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INTRODUCTION

This technical report completes one facet of Project ASTRO. In this report
we show that signals encoded in a dela modulator. format can undexgo arithmetic
processing without first being transformed inlo a PCM format. In addilion, we
show that PCM and DM sigpals can be converted to the olher format with less than
0.5 dB degradation,

Since a signal can be enceded into a DM format using half the number of
binary digits required for PCM conversion, the results presented here indicate
a way of significantly reducing the memory requirements of a dala base. The next
facet of this study will be 1o actually encode the data into a DM format siore the
bits in the (DM) dsta base and use thal reduced data in the DBMS.



ARITHMETIC PROCESSING AND DIGITAL CONVERSION
QF

ADAPTIVE DELTA MODULATION ENCODED SIGNALS

by

JOSEPH L. LoCICERO

i



ARITHMETIC PROCESSING AND DIGITAL CONVERSION
CF

ADAPTIVE DELTA MODULATION ENCODED SIGNALS

by

JOSEPH L. LoCICERO

A dissertation submitted to the Graduate
Faculty in Engineering in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy, The City University of New York.

1976

ib



ii

This manuscript has been read and accepted for the Graduate
Faculty in Engineering in satisfaction of the dissertation

requirement for the degree of Doctor of Philosophy.

s/ Q,@V ,/%%ﬁ@\l

date Chairman, of Examining Commlttee
L © T 4
1 /35/75 “Moebends G)\f NI AT
o date - « Executive Officer

Dr. J. Garcodnick
Dean R. B. Marsten
Prof. S. J. Oh
Prof. H. Taub

Dr. S. B. Weinstein

Supervisory Committee



iii

ABSTRACT

ARTITHMETIC PROCESSING AND DIGITAL CONVERSION
OF

ADAPTIVE DELTA MODULATION ENCODED SIGNALS

by
Joseph L. LoCicero

Advisor: Professor Donald L. Schilling

This thesis can be divided into three distinct parts:
direct arithmetic processing of adaptive delta modulation
(ADM) encoded signals, conversion from ADM encoded signals
to pulse code modulation (PCM) encoded signalsand conver-
sion from PCM to ADM encoded signals. In the first part,
it is shown that signals which are ADM encoded can be arith-
metically processed directly, without first decoding. Oper-
ating on the DM bit stream, and employing only standard
digital hardware, the sum, difference and product can be ob-
tained in PCM and ADM format.

These arithmetic processing systems are analyzed and
simulated on a digital computer. Employing a four-term,
non-recursive, averaging filter after the processors, we
show that, for constant inputs, the signal-to-noise ratio

(SNR) of the DM device is exactly the same as that of their
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PCM counterparts. SNR curves are obtained for these proces-
sors when the inputs are single "frequency tones and their
performance is compared to similar PCM systems. At high bit
rates, the performance of the DM adder is comparable to that
of an equivalent, companded PCM system. At moderate and
low bit rates, the SNR of the DM adder is at least 4 dB
better than that of the PCM device. The DM multipliexr, at
any bit rate, has a SNR which is at least 5-10 4B higher
than the SNR of a companded PCM system.

The conversion from ADM to PCM encoded signals essen-
tially deals with the changing from a high "information"
rate (ADM) to a lower one (PCM). The "information" rate is
the frequency at which estimates of the encoded signal are
available. This problem is solved by using a digital £il-
ter, which operates on the ADM step sizes and which is de-
signed with ideal low pass filter characteristics, and then
utilizing a low (PCM) fregquency sampling gate. Since the
ADM estimate, %(k), is a wideband signal, even 1if the input
is bandlimited, we must eliminate the high frequency com-
ponents before sampling at the PCM rate or else suffer the
disastrous effect of aliasing. We show the effect of the
digital filter structure on §(k) by recasting the system into
a cascade arrangement and evaluating, in the frequency domain,
the transfer function relating %(k) to the improved ADM
estimate.

The ADM to PCM conversion system, with the non-recursive

digital filter structure, is restricted to standard digital



hardware and its operation is evaluated via computer simula-—
tion. The performance of this coénverter is compared to the-
performance of other systems which will produce the same net
result. 'The simplest system achieves ADM to PCM conversion
by sampling X(k) at the PCM rate. A family of performance
curves, obtained with a sinusoidal input, shows that there
is an 8-10 4B improvement in SNR, over the simple system,
when the non-recursive digital filter structure is employed
in the ADM to PCM converter. We find that the SNR of the
optimal converter, which uses ideal analog demodulation of

% (k) before PCM sampling, 15 only 1-2 dB better than the SHNR
of the converter with the non-recursive digital filter
structure. ‘

When converting from PCM to ADM encoded signals, il.e.,
changing from a low to a high "information™ rate, we must
estimate the signal excursion at discrete points.between the
PCM samples and fit these wvalues to a path through an "ADM
signal estimate tree." A number of technigques, both depen-
dent on the input signal statistics and independent of then,
are developed to perform this conversion. A detailed statis-
tical analysis is undertaken for one particular system which
employs a very simple, all-digital method of converting from
PCM to ADM format. This converter uses samples of a linear
interpolation between PCM points as the input to an ADM.

This system is simulated on a digital computer and SNR curves
afe generated to determine its performance. We find that for

a low frequency tone, the performance of this converter is
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almost as good as if an ADM encoded the original tone. How-
ever, for a high frequency tone, the performance is unaccept-
able.

We introduce a non-parametric technique to estimate the
midpoint between PCM samples using four adjacent.PCM points.
The estimator weights the four adjacent PCM poinés as if they
were impulses passing through an ideal low pass filter. A
linear interpolation is formulated between the PCM points
and the estimated midpoint. Samples of this interpolation
ére then used as the input to an ADM to achieve conversion.
The SNR of the non-parametric converter, for both low and
high frequency sinusoids, comes within 1 4B of the SNR for
the optimal system, i.e., when the ADM encodes the original
tone. This converter utilizes only the standard digital
hardware in its realization and stresses a simple structure
that can be fabricated on a single, large-scale, integrated

circuit chip.
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HIGHER ATTAINMENTS

If I do this, what further can I do?

Why, more than ever. Every task thou dost

Brings strength and capability to act.

He who doth elimb the difficult mountains

Will the next day outsirip an idler man.

Dip thy young brain in wise men's éeep discourse,
In books which, though they freeze thy wit awhile,
Will knit thee in the end with wisdom.

BARRY CORNWALL

From Viagticum: Apt Words Fitly Spoken, "28th April"
(T. and A. Constable, Edinburgh, Scotland, 1918)
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CHAPTER 1

INTRODUCTION

Many modern communication systems utilize digital encod-
ing techniques because of high gquality performance and ease
in implementation. The rapid advances recentlyjmade in the
integrated circuit technology contribute greatly to the cur-
rent interest in digital signal processing. Among the
existing encoding techniques, adaptive delta modulation (ADM)
and pulse code modulation (PCM) are both very popular and
widely used in commercial communications. The simplicity of
the DM system makes it very attractive and PCM was the first
digital encoding technique, dating back to the late 1940s.
Consequently, we shall restrict ourselves to the processing
of ADM encoded signals and conversion between ADM and PCM.

Delta modulation is a technique by which an analog sig-
nal is encoded into a sequence of binary digits (bits) by
pericdically comparing the analog signal to an estimate
signal, If the error between the analog signal and the esti-
mate 1s positive, then the bit is +1; if it is negative,
then the bit is =-1. The estimate, formed from the entire
sequence of DM bits, is made to approximate, very closely,
the analog signal by increasing or decreasing according to
the current bit.

‘Since the beginning of delta modulation in the early

1950s [1], this simple method of analog-to-digital (A/D)



conversion has undergone many changes. The first DMs con-
structed and analyzed were composed of analog devices and
employed a single "leaky" integrator as their feedback cir-
cuit or estimator [2]. To improve dynamic range, the DM feed-
back circuit soon became continuously adaptive [3-51, that
is, the amount of change that the estimator produced each
time one bit was transmitted was a function of the past his-
tory of the signal. It was not long before the feedback cir-
cuit, and then the entire DM, evolved from analog to all-
digital devices [6~8]. Currently, we are working with both
all-digital linear DMs and various types of all-digital adap-
tive DMs [9]. Although some analysis and evaluation has been
done [10-131, theoretical studies on any system involving
ADMs are incomplete, not having treated the nonlinear aspects
of the ADMs under investigation.

Throughout this dissertation we confine ourselves to the
Song audio mode ADM [14] when evaluating performance of the
systems that have been developed:- Hoﬁever, the designs are
often general enough to be applied to a large class of digi-
tal ADMs. All systems in this thesis are designed to be
practically realizable. Thus, we only consider operations
which can be constructed with standard digital hardware, that
is, adders, delays, hard-wired scalars and common logic cir-
cuits. Consequently, all our ADM devices can be manufactured
with large scale integration (LSI) where the distinct advan-
tage is low cost and high reliability. One objective of the

entire thesis is always to work with digitally encoded sig-



nals when developing solutions to our problems.

The three topics considered in this dissertation deal
with signals encoded in ADM and PCM formats, The first con-
centrates on direct arithmetic processing of ADM encoded
signals. The next explores conversion from ABM format to PCM
format. And the last studies conversion from PCM format to
ADM format.

The first topic is investigated because of the popular
use of ADM encoded signals and the recent trend toward digi-
tal processing of signals. The real objective is to elimi-
nate the need either to demodulate the ADM signal into an
analog waveform or change to PCM form before processing can
be done. In Ch. 2 we show that the sum, difference and even
the product of DM encoded signals can be obtained by operat-
ing directly on the serial data, i.e., the ADM bat streams.
The sum, differen?e and product signals are presented in
either an ADM or a PCM format. We analyze these -processors,
discuss their hardware complexity and test them via simula-
tion on a digital computer. The performance is evaluated
using a technigue developed in Ch. 2., Finally, a comparison
is made with equivalent PCM processing systems.

The conversion topics are studied to achieve compati-
bility between these two widely used encoding techniques.

We can also facilitate digital processing of signals encoded
in both ADM and PCM formats by- devising translation units
between the two systems. In Ch. 3, a general technique is

presented for converting from ADM to PCM format without first



demodulating the ADM bit stream and returning‘to khe analog
domain. The converter utilizes a non-recursive digital £il-
ter that i1s designed with ideal low pass filter characteris-
tics., A “frequency domain analysis is developed to explain
why this filtering operation is so vital to the performance
of this system. The ADM to PCM converter is éimqiated on a
digital computer and a family of performance curves is pre-
sented for the case of ADM encoded sinuscidal signals. We
also give the performance of an optimal analog conversion
system to facilitate comparison.

When considering PCM to ADM conversion we begin by
pointing out the conceptual difficulties that arise. 1In
Ch. 4 we explain several ways to circumvent these diffi-
culties and introduce an "ADM signal estimate tree" to 1llus-
trate the difficulties and to aid in overcoming them. We
design both parémetric and non-parametric PCM to ADM conver-
ters. The parametric converters utilize the statistics of
the input signal in their design and the non-parametric con-
verters are independent of them. A-detailed statistical
analysis is developed to evaluate the performance of the
parametric converters. Extensive simulations are performed
on all these systems and the quality of their operation is
displayed with families of signal-to-noise ratio (SNR) curves.

The general results of this thesis are very encouraging.
The system designs émployed to achieve direct ADM processing
and conversion between ADM and PCM formats are relatively

simple. All the structures that were developed and simulated



could easily be realized with standard digital hardware. The
SNR curves for the DM processors are either within 1-2 dB
of the SNR curves for equivalent companded PCM systems or are
several dB better when the ADM bit rate is lower. Likewise,
the performance of the converters comes within 1-2 dB of
the performance of optimal conversion systems. Although we
have developed satisfactory solutions to the three problems
investigated, we have, by no means, exhausted these topics.
There is still room for more ;esearch, whether it be theo-

retical analysis or practical experimentation.



CHAPTER _2

DIRECT ARITHMETIC PROCESSING OF ADM ENCODED SIGNALS

Arithmetic processing of diéitally encoded signals is
traditionally performed on signals that are PCM encoded via
standard parallel processing techniques. However, it is be-
coming increasingly popular to use other digital techniques
to encode signals. We would like to avoid the necessity of
having to return to a PCM format whenever we must arithmetic-
ally process these signals. For the case of DM encoded sig-
nals, it is shown that arithmetic processing can be performed
‘by operating directly on the DM bit stream. The direct DM
processors can be constructed using standard digital hard-
ware, that is, binary adders, shift registers, exclusive-OR
gates and hard-wired scalars. The performance of these de-
vices is shown to be comparable to PCM processors while the
hardware complexity is equivalent to, and in some cases less

than, that needed for PCM encoded signals.

2.1 The Basic Digital DM

A delta modulator 1s essentially a very simple device
to digitally encode an analog signal. The DM bit stream is
obtained by hard limiting the difference between the analog
signal and the DM estimate and transmitting a +1 or a -1
every clock period. The DM estimate is a function of all

past DM output bits. We shall be concerned with a type of
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DM which is all-digital in nature. An all-digital DM is one

that employs only digital circuitry to produce the DM signal

estimate from the DM bit stream.

In Fig., K 2.1-1, we show the basic form of a digital DM

which is used in a hardware realization. Let us assume that

the input signal, x(t), is bandlimited to £, and the DM is

operating well above the Nyquist rate, i.e., fg

>> 2fm, where

£ is the DM clock freguency. The most general mathematical

description of a digital DM is given by the following set of

equations:
e (k) = sgnlg,(k)1], (2.1~1)
E (k) = x(k) - x(k) (2.1~2)
and
(k) = &k - 1) + Sx(k)t (2.1-3)
where

Sx(k) = the step size at the kM interval.

Equation (2.1-3) arises because the DM estimate, 2(k}, is the

accumulation of the step sizes as shown in Fig. 2.1-1, i.e.,

k) = z S, (1). (2.1-4)

i =emco

To simplify our discrete signal representation, we have adap-

ted the notation x(t = kTS) = x(k}), where TS = 1/fS is the DM

clock period.

To completely specify the particular type of digital DM,

we must define the step size algorithm used to formulate

Sx(k). For the case of a linear or fixed step DM,
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Fig. 2.1-1. Basic Digital Delta Modulator



Sx(k) = Sex(k - 1). (2.1~5)

For adaptive DMs there are many'step size algorithms where
thé step size adapts to an input signal parameter, generally
to its power. We shall be concerned with a class of DMs
derived by minimizing a mean square cost function, i.e.,
those described by the Song Algorithm [15]. In this algo-
rithm, the step size is a function of the two past DM bits
and the previous step size. We shall primarily deal with the
Song audio mode DM, where the step size changes linearly,
i.e.,

Sg(k) = [s _(k - L)|le (k - 1) + Se_(k -~ 2), (2.1-6)
where

S = the magnitude of the minimum step size.

2.2 Direct DM Addition/Subtraction

Consider two signals, x(t)} and v{t), both bandlimited to
fm and both DM encoded so that we have only the sequences
{e, (k}} and {ey(k)} available. The sum and the difference of
these two signals are also bandlimited to fn- Generally,
digital addition {or subtraction) 1s viewed as the binary sum
(or appropriate complementing of the subtrahend and then bi-
nary addition) of two K-bit PCM words. If we prohibit over-
filow, the result is K-bit PCM words at a rate 2fm represent-—
ing the sum or the difference. Since we are restricted to
the DM sequences of x(t) and y(t), we wish to obtain the
direct sum of these two signals by performing basic arithme-

tic processing on the two sequences. To achieve this, we
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form the direct sum, aD(k), as the sum of the individual sig-

nal estimates, that is,
ap (k) = (k) + $(k). (2.2-1)

Using Eq. (2.1-3) for the estimates of x(t} and y(t), we ob-
tain a design equation for the direct sum as a recursive re-

lationship,
aD(k) = aD(k - 1) + S, (k) + Sy(k), (2.2-2)

where the step sizes are formed directly from the DM bits.

The direct sum, aD(k), is avallable in PCM format be-
cause the step sizes, used in the design equation, are gener-
ated as parallel binary words. To obtain the DM bit stream
of the sum, {ea(k)}, we merely pass aD(k) through a digital
DM. A block diagram showing the structure for the sum of DM
encoded signals is presented in Fig. 2.2-1. The DM digital
feedback circuit shown in this figure is constructed with the
appropriate step size network followed by an accumulator.
Thus, to physically realize the entire DM direct sum system,
it requires only a full adder, an accumulator and the neces-
sary step size network.

One way ‘to subtract DM encoded signals is to add the
negative of the subtrahend signal. If we wish to form
x(t) - y(t), we must change +Sy(k) to —Sy(k) in our design
equation. Taking the direct difference, dD(kf, as the dif-

ference between the signal estimates, we obtain

dp (k) = dp(k - 1) + 8, (k) - S (k). (2.2-3)
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Thus, the subtraction algorithm has the same structure as the

addition algorithm shown in Fig. 2.2-1. Another, even easier
method to obtain the difference merely entails inverting each
DM bit of the subtrahend signal. This produces -ey(k) and,
for the DM step size algorithm cited above, —Sy(k). There-
fore, Fig. 2.2-1 becomes a subtractor by placing an inverter
after ey(k).

The structure derived above is completely independent
of the type of DM and is therefore universal for any digital
DM definable by Egs. (2.1-1) through {2.1-3). To realize the
direct sum of signals encoded by a particular type of DM, we
must construct the circuitry for the step size algorithm em-
ployed in the original DM encoder. For the modes cited above,
the step size circuitry is constructed with standard digitzal
hardware, i.e., full adders, delays, scalers and exclusive-
OR gates. The DM adder for the linear mcde 1is given 1in
Fig. 2.2-2. By applying the Song audio mode algorithm, we
can realize the DM adder which is shown in Fig. 2.2-3.

The latter device requires multiplications by e(k) =
+1 and absolute value operations. Since obtaining the mag-
nitude of a quantity is equivalent to multiplication by +1
if it ig positive and by -1 if it is negative, we only need
to explain the realization of a multiplication by e(k) using
exclusive-OR gates. We shall assume that the internal arith-
metic employed ié offset binary. For other types of internal
arithmetic, similar realizations can be achieved with differ-

ent logic gates. The main characteristic of offset binary



Fig. 2.2-2. DM Adder for Linear Mode
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arithmetic is its complementary symmetry about the zero axis;
that is, the complement of any guantity represents the nega~
tive of that quantity. If we multiply by e(k) = +1, i.e., a
binary 1, we leave the quantity unchanged; and if we multi-
ply by e{k) = -1, i.e., a-bingry 0, we complement the quan-
tity. This operation is easily realized with a bank of ex-
clusive~NOR gates.

In the DM adders, and in all ensuing digital circuits,
we shall restrict ourselves to numerical scéling by I/ZN,
wvhere I and N are positive integers with I < 2N ana N repre-
senting the number of bits in our internal arithmetic. Any

number of this form is expressable as

N
/2N = 3

ai/zi, (2.2-4)
kS

1
where
a; = 0 or 1.

Since a scaling by 1/2% represents a simple shift by i-bits,
a scale factor of I/2N can be hard-wired as a sum of i-bit
shifts using only a series of full adders. We emphasize this
scaling technique even though multipliers, which will pro-
duce the same net result, are readily available on an inte-
grated circult (IC}) chip. The hard-wiring decreases proces-—

sing time and makes implementation easier because less com-

ponents are required.

