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AIRBORNE ANTENNA POLARIZATION STUDY FOR
 

THE MICROWAVE LANDING SYSTEM
 

By Melvin C. Gilreath
 
Langley Research Center
 

SUMMARY
 

An experimental investigation was conducted to determine the feasibility
 
of satisfying the Microwave Landing System (MLS) airborne antenna pattern
 
coverage requirements for a large commercial aircraft with a single omni
directional antenna. Omnidirectional antennas having vertical and horizontal
 
polarizations were evaluated at several different station locations on a
 
one-eleventh scale model Boeing 737 aircraft. The results obtained during
 
this experimental program are presented which include principal plane antenna
 
patterns and complete volumetric coverage plots. Typical calculated results
 
obtained from an Ohio State University analytical program are compared with
 
the experimental data.
 

INTRODUCTION
 

The airborne antenna system is critical in providing reliable tracking
 
during the operation of the Microwave Landing System (MLS). Factors that
 
must be considered in the airborne antenna design include required pattern
 
coverage, antenna polarization, and location on the aircraft. An investi
gation has been conducted during which different antenna polarizations (i.e.,
 
horizontal and vertical) and locations were studied to determine the feasi
bility of satisfying the pattern coverage requirements specified by the
 
Federal Aviation Administration (reference 1). This study was performed for
 
the Boeing 737 which is typical of the large aircraft used commercially and
 
is also the type of aircraft being used by NASA Langley's Terminal Configured
 
Vehicle Program. A scale model of the Boeing 737 was used for conducting the
 
experimental measurements. Omnidirectional antennas, as well as directional
 
antennas suitable for providing zone or sector coverage only, were investigated.
 
Antenna radiation patterns and complete volumetric coverage plots are presented
 
for most of the different cases investigated.
 

In addition to the experimental program conducted at NASA Langley,
 
analytical techniques (references 2 through 5) have been developed at the Ohio
 
State University that are capable of predicting radiation patterns of airborne
 
antennas in an accurate and efficient manner. The numerical solutions can
 
take into account the cockpit/radome section and the vertical stabilizer
 
which have previously been ignored in this work. Computer programs have been
 
delivered to NASA Langley with which complete volumetric patterns can be
 
calculated. In this report, typical calculated principal plane patterns
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and volumetric plots are compared with experimental data to demonstrate the
 
capability of the analytical techniques. Reference 5 describes in detail
 
the analytical techniques used and presents a comparison of experimental
 
and analytical results for several different cases not included in this report.
 

AIRBORNE ANTENNA COVERAGE REQUIREMENTS
 

Detailed specifications have not been established for the MLS airborne
 
antenna coverage requirements, however, the general coverage requirements
 
are for all-around (3600) coverage at angles near the horizon (heading) for
 
civilian aircraft; for military aircraft the requirement varies, sometimes
 
being similar to civil aircraft, and in other cases being that forward
 
coverage only is required near the horizon. In addition, for civilian
 
aircraft it is necessary that sufficient coverage be provided below and
 
behind the aircraft for reception during missed approaches. Since no
 
detailed specifications were available when this study began, NASA Langley
 
requested that typical antenna coverage requirements be supplied for use as
 
a guide. These requirements were supplied by the FAA's Microwave Landing '
 
System's Airborne Antenna Ad Hoc Committee (reference 1) and are presented in
 
figure 1 and table I. These were generated on an extremely tight time
 
schedule and were intended for use only as a guide for this investigation and
 
should not be considered as the final MLS requirements. The MLS requirements
 
may vary considerably for each different type of aircraft and should be
 
determined on an individual basis. Over specifying of the antenna coverage
 
requirements should not be done since this might needlessly increase the
 
complexity of the antenna design or eliminate antennas that might be
 
acceptable. Figure 1 shows a projection of the solid angle around the aircraft
 
and the areas where coverage is required are designated as zones. For each
 
zone, four characteristics are set forth. The first is a measure of gain
 
referred to isotropic and this is determined for an antenna by computing the
 
percentage of total solid angle in each zone through which the radiation is
 
more than the reference level given in table I.
 

The second characteristic pertains to pattern ripple and is determined
 
only for Zone A which is treated as a single region for this purpose. Two
 
measures are applied here. The first is ripple fineness which is determined
 
by an examination of the azimuth and elevation plane patterns within the
 
region (10' increments) and tabulating the smallest angular separation
 
between adjacent maximum and minimum differing by 8 dB or more. The second
 
is a measure of ripple depth and is determined for each of the pattern
 
segments by finding the largest dB difference between any adjacent maximum
 
and minimum which are separated by less than 50.
 

