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DESIGN STUDY OF STEADY-STATE 30-TESLA LIQUID-NEON-COOLED MAGNET
by George M. Prok and Gerald V. Brown

Lewis Research Center

SUMMARY

This report presents results of a design study for a 30-tesla, liquid-neon-cooled
cryogenic magnet utilizing a high-purity aluminum conductor. The magnet is capable of
operating in a steady state. The magnet design is based on two conceptual improvements
over NASA's existing cryomagnets: (1) nonboiling, forced-convection cooling and (2) var-
iable structural support that matches local requirements in the coils, These improve-
ments increase the average current density by a factor of almost 4.

A parametric study was made to optimize the magnet. The goals of the optimiza-
tion were to minimize power consumption, neon flow rate, magnet outer diameter, and
heat flux. The optimized parameters include conductor width and thickness (6.04 and
0.180 cm, respectively), coolant channel width and thickness (0.445 and 0.038 cm,
respectively), and the schedule for structural ribbon thickness, which begins at 0.070
centimeter at the inner turns, increases to 0.126 centimeter, and tapers to 0.013
centimeter at the outside of each coil. This variation in thickness gives the amount of
structural support required in each part of the magnet with an approximately minimum
volume of structural material. Thus, the conductor packing fraction and the average
current density are as high as possible.

The magnet will have a 7.5-centimeter inner diameter and a 54-centimeter outer
diameter, will required 2.8 m3/min of coolant flow and 850 kilowatts of power, and
will operate for 1 minute at peak field. The liquid neon will enter the magnet at 28 K
and at a pressure of 2.8 MN/m2 (400 psi) to suppress boiling. Seventy percent of one
face of the thin, wide, high-purity-aluminum conductor will be exposed to the coolant,
which flows across the conductor in thin channels., The optimized magnet is expected to
produce 32, 7 teslas,



INTRODUCTION

Magnetics studies at the NASA Lewis Research Center have included the design,
construction, testing, and use of high-field electromagnets (refs. 1 to 6) with water-
cooled copper, liquid-neon-cooled aluminum, and superconducting windings. The maxi-
mum field produced by any of these electromagnets is 20 teslas. The magnets are used
for research in magnetohydrodynamic (MHD) power generation, plasma physics, and
solid-state physics. In the solid-state area, still higher fields, of the order of perhaps
30 teslas, are desirable. A study in reference 7 suggests that construction of a 30-tesla
cryogenic magnet should be possible with tape-wound coils of very high-purity aluminum.
With sufficient refrigeration capacity, such a cryogenic magnet could be run continu-
ously. A 30-tesla pulsed magnet (10-sec pulse) constructed of water-cooled copper has
been tested at the Australian National University (refs. 8 to 10).

Existing Lewis cryogenic magnets have a maximum operating current density of
about 6 kA/cm2 (ref. 5). These coils have a uniform-thickness structure and are
cooled by nucleate pool boiling of liquid neon in moderately large channels. The aver-
age conductor packing fraction (conductor volume/total coil volume) is only 0.38. Sub-
stantial increases in current density beyond that of the existing cryogenic magnets should
result if the amount of stress-bearing (load) structure is varied according to local re-
quirements in the coils and if forced-convection cooling of the conductor is used. These
changes are shown to improve the conductor packing fraction by almost a factor of 2
and the allowable ‘conductor current density by more than a factor of 2. The average
current density can thus be increased by about a factor of 4.

According to preliminary estimates, a 30-tesla coil with a 7.5-centimeter-diameter
bore and a 5-centimeter-diameter experimental region might be possible with the exist-

ing power supply and neon liquefaction system.

MAGNET DESIGN
External System Constraints

The Lewis Research Center neon liquefaction facility (ref. 6) provides about
1 megawatt-minute of cooling capacity per day in the latent heat of the neon. Because
1 minute of running at peak fields is desired, the maximum permissible power dissipa-
tion into the neon is 1 megawatt. Thus, one constraint of our design was to achieve a
30-tesla magnet that can operate on less than 1 megawatt of power. Cost and ease of
fabrication of the entire system were also significant considerations.

To maximize current density and packing fraction, the liquid-neon coolant is pres-
surized to suppress boiling in the coil. To increase heat-transfer area, the magnet has
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tape-wound or ''pancake'' coils, each of which is spirally wrapped. The coolant absorbs
heat from the magnet as sensible heat that will then be rejected from the coolant by
passing it through heat exchangers that are immersed in a saturated liquid-neon bath.
The outside surfaces of the heat exchangers reject the heat by nucleate boiling of the
liquid neon. We assume that atmospheric pressure is maintained above the liquid-neon
bath. This permits the temperature of the circulating neon coolant to approach 27 K in
the heat exchanger. A low coolant temperature minimizes the resistive heating by the
aluminum conductor, reduces the neon use rate, and provides maximum operating
times. To further improve cooling, the magnet is designed in two separate halves; the
coolant flows through a heat exchanger after removing the heat from each magnet half
(fig. 1). Other flow arrangements require higher capacity flow and a much larger pump
motor. The series coolant flow arrangement allows both magnet halves to operate at the
same temperature. The arrangement is shown in figure 1(a) as a schematic and in fig-
ure 1(b) as a cutaway of the system. Figure 2 is an enlarged view of the magnet and
pressure vessel. The direction of flow is from the magnet ends toward the center plane
and then from the manifolds at the center plane to the heat exchangers. Preliminary
calculations showed that a neon flow rate of 2.6 to 3.0 m3/min (700 to 800 gal/min)
would be required.

Mechanical Design

Consider a tape-wound coil with thin, wide tapes of conductor and structural mate-
rial wound together (insert of fig. 2). It is desirable for the magnet turns to remain
tightly packed during operation to prevent slipping or even breaking of the conductor.
That is, as the stress and strain build up when the magnet is turned on, the radius of
every turn should increase by the same amount. However, if each turn is to be self-
supporting, this constraint leads to very thick turns, because the stress in the structure
must decrease as the reciprocal of the radius. One remedy would be a set of nested
coils, which permits a high stress (and a thin structural ribbon) at the inner hub of each
coil. Although feasible, a nested-coil geometry is undesirable from the standpoint of
fabrication, and the conductor packing fraction still decreases rapidly with radius in
each coil.

