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" torques must formally be small, although in engineering appiications it
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ABSTRACT ;

Significant problems are presented in the vibration and rotation
analysis of spaceéraft with distributed structural flexibility and
momentum exchange controllers. These systems exhibit gyroscopic cou-
‘iiing which depends on the rotor speed and orientation, which must é
remain explicit in the analysis aé control variables. ' §

An investigation is made into floating reference frames in order §
to allow first order vibration analysis in the presence of large system
rotations. When the deformations of an elastic continuum are expanded
in terms of the free-free modes of an unconstrained system, the rigid
body modes are found to be fixed relative to the Tisserand frame, with 7 ;
respect to which the relative momentum is zero. The proof presented
for this is based on the orthogonality condition for modes with distinct
natural frequencies. This result also guarantees the independence of
coordinates for all modes with nonzero natural frequencies. A Modified
Tisserand Constraint is introduced ih order to define é floating refe;—
ence frame with similar properties for‘an elastic body which contains a
splnning rotor. -

Finite element equations of motion are derived for aycompletely
flexible spacecraft with momentum'exchange controllers, using a Modified
‘Tiaserand Fréme. The deformable systemé covered in this applicatién

are assumed to undergo only small rotations, and therefore the rotor
may be possible to relax this constraint. A modzl analysis is performed ‘ v E

for the Systém and the resulting set of equations is reduced in number

by a truncation procedure for more efficient system simulation.
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In order to gain insight into system behavior, a continuum
analysis is performed for a simple physical system consisting of a
uniform beam and an axisymmetric rotor, Equations are derived using
Hamilton's principle and closed form solutions are obtained using

generalized methods of separation of variables.’

Numerical examples are presented for both the finite element and

continuum equations of motion.
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CHAPTER 1
INTRODUCTION

1.1 Statement of Problem

Modern spacecraft design relies on the successful dynamic analysis
of the system in order to provide attitude stabilization, This 1is true
fof both active and passive attitude control systems. Present systems
emphasize active control techniques with momentum exchange controllers
being the most popular because of their greater accuracy potential.

Momentum exchange controllers fall into three general categories:
dual spin, momentum (or reaction) wheel and control moment gyro systems.
The dual spin spacecraft typically has a large rotor spinning at a
nearly constant speed and a despun platform. For communications satel-
lites, the antennas are mounted on the despun platform, which is aimed
at a point on the earth., The platform orientation about one akis is

controlled by changes in the rotor speed, and orientation about the

other two axes is passively controlled by a nutation damper. An example

of this type of system is the Intelsat IV spacecraft. The second type
is the-momentum wheel or reaction wheel system. The reaction wheel has
a nominal spin rate near zero. There may be three or more rotors, and

control about each axis is accomplished actively by controlling rotor

speeds. This is often referred to as a tYpe of a three axis stabilizad'

system. An example of this system is the Orbiting Astronomical Obser-
vatory (0AO). The third type of system uses the control moment gyro
(CMG). This device consists of a gimballed constant speed rotor.

Torques are applied to the vehicle by’driVing the gimbals and changing

—~———
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the orientation of thé rotor. An example of a spacecraft with this
system is SKYLAB. A mixture of the above and active control using gas
jets has also been incorporated in spacecraft design.

To analyze these systems, many powerful’techniques and formulations
are available. 1If the system is treated as a group of interconnected
rigid bodies, Newton's laws may be used to solve for the equations of
motion. Advanced formulations exist for generél classes of configura-
tions which use nested body techniques fo eliminate the constraint
forces. An example of this is the Hooker-Margulies-Hooker system of
equations. If the bodies are not rigid, flexibility of terminal append-
ages may also be analyzed by using the "hybrid coordinate' method. This
approach utilizes a combination of discrete and modal coordinates. The
underlying finite elemeht formulation allows truncation of the number of
degrees of freedom after a modal analysis and therefore has the very
great advantage of computational ease. Appendix D contains a simpli-
fied example of this approach.

Ongoing developments are causing the figid body model of a space-
craft to be less acceptable. The effeéts of distributed structural
flexibility need to be included to reduce spacecraft weights and to meet
ever more~Stringeﬁt accuracy requirements. The increase in size of
spacecraft due to the advent of the Space Shuttle will also make rigid
bod& models less precise. This research was motivated'by>thé afﬁitude
control problems associated with the proposed Large Space Telescope
: (LSI). |
o The incorpofation of’distributed‘sttuctural flexibility for the

entire vehicle introduces great complexity tb the dynamic analysis. The
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linearized equations of motion for a finite element model with momentum
exchange controllers contain time varying coefficients. Thus, an eigen-
value analysis to find vehicle normal modes is not possible, If the
spin speeds are constant, a modal analysis results in complex modes;
that is, the eigenvectors are represented by complex numbers. If a
continuum model is adopted, the resulting partial differential eauations
are coupled and have time varying boundary conditions.

1.2 Motivation and Objectives

The motivation for this study was a desire to address the
difficulties posed by spacecraft of the next level of complexity. A
review af the present techniques does not indicate an appropriate
course of action for the dynamic analysis of spacecraft withkboth dis-
tributed flexibility and mamentum exchange controllers, A finite ele~
ment model must be adopted to allow for arbitrary mass and stiffness
properties.. A modal analysis will allow the introduction of distributed
coordinates and the truncation to a smaller number of coordinates. A
modal analysis can be accomplished only for nearly constant speeds, and
tﬁen the complex moae shapes depend on thé chosen spin speed and rotor
orientation. A method of staging mode‘shapes for different ranges af
spin speeds or orientations would have to be devised to handle a general
system. This is noﬁ ah‘attractiva method.

The hybrid coordinate method ia frustrated by theklackkof a
cenﬁralkrigid body. For this method, the’modal‘coordinatea are coupled
to eacﬁ other through the motion of tha céntfal'rigid body., If a rigid
body: is deaignatéd from among ﬁhe rigid bodies in the finite element

model, perhaps the body to which the rotor is mounted, then the mass

e e R



properties of the body will influence the determination of the modal
coordinates, This casts the validity of the truncation procedure into
doubt,

The principal objectives of this research on the vibration of

spacecraft with distributed flexibility and momentum exchange control-

lers are:

: 1. Provide the advantage of a first order vibration analysis
. by adopting a floating reference frame which somehow ''moves"
| with the flexible body.

2. Develop equations of motion for use in spacecraft dynamics
and control analysis.

3. Gain insight into system behavior through analysis of simple 5
physical systens.

gt J

1.3 Scope of the Dissertation

i The bedy of the work pursued in the dissertation 1s broken into
o two main parts. The first part consists of the introduction and
| analysis of various floating reference frames. The second part consists

-of the formulation of equations of motion for the class of spacecraft

characterized by distributed flexibility and momentum exchange contrpl—~
lers; using both finite element and continuum models. Mumerical
ﬂ ‘ - examples are developed for both classes of models, using eigenvalue J SR 5

anélysis and numerical integration for the finite element model and

closed‘form solutions for the continuum model. The two parts of the
~ H . !

_dissertation are interrelated by the use of a floating reference frame
IR in the finite element analysis of a system with momentum exchange con~

trollers. In order to aid in ﬁnderstanding the organiZation of the

dissertation; a brief summary of each chapter is presented.




Chapter one introduces the problem area and presents the
motivation for the studies undertaken. The difficult aspects of the
problem are identified and the existing solution techniques are
reviewed. The topics covered by the dissertation are discussed.

Chapter two introduces the concept of a floating reference frame.
For an elastic body free to rotate, these frames are introduced in
order to ensure the validity of a first order vibration analysis. A4
review is made of several distinct ways of defining a floating reference
frame. They all provide for frame motion which somehow "'follows" the
overall body. 1In order to demonstrate how this is accomplished, a very
simple example problem is worked out to illustrate the motion of
specific frames when the body is deformed. The chapter concludes with
a brief historical perspective of the use of floating frames to solve
problems in the physical sciences.

Chapter three deals with a specific floating frame, the Tisserand
frame, which is defined in terms of angular momentum relative to the
frame. An examination of the constraint relationship reveals a rather
elegant solution form which involves the free-free modes of an uncon-

strained system. This is called the Mode Shape Constraint. An example

is worked out in order to illustrate the application of the Mode Shape

Constraint to a simple problem. The last section of the chapter expands

the concept of the Tisserand frame to systems containing spinning rigid.
fotors. This is déne with ‘the introduction of the Modified Tisserand
Constraint.

Chapter four begihs the éecond main . part of the dissertation,

The focus ncow turns to the derivation of equations of motion for systems

o eri o gl
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containing a spinning rigid rotor. System behavior is limited by the
requirement that variations in rotor angular momentum be first order.
The deformable body is also assumed to undergo only small, first order
;otations. This chapter uses a Finite Element Modelyand applies the
Modified Tisserand Constraint. A modal analysis leads to a system of
equationé which are still coupled, but which may be truncated to a
smaller number of coordinates.

Chapter five defines a very simple physical system consisting of
a uniform beam and axisymmetric rotor for analysis as a continuum.
Hamiltoh's»Principle is used to derive the governing partial differen-
tial equations with boundary conditions. Generalized sgparation of
variables teéhniques are’used in order to solve for the system natural
frequencies and system normal modes. Numerical solutions afe provided
for a specific choice of parameters in order to illustrate the system
hehavior.

Chapter six presents numericai results for the Finite Element
Model equations of motion. The strategy is quite simple. The simple
physicai system introduced in Chapter five 1s modeled by finite elements
and initial cbnditions are chosen for a vehicle normal mode as deter-
ﬁinedkby the continuum analysis. = Numerical integraﬁion of the Finite
Element Modei equations of motion should then demonstrate periodic

behavior corresponding to the system natural freduency. The method of

'truncaticé to a smaller number of modal coordinates is investigated.

. Chapter seven summarizes the dissertation problem, techniques and
contributions. The principal conclusions of the research are assembled

and areas of future work are outlined.
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CHAPTER 2
FLOATING REFERENCE FRAMES

2.1 Chapter Summary

The problem of specifying a set of axes for a deformable body is
a difficult one. The use of a moving or "floating" set of axes is
introduced here. The choice of a floating reference system is not
unique and several alternative methods are described. In particular,
there are the locally attached frame, the principal axis frame, the
Tisserand and Buckens frames, and the rigid body mode frame, The
advantages of each different type of floafing frame are discussed and
a simple example is used to illustrate the motion of the different
floating frames. The historical origin of the principal axis and
Tisserand reference frames is briefly discussed to demonstrate their
application to past problems in the physical sciencesf

2,2 Floating Frames for Defofmable Bodies

For the problems discussed here, we are concerped with small
deformations of elasfic bodies. ’Specifically, we will define a deform-
able body to be a body for which the relative displacements are so
small that only firét order'terms need be retained in the analysié.

The body is allowed overall motion which is completely unrestricted;
that 1s, the body has completekfréedom of motion in respohding to
impressed momenté and forces. |

For such a body, it is difficult to specify a set of axes from
whichbtb measure deformatioﬁs. If an inertially fixed set of axes is
chqsén, the disPIaceﬁents relative to these axes may grow large if the

body undergoes any appreciable rotation due to anVexternally applied
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moment. Then the dynamic analysis of the system using these

displacements wouldﬁrequirevmqregthan,aufirst order analysis. In order

to simplify 'the aﬁéiysis; taéjidéa bresenté iﬁself to use a frame that
somehow moves wiﬁh the béd&; ;If’a frame moves with‘the body, or
"floats'", in the propefwﬁay, then the displacements measured relative
to ghié fldéting frame will be small. Thetdynamié analysis of the‘lg
'system‘may then'be pursued using a first order analysis. It is thigh
property, thé‘use of a first order analysis, that makes a floating‘
fréme attractive.

There are five types of floating frames that will be treated

here; they are:

Locally attached frame
? Principal axis frame
-
e  Tisserand frame

®  Buckens frame

e Rigid body mode frame.
Before thesé different types of frames are‘discussed in detail, several
general characteristics of floating frames will bg;discussed. A
déformable'body ekperiences‘rélatiéémgisplacemeﬁt and therefore the
systém inertia quantitieé do ﬁot‘témain constanf. In the fofﬁulation
6f‘equations of motion, the system angular momentum and kinetic enérgy
- are a function of the relativé,displacements‘and possess a mdre com-
pliéated stfuctufe than.for rigidkbodies. The system anguiaf momentum

b ' : :
for a deformable body about its center of mass is written as:

H= J pxpdn o | ‘ )

s

R

B e



where

P = vector from the center of mass to a generic mass element
_é = igt p = time derivative of p relative to inertial space
dm = generic mass element

D = integration over the deformable body

H = angular momeatum of the system about the center of mass.

If a floatiﬁg frame, f, is introduced with its origin at the center of

mass, then
£1

p=B+utxp (2.2)
where

[} £ d .

L = dcl= time derivative of p relative to floating frame f.

wfi = angular velocity of frame f relative to inertial space.,

Using this relationsﬁip to evaluate the angular momentum yields

B= ] w4+ fox5am | (2.3)
A |
since ‘ . B
fﬁ*@“xmdm=ﬂ‘fi | (2.4)
D o ‘ '

. where [j is the inertia dyadic for the mass center. The second quan~
tity»in Equation (2.3) is the angular momentum relative to the floating
frame. This is teferred to as the internal angular momentum. The

first term of Equation (2.3) is etructurally identical to the rigid
body angular momentum,~but eince the body is deformable, the inertia
‘dyadic 1s not constant. It should be noted that for small (first order)
displacements relative to the floating frame, the variations in the

inertia dyadic will be firstfand higher~order‘terms.



The kinetic energy of a body with an inertially fixed center of

- mass may be written

vl fspm. o 2.5)

Using the relationship for the time derivative in Equation (2}2) allows

the kinetic energy to be rewritten using a floating frame as

€

_x
T=3
where
% wft L[] - w™ - %_— f(mfi x p)» (@'t x p) am.
= = - - = -
B | : ; : ;

.The first térm of this equation has‘ghe same strucéurél form as the
kinetic energy of a rigid body. Again, #his quantity differs from the
rigid body quantity because the ine;tia dyédiévis not constant. The
second term includes tﬁe same ihterhal angular momentum expression
foﬁnd e;rlier’in;Equation (2.3). The last term could be called the
iﬁternél kiﬁet£Caenergy,*sincé it ﬁepresénts kiqetig energy contributéd

by the dot product pf“velocities relative to the frame.

: 2.3 Description of Specific FTloating Frames

| This next section wil} now dééi with thé specific definitions fdr
the most commonly ayailable;fioatiﬁg frames. The first type“tO’be
discussed is‘thé i;cal1y‘attached frame. For this frame, a Sub-body
6erass‘elemeﬁt ié identified in the deformable body, and a'framé is
fdefiﬁéd’that follows fhe motion of»this:sﬁb—body ot mass element. An
exaﬁpleiof this type ofkfrape mayVva;sgociated_with a spacecraft with
a rigid central body aﬁdva flexible'appendage, A reference frame méy

" be attached to thé:cenfral rigid body.b Also, 1if: the appendage is

10
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driven, that is, its orientation relative'to the central rigid body
varies as a specific function of time in addition to small displace-
ments, a floating reference frame may be attached to a mass element in
the appendage. This would most commonly be a set of axes fixed in the
appendage at Ehe mounting point., The angular momentum and kinetic
energy for a locally attached frame would be given by equations (2.3)
and (2.6) respectively. As a general rule, no simplification of these
expressions could be guaranteed for the locally attached reference
frame,

The next type of floating reference, the priﬁcipal axis frame,
does offer some simplification of the expressions for angular momentum
and kinetic energy. For this frame, tﬁe otigin of the axes would be
the center of mass and the orientation of the axes would be such that
the inertia matrix of the deformable body would be diagonal. This
defines the location of the principal axes of inertia. The components
of a diagonal inertia matrix are called tﬁe moments of inertia for
principal axes and the products of inertia are all zero. Because the
inerﬁia matrix contains only three componenté, the calculations for
angular‘momentum and kinetic energy are simplified. However, this is
done at the expense of introducing three constraint‘relationships that
“require the products of inertia all td be zero.k The constraint rela-

tionships are

o

I12=121="‘{"1"2’d’“=0
I13=I31~=“,/1)“’1“°3‘1“‘=0
123=I32=—>‘/1; py Py dm =0 B - en

11



where (pl, Pos p3) are the components of p in the floating
frame R
For the Tisserand frame, the exprossions for angular momentum
and kinetic'eoo;éy'are struotofélly simplifiéd by moving the,axeg_so
as to set»the’internal angular momgnoum always to zego.i The requ&re-
ment is also made that the internal linear momeotum,be zero."This is
accomplished by the simple requirement that the origin of the frame
be located at the center of mass.. In order to set the internal angular
momentuméto zéro; a constraint relationship is introduced:
f_QX§dm=o | | (2.8)
D : ,
Referring bacﬁ to Equation (2.3); the angularvmomentum is thus
E=[]u | (2.9)
This is structufally identical to the rigid body form, although as
noted, the inertia matrix is not a constant for a deformable bady as it
would be for a rigid body relative to axes fixed in that body. Going
back’to the oonstraint relationship, let us evaluate this in greater
detail. First we introduce o new expression for the position relative
to’the center of mass
p=Ff+u N (2.10)
where_é is the positionkog a generic mass element in the undeformed
stafe. rThis vector,.é, is fixed’in the floaﬁing referenoe ffame and
méy be thought of as the station location of a mass elemont. The
vector_gbrepresents the deformation of a generic mass element. For a

deformable,body, this will be a first order Quantity. The derivative

12
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of the position of a generic mass element relative to the center of

mass 1is then written as

o
o

o 2

since §_ is fixed in the frame and has no derivative relative to the

frame. The cohstraint relationship is then

f_p_x_"gdm=o. (2.12)
D

This is equivalent to the three scalar equations

| ﬁs(y + u2) - 1'12(2 + u3) dm =

i =0
D
. - =
'4‘ ul(z + u3) u3(x + ul) dm = 0
fﬁz(x + ul) - ﬁl(y + u2) dm = 0 (2.13)
D

where (%, y, z) are components of é in the floating frame. The next
step in our examination of the cons'traint relationshipy is to introduce
a separation of variables for the deformations. Then the d’eformations’
'may be written as

oo ;
1§1 97 @ n, ()

c‘
=
[l

304
2= 2 650 npe)

u =
i=1
ug = 21 5@ ny (e | (2.14)
= )

where the variables (¢i, (b;_', ¢);) are the components of the mode shape gl

and depend only on the spatial variables. ' The variable ”1 is the modal

13




coordinate and depends on the time. This separation of variables may

be written in vector form as
oo :
u = Z_dlni o (2.15)
i=] ,
Using the separation of variables in the constraint relationshipryields

n f z
21 [(é + f: Qini) X gj]dm ﬁj = 0 (2.16)
i= '

i=1
This is a vector constraint of the Pfaffian form

n
jZ=:l &M =0 (2.17)

where -

B A n 1 il .
a;(m) = o+ 2 ¢} x ¢ an. (2.18)
i=1

If the constraint relationship (Equation (2.16)) possesses an integral,
then the constraintkis holonomic. It is important to note that if a
Tisserand constraint is used in a Lagrangian formulation, then the
equations of motion must inélude Lagrange multipliers for the generél
case. = The Tisserand frame is a general concept and may be appliedvto'a
system where the deformations afe large.  In the case of a deformable
body as previously defined, thé relative displacements are small and

may be treated analytically as first order quantities. The analysis

'may then proceed using first order quantities and may ignore second and

higher order terms. It is proceeding in this direction which leads us
to introduce the Buckené,frame. The Buckens constraint relationship

is simply a first order‘Tisserénd constraint. Tt may be written as

14



X

o1
Ieo

dm =20, , : ; (2.19)

{

Again the origin of the system is placed at the center of mass. The
Buckens constraint is identical to the Tisserand constraint if this

relationship\holds

fgxidm=0 C(2.20)
D ;

The justification for the above is that second order quantities may be
’ignored for a defcrmable body. Introducing a separation of variables
again yields a constrainémcf the Phaffian form

n o e |
2 | Bxgdann =0 (2.21)
i=1

The difference is that>now the coefficients of the constraint relation-
ship are constant and the expression always possesses an integral,
Thus, the Buckens or first oreer Tisserand constrairnt is a holonomic
’constraint. Since the Buckens and Tisserand constraints are identical
for a deformable body as defined above, they will both be referred to
as the Tiaserand constraint. 'This choice is made because ofbthe
historical precedence of the Tisserand constraint and the fact that it
is more common in the literature. This is not to minimize the’contri—
bution made by Buckens, for it is the first order form which will allow
the greater use of the Tisserand frame that is explored in the next
chapter. |
The last frame to be described is the rigid body mode frame,:

This concept arises in structural dynamics for semidefinite systems.