The third characteristic is a coarser measure of pattern variation
 
within a zone and is applied to Zones B, C, Dl, D2 , and D3. It is the
 
pattern "smoothness" characteristic and is measured as 100 percent minus the
 
percentage of the solid angle in each zone through which the radiation is
 
greater than 4 dB different from the average radiation in that zone.
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The fourth characteristic pertains to phase center deviation and is
 
determined only for Zone A, treated as a single unit, by calculating the
 
percentage of the solid angle in the zone through which the phase center of
 
radiation is more than 0.7 feet from the physical center of the antenna.
 
In addition, the antenna phase center should be at least 8 feet above the
 
ground at touchdown.
 

A quality measure for a specific antenna installation is given by the
 
average value of each of the characteristics for all of the applicable zones.
 
This measure is qualitative only and should be used only as a guide for
 
determining which antenna installation to evaluate in more detail.
 

In selecting antennas for investigation, it should be recognized that
 
there may be different MLS coverage requirements for different aircraft as
 
indicated previously. The actual acceptable limits may vary so drastically
 
from one class of aircraft to another that any one of the following might
 
represent usable coverage for some class of aircraft:
 

Coverage Class I - Zone "A" only
 
II - Zones "A" and "B" only 

ITI - Zones "A," "B," and "D" only 
IV - Zones "A," "B," "C," and "D" 

AIRCRAFT TYPE AND TEST CONFIGURATIONS
 

Antenna pattern data have been obtained for the Boeing 737 aircraft
 
which is a widely used large commercial air carrier and is also the type of
 
aircraft being used-in-NASA Langley's Terminal Configured Vehicle (TCV)
 
Program. Full-scale antenna pattern measurements are not practical for large
 
commercial aircraft, therefore, a one-eleventh scale model of the Boeing 737
 
was used and the measurements were conducted at a scaled-up frequency of
 
35 GHz. The model was obtained from the Boeing Commercial Airplane Company.
 
It was constructed of fiberglass material and coated at NASA Langley with a
 
silver conducting paint. The flaps were fixed in the retracted position,
 
however, the landing gear was removable to simulate both the stowed wheels
 
and gear-down conditions. Figures 2(a) and 2(b) show the model simulating
 
the gear-down condition in the antenna test chamber.
 

Measurements were made using both vertically and horizontal-ly-polarized
 
omnidirectional antennas at several locations on the model, with and without
 
landing gear in most cases.
 

Some aircraft will require coverage in the forward sector (Zone A) only,
 
therefore, antennas that might satisfy this requirement were evaluated in
 
top and bottom forward fuselage locations. Antennas having vertical,
 
horizontal, and circular polarizations were investigated. The actual radome
 
was not simulated on the scale model since all the antennas investigated were
 
not intended for use inside the radome and the radome would have a minimum
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influence on the results. Reference 6 presents data obtained by the Boeing
 
Commercial Airplane Company during a study of the MLS airborne antenna/radome
 
problem.
 

ANTENNA TYPES AND LOCATIONS
 

Two different classes of antennas were considered in this investigation
 
and they were omnidirectional and directional antennas. The omnidirectional
 
antennas were investigated to determine if a single antenna installation
 
could satisfy the MLS requirements on a large commercial jet aircraft. Both
 
vertically and horizontally-polarized antennas were studied. The vertically
polarized antenna was a simple monopole as shown in figure 3, and the
 
horizontally-polarized antenna was an array of slots fed by a coaxial line
 
as shown in figures 4 and 5. The horizontally-polarized antenna design
 
(references 7 through 9) uses six axial slots equally spaced around the outer
 
conductor of the coaxial line. Each slot is excited by a 0.014-inch diameter
 
probe extending from the outer conductor into the inner conductor of the
 
coaxial line. A 0.016-inch diameter hole was drilled approximately 0.024
 
inches from the center of each slot and centered along the length of the slot
 
to fix the probes in place. These holes were drilled radially through the
 
outer conductor and approximately 0.010 inches into the center conductor.
 
The probes were then inserted into these alinement holes and soldered to the
 
outer conductor in the coaxial line for retaining them in their proper
 
positions. A shorting plug (figure 5) was used to minimize the input VSWR of
 
the antenna at the test frequency of 35 GHz. The six-slot design provided
 
omnidirectional (azimuth plane) coverage to within 1.5 dB when installed on
 
a large ground plane.
 

The directional type of antenna which is suitable for providing forward
 
sector or single zone coverage only was also investigated since for some
 
classes of aircraft this will be the only requirement. Flush-mounted
 
antennas such as axial and circumferential waveguides having horizontal and
 
vertical polarizations, respectfully, were measured. Other antennas included
 
in this class were a monopole with reflectors and an externally-fuselage
mounted circular waveguide capable of radiating horizontal, vertical, or
 
circular polarizations in the forward sector. The circular waveguide was
 
loaded with boron nitride, which has a relatively high dielectric constant
 
(Er = 4), to reduce the antenna size and keep the protrusion of the antenna
 
above the fuselage quite small. Other types of airborne antennas that might
 
be used for MLS are discussed in reference 10.
 