If the stress in the structural ribbon is kept constant with respect to radius by ap-
propriately varying the ribbon thickness, much less structure is needed and the conduc-
tor packing fraction increases substantially. Unfortunately, at constant stress each
turn stretches in proportion to its radius and gaps can open up, especially between the
inner turns. However, these gaps are not larger than 0.004 centimeter (on the radius)
in the cases to be presented, and we assume that this is insufficient to allow slipping.
Another problem arises in the outer windings, where the field reverses direction and



presses inward on the turns, causing substantial turn-to-turn compressive forces. In
a properly tailored structure, the force between these turns will not exceed the com-
pressive yield of the aluminum, although in this region the stress in the structure can
no ldnger be a constant. This concept for magnet design (constant stress, wherever it
is possible) appears to be feasible and lends itself to a minimum number of tape-wound
coils. Consequently, the parametric study in this report is confined to this design con-
cept.

In the tape-wound coils, each turn contains a thin, wide ribbon of pure aluminum
conductor; a slightly wider structural ribbon of Inconel 718 bonded to the back of the
conductor; edge strips on each side of the conductor; a thin, slotted stainless-steel
ribbon (spacer ribbon) across the inside face of the conductor to form the coolant chan~
nels; and a thin sheet of polyimide insulation. The details of how these parts fit toge-
ther are shown in the insert of figure 2. The thickness of the conductor is chosen so
that compressive and shear stresses, which build up from the inner conductor surface
to the outer, do not exceed the yield stress of the pure aluminum. The axial component
of magnetic force on the conductor (due to the radial field component) must be trans-
ferred to the structural member by shear through the adhesive; the bearing area of the
conductor edge is insufficient to carry this load. In the outer turns, where the radial
component of magnetic force is inward, the adhesive also transfers that force to the
structural backing so that the conductor does not bear too heavily inward on the lands
between the coolant channels. The steel ''rails'' on either side of the conductor are
intended to transmit most of the radial compressive forces that pass between turns, al-
though the forces and bearing areas are such that all the radial force could pass through
the aluminum without exceeding its compressive yield strength.

It is important to minimize the distance between conductors in adjacent pancakes and
to have as few pancakes as possible. (The spaces between the pancakes, which contain
structural and insulating materials, but no conductor, are wasteful in that they do not
contribute to the field.) A practical lower limit is two coils in each half of the magnet.

ANALYSIS
Structural

In our magnet structure concept the thickness of the structural ribbon varies from
turn to turn in proportion to the hoop force to be absorbed in the turn. The local aver-
age current density will thus vary inversely with the local hoop force. This force is re-
lated to the local axial field strength; but because the field cannot be accurately calcu-
lated until the entire current distribution is known, the coil must be designed by a
self-consistent, iterative procedure. The equations that must be solved self-consistently
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are derived as follows:

Suppose the length of the magnet to be a parameter that is fixed at first but that can
be varied later to optimize the magnet. To determine the required thickness of the
structural ribbon for each turn in the magnet, consider only the fields and radial forces
generated at the center plane of the magnet and design the structure to resist those
forces. The outboard coils will therefore be somewhat conservatively designed because
the radial forces on them are smaller. The axial field (at the center plane) at the loca-

tion of the nth turn (out of N total turns), which has an average radius r_, may be

n’
written

B, =B(,r ,{r } m=1,N (1)

where the function B depends on the radii of all the turns: on r,, as the field point
variable and on the set {r_} as sources. (Assume the current I is constant for all
turns. And symbols are defined in appendix A.) Various approximations to the function
B are used in successive stages of the calculation. The turns are treated as if they
were circular, ignoring the fact that they are spiral, except that appropriate average
values are chosen for the radius of the turn and for the field strength, and so forth.

The radii of the turns are related to one another by

s
Thel =Tp ttar v G vl + (2)

where t,, is the thickness of the aluminum conductor, t,, 1s the insulation thickness,
t. is the thickness of the coolant channel spacer ribbon, and trsl is the required thick-~
ness of the structural ribbon in the nth turn. The value of t: is chosen (except near the
outside of the coil) such that the nth turn is self -supporting, that is, the radial magnetic
force is exactly balanced by the hoop tension in the structural ribbon. Thus, if the pth
turn is the first turn that is not totally self-supporting,

2B r 1= 23wst;°; n<p (3)
where the left side is the net resolved magnetic force on one-half of the nth turn and the
right side is twice the hoop tension in the structural ribbon, which has width Wy and is
under tensile stress S for n <p. The need to treat the terms separately for n=p
arises as follows: The force on the outer turns is radially inward; so it is unavoidable
that, at some radial location, the independent self-support of turns must be given up.
From that point outward, the turns press together and forces pass radially between the
turns. If the structure is assumed to be incompressible in the radial direction, for

n = p each turn increases in radius by the same amount under load. Hence,
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€ETr =€r =_np n<p (4)

where € is the strain of the nth turn and Y is the Young's modulus of the structure.

The stress Sn in the nt? turn (for n=p) is Sn = Sprp/rn. The radial equilibrium of
the turns n = p requires that the summed forces outward be equal to the summed forces
inward. The value of p is smaller, therefore, than the number q of the turn where
field reversal occurs; and p must be found by performing iterative calculations.

The maximum compressive force between turns occurs approximately at turn q.
Note that the structure is in tension for all n even though the magnetic force is inward
for n >gq. In the region n > q, the structural ribbon is chosen to be as thin as pos-
sible because this reduces the value of the maximum compressive force. The radially
outward magnetic force from turns p =n <q is only partly balanced against the ten-
sion in those turns by taking the structural ribbon thickness in these turns to be only
80 percent of the thickness required for self-support. In the iterative solution, p is
successively adjusted so that the remaining radial force, unabsorbed in turns
p =n <q, is just absorbed in turns n > q and in a small band around the magnet
periphery. For n = p, take

0.8 B(n)rnI/Snws

= (whichever is larger) (5)
s
tmin

S
tl’l

where tzn is the minimum thickness that the structural ribbon may have. Also in the
region n = p we introduce the radial force Fn exerted radially outward by the nth
semiturn on the next semiturn. Thus,

F =F

n n_1+anag-Frsl n=p (6)

th

where the magnetic force on the n™ semiturn is

mag _
F198 = 2B(n)r I (7

and the force exerted inward by the hoop structure is

Fﬁ:ZthsSnXO.B n=p (8)

and



Fh1=0 (9)

The last turn (n = N) passes force F, to the retaining ring around the coil. The value
of N is found in the iterative solution and is chosen so that the magnet has enough turns
to produce the desired field.