2.3 Averaging Filter

The steady state response of all types of digital DMs to
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a constant input is an estimate signal which has been found

to exhibit a periodic pattern. +«For a linear DM, the esti-
mate is a simple square wave with a period of two sampling
intexrvals. For any Song mode DM, the signal estimate is

found to exhibit a periodic pattern which repeats every four
sampling instants and which is symmetric about the gquantized -
vaiue of the input. In Fig. 2.3-1, we show a typical steady
state estimate signal for the Song audio mode. In this

figure, the constant input, x, has been guantized to xq where
- + 2.3~
Xq 8/2 < x < Xq 5/2 (2.3-1)

and m is a non-negative integer limited by M. If we specify
the amplitude range of the DM encoder as Vpp and allow the

steady state pattern to span this range, then

(2M + 1}S <V

op* (2.3-2a)

Consequently,

M < (vP - 8)/2s. (2.3-2b)

P

If the internal arithmetic of the DM encoder has B bits,

then the minimum step size is

8 = Vpp/2° (2.3-3)
and the upper bound on m can be given as

M < 281 | (2.3-4)

Since the direct sum, aD(k), was formulated as the sum
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of the individual signal estimates, we expect it to exhibit
a periodic pattern when respondihg to constant inputs. For
the Song audio mode, there are four possible steady state
direct sum waveforms. A typical waveform, which can repre-
sent all four, is given in Fig. 2.3-2. In this figure, both
n and r are non-negative integers less than or equal to 2M
and yq is the gquantized wvalue of the constant input y where

- 8/2 < v < + 8/2. 2.3-5
Yy / Y < ¥g / ( )

The important property of the four possible steady state
direct sum patterns is that the arithmetic average of any
four consecutive values of aD(k) is always equal to Xé +

Yy This fact inspired the use of a four—-term averaging £il-

q.
ter after aD(k).
The four-~term non-recursive filter that was employed is

described by the following equation:

. _ 1 - -
Ak) = T[aD(k) + aD(k -1} + aD(k 2) + aD(k 3) 1.
If we apply Egq. (2.3-6) to the waveform given in Fig. 2.3-2,

the result is

: } .
Afk) % + Vg (2.3-7)

for all k, as long as aD(k) has reached steady state. Thus,
after a four~term averaging filter, the DM sum produces the
same result, for constant inputs, obtainable by PCM addition.

To realize thig filter, we need not use the structure



Fig. 2.3-2. Steady State Direct Sum for the Song Audio Mode DM
with Constant Inputs
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dictated by Eg. {2.3-6). We can save hardware by emplcying
the realization shown in Fig. (2:3—3) which uses two,
rather than three, adders. In general, by extending this
Structure, it is possible to realize any N-term averaging
2t

filter, where N = and t is a positive integer, in a

gimilar fashion. The advantage is that, instead of needing
2t - 1 adders in the realization, only t adders are required.

To illustrate the function of the four-term averaging
filter, we shall determine its digital transfer function,
Ha(z). Assuming zero initial conditions and taking the
Z—transform of Egq. (2.3-6), we obtain

A(z)
ap (z)

Ha(z) = = %{1 + 271+ 72 2_3). (2.3-8)
To display the frequency characteristics of thas filter, we

let z = exp(ijs) and find that
IHa(m)[ = ]cos(wTS/2)cos(wTS)[. (2.3-9)

In Fig. (2.3-4}, we plot |Ha(w)[ on an abscissa normalized
to fs‘ A complete derivation of Eq. (2.3-9) is given in
App. 1.

From Fig. (2.3-4) and Eq. {2.3-9), we observe that
Ha(m) has zeros at integer multiples of fs/4 when the inte-
ger 1s divisible by 4. It is precisely the first zero that
eliminates the four-sampling-interval periodic component in
the direct sum. The four-term averaging filter exhibits low

pass filter (LPF) characteristics and even slightly attenu-
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ates baseband frequencies. Thus, care must be taken in uti-
lizing this filter because it can introduce some distortion
to baseband signals. However, if the maximum baseband fre-
quency is in. the area of £ /10, then distortion will be mini-
mal since [H_(f = £,/10)| = 0.77, which is well above the

3 dB point of this filter. This is not an unreasonable re-
guirement because the audio mode DM generally operates at

fg = 32K Dbits/second and speech is usually bandlimited to
2500 to 3500 Hz.

2,4 Direct DM Multiplication

Traditionally digital multiplication is treated as a
static operation; that is, two K-bit PCM words are either
fed into a combinatoric circuit or into a read only memory
{ROM) that has been built to perform the multiplication
operation. We could even use a random access memory (RAM)
that has been preset to multiply, with the appropriate
input logic circuit. The result is the product in the form
of a 2K-bit PCM word. There are, of course, dynamic tech-
nigques capable of performing digital multiplication and we
shall discuss them in connection with hardware complexity.
In either-case, if we wish to multiply two signals, both
bandlimited to £, then we must perform the static or dy-
namic operation on PCM words from each signal at a rate of
4fm to obtain the product in a PCM format. This is because
the product will be bandlimited to 2f  as we know from the

convolution theorem. This point is important for our later
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" performance comparison with PCM. There are other wayé to
obtain the product in PCM form b& using the samples of both
signals at a rate of 2fm. This matter is further pursued
in App. 2.

.The problem thaﬁ we consider he?e is-the formation of
the product of x(t) and y(t) when we only have'their DM se-
quénces, {e,(k)} and {ey(k)}, available. Once again we re-
strict ourselves to a design structure that cén be imple-
mented with standard digital hardware. Forming the direct

product as the product of the individual signal estimates,

we have
pp (k) = X(k)¥ (k). (2.4-1)

As in the case of the direct sum, we can develop a recursive

relationship as follows:

py (k) = pp(k - 1) + S (K)X(k - 1) + S ()Y (k - 1)
) (2.4-2)
+ sx(k}sy(k).
The basic block diagram showing the direct product, in PCM
format [pp(k)] and in DM format [ep(k)], is given in Fig.
(2.4-1). Although the structure for the direct product is
universal for any digital DM definable by Egs. (2.1-1)
through (2.1-3), it will be useful only if the step size
alg&rithm is such that.we can recursively realize the
particle products, that is, the last three terms in EqQ.

(2.4-2).
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For the linear DM, no dlfflculty ‘arises and the dlrect

product is

pD(k) = pD(k - 1) + Sey(k - yx(k - 1) + S?x(k - I)y(k - 1)
5 (2.4-3)
+ S‘ex(k - l)ey(k —.1).
The realization of this system, shown in Fig. (2.4-2}, is
extremely easy because there are no non-linear éperations,
only simple scaling including multiplication by +1 or -1.
To derive the recursive relationships for the partial
) products with the Song audio mode algorithm, we must use a

step 51ze relatlonshlp ‘common to all types of DMs, that 15,'
S, (k) = Is (k)[e (k - 1). _ (2_.4—4)

This equation says that the sign of the present step size,
Se{k}, is diétated by the past DM output bit, e, (k - 1).
From Eg. (2.1-6}, we see that th;s property ié applicable
for the Song audio mode as long as |S,(k - | > s. If
Sx(k - 1) =0 and e (k - 1y = ex(k - 2), then this property
is also valid. Only when Sg(k - 1) =0 and ey(k - 1) #
ex(k ~ 2), the step size relationship becomeé invalid. Thié
invalidity is caused by a hérdware limitation that allows
the step size to be zero rather than an arbitrarily small
value. We sﬁail show, however, that the condition-of
invalidity has a very low probability of occurrence and the
resulting signal estimate used in the multiplication algo-

rithm does not substantially degrade the product.
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Equation (2.4-4) can only be invalid when Sx(k) = 0.

A zero step size occurs primarily when -the ADM is in its
mininum steaay.gtate pattern. That is, the estimate resem-
bles Fig. 2.3-1 when m = 0. This corresponds to the audio
signal being zero Secauéé, in speech, 50% of the time there
is no voice. Recently, step size statistics have béen ob-

-.tained for the Soné audio mode ADM, using actual speech sig-
nals. They show that the probability of a zero step size is
approximately 0.04 when £, = 32K bits/second. Since 8 (k)
= 0 occurs twice in a'minimum steady state egtimate pattern,

~ the probability of such a pattern is:0.0B. Let us assume
that the audio signal is equally likely to increase or de-
crease from its zero.value,in any of the four periods of the
.steady state pattern. Only 2 of the 8 signal variations
give rise to the condition when:Eq. {(2.4-4) will be invalid.
Therefore, the probability of invalidity is 0.02. |

We have created a situation in Fig. 2.4-3 where the

step size relationship is invalid. The -solid curve repre-
sents the true ADM,estiﬁate and theé bfoken line waveform is
the estimate used in the multiplication algorithﬁ. From
this figure, we observe that the estimate used in the ‘multi-
plication algorithm is® just as good anlapproximation to the
audio signal as the' true estimate. We shall see, In Sec.
2.8.3, that the use of Eq. (2.4-2) does not noticeably ef-
fect the output SNR of the DM multiplier. -

. Now that we have justified the step size relationshiﬁ,

we can use it to express recursively the partial products
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for the Song audio mode:

-

Sy(k - )x(k - 2)ey(k -'l)ey(k - 2)

]

sy(kqﬁ(k.— 1)

"+ Sx(k 1)Sy(k - l)ey(k - l)e?(k - 2) (2.4-5)

+ Rk - 1)Seyck - 2),-

S, (BKIFk - 1) =5Sy,(k ~ 1)tk - 2)e_(k - De_(k - 2)
+ 8,k — 1)Sy(k - Lley(k - Lley(k - 2) (2.4=6)

+ ¥k - 1)Se, (k - 2),

Sy (k1S (k) = [Sx(k - 1)s,(k = 1)[ey(k - Lley,(k - 1)

y(

+ g[8, (k - 1) ]e, (k - lley(k - 2)
(2.4-7)
+ 8[8,(k - 1) fey (k' - Lley(k - 2)

+ Szex(k - 2le,(k - 2).

y
Equations (2.4-5), (2.4-6) and (2.4-7) are readily realiz-
able with standard digital hardware similar to the DM
adder shown in Fig. 2.,2-3. ‘These three terms can be con-
structed with.nothipg more complicated than adders, delays,
hard-wired scalers and exclusive-OR gates to multiply_by 1
and produce the absolute value.

211 of the design structures that we have derived are

accumulator type systems. For both the adder (Sec. 2.3) and

" the multiplier (Sec. 2.4}, for all DM modes, the present out-
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put is equal to the past outpu@.plus additional terms.
.Thus, it is important-to begin ﬁith'the-cor¥ect initial
condition for the past output, or else suffer a constant
offset error. It is convenient to start wi£h both signals,
x(t) and y(t), at zero so that we can employ a zero initiali
condition for Fhe past output. ‘ =

As in the case of the direct sum, we expecé the ‘direct.
"product, since it is formulated as the product of the indi-
vidual signai estimates, to exhibit a periodic pattern when
responding to constant inputs: Wheh using the Song audio
mode algorithm, the direct product generates four possible .
steady state waveforms.‘ In Fig. 2.4-4, we show the general
‘structure'of a steady statehwaveform.- The values of -C, and
-+ C; depend upon Xg and yé and the amplitude of the steady
state error pattern (x - xq‘and § - yq), while d, and ¢, de-
pend only on the'lhtter’of these two. .The numerical values
of d, and d, can be entirely diﬁfefent, but they both have
the same form, as cﬁﬁ be seen by multiplying two steady

state patterns together, that is,

4y

1= r/4, . (2.4-8)

where
i=1,2,
L = a positive integer
and |
L < 4M? + 4M + 1 - (2.4-9)

where M is bounded in Eq. (2.3-4).



2
| c2$+ dZS
Xy Yqjﬁ-
¥ v
. ? A
i . - 2
s 028 dzs
cis 1S
-——_¥ -

¥ < Tg—

Fig. 2.4-4, Steady State Direct Product for Song Audio Mode DM
with Constant Inputs

zZe



33

The arithmetic average of any four consecutive values
of pD(k) always equals the product of the quantized values
of the inputs plus a second-order term depending on 5%, A
This warrants the use of the following four-term ﬁon-recur—

sive filter after pD(k):
= 1 ' = - : - -
P (k) I[pD(k} + pD(k 1} + pD(k 2} + pD(k 3)1. (2.4-10)

Applying Eg. (2.4-10) to the waveform shown in Fig. 2.4-3,

we see -that

Pk) = x G d2)52/2 (2.4-11)

a’q
for all k, as long as éD(g) has reached the steady‘state.
We have found, through computer simulations, that the fac-
tor (d, + d4,)/2 generally is no larger than 10 or 20. In a
practical DM encoder with 10 bits of internal arithmetic
and an amplitude range of Vpp = 10 volts, the minimuin step
size, S, will be approximately 10 millivolts. Therefore,
the secohd-order term will be in the order of 1-2 millivolts.
Fven if we allow (d1 +‘d2)/2 to be 100, the error only
reaches 10 millivolts or one minimum step size. Certainly,
one step size out:of 1024 can be considered insignificant.
For any reasonably small value of step size, the second
'ordef term, (d1'+ dz)Sz/z, is negligible and thus, aféer
the four-term averaging filter, the DM product yields a re-
sult almost identical £o the PCM product.

The direct DM product design structure that we have

~derived is not a unigue solution to this problem. The de-
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" performance comparison with PCM. There are other wayé to
obtain the product in PCM form b& using the samples of both
signals at a rate of 2fm. This matter is further pursued
in App. 2.

.The problem thaﬁ we consider he?e is-the formation of
the product of x(t) and y(t) when we only have'their DM se-
quénces, {e,(k)} and {ey(k)}, available. Once again we re-
strict ourselves to a design structure that cén be imple-
mented with standard digital hardware. Forming the direct

product as the product of the individual signal estimates,

we have
pp (k) = X(k)¥ (k). (2.4-1)

As in the case of the direct sum, we can develop a recursive

relationship as follows:

py (k) = pp(k - 1) + S (K)X(k - 1) + S ()Y (k - 1)
) (2.4-2)
+ sx(k}sy(k).
The basic block diagram showing the direct product, in PCM
format [pp(k)] and in DM format [ep(k)], is given in Fig.
(2.4-1). Although the structure for the direct product is
universal for any digital DM definable by Egs. (2.1-1)
through (2.1-3), it will be useful only if the step size
alg&rithm is such that.we can recursively realize the
particle products, that is, the last three terms in EqQ.

(2.4-2).
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For the linear DM, no dlfflculty ‘arises and the dlrect

product is

pD(k) = pD(k - 1) + Sey(k - yx(k - 1) + S?x(k - I)y(k - 1)
5 (2.4-3)
+ S‘ex(k - l)ey(k —.1).
The realization of this system, shown in Fig. (2.4-2}, is
extremely easy because there are no non-linear éperations,
only simple scaling including multiplication by +1 or -1.
To derive the recursive relationships for the partial
) products with the Song audio mode algorithm, we must use a

step 51ze relatlonshlp ‘common to all types of DMs, that 15,'
S, (k) = Is (k)[e (k - 1). _ (2_.4—4)

This equation says that the sign of the present step size,
Se{k}, is diétated by the past DM output bit, e, (k - 1).
From Eg. (2.1-6}, we see that th;s property ié applicable
for the Song audio mode as long as |S,(k - | > s. If
Sx(k - 1) =0 and e (k - 1y = ex(k - 2), then this property
is also valid. Only when Sg(k - 1) =0 and ey(k - 1) #
ex(k ~ 2), the step size relationship becomeé invalid. Thié
invalidity is caused by a hérdware limitation that allows
the step size to be zero rather than an arbitrarily small
value. We sﬁail show, however, that the condition-of
invalidity has a very low probability of occurrence and the
resulting signal estimate used in the multiplication algo-

rithm does not substantially degrade the product.
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Equation (2.4-4) can only be invalid when Sx(k) = 0.

A zero step size occurs primarily when -the ADM is in its
mininum steaay.gtate pattern. That is, the estimate resem-
bles Fig. 2.3-1 when m = 0. This corresponds to the audio
signal being zero Secauéé, in speech, 50% of the time there
is no voice. Recently, step size statistics have béen ob-

-.tained for the Soné audio mode ADM, using actual speech sig-
nals. They show that the probability of a zero step size is
approximately 0.04 when £, = 32K bits/second. Since 8 (k)
= 0 occurs twice in a'minimum steady state egtimate pattern,

~ the probability of such a pattern is:0.0B. Let us assume
that the audio signal is equally likely to increase or de-
crease from its zero.value,in any of the four periods of the
.steady state pattern. Only 2 of the 8 signal variations
give rise to the condition when:Eq. {(2.4-4) will be invalid.
Therefore, the probability of invalidity is 0.02. |

We have created a situation in Fig. 2.4-3 where the

step size relationship is invalid. The -solid curve repre-
sents the true ADM,estiﬁate and theé bfoken line waveform is
the estimate used in the multiplication algorithﬁ. From
this figure, we observe that the estimate used in the ‘multi-
plication algorithm is® just as good anlapproximation to the
audio signal as the' true estimate. We shall see, In Sec.
2.8.3, that the use of Eq. (2.4-2) does not noticeably ef-
fect the output SNR of the DM multiplier. -

. Now that we have justified the step size relationshiﬁ,

we can use it to express recursively the partial products



- ——— g

|
l__ \_ -
O\

Estimate used in

Multiplication Algorithm L
‘*\r o

[ N |

N

' /—— True ADM Esﬁmate

S

Fig. 2.4-3 Exampie when the Step Size Relationship is Invalid

6¢C



30

for the Song audio mode:

-

Sy(k - )x(k - 2)ey(k -'l)ey(k - 2)

]

sy(kqﬁ(k.— 1)

"+ Sx(k 1)Sy(k - l)ey(k - l)e?(k - 2) (2.4-5)

+ Rk - 1)Seyck - 2),-

S, (BKIFk - 1) =5Sy,(k ~ 1)tk - 2)e_(k - De_(k - 2)
+ 8,k — 1)Sy(k - Lley(k - Lley(k - 2) (2.4=6)

+ ¥k - 1)Se, (k - 2),

Sy (k1S (k) = [Sx(k - 1)s,(k = 1)[ey(k - Lley,(k - 1)

y(

+ g[8, (k - 1) ]e, (k - lley(k - 2)
(2.4-7)
+ 8[8,(k - 1) fey (k' - Lley(k - 2)

+ Szex(k - 2le,(k - 2).

y
Equations (2.4-5), (2.4-6) and (2.4-7) are readily realiz-
able with standard digital hardware similar to the DM
adder shown in Fig. 2.,2-3. ‘These three terms can be con-
structed with.nothipg more complicated than adders, delays,
hard-wired scalers and exclusive-OR gates to multiply_by 1
and produce the absolute value.

