~} 

- ([~}){e} = {QR} - ([IR]T + [IR]T){A} (4.34) 

R The inertia matrix of body R about its own center of mass is [I ] and 

the rotor inertia matrix about the same point is [I
R

]. 

The derivation of the equations of motion is now complete. In 

order to examine their structure, a column matrix {q} will be introduced. 

This represents the translation and rotation displacements for all 

bodies. 

{q} 

full 
{Sl} 

{u 2} 

{S2} 

{~R} 

fSR} 

(4.35) 

I 

The generalized forces for all the bodies may be rewritten in terms of 

a stiffness matrix, [K]. 

{Q} = - [K]{q} • (4.36) 
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It is nOlV' possible to put the equations describing the translation and 

rotations of the bodies in a compact form which we will call the system 

vibration equations 

[M]{<i} + [G]{q} + [¥.]{q} = [R]{e} + {F} + [L]{A} (4.37) 

The component matrices in the system vibration equations have the form 

rml] 
" , 

[II] 
1 
.: : 

0 ~ I .. .. ... ...... 
t' 

[~~~J J , 

J 11 [M] = , , 

[IR]+[IR] 
.... .... 

0 .... r mn J 
[In] (4.38) 

0 0 , , , , , , , 
0 ,. ~ 

[G] = - [I
R 
]{~} 

j . , , 
0, . ~ 

, 1 , , 
~ O· '0 (4.39) .. ~ 

.J 
~ 
II 
~ 

] 
0 i 
I 'J 

j I 
OJ I 

1 
0 

{F} = . -[I ]{s} - fiR ]{~} (4.40) R 
0 1 I 

.1 
I 
I 

1 0 , 
~ 
.j 
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[R) 

[L] 

o 
I 
I 
I 
o 

ml[il ] 

_[ll]T 
I 
I 
I 
I 

(~ + ~) fiR] 

-([7R]T + [IR]T) 

I 
I 
I 
I 

mn[i
n

] 

_ [In]T 

(4.41) 

(4.42) 

The system rotation equation may be rewritten using equations 

(4.35) and (4.41). 

[rHe} - ([i3{;}){8} = - [R]T{q} - [IR]{s} - [iR]{~} (4.43) 

Here the external torques have been set to zero. The term involving 

the derivative of the rotor inertia matrix in the above equation and 

in Equation (4.40) can be expressed in an alternate way. 

(4.44) 

The complete equations of motion for the system have now been 

found. The next step is to attempt to introduce distributed coordinates 

into the analysis. 
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4.5 Modal Analysis 

The system equations of motion have now been formulated using 

discrete coordinates and consist of the system rotation Equations (4.43), 

the system vibration Equations (4.37) and the constraint Equations 

(4.25). The modal analysis will be introduced in order to substitute 

distributed coordinates for discrete coordinates in the vibration equa-

tions. The objective is to reduce the order of the system (number of 

degrees of freedom) while still being able to represent system behavior 

adequately. This process is generally termed "truncation". 

The first decision is the choice of the eigenvalue problem to be 

solved. If the eigenvalue analysis is performed on the homogeneous 

vibration equation 

[M]{q} + [G]{q} + [K]{q} = 0 (4.45) 

the result will yield complex modes, or eigenvectors represented by 

complex numbers. A major drawback of this course of action is that 

these modes depend on the spin rate. From a numerical standpoint, 

working \V'i th complex numbers may also prove cumbersome. 

Real modes would result from an eigenvalue analysis of the equa-

tions 

[M]{q} + [K]{q} = 0 . (4.46) 

since [M] and [K] are real and symmetric. This represents a modal 

analysis of the free-free system where the rotor has been "frozen" 

(spin rate set to zero). Besides the numerical ease of working with 

real numbers only, the major advantage of this choice. of eigenvalue 

problem is that the Modified Tisserand Frame may be defined by the Mode 
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Shape Constraint. This will eliminate the Lagrange multipliers from 

the vibration equations. 

Let [ep] be a rectangular modal matrix corresponding to Equation 

(4.46) where the six rigid body modes have been eliminated. The defor-

mational modes included in [ep] have nonzero natural frequencies and are 

normalized so that 

where [E) is the identity matrix and ~~JiS a diagonal matrix of 

natural frequencies squared. The substitution is made that 

{q} = [ep ]{n} 

(4.47) 

(4.48) 

where {n} depends on time only and the vibration equations are pre-

multiplied by [ep] transpose. The resulting vibration equations are 

{n} + [w~]{n} = - [ep]T[G][ep]{n} 

+ [ep]T[R]{e} + [ep]T{F} + [ep]T[L]{A} (4.49) 

An examination of the con~traint relationship Equation (4.25), shows 

that it can be written in the matrix form 

T . 
- [L] {q} = 0 (4.50) 

Hith the modal coordinates defined in EquaticiU (4.48), the constraint 

relationship becomes 

(4.51) 

But with the Mode Shape Constraint, the coordinates {n} are independent 

as a consequence of the orthogonality of the nonzero frequency modes to 

the rigid body modes. Thus the constraint relationship must be 



{ , 

fulfilled by setting all coefficients of the modal. coordinates to zero 

in the constraint equation 

(4.52) 

It is an easy step from the above to eliminate the Lagt\a'r~ge multipliers 

from the problem by realizing 

T [</>] [L] = 0 • U •. 53) 

When the modal matrix is introduced into the system rotation equation, 

the resulting equations for system behavior become 

[I]{e} - ([IR]~} {e} = - [~]T{n} - [IR]{s} 

{Ii} + 2[Z;;][Wn]{n} + [w~}n} = - [</>]T[G][</>]{n} 

[i
R 

]{s} 

+ [~]{e} + [</>]T{F} 

(4.jl) 

where the coupling between system rotation and vibration depends on 

(4.55) 

Modal damping is also added for this set of equations. The quantity [Z;;J 

is a diagonal matrix containing the percent of critical damping for 

each mode. This final set of equations describes the motion of a system 

~vhich is free of external forces and torques and for which changes in 

the rotor angular momentum are first order. 

The structure of the system equations of motion has several 

important aspects. First, the rotation of the Hodified Tisserand Frame 

(rigid body mode) is coupled to the vibration and vice-versa. The 

second aspect is that the vibration modal coordinates are coupled to 

each other by the gyroscopic term. This complicates the truncation 

process. An examination of this gyroRcopic term will have to be made 

in order to successfully truncate the number of modal coordinates. The 
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last point is that the "inertial coupling" present in the hybrid 

coordinate technique for analyzing flexible appendages is not present 

here. That is, the coupling is not between the second derivatives of 

the frame coordinates and modal coordinates. The use of the Modif~ed 

Tisserand Frame has permitted the elimination of this "inertial 

coupling" from the final equations. 

65 



, 
( 

t 
j 

· J 

CHAPTER 5 

CONTINUIDI ANALYSIS 

5.1 Chapter Sununary 

In this chapter we define a very simple physical system for an 

analysis as a continuum. The continuum analysis uses Hamilton's 

Principle to derive governing partial differential equations with 

boundary conditions. The physical system consists of a long slender 

beam with an axisynunetric rotor mounted at the tip of the beam with the 

axis of synunetry normal to the beam and parallel to a principal axis of 

the beam cross section, when the beam is undeformed. The rotor is sym-

metric with static and dynamic balance. The center of mass of the rotor 

lies on the beam centroid in order to simplify the presentation. The 

rotor spins with a constant rate plus ~ small, first order speed varia-

tion. The beam is uniform and inextensible and is modeled as a 

Bernoulli-Euler beam. The beam is allowed to vibrate in the plane 

defined by the beam and the rotor axis, in the orthogonal plane contain-

ing the beam, and about the centroidal axis (torsional vibration). No 

damping is assumed and the system is free of external moments and forces. 

The governing partial differential equations have a very simple 

structure. Three separate equations result for the system. They 

represent in-plane bending, out-of-plane bending and twist. All of 

the equations are homogeneous and are the familiar forms associated 

...,ith the bending and torsion of a uniform bar. On the other hand, 

the boundary conditions for the eq"Jations have a very complicated 

structure. Because of the gyroscopic coupling provided by the rotor, 

the in-plane bending and torsion are coupled through the boundary 
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conditions. In addition to this coupling, the boundary conditions 

depend on the eigenvalues of the system. The out-oi-plane bending is 

not coupled to the other system motion, but the boundary conditions 

depend on the rotor speed changes and are therefore time dependent. 

The solution of an equation with time dependent boundary condi-

tions involves a special transformation which for some cases renders 

the boundary conditions time independent. For a modified system, this 

solution technique is presented for out-of-plane bending. If a tradi-

tional separation of variables is employed for the coupled bending and 

torsion, the independence of each coordinate will cause only one solu-

tion to be admitted; this is the trivial solution corresponding to zero 

displacements. This result forces the separation of variables to adopt 

a new structure. The spatially dependent coordinates are distinct for 

bending and torsion, but they both have the same natural frequency. A 

difference in phase is allowed between bending and torsion. The result 

of this solution form involves complex mode shapes. The interpretaf:ion 

of these modes leads to the physical solution where in-plane bending and 

torsion are ninety degrees out of phase. The rotor tip is then seen to 

trace out an ellipse where one axis represents pure bending and the 

other axis represents pure torsion. 

The last section of the chapter provides numerical solutions for 

a particular choice of parameters. The solutions for different rotor 

speeds are presented to show the dependence of complex modes on the 

spin rate. The actual solution for the natural frequencies and mode 

shapes for specific systems allows greater physical insight into the 

dynamics of the system. 
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5.2 Governing Partial Differential Equations 

In this section, Hamilton's Principle will be used to derive the 

equations of motion and boundary conditions which govern the behavior 

of a very simple physical system. This system consists of a long 

slender flexible beam with a rotor mounted at the tip. This system is 

shown in Figure 5.1. The system is free of externally applied forces 

and moments. Because of this, the system center of mass is an inertial 

reference point. A set of inertially fixed unit vectors, {f}, have their 

origin at the center of mass. The system has no damping and the beam is 

uniform and inextensib1e. It is modeled as a Bernoulli-Euler beam with 

degrees of freedom for displacement in-plane, out-of-p1ane and torsional 

twist about the centroida1 axis. The beam does not include the effects 

of rotary inertia and shear deformation and no degree of freedom is 

included to allow longitudinal vibration. The rotor is mounted on the 

tip of the beam with the center of mass of the rotor placed on the 

beam centroid. The rotor is symmetric and has static and dynamic 

balance. A locally attached vector basis, {b}, is fixed at the tip of 

the beam, with one axis aligned along the rotor axis of symmetry and 

another axis aligned along the beam. The origin of these axes is placed 

on the beam centroid. This set of axes is representative of a general 

set of axes fixed in each beam cross-section. A frame v is fixed 

relative to the rotor. The rotor speed consists of a constant rate 

plus a small, first order variation that is time dependent. It is not 

necessary to employ a Tisserand frame, since the requirement that the 

speed variation be small will ensure that the inertial displacements of 

the beam are small (first order quantities). 