‘ A,semidefinmte system is one for which the strain energy may be zero

15




without the motion being zero. Unrestrained systems, or systems
without supports, are typical examples of semidefinite systems. A
rigid body mode is defined as a displacement which results in zero
strain energy. The rigid body mode frame follows the displacement
which results in zero strain energy. There is an essential difference
between the rigid body mode and the equilibrium position of a body.

The rigid body mode is associated with zero strain energy which results
in the equilibrium position of the body at rest. The body must be
inertially at rest both translationally aﬁd rotationally. If arbody

is spinning at a given rate, the equilibrium position will not coincide
with the rigid body mode (equilibrium at rest) since the centrifugal
forces may be'thought of as inducing a nonzero strain energy at equilib-
rium. The presence of environmental forces éuch'as thermal gradients
can complicate the notion of a rigid body mode. The dictum of zero
strain energy must still be followed in this case, but the effects of
environmental forces on the strain energy can be neglected.

‘The constraint relationship associated with the rigid body mode
is simply that the strain energy be éero. The difficulty of working
with this constréint is circumvented by ‘showing a relatibnship between
the Tisseréhd frame for deformable bodies and the rigid body mode frame.
Thié allows the rigid body mode to be easily applied. This is pursued
‘in thé nekt’chapter.'

2.4 Examgle of Frame Motion

In order to give insight into the concept of a floating reférence‘
frame, a4simple example problem has been formulated. This example sys-

tem is shown in Figure 2.1 and consists of two uniform rigid hodies

16

IETRETIPIPRTN. TR SEE

A

S e



TORSIONAL SPRING -

La—QA/Z—-)ﬁ( ' D-I

Figure 2.1. Example System.
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that are connected by a line hinge. All motion is planar. In the
undeformed position, the twg bodies are alignedq%n a straight line.
The length of body one is £ and the length of bodﬁ,twp is Z/Vit The
mass per unit length of body two is twice that of bédy‘one. This
places the center of mass for the undeformed body at the hinge point.
.The above system is made non-uniform in order to separate the motion
of the principal axis and Tisserand frames. If the bodies were iden-
tical, the two frames would move in the same manner. The coordinate
systems for the example are shown in Figure 2.2. The deformation of
’ the system is specified by the angle o between the two bodies. A set

of axes, with respect to which unit vectors El’-EQ’ and E_ are fixed,

3

is fixed in body two with its origin at the hinge point. The location

of the hinge point relative to the center of mass is specified by the v

vector R. A floating frame, in which unit vectorsril,.gz, and.g are

3
fixed, has its origin at the center of mass and makes an angle (3 with
the body fixed axes. A mass element is located by a vector x relative

to the hinge point with the subscript specifying the assuciated body;

The center of mass is defined by

fg dm = 0 ' | (2.22)
D

This becomes for the example,

e
L V2 e :
R+ x,) mdx + | R+ x,) 2mdx =20 (2.23)
o= TR 2T X , :
Jo T 0 ~
where

Xy = x(cosa bi + sino 22) i ;
= 2 ’ (2.24)
Xy = - X.b_l : k

18



Figure 2.2, Coordinate Systems.
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This yields the position vector of the hinge point relative to the

center of mass

R= 31[% a - cosa)] - Ez(% sinu)‘ ‘ (2.25)
Note that the center of mass is at the hinge point for zero deforma-
tiomns.

The Tisserand frame will have its origin at the center of mass

and will obey the constraint relationship

_{p_xﬁdm=0 (2.26)
where

by =R+ x

1 1 (2.27)

P, =R +‘§2 .

The constraint then becomes

%

—

.’&’ P ) V2 . .
m{p., P - p, P )dx +f zm(p P, =P, P )dx =0 (2.28)
o ( 14 1y 1y lx 0 24 2y 2y 24

Evaluating the vectors in Equation (2.27) in the floating reference

frame so as to facilitate the derivatives involved yields

%-cosB + (x - %) cbs(d—B)
o, = {B¥Y o
'S " 2
-7 sinf + (; - Z) sin(0~RB)
! 0 J
-(x - %)cdsﬁ --% cos (a=R) L '
Ly = {_%.}T‘ ' "
(X -»%)sins - %4sin(a—8) . ' (2.29)
! o J
where {£} is the 3 x 1 array of vectosrs ii’-EQ"EB'

20



With these relationships and the derivatives of the components, the
constraint relationship may be evaluated. After the necessary algebra
and integrations, Equation (2.28) becomes

(.2342 + .0991 cos0)d - (.3333 + .1982 coso)B = 0 (2.30)
This constraint is in the Pfaffian form and since it possesses an
integral, the Tiséerand constraint'here is holonomic. If the deforma-
tions are small, then the constraint shows that the frame must move
relative to the bodies in a specific manner, that is

= .586 o | - (2.31)

For a Buckens frame, the constraint relationship is

- o ) . ‘
fP_"P_dm= 0 o | (2.32)
where
By=xf
1 L (2.33)
By xh

The constraint can be stated in the form

£

L, o2 ~
mp, P dx + f 2m Py Py dx =0 o (2.34)
-/(-) Lily 0 2y zy , ‘

Evaluating the derivatives’from Equation (2.29) and performing the
necessary algebra gives the constréint in the form
cos (@-8) G-y - 7071 cosfh = 0 S .35
For small deformations; tﬁe relationship between‘fhe angles will be
B .se6 6 S x (2.36)
This is the éamekanswef for small deformations thatvresﬁlted~from’the

Tisserand frame. This is to be expected since the Buckens frame is
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simply a first-order Tiséerand frame and they are identical for systems

undergoing small deformations.

For the principal axis frame, the constraint will set the product

of inertia to zero

112 = _/D‘ Py py dm = 0 (2.37)

The constraint relationship for the example is then written ;

J{z V2 *
{ mo, o0 dx+f mp,p, dx=0 (2.38)
0 1x 1y o 2x 2y

Using the expressions found in Equation (2.29) which hold fcr any float-

ing frame, and completing the necessary algebra yields

rtires s e wh g | e

-.1367 sinf cosB + .0991 sin(a-2B8) + .2341 sin(o-B) cos(a—B) = 0 (2.39)

ez

For small angles, the relationship between the coordinates is
B = .476 a (2.40)
The above cdnstraint relationships are holonomic in form since they
‘relaté the’coordinates. The Tiséerand and Buckens constraints are of
‘the Pfaffian form since they relate velocitiesQ They may be integrated
in this cése and if both angles are zero iﬁitially, theﬁ they yield
B = .58 a o o | 2.4
This meanskthat the principai axis frame is definiteiy distinct from
the Tisserand frame for thiskexampié.' The Tisserand frame will move ' ; %
mofe relative to‘the body fixed frame due to a deformation than will
the principal axis frame for this specific case. ThefTisserand frame
’will rotate l.23,degrees for each degree that the pfincipal axis frame

rotates due to a deformation of the system. The rotation of the frames
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discussed above is relative to the body fixed frame. One special case
of the rotation of the Tisserand frame relative to inertial space
should be mentioned. For a moment free body with zero net angular
velocity, the angular momentum will remain zero due to conservation
laws. For this case, by reference to Equation (2.9), the frame angular
velocity mustkbe zero since the inertia matrix is positive definite.
Thus, the Tisserand frame in this speeial case will be inertially fixed;
while the principal axis frame moves.‘

2.5 Historical Perspective

The principal axis and Tisserand frames both had applications to‘
problems in the physical sciences during the late nineteenth century.
The question that waskaddressed was posed by George Darwin:

"The subject of the fixidity or mobility of the earth's axis

of rotation in that body;.. [has] from time to time attracted

‘the notice of mathematicians and geologists, The latter

look anxiously fof some -grand cause capable of producing

such an enermous effeet as the-glacial period. Impressed
by the magnitude of the phenomenon, several geologists

héve postulated... a wide variability in the pogition of

fhe poles on the earth; and thie,'again,‘they have sought

to refer back to the gpheavalyand subsidence of conﬁinents."l

Very minor movement of the poles ef perhaés SO’feet is measured.
by ‘modern astronomers and is referred to‘as the verietien of iatitude.
‘This varietion is thought to be due to seasonel'changes in the distribu-

tion of the-air masses over the earth.

1

G.H. Darwin, Scientific Papers, (Cambridge, 1910), Volume 3, p. 1.
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The use of floating frames&was introduced in order to formulate
equations of motion for a body undergoing small deformations due to
elevation and subsidence of continents and sea beds. The researches
of George barﬁin were the most detailed in the evaluation of specific
results. He introduced a principal axis frame and derived equations of
motion for this frame. By adopting a system consisting of a rigid
earth and a deformable thin shell, he studied the effects of deforma-
tion. 'The shellxwas deforﬁed in such a way as to give the maximum
movement of the poles consistent with geological evidence. He was able
to show that a movemént of the poles of 8 degrees would require one
half of the earths surface to be deflected by’nearly two miles. ,This
would effectively maké continents out of oceans and vice versa. Darwin
then concludés:v

"If ﬁhe geologists are right in supposing that where the

continents now stand they have always stood, would it

not be almost necessary to give up any hypotﬁesis which

involved a very wide excursion of the poles?"2

The meaﬁ axes which were popularized by Tisseraﬁd and which bear
his‘name were introduced by Gyldén in his study of the rotation of the
earth., This is stated by Tisserand in Sections 214 and 216 of his
Traité de MéchaniqueVCéles;e. Tisserand derivesvthe equations of
motion forkwhat we call the Tisserand frame by setﬁing the internal
angular momenﬁum tokzero. He réports then on the Qork of Glyden in
ﬁsing this ffame in deriVing an expreésion forvthe deviation of the

mean axes from the principal axes of the system. The application of

2Ibid., p. 39.
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the floating reference frame was similar in intent to that of Darwin,
but his conclusions regarding the motion of the poles was more analyti-

cal in nature and not as concrete.
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~difficult to deal with. The simplest constraint relationships result

CHAPTER 3

THE TISSERAND FRAME FOR A DEFORMABLE BODY

3.1 Chapter Summary : ;

This chapter focuses in detail on the use of the Tisserand frame

for vibration analysis of unconstrained systems. The choice of mode

-

shapes to be used for expansion of the deformations relative to the
floating frame is crucial., With an unwise choice of mode shapes, the i

constraint relationship may depend on all of the coordinates and may be

from the use of the free-free modes of an unconstrained system. The
orthogonality of the rigid body modes (zero natural frequency) to the
deformational modes allows for a ratherkelegant a priori evaluation of
the constraint relationships. The cbnstraint relationships then
involve only the rigid body modal coordinates, which must be zero.

This result may then be interpreted as a requirement that the rigid
body mode is fixed relative to the Tisserand frame. The remaining
coordinatés are then independent, a condition which can greatly simplify
the formulation of equations of motion. This special case of the
Tisserand constraint that uses the free—free modes of an unconstrained
system is termed the Mode Shape Constraiﬁt. An example is wérked out -
in order to demonstrate the propérties of the Mode Shape Constraint.

| The claésical Tisserand cpnstraint cannot be employed for systems

with rotating internal members. jThis_class of systems represents space-

craft with momentum exchange controllers. These represent reaction
wheel, momentum wheel and control moment gyro;ébntrol systems. . Several

‘alternate extensions to the Tisserand frame aré,discuSsed and a Modified
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Tisserand Constraint is introduced. The properties of this constraint
relationship are discussed and the applicability of the Mode Shape

Constraint is demonstrated.

3.2 Mode Shape Constraint
There were twovrequirements made in order to define the Tisserand

frame for a deformable body. The first was that the center of mass be
fixed in the frame. This would then insure that the system possessed no
linear momentum relative to the frame. But by introducing this con-
straint, three additional variébles were required to specify the loca-
tion of the point of the frame occupied by the mass center, which point
may be referred to as the frame origin. The second defining require-
ment wés that the system had no angular momentum rélative to the frame.
This constraint then introduced an additional three coordinates to
specify the angular orientation of the frame. The net result of
injecting the Tisserand framekinto the problem for a deformable body

is to expand the dimension of the problem by six and to interrelate

the coordinates by six scalar equatiogs ktwo Vectqr eqhations). It is
the interrelation of the coordinates, and the resulting fact that they
are no longer linearly independent, which can prové troublesome in

the formﬁlation of the equations of motion. Constraint relationshipsk
require the use of Lagrange multipliers when Lagrange's equations are
used. It Wbuld;be extremely advantagéous to evaluate the constraint
relationships and reduce the order of the system before the equations
of motion are formulated.

|  Thefe‘exists a vefy intimate reiationship betWeenkthe Tisserand

frame and the free-free modes of an unconstrained system; this special
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relationship we call the Mode Shape Constraint. This felationship
employs the orthogonality conditions that exist between the rigid body
modes ‘and the deformational modes (whish have nonzero natural frequen-
cies) to allow a rather elegant a priori evaluation of the Tisserand
constraint. This is‘accomplished by setting all rigid body modal coor-
- dinates to zero. This effectivelykreduces the order of ﬁhezsystem to
the original value and the remaining coordinates are all indepéndent.
The constraint rélationships that define a Tisserand constraint

fsr a deformable body (ﬁhiéh by virtue of small deformations are also
the Buckens constraints) are given by

f_p_dm=o ; | ' (3.1)

D ,

~and

; fﬁxﬁm:o, ‘ (3.2)
D .

where Q.and_é are now measured from the frame origin to the generic
mass element. A separation of variables is introduced using the free-

free mode shapes of an unconstrained system
w= 2 ooy o 3.3)
- 3=0 : e ;

where the mode shabes for distinct eigenvalues are orthogonal

fﬁ?.i . ¢ Vdm=0; 149, o : (3.4)
“JIp S | f | |

The constraint relationships are then written as

- n

0

F{gj amnT:ko - I (3.5)
3 S o
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and

n [ s . »
Zfﬁxfjdmﬂj=0 (3.6)
D

wﬁereiﬁ is the undeformed location of the éeﬁeric mass element. In the
above, the zero subscript has been uséd to refer to all of the rigid
body modes. These consist of a total of six modes. The three transla-
tional rigid body modes are talen as uniform ﬁranslation along each of

the axes. They may be written as

0 A
&= ¢
0 _ A
9y =05
¢ g = cf, | (3.7)

where C is a constant. The three rotational rigid body modes are taken k

as small rotations about each of the axes. They are pictured in Figure

3.1 and are written as

0_ys _23
¢, =75 -7
0_z3 _X3%
$5=7 5 75
0 _x2 _yo
%=1 "4 (3.8)

The translational rigid body modes are orthogonal to the rotational
rigid body modes since the undeformed position has its ofigin at the
center of mass and

D dm=0 . . | (3.9)
D

It will be most fruitful in the evaluation of the constraint relation-

ships to investigate the brthogonality‘propertieskof the free—free
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Figure 3.1. Rotational Rigid Body Modes.

31




modes further, Let Qq be a deformational mode corresponding to a
nonzero natural frequency.
3
¢1
o = (51Ne) (3.10)
J
¢3
This mode will be orthogonal to the translational modes, yielding the

relationships

0 f i
- CJ ¢y dm
LAl 2y 1

©-
=
-©-
[= N
8
[}
f
o

D
f_qu’-gjdm le;cbgdm

fgg-gg. dm=0j¢g dn = (3.11)
D J D
This may be written in the vector form as
f_j dn = 0 (3.12)
D

This is recbgpized as the coefficient in the center of mass comstraint
of n. Coupied with the orthogohality of the rigid body translational
modes to the rotational modes shown in Equation (3.9), the center of
mass constraint can be rewritten as a relationship involving only the

translational rigid body modal coordinates

0 0 0.
.[91 dm Ny, +[ $, dm ny, *}4‘ $3 dm ngy =0

Evaluating the integrals will yield the three scalar equations

(3.13)

32




“‘{”01 =0
"”noz 0
J(n03 =0 ‘ (3.14)

where «# is the total system mass. It is now quite clear that the
center of mass constraint requires that the translational rigid body

modal coordinates be zero

Mo = 0
=@
Moz = ©
No3 = 0 (3.15)

Now we shall turn to the constraint setting the internal angular
momentum to zero by studying the orthogonality of a deformational mode,
gﬁ, to the rotational rigid body modes. The following orthogonality

conditions hold

Bs
!

ég—
o
le
e
o,
=]
"
o

é‘-\ :;“\ é‘-\
le
5, el
le-,,
o
=3
n
o

(3.16)

When the expression for the rigid body modes (Equation (3.8)) are

substituted into the above, we have

f(ydg- Z¢>g) dm = 0
D~ :
roosl
(209 1= %¢3) dm = 0
- fesdl- wed e
.4.(1:(1)% - y(i)i) dm = 0 (3.17)
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where the factor of % inverse has been eliminated., If the three scalar
equations are considered as components of the vector hases of the float-
ing frame, then one vector cross product relationship results from
Equation (3.16)
b
_— j i
p*x¢ dm=0 (3.18) ;
D H
where:E is the position of the undeformed generic mass element
X
— ~.T
o= {f}dy (3.19)
z
This vector cross product expression (Equation (3.18)) is recognized as
the coefficient of the modal coordinate velocity ﬁj in the constraint
relationship (Equation (3.6)). The constraint relationship can then be
written without the deformational modal velocities and also without. the
translational rigid body modal velocities. These latter are set to
zero as a result of the center of mass constraint (Equation (3.15)).