To begin the iterative solution of equations (1) to (9), the field at the first turn is
estimated, based on the desired field at the centroid of the magnet B 0" The hoop force
on the first turn can then be calculated, and it determines the required thickness of the
structural ribbon. The first-iteration estimate of the diameter, axial field, and struc-
tural thickness for the second turn can then be made. A simple algebraic approximation
is used to find the axial field in the first iteration. Each successive turn is treated in
the same way until the initial estimate of the magnet design is obtained. Subsequent
iterations toward the final design involve the straightforward use of equations (1) to (9)
and the field calculation equations.

Several different methods of calculating the axial field component at the n™ turn B,
are used at different stages of the iterative solution. The algebraic approximation is
used in the first iteration because at first very little is known about the distribution of
current in the coil. This distribution is initially unknown because ttsl’ is initially un-
known, and hence the radii of the turns are not known except for r;. So, at first the
magnetic field at the n™ turn B_ is found by noting that it differs from the field at the
previous turn Bn-l by the field increment due to a thin solenoidal element, which is
approximately

th

87l
B -B = _ (10)
n n-l 9 1/2
4w
Al + r2
9 n
)‘z

where the axial packing fraction A, is four times the conductor width divided by the
magnet length and where the field at the first turn is estimated. In subsequent itera-
tions, equations (1) to (9) uniquely determine a magnet design when a more exact ex-
pression for the function B is used.

The required expressions for calculating the radial and axial field components at an
arbitrary field point for a right-circular solenoid with a uniform current density are
provided in reference 11. Although the current density in the present case is far from
uniform, one can easily divide the coil into regions in which the variation is modest and,
by using a suitable average current density for each region, sum the contributions of the
regions to obtain as good an approximation as is desired. (Axial current-density varia-
tions in the conductor were neglected. Since small effects due to the neon temperature



rise are partially self~compensating, the net result is not serious.) Thus,

ZB(J 2;,0;,8,) (11)

where the index i refers to the various radial regions. For the ith region, Ji is the
weighted average current density, a; the inner radius of that region, oy the ratio of
outer radius to inner radius, g; the conductor width divided by 23’1 The accuracy was
improved with minimum computing expenditure by using a weighted average to calculate
J i rather than a simple numerical one. (A discussion of this weighted average is

given in appendix B.) Thus,

J

an nn
L th
n

.th

(12)

where the index n runs over all terms in the i~ region, t is the total thickness of the

th turn, the current density in the n th turn is defined as
I
J, = —= (13)
tnWAl
and the weighting factor w, is
. 91-1 /2
w_=|r?+ 4< Al) (14)
n n
A

With this weighting factor, the field at the center of the coil, calculated by using the
average current density, will be correct regardless of the radial variation of the actual
density. The field in the windings, calculated by using the same weighting factor, will
not be exactly correct; but the accuracy may be improved by choosing as many radial
regions as desired. Considering the coil as ju‘é't one region would have been nearly ac-
curate enough for our calculation; but we used five regions, which changed the field by
about 1 percent. However, the parametric studies were done with the first iteration,
which gave values for all variables within a few percent of the values given by the final
self-consistent solution.
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Cooling

For the cooling calculation, only one-half of the magnet, which contains two pancake
coils, need be considered. The other half of the magnet is simply a mirror image.
However, it is necessary to distinguish between the two pancakes in one-half; and we
denote them by an index m such that m =1 is the coil that is further from the center
plane and into which the liquid neon first enters from one of the heat exchangers. The

heat transfer from conductor to liquid neon in the nth turn of the mth coil is described
by
nm _
Qresistive - hAn ATnm (15)

where h is the surface-to-liquid heat-transfer coefficient, An is the area of the con-~
ductor that is in contact with the liquid neon, and AT is the temperature difference
between the conductor surface and the average bulk temperature of the liquid neon.
Further,

I2
Qnm _ pnm
resistive ~

B.__,T_ )2rr
nm nm' n (16)

NL/N

where Pnm 18 the resistivity of the aluminum at temperature T nm and magnetic field
strength B .=~ and w AL 18 the conductor width. Also,

_ neon
AT =T -Tp° 1m

where the average bulk temperature of the neon in the mth coil Tnmeon was determined
as follows: We arbitrarily specified in the computer program the increase in neon tem-
perature Tris e from magnet inlet to magnet outlet through the intermost coolant chan-
nels and calculated the required flow rate by balancing the heat produced in the first
turn with the sensible heat acquired by the liquid neon. The fluid velocity V, neon tem-
perature rise Trise’ and power dissipated in the innermost turn Q1 m are related by
the heat balance

Qm = pNevawctcTrise (18)

It was assumed that enough hydraulic head AP will be provided to produce the velocity
in the innermost coolant channels V. The coolant channels in all turns are subjected to
approximately the same head and will therefore have approximately the same V, but the
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resistive heat dissipated varies with the turns and hence the value of the temperature
rise also varies. This change in T rise 252 function of n was neglected and the
value from equation (18) was used throughout the coil. This approximation is a conser-
vative one and overestimates the total required cooling.