Several locations on the aircraft were investigated and these are
 
indicated in figure 6. Locations were selected that appeared to have the
 
greatest possibility of providing the required coverage with a single antenna.
 
Top and bottom fuselage locations as well as top of the vertical stabilizer
 
were used. A rear bottom fuselage location (i.e., station 950) was also
 
selected for providing coverage in the rear sector for missed approaches and
 
other situations requiring coverage in that region if it was determined that
 
antennas at the other locations could not provide this coverage.
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DATA RECORDING AND PROCESSING
 

The data obtained in this investigation consist of antenna pattern
 

measurements taken over the entire sphere of polar coordinate aspect angles
 
(4r steradians). The coordinate system used is defined in figure 7 and it
 
is assumed the antenna is located at the origin. The X-axis is parallel to
 
the fuselage centerline, with the positive direction toward the nose of the
 
aircraft. The Y-axis is parallel to a line connecting the aircraft wing tips
 
with positive values in the direction of the left wing. The Z-axis is normal
 
to the X-Y plane with the positive direction toward the top of the aircraft.
 
The angles 8 and 0 are defined as the elevation and azimuthal angles,
 
respectfully.
 

The antenna patterns were recorded in 2' increments in both 0 and 4. 
Theta varied from 0 to 1800 and phi from 0 to 360' with a total of 91 records 
or scans required for each case. A complete recording contains 16,380 data 
points representing the spherical radiation characteristics of an antenna for 
a specific set of test conditions (e.g., antenna location, with or without 
landing gear, etc.). To determine the directivity of the antenna, pattern 
integration using the measured data is performed over the sphere surrounding 
the test model. The measured data are scanned in the computer and the maximum 
amplitude is found and this maximum value is the value representing the 
calculated maximum directivity. All contour plots and radiation patterns are 
plotted relative to this maximum directivity value. 

Principal plane (i.e., elevation, azimuth, and roll) radiation patterns
 
for each different situation investigated are presented. The volumetric
 
patterns are presented in two forms. The antenna coverage requirements
 
presented earlier gave the required gain levels for the various zones where
 
coverage is necessary. These different gain values were used as the basis
 
for determining the best way to present the data in volumetric form. The
 
first type of presentation is where a single plot is used for displaying all
 
the directivity values that fall within a specified range and since there are 
six ranges (i.e., > 0 dB, > -3 dB, > -6 dB, > -10 dB, > -15 dB, > -20 dB), it 
is necessary to use six plots for presenting all the data. The second form of 
volumetric pattern utilizes a "false color" plot in which the directivity 
values that fall within the specified ranges are assigned a color and all the 
values are displayed on a large screen and photographed to provide a single 
volumetric pattern complete with all directivity ranges shown. The "false 
color" plot provides all the data on a single plot for a quick approximate 
determination of the type of volumetric coverage provided and if a more 
accurate determination is required, then the six individual plots may be used. 
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DATA ANALYSIS
 

Omnidirectional Antennas
 

The data obtained for the omnidirectional antennas at 35 GHz using the
 
one-eleventh scale Boeing 737 model are presented in figures 8 through 10 and
 
tables II through III. Figure 8 presents the volumetric directive gain plots
 
for vertically and horizontally-polarized antennas at different station
 
locations with and without the landing gear. Volumetric plots showing single
 
directivity levels for each case are included in the appendix for a more
 
accurate determination of the coverage provided if desired. Principal plane
 
radiation patterns are presented in figures 9 and 10.
 

Tables II and III present the data obtained when the radiation patterns
 
were evaluated according to the characteristics specified in the Antenna
 
Coverage Requirements section. Table II gives the percent coverage in each
 
zone, and table III prdsents the pattern ripple data for Zone A. The pattern

"smoothness" characteristic for Zones B, C, Dl, D2 , and D3 was not determined
 
because the percent coverage for some of the zones was low, making the
 
"smoothness" characteristic difficult to obtain, and if obtained, its value
 
was questionable. The fourth characteristic pertaining to phase center
 
deviation for Zone A was not measured since accurate phase measurements are
 
extremely difficult and time consuming to perform at 35 GHz, however, phase
 
data were calculated for some of the cases considered and these results are
 
presented in references 3 and 5.
 

The locations (figure 6) that were evaluated include stations 220, 250,
 
and 305 on the top fuselage, and stations 222 and 950 on the bottom fuselage,
 
as well as on top-of the vertical stabilizer. The top forward fuselage
 
locations satisfy the requirement that the antenna phase center must be at
 
least 8 feet above ground at touchdown and very good forward coverage is
 
provided that is least affected by the landing gear, engines, and wings.
 