69 

J 

.-'-'-~-~---"'-""" _____ ~ __ "_=~~=~~_ ..;., _ ... "-~,,=.;c-,.:::..1111111111 



~c::::=~~~~~~~~~~=~~~-=~---~~-~r<-~-~---~--~ r----~£-"~--"t-~ v., 
., • ~ ••••• >},,-.~~ •• :'.!.~~!:>1t-~~~~_"'~ 

-:::'""=---!:-~!.:-"-_~,,Io"''''''''-

.c; 

.... <>, .... .---+--l 

<~ ..: 
0 ... 
0 

I a: 
"C .... QI ... 

~ C 
;:, 
0 
:E 
a. 
i= 
.c ... 
'~ 

E 
til 

<,.!j QI 
aI 

E ... 
0 .... 
'2 

l 
~-~ 

::J 

... 1 
ui 

1 
QI ... 
;:, 
C> 

i.i: l 
N 

1 
~ 

1 

1 
'J 
,I 

1 
~ 

1 
~ , 
.J 
1 

.~ 

j 
70 



A first order analysis is used when \-le apply Hamilton's Principle. 

For conservative, homonomic systems, Hamilton's Principle is written 

t2 
o f ,Pdt = 0 (5.1) 

tl 

where ~ is the Lagrangian of the system. The Lagrangian is the differ-

ence between the system kinetic energy and the system potential energy. 

!J? = T - U. (5.2) 

Hamilton's Principle requires that the actual path (Newtonian path) of 

the system in configuration space renders the value of the definite 

integral of Equation (5.1) stationary with respect to all arbitrary 

variations of the path between the two time points. The arbitrary 

variations from the true path create what is called the varied path. 

It must be understood in Hamilton's Principle that the varied path 

coincides with the true path at the endpoints of the integration; that 

is at time points tl and t2 the variations are zero. The advantage 

of Hamilton's Principle is that it provides in a formal manner both the 

partial differential equations of the system and the associated boundary 

conditions. 

In order to keep first order terms in the equations of.motion 

and the boundary conditions, second order terms must be preserved in 

the kinetic and strain energies. The kinetic energy for the system 

is first written as 

T = 1:. i p . .e. dm 
2 S-

(5.3) 

For the beam component of our system, the vector .e. from the system mass 

center to the generic mass element may be written 
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The geometry of the beam is shown in Figure 5.2. The beam centroid is 

defined ~y the relationship for each cross-section dA 

f .E. dm = 0 
aA 

(5.5) 

The vector .E. is normal to the centroidal axis and locates the mass 

element relative to the beam centroid. This vector is fixed in the 

{b
A

} A locally attached vector basis and has no component in the k3 direc-

tion. The vector is written 

(5.6) 

The torsional twist, ~, is assumed to be about the centroid. If rotary 

inertia effects are to be ignored, then the only component of angular 
A 

velocity of the locally attached frame, {b} that needs to be considered 

.1\ 

is that associated with torsion, ljJb
3

• Thus the derivative of the vector 

.E. with respect to inertial space is 

bi 1\ T 
.E. = w x.E. ~ {b} (5.7) 

The displacement of the beam centroid is represented by the vector 

r. This vector may be broken into two components: a vector, Q, >.;hich 

locates the position of the undeformed centroid and is fixed relative 

to the inertial axes, and a vector.!! which represents the displacement 

of the centroid. If the undeformed centroidal axis is aligned along the 
1\ A 

i3 direction as shown in Figure 5.2, then p is simply z i3 and u has 
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no component in the i3 direction. The derivative of the vector .E. may 

then be wri t ten 

A T 
r = {i} (5.8) 

o 

Remember that the vector p is fixed relative .to. the inertial axes and 

thus the location of the undeformed centroid. z, hias a zero derivative. 

The kinetic energy of the beam may now be written lin greater detail 

If" 1 r'2'2 If'2 2' B£" £. dm = 2' -!, m(ul + u2)dz + 2' B Ipl/J dz (5.9) 

This relationship has been simplified by eliminating terms made zero by 

the centroid definition (Equation (5.5» and by recognizing the mass 

per unit length, m, and the mass moment of inertia per unit length 

(5.10) 

For the rotor, the center of mass lies on the centroid and is 

located relative to the system center of mass by the vector £'R' The 

derivative relative to inertial space of £.R is ~R' The kinetic energy 

of the rotor is simplified because of terms set to zero by the defini-

tion of the rotor center of mass. The kinetic energy of the rotor is 

written 

Iff' l· - p • p dm = - M u 
2 - - 2 -'R -R 

R 
(5.11) 

~l7here ~ and DR are the rotor mass and inertia dyadic respectively and 

wvi 
is the angular velocity of the rotor .... fixed axes relative to inertial 

space. Care must be taken in the evaluation of wvi since it iA not a 
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first order term and since all second order terms must be retained in 

Equation (5.11). The rotor angular velocity is 

vi vb + bi 
W = W W (5.12) 

In this expression, the angular velocity of the rotor relative to the 

mounting frame, wvb , is not a first order quantity. It has a magnitude, 

fl, which is an arbitrary constant plus a first order variation and it 

" 
has direction ~l: 

I.,vb = n b" 
w ,G -1 . (5.13) 

The angular velocity of the beam tip with respect to inertial space is 

~!i. The detailed derivation of the components of w!i is given in 

Appendix B. The second order terms must be included in the analysis. 

-~, 
R2 

i/J ~, 
R Rl 

bi {b}T ~, + i/JR~i2 (5.14) WR = 
Rl 

\)JR -u' U' 
Rl R2 

The components of ~R in inertial axes are (uRI' u
R2

' 0). The primes 

indicate spatial derivatives and the dots represent time derivatives, 

so that 

2 a uR 
~, 1 
R~ az at 

.l.. 

2 a u
R 

~1 2 
(5.15 ) = az R2 at 

As noted above, the twist due to torsion is the angle i/J and the sub-

script R denotes evaluation at the rotor mounting point. The rotor 
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has a symmetric moment of inertia Is and transverse moments of inertia 

IT· The inertia dyadic may be written as 

IS 0 : lliJ DR = {b}T 0 IT (5.16) 

0 0 ITJ 

Keeping all second order terms, the last quantity in Equation (5.11) 

is written 

(5.17) 

It is now possible to write the system kinetic energy 

The kinetic energy includes all second order terms. The subscript R 

represents evaluation of the quantity at the rotor mounting point, 

where z equals ~l. 

The strain energy of the system comes from three types of deforma-

tion: in-plane bending, out-of-plane bending and torsion about the 

centroidal axis. The strain energy may be written 
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(5.19) 

where EI is flexural rigidity and GJ is torsional stiffness. 

It is now possible to tV'rite the Lagrangian in terms of the scalar 

functions ul(z,t), u2(z,t) and ~(z,t). By taking the first variations 

of the kinetic energy in Equation (5.18) and of the strain energy in 

Equation (5.19) it is now possible to write Hamilton's principle in the 

form. I 
a [29!dt = [t2{t.l m(~la~l + ~2a{x2)dz + l~l Ip~a~dz 

tl .. t l -.Q,2 -~2 

- 1.Q,1 

-~ 2 
f

~l 
EI utI cu" dz -

1 1 1 _.Q, 
2 

EI u" cu" dz 
2 2 2 

-1~1 GJ ~'c~' dZ}dt = 0 
-~ 

2 
(5.20) 

In order to arrive at the final formulation of Hamilton's Principle 

it is necessary to integrate by parts. When variations of the coordi-

nates at times tl and t2 are set to zero~ Hamilton's Pri.nciple has the 

form 
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I 

t V-:~ ~ J 2 l[_mu -El u '"] ou dz + r l[-mu -EI u"'J eu dz 
_~ I I I I J~ 2 2 2 2 

tl 2 2 

+ .l.~l[-lp~ + GJ$'~O$dZ +[EI1Uj" (~l) - ""u
1 

(tl)]OU
I 
(~I) 

2 

+ [-lS~(~I) - ITui (~l) - Ellul (~l) ] oui (~l) 

+ [EI2UZ' (~l) - ~u2(~I)Jou2(~I) 

+ [-ISU2(~I) - El2u2(~I) + IsnJou2(~I) 

+ [ls~Ui(~I) - IT~(~I) - GJ~'(~I)Jo~(~l) 

- [Ellul' (-~2)Joul (-~2)+fEIIUl(-~2)Joui (-9.
2

) 

- [EI2U2' (-t2 )] ooz (-~2)+ [E12U2 (-t2)] oui (-~2)- [GJ$' (-t
2

)] 0$ (-t
2

)} dt=O 

(S.21) 

Since the variations are independent and arbitrary, all quantities in 

square brackets must be set to zero. For in-plane bending, u
l

' the 

partial differential equation is 

mu + EI u"" = 0 
I 1 I 

with the boundary conditions 

u"(O) = 0 
I 

u'I! (0) = 0 
I 

EIlul(L) = - lTui(L) - Isn~(L) 

EI u'" (L) = M U (L) I I R I 
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A shift of origin '-Tas made in the spatial coordinate so that -JI,2 became 

zero and Jl,1 became L, the beam length. The boundary conditions for 

in-plane bending depend on the torsion W. The partial differential 

equation for torsion is 

(5.24) 

with the boundary conditions 

l/!' (0) = 0 

.. 
GJ~'(L) = - ITl/!(L) + Isn~i(L) (5.25 ) 

Again there is coupling between torsion, l/J, and in-plane bending, ul ' 

in the boundary conditions. This represents the gyroscopic coupling 

present in the system. Both coupling terms in the boundary conditions 

are seen to depend on the rotor spin rate, n. The partial differential 

equation for out-of-plane bending is 

mu + EI u 'III = 0 
2 2 2 

with the boundary conditions 

u"(O) = 0 
2 

u '" (0) = 0 
2 

(5.26) 

(5.27) 

The out-of~p1ane bending is not coupled to other system behavior, but 

the boundary conditions are time dependent. The term ~ in Equation 

(5.27) represents a SMall acceleration in rotor speed which is a first 

~rder function of time. 
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Hamilton's Principle has been used to formulate the partial 

differential equations and the boundary conditions which govern system 

behavior. The boundary conditions represent moment and shear forces 

applied to the beam ends. The structure of the system equations demon-

strates gyroscopic coupling between in-plane and torsional motion. 

The next section will deal with the solution of these equations by using 

separation of variables. 

5.3 Solution of the Partial Differential Equations 

In this section, the technique of separation of variables is 

employed to solve the partial differential equations which govern the 

system behavior. The first approach is to choose independent coordi-

nates for the separation of variables. The out-of-plane motion is 

independent but the boundary conditions include time dependent terms 

and mixed spatial and time derivatives (Equation (5.27». The separa-

tion of variables method cannot be applied to this equation and boundary 

conditions because of their structure. Solution techniques involving 

integral transform methods such as Laplace transforms may be applicable, 

but they will be hampered by the complexity of the system and are not 

investigated here. Instead, a modified system of greater simplicity is 

introduced for out-of-plane bending. A generalized separation of vari-

abIes method is applied and the problem is transformed into one contain-

ing a nonhomogeneous differential equation with homogeneous boundary 

conditions. This system of equations is solved using the normal mode 

method. 