Writing the simplified expression for the constraint gives

-— 0 . f__ 0 . f_ 0 . _
‘{_p_x_qll‘dmn04+DEx_(25dmn05+D_e_x36dmn06_0 (3.20)

Substituting the expression for the rigid bhody modes into the above

yields

i

f(yz-Fzz)dm ) l‘-x y dm’ _[—x‘ 2z ;dm

{_/f_}TJ L-y x dm 7'104 + {(xzwzg)dm ﬁos + f— y z dm |nge

> = ()
D
A 2.2
4=z x dm -z y dm (x"+y")dm ©(3.21)
L ' b D J
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The moments and products of inertia of the undeformed system are readily
identified in the above. Writing the resultant scalar equations in

matrix form yields

_ T
i Y12 Ti3| |Mos

1 T2 1231705 =0

131 T32 33 {Mos] (3.22)

Since the inertia matrix is positive definite, the only solution of

this constraint equation is

Nog = O
o5 0
Myg = O | (3.23)

This evaluation of the constraint relationship using free~free modes
states definitively that the rigid body mode frame is fixed relative

to the Tisserand frame. If initially aligned, the two frames will
remain coincident., This is the prime advantage of the Mode Shape Con-
straint and is the connection between the rigid body mode and the
Tigserand frame that was mentioned at the end of Section 2.3, Thus the
Mode Shape Constraint, which involves a Tisserand frame, can be used to
defiﬁe a rigid body mode frame, This result has been-discuséed by
Likins,llbut has been expandéd upon here, The mention of the éonnection
between the orthogonality of the rigid body and deformational modes and

the momentum expressidn was made by Buckens. He used it only to set

1Peter'w. Likins, "Analytical Dynamics and'Noﬁrigid Spacecraft Simula-
tion" (JPL TR 32-1593) p, 22,
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total momentum to zero. Although the frame introduced by Buckens is
crucial in the above arguments since it neglects second order terms,
Buckens did not. use the orthoggnaiity properties in order to evaluate

the constraint relationship for affloa;ing frame.e2

i

3.3 Discussion and Example of thé ModerShapedenstraint

The development df the M&de Shape Conéfraint in the previous
section has been quite detaiied andkmay seem complex. A discussion
and suﬁmary of the pertinent results are in’order. The example problem
from Section 2.4 will be expéndéd‘in order éo demonstrate the Mode
Shape Constraint in a concrete manner.

The Mode Shape Constraint is defined as a specific caserof the
Tisserand constraint where the deformations are expanded in terms of
ffee—free modes of the unconstrained system. ' The main property of the
Mode Shape Constraint is that it eliminates the rigid body modal coor-
dinates from fhe problem and leaves the remaining coordinates indepen-
dent. If an arbitrary choice of mode shapes is made, thén the Tisserand
constraint will render the moda1~coordinates'dependent on each other.
The specific structure of the irnterrelation of the modal coordinates
depends on the choice of mode sﬁapes; This may fe determined from
examining Equation (2.21).

The procedure that :esults from applying the Mode Shape Constraint
is to expand the deformations in terms of the deformational modes only,
ignoiing the rigid bbdy modes,  which have zero natural frequency. - The

constraint relationship is fulfilled because each coefficient in

2F. Buckens "The Influence of Elastic Components on the Attitude Stab-

ility of a Satellite," Proceedings of the Fifth International
Symposium on Space Technology and Science (Tokyo, 1964), p. 196.
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Equation (2,21) is set to zero. The coordinates are then independent

because of the specific choice of mode shapes. This interpretation
gives rise to the name '""Mode Shape'" Constraint. The Mode Shape Con- %
straint may also be viewed as a straightforward way of working with
the rigid body mode frame. As noted before, the constraint relation-
ship requires that the rigid body modes doknot move relative to the
Tisserand frame. Thus, the mode shape constraint may be used to locate’
both frames. This is a much easier method to locate the rigid body
mode frame than a requirement involving zero strain energy.

The discussion will now take up the example problem first intro-
duced in Section 2.4. This is a case of planar motion of a long slender

member, so the constraint relationship will simplify to the scalar form

.4'xﬁdm=0. (3.24)

If the velocity is expanded in terms of mode shapes, then

n : . ~ |
j20<_{x o7 dm> ny =0 | ' - (3.25)

The mode shapes for the system shown in Figures 2.1 and 2.2 are the
rigid body mode and one deformational mode relative to the Tisserand
frame. They are shown in Figure 3.2. The mode shapes are

0= % | - tsxs

»
IA
o

Sl &!zo
IA -

" = - %-- .586 x : -

"%+ JAlh x T 0<x<2 ; -~ (3.26)
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(b) DEFORMATIONAL MODE

Figure 3.2. Example Problem Mode Shapes.
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Several characteristics of the mode shapes must be mentioned.
They represent only small deformations and always place the origin at
the center of mass (Equation (2.24)). The deformational mode resulted
from setting the relative deformation, o, to one. The rotation of the
body fixed frame relative to the Tisserand frame, B, would then be .586
(Equation (2.41)). The resultant movement of the center of mass would
be —-% . The essential property of these two modes is that they are
orthogonal. '

f¢0 ot dm=f%¢ldm=0 | (3.27)

D D
Thus the mass matrix i1s diagonal. Since the 'relative deformations of
the system result from only the second mode shape, the stiffness matrix
is zero except for k22.~ The modes chdsen therefore are the natural
modes of the unconstrained system which we call the free-free modes.
The system is unconstrained as the singular stiffness matrix would
indicate.

Now let us use the free-free modes in order to evaluatekthe

coefficients of the Tisserand constraint relationship shown in Equation

‘ (3;25).

.4.x ¢0 dm
;/.x ¢l dm
b ,

The last coefficient is set to zero because of the orthogonality condi-

2

0 x2 2 X 4
f Zdex+fm2 ®
72 : 0

\/é— .

2.218 m 22

It

0 | | | o (3.28)

tion,  The Tisserand constraint.for this system may be written
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” N
(Lx ¢>O‘dm) r']o+ ({x (bl dm) ﬁl =0

- | -
(2.218 m LR, = 0 o | (3.29)

The constraint requires that the rigid body modal velocity be
zero., Thus the rigid body mode does not movekrelative to the Tisserand
frame. Since the original choice of axes is arbitrary, the modal coor-
dinate may be set to zerd and will remgin zero because of the constraint.

3.4 Modifiéd Tisserand Constraint:

This section will deal withrapmextension of the Tiéserand frame
for deformable bodies to cover a ne& class of systems. Consider a
deformable body with small relative'displacements to which is added a
’spinning~rigid rotor. The,qew system will no longer be a strictly
defofmable Body, sin¢e¢thé~movement of the rotor willrinvolve large
relative displacements; If the classical Tisserénd coﬁstraint is
applied to this system; the frame itself must rotate relative to the
system. The system angular momentum will consist of a component from
fhe deformable body and a component from the rotor. The frame must
rotate in such a way as to carry the total system angular momentum and
 thereby set internal angular momentum to zero. The frame motion cannot
coincide with deformable body component of - the system and large deforma-
tions result.
’Two methods of modifying the Tisserand constraint present them-~
selves. The first is to define a Tisserand frame forythe’deformable
; body only. This approach ignores the‘:otor altogether when the internal
angular'moméntum relative ﬁo the deformable body center of mass is set

to zero. The constraint relationship is then written
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Y
L

[E(, x G dm=0 (3.30)

when'E

Le is the undeformed location relative to the center of mass of

the deformable body. This approach is not used because it does not
achieve the greatest simplification.

The second method tb be considered is to examine the expression
for the system angular momentum. The constraint relationship can then
be made to simplify the structure of the angular momentﬁm as much as
possible while still assuring small deformations.

Before we write the expression for the system angular momentum,

let us define several vector bases:

~

{i}: 1Inertially fixed reference axes

”~

{f}: Axes fixed in the floating frame

{h}: Axer fixed in the mass element at the rotor mounting point

‘{2}: Axes fixed in the rotor

The angular momentum of the system about its center of mass is

.B_=f3><édm‘ (3.31)
S B

where S represents integration over the entire system, both the rotor
and the deformable body. Evaluating the angular momentum for the
deformable body will give

fngdm= DD-9f1+f£x§dm. ' (3.32)
D .

D

where []D is the deformable body dyadic about the system center of mass.

For the rotor, static balance has been assumed. The similar expression

integrated over the rotor, R, is
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_{_D_Xé_dw[]i'efi+DR-'£"f+MR£RX§R (3.33)

[]:; Rotor inertia dyadic about the system center of mass
[]R: Rotor inertia dyadic about its own center of mass
MR: Rotor mass

'QR: Location of rotor center of mass relative to system center
of mass.
By combining these two quantities, the system angular momentum is found
to be
N B R f o o |
B——D _u-) + R'.Uﬁ + -DP_XE"'MR.Q_RX.BR (3’34)

The total system inertia dyadic is given by

D= DD+DIS{ (3.35)

The total angular momentum expression can be significantly simplified.

In order to do this; we introduce a Modified Tisserand Constraint.

’{Exi‘-d‘“*MRERXéR*DR‘.‘Bbf:O (3.36)

Here we have made use of the chain rule for angular velocities

E - wa'+ wa‘. ; o ' (3.37)

The system angular momentum then becomes
- . ft - B , | ‘
=[] o+, - w®. | (3.38)
The above has the Same‘structure as a rigid body with an attached rotor.

The essential difference is that the inertia dyadic is not constant and
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that the relative angular momentum of the rotor (the second term) is

affected by the deformations. It is important to understand that rota-

tions of the axes at the mounting point will reorient the roﬁor axes,
The internal angular momentum of the system relative to the frame

is no longer zero,

f_g_xidm=DR-2Vb. (3.39)
S .

This is a very simple result and may be verified by direct computation.
Alternatively, a quick comparison of the above angular momentum expres-—
sion (Equatioﬁ (3.38)) and the general angular momentum expression
(Equation (2.3)) will give the same result. The one term evaluation of
the internal angular momentum will facilitate the evaluation of the
equations of motion. 1In order to demonstrate this, let us evaluate the
kinetic energy. We start with the general result given abdve (Equation

(2.6)) which is now evaluated over the entire system

T=-‘-L °5dm+lwfi.[l-wfi+wfi-fpxsdm (3.40)
2 = 2 = L= =

The first term must be evaluated over the deformable body and the rotor.

I'Oo

z 'S‘Bdm=lf€1-1°1dm
7 J L2 E 7 J u-ud
D
1 Sly s s L L1vb ] .
2,[{-9 pdm=o My t3L [:]R;2
bf [T . wvb 1 bf . . bf | |
tu 'DR Wt DR w (3.41)

Making the substitutibns indicated will yield the kinetic energy for a
deformable body and attached rigid rotor with static balance when the

‘Modified Tisserand Constraint is employed.

43




vo3fifamegat [ e a0
+%_-MR§R': % D Vb'DR°—b % D

(3.42)
Even with the simplification that comes from the Modified Tisserand

Constraint, this system has a complicated structure for the kinetic
energy.

The Modified Tisserand frame is distinct from the frame created
by applying the classical Tisserand constraint to the deformable body
only (Equation (3.30)). In order to demonstrate this, the internal
angular momentum of the deformable body relative tb its own center of
mass will be calculated for the Modified Tisserand Constraint. Starting

with Equation (3.39) we may write

£EX§dm+{Bx§dm=DR-QVb (3.43)

Each component of internal angular momentum may be evaluated by rewrit-
ing the expression relative to its own center of mass rather than the

system center of mass.
4!12 X p dm ='4rBC X udm+ (M- M)r, x 1,

I o 2 _ . .vb . bf X o
R'Ex,edm-DR @ [ e o x5, RRENT

¥, 1s the location of deformable body

where «# is the system mass and I

center of mass relative to the system center of mass. By using the
center of mass expression

(M~ M )r + My o = 0 S | (3.45)
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we may evaluate the internal angular momentum of the deformable body

relative to its own center of mass

e [ . ot Mp M o

frorsom- Ot (529 o,
This quantity will not generally be zero, and the deformable body will
have a net internal angular momentum relative to its own center of mass
when the Modified Tisserand Constraint is employed. This result also
shows that the Modified Tisserand Constraint involves an extension of
the classical Tisserand constraint for deformable bodiés.

Going back to total system angular momentum (Equation (3.38)) it
will be interesting to examine the frame motion. TFor the case where
the system has zero net angular momentum and is free of external

moments, the relationship will hold whereby

- oft+[], - a®=0. (3.47)

This relationship does not require that the frame be inertially fixed.
Instead, the frame will move when the internal angular momentum (the
second term) is altered in value. This is the process of momentum
exchange that is employed by control systems.

The most important aspect of the Modified Tisserand Constraint
has’beeﬁ left till now. We shall now attempt to tie together the
advantagés of the Mode Shape Constraint with the extended systems
covered by the Modified Tisserand Constraint. The crux of this endeavor
lies with the physical interpretation of the Modifiéd:Tisserand Con-~
straint (Equation (3.36)). Let us start by discussing the terms present

in the expression. The first term is the internal angular momentum of
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the deformable body. It is the last two terms which involve the rotor.
But neither term involves the rotor spin rate. Rather, these two terms
represent the internal angular momentum of the rotor if it were indeed
not spinning relative to the axes fixed at the mounting point. That is,
the rotor would be fixed in the reference frame b. The constraint
relationship may now be interpreted as a classical Tisserand constraint
for a system with a "frozen" rotor. Once this interpretation has been
made, the Mode Shape Constraint associated with a classical Tisserand
frame may be applied to a deformable body with an attached rotor. The
mode shapeskused to expand the deformations are found from the free-
free analysis of the system whereﬂthe rotors have been frozen. Thus
the rotor mass and inertia properties contribute ﬁo the free-free modes,
The Modified Tisserand constraint will now require only that the rigid-
body modal velocities be zero. This allows them to be ignored,'and the
analysis proceeds with the frame variables and the modal coordinates
associated with nonzero natural frequencies. All of these coordinates
are independent since the constraint relationship was evaluated by
suppressing the rigid body modes.

| All of the relationships given above for. a system with one rotor
with static balance will héld if additional rotors are added. The only
change is that expressions involving rotor quantities aré summed for

all rotors.
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CHAPTER 4
FINITE ELEMENT EQUATIONS OF MOTION

4.1 Chapter Summary

Thie chapter deals with the derivation of a generalized set of
.equations éf'motion,for the class of spacecraft with distributed
flexibility and momentum exchange controllers. The Finite Element i
Model adopted for this discussion consists of a finite number of rigid
bodies interconnected by massless, elastic elements. This model allows
the equations of motion of a continuum to be represented as:a finite
number of ordinary differential equations instead of a partial differ-
ential equation. 'the Finite Element approach is particularly powerful
for dealing with systems characterized by nonuniform mass and stiffness
properties. The Finite Element Model introduces six coordinates for
each rigid body in the model, thrée coordinates for translation and
three for rotation. The total number of discrete coordinates is then
seen to be large even for a systém of modest comple#ity. This suggests
the adoption of distributed coordinates obtained by a modal analysis

and the truncation to a smaller number of modes. The process of trunca-
tilon is complicated and will be’discussed in Chapter 6.

The eﬁuations of motion developed here deal with a system which
has small, fifst order displacements and rotations, relative to an
inerﬁially fixed coordinate system. This requires that the variation
of the rotor angﬁlar momentum is also a small; first ordef quantity.
 Alth6ugh the equations of mqtion for this system can beiwritten,using
an inertiélly fixed coordinate system, a Modified Tisserand Frame ﬁill

be introduced. This derivation will demonstrate the process of
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formulating equations of motion when this floating frame is employed,
as may be necessary for the case of large system rotations. Particular
attention will be paid to the impact of the constraint relation.

The equations of motion will be formulated using Lagrange's equa-
tions. The first step consists of the calculation of the system "l‘
kinetic energy. In order to arrive at equations of motion containing
first order quantities, care must be taken to include all second order
quantities in the kinetic energy. Because the rotor angular velocity
is a large quantity, not all terms can be represented by their first
order approximation. The generalized forces for the system are conser-
vative and the strain energy is a simple quadratic form involving the
stiffness matrix.

The use of the Modified Tisserand Fraiie will involve a constraint
relationship. Because the generalized coordinates are not independent,
Lagrange multipliers are introduced in the equations of motion. The
modal analysis is performed for the free-free system with the rotors
froéen and the transformation from discrete to distributed coordinates
does not include the rigid body modes, Thus, the Mode Shape Constraint
is introduced td the problem and the result is the elimination of the
Lagrange multiﬁliers. The final set of equations of motion involves
coupling between vibration and the Tisserand Frame motion. .Gyroscopic
coupling between the vibration coordinates is also present. If damping
is desired in the system,'a term may be added in the final set of equa-
tions to represent modal damping. |

This set of equations could then be truncated to the frame

variables and a smaller number of necessary modal coordinates. These
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equations would be representative of the system motion of a spacecraft
with small displacements from inertially fixed axes. They could then
be incorporated in a control system design to attain precise pointing.

4,2 System Kinetic Energy

The fivst step in the process of formuiating the equations of
motion using Lagrange's equations is the derivation of the expression
representing the system kinetic energy. Several assumptions have bheen
made to facilitate this endeavor. The system is assumed to hbe free of
external forces and the system center of mass then represents an iner-
tial reference point. The resulting equations of motion will therefore
not include any expression representing accelerations of the system
center or mass. The equations of motion representing translation of
the system center of mass will not appear in the derivation since in
effect thev have been solved E_Eriori. The assumption is made that
the rotor center of mass is located at the center of mass of the |
attached body. This assumption simplifies the structure of the result-
ing equationé, but could be abandoned easily if it were judged inade-
quate for analysis of the system at hand. The rotor is assumed to
be étatically balanced. The angular momentum of the rotor is also
assﬁmed tQ undergo only small, first oider variations. This would
correspond to a requirement that the rotor produces only small, first
order torques. This implies only first order changes in rotor speed
for a momentum wheel or only first order changes in gimbal angles for
a control moment gyro (CMG). A Modified Tisserand Frame is introduced
for the system. This results in a significant simplification of the

internal angular momentum expression which appears in the kinetic energy.
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As shown before (Section 3.4), the expression for the kinetic

energy for a deformable body containing a spinning rotor is

T=%f§'§dm+.@fl- 2% dm
S - s
pLoft L[] 6.1
If a Modified Tisserand Constraint is introduced to define the floating

frame, then the constraint is written as follows for a rotor with

static balance.

R
{gxédm+MR9-Rx§R+DR'i*’.bf=0 (4.2)
The resulting expression for the internal angular momentum is
| o . va
£ Xpdm-= R Y (4.3)
S ‘ :

The kinetic energy can now be put in the form

R
rel [5-pamed [, - o™

+—:2wal . D ot . ‘ (4.4)
In order to analyze the first expressibn in the kinetic energy, the

location of the generic mass element relative to the system mass center,

0, is defined for each body as in Figure 4.1

Pep +u +r : ‘ 4.5)
where E? is the undeformed position of center of mass of body i and is

fixed in the frameif.