Figures 8(a) and 8(b) are volumetric plots for a monopole located at
 
station 220 without and with landing gear, respectfully. The plots are
 
almost identical indicating only a small affect on the antenna performance
 
due to the presence of the landing gear. The corresponding principal plane
 
radiation patterns are presented in figures 9(a) and 9(b). These data
 
indicate that very good coverage is provided except in the rear underneath
 
the aircraft which is the area blocked by the aircraft fuselage. Results for
 
the horizontally-polarized antenna at station 220 are given in figures 8(c),
 
8(d), 9(c), and 9(d). These data again show very little difference between
 
the no landing gear and with landing gear conditions. The horizontally
polarized antenna provides good forward coverage, however, it is not quite
 
equal to the coverage provided by the vertically-polarized antenna. The
 
horizontally-polarized fields are shorted out by the metallic fuselage surface
 
limiting the coverage to sectors above the antenna. The downward slope of
 
the top fuselage at station 220 makes it possible to obtain the good forward
 
down coverage with the horizontally-polarized antenna. As you move farther
 
back on the fuselage, the downward slope becomes smaller and the forward down
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coverage for the horizontally-polarized antenna decreases much more rapidly
 
than for the vertically-polarized antenna.
 

Volumetric plots are presented in figures 8(e), 8(f), 8(g), and 8(h)
 
for the vertically and horizontally-polarized antennas at station 250
 
slightly off centerline of the top fuselage. The actual aircraft was
 
investigated and due to internal structural interference problems, the
 
antenna could not be mounted exactly on centerline but had to be moved off
 
by 4 to 6 inches, therefore, the experimental scale model measurements were
 
done with the antennas moved off centerline approximately 0.5 inches (full
 
scale = 5.5 inches). This produces the asymmetry in the heading and roll
 
plane patterns as shown in figures 8(e), 8(f), and 8(g). The volumetric
 
plots also show the asymmetry about the nose of the aircraft and this is
 
displayed very well in figure 8(g) in which the color intensity is varied
 
within each directivity range providing a better indication of how the
 
directivity changes within the different ranges. The coverage is still good
 
at this station, however, the forward down coverage has decreased somewhat
 
due to the smaller forward fuselage slope.
 

Data obtained for station 305 are presented in figures 8(i), 8(j), 9(h),
 
and 9(i) which indicate somewhat better rear coverage, however, the forward
 
down coverage is reduced which is not desirable. Good forward zone coverage
 
is required during the critical final landing phase. This location does not
 
appear suitable for satisfying the MLS requirements.
 

Data obtained for a bottom forward fuselage location (i.e., station 222)
 
are presented in figures 8(k) through 8(n) and 9(j) through 9(m). Figure 8(k)
 
shows the volumetric plot for the vertically-polarized monopole at station 222
 
without the landing gear and very good coverage is obtained except in the
 
region above the tail. This is also shown in the principal plane patterns
 
(figure 9(j)) and the heading pattern also indicates the effects in the tail
 
region due to the engines. The landing gear effects are shown in figures 8(l)
 
and 9(k). Severe amplitude variations are produced by the presence of the
 
landing gear and considerable blockage in the rear direction reduces the
 
amount of coverage in the tail region. Data for the horizontally-polarized
 
antenna are presented in figures 8(m), 8(n), 9(1), and 9(m) and show somewhat
 
less coverage without the landing gear than the vertically-polarized antenna.
 
Less coverage along the fuselage for the horizontally-polarized antenna tends
 
to reduce the amount of amplitude variations when the landing gear is present.
 
This location,due to its proximity to the nose landing gear, does not appear to
 
be a suitable location for an omnidirectional antenna. For antennas radiating
 
in the forward direction, it might be an acceptable location since the nose
 
gear would be behind the antenna and would have minimum effect on the antenna
 
performance.
 

The last location on the fuselage investigated was station 950 on the
 
bottom rear fuselage and the data obtained are presented in figures 8(o)
 
through 8(s) and 9(n) through 9(q). This location was selected for providing
 
coverage in the rear of the aircraft if it was determined that a single
 
omnidirectional antenna could not meet the specified coverage requirements.
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Excellent rear coverage is provided as shown by the volumetric plots and
 
principal plane patterns. The landing gear has very little effect on the
 
antenna performance except in the forward nose region where the amplitude
 
is lowered somewhat and the ripple is increased. Figure 8(q) is a volumetric
 
plot for the vertically-polarized monopole in which the color intensity
 
varies within each directivity range to show in more detail how the amplitude
 
changes within each specified range. The data for the horizontally-polarized
 
antenna indicate good coverage is provided, however, coverage in each zone
 
is somewhat less than that provided by the vertically-polarized antenna.
 

In addition to the fuselage locations, measurements were obtained for
 
a monopole mounted on top of the vertical stabilizer. Elevation plane
 
patterns were measured for different azimuth angles and some typical patterns
 
are shown in figure 10. Coverage below the aircraft directly off the nose
 
is reduced by blockage of the fuselage. As the angle off the nose increases,
 
the down coverage improves, however, considerable amplitude variations occur
 
especially above the nose of the aircraft due to reflections off the fuselage.
 