Investigation of the coupled solution for in-plane bending and 

torsion shows that the choice of independent coordinates will allow 

I 80 

~ 
l 
U 



( 
i 
\ 
j 

;;, ~j 
q 
t! 

; ! 

~·L~, .. 

only the translational rigid body mode and the trivial solution to be 

admitted. The system motion is found by using a separation of variables 

with distinct spatial functions (mode shapes) but with the same time 

dependent function (modal coordinate). The in-plane bending and torsion 

then have the same natural frequency. Solution of the partial differ-

ential equation and boundary conditions yields "complex" mode shapes. 

This means that the modes, or eigenfunctions of the system, are func-

tions with values which are complex numbers. The physical interpreta-

tion of these complex mode shapes is that in-plane bending is ninety i 
j 

degrees out of phase in the time domain with torsional bending. With 

both motions harmonic, the system normal modes oscillate back and forth 
~ 
1 

between pure in-plane bending and pure torsion. The tip of the rotor 

shaft mounted on the beam can then be seen to travel in an ellipse with 

one axis representing in-plane bending and the other axis representing 

torsion. This represents a coning of the rotor shaft about the vertical 

where the cone angle varies sinusoidally. This motion is shown in 

greater detail in the next section. 

Addressing the out-of-plane bending motion, the structure of the 

boundary conditions (Equation (5.29» presents two degrees of complexity. 

The first property of the boundary conditions is that they involve both 

spatial and time derivatives. The presence of time derivatives normally 

causes the boundary conditions to depend on the eigenvalues of the sys-

tem. The seccnd property is that the boundary conditions involve the 

accelerations of the rotor and are therefore time dependent. Each of 

these complexities could be dealt with separately by known methods 

involving sepctration of variables, but these methods do not work for 
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the problem at hand. The methods for transforming time dependent 

boundary conditions into homogeneous boundary conditions require that 

the system does not have time derivatives in the boundary conditions. 

In order to proceed to a solution for out-of-plane bending, the physical 

system is further simplified and the time derivatives are eliminated 

from the boundary conditions. The system for out-of-p1ane bending is 

one where the rotor and beam, taken together, have the mass and inertia 

properties of a uniform beam. This eliminates the moment and shear 

forces applied to the beam tip by the "nonspinning" rotor. The equa-

tion describing the system is 

mu + EI u'" = 0 
2 2 2 

(5.28) 

with the simplified boundary conditions 

u "(0) = 0 2 

u '" (0) 
2 

0 

Elu"(L) = ISrG 2 

u'" (L) = 0 
2 

(5.29) 

These boundary conditions are now free of time derivatives and may be 

transformed to ho~ogeneous boundary conditions by 

.. 
u2 (z,t) = w(z,t) + S(z)ISrG 

where the step function S(z) is 

S (z) 

s(z) = 

O2 
2 

z 
2EI 

OSZ<L-E 

L-E'SZSL 

(5.30) 

(5.31) 

The choice of S is not unique but it must satisfy the constraints 
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S"(O) = 0 

Sill (0) = 0 

EIS" (L) = 1 

s'" (L) = 0 

The transposed partial differential equation is then 

w"" + E~ W = - S""ISSG - ~I SI~[i' 
2 

with the homogeneous boundary conditions 

wIt (0) = 0 

Will (0) = 0 

w"(L) = 0 

Will (L) = 0 

(5.32) 

(5.33) 

(5.34) 

The homogeneous solution is then found using the separation of variables 

w(z,t) = g(z)~(t) (5.35) 

This yields the natural frequencies, W , and mode shapes, g(z), of a 
n 

free-free uniform beam. The nonhomogeneous solution is then found by 

modal analysis 

where 

and 

U (t) + w2 ~ (t) = N (t) 
n n n n 

N (t) 
n 

H 
n 

m lL z2 dz 
2(EI)2 L-E gn 

(5.36) 
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H* = (L g S"" dz 
n 10 n 

= - .!... g' (L-e:) - .L(L-e:) g" (L-e:) 
EI n EI n 

I (L-e:) 2g'" (L-e:) 
EI n (5.37) 

The last expression involves the derivatives of S across the disconti-

nuity. The resultant derivatives of Dirac "delta" functions must be 

integrated by parts, but this allows easy evaluation of the remaining 

integrals. The solution of Equation (5.36) for zero initial conditions 

is given by the convolution integral 

~ (t) = 1- (t N (T) sinw (t-T)dT (5.38) 
n Wn 10 n n 

The final out-of-plane bending for our simplified model is then 

des cribed by 

(5.39) 

The use of a step function for S raises questions concerning the 

spatial continuity of the solution and invariance of the solution to the 

location of the step. For physical reasons, the value of e: would be 

kept small due to the fact that the moment. is applied at the beam tip. 

The coupled in-plane bending and torsional motions are described 

by the followirtg partial differential equations and boundary conditions 

mu + EI u"" = 0 1 1 1 

u"(O) = 0 
1 

u'" (0) = 0 
I 

Elu1(L) = - ITui(L) - IS~(L) 

Elu'" (L) = M u (L) 1 -~ 1 
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00 

Ip1/I - GJ1/I" = 0 

1/1' (0) = 0 
00 

GJ1/I' (L) = - I T1/I(L) + Isn~i(L) (5.40) 

If independent coordinates are chosen, then the separation of 

variables has the form 

ul(z,t) =.f(z) A(t) 

1/I(z,t) = h(z) Vet) (5.41) 

The first motion to be investigated is the rigid body mode correspond-

ing to zero natural frequency. If zero initial displacements are 

assumed, then the general solutions are given by 

(5.42) 

Substituting these expressions into the boundary conditions will set 

all constants to zero except Dl , The rigid body motion allowed by the 

system is in-plane translation. Rotational rigid body modes are not 

permitted. 

Proceeding with the separation of variables using independent 

coordinates, the equation for the in-plane bending modal coordinate is 

A + wi A = 0 (5.43) 

where WI is the natural frequency. The equation for the mtlde shape is 

Ell 2 
f"" - -;;- wI f = 0 (5.44) 

with the boundary conditions 
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f"(O) = 0 

f'" (0) = 0 

Ell f" (L)A = WilTf' (L)A - iW3Ii~h(L)\) 

Ell fIll (L) = - Wi Maf (L) • (5.45) 

The boundary conditions depend on the eigenvalue, wl ' because of 

Equation (5.43). The introduction of the imaginary number, i, comes 

from the equation for the modal coordinate for torsion 

(5.46) 

where w3 is the natural freque'ncy. The solution for this equation is 

(5.47) 

The time derivative of ~ found in the boundary conditions (Equation 

(5.40» can then be eliminated using 

~(L) = iW3 h(L)\) 

By employing a similar substitution for the time derivative of the 

in-plane bending variable based on Equation (5.43), we have 

u' (L) = iw f' (L) A 1 1 
(5.49) 

The differential equation for torsion becomes 

with the boundary conditions 

hl(O) = 0 

GJh I (L)\) 
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Let us look in detail at the boundary conditions given by Equations 

(5.45) and (5.51). It has not been possible to eliminate the time 

dependent variables from the boundary conditions. These time dependent 

variables have distinct natural frequencies. The boundary conditions 

containing the time dependent coordinates are 

[EIlfll(L) - WiITf'(L)]A(t) + [iW3I
S
nh(L)]V(t) = 0 

[GJh'(L) - W;ITh(L)]V(t) - [iWlIi2f'(L)]A(t) = 0 (5.52) 

The only manner that these equations may be satisfied when A(t) and 

Vet) have distinct, nonzero, natural frequencies is to set the terms 

within square brackets to zero. As a cpnsequence of this, the boundary 

conditions in Equation (5.52) become 

f I (L) 0 

f" (L) = 0 

h(L) = 0 

hI (L) - 0 (5.53) 

The general solutions of Equations (5.44) and (5.50) are 

f (z) = Cl sin~l?: + C2 cosSlz + C3 sinhSlz + C
4 coshSlz 

(5.54 ) 

where 

S4 m 2 
= E'I"" WI 1 

1 

S2 Ip 2 
2 = GJ w3 (5.55) 

When these functions are substituted into the boundary conditions that 

come from Equations (5.45), (5.51) and (5.53), the solution for the con-

stants becomes 
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c = c = c = c = c = C = 0 1 2 3 456 (5.56) 

This represents the trivial solution corresponding to zero movement. 

In order to solve for the system behavior, a different separations 

of variables technique must be used. The nodal coordinates for in-plane 

bending and torsion now are assumed to have the same natural frequency, 

w. They are separated in time by a phase delay~. The separation of 

variables has the new' form where the coordinates are coupled 

ul(z,t) = f(z) A(t) 

~(z,t) = h(z) A(t-~) (5.57) 

The time dependent terms may now be eliminated from the boundary condi-

tions given by Equation (5.52). The procedure is to replace V(t) by 

A(t-¢) in Equations (5.45) and (5.51). When dividing by A(t) we may 

use the relationship 

A(t) ::: iwt ce (5.58) 

The boundary conditions for the coupled set of equations then have the 

form 

f"(O) = 0 

fIr' (0) = 0 

h' (0) = 0 

EI f"(L) = W2I Tf'(L) WIsnh(L)e-iW~ 
1 

Elf'" (L) = 

(5.59) 

Using the general solution forms given by Equations (5.54) and the first 

three equations given above will give the result 
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C5 = 0 (5.60) 

This result assumes that the natural frequency is not zero. Thus the 

rigid body mode is excluded from the solutions which use Equation 

(5.60). The last three boundary conditions of Equation (5.59) deal 

with the moments and shear forces applied to the beam by the rotor. 

Using the solution forms in Equation (5.54), the boundary conditions 

are written in matrix form. 

where 

III Ie~ (1IInIH\ L-Minal L) 

-w 
2 

1.1 1 "1 (COflI51t+co!ih~lr.) 

l~[l "'i (coHhl4

1 Tr(·os~:·11.) 
2 

ok .. ; l>tR(<.jin!\L+S:inh'~lr.) 

..1!L W2 
EI ' 

1 

2 Ip 2 
S2= GJ W 

EIjl'i (cMhBI L-co>Pl L) 

-"hcr'\ C.lnP'lL+R,lnhi'14) 

f:lj"t (slnl\ L+.1nhl\ L) 

+w21'lt CCOSi'l L+Co9hl'r l•1 

1(: + 1 
-W]!i/~f'l (~lhhflL-dm"lL)e 2 .,.. (5.61) 

(5.62) 

The characteristic equation of the system is found by setting the 

determinant of the above matrix to zero. This will yield the equation 

for the nonzero system natural frequencies. 
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1/4 5/2 2 I -MF.IT E~l w (cos SlL+cosS1LcoshS1L-sinS1LsinhS1L) 

+w(Ish)2COSS2L!m(SinSlLCOShSlL+COSSlLSinhSlL) 

+ '\(~If/4 wl/2(cosSlLCOShSlL + l)j]- 0 (5.63) 

The above equation for the natural frequency must be solved numerically. 