211 of the design structures that we have derived are

accumulator type systems. For both the adder (Sec. 2.3) and

" the multiplier (Sec. 2.4}, for all DM modes, the present out-
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put is equal to the past outpu@.plus additional terms.
.Thus, it is important-to begin ﬁith'the-cor¥ect initial
condition for the past output, or else suffer a constant
offset error. It is convenient to start wi£h both signals,
x(t) and y(t), at zero so that we can employ a zero initiali
condition for Fhe past output. ‘ =

As in the case of the direct sum, we expecé the ‘direct.
"product, since it is formulated as the product of the indi-
vidual signai estimates, to exhibit a periodic pattern when
responding to constant inputs: Wheh using the Song audio
mode algorithm, the direct product generates four possible .
steady state waveforms.‘ In Fig. 2.4-4, we show the general
‘structure'of a steady statehwaveform.- The values of -C, and
-+ C; depend upon Xg and yé and the amplitude of the steady
state error pattern (x - xq‘and § - yq), while d, and ¢, de-
pend only on the'lhtter’of these two. .The numerical values
of d, and d, can be entirely diﬁfefent, but they both have
the same form, as cﬁﬁ be seen by multiplying two steady

state patterns together, that is,

4y

1= r/4, . (2.4-8)

where
i=1,2,
L = a positive integer
and |
L < 4M? + 4M + 1 - (2.4-9)

where M is bounded in Eq. (2.3-4).
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The arithmetic average of any four consecutive values
of pD(k) always equals the product of the quantized values
of the inputs plus a second-order term depending on 5%, A
This warrants the use of the following four-term ﬁon-recur—

sive filter after pD(k):
= 1 ' = - : - -
P (k) I[pD(k} + pD(k 1} + pD(k 2} + pD(k 3)1. (2.4-10)

Applying Eg. (2.4-10) to the waveform shown in Fig. 2.4-3,

we see -that

Pk) = x G d2)52/2 (2.4-11)

a’q
for all k, as long as éD(g) has reached the steady‘state.
We have found, through computer simulations, that the fac-
tor (d, + d4,)/2 generally is no larger than 10 or 20. In a
practical DM encoder with 10 bits of internal arithmetic
and an amplitude range of Vpp = 10 volts, the minimuin step
size, S, will be approximately 10 millivolts. Therefore,
the secohd-order term will be in the order of 1-2 millivolts.
Fven if we allow (d1 +‘d2)/2 to be 100, the error only
reaches 10 millivolts or one minimum step size. Certainly,
one step size out:of 1024 can be considered insignificant.
For any reasonably small value of step size, the second
'ordef term, (d1'+ dz)Sz/z, is negligible and thus, aféer
the four-term averaging filter, the DM product yields a re-
sult almost identical £o the PCM product.

The direct DM product design structure that we have

~derived is not a unigue solution to this problem. The de-
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sign presented does, however, perform ﬁell and this will be
seen from the simulation'responsés for elementary input
waveforms and also from‘thé SNR performance curves. There
are other design techniques that could have been inéorpora~
ted into the direct product design. We could introduce a .
- "leak" factor in Eq. (2.4-2) and feedback a f£action of the
output, pD(k), to generate, éay 0:9pD(k - 1). -Alternately,
we might use a different'averaging filter after pD(k); or
we could perform some kiné of ave%aging on (k) and ¥(k) be-
fore we form ﬁheir product. Each of thése ideas would have
to be analyzed individually té determine its merits and

shortcominés-in formulating the direct DM product.

2.5 Hardware Complexity

From Eq. {(2.2-2) or Fig. 2.2-1 we see that the complex-
ity and gquantity of the hardware needed for a DM adder is
. essentially equivalent to that needed for a PCM adder. 1In
PCM addifion, since we have two K-bit words coming from
x(t) and y(t), we require two K-<bit input storage registers,
one K-bit full adder and, since we do.not allow overflow,
one K-bit output -register. To obtain the DM direct sum, we
need the step size circuitry for Eoth signals (some of which
can be time shared) terminating in registers with less than
K-bit capacity, one transfer register with enough bits to
represent twice the maximum step size, one K-bit full adder
and one K-bit delay register.

The -comparison of hardware complexity for multiplica-
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tion is somewhat more involved. PCM multiplic¢ation is gen-
erally treated as a static operation where two K-bit words

' ére either fed into a combipatgrial circuit, or into a pre-
programmed ROM, or into a repeating add—store—and—sﬁift cir-
‘cuit. We must also remember that to multiply two signals,
bandlimited to fm' we must perform this static operation on
the PCM words from the two signals at a rate of 4fm since
the product will be bandlimited to me.

Now we can examine the hardware complexity needed for
these PCM multipliers. A combinatorial circuit needs two
K-bit input s&orage registers, K? AND gates, K K-bit full
adders and a 2K-bit output storage register. This is
easily seen by observing the structure.that arises when wg'
use “"long"” multiplication to obtain the product of two K-bit
words, Ay *-A,A, and By"*"B,B,. A ROM, with a 2K-bit input
-éddress, normally has 22K memory locations. Even though
there are—only K? different product values, the ROM must

- still use 22K

memory locations to multiply as well as need-
ing input énd output registers. The repeating add-store-
and-shift device requires two K-bit input registers, a K-bit-
shift register,'K-AND gates, a 2K-bit full adder and a
2K-bit output registe;. ‘However,'for this last multiplier,
we must perform K repeated additions in the time interval
1/4f, before we obtain the final product word.

Consideriﬂ§ the DM multiplier for the linear méde, as

shown in Fig. 2.4-2, the hardware needed is two 2-bit shift

registers, two accumulators {each having a K-bit full adder
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for the Song audio mode:

-

Sy(k - )x(k - 2)ey(k -'l)ey(k - 2)

]

sy(kqﬁ(k.— 1)

"+ Sx(k 1)Sy(k - l)ey(k - l)e?(k - 2) (2.4-5)

+ Rk - 1)Seyck - 2),-

S, (BKIFk - 1) =5Sy,(k ~ 1)tk - 2)e_(k - De_(k - 2)
+ 8,k — 1)Sy(k - Lley(k - Lley(k - 2) (2.4=6)

+ ¥k - 1)Se, (k - 2),

Sy (k1S (k) = [Sx(k - 1)s,(k = 1)[ey(k - Lley,(k - 1)

y(

+ g[8, (k - 1) ]e, (k - lley(k - 2)
(2.4-7)
+ 8[8,(k - 1) fey (k' - Lley(k - 2)

+ Szex(k - 2le,(k - 2).

y
Equations (2.4-5), (2.4-6) and (2.4-7) are readily realiz-
able with standard digital hardware similar to the DM
adder shown in Fig. 2.,2-3. ‘These three terms can be con-
structed with.nothipg more complicated than adders, delays,
hard-wired scalers and exclusive-OR gates to multiply_by 1
and produce the absolute value.

211 of the design structures that we have derived are

accumulator type systems. For both the adder (Sec. 2.3) and

" the multiplier (Sec. 2.4}, for all DM modes, the present out-
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racy .of the product, while, at the same time, increasing the

-

coﬁplexity-of the hardware.

2.6 SNR with Constant Inputs

Consider first the SNR obtained by adding two statis-
" tically independent constant signals, such as x and y, that
are PCM encoded. Defining the quantized samples as kq'and

Yq’ and the respective errors as €, and € the PCM sum is

YI
seen to be ‘
aq = Xg + yq, (2.6-1)_
where
xq =X - &g (2.6-2)
and
yq =Y " Ey- (2.6j3)
We can also express the PCM sum as
aq =a- e, (2.6-4)
where the true sum is
a=x+y (2.6-5)
and the sum error is
e =€ + € . (2.6-6)

If the minimum step size, S, is the distance between PCM
levels and it is sufficiently small, then e, and €y will be
equally likely in the interval [-S/2, S/2]. One can readily

show [16] that
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For the linear DM, no dlfflculty ‘arises and the dlrect

product is

pD(k) = pD(k - 1) + Sey(k - yx(k - 1) + S?x(k - I)y(k - 1)
5 (2.4-3)
+ S‘ex(k - l)ey(k —.1).
The realization of this system, shown in Fig. (2.4-2}, is
extremely easy because there are no non-linear éperations,
only simple scaling including multiplication by +1 or -1.
To derive the recursive relationships for the partial
) products with the Song audio mode algorithm, we must use a

step 51ze relatlonshlp ‘common to all types of DMs, that 15,'
S, (k) = Is (k)[e (k - 1). _ (2_.4—4)

This equation says that the sign of the present step size,
Se{k}, is diétated by the past DM output bit, e, (k - 1).
From Eg. (2.1-6}, we see that th;s property ié applicable
for the Song audio mode as long as |S,(k - | > s. If
Sx(k - 1) =0 and e (k - 1y = ex(k - 2), then this property
is also valid. Only when Sg(k - 1) =0 and ey(k - 1) #
ex(k ~ 2), the step size relationship becomeé invalid. Thié
invalidity is caused by a hérdware limitation that allows
the step size to be zero rather than an arbitrarily small
value. We sﬁail show, however, that the condition-of
invalidity has a very low probability of occurrence and the
resulting signal estimate used in the multiplication algo-

rithm does not substantially degrade the product.
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sign presented does, however, perform ﬁell and this will be
seen from the simulation'responsés for elementary input
waveforms and also from‘thé SNR performance curves. There
are other design techniques that could have been inéorpora~
ted into the direct product design. We could introduce a .
- "leak" factor in Eq. (2.4-2) and feedback a f£action of the
output, pD(k), to generate, éay 0:9pD(k - 1). -Alternately,
we might use a different'averaging filter after pD(k); or
we could perform some kiné of ave%aging on (k) and ¥(k) be-
fore we form ﬁheir product. Each of thése ideas would have
to be analyzed individually té determine its merits and

shortcominés-in formulating the direct DM product.

2.5 Hardware Complexity

From Eq. {(2.2-2) or Fig. 2.2-1 we see that the complex-
ity and gquantity of the hardware needed for a DM adder is
. essentially equivalent to that needed for a PCM adder. 1In
PCM addifion, since we have two K-bit words coming from
x(t) and y(t), we require two K-<bit input storage registers,
one K-bit full adder and, since we do.not allow overflow,
one K-bit output -register. To obtain the DM direct sum, we
need the step size circuitry for Eoth signals (some of which
can be time shared) terminating in registers with less than
K-bit capacity, one transfer register with enough bits to
represent twice the maximum step size, one K-bit full adder
and one K-bit delay register.

The -comparison of hardware complexity for multiplica-
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tion is somewhat more involved. PCM multiplic¢ation is gen-
erally treated as a static operation where two K-bit words

' ére either fed into a combipatgrial circuit, or into a pre-
programmed ROM, or into a repeating add—store—and—sﬁift cir-
‘cuit. We must also remember that to multiply two signals,
bandlimited to fm' we must perform this static operation on
the PCM words from the two signals at a rate of 4fm since
the product will be bandlimited to me.

Now we can examine the hardware complexity needed for
these PCM multipliers. A combinatorial circuit needs two
K-bit input s&orage registers, K? AND gates, K K-bit full
adders and a 2K-bit output storage register. This is
easily seen by observing the structure.that arises when wg'
use “"long"” multiplication to obtain the product of two K-bit
words, Ay *-A,A, and By"*"B,B,. A ROM, with a 2K-bit input
-éddress, normally has 22K memory locations. Even though
there are—only K? different product values, the ROM must

- still use 22K

memory locations to multiply as well as need-
ing input énd output registers. The repeating add-store-
and-shift device requires two K-bit input registers, a K-bit-
shift register,'K-AND gates, a 2K-bit full adder and a
2K-bit output registe;. ‘However,'for this last multiplier,
we must perform K repeated additions in the time interval
1/4f, before we obtain the final product word.

Consideriﬂ§ the DM multiplier for the linear méde, as

shown in Fig. 2.4-2, the hardware needed is two 2-bit shift

registers, two accumulators {each having a K-bit full adder
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the product will be bandlimited to me.
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registers, two accumulators {each having a K-bit full adder
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and a K-bit étorage register),'2K+1 exclusive-0OR gates, a
2K-bit transfer register, a 2K-bit full adder and a 2K-bit
output register. This hardware complexity is equivalent to
that needed in the repeating add~store;and—shift PCM multij
plier. Of course, the amount of hardware needed for the DM
device depends on the step size algorithm employed.
Finally, we observe that, as the number of bits iﬂ—
creases, the amoﬁnt of hardware increases linearly with K
for any DM multiplier. This is not true for all PCM multi-
pliers. The complexity of the combinatorial circuit and
the ROM increases as XK? and 22K, respectively. Although
the complexity‘of the repeating add-store-and-shift circuit
increases iinear;y-with K, the time required to obtain the
prbduct of two K;Bit words also _increases linearly with K.
When evaluating the total complexity of our DM multi-
. plier, we conclude that the hardware required %s compafable
to 'a PCM multiplier. Signals are generally encoded with an
- ADM, where the step éize algorithh, and consequently the
required préduct circuiltxry, is‘éomewhat more involved than
when a linear DM is used as the encoder; However, the DM
ﬁultiplier performs all its operations diréctly on the DM
bit streams; a concept never considgred heretofore in digi-
tal signal processing where DM signals were_involVed. The
conventional alternative is to convert the DM bits'into PCM
format first. This would give rise to a qonversion error.
Then we can perform PCM.multiplication, but this would in-

crease the conversion error and further add to the inaccu-
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" performance comparison with PCM. There are other wayé to
obtain the product in PCM form b& using the samples of both
signals at a rate of 2fm. This matter is further pursued
in App. 2.

.The problem thaﬁ we consider he?e is-the formation of
the product of x(t) and y(t) when we only have'their DM se-
quénces, {e,(k)} and {ey(k)}, available. Once again we re-
strict ourselves to a design structure that cén be imple-
mented with standard digital hardware. Forming the direct

product as the product of the individual signal estimates,

we have
pp (k) = X(k)¥ (k). (2.4-1)

As in the case of the direct sum, we can develop a recursive

relationship as follows:

py (k) = pp(k - 1) + S (K)X(k - 1) + S ()Y (k - 1)
) (2.4-2)
+ sx(k}sy(k).
The basic block diagram showing the direct product, in PCM
format [pp(k)] and in DM format [ep(k)], is given in Fig.
(2.4-1). Although the structure for the direct product is
universal for any digital DM definable by Egs. (2.1-1)
through (2.1-3), it will be useful only if the step size
alg&rithm is such that.we can recursively realize the
particle products, that is, the last three terms in EqQ.

(2.4-2).
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For the linear DM, no dlfflculty ‘arises and the dlrect

product is

pD(k) = pD(k - 1) + Sey(k - yx(k - 1) + S?x(k - I)y(k - 1)
5 (2.4-3)
+ S‘ex(k - l)ey(k —.1).
The realization of this system, shown in Fig. (2.4-2}, is
extremely easy because there are no non-linear éperations,
only simple scaling including multiplication by +1 or -1.
To derive the recursive relationships for the partial
) products with the Song audio mode algorithm, we must use a

step 51ze relatlonshlp ‘common to all types of DMs, that 15,'
S, (k) = Is (k)[e (k - 1). _ (2_.4—4)

This equation says that the sign of the present step size,
Se{k}, is diétated by the past DM output bit, e, (k - 1).
From Eg. (2.1-6}, we see that th;s property ié applicable
for the Song audio mode as long as |S,(k - | > s. If
Sx(k - 1) =0 and e (k - 1y = ex(k - 2), then this property
is also valid. Only when Sg(k - 1) =0 and ey(k - 1) #
ex(k ~ 2), the step size relationship becomeé invalid. Thié
invalidity is caused by a hérdware limitation that allows
the step size to be zero rather than an arbitrarily small
value. We sﬁail show, however, that the condition-of
invalidity has a very low probability of occurrence and the
resulting signal estimate used in the multiplication algo-

rithm does not substantially degrade the product.



e, (k-2)

" Fig. 2.4-2. DM Multiplier for Linear Mode

Lz



28

Equation (2.4-4) can only be invalid when Sx(k) = 0.

A zero step size occurs primarily when -the ADM is in its
mininum steaay.gtate pattern. That is, the estimate resem-
bles Fig. 2.3-1 when m = 0. This corresponds to the audio
signal being zero Secauéé, in speech, 50% of the time there
is no voice. Recently, step size statistics have béen ob-

-.tained for the Soné audio mode ADM, using actual speech sig-
nals. They show that the probability of a zero step size is
approximately 0.04 when £, = 32K bits/second. Since 8 (k)
= 0 occurs twice in a'minimum steady state egtimate pattern,

~ the probability of such a pattern is:0.0B. Let us assume
that the audio signal is equally likely to increase or de-
crease from its zero.value,in any of the four periods of the
.steady state pattern. Only 2 of the 8 signal variations
give rise to the condition when:Eq. {(2.4-4) will be invalid.
Therefore, the probability of invalidity is 0.02. |

We have created a situation in Fig. 2.4-3 where the

step size relationship is invalid. The -solid curve repre-
sents the true ADM,estiﬁate and theé bfoken line waveform is
the estimate used in the multiplication algorithﬁ. From
this figure, we observe that the estimate used in the ‘multi-
plication algorithm is® just as good anlapproximation to the
audio signal as the' true estimate. We shall see, In Sec.
2.8.3, that the use of Eq. (2.4-2) does not noticeably ef-
fect the output SNR of the DM multiplier. -

. Now that we have justified the step size relationshiﬁ,

we can use it to express recursively the partial products
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for the Song audio mode:

-

Sy(k - )x(k - 2)ey(k -'l)ey(k - 2)

]

sy(kqﬁ(k.— 1)

"+ Sx(k 1)Sy(k - l)ey(k - l)e?(k - 2) (2.4-5)

+ Rk - 1)Seyck - 2),-

S, (BKIFk - 1) =5Sy,(k ~ 1)tk - 2)e_(k - De_(k - 2)
+ 8,k — 1)Sy(k - Lley(k - Lley(k - 2) (2.4=6)

+ ¥k - 1)Se, (k - 2),

Sy (k1S (k) = [Sx(k - 1)s,(k = 1)[ey(k - Lley,(k - 1)

y(

+ g[8, (k - 1) ]e, (k - lley(k - 2)
(2.4-7)
+ 8[8,(k - 1) fey (k' - Lley(k - 2)

+ Szex(k - 2le,(k - 2).

y
Equations (2.4-5), (2.4-6) and (2.4-7) are readily realiz-
able with standard digital hardware similar to the DM
adder shown in Fig. 2.,2-3. ‘These three terms can be con-
structed with.nothipg more complicated than adders, delays,
hard-wired scalers and exclusive-OR gates to multiply_by 1
and produce the absolute value.

211 of the design structures that we have derived are

accumulator type systems. For both the adder (Sec. 2.3) and

" the multiplier (Sec. 2.4}, for all DM modes, the present out-
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put is equal to the past outpu@.plus additional terms.
.Thus, it is important-to begin ﬁith'the-cor¥ect initial
condition for the past output, or else suffer a constant
offset error. It is convenient to start wi£h both signals,
x(t) and y(t), at zero so that we can employ a zero initiali
condition for Fhe past output. ‘ =

As in the case of the direct sum, we expecé the ‘direct.
"product, since it is formulated as the product of the indi-
vidual signai estimates, to exhibit a periodic pattern when
responding to constant inputs: Wheh using the Song audio
mode algorithm, the direct product generates four possible .
steady state waveforms.‘ In Fig. 2.4-4, we show the general
‘structure'of a steady statehwaveform.- The values of -C, and
-+ C; depend upon Xg and yé and the amplitude of the steady
state error pattern (x - xq‘and § - yq), while d, and ¢, de-
pend only on the'lhtter’of these two. .The numerical values
of d, and d, can be entirely diﬁfefent, but they both have
the same form, as cﬁﬁ be seen by multiplying two steady

state patterns together, that is,

4y

1= r/4, . (2.4-8)

where
i=1,2,
L = a positive integer
and |
L < 4M? + 4M + 1 - (2.4-9)

where M is bounded in Eq. (2.3-4).
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The arithmetic average of any four consecutive values
of pD(k) always equals the product of the quantized values
of the inputs plus a second-order term depending on 5%, A
This warrants the use of the following four-term ﬁon-recur—

sive filter after pD(k):
= 1 ' = - : - -
P (k) I[pD(k} + pD(k 1} + pD(k 2} + pD(k 3)1. (2.4-10)

Applying Eg. (2.4-10) to the waveform shown in Fig. 2.4-3,

we see -that

Pk) = x G d2)52/2 (2.4-11)

a’q
for all k, as long as éD(g) has reached the steady‘state.
We have found, through computer simulations, that the fac-
tor (d, + d4,)/2 generally is no larger than 10 or 20. In a
practical DM encoder with 10 bits of internal arithmetic
and an amplitude range of Vpp = 10 volts, the minimuin step
size, S, will be approximately 10 millivolts. Therefore,
the secohd-order term will be in the order of 1-2 millivolts.
Fven if we allow (d1 +‘d2)/2 to be 100, the error only
reaches 10 millivolts or one minimum step size. Certainly,
one step size out:of 1024 can be considered insignificant.
For any reasonably small value of step size, the second
'ordef term, (d1'+ dz)Sz/z, is negligible and thus, aféer
the four-term averaging filter, the DM product yields a re-
sult almost identical £o the PCM product.