These rapid amplitude variations could cause serious problems for the MLS.
 
The vertical stabilizer location would require long cable runs from the
 
antenna to the onboard electronics which could produce unacceptable
 
transmission losses. This location could also pose a more difficult retrofit
 
problem than some of the other MLS locations investigated making it a less
 
desirable location.
 

The data presented in tables II and III give the percent coverage
 
(i.e., directivity values > specified value) in each zone and ripple fineness
 
and ripple depth for Zone A for the different test conditions. As indicated
 
in table II, neither the vertically-polarized monopole nor the horizontally
polarized slot antenna completely satisfies the coverage requirements speci
fied. The coverage provided by the monopole is considerably greater fo all
 
cases investigated. The top forward fuselage locations (i.e., stations 220
 
and 250) provide good forward coverage with limited coverage in Zones C, D,
 
E, and F. The coverage is improved at station 222 on the bottom forward
 
fuselage, however, this location does not satisfy the 8-foot minimum height
 
at touchdown requirement and considerable pattern perturbations are produced
 
by the landing gear and engines making this an undesirable location for an
 
omnidirectional antenna. The pattern ripple in Zone A is greatest for this
 
location as indicated in table III.
 

The data obtained during this investigation indicate that the specified
 
coverage requirements cannot be satisfied with a single omnidirectional
 
antenna either vertically or horizontally polarized. If the specified
 
coverage is to be obtained for large commercial aircraft, two antennas with
 
some type of switching between them would be necessary. The two locations
 
chosen for the antennas on the NASA TCV aircraft were stations 250 on the top
 
fuselage, and 950 on the bottom fuselage. Figure 11 shows the principal plane
 
patterns for two vertically-polarized monopoles at these station locations on
 
the one-eleventh scale model Boeing 737. The coverage provided is very good
 
as indicated in figure 11 and table II when the coverage for the two antennas
 
is combined. These locations were chosen based on coverage provided and
 
ease of installation.
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A comparison of experimental data obtained in this investigation and
 
analytical results from the Ohio State University program (reference 5)
 
is made in figures 12 and 13. Figure 12 shows the elevation, heading, and
 
roll patterns for a X/4 monopole mounted at station 220 on top of a
 
Boeing 737 aircraft. The measured volumetric plot is shown in figure 13(a),
 
and the comparable calculated plot is presented in figure 13(b). The results
 
show excellent agreement demonstrating the capability of the analytical
 
techniques. Reference 5 describes the analytical techniques used in
 
obtaining these results and presents an extensive comparison of experimental
 
and analytical results for many of the cases investigated in this study
 
plus data for several other cases not included in this report. With the
 
analytical results verified with experimental data, they can be used to do
 
a parametric antenna design study of other large commercial aircraft and in
 
a much more efficient way than the usual scale model approach.
 

Directional Antennas
 

Some aircraft will require antenna pattern coverage only for the
 
forward zone (i.e., Zone A), therefore, typical antennas that might satisfy
 
this requirement were investigated at stations 220 (top) and 222 (bottom)
 
on the Boeing 737 scale model. Antennas having vertical, horizontal, and
 
circular polarizations were evaluated. Flush-mounted axial and circumferential
 
Ka-band rectangular waveguides were evaluated and the principal plane results
 
for the top fuselage location are presented in figures 14 and 15. The
 
vertically-polarized circumferential waveguide provides very good forward
 
elevation plane coverage as shown in figure 14(a). Figure 14(b) shows the
 
corresponding heading pattern and again good coverage for Zone A is provided.
 
Principal plane patterns for the horizontally-polarized axial waveguide are
 
shown in figure 15. The-elevation plane pattern (figure 15(a)) shows poor
 
coverage in the forward direction with the value off the nose approximately
 
12 dB below the maximum gain of the antenna which occurs at approximately
 
600 above the nose. The elevation plane coverage for the horizontally
polarized axial waveguide is determined primarily by the forward slope of
 
the fuselage. The heading pattern shown in figure 15(b) indicates good
 
coverage. The pattern amplitudes for the elevation and heading patterns
 
should be the same directly off the nose, however, the heading pattern levels
 
are a few dB higher than the corresponding elevation patterns. The patterns
 
are intended only to show the angular coverage provided for the different
 
antennas.
 

The vertically-polarized monopole with three reflectors for producing
 
a forward-looking radiation pattern was also evaluated and these results
 
are presented in figure 16. The elevation plane pattern shows very good
 
coverage with a 4 to 5 dB amplitude variation in the region above the nose.
 
Coverage in the heading plane is also good as shown in figure 16.
 