Once a natural frequency has been found, the corresponding mode shapes 

come from the solution of the matrix equations (5.61). The mode 

shapes are found to be 

(5.64) 

where the real constants R1 and R2 are 
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r[ VEIl m (cosh~l L-cos~l l-IT (E~ If/ 
4 
w

3
/ 

2 (sin~l L+sinh~l Ll] 1 
[ x [(m3EIlll/4(COSh~lL-COS~lLl + "R wJ./2(Sin~lL+sinh~& 

R2 = [(m3EI
l
)1/\SinSl L+SinhS

1
L) + ~rw(cosS1L+coshS1L) (ISs"tcosS2L) 

[, r;;-;; . /. m )1/ 4 3/2 11 
V~~1"'(sinhSlL-s~nS1L)-IT\~ w (cosSlL+coShS1L~ 

(5.65) 
Ill. cosi32

L 

The above mode shape for torsion is a complex mode shape. In order to 

place the proper physical interpretation on the complex mode shape, it 

is necessary to examine the displacements. 

ul = fl(z)e
iwt 

h( , i(Wt-¢) z)e (5.66) 

Since we know that the displacements are real, we shall take the real 

parts of the expressions in Equation (5.66) by using the relationship 

iwt e = coswt + i sinWt (5.67) 

The displasements then become 

(5.68) 

The arbitrary time lag, ¢, drops out of the equations. The equations 

for the displacement ShOlv that the in-plane bending is always ninety 

degrees out of phase with the torsional bending. This follows directly 

from the phase relationship of the sine and cosine functions. It is 

this phase relationship between in-plane bending and torsion which 

8ho,\·:s the system to have gyroscopic coupling. The system behavior may 

now be calculated by solving the frequency Equation (5.63) and then 
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calculating the mode shapes by (Equation (5.64)). This work must be 

accomplished numerically due to the complicated structure of the equa-

tions. 

5.4 Numerical Solutions 

In this section, we sh~ll formulate an example problem and solve 

for the coupled in-plane and torsional motion. In this manner, we shall 

be able to examine the gyroscopic coupling exhibited by this system for 

a specific case. This should increase our understanding of the dynamic 

interactions involved for this class of systems. 

We start by choosing physical parameters for the sY$tem. The 

beam will be 10 meters long with an in-plane bending fundamental fre-

quency equal to 1 Hertz and a torsional fundamental frequency equal to 

5 Hertz. The mass of the beam will be 150 kg. and it has a cross 

section which is one meter square. The relationships for the funda-

mental frequencies of a free-free uniforms beam are 

f = L .. !GJ 
T 2LVr; (5.69) 

These expressions are inverted in order to solve for the values of 

flexural rigidity and torsional stiffness 

3 
EI = 11820. ~-~ 

sec 

3 kg-m 
GJ = 25000. . 2 

sec 
(5.70) 

The value for mass moment of inertia per unit length, I p ' is 2.5 kg-me 
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The rotor has a mass of 5.236 kg, a symmetric moment of inertia of 

2 2 .2909 kg-m and a transverse moment of inertia of .5818 kg-m The 

rotor spin speed is fixed at values between 0 and 1000 radians per 

second. This value is varied parametrically. 

The first result to be shown is the dependence of the system 

natural frequencies on the rotor spin speed. Solutions of the frequency 

equation (Equation (5.63» were obtained numerically for rotor speeds 

between 0 and 1000 radians per second. The first two natural frequen-

cies are plotted in Figures 5.3 and 5.4. In order to examine the mode I shapes thems .. }lves, the rotor spin speed was fixed at 1000 radians per 

second and the mode shapes were calculated using Equation (5.64). 

These mode shapes are shown for the first five natural frequencies in 

Figures 5.5 to 5.9. The first mode (Figure 5.5) involves much more 

rotation than bending. It is related to the rotational rigid'body mode 

that would result if the beam were rigid. This is confirmed by noting 

in Figure 5.3 that for zero spin speed this mode has zero natural fre-

quency. The last aspect of the system behavior to be examined involves 

the rotor motion. For small in-plane displacements, the rotor shaft 

will rotate an angle equal to the slope of the in-plane mode shape 

evaluated at the beam tip. The tip of the rotor shaft will then rotate 

in an elipse as shown in Figure 5.10. The rotor is spinning cbunter 

clockwise, but the rotor tip can cone in either direction. The direc-

tion of the coning motion is determined by the moment applied to the 

rotor (negative of the moment applied to the beam) and is thus a function 

of the curvature (second derivative) of the mode shape evaluated at the 

beam tip. 
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CHAPTER 6 

NUMERICAL RESULTS FOR THE FINITE ELEMENT MODEL 

6.1 Chapter Summary 

This chapter presents a solution using numerical integration for 

the finite element model equations of motion. The physical system 

chosen for the example problem consists of a uniform beam with a con-

stant speed, axisymmetric rotor mounted at the tip. This is the same 

system analyzed in the previous chapter which used a continuum approach 

that required the solution of the governing partial differential equa-

tions. The verification strategy consists of a comparison of the 

results of the numerical integration of the finite element equations of 

motion with the closed form solution attained by the continuum analysis. 

The initial conditions are calculated using the closed form solution 

and correspond to a system normal mode for the coupled in-plane bending 

and torsional motion. 

The modal analysis is performed on the system with the rotor 

"frozen" (zero spin rate). In the construction of the mass and stiffness 

matrices, constraint relationships arise since each mass element of the 

beam has only three degrees of freedom. The constraint relationships 

are accommodated through the introduction of displacement compatibility 

matrices when the final matrices are assembled from their component 

parts. The stiffness matrix may also be calculated from the continuum 

strain energy expression by the adoption of finite differences. An 

eigenvalue analysis of the final mass and stiffness matrices produces 

a set of natural frequencies and real modes (eigenvectors). 



I 

J 

~, . 

The numerical integration is accomplished by a fourth-order Runge-

Kutta algorithm. The only variables integrated are the Tisserand frame 

variables and the modal coordinates corresponding to the lowest nonzero 

frequencies for both in-plane bending and torsion. This represents a 

truncation of the number of coordinates from thirty to four (no out-of-

plane motion is initiated). The results of the integration show good 

agreement with the closed form solutions. The chapter closes with a 

discussion of the truncation procedure. Emphasis is placed on the inter-

relation of the coordinates that results from gyroscopic coupling. 

Modes which are strongly coupled should be treated as a unit in the 

truncation procedure; that is, they should be kept as a group or 

truncated as a group. 

6.2 Example Problem and Modal Analysis 

This section will describe the physical system to be modeled and 

the constraint relationships involved. It will then construct the mass 

and stiffness matrices to be used in the modal analysis. The physical 

system is the same as the one described in Chapter 5. The difference 

here will be the method by which a mathematical model of the system is 

created. For the previous analysis, the system was mode1ea as a uniform 

continuum and partial differential equations with boundary conditions 

resulted. Ordinary differential equations were obtained by introducing 

a separation of variables. For the finite element model, ordinary 

differential equations are obtained directly by breaking the system into 

a number of discrete, finite elements. 

To review the selection of parameters, the beam is 10 meters in 

length, 150 kg in mass and has a 1 meter square cross section. The 
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flexural rigidity, EI, is equal to 11820 kg-m3/sec
2 

and the torsional 

stiffness, GJ, is 25000 kg_m3/sec2• The rotor has a mass of 5.236 kg, 

a symmetric moment of inertia of .2909 kg-ln2 and a transverse moment 

2 of inertia of .5818 kg-m. The rotor spin speed is fixed at 10 radians 

per second. 

The beam is divided into fifteen equal rigid bodies that are 

connected by massless beams as shown in Figure 6.1. Each rigid body 

has a mass of 10 kg and a moment of inertia about the third axis of 

2 1.6667 kg-m The other moments of inertia are set to zero in order to 

eliminate rotary inertia effects. The system moments of inertia are 

1262.8, 1263.1 and 25.6 kg_m2 about axes one, two and three respectively. 

Each massless beam has a length of two thirds of a meter. 

We shall be concerned with the calculation of natural frequencies 

and mode shapes for in-plane bending and torsion. The plane mentioned 

here contains the rotor symmetric axis and the undeformed beam centroid. 

Torsion is about the beam centroid. If we consider in-plane motion 

first, we see that each rigid body will have three degrees of freedom; 

transverse displacement and longitudinal displacement of the center of 

mass and rotation about axis number two. The first constraint simply 

sets the longitudinal displacement to zero by assuming that the beam is 

illextensible. The second constraint relates the rotation to the trans-

verse displacement. This is the same curvature constraint which ~yas 

used in the continuum analysis (Equation (5.14» and is derived in 

Appendix B. 

(6.1) 
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If this constraint is applied at the midpoint between rigid bodies and 

if the angle is taken to be the average value for the two neighHoring 

bodies, the constraint relationships take the form 

i =:::', ••• tn-I (6.2) 

where 6z is the distance between body centers of mass and is here equal 

to two thirds of a meter. This relationship can be solved for ui+l and 

yields 

HI = i + 6z lai + ai+l) 
ul ul 2 \:2 ~2 i "" 1, ••• , n-l (6.3) 

This same result may be attained using a diff~rent perspective. Let 

the bodies be conneCi:ed at the midpoints between them by a line hinge, 

then the requirement for compatible displacements at the hinge point 

will yield 

i = l, ••• ,n-l (6.4) 

where the rotations are assumed to be small. This will produce the same 

result (Equation (6.3» as the curvature constraint. There are now 

(n-l) constraint relationships and they may be used to eliminate the 

2 n 
variables ul through ul • In matrix form, the constraint relationships 

may be expressed as 
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In 
ul 

(3n 
2 

:l 

o 

1 

o 

1 

o 

1 

o 

o 

1 

I1z 
'2 

o 

I1z 
2 

o 
I 

I 
I1z 
2 

o 

0 0 0 

0 0 0 

I1z 
0 0 2 

1 0 0 

I1z I1z 0 2 

0 1 0 

I1z I1z I1z 

0 0 0 

In compact form, this may be rewritten 

{q} = [C]{q'} 

0 1 - - - - - U
1 

• 1 - - - - - 0 (32 
I 

0 62 - - - - - 2 
I 

I I 
I - - - - - 0 I 

I 
0 n-l - - - - - (32 

- - - - - 0 Sn 
2 

-l1z I1z 
2 

- - - - 0 1 (6.5) 

(6.6) 

where [Cl is referred to as a compatibility matrix. The mass matrix 

will be found by applying a transformation involving the compatibility 

matrix to the general mass matrix involving all displacements and rota-

tions. The general mass matrix may be written in the form 

o 

o 

, 
[M] = 

o o 

(6.7) 
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where guidance has been taken from Equation (4.38) and mi is the mass 

of body i and IT is the rotor transverse moment of inertia. The 

inertias of each body about axis number two have been set to zero in 

order to eliminate the rotary inertia effect. The final mass matrix 

has the form 

[M'] = [C]T[H][C] (6.8) 

where [H'] is symmetric but is no longer diagonal. The stiffness 

matrix for in-plane bending is constructed from an assemblage of simple 

component matrices by using compatibility matrices. The simple compo-

nent matrix is constructed for each massless beam by using assumed mode 

S:1Clpes. Each member of this matrix is found by evaluating the expres-

sion 

i
R, -

k = EI¢"¢" dx 
ij ° i j 

(6.9) 

The assumed mode shapes, ¢i' chosen here arise from a general third 

order· polynomial that is forced in turn to represent unit disp1ac.ements 

and rotations about each end of the beam. For unit displacement about 

the end at x = 0, the mode shape is 

2 
(R,-x) ¢1 (x) = 3 T (6.10) 

For unit rotation about this end, the mode shape is 

2 
(R,-x) ¢2(x) = x T . (6.11) 

For unit displacement about the end atx = ~, the mode shape is 
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For unit rotations about this end, the mode shape is 

(6.13) 

Using Equation (6.9) will yield the component stiffness matrix for each 

massless beam element 

12 6R, -12 6R, 

[ki] = (~;) 6R, 4R,2 -6R, 2R, 2 

-12 -6R, 12 -6R, 

6R, 2R, 2 -6R, 4R,2 (6.14) 

The general stiffness matrix is then written in the form 

[kl ] 

[k2] 0 , 
[K] = , , 

0 
, 

[kn- 2] 
[k

n
_

l
] 

(6.15) 

An additional compatibility matrix is also introduced to set equal the 

displacement and rotation at x =R, of beam i to the displacement and 

rotation at x = 0 of beam i + 1, respectively. 