§=o— L o N (X
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Figure 4.1. Location of Generic Masi Element.
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The displacement in frame f of the center of mass of body i is
represented by the vector, g}. The location of a generic mass element
of body 1 relative to the body center of mass is 5? and therefore obeys

the constraint

fg_i dm = 0 ‘ (4.7)

where the integration is taken over body i. A similar expression
results for the location of a generic mass element of the rotor

p=B +ut+ R (4.8)

where the superscript R refers to the rotor. The derivatives of the

mass element expressions relative to the floating frame give

i bif 1

pr=ut+w txgx
BR = §3'+ wVf X EB (4.9)

where the reference frame bi is fixed in the body i, the reference frame
v is fixed in the rotér and f is fixed in the modified Tissefand frame.
Remembering the center of masé conétraint (Equatioﬁ (4.7)) and the chain
rule forkangular velocities

R R
WE o P g P f (4.10)

we may now write the vector-dyadic expression for the system kinetic

energy
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. R R ‘ . ‘
¢ oft . D . @'P +%gfi . D . oft (4.11)

In the above expression, the reference frame bR is fixed in the body to
, i R

which the rotor is attached and the inertia dyadics [] and [] are for

body i and the rotor, respectively, about their individual centers of

mass. The body i and rotor masses are m, and M_ respectively. The

i R
number of bodies in the model is n, not counting the rotor.

The next step in the evaluation of the system kinetic energy is
to adopt a set of vector bases and express the kinetic energy in matrix

form. The following set of vector bases are adopted:

‘{i}: Fixed orientation relative to the inertially fixed reference
frame.

ﬂg}: Fixed orientation relative to the Modified Tisserand frame.

{:i}: Fixed orientation relative to the locally attached frame
in body i. Superscript R refers to the body to which the
rotor is attached.

{v}: Fixed orientation relative to the rotor attached frame.

Care must be taken in representing the vectors present in Equation

(4.11) in terms of first order a?proximations. This cannot be done for

R e
is not a first order quantity

bR ’ R R. LR :
w ‘f ) D ] wa +‘-_U._)fi . DR . gVb ‘ (4.12)

the following terms since w’P
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The angular velocities, wb £ and wfi, present here must include second

order terms in order to keep all the second order terms present in the
kinetic energy. Referring to Appendix B, these terms may be written

R A . .-
P F = B+ 1R

£1i
W

(718 + 18,1 (6D 4.13)

The other vectors in the kinetic energy may be represented by their

first order forms

o= @®Th

S GHT

% = &9 hr @Y
SR _

A (I R

VbR BRYT 2y

w
0% - &¥7 11 8%
]

The matrix expression for the system kinetic energy may now be written

i

T 11 5 (4.14)

in a form which includes all second order terms
n s o . .
T = 2(—%— m (w0 4+ £ {Bi}T[Ii]{Bi})

i=1
P SVR 0 S L S S ST S R TR R
7 Mptut tu 7 Iz 7 s IIgls

CeRT e T T ,
+ BN 08 + B I8R 1148} + (8Y AN 1L, 108)

+ {81714} + {é}T[eA][iR]{é} + % {é}T[1]{é} (4.15)
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In the above expression the "tilde" operator represents a skew symmetric

matrix as typified by

R R
0 By 8|
B =168 o -
88 8 o (4.16)

The requirement that the variation of the rotor angular momentum be a
small, first order quantity may now be applied to the components repre-

sented in Equation (4.14). The rotor angular momentum is written
= . Vi : ,
Hp = DR W (4.17)

Since the angular velocity relative to inertial space includes the

. bRf fi ~ . .
first order terms w and w7, they can only contribute first order
quantities to the rotor angular momentum. The variation of the rotor

angular momentum which must be kept first order is:

b i .
%5@11 .va ) = {b } ([IR] {s}) (4.18)

For a reaction wheel or momentum wheel, the inertia matrix will be

constant and the first order requirement will be

{s} = ot - (4.19)
For a control moment gyro (CMG), the rotor speed will be constant.

Then the first order requirement will be
[IR] =0 (4.20)

These first order requirements will prove important when the equations

of motion are derived using the kinetic energy.
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4.3 Constraint Equations

Since the kinetic energy was evaluated in terms of a Modified
Tisserand Frame, the next step in the formulation of equations of
motion is the evaluation of the z@sociated constraint relationship.
As given before (Equation (4.2)), thé Modified Tisserand Constraint

for a deformable body and a rotor with static balance is

R ‘
o o b f
‘[)'_p_xQ_dm+MR£Rx3R+DR w =0 (4.21)
If the same conventions are adopted as in the previous section (Figure
5.1), the first term may be evaluated by using Equations (4.5) and
(4.9). The resulting first order expression is then

n i R

—i _ oi Di' bilf ° b f _

ié:l(miﬂ X u o+ w )+MRQRXER+ DR w T =0 (4.22)

The vectors and dyadics may be expressed in the same manner as
before (Equations (4.13) and (4.14)) when a system of vector bases is

adopted. To this representation we must add

o= {E}T {x1}

Rt IRt o (4.23)
A common vector basis may be adopted,. because to the first order

BN = E10E + 3D (4.24)
where [E] is an identity matrix and the "tilde" is the ékew—symmetric
répfesentation shdwn in Equation (4.16). The resulting three scalar
constraint equations can be written in the’form

i=1

Y (m, [F001 + (BN g RIS + (18 =0 (4a29)

Here the '"tilde'" skew-symmetric operator is a representation of the

cross product.
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4.4  Equations of Motion-Discrete Coordinates

The equations of motion may now be formulated using Lagrange's
equations. For this discussion, the generalized coordinates are not
independent and Lagrange multipliers must be introduced. The form of

Lagrange's equations to be used here is

d {9T 3T =
() % XA
k
k=1, 00 4V (4.26)

where V is the number of generalized coordinates. There are m con-

straint relationships of the form

AZ .
&Ei Agp G + Bg= 0
S=1, «v. , m (4.27)
For our problem, v is equal to 6n +:3, and m is equal to 3. The resul-
tant equations of motion are first order only. It is important to
realize that the application of Lagrange's equations to the system
kinetic energy (Equation (4.15)) yields some second order terms. A
crucial part of the equation derivation process is the identification
and elimination of all second order terms; the requirement that the
variatién of the rotor angular momentum be first order will identify
many second order terms to be eliminated by recognizing as first order
quantities the terms in Equations (4.19) and (4.20);
The equations will bé derived in groups of three. The first set
of equations is for the Tisserand frame variables, {0}. Aé shown in
Appendix B, the second order term in the angular velocity, gfi,‘can

be written in two forms to facilitate the taking of derivatives

o
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(671e,1" = {037 [éB]T (4.28)

The second order terms have a very interesting structur:: which will be

used here

'[éA}T - 16,17 = 87 . (4.29)

Once ‘the above are recognized and all second order terms are eliminated,
the system rotation equations (for_ rotation of the Modified Tisserand

Frame) are written ‘
, et ——
(118} - (11p1482) (8} ~ {[1p1(5)) (8™
+ [T1{s} + [I,1{8} = {1} (4.30)
where {TE} represents externally applied torques.
The next sets of equations will deal with the translation and

rotation of body i. This body represents all bodies in the model which

do not have attached rotors. The translation equations are
-‘i i ~ ’
{6} = @} + m (FI0 . (4.31)
Here the coordinates are present in the constraiﬁt relationship and the
three Lagrange multipliers are introduced in a column matrix {i}. The

generalized forces are represented in a column matrixk{Ql}. The rota-

tion equatibnsbfor body i are
s B, N i,T v
(T71{87} = {q,} - (171" (A} (4.32)
Equatiohs,will now be written for body R; which does have an attached

rotor, - The translation equations are

(mp + MR>{ﬁR} = Q™+ (m, + MR)[iR]{X} s | : - (4.33)
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The rotation equations for body R are more complicated. Use must be

made of equations similar to Equations (4.28) and (4.29). When all

second order terms have been eliminated, these equations can be written
(T + (DY - (TIGH BN + (1,160 + (1148}

e

- (I1H 83 = fop} - (™1™ + 111} (4.34)

The inertia matrix of body R about its own center of mass is [IR] and
the rotor inertia matrix about the same point is [IR].

The derivation of the equations of motion is now complete. 1In

order to examine their structure, a column matrix {q} will be introduced.

This represents the translation and rotation displacements for all

bodies.

{ul}
8h
{u?}
{8%)
{q} = {ER} (4.35)
u
{6

(™}
{g™}

The generalized forces for all the bodies ﬁay be rewritten in terms of

a stiffness matrix, [K].

{Ql}'
{gl} 7 ,
Q¥ =(: ) =- K. | (4.36)
1™} '
{0}
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It is now possible to put the equations describing the translation and

rotations of the bodies in a compact form which we will call the system

vibration equations

MI{q} + [6)q} + [K1{q} = [RI{8} + {F} + [L1{)}

(4.37)

The éomponent matrices in the system vibration equations have the form

)
(']
M] = [mR+MRJ
[1R)1+[15)
0
0, o
"0
A../
6] = -[IR]{s}
\‘0\
0 ™0
-

0

[}

1]

[}

0
B} = (-[018) = [E0{s}),
; ; 0o ‘

]

:

0
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[R} = | [I,]1{s} (4.41)

(mh + M) [E°]

(L] = . T
=([IR]™ + [117)
'

- (™t (4.42)

The system rotation equation may be rewritten using equations

(4.35) and (4.41).
e —— o T . » . . )
[11{6} - ([T 1{shH {8} = - [R]"{q} - [T.1{8} - [1;1{s} (4.43)
Here the external torques have been set to zero. ' The term involving
the derivative of the rotor inertia matrix in the above equation and

in Equation (4.40) can be expressed in an alternate way.

[T 1{s} = [s1(T1{5} | (4.44)

The complete equations of motion for the system have now been
found. The next'step is to attempt to introduce distributed coordinates

into the analysis.
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4.5 Modal Analysis

The system equations of motion have now been formulated using
discrete coordinates and consist of the system rotation Equations (4.43),
the system vibration Equations (4.37) and the constraint Equations
(4.25). The modal analysis will be introduced in order to substitute ‘j§
distributed coordinates for discrete coordinates in the vibration’equa—
tions. The objective is to reduce the order of the system (number of
degrees of freedom) while still being able to represent system behavior
adequately. This process is generally termed 'truncation".

The first decision is the choice of the eigenvalue problem to be
solved. If the eigenvalue analysis is performed on the homogeneous
vibration equation

M1{g} + [61{4} + [K1{q} = 0 (4.45)
the result will yield complex modes, or eigenvectors represented by

 complex numbers. A major drawback of this course of action is that
these modes depend on the spin rate. From a numerical standpoint,
working with complex numbers may also prove cumbersome.

Real modes would result from an eigenvalue anaiysis of the equa-
tions ;

[M]{Ei} + [RKl{q} =0. (4.46)
since [M] and [K] are real and symmetric. This represents a modal
analysis of the free-free system where the rotor has been "frozen"
(spin rate set to zéro). Besides the numerical ease of working with
,teal'numbers only, the major advahtagekof,thié choice of eigenvalue

problem is that the Modified Tisserand Frame may be defined by. the Mode -
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Shape Constraint. This will eliminate the Lagrange multipliers from
the vibration equations.

Let [¢] be a rectangular modal matrix corresponding to Equation
(4.46) where the six rigid body modes have been eliminated. The defor-
mational modes included in [¢] have nonzero natural frequencies and are

normalized sc¢ that

(017 M1[6]

Il
-
=

01T [K1[6] =

[
E:
jo I N ]

] (4.47)

where [E] is the identity matrix and [&i;]is a diagonal matrix of
natural frequencies squared. The substitution is made that

{q} = [¢1{n} (4.48)
where {n} depends on time only and the vibration equations are pre-

multiplied by [¢] transpose. The resulting vibration equations are
. A T .
{n} + [wn]{n} = - [¢1°[G][¢1{n}

+ 1617 RI6) + [017(F} + [01T[LITA} (4.49)
An examination of the constraint relationship Equation (4.25), shows ’

that it can be written in the matrix form

- ity = o (4.50)
With the modal coordinates defined in Equaticm (4.48), the constraint

relationship becomes

T . :
- L1 [¢]{n} =0 (4.51)
But with the Mode Shape Constraint, the coordinates {ﬁ} are independent
as a consequence of the orthogonality of the nonzero frequency modes to

the rigid body modes. Thus the constraint relationship must be
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fulfilled by setting all coefficients of the modal coordinates to zero

in the constraint equation

- w'er = 0 (4.52)
It is an easy step from the above to eliminate the Lagrange multipliers

from the problem by realizing

[617[L] = 0 . (4.53)
When the modal matrix is introduced into the system rotation equation,

the resulting equations for system behavior become

TTHEY - (L1 148) (6} = - [81THAY - [T1M8) - [T 103}
o ) (4.4}
i+ 2[c]f ]ty + [wi]{n} = - 1017 [C1 1014} + [A146} + [617(F)

where the coupling between system rotation and vibration depends on

(41 = 1617 [R] (4.55)
Modal‘damping is also added for this set of equations., The quantity [C]
is.a diagonal matrix containing the percent of critical damping for
each mode. This final set of‘equafioﬁs describesvthe motion,of a system
which is free of external forces and torques and for which changes in
the rotor angular momentum are’first‘order.

The structure of the system eqﬁétions of‘motion has several
impoftant aspects. First, the rotation of the Mpdified Tisserand Frame
(rigid body mode) is coupled to the vibration and vice-versa. . The
second aspect is that the vibration modal coordinates are coupled to
éach other by the gyroscopic tefm. This complicates the truncation

process. An examination of this gyroscopic term will have to be made
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last point is that the "inertial coupling" present in the hybrid
coordinate technique for analyzing flexible appendages is not present
here. That is, the coupling is not between the second derivatives of
the frame coordinates and modal coordinates. The use of the Modiffed
Tisserand Frame has permitted the elimination of this "inertial

coupling" from the final equations.
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CHAPTER 5
CONTINUUM ANALYSTIS

5.1 Chapter Summary

In this chapter we define a very simple physical system for an
analysis as a continuum. The continuum analysis uses Hamilton's
Principle to derive governing partial differential equations with
boundary conditions. The physical system consists of a long slender
beam with an axisymmetric rotor mounted at the tip of the beam with the
axis of symmetry normal to the beam and parallel té a principal axis of
the beam cross section, ﬁhen the beam is undeformed. The rotor is sym-
metric with static and dynamic balance. The center of mass of the rotor
lies on the beam centroid in order to simplify the presentation. The
rotor spins with a constant rate plus a small, first order speed varia-
tion., The beam is uniform and inextensible and is modeled as a
Bernoulli—Euler beam. The beam is allowed to vibrate in the plane
defined by the beam and the rotor axis, in the orthogonal planekcontain—
ing the beam, and about the centroidal axis (torsional vibration). No
damping is assumed and the system is free of external moments and forces.

The governing partial differential equatidns have a very simple
structure. Three separate equations’result for the system. They
represent in-plane bending, out-of-plane bending and twist. All of
the equations are homogenequs and are the familiar forms associated
‘wiﬁh the bending and torsion of a uniform bar. On the other Eand,
the boundary conditions for the equations have a very complicated
structure, Because of the gyroscopic coupling provided by the rotor,

the in-plane bending and torsion are coupled through the boundary
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conditions. In addition to this coupling, the boundary conditions

depend on the eigenvalues of the system. The out-of-plane bending is w
not coupled to the other system motion, but the boundary conditions

depend on the rotor speed changes and are therefore time dependent.

The solution of an equation with time dependent boundary condi-
tions involves a special transformation which for some cases renders
the boundary conditions time independent. For a modified system, this
solution technique is presented for out-of-plane bending. If a tradi-
tional separation of variables is employed for the coupled bending and
torsion, the independence of each coordinate will cause only one solu-~
tion to be admitted; this is the trivial solution corresponding to zero
displacements. ' This result forces the separation of variables to adopt
a new structure. The spatially dependent coordinates are distinct for
bending and torsion, but they both have the same natural frequency. A
difference in phase is allowed between bending and torsion. The result
of this solution form involves complex mode shapes. The interpretation
of these modés leads to the physical solution where in-plane bending and
toréion are ninety degrees out of phase. The rotor tip is then seen to
trace out an ellipse wherekone axis represents pure bending and the
other axis represénts pure torsion.

The laét section of the chapter provides numerical solutions for
a particular choice of paraméters. The solutions for different rotor
speeds are présented to show the dependence of complex modes on the
spin rate. The actual solution for the naturél frequencies. and mode
shépes‘for specific systems éllows greater physicai ingight into the

dynamics of the system,
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5.2 Governing Partial Differential Equations

In this section, Hamilton's Principle will be used to derive the
equations of motion and boundary conditions which govern the behavior
of a very simple physical system. This system consists of a long
slender flexible beam with a rotor mounted at the tip. This system is
shown in Figure 5.1. The system is free of externally applied forces
and moments. Because of this, the system center of mass is an inertial
reference point. A set of inertially fixed unit vectors, ﬁi}, have their
origin at the center of mass. The system has no démping and the beam is
unifofm and inextensible. It is modeled as a Bernoulli-Fuler beam with
degrees of freedom for displacement in—plane; out-of-plane and torsional
twist about the centroidal axis. The beam does not include the effects
of rotary inertia and shear deformation and no degree of freedom is
included to allow longitudinal vibration. The rotor is mounted on the
tip of the beam with the center of mass of the rotor placed on the
beam centroid. - The rotor is symmetric and has static and dynamic
balance. A locally attached vector basis, {E}, is fixed at the tip of
the beam, with one axis aligned along the rotor axis of symmetry and
another axis aligned along the beam. The origin of these axes is placed
on the bheam centroid. This set of axes is representative of a general
setkof axes fixed in each beam cross-section. A frame v is fixed
relative  to the rotor. The rotor speed consists of a constant rate
plus a small, first order variation that is time dependent. It is not
necessary to employ a Tisserand frame, since the requirement that the
‘speed variation be small will ensure that the inertial displaceménts of

the beam are small (first order quantities).
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A first order analysis is used when we apply Hamilton's Principle.