Thus, for the average neon temperature in the first coil

T .
Tog = Tintet * r;se (19a)

was used, and for the average neon temperature in the second coil

3T

neon _ rise
The = Tinlet * 4 (19b)
was used, where T is the neon temperature at the magnet inlet and T,._ . is one

inlet
of the parameters that is ultimately chosen on the basis of several considerations to be

discussed. The heat-transfer coefficient in equation (15) was calculated from a Dittus-
Boelter correlation, which has been shown to correlate forced-convection, heat-transfer
data for liquid neon under pressure (ref. 12). This relation between the Nusselt num-
ber Nu, the Prandil number Pr, and the Reynolds number Re is

Nu = 0.023 Re?-8pr0-4 (20)
where
Nu = 12 (21)
Kk
. C “
Pr = 2 (22)
Kk
VD
Re - DNe (23)
K

D is the hydraulic diameter of a coolant passage, and p and Kk are the kinematic vis-
cosity and thermal conductivity of liquid neon, respectively, evaluated at 28 K and
2, 8-MN/m2 (400-psi) pressure. For our channels,
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2tcwc

D= (24)

tc+wc

The resistivity p nm of equation (16) depends on the aluminum temperature and on the
magnetic field strength. The grade of aluminum we expect to use shows an approximate

power-law dependence of resistivity on temperature T between 25 and 40 K in a zero
applied field:

p(0,T) = 5.92x10714 72.147 (25)

The resistance in a magnetic field is taken from Coruccini (ref. 13) as

1+ B2(1 +0.00177 B,)

p(B,T) = p(0,T) : (26)
1.8+1.6 B, + 0.53 B,
where
p
B, = 0.001 B x — L (27)
p(0,T)

and pp is the room-temperature resistivity of aluminum. Equations (25) and (26) can
be applied to any turn if the temperature of the conductor and the field strength in the
turn are known.

Equations (16) to (27) form a set of equations that were solved self-consistently by
iteration on the computer to obtain the temperature of each turn, the power dissipated
by each turn, and the required velocity of coolant in the channels. The total electrical
power needed was found by summing the power dissipated in individual turns. The total
flow rate of coolant was found from the coolant flow velocity and the number and size of
the channels. Physical properties of the aluminum conducfor and the neon used in this
study are given in table I. Structural properties chosen are those for Inconel 718.

Local heat flux, conductor temperature, conductor resistance, magnet volume, and
magnet power are all interrelated and are dependent on the coolant flow rate. To match
the desired operating conditions to the existing liquid-neon facility, cryostat, and power
supply, a limit of 2.8 m3/min (750 gal/min) was imposed for the circulating pump. With
this flow rate, the conductor temperature and thus the conductor resistance and power
required can be kept suitably low at an imposed heat flux of 11 W/cm.z. A significant in-
crease in conductor resistance would require more than 1 megawatt to power the magnet.
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However, reference 11 shows that the liquid neon could remove more than 16 W/cm2 if
necessary. Existing cryostat electrical feedthroughs sized for 45 kiloamperes deter-
mined the maximum current.

RESULTS AND DISCUSSION
Parametric Study

Since the optimized results were well approximated by the first iteration, only these
results are presented and discussed for the parametric study. Using the more exact
calculations for the parametric study would only consume computer time without chang-
ing the results. However, for the final design results that are presented in table II,
the more exact calculations were used.

Although 30 teslas is the minimum desired field strength, the parametric study in-
cluded fields as high as 40 teslas to provide leeway for downrating the magnet if unex-
pected problems should arise. In determining this magnetic field, magnet safety and fa-
cility capability were primary considerations. To determine the maximum feasible
magnetic field, the first phase of the study produced these near-optimum values of the
program input variables:

(1) Axial packing fraction, 0.85

(2) Conductor width, 5.7 cm

(3) Conductor thickness, 0.180 cm

(4) Coolant channel thickness, 0.038 cm

(5) Coolant channel width, 0.45 cm

(6) Coolant channel spacing, 0.64 cm

(7) Neon temperature rise, 5 kelvins
Items five and six provide that 70 percent of one face of the aluminum is exposed to the
coolant. The particular values chosen for coolant channel width and spacing are simply
reasonable values for magnet fabrication.

Using these results, design computations for various field strengths and bore diam-
eters were made. The conductor current was always set at 40 kiloamperes, well below
the 45-kiloampere feedthrough limit. The effect of the design field on magnet power,
neon flow rate, and current density for various bore diameters is shown in figures
3tob. AT.62-centimeter bore diameter would accommodate a test section already in
existence. Figure 3 shows that, for this bore diameter, about 37 teslas at the electrical
bore is the maximum field that could be achieved at a magnet power dissipation level of
1000 kilowatts. However, larger fields can be obtained at smaller bore diameters with-
out exceeding the 11-W/cm2 heat flux. About 36 teslas can be obtained in a 7.62-
centimeter-bore coil with the limiting flow rate of 2.85 m3/min (fig. 4) and a 5-kelvin
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temperature rise in the neon. At a bore diameter of 3.81 centimeters, almost 41 teslas
could be obtained. Figure 5 shows how the current density varies with radial position in
the magnet for selected design fields and bore diameters. The current density in fig-
ure 5 is the design current (40 kA) divided by the total cross-sectional area of the wind-
ing. This area includes the conductor, the insulation, the slotted stainless-steel spacer
ribbon, the structural strength member, and the space between the pancakes. The var-
iation in Inconel thickness is the reason for the change in current density. The current
density varies more through the coil for large bore diameters and for large magnetic
fields. Also, magnet diameter increases as the design bore diameter and the magnetic
field increase. To fit this ecryomagnet into the dewar of the magnetics and cryophysics
facility, the magnet outside diameter must not be much more than 50 centimeters. This
rules out magnets that can produce 37 teslas in a bore of 7.62 centimeters (fig. 5).

From an analysis of the results shown in figures 3 to 5, it was apparent that the
parametric study should only include fields below 36 teslas at the electrical bore. This
means a design magnetic field B o of about 35 teslas at the magnet's center. To allow
for various approximations made in the computer model, designing for 35 teslas gives
almost a 17 percent safety factor in magnetic field for a 30-tesla magnet design. Con-
sequently, the remainder of the study used a nominal 35 teslas as the design point to ob-
tain a slightly conservative 30-tesla design.

Figures 6 and 7 both show the effect of conductor width and thickness on the heat flux
to the liquid neon from the conductor. For a fixed current (40 kA) the Joule heating di-
minishes with increasing conductor cross section. Furthermore, the wider the conduc-
tor, the larger the heat-transfer area is. The resulting rapid drop in heat flux as a
function of conductor width (for fixed thickness) is shown in figure 6. There it can be
seen that the conductor width should be 5.71 centimeters or greater to assure a heat flux
less than 11 W/cmz. Similarly, but less strongly, figure 7 shows that the lower resist-
ance of a thicker conductor decreases the heat flux.