1 0 0 0 - ~ - -, 
0 1 0 0 

0 0 1 o - - -
0 0 0 1 o - - - - -

[e' ]= 
0 0 1 0 0 o -

(4 (n-l)x2n) 0 0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 o - - - -

o o 0 o o o o - - - 0 
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Note that the structure of [e'] consists of (n-l) four by four identity 

matrices with each one overlapping the last two columns of its predeces-

sore The final stiffness matrix may then be written in the form 

[K'] = ([e'][C])T[K][C'][C] (6.17) 

A different perspective may be taken in order to derive the strain 

matrix. To do this, we start with the continuum expression for the 

strain energy 

U = t J:LEI(t:~1)2dZ (6.18) 

where L is the length of the entire beam. Introducing the curvature 

constraint (Equation (6.1)) yields 

( 

2 
1 L dS2 

U = - ( EI -) dz 
2 JO dZ 

(6.19) 

This expression may now be evaluated using a finite difference approach. 

First the substitution is made 

(6.20) 

where ~z is the distance between mass centers. The strain energy may 

then be written 

U = 1:. E EI IS~+l _ 13;)2 
2 i=l (~z)2 \ 

(6.21) 

Expressed in matrix form, the stiffness matrix, [Kl ], may be introduced 

where {S2} is the column matrix of rotations. In detail, the stiffness 

matrix has the structure 
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1 -1 0 0 - - - - 0 

-1 2 -1 0 - - - - 0 
[Kl ] = EI 

(l\z) 2 

0 0 -1 2 -1 

0 0 0 -1 1 (6.23) 

An interesting result is that the strain energy does nO.t involve 

1 the displacement ul • This means that the matrix [K'] found. in Equa-

tion (6.17) must .. be singular; that is, it must possess a zero first 

row and column. The matrix multiplications indicated in Equation 

(6.17) were performed numerically and the stiffness matrix was found 

to be singular. The first row and column were found to be zero and 

the populated submatrix was equal to [K1] found in Equation (6.23). 

This zero row singularity will yield a zero eigenvalue which will cor-

respond to the translational rigid body mode. Since the rank of [K'] 

is degenerate by 2 (two less than order of the matrix) another. zero 

eigenvalue will be present and corresponds to the rotatio,',lal rigid body 

mode. 

The free-free modal analysis of the in-plane bending is performed 

by solving the eigenvalue problem 

([K'] _W
2 [M']){q'} = {a} (6.24) 

The resulting eigenvectors {q~} for distinct natural frequencies 
1. 

are orthogonal since the mass and stiffness matrices are symmetric. 

(6.25) 

If the eigenvectors are arranged by columns in a modal matrix [$'], and 
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if the eigenvectors corresponding to the same natural frequency are 

made orthogonal by choosing their proper linear combinations, then the 

system may be normalized to obey the relationship 

[<I> ' ] 'I' [M' ][ <I> '] = [E] (6.26) 

where [E) is the identity matrix. The constraint relationships may be 

reapplied to the resultant mode shapes using Equation (6.6) and the 

resulting mode shapes will represent compatible displacement and rota-

tion. In terms of the modal matrix, we express this operation as 

[<1>] = [C][<I>'] (6.27) 

These resulting modes may now be input into the finite element model 

equations of motion. Plots of the first three nonzero frequency modes 

are shown in Figure 6.2. 

The modal analysis of the torsional motion is much simpler due to 

the l~ck of constraints. The mass matrix is diagonal and has the form 

11 
3 

[M' ] 12 = 0 
3' 

'" , 
0 

, , 
In 

3 (6.28) 

where I~ is the moment of inertia of body i ab~.:"i.. axis number three. 

The stiffness matrix is calculated from the continuum strain energy, 

1 i L (dS3)2 U = - GJ -- dz 
2 0 dZ 

(6.29) 

by the introduction of the finite difference 

i = 1, ••• , n-1. (6.30) 
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The strain energy may then be written 

1 n-l GJ (i+l i)2 U=-I; S-f3 
2 i=l (6Z)2 3 3 

(6.31) 

If we write the strain energy in matrix form, we introduce the 

stiffness matrix, [K'] 

(6.32) 

where {S3} is the column matrix of rotations about axis three for all 

bodies. The structure of [K'] is 

1 -1 0 o o 

-1 2 -1 o o 

[K: ] 
GJ 

;::: 

(6z) 2. 
0 2 -1 o -1 

0 o o -1 1 (6.33) 

It is now possible to proceed with the free-free modal analysis of the 

torsional motion by solving the eigenvalue problem 

(6.34) 

The modal matrix, [~], is formed by the eigenvectors arranged in columns 

and is normalized to obey the relation 

[<p]T[M'H<P] = [E] (6.35) 

The first three nonzero modes are shown in Figure 6.3. One rigid body 

mode corresponding to uniform rotation about axis three is present. 

The modal analyses is now complete. The real mode shapes and 

natural frequencies for in-plane bending and torsion found here may be 
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used in the finite element model equations of motion. The next step is 

the actual integration of the equations of motion. 

6.3 Numerical Integration and Truncation Procedure 

This section presents the results of a numerical integration of 

the finite element model equations of motion for a system with a con-

stant spin rate. The initial conditions chosen for the integration 

correspond to a system normal mode and should therefore produce periodic 

motion. The initial conditions (Figure 6.4) were calculated using the 

closed form solutions resulting from the continuum analysis of the 

previous chapter. 

The initial modal coordinates and velocities are calculated using 

the inverse modal matrix. This may be represented in a very simple 
c 

form due to the normalized orthogonality condition (Equation (4.47» 

(6.36) 

This then requires that the first two matrices in parentheses be equal 

to the inverse modal matrix 

(6.37) 

The initial modal coordinates are then 

T 
= [<I>] [M]{q} t=O 

• T· 
{n}t=O = [<1>] [M]{q}t=O (6.38) 

The resulting initial modal coordinates and velocities corresponding to 

nonzero frequency modes are shown in Table 6.1. The initial Tisserand 

frame variables are simply the weighted mean values of the initial 

angular variables. The initial 63 value is -.17515 E-4, the initial 8
2 
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TABLE 6.1 

INITIAL MODAL COORDINATES AND VELOCITIES 

Torsion In Plane Bending 

Natural Modal Natural Modal 
Frequency (Hz) Coordinate Frequency (Hz) Velocity 

4.880 .47711837 E-5 0.964 -.72829664 E-1 

9.718 -.11208203 E-5 2.713 -.36030891 E-3 

14.471 -.47018966 E-6 5.427 -.15179138 E-3 

19.091 -.24678593 E-6 9.165 .39719278 E-4 

23.527 -.14601846 E-6 14.023 .32309908 E-4 

27.727 -.92882146 E-7 20.138 .78941230 E-5 

31.641 -.62197614 E-7 27.741 .14494639 E-4 

35.218 .43088221 E-7 37.273 -.60349703 E-5 

38.415 .30428964 E-7 49.649 .33760443 E-5 

41.190 -.21900632 E-7 66.720 -.56705903 E-5 

43.511 -.15267688 E-7 92.398 .44775661 E-5 

45,346 .10585609 E-7 136.712 .23686443 E-5 

46.673 -.64728738 E-8 236.365 -.69689122 E-7 

47.477 - • 310177 48 E-8 723.839 -.13253566 E-S 
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value is -.17337 E-3, the remaining Tisserand frame values are initially 

zero. 

An examination of the initial modal coordinates and velocities 

will show that the mode shape represented in Figure 6.4 is dominated 

by the first in-plane bending mode (.964 Hz) and by the Tisserand frame 

variable, 8
3

, representing uniform rotation about axis number three 

(corresponding to the torsional rigid body modes). The first torsional 

mode (4.880 Hz) is also used in order to provide a variation of torsional 

rotation along the length of the beam. The numerical simulation will be 

performed for the Tisserand frame variables and the lowest frequency 

bending and torsion modes. This represents a truncation of the remain-

ing twenty six coordinates. 

The integration was performed by a fourth-order Runge-Kutta 

algorithm with a step size of .01 seconds. The integration time span 

was set equal to 1.06 seconds, the period of the normal mode used for 

the initial conditions. 

The first aspec.t of the results of the numerical integration to be 

examined is the simulation of the natural frequency of the normal mode. 

The times corresponding to the quarter cycle points are shown in Table 

6.2. For the closed form solution, the bending and torsion have equal 

natural frequencies, but for the numerical integration, u
1 

and S3 have 

unequal natural frequencies. The in-plane bending is well behaved and 

has a period of 1.04 seconds. The torsional motion, S3' follows the 

periodic motion less precisely. A comparison of the displacements is 

shown for the quarter cycle points in Figures 6.5 to 6.8. Again, the 

in-plane bending shows very excellent agreement, whiJe the agreement for 
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TABLE 6.2 

COMPARISON OF NATURAL FREQUENCIES 

w t(degrees) Times of Occurrence (seconds) n 

Closed Form Numerical Integration 

Solution ul S3 

0 0.0 0.0 0.0 

90 0.27 0.26 0.27 

180 0.53 0.52 0.50 

270 0.80 0.78 0.72 

360 1.06 1.04 > 1.06 

torsion is not as precise. It is important to note, however, that the 

magnitude of the torsional motion is very small, and the imprecision 

does not result in a great error in the position of each finite element. 

The last aspect of the numerical integration to be examined is the 

motion of the tip of the rotor shaft. As shown in Figure 6.9, the rotor 

shaft follows the correct path as determined from the closed form solu-

tion with only a small imprecision. 