For conservative, homonomic systems, Hamilton's Principle is written
t2
csf Zdt = 0 (5.1)
f1

where % is the Lagrangian of the system. The Lagrangian is the differ-
ence between the system kinetic energy and the system potential energy.
=1 -0, (5.2)
Hamilton's Principle requires that the actual path (Newtonian path) of
the system in configuration space renders the value of the definite
integfal of Equation (5.1) stationary with respect to all arbitrary
variations of the path between the two time points. The arbitrary
variations from the true path create what is called the varied path.
It must be understood in Hamilton's Principle that the varied path
coincides with the true path at the endpoints of the integration; that
is at time pointsktl and t2 the variations are zero. The advantage
of Hamilton's Principle is that it provides in a formal manner both the
partial differential equations of the system and the associated boundary
conditions.,
In order to keep first order terms in the equations of motion
and the boundary conditions, second order terms must be preserved in
the kinetic and strain energies. The kinetic energy for the system

is first written as

T=-1é-fé-gdm (5.3)
S

For the beam component of our system, the vector p from the system mass

- center to: the generic mass element may be written
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g=r+p=p+u+p (5.4)
The geometry of the beam is shown in Figure 5.2. The beam centroid is
defined by the relationship for each cross~section dA

fp_ dm = 0 (5.5)

dA
The vector p is normal to the centroidal axis’and locates the mass
element relative to the beam centroid. This vector is fixed in the
locally attaéhed,vector basis {E} and has no component in the EB direc~

tion. The vector is written

p= B {p, | (5.6)

The torsional twist, Y, is assumed to be about the centroid. If rotary
inertia effects are to be ignored, then the only cdmponent of angular
velocity of the locally éttached frame, {E} that needs to be considered
is that associated with torsion, @Ea. Thus the derivative of the vector

2_w1th respect to inertial space is
"‘PP?_
‘e bi ~
R=W xp_g_{h} wpl (5.7)

The displaéemént,of the beam céntroid is‘xepfesented by the vector
r. This vector may be broken into two compbnents: a vector, E; which
locates the boéition of the uﬁdefofmed centroid and is fixed relative
to thé inertial‘axes, and a Vector g which representé the displacement
of the centroid. If the undeformed centroidal axis is aligned along the

~

gs direction as shown in Figure 5.2, then:E is simply 2z 16 and u has
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no component in the i3 direction. The derivative of the vector r may

then be written

i= a, | (5.8)
0
Remember that the vectorjﬁ is fixed relative to the inertial axes and
thus the location of the undeformed centroid, z, hgs a zero derivative.

The kinetic energy of the beam may now be written iin greater detail
-:-L-fé-f)dm=—1-~m(f12+\.12)dz+-]=fIlIJ2.dz (5.9)
2 Sl 2 2 1 2 2 B P :

This relationship has been simplified by eliminating terms made zero by
the centroid definition (Equation (5.5)) and by recognizing the mass

per unit length, m, and the mass moment of inertia per unit length

1, = [ %+ D) an. | a0
dA

For the rotor, the center of mass lies on the centroid and is

located relative to the system center of mass bykthe vector p,.. The

derivative relative to inertial space of Py is éR‘ The kinetic energy

of the rotor is simplified because of terms set to zero by the defini-

tion of the rotor center of mass. The kinetic energy of the rotor is
written

Ly tanely o oo 41 v vi ,
2.4-‘3 pdm=35M Uyt % DR'i"-R A3

wvhere MR and'[]R are the rotor mass and inertia dyadic respectively and
" - ; , - ,

e P vl . '
space. Care must be taken in the evaluation of W'~ since it is not a
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first order term and since all second order terms must be retained in
Equation (5.11). The rotor angular velocity is

W't = WP 4 Pt (5.12)

In this expression, the angular velocity of the rotor relative to the
mounting frame,_gyb, is not a first order quantity. It has a magnitude,

Q, which is an arbitrary constant plus a first order variation and it

has direction Ei:

wa

=Qb, . (5.13)

The angular velocity of the beam tip with respect to inertial space is

bi
[

W The detailed derivation of the components of le is given in

Appendix B. The second order terms must be included in the analysis,

-0 Y_u'
R, R'R, |
bi _ T "y “r
wy = {b} uRl + RuR2 (5.14)
@ -u! !
R R, R,

The components of Yp in inertial a&es are (uR > Up 0). The primes
, ‘ ' "1 2
indicate spatial derivatives and the dots represent time derivatives,
so that
32uR
T
R, dz ot
32u
. R2
] P .
YR 9z ot (5.15)

As noted above, the twist due to torsion is the angle Y and the sub-

script R denotes evaluation at the rotor mounting point. The rotor
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has a symmetric moment of inertia IS and transverse moments of inertia

IT. The inertia dyadié may be written as

I, 0 0
= {p1T ey
DR =X jo 1, o li{b} (5.16)
0 0 IT_I

Keeping.all second order terms, the last quantity in Equation (5.11)

is written

1l vi Loovi 1 22 ol sy
> w []R w o= 5 IS Q" + IS Q( uR2+ wRuRl)

1o ey N2 1o [ \2, 1 2
+3 IS(URZ) +3 IT(uRl) ridgp? Gan

It is now possible to Write'the system kinetic energy

T=—1—fm({12+{12)dz+—1-f1 1% dz
2 J,me Yy 2 J, '

+ —%— MR[(‘.’Rl)Z + (&Rz)z] + -;— I 5?2

I Q0 410U o
s R, " s 'R "R,
1 v Y2 1 v \2 L L oeh 32
+ 5 Is(uRz) + 3 IT(uRl) + 5 IT(wR) , (5.18)

The kinetic energy includés all second order terms. The subscript R
represents evaluation of the quantity at the rotor mounting point,

where z equals Ql.
The strain energy of the system comes from three types of deforma-

tion: din-plane bending, out-of-plane bending and torsion about the

centroidal axis. The strain energy may be written
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(ﬂ) dz (5.19)

where EI is flexural rigidity and GJ is torsional stiffness.

It is now possible to write the Lagrangian in terms of the scalar
functions ul(z,t), uz(z,t) and Y(z,t). By taking the first'variations
of the kinetic energy in Equation (5.18) and of the strain energy in

Equation (5.19) it is now possible to write Hamilton's principle in the

form.
. 3
2 L] -
afzgdt=f flm(u6u+u6u)dz+f11w6wdz
t ) Ly, F
1 1 2 2

+ MRﬁl(,Q,l)éﬁl(R,l) + MRQZ (9,1>562 (2;)

-I.8 6{15(11) + I 0 w(zl)sul(zl)

S
3 o ° 1 °
+ IS 9] ul(Zl)OW(zl) + IS uz(ﬁl)éuz(ll)
.y ¢ 7 1
+ IT u1(21)6ui(21) + IT w(ll)éw(ﬂl)
Zl 21
- " " - u" "
4 Ellduldz4 226u dz
2 2
21
-f GI Y'8Y' dz bdt = 0 , (5.20)
_22 :

In order to arrive at the final formulation of Hamilton's Principle
it 1s necessary to integrate by parts. When variations of the coordi-
nates at times ty and t, are set to zero, Hamilton's Principle has the

form
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t2 2,1 , 2,1
L 1" _ T "
f / [mul EIlul ]Guldz + {,Q, [mu2 E12u2 ]Suzdz

2 2
f [—-I ¥ + (‘Jll)"](swdz +[EI m (SZ, ) - M'Ru L )]6u ('Q’ )
+[—ISS'2¢3(21> - IR - EIlu'l'(Zl)]csui(g,l)

+ [y @) - iy @p]ou, )
+ [-1giyp) - B2 QR + T Q](Su
+ [1ghi 2 - 10 - cw'czl>]<sw<zl>
EXS) 28y 2+ By -0 Jsus (-2,
[E:rzug' ) >] Sty ()4 [EI W (-2 )]au2< 8- [mw &) )] 6(-2,)} de=0
(5.71)

Since the variations are independent and arbitrary, all quantities in

square brackets must be set to zero. TFor in-plane bending, u., the

1
partial differential equation is

i 1"y =
mu, + EIlul 0 (5.22)
with the boundary conditions
u(0) =
u’i’ 0) =
(L) = - L 1@ -1 SNJ(L)

ET u)' (L) = M i (L) ‘ (5.23)
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A shift of origin was made in the spatial coordinate so that —22 becanme
zero and ll became L, the beam length., = The boundary conditions for

in-plane bending depend on the torsion V. The partial differential

equation for torsion is

IPﬁ - GIY" = 0 (5.24)
with the boundary conditions

P'r) =0

GIY' (L) = - ITi(L) + 150 (1) (5.25)

Again there is coupling between torsion, Yy, and in-plane bending, Uys
in the boundary conditions. This represents the gyroscopic coupling
present in the system. Both coupling terms in the boundary conditions

are seen to depend on the rotor spin rate, . The partial differential

"equation for out-of-plane bending is
A 7 trey - ;
mu,) + E12u2 0 ‘ (5.26)

with the boundary conditions

uE(O) =0

uznv (O) = 0
EIzug(L) = - Isﬁé(L) + Isﬁ
ET,uf' (L) = MR{;Z(L) ~ (5.27)

The out-of-plane bending is not coupled to other system behavior, but
- the boundary conditions are time dependent. The term § in Equation
(5.27) tepresents a small acceleration in rotor speed which is a first

order function of time.
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Hamilton's Principle has beén used to formulate the partial
differential equations and the boundary conditions which govern system
behavior. The boundary conditions represent moment and shear forces
'applied to the beam ends. The structure of the system equations demon-
strates gyroscopic coupling between in-plane and torsional motion.

The next section will deal with the solution of these equations by using
separation of variables.

5.3 Solution of the Partial Differential Equations

In this section, the technique of separation of variables is
employed to solve the partial differential equations which govern the
system behavior. The first approach is to choose independent coordi-
nates for the separation of variables. The out-of-plane motion is
independent but the boundary conditions include time dependent terms
and mixed spatial and time derivatives (Equation (5.27)). The separa-
tion of variables method cannot be applied to this equation and boundary
conditions because of their structure. Solution techniques involving
integral transform methods such as Laplace transforms may be applicable,
but they will be hampered by the complexity of the system and are not
investigated here.. Instead, a modified system of greater simplicity is
introduced for out—of-plane bending. A generalized separation of vari-
ables method is applied and the problem is transformed into one contain-
ing a nonhomogeneous differential equation with homogeneous boundary
conditions. This system of equations is solved using the normal mode
method.

Investigation of the coupled solution for in-plane bending and

torsion shows that the choice of independent coordinates will allow
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only the translational rigid body mode and the trivial solution to be
admitted, The system motion is found by using a separation of variables
with distinct spatial functions (mode shapes) but with the same time
dependent function (modal coordinate). The in-plane bending and torsion
then have the same natural frequency. Solution of the partial differ-
ential equation and boundary conditions yields "complex" mode shapes.
This means that the modes, or eigenfunctions of the system, are func-

- tions with wvalues which are complex numbers, The physical interpreta-
tion of these complex mode shapes is that in-plane bending is mninety
degrees out of phase in the time domain with torsional bending. With
both motions harmonic, the system normal modes oscillate back and forth
between pure in-plane bending and pure torsion. The tip of the rotor
shaft mounted on the beam can then be seen to travel in an ellipse with
one axis representing in-plane bending and the other axis representing
torsion. This represents a coning of the rotor shaft about the vertical
where the cone angle varies sinusoidally. This motion is shown in
greater detail in the next section.

Addressing the out-of-plane beﬁding motion, the structure of the
boundary conditions (Equation (5.29)) presents two degrees of complexity.
The first property ofkﬁhe boundary conditions is that they involve both
spatial and time'derivatives. The presence of time derivatives normally
causes the boundary conditions to depeﬁd on the eigenvalues of the sys-
tem. The seccnd property is tﬁat the boundary conditions involve the

accelerations of the rotor and are therefore time dependent. Each of

these complexities could be dealt with separately by known methods ; , f

involving separation of variables, but these methods do not work for
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the problem at hand. The methods for transforming time dependent
boundary conditions into homogeneous boundary conditions require that
the system does not have time derivatives in the boundary conditions.

In order to proceed to a solution for out-of-plane bending, the physical
system is further simplified and the time derivatives are eliminated
from the boundary conditions. The system for out-of-plane bending is
one where the rotor and beam, taken iogether, have the mass and inertia
properties of a uniform beam. This eliminates the moment and shear
forces applied to the beam tip by the "nonspinning' rotor. The equa-

tion describing the system is

"y = ¢
mu2 + E12u2 0 , (5.28)

with the simplified boundary conditions

uz"(O) = 0

uznv (O) =0

EIUS(L) = ISQ

ug'(L) =0 (5.29)

These boundary conditions are now free of time derivatives and may be

transformed to homogeneous boundary conditions by
u,(2,8) = w(z,t) + (IR (5.30)

where the step function S(z)‘is

S(z) = O2 0€2z<L-¢
Z2 .
e - < < .
s(z) 5T L-eXz<€L | (5.31)

The choice of S is not unique but it must satisfy the constraints
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SH (O)

Slll (0) = 0
EIS"(L) = 1 V
S (L) =0 ’ (5.32) f;

The transposed partial differential equation is then

e B = - gy o _ M e}
w''" + ET; w S ISQ BT SISQ _ (5.33)

with the homogeneous boundary conditions

w'(0) =0

W' (0) = 0

w'(L) =0

W (L) = 0 (5.34)

The homogeneous solution is then found usiqg the separation of variables
w(z,t) = g(z)u(t) (5.35)

This yieldskthe natural frequencies, W, and mode shapes, g(z), of a

free-free uﬂiform beam. The nonhomogeneous solution is then found by

modal analysis

iin(t) + quZ1 un(t) = Nn(t) - ; | (5.36)
where
N () = -8 1 f-n 1.8
n ' n S n S
and
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- %f g, (L-€) - é—I(L-E) gy (L-€) - é—I (L—e)zg;' (L-e)  (5.37)

The last expression involves the derivatives of S across the disconti-
nuity. The resultant derivatives of Dirac "delta" functions must be
integrated by parts, but this allows easy evaluation of the remaining
integrals. The solution of Equation (5.36) for zero initial conditions

is given by the convolution integral
1 t
un(t) = Z)—r:‘/oﬂ Nn(T) sinwn(t-'r)dr (5.38)

The final out-of-plane bending for our simplified model is then
described by
n .
u,(z,t) = 2_: g, (2N _(t) + I08(2) . (5.39)
i=1
The use of a step function for S raises questiohs concerning the
spatial continuity of the solution and invariance of the solution to. the
location of the step. For physical reasons, the value of & would be
kept small due to the fact that the moment is applied at the beam tip.
The coupled in—plane bending and torsional motions are described
by the following paftial differential equations and boundary conditions

b [ LL] -
mu, + EIlul =0

ug(O) =0
uz'(O) =0
EIu) (1) = - L 61() - ISS'Z\ZJ(Q
BIuy' (L) = Mpii, (L)
{(Continued)

84



¥ - Gy = 0
Y'(0) =0
GIY' (L) = - ITi(L) + Ty (L) (5.40)

If independent coordinates are chosen, then the separation of
variébles has the form
u; (z,8) = £(2) A(t)

Y(z,t)

]

h(z) v(t) , (5.41)
The first motion to be investigated is the rigid body mode correspond~
ing to zero natural frequency. If zero initial displacements are

assumed, then the general solutions are given by

_ , 2 3
u; = (Dl + D2x + D3x + D4x )t

Y (D5 + D6x)t (5.42)

Substituting these expressions into the boundary conditions will set
all constants to zero except Dl' The rigid body motion allowed by the

system is in-plane translation. Rotational rigid body modes are not

permitted.
Proceeding with the separation of variables using independent

coordinates, the equation for the in-plane bending modal coordinate is
.. 2
A+ wy A=0 (5.43)

where wl is the natural frequency. The equation for the mode shape is

EI
ey —_ l 2 — -
£ —=w] £=0 | (5.44)

with the boundary conditions
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£'(0) = 0

£ () =0
" _ e ' - 9
EIlf @i = wlle (LYA inIth(L)v
"e - — 2
EIlf L) = Wy MRf(L). | (5.45)

The boundary conditions depend on the eigenvalue, ml, because of
Equation (5.43). The introduction of the imaginary number, i, comes

from the equation for the modal coordinate for torsion
. 2
V+wyve=0 A (5.46)

where w3 is the natural frequency. The solution for this equation is

iw3t
Vv = ce (5.47)

The time derivative of Y found in the boundary conditions (Equation

(5.40)) can then be eliminated using
PeL) = iw, h(L)V (5.48)

By employing a similar substitution for the time derivative of the

in~-plane bending variable based on Equation (5.43), we have
{1i(1.) = dw £ (L)A , (5.49)

The differential equation for torsion becomes

. |
B + ?;'fri w% h =0 (5.50)

with the boundary conditions

h'(0) = 0

GIR' (L)V = ngTh(L)v + 10 THE WA, |  (5.51)
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Let us look in detail at the boundary conditions given by Equations
(5.45) and (5.51). It has not been possible to eliminate the time
dependent variables from the boundary conditions. These time dependent
. variables have distinct natural frequencies. The boundary conditions
containing the time dependent coordinates are

[Ellf”(L) - wiITf'(L)])\(t) + [iw3ISs'2h(L)]v“(t) =0

[éJh'(L) - wngh(L)]v(t) - [iwlISQf'(Li]A(t) -0 (5.52)
The only manner that these equations may be satisfied when A(t) and
V(t) have distinct, nonzero, natural frequencies is to set the terms

within square brackets to zero. As a consequence of this, the boundary

conditions in Equation (5.52) become

£'(1) =0

£"(L) = 0

h(L) =0

h'(L) = 0 B (5.53)

The general solutions of Equations (5.44) and (5.50) are

f(z) = Cl sinBlz + C2 cosBlz + C3 sinhBlz + C4 coshBlz
h(z) = C5 sinBzz + C6 cosBzz (5.54)
where

4 m 2

By =7y~ w

1 EIl 1

I

2 _p 2 | |

82 =5 w3v (5.55)

When these functions are substituted into the boundary conditions that

come from Fquations (5.45), (5.51) and (5.53), the solution for the con-

stants becomes

87




C.=¢C,=C,=C,=¢C_=C,_=0 (5.56)

This represents the trivial solution corresponding to zero movement.

In order to solve for the system behavior, a different separaticns
of variables technique must be used, The modal coordinates for in-plane
bending aﬁd torsion now are assumed to have the same natural frequency,
w. They are separated in time by a phase delay ¢. The separation of
variables has the new form where the coordinates are coupled

u, (z,t) = £(z) A(t)

Y(z,t) = h(z) A(t-9) (5.57)
The time dependent terms may now be eliminated from the boundary condi=-
tions given by Equation (5.52). The procedure is to replace V(t) by
A(t-¢) in Equations (5.45) and (5.51). When dividing by A(t) we may

use the relationship

AE) = cellt (5.58)

The boundary. conditions for the coupled set of equations then have the

form
£70) = 0
£ (0) = 0
h'(0) = 0 |
EL £"(L) = W I ' (L) - WI (L) e I
EIE"™ (L) = - w’M (L)

iwd

6Ih' (L) = W I h(L) + LW HE' (L)e (5.59)

Using the general solution forms given by Equations (5.54) and the first

three equations given above will give the result
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3 1
C4 = C2
C5 =0 (5.60)

This result assumes that the natural frequency is not zero. Thus the
rigid body mode is excluded from the solutions which use Equation
(5.60). The last three boundary conditions of Equation (5.59) deal
with the moments and shear forces applied to the beam by the rotor.
Using the solution forms in Equation (5.545, the boundary conditions

are written in matrix form.