The direct DM product design structure that we have

~derived is not a unigue solution to this problem. The de-
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sign presented does, however, perform ﬁell and this will be
seen from the simulation'responsés for elementary input
waveforms and also from‘thé SNR performance curves. There
are other design techniques that could have been inéorpora~
ted into the direct product design. We could introduce a .
- "leak" factor in Eq. (2.4-2) and feedback a f£action of the
output, pD(k), to generate, éay 0:9pD(k - 1). -Alternately,
we might use a different'averaging filter after pD(k); or
we could perform some kiné of ave%aging on (k) and ¥(k) be-
fore we form ﬁheir product. Each of thése ideas would have
to be analyzed individually té determine its merits and

shortcominés-in formulating the direct DM product.

2.5 Hardware Complexity

From Eq. {(2.2-2) or Fig. 2.2-1 we see that the complex-
ity and gquantity of the hardware needed for a DM adder is
. essentially equivalent to that needed for a PCM adder. 1In
PCM addifion, since we have two K-bit words coming from
x(t) and y(t), we require two K-<bit input storage registers,
one K-bit full adder and, since we do.not allow overflow,
one K-bit output -register. To obtain the DM direct sum, we
need the step size circuitry for Eoth signals (some of which
can be time shared) terminating in registers with less than
K-bit capacity, one transfer register with enough bits to
represent twice the maximum step size, one K-bit full adder
and one K-bit delay register.

The -comparison of hardware complexity for multiplica-
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tion is somewhat more involved. PCM multiplic¢ation is gen-
erally treated as a static operation where two K-bit words

' ére either fed into a combipatgrial circuit, or into a pre-
programmed ROM, or into a repeating add—store—and—sﬁift cir-
‘cuit. We must also remember that to multiply two signals,
bandlimited to fm' we must perform this static operation on
the PCM words from the two signals at a rate of 4fm since
the product will be bandlimited to me.

Now we can examine the hardware complexity needed for
these PCM multipliers. A combinatorial circuit needs two
K-bit input s&orage registers, K? AND gates, K K-bit full
adders and a 2K-bit output storage register. This is
easily seen by observing the structure.that arises when wg'
use “"long"” multiplication to obtain the product of two K-bit
words, Ay *-A,A, and By"*"B,B,. A ROM, with a 2K-bit input
-éddress, normally has 22K memory locations. Even though
there are—only K? different product values, the ROM must

- still use 22K

memory locations to multiply as well as need-
ing input énd output registers. The repeating add-store-
and-shift device requires two K-bit input registers, a K-bit-
shift register,'K-AND gates, a 2K-bit full adder and a
2K-bit output registe;. ‘However,'for this last multiplier,
we must perform K repeated additions in the time interval
1/4f, before we obtain the final product word.

Consideriﬂ§ the DM multiplier for the linear méde, as

shown in Fig. 2.4-2, the hardware needed is two 2-bit shift

registers, two accumulators {each having a K-bit full adder
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Since the inputs are

statistically independent, the ptoduct signal power is

p? =

For PCM'sigﬁals, the sample

statistically independent.

value and the error are likewise

Consequently,

(2.6-25a)

and

+ y° £

Var(ep)‘= eé = x% ¢ ; + ei E§-. (2.6-25b)

Evaluating the variance of the product error, we obtailn

- 2 2yq2 4 2 G-
Var(ep) (cx + UY)S /12 + §t/144 | (2.6-26)
Thus, for the product of PCM encoded signals,
. . 2.2
(PCM) = 1440x0y . (2.6-27)

SNR
A “ Z +
P 12 (o + GY)S + S

If the two signals have equal power and the step size is

small (o = g2 = g% >> 32), the SNR becomes

R4

SNRP(PCM) = 60%/8% , (2.6-28)

_ For the direct product of DM encoded signals, we can
similarly develop an expression for the SNR. Again, we in-
clude the averaging filter introduced in Eg. (2.4-10) and

the DM error is formulated as

E&p =P —F . (2.6-29)
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where

-

—_ — 2 ' _
P = B(k) = xgqyq + 68° . - (2.6-30)

Here we have assumed that pD(k) has reached steady state and
§ represents the- constant, (dl + d2)/2, introduce@_previ—
ously. With the aid of -Egs. (2.6-19) and (2.6-20), we find

“that

Ep = &g, + §s? . - {2.6-31)

Let us define the product SNR for DM signals to be .

2

SNR_(DM) = ?E%TEET" E (2.6-32)

To calculate SNRP(DM), we must evaluate

Ep = 552, ' (2.6-33a)
Eg = Eg + §28% . (2.6-33Db)
and
Var (gp) = Eg - E§2= Eg . (2;6—33c?
But Eg. (2.6-33¢c) implies thag
Var(gp) = var (gp) (2.6-33d)
and
SNR, (DM) ='SNRP(PCM) . (2.6-34)
Therefore,
SNR_ (DM) = 60?/S%* , (2.6-35)

P
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racy .of the product, while, at the same time, increasing the

-

coﬁplexity-of the hardware.

2.6 SNR with Constant Inputs

Consider first the SNR obtained by adding two statis-
" tically independent constant signals, such as x and y, that
are PCM encoded. Defining the quantized samples as kq'and

Yq’ and the respective errors as €, and € the PCM sum is

YI
seen to be ‘
aq = Xg + yq, (2.6-1)_
where
xq =X - &g (2.6-2)
and
yq =Y " Ey- (2.6j3)
We can also express the PCM sum as
aq =a- e, (2.6-4)
where the true sum is
a=x+y (2.6-5)
and the sum error is
e =€ + € . (2.6-6)

If the minimum step size, S, is the distance between PCM
levels and it is sufficiently small, then e, and €y will be
equally likely in the interval [-S/2, S/2]. One can readily

show [16] that
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Ty = By = 0 . (2.6-7a)
and -

2 . 7 _ a2 -

Ex = €y = 8¢/12, L (2.6-7b)
where the bar in the above equations denotes the probabalis~
-tic expected value.

Let us now .define the sum SNR for PCM signals to be

i ~ ]
SNR {PCM) = a (2.6-8)
a( Varisa)" .
where
Var(a) = (o - @)% = a? - a? . (2.6-9)

'Assuming x and y to be independent, zero mean, ‘Gaussian ran-

2

dom variables with wvariances U;'apd Gy

;, the variance. of the
sum is
a? = o2 + o2 . (2.6~10)

X Y -

To determine the variance of the sum error, Vai(sa), we note

that
e. =0, ) (2.6-11a)
so that
Var(ea) = e; = ei + S; = Sé/G . ‘ (2l6~llb)
Thus,. for PCM encoded signals,

SNR (PCM) = 6 (02 + o2)/82 . (2.6-12a)
a X Y
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2
Y

2

Setting 0§ = g% = g%, Eq. {2.6-12a) becomes

SNRa(PCM) = 120%2/8% . : (2.6-12b)

For the direct sum of DM.encoded signals, an analysis
similar to the PCM case can be conducted by evaluating the
difference between a and aD. However, the actual error

that we are concerned with is after the non-recursive four-—

term averaging filter introduced in Eq. (2.3-6). This
error is

. Ey=a~-R2, (2.6—13{
where

A=2a(k) =x_.+ Y C (2.6-14)

q q '
as obtained in Eg. (2.3-7) when aD(k) has reached steady

state. With the help of Egs. (2.6-1) and (2.6-4), we see’

that
E =€ , (2.6-15)

that is, the DM sum error after.the averaging filter is
exactly the same as the PCM sum error.

Défining the sum SNR for DM signals to be

2

a2 ., 2.6-16
 Var(€y) ( )

SNR (DM) = SNR_ (PCM) . (2.6-17)
a . a .
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Consequently,

-

SNRa(DM) = 120%/8% , (2.6-18)

where we have assuméd that both x and vy possess the same

signal power, ¢?

. The conclusicn is that, for the case of
constant input signals, the performance of thé direct DM
adder followed. by the averaging filter is identical to the
PCM adder performance when the cbmparison is based on SNR.
Now we shall consider the SNR obtained by multiplying
two constant, statistically independent signals that are PCM

encoded. Using the same notation as in the sum analysis,

the PCM product is

P =xY . ' (2.6-19)"

P =p - E r (2.6"'20)

and using the defining relationships for Xq and Yq in Eq. .

(2.6-19), we see that the true product is
p = XY (2.6-21)
and the product error is
Ep = XEy + yey, - Ex€y e ‘ (é.6w22)

We can specify the product SNR for PCM signals as
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Since the inputs are

statistically independent, the ptoduct signal power is

p? =

For PCM'sigﬁals, the sample

statistically independent.

value and the error are likewise

Consequently,

(2.6-25a)

and

+ y° £

Var(ep)‘= eé = x% ¢ ; + ei E§-. (2.6-25b)

Evaluating the variance of the product error, we obtailn

- 2 2yq2 4 2 G-
Var(ep) (cx + UY)S /12 + §t/144 | (2.6-26)
Thus, for the product of PCM encoded signals,
. . 2.2
(PCM) = 1440x0y . (2.6-27)

SNR
A “ Z +
P 12 (o + GY)S + S

If the two signals have equal power and the step size is

small (o = g2 = g% >> 32), the SNR becomes

R4

SNRP(PCM) = 60%/8% , (2.6-28)

_ For the direct product of DM encoded signals, we can
similarly develop an expression for the SNR. Again, we in-
clude the averaging filter introduced in Eg. (2.4-10) and

the DM error is formulated as

E&p =P —F . (2.6-29)
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" performance comparison with PCM. There are other wayé to
obtain the product in PCM form b& using the samples of both
signals at a rate of 2fm. This matter is further pursued
in App. 2.

.The problem thaﬁ we consider he?e is-the formation of
the product of x(t) and y(t) when we only have'their DM se-
quénces, {e,(k)} and {ey(k)}, available. Once again we re-
strict ourselves to a design structure that cén be imple-
mented with standard digital hardware. Forming the direct

product as the product of the individual signal estimates,

we have
pp (k) = X(k)¥ (k). (2.4-1)

As in the case of the direct sum, we can develop a recursive

relationship as follows:

py (k) = pp(k - 1) + S (K)X(k - 1) + S ()Y (k - 1)
) (2.4-2)
+ sx(k}sy(k).
The basic block diagram showing the direct product, in PCM
format [pp(k)] and in DM format [ep(k)], is given in Fig.
(2.4-1). Although the structure for the direct product is
universal for any digital DM definable by Egs. (2.1-1)
through (2.1-3), it will be useful only if the step size
alg&rithm is such that.we can recursively realize the
particle products, that is, the last three terms in EqQ.

(2.4-2).
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For the linear DM, no dlfflculty ‘arises and the dlrect

product is

pD(k) = pD(k - 1) + Sey(k - yx(k - 1) + S?x(k - I)y(k - 1)
5 (2.4-3)
+ S‘ex(k - l)ey(k —.1).
The realization of this system, shown in Fig. (2.4-2}, is
extremely easy because there are no non-linear éperations,
only simple scaling including multiplication by +1 or -1.
To derive the recursive relationships for the partial
) products with the Song audio mode algorithm, we must use a

step 51ze relatlonshlp ‘common to all types of DMs, that 15,'
S, (k) = Is (k)[e (k - 1). _ (2_.4—4)

This equation says that the sign of the present step size,
Se{k}, is diétated by the past DM output bit, e, (k - 1).
From Eg. (2.1-6}, we see that th;s property ié applicable
for the Song audio mode as long as |S,(k - | > s. If
Sx(k - 1) =0 and e (k - 1y = ex(k - 2), then this property
is also valid. Only when Sg(k - 1) =0 and ey(k - 1) #
ex(k ~ 2), the step size relationship becomeé invalid. Thié
invalidity is caused by a hérdware limitation that allows
the step size to be zero rather than an arbitrarily small
value. We sﬁail show, however, that the condition-of
invalidity has a very low probability of occurrence and the
resulting signal estimate used in the multiplication algo-

rithm does not substantially degrade the product.



e, (k-2)

" Fig. 2.4-2. DM Multiplier for Linear Mode
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Equation (2.4-4) can only be invalid when Sx(k) = 0.

A zero step size occurs primarily when -the ADM is in its
mininum steaay.gtate pattern. That is, the estimate resem-
bles Fig. 2.3-1 when m = 0. This corresponds to the audio
signal being zero Secauéé, in speech, 50% of the time there
is no voice. Recently, step size statistics have béen ob-

-.tained for the Soné audio mode ADM, using actual speech sig-
nals. They show that the probability of a zero step size is
approximately 0.04 when £, = 32K bits/second. Since 8 (k)
= 0 occurs twice in a'minimum steady state egtimate pattern,

~ the probability of such a pattern is:0.0B. Let us assume
that the audio signal is equally likely to increase or de-
crease from its zero.value,in any of the four periods of the
.steady state pattern. Only 2 of the 8 signal variations
give rise to the condition when:Eq. {(2.4-4) will be invalid.
Therefore, the probability of invalidity is 0.02. |

We have created a situation in Fig. 2.4-3 where the

step size relationship is invalid. The -solid curve repre-
sents the true ADM,estiﬁate and theé bfoken line waveform is
the estimate used in the multiplication algorithﬁ. From
this figure, we observe that the estimate used in the ‘multi-
plication algorithm is® just as good anlapproximation to the
audio signal as the' true estimate. We shall see, In Sec.
2.8.3, that the use of Eq. (2.4-2) does not noticeably ef-
fect the output SNR of the DM multiplier. -

. Now that we have justified the step size relationshiﬁ,

we can use it to express recursively the partial products
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for the Song audio mode:

-

Sy(k - )x(k - 2)ey(k -'l)ey(k - 2)

]

sy(kqﬁ(k.— 1)

"+ Sx(k 1)Sy(k - l)ey(k - l)e?(k - 2) (2.4-5)

+ Rk - 1)Seyck - 2),-

S, (BKIFk - 1) =5Sy,(k ~ 1)tk - 2)e_(k - De_(k - 2)
+ 8,k — 1)Sy(k - Lley(k - Lley(k - 2) (2.4=6)

+ ¥k - 1)Se, (k - 2),

Sy (k1S (k) = [Sx(k - 1)s,(k = 1)[ey(k - Lley,(k - 1)

y(

+ g[8, (k - 1) ]e, (k - lley(k - 2)
(2.4-7)
+ 8[8,(k - 1) fey (k' - Lley(k - 2)

+ Szex(k - 2le,(k - 2).

y
Equations (2.4-5), (2.4-6) and (2.4-7) are readily realiz-
able with standard digital hardware similar to the DM
adder shown in Fig. 2.,2-3. ‘These three terms can be con-
structed with.nothipg more complicated than adders, delays,
hard-wired scalers and exclusive-OR gates to multiply_by 1
and produce the absolute value.

211 of the design structures that we have derived are

accumulator type systems. For both the adder (Sec. 2.3) and

" the multiplier (Sec. 2.4}, for all DM modes, the present out-
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put is equal to the past outpu@.plus additional terms.
.Thus, it is important-to begin ﬁith'the-cor¥ect initial
condition for the past output, or else suffer a constant
offset error. It is convenient to start wi£h both signals,
x(t) and y(t), at zero so that we can employ a zero initiali
condition for Fhe past output. ‘ =

As in the case of the direct sum, we expecé the ‘direct.
"product, since it is formulated as the product of the indi-
vidual signai estimates, to exhibit a periodic pattern when
responding to constant inputs: Wheh using the Song audio
mode algorithm, the direct product generates four possible .
steady state waveforms.‘ In Fig. 2.4-4, we show the general
‘structure'of a steady statehwaveform.- The values of -C, and
-+ C; depend upon Xg and yé and the amplitude of the steady
state error pattern (x - xq‘and § - yq), while d, and ¢, de-
pend only on the'lhtter’of these two. .The numerical values
of d, and d, can be entirely diﬁfefent, but they both have
the same form, as cﬁﬁ be seen by multiplying two steady

state patterns together, that is,

4y

1= r/4, . (2.4-8)

where
i=1,2,
L = a positive integer
and |
L < 4M? + 4M + 1 - (2.4-9)

where M is bounded in Eq. (2.3-4).
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The arithmetic average of any four consecutive values
of pD(k) always equals the product of the quantized values
of the inputs plus a second-order term depending on 5%, A
This warrants the use of the following four-term ﬁon-recur—

sive filter after pD(k):
= 1 ' = - : - -
P (k) I[pD(k} + pD(k 1} + pD(k 2} + pD(k 3)1. (2.4-10)

Applying Eg. (2.4-10) to the waveform shown in Fig. 2.4-3,

we see -that

Pk) = x G d2)52/2 (2.4-11)

a’q
for all k, as long as éD(g) has reached the steady‘state.
We have found, through computer simulations, that the fac-
tor (d, + d4,)/2 generally is no larger than 10 or 20. In a
practical DM encoder with 10 bits of internal arithmetic
and an amplitude range of Vpp = 10 volts, the minimuin step
size, S, will be approximately 10 millivolts. Therefore,
the secohd-order term will be in the order of 1-2 millivolts.
Fven if we allow (d1 +‘d2)/2 to be 100, the error only
reaches 10 millivolts or one minimum step size. Certainly,
one step size out:of 1024 can be considered insignificant.
For any reasonably small value of step size, the second
'ordef term, (d1'+ dz)Sz/z, is negligible and thus, aféer
the four-term averaging filter, the DM product yields a re-
sult almost identical £o the PCM product.

The direct DM product design structure that we have

~derived is not a unigue solution to this problem. The de-
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sign presented does, however, perform ﬁell and this will be
seen from the simulation'responsés for elementary input
waveforms and also from‘thé SNR performance curves. There
are other design techniques that could have been inéorpora~
ted into the direct product design. We could introduce a .
- "leak" factor in Eq. (2.4-2) and feedback a f£action of the
output, pD(k), to generate, éay 0:9pD(k - 1). -Alternately,
we might use a different'averaging filter after pD(k); or
we could perform some kiné of ave%aging on (k) and ¥(k) be-
fore we form ﬁheir product. Each of thése ideas would have
to be analyzed individually té determine its merits and

shortcominés-in formulating the direct DM product.