The agreement of the numerical integration results with the closed, 

form solution is good. The deviations which do exist are small and 

may be attributed, to three sources. First there is the difference in 

the mathematical models used; a continuum analysis should agree with a 

finite element analysi~ only in the limit. For a small number of bodies, 

as chosen here, a difference in results will occur. The second source 

is the truncation procedure. The number of coordinates was reduced from 

thirty to four. The truncation alters the angular momentum of the 
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system, which probably causes the shift of the center of the locus of 

the tip of the rotor shaft seen in Figure 6.9. The computational ease 

of integrating the truncated set of finite element equations of motion 

is one of the main advantages of the formulation. In fact, if the 

number of modes is increased, not only do the computations become more 

numerous, but they also experience numerical difficulties arising from 

small differences of large numbers. The third source is a small dif-

ference in the mounting location of the rotor shaft. For the continuum 

analysis, the rotor is mounted at the tip, at L = 10 m. In order to 

collocate the centers of mass of the rotor and the last rigid body, the 

rotor shaft is mounted at L = 9.333 m, in the finite element model. 

For this numerical example, the truncation was performed in an 

ad hoc manner by examining the initial modal coordinates. A more formal 

procedure would necessitate the examination of the modal gyroscopic 

T 
coupling matrix, ¢ G¢. The structure of the coupling matrix would 

indicate which modes were strongly coupled for the case at hand. 

Strongly coupled modes correspond to components of a complex mode shape. 

They must be truncated or incorporated in the system of equations as a 

unit. Partial truncation of strongly coupled modes would introduce 

unnecessary truncation errors. A further point concerns the analysis 

of the sensitivity of vibrations to excitation sources. True natural 

frequencies of the system are to be avoided or somehow compensated for 

by the control system. It is important to realize that the natural 

frequencies present in the equations of motion are not the true system 

natural frequencies when the rotor spin rates are nonzero. For nearly 

constant spin rates, the true natural frequencies correspond to the 
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complex mode shapes. If the spin rates vary greatly, a range of natural 

frequencies would have to be included in the analysis of the effects of 

excitation sources. An example of this behavior was given in the 

previous chapter in Figures 5.3 and 5.4. The relationship between 

complex modes and real modes must then b,e made by identifying the domi-

nant terms when the components of a complex mode are expressed as linear 

combinations of real modes. It is obvious that the truncation procedure 

for the finite element model equations of motion will be complicated for 

true spacecraft systems. The above must certainly be expanded upon by 

further investigation. 

This completes the numerical investigation of the finite element 

equations of motion. The principal conclusion is that it is possible to 

represent the behavior of a complex normal mode by a set of real modes 

in a coupled set of equations of motion. 
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CHAPTER 7 

SUMMARY, CONTRIBUTIONS AND FUTURE WORK 

This chapter will tie together the results of the previous work 

and present conclusions. This dissertation attempted to deal with the 

problems presented by the next generation of spacecraft. We are enter-

ing a new period in the analysis of the effects of spacecraft flexibil-

ity. Until now, the effects of flexibility for real spacecraft systems 

have consisted mainly of those produced by flexible appendages attached 

to central rigid bodies. This research addresses the more general case 

where the structural flexibility is distributed throughout the body. 

The problem is significantly complicated by' the presence in the system 

of momentum exchange controllers. 

The first part of the dissertation consists of a detailed 

investigation of floating reference frames. These frames are defined 

in such a way that they somehow follow the overall motion of the body. 

When deformations are expanded relative to these frames, they are small. 

This makes a first order vibration analysis possible and thereby yields 

a significant advantage. One possible drawback to their use is the 

introduction of the constraint relationships which define their motion. 

An investigation is made of the constraint relationship which defines a 

floating frame by setting to zero the linear and angular momentum 

relative to the frame. This is the Tisserand frame, named after a 
:} 

nineteenth century French astronomer. A special case of this frame is 

found which uses the free-free modes of the unconstrained system, and 

which satisfies the constraint relationship if the rigid body modal 

coordinates are simply set to zero. Since the remaining modal 
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coordinates are independent due to properties of their mode shapes, it 

is called the Mode Shape Constraint. It is possible to expand these 

ideas to cover a deformable body containing spinning rigid rotors by 

defining a Modified Tisserand Constraint. 

The main body of the dissertation deals with the formulation of 

equations of motion for spacecraft with distributed flexibility and 

momentum exchange controllers. We are interested in addressing the 

coupled structure-actuator dynamics. The control variables for these 

systems would be the rotor spin speeds. For the specific application 

studied, the rotor torques must formally be treated as small, first 

order quantities. For engineering systems, it may be possible to relax f j 

this requirement, and the rotor spin speeds will then vary greatly. If 

complex mode shapes, for which the eigenvectors are complex numbers, 

were used in the formal analysis, the resulting equations of motion 

would not include the spin speeds of the rotor as explicit functions. 

Any relaxation of the first-order torque requirement would probably 

require the staging of complex modes for different ranges of spin speeds. 

The technique developed here uses the real modes of the uncon-

strained system where the rotors have been "frozen", that is, they have 

zero spin rates. The resulting derivation requires that the modal 

coordinates are coupled, but it is possible to truncate the system to a 

smaller number of coordinates and still achieve accurate results. 

A main advantage of the final set of equations of motion is that 

the control variables, the rotor spin speeds, appear as explicit terms 

in the equations. The Modified Tisserand Constraint i~ used in the 

formulation in order to provide an example of its properties. The 
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Modified Tisserand frame may also make it easier to relax the constraint 

that rotor torques are small, first order quantities. 

Considerable attention is paid to developing physical insight into 

system behavior and the numericcl verification of results. A continuum 

analysis is used to formulate closed form solutions for a simple example 

system consisting of a uniform beam with a nearly constant speed, 

axysymmetric rotor mounted at the tip. The governing partial differen-

tial equations and boundary conditions are obtaine.d in a unified, sys-

tematic fashion by the application of Hamilton's Principle. Closed 

form solutions are obtained through the use of generalized techniques 

for the separation of variables. For a specific choice of parameters 

and a constant spin speed, system normal modes are c~~cu1ated. The 
: i 

# ! rotor shaft is found to cone with a sinusoidally varying cone angle. 

The numerical verification technique of the finite element equa-

I! tions of motion also uses this simple physical system. After the real 

mode shapes have been calculated for the system with a "frozen" rotor, 

the initial conditions are chosen with the aid of the closed form solu-

:1 tions so that they produce a periodic system normal mode. The truncated 

equations of motion are integrated numerically for one period and the 

results compare well with those predicted by the continuum analysis. 

The research undertaken in the dissertation has contributed to the 

understanding and solution of an engineering problem of current interest. 

Specifically, the contributions of the dissertation are: 

1. Formulated a set of finite element equations of motion suitable 

for the analysis of spacecraft with distributed flexibility and 

mom€'ntum exchange controllers. A significant advantage of this 
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formulation is that the control parameters (rotor spin speeds) I appear explicitly in the equations, and that the coordinates 

can be truncated. 

2. Gained insight into the physical behavior of this class of 

dynamical system by obtaining closed form solutions using a 

continuum analysio. 

3. Expanded the understanding and usage of the floating Tisserand 

reference frame. Made it possible to bring the advantages of 

a rigorous first order vibration analysis to a system experienc-

ing large rotations. 

It seems appropriate that this dissertation should close with an 

enumeration of work still left to be done. It seems to be in the nature 

of things that each answer only necessitates further questions. The 

areas of future research connected with this dissertation are: 

L Control system analysis of the finite element equations of 

motion. This is a rich field for future work and involves 

the assessment of questions of stability, observabi1ity and 

controllability. Specifically, questions of where to put 

sensors and actuators, and how many are needed, will have to 

be answered. Transfer functions should also be developed. 

2. A method of synthetic modes should be developed in order to 

compensate for the error in system angular momentum caused 

by truncation. 

3. The finite element equations of motion could be formally 

extended to cover large rotor torques and large rotations 

of the Tisserand frame. This could aid in assessing the 

possibility of relaxing the first order torque requirement 

{ 
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for the simpler system of equations presented in Chapter 

four. 

4. Further analysis of the truncation procedure. Formal 

procedures need to be developed by expanding on the ideas 

presented here. Sensitivity of the model accuracy to trun-

cation needs to be assessed. 

5. The class of dynamical systems covered could be expanded • 

One extension would invoJ.ve the addition of an articulated 

member to the system. 
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APPENDIX A 

NOMENCLATURE 

Constraint relationship coefficients for 
a Pfaffian constraint 

Body i in the finite element model 

Vector basis fixed in the mass element locally 
attached frame. Commonly at the rotor mounting 
point 

Compatibility matrix 

Constant 

Constant 

Beam cross section normal to centroid 

Beam flexural rigidity 

Forcing matrix 

Spatial variable for in-plane bending 

Vector basis fixed in the system floating frame 
commonly the Tisserand frame 

Bending fundamental frequency 

Torsion fundamental frequency 

Gyroscopic matrix, ske~"T symmetric 

Beam torsional stiffness 

Spatial variable for out-of-p1ane bending 

System angular momentum 

Rotor angular momentum 

Spatial variable for torsion 

System inertia dyadic about system center of mass 
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,!{ef. Eq. 

(2.18) 

(4.7) 

(6.6) 

(5.54) 

(5.42) 

(5.5) 

(5.19) 

(4.37) 

(5.41) 

(5.69) 

(5.69) 

(4.37) 

(5.19) 

(5.35) 

(2.1) 

(4.17) 

(5.41) 

(2.3) 

I 
:l 
1 

1 
J 
J 
1 

1 
j , 



, 
~~ 

Di 

Deformable body inertia dyadic about the system 
center of mass 

Rotor inertia dyadic relative to rotor center 
of mass 

Rotor inertia dyadic about the system center 
of mass 

Ref. Eg. 

(3.32) 

(3.33) 

(3.33) 

Polar mass moment of inertia per unit length length (5.9) 

Rotor symmetric axis principal moment of inertia 

Rotor transverse axis principal moment of inertia 

111,122,133 Momen.ts of inertia of the undeformed system 

L 

{L} 

[M] 

the undeformed system 

System inertia matrix 

Inertia matrix of body i 

Inertia matrix of body to which the rotor is 
attached 

Inertia matrix of the rotor 

Vector basis fixed in inertial reference .system 

Stiffness matrix-symmetric 

Lagrangian of the system 

Beam length 

Lagrange multiplier coefficient matrix 

Distance between beam free end and system 
center of mass 

Distance between rotor mounting point 
and system center of mass 

System mass 

Massmatrix-syrnmetric 
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(5.16) 

(5.16) 

(3.22) 

(3.22) 

(4.34) 

(4.14) 

(4.34 ) 

(4.14) 

(4.36) 

(5.1) 

(5.23) 

(4.37) 

(5.20) 

(5.20) 

(3.14) 

(4.37) 

-

i 

1 



iJJ 

r . ='-~"'r<r"="J"~"~~"-'CC-~---'"'-'-~"~~'-~-'~~'-

:_14 ,_* _"'_':!h.)'-wW. __ .~._"~._. _____ . ___ . "._" __ 

m 

.E. 