The variation of the magnet power and neon flow rate required with conductor width
and thickness is shown in figures 8 and 9, respectively. There is clearly no significant
variation with thickness. Below a conductor width of about 5 centimeters, both magnet
power and neon flow rate increase rapidly. In fact, the neon flow rate exceeds the max-~
imum allowable rate of 2.85 m3 /min at widths less than 5 centimeters. On the other
hand, the maximum magnet power and neon flow rate are essentially the same for con-
ductor widths of 6.04 and 6.35 centimeters. It can be concluded that over the range
studied, a wide and thick conductor is desirable. However, as the conductor becomes
wider and thicker, the average current density decreases and the magnet diameter in-
creases significantly (fig. 10). Although there were only small differences in perform-
ance between the 6.04- and 6.35-centimeter-wide conductors, the latter gave a suffi-
ciently larger diameter magnet that incorporating the system into the facility dewar
would result in major design problems. Consequently, the 6.04-centimeter width was
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selected as the better choice. In like manner, comparing performance factors and mag-
net diameter suggests the best choice in thickness to be 0.18 centimeter. A composite
plot of the various parameters discussed is shown in figure 11, where the parameters
are plotted as a function of magnet radius and conductor current density.

Other independent variables included in this parametric study are axial packing
fraction, coolant channel parameters, insulation thickness, and neon temperature rise.
These will only be discussed qualitatively.

The axial packing fraction of the conductor affects the average current density;
hence, it has a significant effect on neon flow rate and neon temperature rise. It should
be as close to 1.00 as possible. The study shows, however, that a practical limit is
0.90 for uniformly spaced coils. This limit is dictated by the insulating radial stringers
required between pancakes. However, there must be manifolds at the center plane;
hence, a larger gap is required there to handle the flow. This reduces the overall axial
packing fraction to 0.85, the value used in these calculations. The lower packing frac-
tion reduces the field attained at a design neon temperature rise of 5 kelvins, but the
field is still adequately greater than the desired operating field of 30 teslas. If the cir-
culating pump in operation falls below the design flow rate, the design field can still be
achieved by operating at a higher neon temperature rise. As shown by the computed
values in table I, the designed magnet can operate with a 7~kelvin neon temperature
rise and still have other parameters below the imposed limit discussed earlier in the
report. However, the total available operating time for the magnet would be less at
this greater temperature rise.

The slotted stainless-steel spacer ribbon shown in figure 2 and discussed earlier
provides the passages for cooling the conductor. It was determined that for a
6-centimeter -wide conductor the openings in the slotted ribbon should permit about
70 percent of the conductor to be in contact with the neon. A smaller percentage would
increase the heat flux, and a larger percentage would reduce the contact area for passing
force radially between turns. Increasing the thickness of the slotted stainless-steel
ribbon (and hence the coolant channel thickness) has an adverse effect on the heat trans-
fer. A smaller thickness was considered impractical. The selection of coolant channel
width and spacing was determined from various practical considerations. The values
chosen for the coolant channel parameters were discussed earlier. The insulation thick-
ness includes a 0.005-centimeter -thick polyimide insulating film and an adhesive layer
no thicker than 0.01 centimeter. Choosing thinner insulation affects the other variables

by less than 5 percent.

Magnet Design

Values of independent variables were chosen on the basis of the results of the first
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iteration of the mechanical design. Accurate values of the dependent variables are of
course obtained only after the iteration proceeds to a self-consistent final design. Nine
steps were used in the iteration procedure; however, after seven steps the design was
in the range of fabrication precision.

Material physical properties from table I were used in these final design calcula-
tions. The design results are shown in tables IV(a) and (b). The differences between
the two designs are the result of different minimum structural thicknesses used in the
computations. Near the outside of the magnet the required thickness of the Inconel
structure becomes too small to permit easy handling, so a minimum thickness was im-
posed, as indicated in equation (5). The most important difference between the two
values considered, 0.0248 and 0.0124 centimeter, is that the thicker limit requires a
maximum force of 30.3 MN/m2 (4400 psi) to be passed between turns, while the thinner
limit requires only 24.6 M:N/m2 (3570 psi). The design with a minimum Inconel thick-
ness of 0.0248 centimeter may be marginal since the turn-to-turn compressive force
reaches 30.3 MN/mz, which is approximately the compressive yield of the pure alumi-
num. Table III compares the operating parameters for the two designs at design and
slightly off-design conditions. Comparing the two designs and the operating results
shows that the design in table IV(a) is the more conservative; therefore, it was selected
as the more desirable design.

An enlarged gap at the center plane of the magnet is needed to accommodate the
neon flow. This larger gap reduces the maximum magnetic field to about 32.7 teslas
(fig. 12). Also shown in figure 12 is the field of a magnet that has uniformly spaced
coils. In both cases the axial packing fraction is 0.85; however, the magnet with uni~
formly spaced coils reaches a field of 35.1 teslas at the center plane. This field grad-
ually drops off to 33.9 teslas at a distance of 5 centimeters from the center plane; then
the field drops off rapidly.

The field on the axis of the designed magnet is 32.7 teslas at the center and varies
less than +1.0 percent along a 13-centimeter length (fig. 12). The experimental bore
radius is 3.18 centimeters. In this bore, the radial uniformity of the axial field is at
least as good as that on the axis except on and near the center plane, where the field
decreases almost 3 percent (tables V(a) and (b)). Otherwise, the large center-plane gap
yields a larger test volume, which means a more uniform field over a large volume than
for a magnet with uniformly spaced coils. The actual separation between the conductors
within each pair of coils is 0.64 centimeter. The two magnet pairs have a conductor
separation distance of 2.86 centimeters, that is, 1.43 centimeters from the center plane.
The location of the coils is indicated in figure 12.

The axial and radial magnetic fields within the envelope of the magnet are shown in
tables V(a) and (b), respectively. The axial field in the array is positive until the 65th
turn. At this point, the axial field is negative between 4 and 10 centimeters from the
center plane. Negative axial fields at the center plane to 12 centimeters from the center
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plane occur from the 66th to the 73rd turns. Because of the large center gap, the radial
magnetic field changes sign in a region near the center plane. Beyond 6 centimeters
from the center plane, the radial field has the usual sign.