2.5 Hardware Complexity

From Eq. {(2.2-2) or Fig. 2.2-1 we see that the complex-
ity and gquantity of the hardware needed for a DM adder is
. essentially equivalent to that needed for a PCM adder. 1In
PCM addifion, since we have two K-bit words coming from
x(t) and y(t), we require two K-<bit input storage registers,
one K-bit full adder and, since we do.not allow overflow,
one K-bit output -register. To obtain the DM direct sum, we
need the step size circuitry for Eoth signals (some of which
can be time shared) terminating in registers with less than
K-bit capacity, one transfer register with enough bits to
represent twice the maximum step size, one K-bit full adder
and one K-bit delay register.

The -comparison of hardware complexity for multiplica-
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tion is somewhat more involved. PCM multiplic¢ation is gen-
erally treated as a static operation where two K-bit words

' ére either fed into a combipatgrial circuit, or into a pre-
programmed ROM, or into a repeating add—store—and—sﬁift cir-
‘cuit. We must also remember that to multiply two signals,
bandlimited to fm' we must perform this static operation on
the PCM words from the two signals at a rate of 4fm since
the product will be bandlimited to me.

Now we can examine the hardware complexity needed for
these PCM multipliers. A combinatorial circuit needs two
K-bit input s&orage registers, K? AND gates, K K-bit full
adders and a 2K-bit output storage register. This is
easily seen by observing the structure.that arises when wg'
use “"long"” multiplication to obtain the product of two K-bit
words, Ay *-A,A, and By"*"B,B,. A ROM, with a 2K-bit input
-éddress, normally has 22K memory locations. Even though
there are—only K? different product values, the ROM must

- still use 22K

memory locations to multiply as well as need-
ing input énd output registers. The repeating add-store-
and-shift device requires two K-bit input registers, a K-bit-
shift register,'K-AND gates, a 2K-bit full adder and a
2K-bit output registe;. ‘However,'for this last multiplier,
we must perform K repeated additions in the time interval
1/4f, before we obtain the final product word.

Consideriﬂ§ the DM multiplier for the linear méde, as

shown in Fig. 2.4-2, the hardware needed is two 2-bit shift

registers, two accumulators {each having a K-bit full adder
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Since the inputs are

statistically independent, the ptoduct signal power is

p? =

For PCM'sigﬁals, the sample

statistically independent.

value and the error are likewise

Consequently,

(2.6-25a)

and

+ y° £

Var(ep)‘= eé = x% ¢ ; + ei E§-. (2.6-25b)

Evaluating the variance of the product error, we obtailn

- 2 2yq2 4 2 G-
Var(ep) (cx + UY)S /12 + §t/144 | (2.6-26)
Thus, for the product of PCM encoded signals,
. . 2.2
(PCM) = 1440x0y . (2.6-27)

SNR
A “ Z +
P 12 (o + GY)S + S

If the two signals have equal power and the step size is

small (o = g2 = g% >> 32), the SNR becomes

R4

SNRP(PCM) = 60%/8% , (2.6-28)

_ For the direct product of DM encoded signals, we can
similarly develop an expression for the SNR. Again, we in-
clude the averaging filter introduced in Eg. (2.4-10) and

the DM error is formulated as

E&p =P —F . (2.6-29)



42

where

-

—_ — 2 ' _
P = B(k) = xgqyq + 68° . - (2.6-30)

Here we have assumed that pD(k) has reached steady state and
§ represents the- constant, (dl + d2)/2, introduce@_previ—
ously. With the aid of -Egs. (2.6-19) and (2.6-20), we find

“that

Ep = &g, + §s? . - {2.6-31)

Let us define the product SNR for DM signals to be .

2

SNR_(DM) = ?E%TEET" E (2.6-32)

To calculate SNRP(DM), we must evaluate

Ep = 552, ' (2.6-33a)
Eg = Eg + §28% . (2.6-33Db)
and
Var (gp) = Eg - E§2= Eg . (2;6—33c?
But Eg. (2.6-33¢c) implies thag
Var(gp) = var (gp) (2.6-33d)
and
SNR, (DM) ='SNRP(PCM) . (2.6-34)
Therefore,
SNR_ (DM) = 60?/S%* , (2.6-35)

P
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where we .have again allowed the two signals to have equal
power fczivand taken ¢2 >> §2. +As in the case of addition,
we conclude that, based upon SNR, the perforﬁance of the
direct DM multiplier followed by the ave;aéing:filter is
identical to the PCM multiplier performance when &ealing

with constant input signals. .

2.7 Simulation Results with Elementary Signals

The direct arithmetic processors that have been de-
signed exhibit some very encouraging characteristics. They
are readily physically realizable without an excessive
amount of hardware complexity and,.with the averaging.fil—
" ter, the SNRs for constant inputs is the same as obtained
with PCM processors. To'detérmine the response to a set
of elementary input signals, we simulated the direct DM
adder and multiplier on a digital computer. In these simu-
latioﬂs, we used the Song audio mode alg&rithm and thus had
to realize the circuit shown in Fig. 2.2-3 for the.adderm
.The DM multiplier was constructed from Egs. (2.4-2), (2.4-5),
(2.4-6) and (2.4-7). We also had to simulate two DM en-
coders in order to generate the bit stfeams fe,(k)} and
{ey (k) ).

All the simulations were performed on a PDP 8/L -compu-
ter with 8K bytes of memory. First, the DM encoders were
constructéd and it was confirmed that the estimate varied
according to the Song audio mode algorithm, i.e., Eq.

(2.1-6). Likewise, it was verified that the steady state
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estimate to a constant input took the form shown in Fig.
2.3-1. Then we simulated the system for the direct sum fol-
lowed bf tﬁe averaging filter défined by Eg. (2.3-6). Ini-
tial tests were performed on the direct adder with step in-
puts, pulse inputs and sinusoidal signals.

.In‘a}l simulation results, the step size and the samp-
ling period are normalized to unity. Figure"2.7—l shows the
sum of a.step function and a pulse; Fig. 2.5—2,displays the
result of adding a stép function and a sinusoid; and Fig.
2.7-3 gives the addition of two in-phase sinusoids with the
same gmpiitudes and frequencies. In all cases we have in-
cluded the actual sﬁm, shifted to account for the proees~
sor's delay. With the actual sum, we can visually evaluate
these initial tests.

Next, the éirect DM product system, again followed by
the four-term averaging filter, was successfully simulated.
We confirmed that the steady staté direct product with con-
stant inputs did, in fact, take the form shown in Fig.
2.4-3. As in the case of the direct sum, we used the same
set of elementary éignals in our‘initial tests. In Fig.
5.7-4, we show the product of a step function and a pulse.
In Fig. 2.7-5, we display the result of multiplying a step
.function and a sinusoid. In Fig. 2.7-6, we give the multi-
plication of two in-phase sinusoids with the same amplitudes
and frequencies. Agéin, we include the actual product de-
layed to facilitate the'evalqétion of the direct DM product.

All of these simulation results verify the theory. de-
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veloped for béth the DM direct sum\énd.the DM direct product.
We must emphasize the role playéd by the four-term averaging
1filter to achieveé both sum and product results that are so
accurate. To fully appreciate the effect of this four-term
averaging{ we show ip Fig. 2:7-7 the direct prodgct of.a]
step and a pulse Withput the four-term averaging. Compar-
ing this with Fig. 2.7-4, whicﬁ is the result .after four-
term averaging, clearly demonstrates the important role
played by this filter.

As a concluding remark, we observe an impo?tant cHaféc—
teristic of the DM multipiier. In Fig. 2.7-8, we show the
response of a Song audio mode DM to a step of amplitude 150.
The response time, needed to reach 150, is at least 17 samp-
ling periods. Notice, from Fig. 2.7-4, that for the multi-
plier to reéch an amplitude of 150 it takes only 8 sampling
periods. Thus, we have expanded the bandwidth by a factor
of two, consistent with the previous assumption of the mul-

tiplication process.

2.8 Performance Evaluation

The simulation results presented above offer a suffi-
ciently good qualitative evaluation of the operation of the
DM adder and multiplier. However, we also would like to
obtain a quantitative figure of merit which will allow easy
comparison with other digital processing systems. Since we
have confined ourselves to a DM audio mode algorithm, we

shall apply an evaluation criterion commonly used f?r
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speech waveforms.

Voice signals generally occhpy a bandwidth 5f apéroxi—
mately 2500-3000 Hz, star?ing about 200-300 Hz and having
most of their energy in the‘ area of 600-800 Hz. A voice
system is often tested by using a single tone of frequency
-600j800 Hz as the input and measuring the output SNR after
a LPF which cutsoff at about four times the tone frequency.
We have developed a technique to simulate this type of eval-
uation test on a digital computer and have generated a '

family of SNR curves for both the DM adder and the DM

multiplier.

2.8.1 Fourier Series Representation of the DM Estimate

First, we shall develop the theory needed to calculate
the output SNR for the simple case of a DM encodef. Then
we shall show that it will be a natural extension to apply
this theory to the DM pProcessors.

Let x(t), the input to a DM encoder, be a sinusoid of

frequency fO and let the DM bit rate be

£ = Pf (2.8-1)

s of

where P is a positive integer greater.than one. Whenever

the sampling‘frequency ié an integer multiple of the sinu-
soid frequency, the DM estimate, %(k), will assume a periodic
sinusoidal steady state pattern which can be expressed as a
Fourier series. The frequency components of‘this series

can be calculated and low pass filtered. The resulting



REPRODUCIBILITY OF THE.

HRIGINAL PAGE.IS POOR 54
filtered estimate then can be used to determine the output
SNR. . -

A much étronger statement of this cgncept can be made
by not limiting x(t) fo be a sinusoid, but only to be a
periodic signal. If fg is now an -integral multiple of the
fundamental frequeﬁcy of the inPut, then we can always de-
termine the spectral composition of the estimate. For our
purposes, however, we néea only bg_con;erned with sinusoidal
'inputs.

Consequently, the period of the estiméte will be Tor

where
To = l/fO ‘ {(2.8-2)

or any integ?al multiple of T, For the sake of simplicity
in deriving its Fouriér series, let us assume that the fun-
damental frequency of the estimate is fj and not a submul-
tiple of it. 'This means that % (k) periodically takes on P
discrete values, denoted as ﬁ-,,every TO seconds. In this
analysis, the estimate takes the form of é staircase-like
waveform énd each discrefe value, ij’ lasts-for TO/P seconds.
Using the continuous notation, % (t), the Fourier series of
the DM estimate can be expressed as

X(t) = C .+ I Cpeos(2mnfyt + ¢) (2.8-3a)

n=1

whére 1

Cy = (1/To)£ X(wyact , : | (2.8-3b)
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C o= VAL + B, . (2.8-3c) -
¢n = -arctan(Bn/An) ' ' (2.8-34)
and
TO
A_ = (2/T))[ ®(t)cos(2mnf t)dt , - (2.8-3e)
. 0 i
To
By = (2/TO)£ x(t)sin(2wnf t)at . (2.8-3£)

Substituting the discrete wvalues of %{t), we can re-

write Egs. (2.8-3e) and (2.8-3f) as

P 4T,/P

A = (2/T) T %if cos (2nnf_t)dt (2.8-4a)
n ® 3=1 J(5-n1 /P ©
P 3T /P
B = (2/T.) % %./ sin(2mnf_t)dt .  (2.8-4b)

R ° =1 T3-nT /P

By ihvbking some trigonometric identities, we can further
reduce A and B to a form which is readily adaptable for

‘computer simulation, that is,

) Tu P ~ ’ ‘
An = 2511‘1(1‘11T/P) b x.cos[n‘n‘(Zj - l)/P] (2.8—'53.')
! ar o 4=1
R P
B = 28in(an/P) 3 % sinfnm(2j - 1)/P] .  (2.8-5D)
n nm ]

J=1



56

Now we have available the strength of the Fourier components

of the DM estimate, C and thus theé essential information

n’
to evaluate the DM performancé. Since we are ultimately
concerned with the performance of the DM processors, it
remains to extend this development to the DM sum and the

DM product.

Similar to the case when we considexed the response of
the DM adder and multiplier to constan£ i;pﬁ£s, we need only
refer to the basic initial design equations, i.e., Eg.
(2.2-1) and Eqg. (2.4-1). These tell us that the direct
sum and product are formulated as the sum and product, re-
spectively, of the indiwvidual signal estimates. Since we

-shall be adding or multiplying two periodic sinusoidal
-steady state patterns, aD(k) a%d pp (k) must aléo be periodic
signals. Thereﬁbre, the Fourier series representation

theory is immediately applicable to the DM direct sum and

product.

2.8.2 Output SNR

To determine the desired figure of merit, we must go
from the Fourler series of thé DM estimate to the output
SNR. Since we are céncerned with an audio mode DM, it
would seem reasonable to choose a low pass filter (LPF) ap-
ﬁlipable to voice signals to bridgé this‘gap. ‘A LPF com~
monly used in experimental work is a fourth-order Butterwerth

type whose magnitude-squared transfer function is given.as,
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|Hg (s) ]2 = 1/[1 + (s/uwg)®] , (2.8~-6)

where

w, = the radian cutoff frequency.

The. frequency characteristics of this LPF are:

B (£) 2= /01 + (5/60)°1 , (2.8-7)

where

- fo = we/27 . . (2.8-8)

- To realistically represent a voice signal, we shall
' choose £, = 800 Hz and fc = 4f = 3200 Hz. From Eq. (2.8-7) -

we can obtain the attenuation factor, a_. that we must scale-

n
the Fourier components of % (t) by to simulate low pass fil-
tering. Using fc = 4f,, we find that

-1 .
o, = [1+ (n/4)%31 % .- (2.8-9)

Since all harmonics are orthogonal, we shall be concerned
"only with the attenuation produced by the LPF and not con-
sider_£he phase“shift whicﬁ arises.

After final }ow pass filtering, the output signél power

becomes

= 1 2 N
S, = (0, ¢ % . (2.8=10)

The output noise power comes from all the filtered frequency
harmonics other than the Ffundamental. After the LPF, the

output noise power is expressable as
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1
N =7

2
o (anqn) - (2.8-11)
n=2

e~ 8

Thus, the output signal-to-noise ratio'(SNRO).is given as

. .5 . ((1,-C)";l -
SNR_ = ﬁﬁ = el . : (2.8-12)
© £ (a.C.)? ‘
anCn)
n=2
2.8.3 Performance Curves

From our system simulations we verified that the DM
estimate, the direct.DM sum and the direct DM product all
produced- periodic responses to sinusoidal inputs when the
.DM bit.rate was an integral multiple of the frequency of
the sinusoid. By expanding the simulation programs we were
able @o inéorporate the calculgtion of the Fourier compo-
nents of the various outputs. All the simulations, includ-
ing calculgtion of output SNR, were carried out on the PDP.
8/1, computér using the FOCAL system. FOCAL, an abbreviation
for Formulating On~line Calculations in Algebraic Language,
is a éonversationél programming language which is similar
to, but not as—powerful as FORTRAN or BASIC.

In determiﬂing SNR,, we di@ not use an infinite number

of harmonics to calculate the noise power as required. by
. Eq.‘(2.8—11). Instead, we truncated after the ninth har-

monic since (a,,C )? was negligible in comparison with- the

190

noise due to the second through ninth harmonics. We have

found that, for the same input signal power and for the same
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ratio, fs/fo, the periodic sinusoidai steady state pattern

* that the DM EStimate assumes., anﬁ.consaquently the SNRO, are
very dependent upon'the starting point of the input sinu-
soid. ‘Since the input is zero before the sinusoid starts
and the ADM estimate tracks the zero input with a periodic

pattern of duration 4T the sinusoid can start at any point

s’
within this interval with equal probability. The SNR, has
become a random variable‘dependent on the starting point of
the input sine wave. .In Fig., 2.8-1, we show the ADM re-
sponse to a constant input and a number of possible start-
ing points of the-input:sinusoid. To obtain a truly repre-
sentative value of SNR, we employed 40‘different Star£ing
points'and calculated the mean and the standard deviation
about the mean, O(SNRO).

We have generated several families of performance
curves. In Fig. 2.8-2, we show the SNR in dB for the
direct sum, SNRa, versus relative input signal power over
a range of 54 dB for ratios of fs/fo = 60, 40 and 20. This
ratio is equivalent to the fS/Ra = 7.5, 5 and 2.5, where
_the variable R, is the PCM Nyguist rate for the sum. ‘Thus,
£5/R, is the number of bits in an equivalent PCM system.
The input signal power was varied.by changing the amplitude
of‘the input sinusoid. A relative input signal power of
-6 .dB corresponds to an amplitude.of.SS, where S is‘the min-
imum step size, while 42 dB'represeqts an amplitude of 1280sS.

To obtain the performance curvés for the direct product,

we let both inputs equal the same sinusoid. Therefore, the



150

0- _ 150—=

" ?(k)j“

t 3 i 1 ] . |
T L] L]

v

o ) 10 15 20 25

Fig. 2.7-8. Song Audio Mode DM Response to a Step

09



>

Possible Starting Points of
/ the Input Sinusoid

.l..

4T =l

(k)—\

A

Fig. 2.8-1.‘Song Audio Mode ADM Response to a Constant Input -

T9



SNR,(dB) —— et ———N=75 f,

————— : — =75
36-—-— SNCRPCM (SB: - - Rﬂ
e P N—— o (SNR )®(2,4)dB
32+ |
o8 /—— o(SNR )=~ (1,3)dB
. i . $ =5
' a
24-
' e N=,5
20—r o(SNR, )=(1,2)dB
1 /— s -
16 , =25
a
. // | ' Full Coad Sme for
19 T ' "1 Companded PCM | Relative Input
{- A ) J ‘ . ' ) ‘ Slgng F(’gwg?r
6 0 6 12 18 24 30 36 42

Fig. 2.8~2. SNR for DM Direct Sum

Z9



63

product becomes the squére'of the input signal. In this

case, the output signal power cofles from the product fre-
quency , fp = 2f0,
In Fig. 2.8-3, we give the SNR for the direct product,

and the noise from all other harmonics.

SNRP, as a function of relative inqu signal power over the
gsame range of 54 dB wi‘th- the parameter _f?,/fp takil:lg on
values 30, 20 and 10. ,This parameter "is the same as the
ratio £,/2R, = 3.75, 2.5 and 1.25, where R is the PCM

j&
Nyquist rate for the product. We shall see that fS/2R

P
is the number of input bits in an equivalent PCM multiplier.
Since the output signal frequenc& is twice the input signal
frequency, we naturally expect SNRp to-be less than the SNR
'from‘the DM suﬁ because the DM is frequency sensitive.
-'Recall that the SNR is actually a:random variablef as
explaineé previously.‘ Consequently, all the plots shown
above were drawn as smooth curves through windows of one
. standard .deviation about the mean value of‘the SNR. On the
SNR famiiy we show tﬂe se£ of windows for one curve. In
lieu of the other standard deviation‘windows, we denote the
range of the standard deviation for each curvé in both the
sum family and Ehe-product family. The significance of
these performance curves will be detailed in the nex£ sec-
) tion when we compare the DM systems‘to PCM proéessors.
-

2.9 Comparison with PCM Systems

We shall cdmpare the DM direct- processors with their

dual PCM systems based on the SNR achieved with equivalent
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channel bit rates. To achieve a wide dynamic range,
‘ companded PCM is generally used Ior encoding speech signals.