A circular waveguide with a polarizer for providing vertical, horizontal,
 
or circular polarization was evaluated and these results are given in
 
figure 17. The waveguide was loaded with boron nitride to reduce the size.
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It was mounted on the top fuselage surface at station 220 to produce maximum
 
radiation in the forward direction. The elevation and heading patterns for
 
the different polarizations are presented in figure 17. Figure 17(a) shows
 
large pattern variations in the region above the aircraft nose due to
 
reflections off the top of the forward fuselage. Figure 17(b) shows that very
 
good coverage is provided with horizontal polarization without the amplitude
 
variations present in the elevation plane for vertical polarization, however,
 
the down coverage is somewhat less for horizontal. The coverage provided with
 
circular polarization is shown in figure 17(c) and appears to be an average
 
of the horizontal and vertical components as one would expect.
 

Similar measurements were conducted for the same antennas at station
 
222 on the bottom fuselage and these results are presented in figures 18
 
through 21. Figure 18 shows the principal plane patterns for the vertically
polarized circumferential waveguide and both the elevation and heading
 
patterns exhibit small amplitude variations due to reflections off the nose
 
gear. The coverage above the nose is limited due to the small upward slope
 
of the bottom fuselage.
 

Figure 19 gives the patterns for the horizontally-polarized axial
 
waveguide and as shown in the elevation plane, coverage directly off the nose
 
is approximately 20 dB below the maximum and very little coverage above the
 
nose is provided. Considerable amounts of amplitude variations produced by
 
reflections off the nose landing gear are present in the heading pattern.
 

The monopole with reflectors was also measured and the data obtained
 
are presented in figure 20. Good forward coverage is provided as indicated
 
in both the elevation and heading patterns and because the maximum energy is
 
directed forward away from the nose landing gear, its presence has very
 
little influence-on the antenna performance.
 

Data obtained for the forward-looking, surface-mounted circular
 
waveguide are presented in figure 21. Patterns were measured for vertical,
 
horizontal, and circular polarizations. Coverage above the nose was better
 
for vertical polarization as shown in the elevation pattern of figure 21(a).
 
The maximum directivity occurs at approximately 50 above the nose of the
 
aircraft. For horizontal polarization, the maximum directivity occurs at
 
approximately 200 below the nose and the level directly off the nose is down
 
approximately 5.5 dB, as shown in the elevation pattern of figure 21(b).
 
Figure 21(c) indicates good coverage is obtained with circular polarization,
 
however, the amplitude variations are somewhat greater than for the other
 
polarizations.
 

The results of an evaluation to determine the percent coverage, ripple
 
fineness, and depth for Zone A are presented in table IV for the monopole
 
with reflectors and circular waveguide antennas. The evaluation was not
 
done for the axial and circumferential waveguides due to insufficient pattern
 
data. For those cases evaluated, the horizontally-polarized circular
 
waveguide provided the lowest Zone A coverage for both top and bottom
 
locations. The circularly-polarized antenna provided the most coverage of
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Zone A at both locations. The vertically-polarized circular waveguide at
 
the top antenna location was the only antenna having large pattern variations
 
and these range from approximately 10 to 36 dB over a small region above the
 
aircraft nose. It appears from the measured data that good forward zone
 
coverage can be obtained by using antennas similar to those evaluated or
 
other directional antennas such as mitered waveguide or mitered half-height
 
horn antennas.
 

CONCLUDING REMARKS
 

Results have been presented of an experimental investigation to
 
determine the feasibility of satisfying the MLS airborne antenna pattern
 
coverage requirements with different antenna polarizations and locations for
 
the Boeing 737 aircraft.
 

The data presented indicate that the specified MLS airborne antenna
 
coveiage requirements for large commercial aircraft cannot be satisfied with
 
a single omnidirectional antenna, either vertically or horizontally polarized.
 
It appears that in order to provide coverage that might be acceptable would
 
require at least two antennas with the capability of switching between them.
 
Stations 250 on the top fuselage and 950 on the bottom fuselage were selected
 
for the antenna installations on the NASA TCV Boeing 737 aircraft.
 
Experimental data obtained for vertically-polarized monopoles at these
 
selected locations on the one-eleventh scale model of the Boeing 737 indicate
 
very good coverage can be provided with two antennas.
 

The data obtained during this investigation indicate that the
 
vertically-polarized monopole provides more coverage than the horizontally
polarized coaxial slot-fed antenna measured at the same station location.
 

The directional antennas investigated provided better forward zone
 
coverage from the top forward fuselage location. This was primarily due to
 
the more downward slope of the fuselage over the cockpit area.
 