{Q} 

{q} 

[R] 

r 

r -c 

i 
r 

S 

T 

u 

u 

i 
u 

Rotor mass 

Mass per unit length for a beam 

Location of a beam mass element in the plane 
normal to the centroid 

Scalar components of £ in the beams locally 
attached coordinate system with the origin 
at the centroid 

Matrix of generalized forces 

Generalized force corresponding to generalized 
coordinate k. 

Matrix of displacement and rotation coordinates 

Discrete coordinate coupling matrix 

Constants 

Location of the beam centroid relative to 
the system center of mass 

Location of the deformable body center of mass 
relative to the system center of mass 

Location of generic mass element relative to 
body i center of mass 

Spatial step function 

vbR 
Components of W in the coordinate 
system of body-R 

Kinetic Energy 

System external torques 

System potential energy 

Deformation of a generic mass element. 
For a beam, the deformation of the centroid. 

Displacement of body i center of mass 
due to deformations 
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Ref Eg. 

(3.33) 

(5.9) 

(5.4) 

(5.6) 

(4.36) 

(4.26) 

(4.35) 

(4.37) 

(5.68) 

(5.4) 

(3.44) 

(4.5) 

(5.30) 

(4.14) 

(2.5) 

(4.30) 

(5.2) 

(2.10) 

(4.5) 
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Components of u
i 

in the floating frame coordinate 
system 

Deformation of the rotor mounting point 

(uR 'UR ,0) 
1 2 

(ul'u2 ,u
3

) 

Components of uR in inertial coordinate system 

Components of u in the floating frame coordinate 
system 

A 

{V} 

w 

(x,y,z) 

e: 

{e} 

{A} 

Vector bases fixed in the rotor frame 

Component of out of plane bending 

Components of £ in the floating frame 
coordinate system 

-i 
Components of.e. in floating frame coordinate 
system 

bif 
Components of W in body i coordinate system 

Constants related to angular velocity 

Modal coordinate coupling matrix 

Small number used in step function 

Diagonal matrix of modal percent of critical 
damping terms 

Matrix of modal coordinates 

Hodal coordinate 

Rigid body modal coordinate 

Tisserand frame variables 

Time variable for in-plane bending 
(later for torsion also) 

Lagrange multiplier term corresponding to 
constraint relationship s. 

Lagrange multiplier matrix 

Time variable for out of plane bending 
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Ref. Eq. 

(4.14) 

(5.11) 

(5.14) 

(2.13) 

(5.30) 

(2.13) 

(4.23) 

(4.14) 

(5.55) 

(4.55) 

(5.31) 

(4.54) 

(4.48) 

(2.14) 

(3.13) 

(4.13) 

(5.41) 

(4.26) 

(4.37) 

(5.35) 
d 

1 
t 
j 
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1; 
il 
!i 
II 
II 
11 

i' ., 
1i 
:( 
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'1 i 

J- i 

\) 

.e. 

.e. 
0 

.e. 

.e. 

E.c 

-i .e. 

rep ] 

1i 

epo 
-i 
iii 

(¢1'¢2'¢3) 

. 
S"2 

! Sl! 

Time variable for torsion 

Location of the generic mass element relative 
to the center of mass 

Time derivative of .e. relative to an inertial 
reference frame 

Time derivative of .e. relative to floating 
reference frame f. 

Location of the generic mass element in the 
undeformed state. Fixed in the floating 
reference frame 

Location for the undeformedcstate of the generic 
mass element of the deformable body relative to 
the deformable body center of mass. Fixed in the 
floating reference frame 

Undeformed location of body i center of mass 
relative to the system center of mass. Fixed 
in the floating reference frame 

Location of the rotor center of mass relative 
to the system center of mass 

Components of .e. in the floating frame coordinate 
system 

Ref. Eg. 

(5.41) 

(2.1) 

(2.1) 

(2.2) 

(2.10) 

(3.30) 

(4.5) 

(3.33) 

(2.7) 

Rectangular modal matrix excluding rigid body modes (4.47) 

Mode shape 

Rigid body mode shape 

Components of 1i in the floating frame coordinate 
system 

Deformational mode shape corresponding to a 
nonzero natural frequency 

Rotation about the beam centroid due to torsion 

Rotation of the rotor about the beam centroid 
due to torsion 

Rotor spin speed 

(2.15) 

(3.7) 

(2.14) 

(3.10) 

(5.7) 

(5.14) 

(5.13) 



bf w 

System natural frequency 

Diagonal angular velocity squared matrix. 
Nonzero frequencies only 

Angular velocity of beam locally attached frame 
relative to inertial frame 

Angular velocity of the beam locally attached 
frame (commonly at the rotor mounting point) 
relative to the system floating frame 

Angular velocity of body i frame relative to 
Tisserand frame 

w
fi 

Angular velocity of the floating frame 
relative to an inertial frame 

w
vb 

Angular velocity of rotor fixed frame 
relative to the beam locally attached 
frame at the mounting point 

vbR 
w Angular velocity of the rotor fixed frame 

relative to the body R frame 

w
vf 

Angular velocity of the rotor frame relative 
to the floating frame 
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Ref. Eg. 

(5.36) 

(4.47) 

(5.12) 

(3.36 ) 

(4.9) 

(2.2) 

(3.36) 

(4.10) 

(3.33) 
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APPENDIX B 

COORDINATE TRANSFORMATIONS 

1-2-3 COORDINATE TRANSFORMATION 

cos6
3 sin6

3 

:] 
cos~2 0 -sin62 1 0 0 

{b} = -sin6 3 cos6 3 0 1 0 0 cos6 l Sine1 {if 
0 0 sin6 2 0 cos6 2 0 -sin61 cose1 

cos6 2cose 3 cos61sine 3 sine 1sine 3 

+sine1sine 2cos6 3 -case 1 sine 2cose 3 

A 

{b} -cos6 2sin6
3 cos61cose 3 sin61cose 3 {i} 

-sin6 1 sine2sin6 3 +cose 1sin6 2sine
3 

sin62 

'" + (-~lcos62sin63 + 82cos8 3) l2 

+ (8 1sin6 2 + 63) l3 

= (61 + 83sin6 2) i1 

+ (8 2cos8 1 - 8
3
sin81cos8 2) 12 

First Order Approximation 

r 1 8
3 

-8 
2 

A '" ([E]- [8]) {i} {b} = 
l-e3 1 8

1 
{i} 

8
2 

-8 1 1 
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W
bi = {b}T 

. {b}T{e} 8 2 
= 

63 

Second Order Approximatio~ of Angular Velocity 

· 8
1 

+ 8
3

8 2 . · 8
2

- 8381 . · 8
3 

+ 8
2

8
1 

0 8
3 

-8 
3 

0 

8
2 

0 

. 
0 0 82 . 
0 0 -8 

1 . 
0 81 0 

BEAM LOCALLY ATTACHED TO INERTIAL COORDINATE TRANSFORMATION 

'" The ~3 axis is placed tangent to the centroid at each point. This 

accomplishes rotations 1 and 2. Rotation three is the 'torsional rota-

" tion, ~, about the centroid (now ~3). Let T be the unit vector tangent 

to the centroid, located at (ul ,u2,z) 
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j 

A 

Since! = b 3, the direction cosines of £3 must equal the components 

of T. 

C
3l = sine2 -uj 1 + (up2 + (ui)2 

C32 =-sinelcos82 = Ui/Vl+ (ui)2 + (ui)2 

C33 = cos8lcos8 2 = 1 / Vl+ (up2 + (ui)2 

The direction cosines may then be defined in terms of 

sinel = ui/Vl+ (up2 

cose
l = 1/ V1+ (uz)2 

sine 2 = ui / f + (uil2 + (ui)2 

cose 2 = 1 + (U21
2/ V1 + (uil2 + (uz)2 

The derivatives of el and e2 present in the angular velocity expression 

may be calculated by taking the derivatives sinel and 8ine
2

• The 

binomial theorem may then be used in order to evaluate the second-order 

approximation of the angular velocity. 

_til ~. I 
2 u

l 
wbi = {b}T • I + ~" I u

l u2 

~ -Ul~I 
1 2 

0 ~ 0 _~I 
2 

= {b}T -~ 0 0 • I 
u

l . 
\ill 0 0 ~ 1 
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APPENDIX C 

VECTOR-DYADIC RELATIONSHIPS 

Dot and Cross Products 

u • v = - -
u x v = - -

'" T {b} [u]{v} 

where u = {~)T{U} 

v = {.f)T {v} 

0 -u
3 

[u] = u3 0 

-u2 u1 

[u]{v} = - [v]{u} 

o x ~ = {b}T[I)[u]{b} 

where 0 = tb}T[I]{b} 

III 112 

[I] = 121 122 

131 132 

.~ BL~ Nor FILIt: .dJ . 

u2 

-u1 

0 

113 

I 23 

133 
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Reference Point Transfer Theorem for an Inertia Dyadic 

where DO Inertia dyadic about point o. 

DC Inertia dyadic about body center of mass. 

1lJ Unit dyadic. 

r Vector from 0 to c. 
-0 

M Mass of the body 

1 DO 1 DC 1 (w x r )] -we .• W = - w . . ~ + 2' M[ (w x Eo) . 2- - 2- - -0 

Do . w = DC . w+ M r x (W x r ) 
--0 -0 

I 148 

J 



. , 
~ I 

, I 

,1 
; , 

r~-'----'~ -·"'l~.t ~ 

"'" ~~~~..,,, ¥-" ~~~ --... .>.::.--~ 

APPENDIX D 

HYBRID COORDINATE I-liTHOD USING ASSUMED 

MODE SHAPES FOR ELASTIC CONTINUA 

ABSTRACT: The hybrid coprdinate method provides equations of motion of 

minimum dimension for a spacecraft with flexible appendages'. Instead of 

the usual finite element approach, in which mode shapes are calculated frem 

equations of vibration of the finite element assembly, this chapter provides 
• 

an alternative formulation using assumed mode shapes. This proves useful 

for a class of simply modeled appendag~s for which mode shapes are provided 

by an outside agency, or are otherwise known. The results are shown to be 

compatible with the finite element formulation, as previously described. 
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I. INTRODUCTION 

The hybrid-coordinate method provide's equations of motion of a space-

craft with elastic (flexible) appendages. The appendages are modeled as an 

interconnected set of s,mall rigid bodies interconnected by massless or mass-

ive elastic bodies (finite ,~lements). From the Newton-Euler approach, the 

equat.ions of motion for each finite element and the rigid body portion of the 

spacecraft are formulated. rhe introduction of an appropriate coordinate 

transformation allows the finite element equations to be represented as 

decoupl.ed vibration equations, which involve mode shapes and modal coordinates. 

Since the vibration equations have been decoupled from each other, significant 

truncation of the higher order mode shapes can be accomplished. This leads 

'to a set of equations where rotation of the rigid body portion of the space-

craft is coupled to the vibration of the flexible appendages. These equations 

are of great pra.cttcal use because the truncation procedure has significantly 

reduced the number of degrees of freedom of the system without substantially 

sacrificing the fidelity of the results. 