Figure 13 presents the total local current densities as a function of radial position
for the design in table IV(a). The radial location where turn-to-turn force passing be-
gins is evident. Current density was constant in the last several turns of the coil be~
cause the minimum structural thickness was reached.

CONCLUSIONS

A feasible design for a cryomagnet to produce more than 30 teslas was established
by a computer study. The following results and conclusions were obtained:

1. A large-bore, 30-tesla cryomagnet can be constructed to operate continuously
with the power and cooling available at the Lewis Research Center magnetic and cryo-
physics facility. The final design gives a magnet with a uniform magnetic field over a
length of 13 centimeters and a radius of 3.68 centimeters. Both axial and radial field
uniformity is within £1 percent except at the center plane, where the radial field de-
creases by less than 3 percent at the 3.68-centimeter radius. These results are based
on the following magnet design concept:

a. Cooling by forced-convection, liquid-neon heat transfer, with a neon temper-
ature rise of 5 kelvins
b. Tape-wound coil construction with a high-purity-aluminum conductor
. A large gap of approximately 3 centimeters between the two coils near the
magnet center plane
. Varying thickness of the structural member according to local requirements,
except near the outside of the magnet, where a minimum thickness
(0.0124 cm) is imposed

2. The axial packing fraction must not be greater than 0.85 for adequate magnet
cooling. A large gap between the magnet halves is required to accommodate coolant
manifolds. In each half of the magnet the conductor begins 1.5 centimeters from the
center plane. The separation distance between the conductors in each magnet half is
0.635 centimeter.

3. The parametric study shows that the conductor should be between 5.0 and 6.5
centimeters wide and 0.175 and 0.180 centimeter thick. This would result in a magnet
radius of about 25 to 28 centimeters. The selected design gives a radius of 26.9 centi-
meters.

4. The selected design will have a minimum structural member thickness of 0.0124
centimeter. With a neon temperature rise of 5 kelvins, the heat flux will be 8.99 W/cm2
and the power 854 kilowatts. With a neon temperature rise of 7 kelvins, the magnet
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would still be within other operating limits. The 854 kilowatts required at the design
point means the magnet would operate at 30 teslas for more than 1 minute with the Lewis
neon liquefaction system.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, June 22, 1976,
506-25.
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APPENDIX A

SYMBOLS
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area of conductor in contact with
inner radius of ith region
magnetic field strength

specific heat

hydraulic diameter

force

function

heat-transfer coefficient
current in each turn

index to various radial regions
current density

weighted average current density
thermal conductivity

magnet '"pancake'’ index

total number of turns

Nusselt number

turn number index

Prandt]l number

index of first not-totally-self -supporting turn

heat transfer or power

turn where field reversal occurs
Reynolds number

radius coordinate

tensile stress

structural member

temperature

thickness

neon




thickness of aluminum conductor
thickness of coolant channel spacer ribbon
thickness of insulation

thi:urn

thickness of structural ribbon in n
velocity in innermost coolant channels
width of conductor

width of coolant channel

width of structural ribbon

Young's modulus

nondimensional coil-radius parameter (outer radius/inner radius)

nondimensional coil-length parameter (length/inner diameter)

strain

axial packing fraction of conductor
viscosity

density of neon

aluminum resistivity
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APPENDIX B
WEIGHTED AVERAGE CURRENT DENSITY
The field at the center of a thin finite solenoid of half length I and radius a is

u . ni
B=—vu__9 (B1)

1/2
2
1+
12
where n is the number of turns per unit length and Bo is the vacuum permeability.

For a solenoid of radius r, incremental thickness dr, and current density J this be-
comes

dB=—-o (B2)

Then for a thick solenoid, in which J may vary with r, integration gives

_ J(r)dr
Bs) = Ho —2 172 (B3)
22
For the special case of constant J this becomes
d
By =kJ S (B4)

1/2
=
l2

Consider the following definition of a weighted average current density J with respect to
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9 1/2
the weighting factor [1 + (/1 Z)] :

J(r)dr
1/2
2
(3
L (BS5)

dr

12

2

<1+ r_.>
lZ

Note that the current density at small values of r is weighted more heavily exactly in
proportion to its effectiveness in producing a magnetic field, as can be seen from equa-
tion (B2). By using (B3) this may be rewritten as

el
I

which has the same form as equation (B4) except that the constant current density J is
replaced by the weighted average current density J. Because the available subroutine
for calculating the field is exact when the current density is uniform but cannot deal with
a variable J, the weighted average current density from equation (B5) was calculated
and used. The field calculated in this way is therefore exact at the solenoid center but
not at other points. Subdivision of the coil into a few radial sections, for each of which
an average current density was calculated, and the addition of the field contributions of
the sections provided the required accuracy at all points.

The weighting factor [1 + (r2 /L 2)] 2 can be put into the exact form used in the
body of the paper by multiplying by 1 '1, since the factor always appears simultaneously
in the numerator and the denominator. In this report, I is equal to 2(w Al/kz) . Sub-
stituting this into equation (B5) and using summation notation yield equation (13).
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TABLE I. - PHYSICAL PROPERTIES OF MATERIALS USED

IN COMPUTER STUDY

Aluminum:
Resistivity at room temperature, -m . . . .. 2.8x10°8
Resistivity at 28K, ©@-m . . . . . . .. . . .. 4.88x10711
Residual resistivityratio. . . . .. .. ... .. .. ~2000
Inconel 718:
Yield strength, N/m2 . . . . . . .. .. ..... 12.7x108
Tensile strength, N/m% . . . ... ....... 16.8x108
Area reduction, percent . .. ... ... ... ... .. 25
Elongationat 20K, percent . . .. .. .. ... .. .. 30
Neon:
Mass density, kg/m3 .................. 1200
Viscosity, kg/m-sec . . . . . . .. .o 000 0.00012
Thermal conductivity, W/m-K . .. ... ...... 0.126
Heat capacity at constant pressure, W-sec/kg-K . . . 1950
Heat of vaporizationat 28K, J/kg . . .. ... ... 85x10°

a1 not noted, properties are in 25 to 40 K range.

TABLE II. - FINAL MAGNET DESIGN RESULTS

(a) Input variable

(b) Output variable

Magnetic field, T . . . . ... .. ... ....