A comparison of the experimental data obtained in this investigation
 
with analytical results from the Ohio State University program showed very
 
good agreement. This experimental verification demonstrated the capability,
 
of the analytical techniques and provides a tool for performing a parametric
 
antenna design study of other large commercial aircraft in an efficient
 
manner.
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TABLE I
 

AIRBORNE ANTENNA GAIN REQUIREMENTS
 

ZONES 
GAIN (RELATIVE TO ISOTROPIC) 

CIVIL MILITARY 
HIGH PERF* LOW PERF 

A1 , A2, A3, A4 0 dB 0 61B 0 dB 

B -3 dB -3 dB -3 dB 

C -6 dB -6 dB -6 dB 

Di , D2 ' D3 -10 dB -6 dB 

E -15 dB 

F 
 - 15 dB
 

*SUPERSONIC; LOW PERF IS SUBSONIC
 



TABLE II
 

ANTENNA PATTERN COVERAGE
 

ANTENNA TYPE AND LOCATION 


I. Station 220 


aI
 
Monopole 

Monopoleb 

HP Antennaa 

HP Antennab 


I. Station 250 (off Centerline)
 

Monopolea 

Monopoleb 

HP Antennab 


III. Station 305
 

Monopolea 

HP Antennab 


IV. Station 222
 

Monopolea 

Monopoleb 

HP Antennaa 

HP Antennab 


V. Station 950
 

Monopolea 

Monopoleb 

HP Antennaa 

HP Antennab 


a - without landing gear
 
b - with landing gear
 

ZONES (PERCENT COVERAGE) 

A B C D E F 

99.5 92.2 60 40 16.7 0 
99.3 92.8 60 40 16.7 0 
80 64.4 20 4 6.67 0 
80 64.4 20 4 6.67 0 

90 84 74 46 10 0 
90 84 60 40 10 0 
59 72.7 30 12 0 0 

72 82.2 70 52 31.7 0 
46 53.7 36 24 0 0 

99.5 96.9 94.6 76 80 100 
98.6 97.5 55.8 60 88.3 100 
77 69.5 58 42 76.7 100 
74 67.7 38 36 85 100 

58 67.7 100 100 100 83.3 
36 62.4 100 100 100 83.3 
24 45.4 79 88 100 56.7 
20 61.8 80 88 100 56.7 



TABLE III
 

PATTERN RIPPLE FINENESS AND RIPPLE DEPTH FOR ZONE A
 

ANTENNA TYPE AND LOCATION RIPPLE FINENESSa RIPPLE DEPTHa
 

I. Station 220
 

Monopole < 8 dB 4 dB - 40 Separation
 
HP Antenna < 8 dB < 2 dB
 

II. Station 250 (Off Centerline)
 

Monopole < 8 dB 2.5 dB - 2' Separation
 
HP Antenna < 8 dB < 1 dB
 

III. Station 305
 

Monopoleb < 8 dB 2 dB - 3' Separation
 
HP Antenna < 8 dB < 1 dB
 

IV. Station 222
 

Monopole 60 - 10 dB 8 dB - 40 Separation
 
HP Antenna < 8 dB 4 dB - 20 Separation
 

V. Station 950
 

Zone A evaluation not performed for rear sector location
 

a - Ripple fineness and ripple depth values given for those values that satisfy minimum coverage
 
requirements (i.e., > 0 dB) in Zone A
 

b - Without landing gear
 



TABLE IV 

DIRECTIONAL ANTENNA PATTERN COVERAGE AND PATTERN RIPPLE FOR ZONE A 

ANTENNA TYPE AND LOCATION POLARIZATION % COVERAGE RIPPLE FINENESS RIPPLE DEPTH 

I. Station 220 

Monopole with Vertical 94 < 8 dB 
Reflectors 

Circular Waveguide Vertical 96 10 - 36 dB 30 Separation 
upper elevation 

Circular Waveguide Horizontal 80 < 8 dB 
Circular Waveguide Circular 99 < 8 dB 

II. Station 222 

Monopole with Vertical 92 < 8 dB 
Reflectorsa 

Monopole with Vertical 92 < 8 dB 
Reflectors 

Circular Waveguide Vertical 93 < 8 dB 
Circular Waveguide Horizontal 70 < 8 dB 
Circular Waveguide Circular 95 < 8 dB 

a - Without landing gear 
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RIO- Antenna location 

Nose landing gear and or
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(b) Bottom view
 

Figure 2.- Concluded.
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S0.240 

Pin OD 0.014, 0.200
 
extend 0.015 into
 
center conductor -0.014 Slot width, 0.180 slot length
 

six slots 600 apart
 

'-0. 024 

-[n-0.087 diameter of center conductor
 
I- Movable shorting plug
 

0.500 	 0.180 

to16o 

0.900 	 lw I80tra 
0.200 %U L Drill/tap for 0-80 thread 

0 0.162 OD of dielectric0.200 


-Solder to base of antenna
 

-Type OSM 204 CC connector
 

with flange removed
 

All dimensions are In inches
 

Figure 5.-	 Drawing of horizontally polarized coaxial fed
 
slot antenna.
 