With an input sinusoid, the SNR for companded PCM is given

as
SNR(PCM) = 6N + 1.8 + I(c}) dB , (2.9-1a)
where
N = the number of bits used-to PCM
encode the input signal
and
.I(Ui) = the companding improvement- factor,
) a function of the input signal
power. ’

For logarithmic compandinq commonly used by the telephone
company, a family of improvement curves is given which dis-
plays I(Ui) as a function of signal power below full load
sinuscoid for-several values oﬁ'the cémpression factor, u
(171, & full load_sinusoid Eas the maximum amplitude that
can be encoded with N bits.

If we choose a median value for the compression factor
(u = 100), then, for a full load sinusoid, I = -9.5 dB.

Thus, the maximum SNR for companded PCM with u = 100 is
sNRm(PCM) = 6N ~ 7.7 dB . (2.9-1b)

" 8ince this compression factor yields a SNR curve which drops
off only 3 dB from the maximum value over a dynamic range
of 30 dB, Eg. (2.9-1b) will be our basis of comparison for

~companded PCM systems.
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For the case of digital addition, for both PCM and DM,
it does not matter if.we encode,” process and transmit or
encode, transmit and process. There .is no change in channel
bit rate. This point will be critical when comparing multi-
plication.‘ fo best explain the comparison with the PCM ad-
dition system, we shall refer to the chart given in Table
2.9-1. C@nsider the bandwidth of each inpﬁt signal to be
B Hz. The input signals are encoded into N-bit PCM and then
processed. Since we are adding the two signals, the output
band&idth is also B Hz. The PCM sampling rate for the sum
is . ‘

R = 2B, (2.9-2}
a

and the number of bits it will have, assuming no overflow,
is
N =N. : (2.9-3)

Consequentlj, the PCM channel bit rate becomes

RN, = 2BH . (2.9-4)

Since we use an input tone of frequency fO in determining
performance curves and set the output LPF to cutoff at
4f0, we must equate the cutoff £frequency to the output

bandwidth, i.e.,
£f = 4f =B . . (2.9-5)

To compare the systems, we specify equivalent channel



PERFORMANCE PARAMETERS

FOR COMPARING DM ENCODED aD(k) & pD(k) TO N-BIT PCM

SuM PRODUCT
Input Signal-Bandwidth B B
Output Signal Bandwidth : B 2B
PCM Sampling Rate R, = 2B Rp = 4B
PCM Bits in Processor N, =N Np = 2N -
PCM Channel Rate 2BN . . 8BN
Input Tone Frequency . fo fo
Output LPF Cutoff Freqguency T fc = 4f, =B fo= 4£f, = 2B
DM Sampling Rate . £, = 2BN = NR_ . £, = 8BN = 2NR,,
DM SNR Index o fg/R, =N fs/2R, = N
DM Performance Curves £ = 20f = 2.5R_ £, = 20£, = 1.25(2R)
Sampling Rates . £, = 40f, = 5R, fg = 40f, = 2.5(2RP)
| £g = 60f, = 7.5R, fg = 60£, = 3.75(2R)

TABLE 2.9~1. Comparison of DM and PCM Arithmetic Processors

Lo
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bit rate. For the DM adder, the bit rate is'fs. Therefore,

fS = 2BN = RN . (2.9-6)

The DM SNR: index used in Fig. 2.8-2 is clearly the number

of PCM bits used to encode the input signals, i.e.,
fS/R = N a (2-9"'7)

On the performance graph for the DM direct sum, Fig,
2.8-2, we have plotted the SNR for N-bit companded PCM, when
N = 7.5 and 5. For these curves, we set the full load am-
p;itude equal to 5128, representing a DM system with 10 bits
of internal arithmetic. In these two cases, the PCM and DM
systems yield comparable performance. When N = 2.5,
SNRm(PCM) = 7.3 dB in comparison with approximately 16.dB
for the ADM adder. At low transmission rates, the DM sys-
tem clearly has the advantage.

When considering digital multiplication, it is very
important to process first and then to transmit. If we re-
verse this order, the DM bit rate will increase by a factor
of two and the resulting performance will appear th;t much
downgraded. As in the case of addition, we shall refer to
Tablé 2.9-1 extenéively in this comparison. Again, the
input signals are bandlimited to B Hz and encoded into N-bit
_PCM signals. The PCM multiplication causes the output sig-
nal to have a bandwidth of 2B and consequently, thé sampling

rate for the product must be

PRODUCIBILITY OF THE
ARIGINAL PAGE I8 POOR
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PR

R = . .9-8Y)
p 4B (2.9-8)

More important, the number of.bits needed for the product is

N_ = 2N . : 2.9-9
P ) ‘ F )

Thus, the channel bit rate is
RPNP = 8BN . (2.9-10)

Again, the frequency of the input tone is fo and the
LPF cutoff frequency is set to 4f. Equating the output

bandwidth to the cutoff.frequency, we obtain -

£, = 4f, = 2B ., (2.9-11)

Now we can compare the systems on the basis of equal chan-
nel bit rate. Since we are transmitting the DM encoded di-

rect product the bit rate is still fs' Therefore,

Now it is obvious that the parameter employed in the DM
" product SNR graph is the number of bits used to PCM encode

the input signals, that is,
fs/sz =N . (2.9-13)

Comparing the performance curves shown in Fig. 2.8-3 with
Eg. (2.9-1b), we find that the DM SNR is consistently
higher. We must remember that because ‘we have DM encoded

pD(k) in this comparison_sygtem, we should really look at
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the SNR curves of ﬁD(k). But these curves are exactly the
same as Fig. 2.8-3 except 1-2 dB lower. This is the same
‘effect as experienced when placing DM links in tandem [18].

We have shown the feasibility of adding and multiplying
DM encoded signals. The systems presented use only standard
digi#al devices in their realizations and the performance
curves do not show any surprising results. Comparing the
DM processors to PCM systems for the same bit rate, we have
shown that their performance is either comparable or better.
Although the order of operation is unimportant when adding,
it is vital to first process and then transmit when multi-
plying.

As a concluding remark, we shall consider some practi-
cal aspects of the DM processors. The DM adder can be ap-
plied when we need to mix voice chanﬂels, as in a stereo
system. The DM multiplier can serve as, the basié for con-
structing a correlator. Although we can realize-only dis-
crete time delays, they take thé very simple form of one;bit
shift registers, since we must merely delay eX(k).

A-final consideration is the measurement of output SNR.
With .2 DM system that has £o be physically constructed, the
SNR will not be a random variable dependent on the starting
point of the input.sinusoid. Consequently, we will not mea-
sure different values of SNR each time the device or the
input is turned on. In a real system, we can never guaran;
tee that.fg will be an exact integral multiple of fo. In

fact, the DM clock and an input sinusoid are actually non-—
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coherent signals. This noncoherence has been-modeled as
different starting points. The measured output SNR is

therefore analogoué to the mean SNR with an infinite number

of different initial conditions.
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CHAPTER 3

CONVERSION FROM ADM ENCODED SIGNALS TO PCM ENCODED
SIGNALS USING DIGITAL FILTER TECHNIQUES

Due to high quality performance and ease in implemen-—
tation, many modern communications systems are employing
digital epcoding techniques. Amohg-the existing digital
encoding techniques,-ADM and PCM are widely utilized in com-
mercial communications. To facilitate digital processing
of signals encoded in ADM and PCM formats, there is a need
for translation units between the two systems. In this
chapter, we consider conversion from ADM to PCM format.

A general technique is presented'for-converting ADM
encoded signals to PCM format without first demodulating the
ADM bit stream and returning to the analog domain. The
translation unit that is derived employs only standard digi-
tal hardware. and is applicable to a large class of ADM en-
coders. SNR curves are given for PCM converted, sinusoidal
signals obtained from the three different systems which are
presented in this chapter. Thus, we can present a relevant

evaluation of the performance of these ADM to PCM converters.

3.1 Basic ADM-PCM Conversion Philosophy
Consider an analog signal, x(t), assumed bandlimited

to fm’ which has been ADM encoded at a rate fs' The general

form of the ADM was given in Fig. 2.1-1 and mathematically



73

described by Egs. (2.1-1) through (2.1-4). The only con-
straint imposed upon this system is that the ADM bit rate is

an integral multiple of the Nyguist rate, that is,

(3.1-1)
where.

E.. = ?fm (3.1-2)
and

R = a positive integer greater than 1.

In our conversion system, the wvalue of ﬁ is set by fs and
we cannot vary this in our désign. Since we are converting
between two digital encoding systems, we restrict our design
to an all-digital technigue which can be implemented with
standard digiéal hardware.

The conversion from ADM to PCM encoded signals entails
changing from a high “information" rate (ADM) to a lower
one (PCM). Formally stated, an ADM to PCM convgrter oper-
ates on the sequence {ex(k}} and produces x(t) in PCM.for-
mat. FExamining the ADM in Fig. 2.1-1, we see that one of

its basic equations is

x(k) = x(k) + &Ex(k) , . (3.1-3)
where

§(k) = the input signal,

x(k) = the ADM estimate
and

Ex(k) = the error signal.

Since the ADM is operating at a rate fg, the above notation
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x(k) = x(t = kT) , (3.1-4)

ﬁhere
Ts = l/fs . (3.1-5)

-

Usually; x(k) is given and we find x(k). Now the prob-
lem is reversed: =x(k) isqgiven, via the ADM bits, ié#{k)};
and we want to find x(t). .fo do this, we must estimate
.Ex(k)' Then, to achieve PCM format, we ﬁusf sample x(t) +
E4(k) at a rate fiy = fS/R. Consequently, the ADM to PCM

converter should perform the function:
x(Rk) = X(Rk) + £ (Rk) , (3.1-6)

where ®(k) and £.(k) are formed from the ADM bits and then

they are sampled at the PCM rate, f£. We observe that

x(Rk) = x(t = kT = x(t = RkT,) (3.1-7)
since

T

N = 1/fy = RT, . : (3.1-8)

-

To obtain Ex(k) from ex(k),'we must realize the inverse
of a hard limiter. But, there is no ﬁhysically realizable
one—to-one inverse of a hard limiter. The information lost
going from Ex(k) to ex(k) cannot be_recoveredt However,
the basic idea of improving the ADM estimate is still’a
valid concept. This is exactly the problem that we'are
faced with, that is, how to improve~§(k) before we decrease

the "information” rate from £ to £y PY sampling at the Nyquist
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rate.

The PCM values cbtained in this way are in a linear
PCM format. However, most existing PCM syétems use a com—'-
panded code. To achieve compatibility, we can use a simple

ROM as a digital code converter since there is a one-to-one

mapping between linear and companded PCM.

3.2 ADM Decoder Technigue

The ADM to PCM converters that will be discussed are
applicable to any ADM that can be described with Egs.
(2.1-1) throuigh (2.1-4). However, when simulating and ob-
taining per%ormance curves, we must use a particﬁlar ADM
mode. Since we are confining our applicaﬁions to speech
signals, all references to the ADM step size will apply to
the Song audio mode algorithm given in Eg. (2.1-6).

The simplest and most obvious method of converting an
ADM encoded signal to a PCM encoded signal is to decode
{ey, (k) } by generating and accumulating the step sizes,

S, (k), to form the ADM estimate, (k). By the very nature

" of the DM digital feedback circuit, %(k) is a parallel digi-
tal word. Since the DM operates at a rate much higher than
the Nyquist rate, the estimate must be resampled, via a bank
of BND gates, at the Nyguist rate, to yield PCM words,
Q(Bk). This device, called the ADM estimate converter, is
shown in.Fig. 3.1-1. In this converter, we have set Eg(Rk)
= 0 in Eq. (3.1-6) and, therefore, we have not improved

X(Rk) at all.
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\\

/{g»ﬁiistically, we can argue that this technique will
(ﬁ?‘ produce a high quality PCM.signal regardless of the num-
/ber of bits used in the accumulator to form x(k). This is

due to the high probability of choosing a "poor" value of
%(k), i.e., a sample yielding a large error between it .and
the true value, x(k). A "poor" ADM estimate is often pro-
duced when the step size has grown too large causing thé
estimate to overshoot the input signal. If the input con-
tinues to increase, the estimate must reverse direction for
one ADM period, due to the overshoot, before it again con-
tinues to increase. The one pericd, where the estimate has
reversed direction, generally yields an extremely "poor"
value of (k).

Consequently, although we can obtain a high qualiéy
representation of the original.signal by analog low pass
filteriné the entire ADM estimate, the same is not true if
we filter samples of the estimate taken at the Nyquist rate.
When %(k) is passed through a LPF, the "poor" estimate
values, occurring for only Tg seconds, are easily averaged
out because the LPF cutoff frequency is much less than .
However, since the PCM samples occur at the Nyguist rate, a
"poor" value will give rise to a considerable error, even
after final low pass filtering. This has been verified
through computer simulation and will be presented later.

The analog LPF is used to return to the analog domain, where
performance is evaluated and for no othér purpose.

The conclusion of this heuristic argument can be further
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stfengthened with a frequency domain analysis of the ADM es-~
timate converter. The ADM encoding process, even when oper-
ating on an initiﬁlly bandlimited signal, always genefates‘
out-of~band frequency components 'in the estimate. If we
let M(f) represent the spectrum of %(k), then M(f) will not
be bandlimited to f,. In this converter, the basic opera-
tion that must be performed to achieve a PCM format is samp-
ling at the Nyquist rate, fy. -The sampling operation causes

a shifting of M(f) along the frequency axis. The spectrum

of X(k) sampled at the Nyquist rate is given as,
o : i
MN(f)“= M(£) + .E [(M(f + ifN) + M(f - ifN)] , (3.2-3)
i=1

where the above additions are performed vectorially since
M(f) is a complex guantity. The result of sampling a non-
bandlimited signal is, of course, aliasing. It is precisely
this fact that causes distortion in the‘resultant PCM sig-
nal and, therefore, a low guality representation of the
original signal which, as we shall see later, manifests it-
self as a low SNR on our performance curves..

To eliminate the "poor" values of X(k) and still main-
tain a completely discréte system, we can insert a digital
LPF after the DM estimate, just before the gating device
operating at the Nyguist rate. This digital filter may be
viewed as a device which filters in the frequency domain,
produces a statistical estimate or performs a digifal inter-

polation. In all cases, it will decrease the out-of-band

noise and make all -the estimate values accurate before we .

—
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resample. This concept will be further pursued in the next

section.

3.3 Non—-Recursive Diqitai LPF Technique

The objective of the ADM"to PCM converter is to elimi-
nate the "poor" wvalues of x(k) before resampling. Since
these "noor" wvalues are surrounded by many "good" values of
%(k), some averaging or fllterlng of X(k) before Nyquist
sampllng should improve the PCM signal. The method pre- '
sented to achieve this objective is .an extension of the con-
cept originglly proposed by D. Goodman [19] to pefform ana-
log to PCM conversion using a DM as an intermediate step.
We now apply. this technique to a general class of ADMs
rather than to merely a linear DM which was done in this
reference. Goodman used a minimum mean-square error cri-
terion to determine the-coefficients in the non-recursive
 digital filter.' To complete the design, it was necessary
to assume input signal staﬁistics. In our system, we em-
ploy a method to determine the filter coefficients which is
" completely independent of input signal statistics. ‘Oour de-
sign is therefore robust.

To improve the PCM converted signal over that obtained
from the system shown in Fig. 3.1-1, we insert a low pass
filter after the accumulator to eliminate the spurious fre-
quency components of the signal estimate. The ADM £o PCM
converfér now has the step size, Sy (k), acting as the input

of two cascaded, linear filters. The latter of these linear
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filters is sampled at the Nyquist rate to produce improved
PCM samples, %(Rk). The block diagram of this system is
given in Fig. 3.3-1. The accumulator is represented as an

ideal integrator, whose impulse response is

ale) =1, £>0, (3.3-1)

=0, t<0’

and the LPF is designated by its impulse response, h(t).
Since both a(t) and h(t) represent linear systems,
they can be combined into one linear filter, fia convolu-
ﬁidn, i.e., o
t
g(t) = a(t)sh(t) = [ a(t - Myh{A)dx , (3.3-2)

-
where the upper limit is due to the causality of the aécumu-
lator, that is, a(t — A) = 0 for » > t. For the limits of
integration in Eg. (3.2-2), a(t - A) =1, and theiefore
. o
glt) = [ h()ar , - (3.3-3)

Lol "4

which is merely the unit step response of the LPF. The im-
proved ADM estimate, X(k), can be formulated from the fol-

lowing discrete convolution,

o

I S,k < i)gld) . (3.3-4)

j=-oo

z (k)

where

Q
~~
.
—
Il

g(3Ty)
and

T = the ADM sampling period.
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Since g(t) represents the unit step response of a LPF,
we know that
3 .
and there exists a value of j for which g(j) is arbitrarily

close to 1. If we designate this value of j as Q, then we

have
-g(j) =1, for 3 > Q . (3.3-5b)

The improved ADM estimate can therefore be approximated very
closely by
0-1 © ’
(k) = I Sx(k - J)ag(i) + I Sg(k -3) . (3.3-6)
- j:.—co j:Q .
If we change the index in the second sﬁm, letting i =k - j,

then

=] k-Q R N
TS (k=-3) = T S.(1) =%k -0 . (3.3-7)
Jj =Q 1 ===00

Specifying the LPF as being causal so that h(t) = 0 for

~t < 0 and, consequently, g(t) = 0 for t <- 0, the final dis-

crete form of X(k) is given as

. 0-1 - )
%(k) = = g(IS (k - §) + X(k - 0) . (3.3-8)
3=0 .

B 1

From Eq. (3.3-8), we observe that the original ADM es-

timate, f(k - Q), is modified by the addition of a weighted

sum of past step sizes. The PCM samples now take the exact

form suggested by Eq. (3.1-6), except for a time delay in
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the ADM estimate. This entire system is depicted in Fig.
3.3-2; where we show an ADM to PCM converter with a non-
recursive digital filter. The advantages of this configura-
tion are that the filter is absolutely stable, the coeffi-
cients of the filter can deviate from the exact value without
drastically affecting the filter fregquency characteristics,
and, as pointed out in a somewhat similar practical realiza-
tion of this concept [20], the hardware capacity needed for
filtering Sx(k) is much less than that needed if we opera-
ted on the estimate, %({k}, with a non-recursive filter.

In the realization of the ADM to PCM converter using a
non-recursive filter, there are several practical consider—'
ations that should be pointed out. Since the filter coeffi-
cients do not require éxtreme precision; we may be able to
realize the products g(j)S,{(k - j) by employing hard-wired
scalers as discussed in Sec. 2.2. Thus, we eliminate the
need for digital multipliers and reduce the hardware com- .
plexity of the system.

The hardware structure for this converter can be com-
pletely modified by recursively realizing the product
g(j)SX(k ~ 3j) from the ADM bit stream. Let us define this

term as
vj(iu = g(j)S,(k - 3) . (3.3-9)

Using the Song audic mode algorithm for the step size, Eqg.

(2.1—6),'the product becomes
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vyk) = g(3) |8, - 3 - 1) e,k = 3 — 1)
‘ {3.3-10)
+ g(3)se (k - § = 2). ' ——
If we employ the step size relationship given in Eq.