35
Conductor current, KA . . .. .. ... .... 40
Distance of start of conductor winding
from magnet centerline, ecm . . . .. ... 3.8
Axial packing fraction. . . . ... ... ... 0.85
Coolant channel width, em . . .. ... ... 0.45
Coolant channel thickness, em . . . .. .. 0.038
Coolant channel spacing, ecm . . . ... ... 0.64
Conductor thickness, cm .. . ... .. .. 0.180
Conductor width, em . . . . .. .. .. ... 6.04
Insulation thickness, em .. ... ... .. 0.015
Neon inlet temperature, K . . . ... ... .. 28
Rise in neon coolant temperature, kelvin 5.0

Magnet outside diameter, em . . .. ... ... 54
Reynolds number . . . . .« « o . ... .. 1.62x104
Magnet pressure drop, N/m2 ....... 2.6x10%
Magnet coolant channel heat flux, W/cm2 8.99
Magnet power required, kW . . . ... .. ... 855
Magnet neon flow rate, m3/min ........ 2.78
Neon use rate, m3/min ............ 0.49
Average conductor temperature, K . . . . .. 35.7
Maximum conductor temperature, K . . . .. 37.0
Dynamic resistivity ratio . . . . . ... . ... 109
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TABLE III. - COMPARISON OF MAGNET OPERATING PARAMETERS

Minimum thickness

Power,

aDesign conditions.

Neon temper-~|Heat flux, Neon flow | Neon use
of Inconel 718 ature rise, W/cm2 kW rate, rate,
structural ribbon, kelvin m3/min m3/min

cm
29.0124 ag 8.99 854.5 2.78 0.488
6 9.60 914.1 2.46 .522
7 10.24 974.9 2.23 .b57
20.0248 a5 8.98 854.5 2.178 0.488
6 9.60 914.0 2.46 .522
7 10.23 974.7 2.23 . 557

Magnet center-

plane force,

N

2.30x10"

2.30x107

2.30x10"

2.20x107
2.29x107
2.29x10"7
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TABLE 1V. - FINAL MAGNET DESIGN

{2) Assuming a minimum Inconel-T18 structural ribbon thickness of 0. 0124 centimeter

Turn Magnetic Average Thickness of Length of Overall Force Force Turn Magnetic Average Thickness of Length of Overall Force Force :
field, turn di- Inconel 718 aluminum current received passed . field, turn di- Inconel 718 aluminum current received passed
T ameter, structural conductor, density, by turn, by turn, T ameter, structural conductor, density, by turn, by turn, !
cm ribbon, m kA/ cm? kN kN cm ribbon, m ka/ em? kN kN
’ cm | cm |
1 35.25 8.24 0. 0698 0.244 18.59 0 0 41 12.85 35.6 0.0970 27.85 17.05 152.8 189.2
2 34,66 8.84 . 0736 . 549 18.35 42 12.35 36.2 . 0968 29,00 17.06  189.2 225
3. 34.06 9.45 . 0775 .824 18.13 43 11.85 36.9 . 0962 30.20 17.09 225 260
4 33.47 10.07 . 0810 1.159 17.92 44 11.35 37.5 . 0955 31,35 1713 260 294
5 32,86 10.70 . 0846 1.495 17,72 45 10,86 38.2 . 0947 32.60 17.18 294 325
6 32,26 11,32 .088 1,830 17.54 46 10.32 38.8 . 0930 33.80 17.26 | 325 359
ki 31,65 11.98 . 0911 2,230 17,36 47 9.73 39.5 . 0906 35.05 17.39 | 359 388
8 31.04 12,61 . 0942 2,625 17.20 48 9.15 40.1 . 0881 36.30 17.52 | 388 418
9 30. 44 13.29 . 0973 3.02 17.04 .49 8.58 40.7 .0854 37.60 17.68 | 419 447
10 29.83 13.93 . 1000 3.48 16.90 50 8.01 41,4 . 0820 38.85 17.86 | 447 469
i
11 29,21 14,60 L1027 3.94 16.77 51 7.45 42.0 . 0787 40.1 18.06 | 469 499
12 28.60 15,28 . 1052 4. 42 16. 65 52 6.89 42.6 . 0750 41,2 18.28 | 499 522
13 27,99 15.94 L1074 4,91 16,53 53 6.33 43.3 .0708 42.9 18.62 | 522 545
14 27.38 16,63 . 1093 5. 42 16. 43 54 5.78 43.8 . 0665 44,3 18.78 | 545 565
15 26.77 17.32 L1116 5.96 16.34 55 5.24 44.5 . 0620 45,6 19,08 | 565 584
16 26,19 19.18 L1132 6.56 16.25 56 4.70 45.1 L0571 47.1 19.40 | 584 600
17 25.64 18.69 .1152 7.14 | 16.16 57 4.17 45.8 .0521 48.6 19.75 | 600 615
18 25.09 19.40 L1170 7.7 16.08 58 3.65 46.2 . 0465 49.9 20,13 | 615 629
19 24,55 20.10 .1187 8.39 16. 00 59 3.14 46.8 L0411 51.4 20,53 | 629 641
20 24,00 20.8 . 1200 9.02 15.94 60 2,65 47.4 . 0356 52.9 20.95 | 641 651
21 23. 46 215 .1212 9.70 15.88 61 2.10 47.9 . 0287 54.4 21,50 | 651 659
22 22,92 22.2 .1225 10.40 15,83 62 1,46 48.4 . 0206 56.0 22,20 | 659 665
23 22.38 22.9 . 1237 11,22 15.79 63 .85 48.9 .0124 57.5 22.92 | 665 668
24 21,84 23.6 .1241 11.84 15.76 64 .27 49.4 59.0 668 660
25 21.31 24.3 . 1248 12.60 15.738 65 -.31 49.9 60.6 660 639
26 20.77 25.1 . 1252 13.41 15,71 66 -.89 50.4 62,1 639 608
27 20.24 25.8 .1254 14.22 15.70 67 -1. 48 50.8 63.7 608 566
28 19.71 26.5 . 1256 15.02 15.69 68 -2.06 51.3 65,4 566 509
29 19.18 27.2 L1254 15.90 15.68 69 -2.63 51.8 67.0 509 443
30 18. 66 27.9 . 1252 16,79 15.70 0 -3.20 52.3 68.7 443 363
31 18.12 28.6 .1250 17.67 15.73 1 -3.80 52.8 70.3 363 270
32 17.57 29.4 . 1239 18.59 15.76 | 72 -4.45 §3.3 72.0 270 158
33 17,02 30.1 L1232 19.58 15.80 3 -5.12 53.8 73.17 158 39.9
34 16. 47 30.8 L1219 20.50 15,85
35 15.93 3.5 . 1207 21,50 15,91
36 15,38 32.2 .1200 22,50 15,98
37 14.86 32.9 . 0961 23.55 17.10 39.1
38 14,36 33.6 . 0968 24.60 17.07 39.1 1.6
39 13.85 34.2 . 0970 25.65 17.05 7.6 115.5
g" 40 13.35 34.9 . 0870 26,75 17.05 | 115.5 152.8
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TABLE 1V. - Concluded.