Ellﬁi(ulnlmll.-ﬁinﬁlL) Elll*ﬁ(coshﬂlL—cusﬁlL) .
2 2 : i3 - 4)
~u} [,l"vl(caﬂb]lfécuuhi‘ill.) - IT(‘I(alnP-le*s‘tnhz'lL) uISucos(nzL)u
EL, 62 (conhi Tmcosi L) EE 4 (5 1n® Lbalnhis 1) “
3 l"l cnihy ] wtusyl . 3 l‘ 1 n §y Lt n 1
2 2 B} Cpb= 0
i NR(‘lim‘lL+sinh(t1L) s t'u(cosl$lL+coshL~'11,)
C
n (4 6
. 1(— + t) . 1(— + ¢) ;
[T git (cost Lbeastus L) 2 1 (s dnhe Lostoy L)e 2 -GJﬁzsinFZL-leTcosﬁzj (5.61)
where
84 -2
1 EIl
(5.62)
I
g2 - P2
2 6

The characteristic equation of the system is found by setting the
determinant of the above matrix to zero. This will yield the equation

for the nonzero system natural frequencies.
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[(‘/IPGJ sinBzL + ITw cosBzL)

1/4
[[ﬁS(E11)3] v&E_(cosﬁchoshBIL—l)

2 .
-mITw cosBlL(51n61L + sinhBlL)

+MR(EIlm)l/2 w(cosBlLsinhBlL-sinﬁchoshBlL)
m 1/4 5/2 2
"MRIT(EEI) w”’ “(cos BlL+cosBchoshBlL-sinBlLsinhBIL)

+w(IS§)2cos82L[m(sinBchosh81L+cosBlLsinhBlL)

1/4
1/2
+ MR(%I-) W

(cosBchoshBlL + 1)]]= 0 (5.63)

The above equation for the naturalkfrequency must be solved numerically.
Once a natural frequency has been found, the corresponding mode shapes
come from the solution of the matrix equations (5.61). The mode
>shapes are found to be

f(z) = Cl[sinﬁlz + sinhBlz + Rl(cosﬁlz+coshBlz)]

-1<121 - )
g(z) C,R,e / cosBzz ’ (5.64)

where the real constants R, and R, are

/
/

(m3EIl)1 4(coshBlL-cosBlL) +'MR(sinBlL + sinhBlL)

Rlz_

(m3EIl)l 4(sinBlL+sinhBlL) + MR(cosBlL + coshBlL)
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1/4
[ EI 1™ (coshB L cosB )- IT(EIl) 3/z(sinﬁ L+siphﬁlLi]

q i
(m3EI )1/4(cosh8 L—cosB L) + MR wllz(sinB L+sinhB L)J E‘

(sinB L+31nh8 L) + MRyfwkcosB L+coshB L)](I QicosB L) ; ’

1/4

[ EL m(sinhB L-sinf L) I (Ell) ws/z(cosBlL+cosh81Lﬂ

(5.65)
ISQ cosBzL

The above mode shape for torsion is a complex mode shape. In order to

place the proper physical interpretation on the complex mode shape, it

e il

is necessary to examine the displacements.

iwt

I

U’l

¢

fl(z)e

h(z)et @E®) (5.66)
Since we know that the displacements are real, we shall take the real
parts of the expressions in Equation (5.66) by using the relationship

elwt = cosWt + i sinwt (5.67)

The displasements then become

u Cl[81nBlz+sinhBlz+Rl(cosBlz+coshBlz)]coswt

1

It

U] Cl[chosBZZ]sinwt (5.68)

The arbitrary time lag, ¢, drops out of the equations. The equations
for the displacement show that the in-plane bending is always ninety
degrees out of phase with the torsional bending. This follows directly
from the phase relationship of the sine and cosine functions. It is
this phase relationship between in-plane bending and torsion which
shows the system to have gyroscopic coupling. The system behavior may

now be calculated by solving the frequency Equation (5.63) and then
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calculating the mode shapes by (Equation (5.64)). This work must be
accomplished numeriﬂally'due to the complicated structure of the equa-
tions.

5.4 Numerical Solutions

In this section, we shall formulate an example problem and solve
for the coupled in—élane and torsional motion. In this manner, we shall
be able to examine the gyroscopic coupling exhibited by this system for
a-specific case. This should increase our unmderstanding of the dynamic
interactions involved for this class of systems.

We start by choosing physical parametérs for the system. The
beam will be 10 meters long with an in-plane bending fundamental fre-
quency equal to 1 Hertz and a torsional fundamental frequency equal to
5 Hertz. The mass of‘the beam will be 150 kg. and it has a cross
section which is one meter square. The relationships for the funda-

mental frequencies of a free-free uniforms beam are

5 = 3.563 E14
mL

= L1y /6T /
2591 il , , (5.69)

These expressions are inverted in order to solve for the values of

th
i

flexural rigidity and torsional stiffness

3
11820.53:%

LI =
sec
k —m3 '

GI = 25000. ;375 (5.70)
sec )

The value for mass moment of inertia per unit length, I, is 2.5 kg-m.
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The rotor has a mass of 5.236 kg, a symmetric moment of inertia of
.2909 kg—m2 and a transverse moment of inertia of .5818 kg-mz. The
rotor spin speed is fixed at values between 0 and 1000 radians per
secon&. This value is v;ried parametrically.

The firét result to be shown is the dependencekof the system
natural frequencies on the rotor spin speed. Solutions of the frequency
eqﬁation (Equétion (5.63)) were obtained numerically for rotor speeds

between 0 and 1000 radians per second. The first two natural frequen-

- cles are plotted in Figutes 5.3 and 5.4. In order to examine the mode

shapes themsalves, the rotor'spin speed was fixed at 1000 radians per
éecond and thg mode shapeskwere calculated using Equation (5.64).

These mode shapes are shown for the first five natural freqﬁencies in
Figures 5.5 to 5.9. The first mode (Figure 5.5) involves much more
rotation than bending. It is related to the rotational rigidlbody mode
that would result if the beam,werekrigid. This is confirmed by noting
in Eigure 5.3 that for zero spin speéd this mode has ééfo natural fre-
quency. The last aspect of the system behavior torbe examined involves

the rotor motion. For small in-plane displacements, the rotor shaft

~will rotate an angle equal to the slope of the in-plane mode shape

‘evaluated at the beam tip. The tip of the rotor shaft will then rotate

in an elipse as shown in Figure 5.10. The rotor is spinning counter
clockwise, but the rotor tip can cone in either direction. The direc~
tion of the coning motion is determined by the moment applied to the

rotor (negative of the moment applied to the beam) and is thus a function

of the ¢urvature (second derivatiVe) of the mode shape evaluated at the

beam tip.
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Figure 5.3. k First Natural Frequency.
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Figure 5.4, Second Natural Frequency.-
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Figure 5.5. First Mode Shapes.
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Figure 5.6. Second Mode Shapes.
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Figure 5.7. Third Mode Shapes.
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CHAPTER 6
NUMERICAL RESULTS FOR THE FINITE ELEMENT MODEL

6.1 Chapter Summary

This chapter presents a solution using numerical integration for
the finite element model equations of motion. The physical system
chosen for the example problem consists of a uniform beam with a con-
stant speed, axisymmetric rotor mounted at the tip. This is the same
system analyzed in the previous chapter which used a continuum approach
that required the solution of the governing partial differential equa-
tions. The verification strategy consists of a comparison of the
results of the numerical integration of the finite element equations of
motion with the closed form solution attéined by the continuum analysis.
The initial conditions are calculated using the closed form solution
and correspond to a system normal modekfor the coupled in-plane bending
and torsioﬁal motion.

The modal analYéis is performed on the system with the rotor
"frozen'" (zero spin rate). In the construction of the mass and stiffness
matrices,_constraint relationships arise since each mass element of the
beam has only three degrees of freedom. The constraint relationships
ére accommodated‘thréugh the ‘introduction of displacement compatibility
matriceé when the final matrices are assembled from their component
‘parts. = The stiffnessfmatrikaay’aléo be calculéted frém the continuum
vStrain énergy,expféssion by the adoption of finite differences. An
eigenvalue analysis of the final mass and stiffness métrices'produces

a set’of natural frequencies and real modes (eigenveétors).
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The numerical integration is accomplished by a fourth-order Runge-
Kutta algorithm. The only variables integrated are the Tisserand frame
variables and the modal coordinates corresponding to the lowest nonzero
frequencies for both in-plane bending and torsion. This represents a
truncation of the number of coordinates from thirty to four (no out-of-
plane motion is initiated). The results of the integration show good
agreement with the closed form solutions. The chapter closes with e
discussion of the truncation procedure. Emphasis‘is placed on the inter-
relation of the coordinates that results from gyroscopic coupling.
Modes which are strongly coupled should be treated as a unit in the
truncation procedure; that is, they should be kept as a group‘or
truncated as a group.

6.2 Example Problem and Modal Analysis

This section will describe the physical system to be modeied and
the constraint relationships involved. It will then construct the mass
and stiffness matrices to be used in the modal analysis. The pliysical
system is the same as the one described in Chapter 5. The difference
here wili be the method by which a mathematical model of the system is
created. ' For the previous analysis, the system was modeled’ae a uniform
continuum and partial differential equations with boundary conditions
‘resulted. Ordinary differential equations were obtainedrby introducing
a separation of variebles. For the finife element model, ordinary
‘differential equations are obtained dlrectly‘by breaking the system into
a number of discrete, finite elements.

To review the selection of parameters, the beam ie 10 meﬁers in

length, 150 kg infmaés and has a l‘meter square cross section. The
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flexural rigidity, EI, 1s equal to 11820 kg—m3/sec2 and the torsional
stiffness, GJ, is 25000 kg-m>/sec’. The rotor has a mass of 5.236 kg,
a symmetric moment of inertia of ;2909 kg—m2 and a transverse moment
of inertia of .5818 kg-mz. The rotor spin speed is fixed at 10 radians
per second.

The beam is divided into fifteen equal rigid bodies that are
connected by massless beams as shown in Figure 6.,1. Each rigid body
has a mass of 10 kg and a moment of inertia about the third axis of
1.6667 kg-mz. The other moménts of inertia are set to zero in order to
eliminate rotary inertia effects. The system moments of inertia are
1262.8, 1263.1 and 25.6 kg—m2 about axes one, two aﬁd three respectively.
Each massless beam has a length of two thirds of a meter.

We shall be concerned with the calculation of natural frequencies
and mode shapes for in-plane bending and torsion. The plane mentioned
here contains the rotor symmetric axis and the undeformed beam centroid.
Torsion is about the beam centroid. If we consider in-plane motion
first, we see that each rigid body will have three degrees of freedom;
transverse displacement and longitudinal displacement of the center of
mass and rotation about axis number two. The first constraint simply
sets the longitudinal displacement to zero by‘assuming that the beam is
inextenéible. The segond constraint relates the rotation to the trans-—
verse displacement. This is the same curvature constraint which was
’used in the,continuum analysis. (Equation (5.14)) and is derived in-
Appendix B,

2u ; ,
1 : . : ,
By = 52 o , (6.1)
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If this constraint is applied at the midpoint between rigid bodies and
if the angle is taken to be the average value for the two neighboring
bodies, the constraint relationships take the form

Bé + B§+l ui+1 - ui :
5 === 1=1,000yn-1 (6.2)

where Az is the distance between body centers of mass and is here equal

to two thirds of a meter. This relationship can be solved for ui+l and
yields

i+l _ 41, Az i i+l .

up to= g + > (%2 + 62 ) i=1,...on~1 ; (6.3)

This same result may be attained using a different perspective. Let
the bodies be connecced at the midpoints between them by a line hinge,

then the requirement for compatible displacements at the hinge point

will yield

Az _ Az S
where the rotations are asshmed to be small. This will produce the same
result (Equation (6.3)) as the curvature constraint. There are now

(n=~1) constraint relatiohships and they may be used to eliminate the

~ variables ui through u?. In matrix form, the constraint relationships

may be expressed as
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In compact form, this may be rewritten

{q} = [cl{q"}

Az

Az

0 0 ===~
0 0 == - ~=
0 0 === =--
0 0 - ===
SRR
1 0‘ - -
Az Az = - - <Az
0 0 ~=--0

NN N =B

(6.5)

(6.6)

where [C]'is referred to as a compatibility matrix. The mass matrix

will be found by applying a transformation involving the compatibility

matrix to the general mass matrix involving all displacements and rota- -

tions. The general mass matrix may be written in the form

M] =

m

1

-108
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where guidance has been taken from Equation (4.38) and m, is the mass
of body i and IT is the rotor transverse moment of inertia. The.
inertias of each body about axis number two have been set to zero in

order to eliminate the rotary inertia effect. The final mass matrix

has the form

m'] = [e1tMic] | (6.8)
where [M'] is symmetric but is no longer diagonal. The stiffness
matrix for in-plane bending is constructed from an assemblage of simple
component matrices by using compatibility mafriées. The simple compo-
nent matrix is constructed for eacthassless beam by using assumed mode
SHapes. Each member of this matrix is’found by evaluating the expres-

sion
L ' :
kij = j(; EId)id)j dx | ; (6.9)

The assumed mode shapes, ¢i’ chosen here arise from a general third
order- polynomial that is forced in turn to represent unit displacements
and rotations about each end. of the beam. For unit displacement about

the end at x = 0, the mode shape is

=% 2 R=x 3 : k = |
oot - o
For unit rotation about this end; the mode shape is
7 =% 2 | : S
¢>2(x) = x(T) - (6.11)
For unit displademént_about the end at x = £, the mode shapéfis

6, - 3(%)2 o3

- 2(%)

(6.12)
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For unit rotations about this end, the mode shape is

o2
0, = ()

(6.13)

Using‘Equation (6.9) will yield the component stiffness matrix for each

massless beam element

12 e <12 6g ]
(1| 68 w? -en 22
kil = (=3
2 =12 =64 12  -6%
6, 20° -8 42‘3
The general stiffness matrix is then written in the form
r— in——
[e,1
[k,] 0
[K] = \,\
: L8
0 [kn—Z] ‘
[k _,]
A —

(6;14) ~

(5,15

An additional compatibility matrix is also introduced to set equal the

displacement and rotation at x

‘rotation at x = 0 of beam i + 1

= { of beam 1 to. the displacement and

s reépectively.

11 0 0 0-2=-c-- 0

0 1 0 0==-=w-- 0

0 0 1 0===~==-= 0

0 0 0 1 0=-=m=m==c- 0

[Cl]= 0 0 l 0 O 0 ------ 0
G@1x2n) |0 0 0 1. 0 0
fo o o o 1 o

00 0 0 0 1 0=-=--= 0

[0 0 0 0 0 0 0---0 1
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Note that the structure of [C'] comsists of (n-1) four by four identity
matrices with each one overlapping the last two columns of its predeces-

sor. The final stiffness matrix may then be written in the form

[K'] = ([c'1eD IKILC ILC] . (6.17)
A different perspective may be taken in order to derive the strain
matrix. To do this, we start with the continuum expression for the
strain energy
1 L 82u1 ,
U =Ef ET 2 dz ‘ , (6.18)
. =0 9z ,

where L is the length of the entire beam. Introducing the curvature

constraint (Equatiqpr(6.l)) yields

1 [ (as) 3
U= Z_I;EI az dz ; (6.19)

This expression may now be evaluated using a finite difference approach.
First the substitution is made
i+ i
38, BLT -8

2.2 2 ~(6.20)
oz Az o ' '

where Az is the distance between mass centers. ~ The strain energy may

then be written

2 | - | |
(”1—52) e e (6.21)

Expressed in matriX'form,'the stiffness matrix, [Kl]’ may be introduced

3L

(AZ)
1 ;. AT B |
v=1 K08} | o 6a22)

where~{82} is the column matrix of rotations. 1In detail, the stiffness

matrix has the structure
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r. e—
1 -1 0 0 =--=-=- 0
-1 2 -1 0 --=-- 0
(K] =_E_I_.§ L
(Az)
0- == === 0 -1 2 -1
0 — = = = = = 0o o0 -1 1 (6.23)

An interesting result ie that the strain energy does not involve

the displacement ui. This means that the matrix [K;] found,in Equa-
tion (6.17) must be singular; that is, it must possees a zero first
row and column. The matrix multiplications indicated in Equation
(6.17) were performed numerically and the stiffness matrik was  found
to be singular. The first row and column were found to be zero and
the popﬁlated submatrix was’equalkto [K1] found in Equation (6.23).
This zero row singularity will yield a zero eigeﬁvalue which will cor-
respond to the translational rigid body mode. Since the rank of [K']
is degenerate by 2 (ﬁwo less than order of the matrix) anotherfeero
eigenvalue ﬁill be present and}correSponds to the rotatio@al rigid body

mode.

The free-free modal analysis of the in-plane bending is performed

by solving the eigenvalue problem
('] - W'D 1{q'} = {0} - FR (6.24)
The resultihg eigenvectors {qi} for distinct natural frequencies
are orthogonal since the massvend stiffness matrices are symmetric.

{qi}T[Mf]{qj'} =0 TE

g wi‘# W B - (6.25)

If the eigenvectors are arfangedeby columns in a modal matrix [¢'], and
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if the eigenvectors corresponding to the same natural frequency are
made orthogonal by choosing their proper linear combinations, then the

system may be normalized to obey the relationship

[0'1°1' 116" = [E] (6.26)
where [E] is the identity matrix. .The constraint relationships may be
reapplied to the resulfant mode shapes using Equation (6.6) and the
resulting mode shapes will represent compatible displacement and rota-
tion. In terms of the modal matrix, we express this opération as

(61 = [cl[¢'] : o (6.27)
These resulting modes may now be input into the finite element model
equations of motion. . Plots of the first three nonzero frequency modes
are shown in Figure 6.2.

The modal analysis of the torsiona1 motion is much simpler due to

the lack of constraints. The mass matrix is diagonal and has the form.

- -
1
I3
A
M'] = 20 o
\
\
LY
0 \In . : .
I | C (6.28)

where I§ is the moment of inertia of'body i abuiii axis number three.

The stiffness matrix is calculated from the cohtinuum‘strain,energy,

I AT A ~ | |
U= G\ +— dz (6.29)
2 0 0z ; o :
by the introduction of the finite difference
y S R | |
oy, By -8

- M‘B Ci=1,...,n-1. = (6.30)

>
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Figure 6.2. Bending Mode Shapes.
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The strain energy may then be written

12l g ( i+1 i)z
U== — | B - B (6.31)
5 Egi o2 \3 3

If we write the strain energy in matrix form, we introduce the

stiffness matrix, [K']
1 T, ,
U =5 (B4} [K'1{B,} (6.32)

where {63} is the column matfix of rotations about axis three for all

bodies. The structure of [K'] is

—y

1 -1 0 0 - == 0
-1 2 -1 0 ~---- 0
- GJ .
[K'J= 2‘_ - 7 .
(Az) 0 ===o-= 0 -1 2 -1
0 w=== 0 0 =1 1 (6.33)

It is now possible to proceed with the free~free modal analysis of the

torsional motion by solving the eigenvalue problem
(k'] - w’pe' D {8} = {0} | (6.34)

. 'The modal matrix, [$], is formed by the eigenvectors arranged in columns

and 1s normalized to obey the relation

T X
[¢1°[M']1{¢] = [E] . (6.35)
The first three nonzero modes are shown in Figure 6.3. One rigid body
mode corrésponding to uniform rotation about axis three is presént.

The modal analyses is now complete. The real mode shapes and

‘natural frequénéies for in-plane bending and torsion found here may be
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used in the finite element model equations of motion. The next step is
the actual integration of the equations of motion.