(2.4-4), we obtain
vj(k) = g(j)sx(k_—.j - Deylk = = Leyk =3 - 2)
-+ g(@)Se (k- F - 2). (3.3-11)
Expressed recursively, the product now becones
vj(k) = vj(k - 1le (k - j o= Deglk = 3 - ?)
+ g(j)sey,lk - j - 2). (3.3-12)

The block diagram realization of vj(k) is shown in Fig.
(3.3-3).
Returning to Eg. (3.3-8), the improved estimate can be
formulated as
Q-1 .
¥k) = = v.lk) + xk -9Q) . , (3.3-13)
j=0
The block diagram corresponding to this equation for the ADM
to PCM converter with non-recursive filter is given in Fig.
(3.3-4). Althoﬁgh there is no saving in hardware with this
modified realization, the accuracy of the product is im-
proved. This can be seen from Fig. 3.3-3. Even though we
still must scale by g(j}, here we are scaling one minimum

step size rather than S, (k - 4). Even if the numerical scale

factor is a gross approximation to the true wvalue, the most
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error that could arise is one minimum step size.

3.3.1 Realizing an Ideal Digital ILPF-

Now that we have derived a digital structure for ADM
to PCM conversion, the only design that remains is the
choice of the filter coefficients, Q(j). since the objec-
tive of the filter is to eliminate the spurious out~of-band
frequency components, we wish‘to obtain- the best out-of-band
noise rejection with the least in-band signal distortion.

In an attempt to achieve this, we -employ a time domain de-
"sign technique utilizing the unit step response of an ideal

low pass filter (ILPF), i.e.,

g(t). = 0.5 + (l/w)Si(wact - KO) (3.3-14)
where
[V
sifa) = f2=Fax , (3.3<15)
0 y .
fc = fm = fN/Z = the cutoff fregquency
of the ILPF ,
Ko = %mchd - (3.3—}6)
and

T4 = the constant time delay of the ILPF,

A
In Fig. 3.3-5, we plot g(t) as a function of time normalized

by_l/ZTrfc when K = 0. ‘
Although an ILPF is non-causal and, therefore, not
physically realizable, this does not hinder our design of

the digital filter. When a non-recursive digital filter is
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constructed, we can choose any coefficients desired to simu-
late a given characteristic. In our design, we are not con-
cerned with the time delay, Td' nor are we concerned with
the anticipatory response of this analog ILPF. We only
focus on the 0O valueslof'g(t) found between the asymptotic
limits of 0 and 1 that ‘g(t) approaches as t gdes to minus
and plus infinity. These Q values of g(t) complete the de-
sign.

Since we are not concerned wit@ the ILPF time‘delay,
we shall set KO such that the values of the filter coeffi-
cients ére symmetricaliy distributed about 0.5. To deter-
mine the value of Q, we must specify the desired filter rise
© time, T., or the region. ¢,., shown in-Fig. 3.3-5, éutside of
which we assume that g(j) takeé on only values arbitrarily-
close to 0 or 1. If we set a value of ¢,, then we can

calculate
T, = ¢r/2ﬂfc . (3.3-17)

We observe that Q values of g(Jj). imply Q - 1 intervals of Ty

seconds in T,.. Therefore,

T, = (¢ - l)Ts (3.3-18)

or

Q

¢ R/m + 1 (3.3-19)

which is found by setting R = fg/fy. Because Q must be an

integer, we shall specify it as
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Q= l¢,R/m] + 1 (3.3-20)

where

fal

the greatest integer < a.

Now we can determine the filter coefficients by evalu-

ating g(t), at t = jTS, symmetrically about 0.5. The coef-

ficients are given as

- g(j) = 0.5 + (IL/m)si(mw (3 - Ro)/R) (3.3-21)
‘Wwhere ‘
j = O-l'lr e r Q - l r

and

Ry = 0.5M¢_R/m1 . : (3.3-22)

Implicit in this evaluation of coefficients is that g(j)} is
set to zero to the left of ¢, and set to one to its right.
It is seen from Table 3.3-1 that the coefficients obtainéd
from this techniqué, via Eq. (3.3-14), are within 1% of the
values obtained by Gooéman [21] for the example documented
in this reference. We stress that these coefficients are

independent of the input signal étatistiqs.

3.3.2 Characteristics of the Ideal Digital LPF

The algorithm for the improved ADM estimate, i.e., Eq.
- (3.3-8), does not show the effect of the non-recursive f£il-.
ter on the original estimate, 2(k). However, with some
algebraic manipulations, we can transform the ADM to PCM
converter éhown in Fié. 3.3-2 into tﬁe cascade arranéement

depicted in Fig. 3.3-6. Repeating Eg. (3.3-8),
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g{(j) OBTAINED BY

' g(3j) OBTAINED BY MINIMUM

j ILPF TECHNIQUE MEAN-SQUARE ERROR TECHNIQUE
1 0.15839 0.15996
2 ' 0.37776 0.38571
3 0.62224 0.61437
4 0.84161 0.84013
5 1.00000 1.00009

TABLE 3.1-1. Coefficients for the Non-Recursive

Digital LPF
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X Q-1 :
R(k) = K(k - Q) + I g(i)s (k - i) , (3.3-8)
i=0 ’

and chserving that Eg. (2.1-4) can be rewritten as
S (k) = (k) - &k ~ 1) , (2.1-4)

we now see that

(k) = xtk - Q) + I g(i)
i=0
(3.3-23)

e [k - 1) - %k -1i-1)1.

Taking the Z-transform of Eq. (3.3-23), assuming zero ini-

tial conditions, we obtain the form of the cascade filter,

~ ~ 0-1 )
Hop(2) = X(2)/X(z) = 27@ + (1 - z_l)iEGg(i)z_l , (3.3-24)
where
X(z) = the Z-transform of (k)
and
X(z). = the Z-transform of %(k) .

By taking advantage of the symmetry of the g (i) coef~

ficients about 0.5 and letting
z = exp (JuTg) (3.3-25)

we can determine the frequency characteristics of the cascade
filter. The following transfer function was derived from
the filter structure used in simulation where Q was an even

integer and g(0) = 0,
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Hep (£) = exp(-3(Q + 1)wE/2RE ) ({eos (7(Q - 1) £/2RE)

Q/2-1

+ asin(re/2RE)[ 3 g'(Q/2 - i)sin(img/RE )1
i=1 _ :
‘ - : (3.3-26)
"+ j{-sin(m(Q - 1)£/2RE_ ) + 2sin(mf/2Rf ) "~
Q/2-1 . '
- [0.5 + = cos(imf/REI}) ,-
i=1
where
g'(i) = 0.5 - g(i) . (3.3-27)

A derivation of HCD(f) is given in App. 3.

Since our simulation uses an input tone of -frequency fo
and a cutoff frequency of 4fo fo‘determine SNR for the audio
mode ADM, we  shall ploé Hopy (£) on a frequency scale normal-
ized to fo. Figure 3.3-7 displays the amplitﬁdekand'phase
characteristics for the case where R =-8 and "Q = 10, repre-
senting 9 valués of g(t), between g(l) = 0.064 and g(9) =
0.936, symmetric about g(5) = 0.5. In this example, ¢, only
extends from Q, to Q, (see Fig. 3.3—5) since larger vélues

"of ¢,, and consequently more g (i) coefficients, afford negli-
gible SNR improvement. |

In Fig. 3.3-8, we plot the amplitude characteristics of
HCD(f) for the other two cases considered in our simula-
tions, i.e., R=6, Q=8 and R= 4, Q = 6. In both cases,
g(0) = 0 and the g(i}s fall between.Q and Q, on Fig. 3.3-5.

" Note the siﬁilafity with the amplitude characteristics when

R =8 and Q = 10. The phase characteristics for these last
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two cases are similar to the plot shown in Fig. 3.3-7. The
phase is extremely linear with the slope changing from ”28fo
degrees/second when R = 8, Q = 10 to ;30f0 degrees/second
and -34f, degrees/second when R = 6, Q = 8 énd R=4, Qg =6,
respectively.

From the frequency characteristics of the converter
filter, we see a disadvantage to the ADM to PCM converter
described above. There is a definite shaping of the in-band
spectrum due to the attenuation below fc. This will cause
distortion of the signal. In determining the performance
curves, this attenuation was corrected for so as net to
yield misleading results. If this was not done, the SNR of
".the converter with non-recursive filter would sometimes be
greater than the SNR of the optimum converter {described in
a later section), which employs analog demodulation. After
the performance curves are presented, we shall discuss reme-
dies.for, and alternatives to, the in-band spectrum shaping.

Equally important as realizing that spectral shaping
does occur is the explanation of why it exists at all in
" this system. Our initial design employs the unit step re-
sponse of an ideal LPF simply because it has the most desir-
able frequency characteristics. However, the brick wall
frequency chafacte;istics only hold if we realize the analog
ILPF. The ADM to PCM converter utilizes a digital LPF which
uses a finite number of discrete points on the unit step re-
sponse. HCD(f) will not approach a brick wall characteris-

tic if we use more points on the tails-of the g(t) curve.
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This can be accomplished by choosing the points closer toge-
ther. However, to maintain the same cutoff frequency, we
would have to increase the ADM bit rate. But, in ADM to PCM
convgrsign-of this type, we are constrained to a previously
set ADM rate. Thus, we are not at liberty to use this tech-
nique to eliminate spectral shaping.

3.3.3 Converter Simulation and Sinusoidal Response

Using our PDP 8/L computer with 8K memory we simulated
the Song audio mode ADM to encode test signals. ‘Then-we
simulated the ADM to PCM converter with non-recursive filter
exactly as depicted in Fig. 3.3-2. The original system used
R=8, Q= iO and thus had 9 filter coefficients. These
coefficients were approximated by the nearest integral mul-
tiple of 1/16 to simulate a hard-wired scaler. The initial
test employed a sinusoidal signal encoded by the ADM operat-
ing ét a rate which was an integral multiple of the input
sinusoid frequency. The ADM bit stream, {ex(k)}, was thén
used as the input to the converter.

Whenever the ADM bit rate is an integral multiple of
the input sinusoid frequency; we know that the éstimate,
%(k), will assume a periodic sinusoidal steady state pat-
tern. Since the improved estimate, ¥%(k), and the resulting
PCM samples are derived from %(k) by linear filtering opera-
tions, these signals also take on a per;odic pattern. The
periodici£y of %{k) and %(k) was verified by the system

simulation.
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To show the qualitative improvement of the ADM éstimate
afforded by the non-recursive digital filter, we have dis-
played, in Fig. 3.3-9, the improved ADM estimate, X(k). ‘We
have also plotted the delayed analog input and the origina1.
ADM estimate, §(k). These.curves represent a converter whege
R =8 and -Q = 10, .exactly as described in Sec. 3.3.2. This
emphatically shows the "poor" PCM samples that can be ob-

tained from X(k) and the consistently good quality of virtu-

ally all the samples of % (k).

3.3.4 Evaluation of Performance

The families of performance curves are obtained with
the same approach as discussed in Sec. ' 2:8. With a single
tone input, wé obtain a periodic ééftérn for ®(k), %(k) and
the resulting PCM samples. Thus, all of these waveforms can
be expressed as a Fourier series. The frequency components
of these series can be calculated and used to determine out-
put SNR. Let the freéuency of the sinusoid be f£,. We have
shown in Ch. 2, adhering to the assumptions made there, that
" the ADM estimate, and any signal derived from it, can be ex-

pressed in the form

x(t) = Co + T Cncos(Zﬁnfot + ¢n) ' (3.3-28)
n=1 ;

where C_, C_ and $, are defined as the standard Fourier am-

n
plitude and phase coefficients, i.e;, Eqgs. (2.8-3b) through
(2.8-3f) . "We have shown, in Sec. 2.8, that the calculation

of these coefficients is.readily adaptable to computer
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simulation.

In determining the frequency spectrum.of the PCM signal,
we utilize the Fourier series technique in two different
ways, depending-on the conversion system under analysis.
Thg'time domain approach simulates the entire converter and
determines. the Fourier components, C_, from the periodic
pattern of the PCM samples; The time and freguency domain
approach computes the amplitude.and phase components of the
ADM estimate (Cn and ¢n} and then simulates digital low pass
filtering, resampling and holding with the appropriate
transfer functions in the frequency domain. Digital_low
pass filtering uses HéD(f) from Bg. (3.3-26); fesampliﬁg em—
ploys the freguency shifting given in Eq. (3.2-3); and the

holding circuit, for the Nyquist periocd, is described by [22]

GH(f‘) = Siﬁé?ﬁf“’ . . (3.3-29)
The former of these two techniques cannot be used if we

wish to correct for the spectral shaping caused by‘HCD(f).

‘Consequenﬁly, we must employ the latter method. Applying

this approach to the cascade arrangement of the ADM to PCM

converter with the non-recursive filter (Fig. 3.3-6), the

held PCM sPectrum-is given as

. o

XﬁH(f) = GH(f)ii-mX(f + ifN)HéD(f + ile »  ~{3.3-30)

where

R(£f) = the frequency spectrum of the ADM estimate
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and Hén(f) represents the cascade digital LPF after spectral
shaping has been eliminated. The correctign is accomplished
during simulation by setting the amplitude of Hap(f) to be 1
at £ = £, 2f, and BfO, and by specifying it as 0.707 at .
f=1£f,=4f .

o+ The phase of HCD(f) was left unchanged. If

this correction was not made,‘HCD(f)'ﬁdﬁld‘attenuate the
-second ;hrough fourth harmonicé. We would then have le;s
harmonic noise and, therefore, a higher SNR. 2All operations
" in Eq. (3.3-30) are performed on complex gquantities. Thus,
the multiplications and additions are actually vector
products and vector sums.

Since we are concerned with an. audio mode ADM, we again |
choose an ocutput LPF, to return:to the analog doméin, which
is applicable to voice signals, i.e., a fourth-order Bﬁ£ter~
worth LPF whose frequency characteristics are given in Eq.
(2.8-7}. Exactly as-in Sec. 2.8.2, we choose the LPF cutoff
frequency, fc’ to be 4fo where fo is our input tone. The
LPF attenuation factor, oy, is the same as Eg.- {2.8-9) and
the output signal-to-noise ratio, SNR,, is given by Egq.

' (2.8-12), where C, now represent the strength of the Fourier
components of the output PCM signal obtained from Eqg.
(3.3-30).

To avoid several infinite sums and products in the
actual calculation of the held PCM ‘spectrum, ﬁNH(f), we
truncated the spectrum of %x(k), i.e., ﬁ(f)HéD(f), after the
ninth harﬁonic. The attenuation‘afforded by the digital LPF

causes the frequency components of X (k) to be insignificant



104

from the tenth harmonic on. It was then possible to reduce
the infinite sum in Eq. (3.3-30) to a sum ?rom.—zlto +2.
Because of the truncation- of the spectrum of X(k), further
sliding along the frequency axis added hothing significant
éo iNH(f), espeéially after the attenuating. effect of the
holding circuit, Gﬁ(f).' Finally,-iﬁ determining SNR we
truncated the noise power afte# the ninth harmonic sinéé-
(aloclo)z-was negligible in compafison to the noise due to
"the second through ninth harmonics. As in Ch. 2, we found:
. that, for the same input signal amplitude, the periodic pat-
tern that the ADM éé£imate assuﬁes and, cbnsequently, the
SNR are very:dependent upon the starting point of the input
sinusoid. To obtain a truly representative value of SNR_ ,
we averaged over 32 different starting éqints."éli SNR
curves are given at the end of this chapter to facilitate
comparison between the various ééhversioﬁ'ﬁechﬁiques dis-

cussed.

3.4 Other Digital Conversion Technigques

In addition to the ADM estimate converter and the con-
verter with non-recursive filter discussed above, %gére are
several other digital technigues that can be applied-to
achieve ADM to PCM conversion. The most straightférward ap-
proach ;s to use a cascade digital LPF before we resample.

We could accumulate the step sizes and then LPF the.estima;e,
or, low pé;é filtér Sy (k) and then accumulate the filtered

step sizes. Both systems are equivalent because the LPF and
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the accumulator are linear devices and, therefore, inEer—
changeable. |

Although L.D.J. Eggermont [23] proposed an ADM to PCM
" converter following Goodman's design technique [24], he
actually used a non-recursive digital filter in cascade, be-
fore the accumulator. He reported that "at a sampling fre-—
quency of 64K Hz the system'pe?fqimed very well for speéch
encodingi [25]. However, no performance curves were given
for his ADM to PCM converter. We have .considered using this
same cascade technique, except with a recursive digital LPF.
before the accumulator. A recursive digital LPF can achieve
a very sharp frequency .cutoff with a minimum amount. of hard-
ware, We have designed second- th&ough Ffourth-order recur-
sive LPFs using both the impulse invariant method and fhe
squared-magnitude method [Zé]. However, with a recursive
digitél filter, the accuracy of the filter coefficients is .
critical in maintaining stabiliéy and in obtaining the de-
sired frequency characteristics. Since we must increase the
hardware complexity to guarantee accurate. coefficients and
" because the converter derived in Sec. 3.3 performs so well,
these ADM to PCM converters, with recursive filter, were
never simulated. As long as the filter has a sharp fre-
quency cutoff, this typezof converter will perform well;
but, we must deal with the coefficient problem. mentioned
aboye.

Seve?al other authors have very recently approacﬁed the

problem of DM to PCM conversion. T. Ohno, H. Kuwahara,
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M. Miyata and K. Imai [27] use a linear DM to- achieve analog
to PCM conversion. Since thef must operate the linear DM at
a very high bit rate (8.X92M Hz), -their system converts to S
" PCM by using two cascaded bit reductiog devices. They do
not consider adaptive DM processors at all. On the other
hand, J. H. Miller [28] deals with ADM to PCM conversion
usinngnly digital hardware. ﬁowever, he has the added'prob—
lem that the ADM encoder which he must use is éompletely
analog. 'Thus, he must éerive the digital équivalents to all
the analog circuits, L. B. Jackson, J. F. Kaiser and ‘
H. 8. McDonald [29]1 also considered the use of a linear DM
in- convertiz;;g from analog to PCM encoded signals .. Their
scheme employs a digital differential_technique before a
first-order digital LPF converts to PCM format. None of
these, however, add any additional concepts to the actual
-problem of converting from ADM encoded signals to PCM type
signals. The important thread that is common to all conver-
sion technigques is the absolute need for some type of low

pass filtering before resampling to avoid the disastrous

" aliasing effect discussed in Sec. 3.2.

3.5 Analog Demodulation Technique

The last ADM to PCM‘system that we consider decodes
exgk)'to produce the ADM estimate and then uses an analog
LPF to demodulate % (k) before resampling at the Nygquist rate.
This analdg demodulation converter is shown in Fig. 3.5-1.

We purposely omit the quantizer and PCM encoder after the
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sample-and—hoid (S/H) circuit because our performance evalu-
ation is based on harmonic noise and the quantization noise
is considered negligible.

. Although this is not a completely digital system and
we do not want to construct this device, it is the optimum-
converter if an ideal LPF is used to demodulaée x(k). It
will yield the best performance, i.e., highest SNR,, because
the ILPF éliminates all the out-of-band frequéncy components
from the ADM estimate before PCM sampling. Thus, there is
no aliasing to-degrade the PCM signal. ‘Analyzing this syé—-
tem gives a good basis of comparison for the performance
cugves presented later.

The ideal analog demodulation converter has been simu-
lated and its performance determined by using the time and
frequency domain approach. The ADM encoder is simulated in
tﬁe time domain and we calculate the Fourier spectrum of
%(k) for a single tone input using the technique described
in Sec. 2.8. The ILPF is simulated in the frequenéy domain
by eliminating all frequency components of % (k) above £, and
letting all harmonics Eelow f, pass unattenuated. The S/H
circuit is simulated via the freguency shifting givep in
Eq. (3.2-3) and the holding transfer function, GH(fz, given
by Bq. (3.3-29). '

Let us define the transfer function of the ILPF to be

GI(f) =1, £ <'fc ’
= 0-707' f = fc ’ (3-5-1)
=0, £ > g .
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The output of the ideal analog.demodulation converter ‘is de-
noted as ﬁf(Rk) and its frequency spectrum can be expressed

in the following manner:

Koy (£) = Gg(£) T X(£ + LEGL (£ + 1f) .~ (3.5-2)

==—C0 .