(b) Assuming a minimum Inconel-718 structural ribbon thickness of 0. 0248 centimeter

Turn { Magnetic | Average |Thickness of | Length of | Overall | Force | Force Turn | Magnetic{ Average | Thickness of | Length of | Overall| Force |Force
field, turn di- | Inconel 718 |aluminum | current [received| passed field, turn di- | Inconel 718 | aluminum | current| received | passed
T ameter,| structural |conductor,| demsity, |by turn, |by turn, T ameter,| structural | conductor, | density,| by turn, |by turn,
cm ribbon, m kA/ cmz kN KN cm ribbon, m KA/ cmé kN kN
cm cm
1 35.22 8.24 0. 0696 0.244 18. 59 [ ] 41 12,86 35.4 0.1060 27.8 16. 60 314 350
2 34.63 8.84 . 0736 . 549 18.36 42 12,35 36.2 . 1058 29.9 16. 61 350 386
3 34,03 9.44 L0772 .824 18.13 43 11.83 36.8 . 1052 30.1 16.64 386 421
4 33.43 10.05 . 0810 1,159 17.93 44 11,32 37.4 .1020 31.3 16. 68 421 455
5 32,83 10,69 . 0843 1.495 17.73 45 10,81 38.2 .1034 32.5 16,74 455 487
6 32.23 11.31 . 0878 1,830 17.54 46 10.27 38.3 .1015 33.75 16.82 487 519
7 31.62 11.97 . 0909 2.230 17.37 41 9.68 39.5 . 0990 35.0 16,95 519 550
8 31.01 12, 62 . 0942 2,625 17,20 48 9.10 40.2 . 0962 36.3 17.09 550 580
9 30.40 13.29 . 0970 3.02 17.06 49 8.63 40.8 . 0932 37.6 17,25 580 602
10 29.79 13.95 . 0998 3.48 16,91 50 7.96 41. 4 . 0899 38.85 17.43 602 634
11 29,18 14.60 .1022 3.94 16,78 51 7.40 42,1 . 0861 40.1 17.63 634 659
12 28,57 15,27 .1048 4. 42 16,65 52 6.84 42.8 . 0820 41.2 17,86 659 682
13 27.96 15.95 L1072 4,91 16.54 53 6.29 43.4 L0711 42.9 18.11 682 704
14 27.35 16.65 . 1093 5,42 16. 44 54 5.74 44.0 . 0729 44.3 18.39 704 723
15 26.74 17.33 L1112 5.96 16,34 55 5.20 4.6 . 0681 45.6 18.70 723 738
16 26.15 18.01 L1132 6.56 16.25 56 4.67 45.2 . 0627 47.1 19,03 738 59
17 25. 61 18,71 . 1150 7.14 16,17 57 4.15 45.9 L0571 48.6 19. 40 759 5
18 25,08 19.39 .1169 7.75 16,09 58 3,63 46. 4 . 0513 49.9 19.80 715 789
19 - 24,51 20.10 .1183 8.39 16.01 59 3.12 47.0 . 0451 51.4 20.23 89 779
20 23,97 20. 80 .1198 9.02 15.95 60 2.64 47.5 . 0391 52.9 20. 68 718 811
21 23. 42 21.50 L1210 9.70 15,89 61 2.10 48.1 . 0318 54.4 21.25 811 818
22 22.88 22.20 L1222 10.40 15.84 62 1.49 48.6 . 0248 56.0 21.81 818 821
23 22,34 22.90 . 1231 11,22 15.80 63 .91 49.1 . 5.5 821 815
24 21.80 23,60 .1238 11,84 15.77 64 .33 49.6 " 59.0 815 797
25 21. 27 24.35 .1243 12,60 15.74 65 -.26 50,1 60.6 7 87
26 20,173 25.05 . 1250 13.41 15, 72 66 -.84 50.6 62.2 767 726
27 20.20 25.8 L1252 14,22 15.71 67 -1, 42 51.1 63.9 726 674
28 19.67 26.5 .1252 15,02 15,71 68 -2,00 51.6 85,5 674 608
29 19.14 27.2 . 1252 15,90 15.71 69 -2.58 52.1 67.2 608 531
30 18. 61 27.9 .1250 16,79 15. 72 70 -3.15 52.6 68.9 531 441
31 18.07 28.6 .1243 17.67 15,74 n -3.74 53.3 70.5 441 339
32 1752  20.4 .1239 18.59 15.78 L 72 -4.38 537 2.3 339 222
33 16.97 30.1 . 1004 19,53 16.87 40.8 73 -5. 06 54.2 ) 74.0 ' 222 90
34 16. 46 30.7 . 1020 20,50 16.80 40.8 81.2
35 15.95 31.4 .1031 21,5 16.74 81.2 121.2
36 15,44 32.1 . 1040 22.5 16.69  121.2 156.5
317 14,92 32.8 L1049 23.5 16.65 156.5  200.0
38 14. 41 33.4 .1058 24.6 16,62  200.0 239
39 13.88 34,1 . 1060 25.6 16,60 239 2176
40 13.38 34.8 .1061 27.1 16.59 276 314
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Figure 3. - Power required to reach various magnetic fieldf for dif-
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Figure 6. - Heat flux as function of conductor width for
strengths and bore diameters. Conductor width, 5. 71 centimeters.

various conductor thicknesses and a fixed current of
40 kiloamperes.
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