6.3 Numerical Integration and Truncation Procedure

This section presents the results of a numerical integration of
kthe fiﬁiﬁe element model equations of motion for a system with a con-
stant spin rate. . Ihe initial conditions chosen for the integration
correspond to a system normal mode and should therefore produce periodic
motién. The initial conditions (Figure 6.4) were calculated using the
closed form solutions resﬁlting from the continuum analysis of the
previous chapter. |

Thé initial modal coordinates and velocities are calculaﬁed using
the inverse modalkmatr}x. This may be represented in a very simple

form due to the normalized orthogonality condition (Equation (4.47))

(617 M1 8] = (E] | | (6.36)
This then requires that the first two matrices in parentheses bé equal

to thé inverse modal matrix

617t = 0171 i O (6.37)

:The initial modal coordinates are theh

m

, T
e=o = (01 MMal} g

. T S8 ) - : : . - -

(N}, = (817 DMI{a}, . (6.38)
The reSultingvinitial modal coordinates and velocities ¢orresponding to
nonzero freqﬁency modes are shown in Table 6.1, The initial Tisserand

frame variables are simply the weighted mean values of the initial

angular variables. The initial 63 value is -.17515 E-4, the initial é2
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TABLE 6.1

INITIAL MODAL COORDINATES AND VELOCITIES

Torsion In Plane Bending
Natural Modal Natural Modal
Frequency (Hz) Coordinate - Frequency (Hz) Velocity
4. 880 .47711837 E-5 '0.964 -.72829664 E~1
9.718 -.11208203 E-5 2,713 -.36030891 E-3
14.471 -.47018966 E-6 ‘ 5.427 -.15179138 E-3
19.091 -.24678593 E-6 9.165 .39719278 E-4
23,527 ~.14601846 E-6 114,023 .32309908 E~4
27.727 -.92882146 E-7 20.138 .78941230 E-5
31.641 ~.62197614 E-7 27.741 .14494639 E-4
35.218 .43088221 E-7 37.273 -.60G349703 E-5 |
38.415 .30428964 E-7 49.649 .33760443 E-5 ?
41.190 -.21900632 E-7 66.720 -.56705903 E-5 i
43.511 -.15267688 E-7  92.398 44775661 E-5 :
45,346 .10585609 E-7 136.712 .23686443 E-5 ;
46.673 . -.64728738 E-8 236.365 -.69689122 E-7 ?
47.477 1  -.31017748 E-8  723.839 -.13253566 E-5 i
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value is -,17337 E-3, the remaining Tisserand frame values are initially
zero.

An examination of the initial modal coordinates and velocities
will show that the mode shape represented in Figure 6.4 is dominated
by the first in-~plane bending mode (.964 Hz) and by the Tisserand frame
variatle, 93, representing uniform rotation about axis number three
(corresponding to the torsional rigid body modes). The first torsional
mode (4.880 Hz) is also used in order to provide a variation of torsiohal
rotation along the length of the beam. The numerical simulation will be
performed for the Tisserand frame variables and the lowest frequency
bending and torsion modes. This represents a truncation of the remain-
ing twenty six coordinates.

The integration was performed by a fourth-order Runge-Kutta
algorithm with a step size of .0l seconds. The integration time span
was set equal to 1.06 secohds, the period of the normal mode used for
the initial conditions.

The first aspect of the results of the numerical integrétioﬁ to be
examined is the simulation of the natural frequency of the normal mode.
The times corresponding to the quarter cycle points are shown in Table
6.2. For the closed form solution, the bending and tbrsion have equal
knatural frequencies, bgt for the numerical integration,kul and 83 have
unequal natural frequencies. The in-plane bendiﬁg is well behaved and
- has a periodkof 1.04 seconds. The torsional motion, 83, follows the’
periodic motion 1ess’precisé1y. A comparison of‘the‘displacementskis
~.shown for the quarter cycle points iﬁ Figures 6.5 to 6.8. Again, the

in-plane bending shows very excellent agreement, while the agreement for
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TABLE 6.2

COMPARISON OF NATURAL FREQUENCIES

wnﬁ(degrees) Times of Occurrence (seconds)
Closed Form Numerical Integration

Solution uy 63

0 - 0.0 0.0 0.0

90 0.27 0.26 0.27

180 0.53 0.52  0.50

270 0.80 0.78 0.72

360 1.06 1.04 > 1.06

torsion is not as precise. It is important to note, however, that the
magnitude of the torsional motion is very small, and the impreéision
does not resulﬁ in a great error in the position of eaéh finite element.
The last aépect of the numerical integration to be examined is the
motion of thé tip of the rotor shaft. VAs shown in‘Figure 6.9, the rotor
shaft follows’the correct path as determinéd from the closed form solu-
tion with only a small imprecision.

The agreemént of the numerical integration results With the closed
form solution is good.  The deviations which do exist are small and
may be attributed to three sources. First there is fhe difference in
the mathématical models used; a continuum analysis shbuld agree with a
finite element analyéi# only in the limit. For a‘sﬁall number of bodies,
as ghoseﬁkhere, a diffe:ence in results will occur. The second source
i1s the truncation prdcedure. The number of coordinates was feduced from

thirty to four. The truncation alters the angular momentum of the
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Figure 6.5. Numerical Results at Quarter Period Point
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Figure 6.6. Numerical Results at Half Period Point.
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Figure 6.7. Numerical Results at Three Quarter Period Point.
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Figure 6.8. Numerical Results at One Period Point. *
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Figure 6.9. Motion of the Tip of the Rotor Shaft.




system, which probably causes the shift of the center of the locus of
the tip of the rotor shaft seen in Figure 6.9. The computational ease
of integrating the truncated set of finite element equétions of motion
is one of the main advantages of the formulation. In fact, if the
number of modes is increased; not only do the computations become more
numerous, but they also experience numerical difficulties arising from
small differences of large numbers. The third soﬁrce is a small dif-
ference in the mounting location of the rotor shaft. For the continuum
analysis, the rotor is mounted at the tip, at L = 10 m., In order to
collocate the‘centérs of mass of the rotor and the last rigid body,’the
rotor shaft is mounted at L = 9.333 m, in the finite element model.

For this numerical example, the truncation was performed in an
ad hoc manner by examining the initial modal coordinates. A more formal
procedure would necessitate the examination of the modal gyroscopic
coupling matrix, ¢T Gd. The structure of the coupling matrix would
indicaté'which modes weré strongiy coupled for the case at hand.
Strongly coupled‘modes correspond to gomponentskof a .complex mode’shape.
They must be truncated or incorporated in the system of equations as a
unit. Partial truncation of strongly coupled modes would'introduce
unnecessary truhcation errors. A further point concerns the analysis
of the sensitivity‘of vibrations to excitation sources. True natural
fréquencies of the‘system’are to be avoided or somehow compensated for
by the controlysystem. It is important to realize that theknatural
frequencies present in the equations.of motion afe niot the trﬁe system
. natural’frequencies when the rotor spin rates are nonzero. For nearly

constant spin rates, the true natural frequencies cbrrespond to the
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complex mé&e shapes. ' If thé spin rates vary greatly, a range of natural
frequencies would have to be included in the analysis of the effects of
excitatian sources. An example of this behavior was given in the
previous chapter in Figures 5.3 and 5.4. The relationship between
complex modes and real modes must then be made by identifying the domi-
nant terms when the components of a complex mdde are’expressed as linear
combinations of real modes. It is obvious that the trunéation procedﬁfe
for the finite element‘model equations of motion will be complicated for
 true épacecraft syétems. The abéve must certainly be expanded upon by
further’investigaﬁion.

This completes the numericai investigation of the finite element
equatiops of motion. The principal conclusion is that it is possible to
represent the beﬁavior of a complex normal mdde by a set of real modes

in a coupled set of equations of motion.
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CHAPTER 7
SUMMARY, CONTRIBUTIONS AND FUTURE WORK

This chaptér will tie together the results of the previous work
and present conclusions. This dissertation attempted to deal with the
problems presented by the ngxt generation of spacecraft. We are enter-
ing a new period in the aﬁalysis of the effects of spacecraft flexibil-
ity. Until now, the effectsréf flexibility for real épacecraft systems
have consisfed mainly of those produced by flexible appendages attached
to central rigid bodies, Thisvresearch addresses the more genéral case
where the structural flexibility is distributed throughout the body.
The problem is significantly complicated by the presence in the system
of momentum exchange controllers.

The first part of the dissertation consists of a detailed
investigatién of floating referenée frames. These frames are defined.
in such a way that they somehow foliowrthe overall‘motion of the body.
When deformations’are expanded relaﬁive to these framés, they are small.
This makes a first 6rder vibration analysis possible and thereby yields
a significant advantage. One possible drawback to their use is the
vintroduction of tﬁe COnstraint relationships’ﬁhich define their motion.
An investigation is made df the;coﬁstraint relationshipvwhich defines a
floating frame by setting to zero the linear and angular momentum
reiative to the frame; This is the TisSerand frame, named éfter a
nineteenth century Frenchrastronomer. ’A’special case of this frame is
found which uses the free-free modes of’the uncohstrained system, -and
which satisfiES the constraint relatiqnship if‘the rigid body modai

‘ coordinates are simply set to zero. Since the remaining modal
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coordinates are independent due to properties of their mode shapes, it
is célled the Mode Shape Constraint. It is possible to expand these
ideas to cover a deformable body containing spinning rigid rotors by
defining a Modified Tisserand Constraintf

The.main body of the dissertation deéls with the formulation of
equations qf motion for SPacecraft with distributed flexibility and
momentum exchange controllers. We are interested in addressing the
coupled structure-actuator dynamics. The control variables for these
systems would be the rotor spin speeds. For’tﬁé specific application
studied, the rotor torques'muét formally be treated as small, first
korder quantities. For engineering systems, it may be possible to relax
this requirement, and the rotor spin speeds will then vary greatly. 'va
compiex mode shapes, for whiéh the elgenvectors are complex numbers,
were used in the formal analysis, the resulting equations of motion
would not include the spin sﬁeeds of the rotor és explicit functions.
Any relaxation of the first-order torque requirement would probably
require the staging of complex modes for different ranges of spin speeds.

Ihe technique developéd here uses the real modes of the uncon-
strained’systemkﬁhere the rotors have been "frozen", that is, they have
- zero spin rates. The resulting derivation requires that the modal
coordinates ére coupled, bﬁt it'is possible to truncate the sYstem to . a
smallef number of coordinates and still achieve accufaté resulfs.

A main advaﬁtage of the'finalrset of equationé of motion is that
the control variables,;  the rotor spin speeds, appear as explicit‘terms
in the'equationé. The Modified Tisserand Constrainﬁ iskusgd in the‘

formulation in order4to provide an example of its properties. :The
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Modified Tisserand frame may also make it easier to relax the constraint
that rotor torques are small, first order quantities.

Considerable attention is paid to developing physical insight into
system behavior and the numericzl verification of results. A continuum
analysis is used to formulate closed form solutions for a simple example
system consisting of a uniform beam with a nearly constant speed,
axysymmetric rotor mounted at the tip. The governing partial differen-
tial equations and boundary conditioné are obtained in a unified, sys-
tematic fashionvby the application of Hamilton's Principle. Closed
form solutions are obtained through the use of generalized techniques
for the separation of variables. For a specific choice of parameters
and ‘a constant spin speed, system normal modes are caiculated. The
rotor shaft is found to cone with a sinusoidally varying cone angle.

The numerical verification technique of the finite element equa-
tions of motion also uses this simple physical system, After the real
mode shapes have been calculated for the system with a "frozen" rotor,
the initial conditions are chosen with the aid of the closed form solu-
tions so that they produce a periodic system normal mode. The truncated
equations of motion are integrated numerically for one period and the
results compare weli with those predicted by the continuum analysis.

The research undertaken in the dissertation has contributed to the
understanding and solution of an engineering problem of current interest.
Specifically, the gontributions of the dissertation are:

1. Formulated a set of finite element equations of motion suiﬁable
‘for the analysis of‘spacecréft with distributed flexibility and

momentum exchange controllers. A significant advantage of this
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formulation is that the control parameters (rotor spin speeds)

appear explicitly in the equations, and that the coordinates

can be truncatedf
2. Gained insight into the physical behavior of this class of

dynamical system ﬁy obtaining closed form solutions using a

continuum analysis.

3. Expanded the understanding and usage of the floating Tisserand
reference frame. Made it possible to bring the advantages of

a rigorous first order vibration analysis to a system experienc-

ing large rotationms.

It seems appropriate that this dissertation should close with an
enumeration of work still left to be done. It seems to be in ﬁhe nature
of things that each answer ohly necessitates further questions. = The
areas of future research connected with this dissertation are:

1. Control system analysis of the finite element equations of
motion. This is a rich field for future work and involves

the assessment‘of questions of stability, observability and

controllability. Specifically, questions of where to put

sensors and actuators, and how many are needed,’will have to

be answefed. ‘Transfer functions should also be developed.

2. A methed of synthetic modes should be developed in order to
compensate‘for the error in system angular momentum caused

by truncation.

3.  The finite element équatioﬁs of motion could be formally

;extended to cover large rotor tdrques'and large rotations

of the Tisserand frame. This could aid in assessing the

possibility of relaxing the first order torque requirement
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for the simpler system of equations presented in Chapter
four.

Further analysis of the truncation procedure. Formal
procedures need to be developed by expanding on the ideas
presented here. Sensitivity of the model accuracy to trun-

cation needs to be assessed.

The class of dynamical systems covered could be expanded.

One extension would involve the addition of an articulated

member to the system,
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APPENDIX A

NOMENCLATURE

Constraint relationship coefficients for
a Pfaffian constraint

Body i in the finite element model

Vector basis fixed in the mass element locally

attached frame. Commonly at the rotor mounting

point

Compatibility matrix

Constant

Constant

Beam cross section normal to centroid
Beam flexural rigidity |
Forcing matrix

Spatial variable for in-plane bending

Vector basis fixed in the system floating frame
commonly the Tisserand frame

Bending fundamental frequency
Torsion fundamental frequency
Gyroscopic matrix, skew symmetric

Beam torsional stiffness

Spatial variable for out~of-plane bending

System angular momentum
Rotor angular momentum
Spatial variable for torsiomn

System inertia dyadic about system center of mass
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Ref. Eq.

(2.18)

(4.7)

(6.6)
- (5.54)
(5.42)
(5.5)
(5.19)
(4.37)

(5.41)

(5.69)
(5.69)
(4.37)
(5.19)
»(5.35>
(2.1)
(4.17)
(5.41)

(2.3)
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_ Ref, Eq.

L5 Deformable body inertia dyadic about the system
center of mass '
n .
LI Rotor inertia dyadic relative to rotor center
of mass
_Jg Rotor inertia dyadic about the system center
of mass
IP Polar mass moment of inertia per unit length length
IS Rotor symmetric axis principal moment of inertia
IT Rotor transverse axis principal moment of inertia

111,122,133 Moments of inertia of the undeformed system

I,.,I..,I

12°713 23}Products of inertia of the undeformed system

To101310135)

[1] System inertia matrix

[Il] Inertia matrix of body i

[IR] Inertia matrix of body to which the rotor is
attached

[IR] Inertia matrix of the rotor

{i} Vector basis fixed in inertial reference system

[K] Stiffness matrix-symmetric

& Lagrangian of the system

L Beam length

{L} Lagrange multiplier coefficient matrix

21 Distance between beam free end and system
center of mass

22 Distance between rotor mounting point
and system center of mass

M ' System mass

M] Mass»matrixésymmetrick
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(3.32)

(3.33)

(3.33)
(5.9)

(5.16)
(5.16)

(3.22)

(3.22)

(4.34)

(4.14)

(4.34)
(4.14)

(4.36)
(5.1)

(5.23)

(4.37)

(5.20)

(5.20)
(3.14)

(4.37)




=]

(pi’pZ’O)

{Q}
Qe

{q}‘

[R]

Rl’

I

{3}

{T }k

Ie

=

R,

Rotor mass
Mass per unit length for a beam

Location of a beam mass element in the plane
normal to the centroid

Scalar components of p in the beams locally
attached coordinate system with the orlgin
at the centroid

Matrix of generalized forces

k Generalized force corresponding to generalized

coordinate k.

Matrix of displacementvénd rotation coordinates
Discrete coordinate coupling matrix

Constants |

Location of the beam centroid relative to
the system center of mass

Location of the deformable body center of mass
relative to the system center of mass

Location of generic mass element relative to
body i center of mass

Spatial step function

Components of wa in the coordinate

system of body R
Kinefic Energy

sttem external torques
System potential energy

Deformation of a generic mass element.

For a beam, the deformation of the centroid.

Displacement of body i center of mass
due to deformations
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(3.33)

(5.9)

(5.4)

(5.6)

(4.36)

(4.26)
(4.35)
(4.37)

(5.68)

(5.4)

(3.44)

(4.5)

- (5.30)

(4.14)

(2.5)
(4.30)

(5.2)

(2.10)

e




Ref. Eq.

{u"} Components of'gi in the floating frame coordinate
system (4.14)
Uy Deformation of the rotor mounting point (5.11)
(uR »up »0) Components of e in inertial coordinate system (5.14)
1 T2 o ,
(ul’uZ’UB) Components of u in the floating frame coordinate
system , , (2.13)
{ﬁ} Vector bases fixed in the rotor frame
w Component of out of plane bending : : (5;30)
(%,¥,2) Components of:§ in the floating frame
‘ coordinate system (2.13)
{xi} - Components of E? in floating frame coordinate
system (4.23)
.1 bt . N
{g™} Components of w in body i coordinate system (4.14)
‘ Bl,Bz Constants related to angular velocity B (5.55)
[A] Modal coordinate coupling matrix (4.55)
€ Small number used in step function (5.31)
[z] Diagonél matrix of modal percent of critical :
damping terms (4.54)
{n} Matrix of modal coordinates (4.48)
n. Modal coordinate (2.14)
i .
Noi k Rigid body modal coordinate (3.13)
{6} Tisserand frame variables : ' (4.13)
A Time variable for in-plane bending :
(later for torsion also) , (5.41)
AS Lagrange'multiplier term corresponding to
constraint relationship s. - (4.26)
{\} - Lagrange multiplier matrix k (4.37)
u Time variable for out of plane bending - (5}35)
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- Ref. Eq.

Time variable for torsion

Location of the generic mass element relative
to the center of mass

Time derivative of P relative to an inertial
reference frame

Time derivative of p relative to floating
reference frame f.

Location of the generic mass element in the
undeformed state. Fixed in the floating
reference frame o S

Location for the undeformed :state of the generic
mass element of the deformable body relative to
the deformable body center of mass, Fixed in the
floating reference frame

Undeformed location of body i center of mass
relative to the system center of mass. Fixed

- in the floating reference frame

Location of the rotor center of mass relative
to the system center of mass

Components of p in the floating frame coordinate
system ,

Rectangular modal matrix excluding rigid body modes
Mode shape
Rigid body mode shape

Componénts of Q} in the floating frame coordinate
system .