The purpose of this chapter is to provide an alternative formulation 

for the hybrid coordinate method using assumed mode shapes. This approach 

will prove useful for simply modeled appendages. For these the mode shapes 

can be determined from a continuum analysis using partial differential equa-

tion methods. ThE truncation procedure is ~Q.complished a t the 'Outset by 

eliminating the higher order modes of vibration. The equations of motil::>n 

are formulated using a Lagrangian approach and the coordinate transformation 

is accor0r>lished using the assumed mode shapes. The resulting equations of 

motion are then seen to be compatible with those arising from the finite 

element method. 
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where 

A ,0' 
~1 

Figure 1. System Diagram. 

0: Center of mass of undeformed system (body fixed) 
t 

o Position of 0 at rest (inertially fixed) 

B Center of mass of rigid body 

A Center of mass of undeformed appendage 

vI(: Total System mass 

M Appendage mass 

m Appendage mass/length 

Q ConnecH{rn poi~t of appendage 
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II. MODEL 

The following deri·;ation of equations of motion uses a model comprised 

of a central rigid body and a flexible cantilevered beam. Extensions to 

several appendages of arbitrary configurations may be made from the result's 

of this simp~e wodel. The undeformed position of the appendage is taken to be 

constant relative to the rigid body. The transformation between the two is 

included in the derivation to facilitate the extension of the equations to 

cover a driven appendage. The angular rotations are assumed to be small as 

are the translational displacements. A diagram of the model is shown in Fig-

ure 1. To summarize, the assilluptions used in the following derivation are: 

• rigid body with cantilevered beam, 

• beam rest position constant relative to base, 

• small translations and rotations. 

No orthogonality requirements have been placed on the assumed mode 

shapes. The vibration equations are therefore coupled. Further coordinate 

transformations may be employed to decouple the vibration equations or to 

achieve vehicle normal modes, but the truncation procedure does not require 

this as it does with the finite element procedure. 

The vector bases employed in the derivation are: 

{!} Inertially fixed basis 

{b} Basis fixed in the rigid body 

{a} Basis fixed in appendage prior to deformation 

where 

q~} c. [8]{!} 
,..., 

"-I [0 -83 
[6] "" (E - e) for small rotations e = 6a 

-8~ 81 

tal - [c]{bJ 

[c] 0:: constant for an undriven appendage. 
153 

-8 82] 
0

1 

, 
I 

J 
;;..IiiIIIiI 
~ 



fi 

I' 

•.•••• --••••• --:~ ......... '_'':-'.-: __ '''_'''~C'~'' __ ',"_.~._~., -~ .~,- ... _~_ .... .,.r_,"~ .•. , ,~. "·1":~:·':'---&·~--:-·· ""'"'"''':'''''~''''~-'''''''~~'---''----:';-::''''--j'''--'''-''~'''.'-" ,._~~_",, __ Y_~_.,r '~".'f~;-,,-,--~~-·~t'n.;: .,.AM" " 

, f_. 

For the undeformed system,'the location of the center of mass is 

defined by 

I r:. dm a 0 
SYS 

where e is the generic position vector from the center of mass to the dif-

ferential mass element. Evaluating this expression leads to 

where the quantit:i.es are shown in Figure 1 with ~ being the location of the 

rigid body center of mass and !A the appendage center of mass. 

The dyadic of the undeformed system is defined by 

III. THE LAGRANGIAN OF THE SYSTEM 
• 

The kinetic energy of the system is 

T = 1-.fv · V dm + lfv · V dm 2 - - 2-
SYS RB APP 

where V is the inertial velocity of a generic mass element. The kinetic 

energy for the rigid body yields 

1-. Iv 2· - • w 
RB 

where df is the system mass, M .theappendage mass, andB is the center of mass 

of the rigid body with 
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~ = Z L 

• 
!!B ... Z - W x L. 

Expanding this expression and switching the reference point of the inertia 

dyadic to the system mass center gives 

if V • 
RB 

1 ) •• 1 0 ( )[. ] Y dm = '2 ( vII -M ~. ~+ 2' W • 0 · W - vlt -M ~. (wx9 
RB 

The kinetic energy of the appendage is 

~f 1 J. . 
V • Vdm=- R • R dm - 2-m -m 

where APP 

R' =Z+R+r+ u -m 
. . • 0 0 

+ ~ x (!!+E) . R = Z + u +R+ r -m 

Vector differentiation with respect to the rotating reference frame is denoted 

by the "circle" above the vector. o 0 
Here ~ and ! are zero since they are fixed 

in the frame. The "dot" denotes differentiation relative to an inertial refer-

ence frame. Expanding the expression and making use of the dyadic of the unde­

formed appendage about the system mass center' (0 0 
)Yields. 

AP-u 

1:. Iv · V dm = .!. MZ • Z + .!. W • 0 0 • w + .!. fu . udm 2 - - 2 - - 2 - AP-u - 2 -
APP 

+ Z • f U dm + Z • w x [M(~ + EA)J 
APP 

+ f [~ · w x (~+E) J dm 

APP 

Combining the terms for kinetic energy and eliminating terms produces 

155 



, 
,I 

'I 

I 

T 1·· 1 
SYS ... "2.A(z.z +2 w · 0*· w 

If· . f' + 2 ~. ~ elm + ~. ~ dm 

APP APP 

+ 'E·~x J ~ dm + IS • J (EX~) dm. 

APP API? 

The inertia dyadic of the undeformed system about the system center of mass is 

0*. . 
Th~ center of mass expression eliminated the term in the kinetic energy 

containing Z and w. 

From beam theory, the, strain energy of the appendage is 

1 f' (a2u) (a2u) , u = "2 EI -2' · 2 dr 
APP ar ,I ar 

The Lagrangian for the system is then 

!:£ == .!. vf( i·i; + ! w 
2 - - 2 u·u dm 

+ i ·f u dm + w· R xf U dm 

APP APP 

APP . APP 
ErG)) · (::i) dr. 

The formation of the above has assumed that the undeformed appendage is 

fixed relative to the base (~Bi = ~Ai). The next step to be taken is to 

assume small angle rotations and represent the Lagrangian in matrix form. The 

following matrices are used: 

(small rotations) 
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T 
u "" {!} {u} 

0*- {E}T r* {E} 

Rt:: {E}T {R} 
, 

r = {E}T {r} 

[0 -R3 R2] ~ =[:3 
-.r3 r2] ,.., 

R" R3 0 -R1 0 r 1 

-R2 Rl 0 r 1 0 
-r2 

,.., 
[8] = [E - e] 

Retaining second order terms in the Lagrangian produces 

!:£:= ~.A({i}T {z} + ~ {(HT r* {e~ 

+ ~ f {1i}T {ll} dm + {Z}[C] f {ll} dm 

APP APP 

+ {e}T C R f {ll} dm + {e}T c f ~ {ti} dm 
. ~ , APP APP 

t 
-~f EI {u"}T {u"} dr. 

APP 
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Distributed coordinates are introduced by the coordinate transformation 

n 
!!(r. t) = 1: ~i(r) ni (t:) 

i=1 

where n is the number of modes used to represent the displacement. In matrix 

form. the transformation is 

n 

fu} = I: {<t>i} l1i 
i=l 

••• : <t> {n} I 11] 

I 

= [<t>] {11} 

where [<t>] is a 3 x n matrix with each column corresponding to a mode shape 

and {n} contains n modal coordinates. 

This coordinate transformation yields the Lagrangian , 

where 

Xl =/ [<t>] dm 

APP 

X2 =/ [<p]T [<P] dm 

APP 

X3 =/ f'J 

[<t>] dm r 

APP 

=/ EI [<t>"]T 
I, 

X4 [<t> ] dr 

APP 
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The matrices Xl and X3 are of dimension 3 x n while the matrices X2 and X4 

are symmetric .and of dimension nXn. The Lagrangian depends on n+6 generalized 

coordinates. Six coordinates describe the translation and rotation of the 

undeformeq system and n modal coordinates describe the displacement from rest 

of the flexible appendage relative to the rigid base. 

rv. EQUATIONS OF MOTION 

The equations of motion for the syste~ may now be derived from the 

Lagrangian in the traditioI'lal manner. The resulting n+6 equations may be 

represented in matrix form as 

vii {z} + Xl nn = 0 

r* {s} + '(i x
l
+x

3
){n} = {T} 

X2 {li} + }t4 in} = -xr ei} + cxr R-x~)Hn , 
where {T} is the externally applied torque. The first matrix equation may be 

used to eliminate the translation from the vibration equations. This pro-

duces n + 3 equations of the form 

r* {~} + (i Xl + x3 ){n} = {T} 

(X2 ~vI; xr xl?{n} + X4 in} = (xr R x~) {§} 

The matrices that provide coupling between the rotation and vibration 

in each equation may be seen to be transposes of each other. The equations 

can be written as 

r* {~} - 8T {~} ~ {T} 

(X2 -.1 xr Xl) iii} +x4 {n} = 8{e} 

where 
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V. COMPATIBILITY WITH FINITE 

ELEMENT EQUATIONS OF MOTION 

The equations of motion derived from the continuum ana:,y.sis are similar 

in structure to those derived from the finite element analysis (Ref. 1). The 

differences between the two appear in the assumptions made in the continuum 

analysis: 

• No orthogonality properties 

'. Rotary inertia effect ignored. 

(No differential rotation of appendage mass 

elements due to deformation) 

Orthogona+ity properties can be applied to the continuum analysis 

vibration equations by a suitable coordinate transfonnation. The orthog~nality 

properties are not needed to permit truncation as is the case in the finite 

element analysis. 

The equations of motion from a finite element analysis are shown by 

equations (287) to (289) of Reference 1. 

*.. '1fT:: T 
I e.- 0 n = 

~+ 2~a~ + cr2Tj = (5 e 
8 = -q? M(EoE EEO R - ~ EEO) 

The overbar indicates truncation. If the damping is eliminated and 

the orthogonality condition relaxed (after truncation), the equations become 

where 

* T .• 
r e (5 n=T 
<pT M' <p ~ + <pT K' cP n = '6 e 

M' :: M ( E - LEO LEO T MI.J{) 
, 

K = Stiffnes- matrix. 
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-Normally, the coordinate tl:ansformation <P includes mode shapes with 

translation and rotation of the finite elements. To agree with the continuum 

analysis, no rotations of the finite elements will be allowed. The coordinate 

transformation ¢ will then be a 6n x N matrix represented by 

where 

o 

With the above limitations, the matrix multiplication can be performed 

in the finite element equations and the terms may be compared with those 

from the continuum analysis. 

For the augmented mass matrix, the finite ,element analysis results in 

= 

n 'n 

+ I: ~ 
R.=l k=l 

This is compatible with the result from the'continuum analysis 
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For the 0 matrix, the finite element analysis results in 

This is compatible with the result from the continuum analysis 

Thus, if the number of finite elements were increased without limit, the 

finite element equations would be ~dentical to the continuum analysis 

equations. 

VI. CONCLUSION 

With the foregoing results it becomes possible to accomplish a hybrid 

coordinate dynamic analysis for a system with appendages defined only in 

terms of modal data based on a continuum analysis. 
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