O - STATION 220
 

) - STATION 250
 

(©)- STATION 305
 

STATION 222
 

o@ - STATION 950
 

() - VERTICAL STABILIZER
 

Figure 6.- Antenna locations investigated for the Boeing 737.
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Figure 7.- Coordinate system used for experimental measurements. 
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. M..-u~~ 
(a) Monopole at station 220 on top fuselage.
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Figure 9.- Principal plane patterns of omnidirectional
(a) Honpole a statin 220 o top fselage
 

.... antennas on one-eleventh scale model
 
~of Boeing 737.
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(b) 	Monopole at station 220 on top fuselage "
 
with landing gear.
 

Figure 9.- Continued.
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(c) 	Horizontally polarized coaxial fed slot antenna
 
at station 220.
 

Figure 9.- Continued.
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(d) 	Horizontally polarized coaxial fed slot antenna
 
at station 220 with landing gear.
 

Figure 9.- Continued.
 



48 

aZATIMn PAflEN 	 TAII 

1-1%IPAMN 

MWING 	 RICKWING 

9W. PAMnN 

(e) 	Monopole at station 250 on top fuselage (off
 

centerline).
 

Figure 9.- Continued.
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(f) 	Monopole at station 250 on top fuselage (off
 
centerline with landing gear.
 

Figure 9.- Continued.
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(g) Horizontally polarized coaxial fed slot antenna
 

at station 250 on top fuselage (off centerline)
 
with landing gear.
 

Figure 9.- Continued.
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(h) Monopole at station 305 on top fuselage.
 

Figure 9.- Continued.
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(i) 	Horizontally polarized coaxial fed slot antenna
 
at station 305 on top fuselage with landing gear.
 

Figure 9.- Continued.
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(j) Monopole at station 222 on bottom fuselage.
 

Figure 9.- Continued.
 



(W 	
5 

4rVEODUmBhL1ff O 1 	 54OR1IsPAG1 

0 

TAIL 
rVATINFAr H 	 H[IMINGPAT ? 

R(I.! PATOhN 

(k) 	Monopole at station 
222 on bottom fuselage
 

with landing gear.
 

Continued.
Figure 9.-
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(1) 	Horizontally polarized coaxial fed slot antenna
 
at station 222 on bottom fuselage.
 

Figure 9.- Continued.
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(m) Horizontally polarized coaxial fed slot antenna
 

at station 222 on bottom fuselage with landing
 

gear.
 

Figure 9.- Continued.
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(n) Monopole at station 950 on bottom fuselage.
 

Figure 9.- Continued.
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(o) 	Monopole at station 950 on bottom fuselage
 
with landing gear.
 

Figure 9.- Continued.
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(p) 	Horizontally polarized coaxial fed slot antenna
 
at station 950 on bottom fuselage.
 

Figure 9.- Continued.
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(q) Horizontally polarized coaxial fed slot antenna
 
at station 950 on bottom fuselage with landing
 
gear.
 

Figure 9.- Concluded.
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for a monopole mounted
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scale model of Boeing 737.
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Figure 12.-	 Antenna patterns of a quarter wavelength monopole
 
at station 220 on top fuselage of a Boeing 737.
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Figure 12.- Continued.
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Figure 12.- Concluded
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(b) Heading

(a) Elevation 


Figure 14.-	 Principal plane patterns for vertically polarized
 

circumferential waveguide at station 220 on top
 
fuselage of a one-eleventh scale model of a Boeing
 
737.
 

TAIL
 

(a) Elevation 	 (b) Heading
 

Figure 15.-	 Principal plane patterns for a horizontally
 
polarized axial waveguide at station 220 on
 
top fuselage of a one-eleventh scale model of
 
a Boeing 737.
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Figure 16.- Principal plane patterns for monopole 
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(a) Vertical polarization
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(b) Horizontal polarization
 

Figure 17.-	 Principal plane patterns for a circular
 

waveguide at station 220 on top fuselage
 
of a one-eleventh scale model of a Boeing
 
737.
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Figure 17.- Concluded.
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Figure 18.-	 Principal plane patterns for vertically polarized
 

circumferential waveguide at station 222 on
 

bottom fuselage of a one-eleventh scale model of
 

a Boeing 737.
SOIIZ 

' 	 "TAt 

(a) Elevation() 	 edn
 

Figure 19.-	 Principal plane patterns for horizontally polarized
 
axial waveguide at station 222 on bottom fuselage
 

of a one-eleventh scale model of a Boeing 737.
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Figure 20.-	 Principal plane patterns for a monopole with
 
reflectors at station 222 on bottom fuselage
 
of a one-eleventh scale model of a Boeing 737.
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Figure 	21.- Principal plane patterns for a circular waveguide at
 
station 222 on bottom fuselage of a one-eleventh
 
scale model of a Boeing 737.
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