Deformational mode shape corresponding: to a
nonzero natural frequency

Rotation about the beam centroid due to torsion

Rotation of the trotor about the beam: centroid
due to torsion

Rotor spin speed
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(5.41)

(2.1)

(2.1)

(2.2)

(2.10)

(3.30)

(4.5)
(3.33)

(2.7)
(4.47)
(2.15)

(3.7)
(2.14)

(3.10)
(5.7)

(5.14)

(5.13)
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vbR ,

v

System natural frequency

Diagonal angular velocity squared matrix.
Nonzero frequencies only

Angular velocity of beam locally attached frame
relative to inertial frame

Angular velocity of the beam locally attached
frame (commonly at the rotor mounting point)
relative to the system floating frame

Angular velocity of body i frame relative to
Tisserand frame

Angular velocity of the floating frame
relative to an inertial frame

Angular velocity of rotor fixed frame
relative to the beam locally attached
frame at the mounting point

Angular velocity of the rotor fixed frame
relative to the body R frame

Angular velocity of the rotor frame relatlve
to the floating frame
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(5.36)

(4.47)

(5.12)

(3.36)

(4.9)

(2.2)

(3.36)

(4.10)

(3.33)
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APPENDIX B
COORDINATE TRANSFORMATIONS

1-2-3 COORDINATE TRANSFORMATION

ar
cos®, sinB., 0% cosf

0

3 3 2 0 -sine2 1 0
{E} = |-sinf, cosf, 0 0 1’ 0 0 cosB; sinf, ﬂi}
0 0 1 sin@z 0 cose2 0 —sinGl ‘gosel
cosezcose3 coselsin63‘ | sinelsin63
+sinelsin62cose3 —coselsin62c0383
{b} —cosezsipe3 cos6100563 sinelc0393 {i}

sinG2 —sin81c0392 coselcose2

s

bl s . .

= (61c0592c0893 + stinSS) 21
+ (—élcosezsine3 + 82c0363) 92
+ (elsinez + 93) _12_3

= (8, + 8,sin8,) 1,

+ (Gzcose1 - 63sin61c0592)

)

+ (stinel + 83coselcosez) i

First Order Approximation
kflk 8, -6

B =|-6, 1 e | {i}= (E-6D)
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De

= {616}

e
o’
ur

f

-

o>

ot
L]
Do

£ 7 2
®3

Second Order Approximation of Angular Velocity

81 + 6392
bi _ (T ) g :
w " = {b} 8, - 6‘361
63 + 9261
0 63 0 |
ST mr e |-e, 0 of |- ®FcE + (0,18
6, 0 0
EL' 2 _
(0 o 6,
-5 [@r+]e o -6 | )] = BRI I8} + [65){6D)
_O 61 0

. T . T e
16,1° - 851" = 8]

BEAM LOCALLY ATTACHED TO INERTIAL COORDINATE TRANSFORMATION

~

The b, axis is placed tangent to the centroid at each point. This

3
accomglishes rotations 1 and 2. Rotation three is the torsional rota-

tion, ¥, about the centroid (now 23). Let T be the unit vector tangent

to the centroid, located at (ul,uz,z)
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A

Since T = 23, the direction cosines of_ll3 must equal the components

3 = sine2 = ui//x/é + (ui)2 + (ué)z
32 u/\/l-i-(ul) +(u)
C3$ = coselcose2 ///\/& + (u ) + (uz)

The direction cosines may then be defined in terms of

of T.

c

c

=—sin91c0592

sind, = - /\/1+ (u)?

cost, = /\/l+(u)

sinf, = ! /\/1 +@h?+ uh?

cosBy = 1+ (upz/\/l + @p? + (u)?

'The derivatives of 91 andye2 present in the angular velocity expression
may be calculated by taking the derivatives sinel and sinez. Thé
binomial theorem may then be used in order to evaluate the,secohd~order

approximation of the angular velocity,

_— ot ,

%2 vay
bi _ T .y “y
L R R R
_ A EERR SRR
v Y12

| 1o v oo -u}

= {p_}T [E}+|=¢y 0 0 ﬁi

ui 0 0 @
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APPENDIX C
VECTOR-DYADIC RELATIONSHIPS

Dot and Cross Products

urv= {utw}
uXxys= E}T[i‘f]{v}
where u = {::@_}T{u}
v = 5w}
by
by = (b,
by
"1
{u} = u2
Y3
Y1
{v} = v,
V3

0 -u3 4
0] = ug 0 -uy
-u, uy O_

C[§1v} = - [F){u}
[]xu= B35

~where D = {B}T[11{b}
i Tz i3
[T1=11 I Iy
I31 Is2 I3 -k

Ll
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Reference Point Transfer Theorem for an Inertia Dyadic

0°- 0%+ mia, - U 5, 2]

where []o : Inertia dyadic about point O.
[]c : Inertia dyadic about body center of mass.
@ ¢ Unit dyadic.
:  Vector from O to C.

M : Mass of the body

e [PPru=fue-[frarimexz) - @)l
D°~9_=D°'w+Mr X (WX r)
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APPENDIX D
HYBRID COORDINATE METHOD USING ASSUMED

MODE SHAPES FOR ELASTIC CONTINUA

ABSTRACT: The hybrid cosrdinate method provides equations of motion of
minimum dimension for a spacecraft‘with flexible appendages. Instead of

the usual finite element approach, in which mode shapes are calc&lated frcm
equations of vibration of the finite element assembly, this chapter proYides
an alternative formularion using assumed mode shapes., This proves useful
for a class of simply modeled appendages for which mode shapes are provided

by an outside agency, or are otherwise known. The results are shown to be

compatible with the finite element formulétion, as previously described.
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I. INTRODUCTION

The hybrid-coordinate method provides equations of motion of a space-
craft with elastic (flexible) appendages. The appendages are modeled as an
interconnected set of small rigid bodies interconnécted by massless or mass-
ive elastic bodies (finite elements). From the Newton-Euler approach, the
equations of motion for each finite element énd the rigid body portion of the
spacecraft are formulated. The introduction of an appropriate coordinate
transformation allows the finite element equations to be represented as
decoupled vibration equations, which involve mode shapes and modal coordinates. .
Since the vibration equations have been decoupled from each other, significant
truncation of the higher order mode shapes can be accomplished. This leads
"to a set of equations where rotation of the rigid bod? portion of the space-
craft is coupled to the wvibration of the flexible appendages. These equations
are of great practical use because the truncation procedure has significantly
reduced the number of degrees of freedom of the system without substantially
sacrificing the fidelitﬁ cf the results, )

The purpose of this chapter is to provide an alternative formulation
for the hybrid coordinate method using assumed mode shapes. This approach
will prove useful for simply modeled.appendages. For these the mode shapes
can be determined from a continuum analysis using partial diffefential equa-
tion methbds.‘ The truncation procedure 1s accomplished a£ the oﬁtset by
eliminating the higher order modes of vibration. The equations of motion
are formulated using a Lagrangian approach and the coordinate transformation
is accomnlished using the assumied mode shapes. The resulting equatiéns of
motion are then seen to be compatible with those arising from the finite

' element method.
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where

0

M

/ by ©
'Ab3

Figure 1. 8ysiém Diagram.

Center of mass of undeformed.system (body fixed)

Positidn,of 0 at test (inertially fixed)

Center of mass .of rigid body

Center of mass of undeformed appendage'

Total System mass

Appendage mass

Appendage mass/length

Connect}:im point of appendage
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II. MODEL

The following derivation of equations of motion uses a model comprised
of a central rigid body and a flexible cantilevered beam. Extensions to
several appendages of arbitfary configurations may be made from the results
of this simple moael. The undeformed position of the appendage is taken to be
constant relative to the rigid body. The transformation between thé two is
included in the derivation to facilitate the extension of the equations to
covar a driven appendage. The angular rotations are assumed to be small as
are the translational displacements. A diagram of the model is shown in Fig-
ure 1; To summarize, the assumptions used in the following derivation are:

'3 rigid body with cantilevered beam,
o beam rest position constant relative to base,
e small translatioms énd rotations.

No orthogonality requirements have been placed on the assumed mode
shapes. The vibration equations are therefore coupled. Further coordinate
transformations may be employed to decouple the vibration equations or to
achieve vehicle ﬁormal modes, but the truncation procedure does not require
this as it does with the finite element procedure.

The vector bases employed in the derivation are:

{1} : 1Inertially fixed basis

{b} : Basis fixed in the rigid body

{g} ¢ Basis fixed in appendage prior to deformation
where
{b} = [B]{1}
[6] = (E - 8) for small rotations 6 = 63 —61
‘ —92‘ 61 0
lal = [c]ib}

[e] = constant for an undriven appendage.
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For the undeformed system, the location of the center of mass is

defined by

J/.p dm = 0

SYS
where p is the generic position vector from the center of mass to the dif-

ferential mass element, EValuating this expression leads to

) L+ MR+ ) =0
where the quantities are shown in Figure 1 with L being the location of the
rigid body center of mass and LY\ the appendage center of mass.

The dyadic of the undeformed system is defined by
0"-0, * O, ;
. D; O+ 0L v
O [l () 2o () )]

III. THE LAGRANGIAN OF THE SYSTEM
» E
The kinetic energy of the system is
T =2fveva+ifvevam
sys 2J ° - A
“RB APP

~ where V is the inertial velocity of a generic mass element. The kinetic

energy for the rigid body yields'

L fv. Vdm=—1-(./1(-M)RB-RB+lw [ cw
2J - = 2\ - = 2 = RB e
RB
' where o#{ is the system mass, M .the appendage mass, and B is the cénter of mass

of the rigid body with
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1

3 =Z-

Ry = £ - ux L.

Expanding this expression and switching the reference point of the inertia

dyadic to the system mass center gives

| .;:..R/B' VeVadn = (ul(-M)é-é—;—%-m -D:B- w -(UII-M)[Z"' (wxg)]

N} ks

The kinetic energy of the appendage is

%f-v-oydm—'l
APP

-
B

where . -
R =24+ R+r1r+u
—m -— - - -
. . Pe (o} (o]
Ry =Z+8+R+r+ux(R).

Vector differentiation with respect to the rotating reference frame is denoted
0 o) ‘

by the "circle" above the vector. Here R and r are zero since they are fixed

in the frame. The "dot" denotes differentiation relative to an inertial refer-

ence frame, Expanding the expression and making use of the dyadic of the unde-

0
formed appendage about the system mass center([] )yields.
AP-u
1 U I | 0 1. .
[y evam=5mzez+30e[] cuw+dfi. i
2 ) - = 2= = 2= AP~y ~ 2J - =
APP

+gf {_xdm+é-u_a><[M(E+£A)]
APP .

Combining the terms for kinetic erergy and eliminating terms produces
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T 1 .. *
SYS = 7:./’(2'2 + W D w
1 N
+3 E'Hdm’ré'fe dm
APP ;- APP
+w°Rxfﬁdm+Q -/ (rx1) dm.

The inértia dyadic of the undeformed system about the system center of mass is
*

D « The center of mass expression eliminated the term in the kinetic energy

containing 2 and w.

From beam theory, the strain energy of the appendage is

Bzg
. "—'2— dr

ar :
'The Lagrangian for the system is then

*

2-twiielo 0% ued [ pi
‘ APP
"'Z'fédm"“‘.*."g"f"_l}dm
app APP = |
§ 2 2
+w'f(r><f1) dm—if EI du\, (23 dr.
- - = 2 2 2
ar “\odr" /) ;

" APP - APP

The format,ioh of the above has assumed that the undeformed 'aﬁpendage is

fixed relative to the base (t_gBi = QAi) . The next step to be taken is to

assume small angle rotations and represent the Lagrangian inkma'trix form. -The

following matrices are used:

=t gy

10N

W = {E}’T (8} (small rotations)
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u = {a}T {u}

= @' "

R = (b}T {R}
r = {p}* {r}
0 —R3 R2 0 -r3 ¥,
R=|Rry O-Rj 5 Tz 01
|-R, R; 0] r, Tl 0
0 -6, 6,
6=|6; 0-8
-6, 6, 0
[6]1 = [E - 6]
2
97 a2 "
—=ta | 2] =@ )
or 3 2
r
] azuz !
8r2 :
32u3
. Brz J

Retaining second order terms in.the Lagrangian préduces
: . . . * "
& = Sz} {5} + 2 {8} 1 (8}
1 f ;..T ;- . ..
+35 {4} {4} dm + {2}{C] {u} dm
APP |  APP

+ 6T ¥ @am+ 67 cf T iid am
' ‘ APP APP
- %.,-—f EI {u"}T {u"} dr.
 APP
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Distributed coordinates are introduced by the coordinate transformation

n
ulr,t) = 2 Qi(r) nt (e)
i=1 |

where n is the number of modes used to represent the displacement. In matrix

form, the transformation is

n
= 2 (ofr ot
. i=1
= [¢1 g2 1L ¢"]{n}
)
= [¢1{n}

where [¢] is a 3 X n matrix with each column corresponding to a mode shape
and {n} contains n modal coordinates.

This coordinate transformation yields the Lagrangian .
. R . . x. ]
@= 2oz} (2} + 10T 17 (8)
1 4T . N .
+5 {n}" x, {0} + {2z} ¢ x; {n}

+ 8T c® xp4xy) (7} - 1 T x, (0}

;<1=f [6] dm‘

where

APP |
o T
X, #f (617 (6] am
APP
X3 = T [¢] dm
APP

X = [ BT 18] g
APP ‘
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The matrices Xl and X3 are of dimension 3 X n while the matrices X2 and X4
are symmetric and of dimension nxn. The Lagrangian depends on n+6 generalized
coordinates, Six éoordinates describe the translation and rotation éf the
undeformed system and n modal coordinates describe the displacement from rest

of the flexible appendage relative to the rigid base.
IV. EQUATIONS OF MOTION

The equations of motion for the system may now be derived from the
Lagrangian in the traditional manner. The resulting n+6 equations may be

represented in matrix form as

0

15 + %, 1)

T {5} + V(E x1+x3){'ri} = {1}

X, {i} + %, {n} .

T oo T ~ T) e
-x; {2} + (‘x R-Xj \{e}
where {T} is the externally applied torque. The first matrix equation may be
used to eliminate the translation from the‘vibraﬁion~equations. This pro-

duces n + 3 equations of the form

1Y (8} + (X x) + x,){5i)} = (1)

(x2 .‘.j}’ x{ xl) i} +x, {n} = (x{ K- Xg) {8}

The matrices that provide coupling between the rotatiom and vibration

in each equation may be seen to be transposes of each other. The equations

can be written as
7 {6} - 6T {#} = {1}
X -LxTx')v{"}+x'{}=6{'e'}
2 "t M1 %)Y 4N

where

~ T

§ = X; R ~ X3.4

-

T
1
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V. COMPATIBILITY WITH FINITE

ELEMENT EQUATIONS OF MOTION

The equations of motion derivéd ffom the continuum ana'ysis are similar
in structure to those derived from the finite element analysis (Ref. 1). The
differences between the two appear in the assumptions made in the continuum
analysis:

e No orthogonality'properties
‘e Rotary inertia effect ignored.
(No differential rotation of appendage mass
elements due to deformation)
Orthogonality properties can be applied to the continuum anaiysis

vibration equations by a suitable coordinate transformation. The orthogonality

properties are not needed to permit truncation as is the case in the finite

element analysis.

The equations of motion from a finite element analysis are shown by

equations (287) to (289) of Reference 1.

K oo -
1 e,—STn=T

=36

- ZEQ'K - T ZEO)

f+ 2Ton + o

5= —¢T M(E

OE

The overbar indicates truncation, If the damping is eliminated and

‘the orthdgonality condition relaxed (after Cruncation), the equationé become

$TM oh+o K oR=3%6
where ' ‘
~ ‘ T
. M = M(E —ZEO EEO MA..-I()
t
K = Stiffnes— matrix.
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Normally, the coordinate transformation 5 includes mode shapes with
translation and rotation of the finite elements. To agree with the continuum
analysis, no rotations of the finite elements will be allowed. The coordinate

transformation ¢ will then be a 6én X N matrix represented by

3 ='[{¢1} W .6

where
r ¢i .
{"p1}
0

olr=4 .

{67 }
n
Lo

With the above limitations, the matrix multiplication can be performed
in the finite element equations and the terms may be compared with those
from the continuum analysis.

For the augmented mass matrix, the finite element analysis results in

), - ) 4

ij k=1

EEIESHIT)

This is compatible with the result from the ‘continuum analysis

(x-2p i) =) w0 [#] [#] e |

APP
Jf 2O e
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For the § matrix, the finite element analysis results in
B, = T 3 ff(R+T)
= L) 1

This is compatible with the result from the continuum analysis

T

161, ;f u(r) [q%] ('E+'§)dr

Thus, if the number of finite elements were increased without limit, the
finite element equations would be identical to the continuum analysis

equations.
VI. CONCLUSION

With the foregoing results it becomes possible to accomplish a hybrid
coordinate dynamic analysis for a system with appendages defined only in

terms of modal data based on a continuum analysis.

162



	0018A02
	0018A03
	0018A04
	0018A05
	0018A06
	0018A07
	0018A08
	0018A09
	0018A10
	0018A11
	0018A12
	0018A13
	0018A14
	0018B01
	0018B02
	0018B03
	0018B04
	0018B05
	0018B06
	0018B07
	0018B08
	0018B09
	0018B10
	0018B11
	0018B12
	0018B13
	0018B14
	0018C01
	0018C02
	0018C03
	0018C04
	0018C05
	0018C06
	0018C07
	0018C08
	0018C09
	0018C10
	0018C11
	0018C12
	0018C13
	0018C14
	0018D01
	0018D02
	0018D03
	0018D04
	0018D05
	0018D06
	0018D07
	0018D08
	0018D09
	0018D10
	0018D11
	0018D12
	0018D13
	0018D14
	0018E01
	0018E02
	0018E03
	0018E04
	0018E05
	0018E06
	0018E07
	0018E08
	0018E09
	0018E10
	0018E11
	0018E12
	0018E13
	0018E14
	0018F01
	0018F02
	0018F03
	0018F04
	0018F05
	0018F06
	0018F07
	0018F08
	0018F09
	0018F10
	0018F11
	0018F12
	0018F13
	0018F14
	0018G01
	0018G02
	0018G03
	0018G04
	0018G05
	0018G06
	0018G07
	0018G08
	0018G09
	0018G10
	0018G11
	0018G12
	0018G13
	0018G14
	0019A01
	0019A02
	0019A03
	0019A04
	0019A05
	0019A06
	0019A07
	0019A08
	0019A09
	0019A10
	0019A11
	0019A12
	0019A13
	0019B01
	0019B02
	0019B03
	0019B04
	0019B05
	0019B06
	0019B07
	0019B08
	0019B09
	0019B10
	0019B11
	0019B12
	0019B13
	0019B14
	0019C01
	0019C02
	0019C03
	0019C04
	0019C05
	0019C06
	0019C07
	0019C08
	0019C09
	0019C10
	0019C11
	0019C12
	0019C13
	0019C14
	0019D01
	0019D02
	0019D03
	0019D04
	0019D05
	0019D06
	0019D07
	0019D08
	0019D09
	0019D10
	0019D11
	0019D12
	0019D13
	0019D14
	0019E01
	0019E02
	0019E03
	0019E04
	0019E05
	0019E06
	0019E07
	0019E08
	0019E09
	0019E10
	0019E11