" We must:define GI{f) at fc because, as before, the cutoff
frequency:is set to four times the test tone and X(k) will
have a harmonic at £,. 1In calculating SNR,, we again use
the fourth-order Butterworth filter, the expressien for SNR,
given in Eg. {2.8-12) and, as before, truncate the noise
power after the ninth harmonic. Similarly, SNR, acts as a
".random variable dependent upon the starting point of the
input sinusoid and we average over 32 different starting
points to obtain a mean SNR,.

Before we actually calculate SNRb’for the ideal analog
demodulation converter, we can estimate that its value will
be very close to the SNR of the ADM estimate, %(k). Since
we have assumed impulse sampling at £y and negligible guan-
‘ tization effect{ we can conclude that both ﬁf(Rk) and % (k)
have exactly the same inwband-frequency spectrum. They both
have out-of-band harmonics which are attenuated by the out-
put LPF and, therefore, have a secoﬁdary effect on thHe SNR.
Thus, the SNR of x(k) will be a very close approximation to

the SNR of Qf(Rk).
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3.6 Comparison of Conversion Systems

The three converters discussed at length in this chap-_
ter We#e completely simulated and tested: the ADM estimate
converter, shown in Fig. 3.1-1, the ADM to PCM converter with
non-recursive filter, given in Fig. 3.3-2,‘and the ideal ana-
loé demodhlétion converter, deQicted in Fig. 3.5-1. -‘In this
section we present the technique.used to evaluate the SNR
for each éystem and its corresponding family of performance
‘curves. These curves display the variation of SNR, with
relative input signal power for several ADM bit rates.' Thus,
we. are able to present an evaluation of the. performance of

all ADM to PCM conversion systems.

3.6.1 SNR Evaluétien

To determine the Fourier components of the held PCM
samples, the time domain approach was used for the ADM esti-
mate converter. The time and frequency domain approach was
used for the ADM to PCM converter with non-recursive filter
and for the ideal analog Qemodulation converter. In all
cases, we used a fourth-order Butterwo;th LPF before calcu-
lating SNR,. In determining SNR,, we truncated the noise
power after the ninth harmonic.

When evaluating the performance of the first converter,
we .-found that for the same input and ADM bit rate, the posi-
tion of the gating pulse in the Nyquist interval would éive
rise to different values of SNR, . 1In Fig. 3.1-1, we show

how the gating pulse, of duration Ty seconds, produces % (Rk)
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by -permitting one value of % (k) through the AND gate every

Ty seconds. The gating time can be expressed as

- ty = KTy + 3Tg - (3.6-1)

where

j=0,1, 2, ***, R-1.

Initially, it seemed surprising that evén though the sinu-
soidal stéady state pattern of x(k) did not cl'iange, we could
still obtain different values of SNR, by varying the gating
time, i.e., j in Eq. (3.6-1). This variation of SNR, can
best be explained by viewing the gating times (kTy) as fixed
values and allowing the signal %(k) to be shifted by 3Tq s
instead of shifting the gating times for a fixed z(k).

Now we see that we have a fixed time reference and the
‘phase, or time delay, of the sinﬁsoidal steady state pattern
of X(k) varies with jT,. Therefore, although the shape of
x(k) and, consequently, its amplitude spectrum remain the
same for all values of i, the phase spectrum does not. By
viewing the gating as resampling which causes aliasing, we
now realize that the overlapping spectra, when added vec-
torially, yield different results depeﬂding*upon the phase
spectrum of %(k). Therefore, SNR_ will be different for dif-
ferent values 6f iTg-

For all converters, we found that SNR,. acted as a ran-
dom variable dependent upon the starting point of the input
sinusoid, For the first converter, both the gating time and

the starting point were varied to yield 32 values of SNR,.
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When evaluating the last two converters-only the starting
point was changed 32 times because the time and frequency
domain approach wés used and it does not use a gating cir-
cuit. For all cases, the mean SNR, was calculated along

with the standard,deviation,of SNRq, .

3.6.2 Three Families of SNR Curves

In Fig. 3.6-1 we show, for the three ADM to PCM con-
"verters,-the output signal-to-noise ratio,; SNR,, in dB ver-
sus relative input signal power over a range of 54 dB for
ratios of £ /f)y = R =8, 6 and 4. As noted in Ch. 2, the
input signal amplitude was varied from 58, corresponding to’
-6 dB, to 1280S at 42 dB to generate the curves. Of course,
S is the minimum ADM step size found in the Song audio mode
algorithm. For these performance curves, the test tone
frequency was f_; the LPF cutoff frequency is set at fo =
4f ; and the PCM rate.employgd is £g = 2£, = 8f,. The plots
shown are smooth curves drawn through windows of #1 standard
deviation about the mean SNR, for various input amplitudes.
For these curves, the standard deviation was approximately
1-2 dB. The ADM to PCM convertér with non-recursive filter
produces an 8-10 dB improvement over- the ADM estimate con-
verter and, for moderately high ADM bit rates, it comes
within 1-2 dB of the ideal analog demodulation converter,
which is the -optimal system. '

We seé from the performanée curves that the ADM to PCM

converter with non-recursive filter yields a good represen-—
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tation of the original signal in PCM format: ' By examining
its hardware structure in Fig. 3.3-2, we observe that it is
easily realizable with readily available digital circuits.
In our simﬁlatioﬁ, we have used only 9, 7 and 5 filter coef--
ficients for R = 8, 6 and 4, respectively. It has already
been noted that more coefficients resulted in negligible
increase in SNR,. -The other aﬁvantage of this structur; is
that the;accuracy of the filter coefficients is not extremely
"eritical. The coefficients used in the simulations were ap;
proximated by the nearest integral multiple of 1/16. This
rgpresents, at most, an additibnal 4 bits needed in the in-
ternal arithmetic. TFor this case, we suffered about 0.1 dB
decrease in SﬁRo. .

Leﬁ us re£urn to the problem of.spectral.shap;ng éaused
by the frequency characteristics 6f the converter filter.
" It has already been noted that we are not at liberty to rec-
tify this by choosing more filter coefficients closer toge-
ther on the g(t) curve. -The spectral shaping can, however,
be remedied by using an output digital filter that has in-
‘ band characteristics which are the inverse of HCD(f).
Alternatively, it could be corrected by using a better method
of choosing the filter coefficiehts, such as starting with
the .frequency domain filter characteristics and then calcu-
lating the time domain coefficients.

A final idea would be to redesign the system,'similar
to Fig. 3.3-6, and construct a purely cascaded digital fil-

ter. However, by using the rather gross time domain design
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method presented in Sec. 3.3, we have come to within 1-2 dB.
of the optimum converter performance. Thus, one can gues-
tion the need to resort to very sophisticated filter design
techniques. We have, in any event, shown conclusively that
we need some sort of LPF before PCM sampling and why we can-
not do without it. Thus, regardless of the structure and
how it is designed and implemented, an ADM to PCM converter
must employ a LPF before resampling if we are to achieve

acceptable. performance.
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CHAPTER 4

CONVERSION FROM PCM ENCODED SIGNALS
TO ADM ENCODED SIGNALS

In this. chapter, we consider the dual of .the problem
addressed in Ch. 3, ‘that is, conversion from PCM to ADM for-
mat. We can describe a PCM to ADM converter as a device
which operates on values of_the information source, occur-
ring at ﬁhe Nyquist (or PCM)} rate, and produces an ADM bit
stream. Since there-ris a unique mapping between the ADM
bit stream and the.ADM estimate (when the ADM initial con-
ditions are specified), and since the ADM operates at a rate
several times Higher than the Nyquist 'rate, we are convert- -
iné from a low "information" rate (tﬁe PCM samples) to a
high "information" rate (the ADM estimates).

Several techniques are developed to perform &his type
of conversion. One uses the probabalistié statistics of the
information source. Another employs the spectral parameters
_of the input signal. 8till another is completely non-para~
metric. All techniques deal with the lack of information
about the signal excursion between PCM samples. The resolu-
tion of this problem dictates the s£ructure of each PCM to
ADM converter.

All the PCM to ADM converters that we design are restric-
ted to circuits that are physically realizable. with standard

digital hardware and which entail a minimum amount of hard-
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ware complexity. The sole constraint applied to all éonverw
sion systems is that the ADM bit rate is an integral multi-
ple of the Nyquist rate. The PCM to ADM converters pre-
sented in this chapter wil either be statistically analyzed
or simulated on a digital computer or both., In all cases,
we shall generate SNR curves so that the perfdrmance of the
converters can be objectively evaluated.

4.1 DM Signal Estimate Tree

"To illustrate the conceptual difficulties associated
with PCM to ADM conversion, we introduce a "DM signal esti-
mate tree" and construct part of this tree for a particular

‘variable step size DM. A "DM signal estimate tree"” is a

graph of all” pzs ible “paths—that™ EHé‘DM"stlmate, x(k),"ﬁay
follow starting with a set of initial conditions. The paths
are éenerated from all possible binary seguences of the DM
bits, e, (k). Every variable step size DM will give rise to
its own particular "estimate tree" but each tree exhibits
-the same problems for PCM to ADM conversion. Thts, the con-

ceptual difficulties are universal to all DMs.

4,1.1 Paths +hrough the Signal Estimate Tree

_Since we are primarily concerned with speech 51gnals,
without loss of generality, we shall invoke the Song audio
mode algorithm whenever we refer- to an ADM. In Fig. 4.1-1,
we show part of a DM eétimate tree" for this particular step

size algorithm; i;e., Eq. (2.1-6), on which we have super-
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imposed twé PCM samples, at points A and B. Now we observe
where the difficulty lies in convérﬁing.from PCM to ADM ‘for-
mat. In going from the starting point to poini:s on the "DM
estimate tree" which are adjacent tp_point B, that is, points
B, and B, , we can traverse ény of four possible patﬁs: Yy,
r,, ¥, or r,. Which path‘to choose is the préblem in PCM to

ADM conversion. We shall-term this the "multipa%h“ problem.

4.1.2 Path Endpoints

The complexity of the "multipath" problem can be some-= -
what reduced by coping with another conceptual difficulty,
the "endpoint" problem. Because the "DM estimate treée™ di-
‘verges so rapidly for a variable step size algorithm, the
écﬁ”;émples may not 'always lie'on a branth in the tree.
Although a PCM sample, like point B, in Fig. 4.1-1, can take
on anj one of the inéegral values of S, the estimate, at
that time, is restricted to endpoints of the ADM pathé orig-
inating from the starting point. By first choosing endpoints
for the PCM samples, we automaticélly eliminate some pos-

" sible paths throﬁgh the "DM estimate tree" and, thereby, re-

duce the complexity of the "multipath" problem and the re-

sulting PCM to ADM conversion.

4.2 Statistical PCM-ADM Converter

There are several approaches to the PCM to ADM conver-
sion problem, but they all require the addition or derivation

of more information about the signal source or about the
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excursion of the actual signal. For the techniques con-
sidered later, we shall estimate the signal exéursion at
discrete points bétween PCM samples and essentially ﬁit
these values to a path through the ADM signal estimate tree.
For the statistical PCM to ADM conversion technique, we must
introduce a set of probabalistic statistics f£or the input
signal.

Let us assume that we have a stationary information
source, x(t), which is bandlimited to £ and that the ADM

bit rate, fs' is an integral multiplé of the PCM rate, fN;

that is,
fS = RfN ’ (4.2-1)
where _
R = -a positive integer greater than 1,
and )
fN = me .. (4.2-2)

We also specify an R-dimension joint probability density
function, representing R sampled values of x(t) in the in-

terval TN’ where

To= 1/ . : (4.2-3)

This can be expressed as
P (2) = p ey, ayr ***, ap) (4.2-4)

where

X represents the R-dimensional vector of x(t).



121

We can assume that the conversion is a continuing pro-
cess and we are choosing a path between each adjacent pair
of PCM samples. Thus, the initial conditions for each tree
are known from the previous_patﬁ chosen. The estimate path
is mapped into one of the 2thossible R-bit sequences repre-
Sent;ng e, (k) in each Nyquist interval. When.evaluating.the
"estimate tree" in each PCM period, we need not consider all
2R sequences in our .quest for the most likely path. As seen
in Fig, 4.1-1, wé can limit ourselves to those paths actu-
ally going between possible endpoints. ‘

The method that we shall describe for determining thé
most likely path is extremely'genéral and can be applied to

'Yirtually any ADM system. This technique is based'bn the
ﬁost elementary principle of DM operation. If the signal
value‘is greater than the estimate, i.e., x(k) > 2(k), then
the estimate must increase and ex(k) = +}, Likewisgse, if the
signal value is less than the estimate, i.e., x(k) < ﬁ(k),
then the estimate must decrease and e (k) = -1. Usiﬁg this
principle, along with the joint statistics of x, we can cal-
culate the probagility of each possible path. The obvious
criterion to use is: the most likely path has the highest
probability. That path is chosen and mapped into its ADM
bit sequence. By using the given PCM values at the end-
points, we can eliminate some of the possible paths at the

/1
outset and thus reduce the necessary computation.
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4,2.1 Choosing Tree Path Endpoints

For each Nvquist interval, we have a starting point de-
fined .as the end of the estimate path traversing the previ-
ous interva;.: Emanating from- the stg;ting point will be
several possible estimate paths which terminate at or are
édjacent to the next‘PéM sample. If no path does through
the hext ?CM sample, then we have "two possible endpoints,
as -shown.on the tree in Fig. 4.1—1}. Since we wish to use
the PCM samples as advantaéeously as possible, -point B shall
be used to determine the path endpoint.

The criéerion that we ;hall employ to choose the end-
point is extremely simple: ‘seiect the point that will yield
-the least error between it and the PCM sample. Let us de-

fine the error for points B, and‘Bz,_reépectively, to be

€g, B, - Bj (4.2~5)

I

s, - B] . (4.2-6)

€g,
We apply the follcowing rule to choose the endpoint:

if choose B, ,

EB'I 8B2 ’ 1

if sBz < eBl , choose B, , ' (4.2-7)

if ?51 = SBZ ; choose B, and B, .

This is equivalent to choosing the endpoint closest’ to the

PCM sample. By choosing either B, or B,, we automatically

eliminate all paths going to B, or B,.
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4,2,2 Choosing the Most Likely Path

To best explain the technique.for determining the most
likely path, we apply this proceduré to the examﬁle given in
Fig. 4.1-1, ' By using the initial conditions of the "esti-
mate tree" and the PCM sample at the beginning of the path,
we determine the first ex(k) and trv to eliminate some pos-
sible paths. From Fig. 4.1-1, we see that €p, = €g, " So we

choose both endpoint, B, or B,, and must consider paths r,,

1

r, and r Observe that the PCM sample A = x(1) > % (1)

rz' 3 y*

so that ex(l) = +1 ana path r, is eliminated. Now we must
only calculate the probability of paths r., rz‘and r,

The prcbability density function used to determine the
most likely path also takes advantage of the specified PCM

“"Value at the beglnnlng of the path. .This ‘conditional préb-—

ability density function is expressed as

PEIXI(Uzr&aqulul = B) = Py (R0, ,0,,0,) /Py (B) , (4.278)

where the marginal density function is given as
pxl(al) = {{fp (o, ,2,,0, ,0, }da,da do, .. (4.2-9)
-—C0 —

Now we can calculate the probability of path r , r, and r_.
Let us call these path probabhilities Prz' Pr2 and Pra' re-
spectively. By tracing each path through the tree, with the
aid of the step size algorithm for the Song audio mode ADM,

we find that the probability of path r, can be expressed as
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P = P{x(2)>S, x(3)>38, x(4)<68)

(4.2-10)
w §S
£ {mp£|x1(az,as,a4|a1=A)da2da3dau .

]

Il
N~ 8

Similarly, the probability of path r, is seen to be

P]’.'
2

l

P(x(2)>S, x(3)<38, x(4)>28)

(4.2-11)

S

|

«© -
= é ) Pilxl(az,aa,a4|a1=A)da2da3dah .

f
as

Finally, we formulate the probability of path r, as

P_ = P(x(2)<8, x(3)>S, x(4)>0)
3

[oy | (020050 oy=B) dodeda,
-1

[}
{ —n

n— 8§

Now we apply the criterion that the most likely path
has the highest path probability and state the path decision

rule thusly:

if Pr; > Pr2 and Pr3 r choose r, .,

r

if P , > Pr1 and Prs , choose r, (4.2-13)

if Pr3 > Prl and Prz r choose r, .

The chosen path is mapped into its ex(k) sequence and one
cycle of the PCM to ADM conversion is completed. The pro-
cess is subsequently repeated with the introduction of each

new PCM sample.
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This concept can be expahded to more than one Nygquist
period, making the possible paths throﬁgh the tree longer
and taking advantage of the interdependence between the
paths and several PCM samples. Alternately, we can modify
the original procedure by not choosing an endpoint by apply-
ing Eq. (4.2-7). Instead, we might weight tﬁe path proba-
bilities with a monotonically decreasing function of the
endpoint erfor, ¢, such as 1/e. Our most likely path deci-
sion will then be based on the largest weighted path proba-
bility.

'There afe, of course, many other variations on this
theme, However, we stop here without an evaluation of the
converter perfofmagqe because we are searching for a robust
system, not dependéﬁt on the probability stétistics of the
speaker., Using this system would require a "learning"
period, during which time the machine determines the proba-
bility statistics of the speaker. This would have to be
done for each speaker! Under these circumstances, this con-

verter becomes impractical.

4,3 Parametric PCM-ADM Converter

A non-statistical method of solving the "multipath"
problem is to first employ an estimation technique that in~
troduces iﬁformation about the signal between PCM samples.
We can use this additional information and the PCM éamples
to generate a path through the estimate tree and produce the

ADM bit stream. The parameter of the input signal that shall
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be used to evaluate the conve;ter performance and estimate
_the éignal between PCM samples is the power spectral density
of x(t), Gx(f). The estimation par£ of the converter can
be designed- entirely independent of-the ADM employved. How-
ever, tb'geneiate'the bit stream, e, (k), we must specify a

step size algorithm for the ADM.

4.3.1 A Simple, All-Digital Technique

The most straightforward approach to achieve PCM to ADM
conversion is to use an estimation technique which yields a
linear approximation- between PCM samples, take samples of
this linear approximation signal at the ADM bit rate,-and
use these samples éé tﬁé input to our Song audio mode ADM.
We -then automatically generate an ADM encaded signal, ey (k),
and, at the same.time, choose a path through the "DM signal
estimate tree." —

A completely digital circuit that can be easily imple-

mented to perform this conversion is shown-in Fig. 4.3-1.

First, we form a differential PCM (DPCM) signal,
A(RK) = x(Rk) - x(R(k - 1)) , (4.3-1)

whicﬁ is then digitally scaled by a factor 1/R, sampled and
accumulated at the ADM rate, fs. The output of the accumu-
lator, v(k), is an equiamplitude staircase following the
linear piecewise wéveform form?d by connecting the fCM
samples. By ADM encoding v(k), we complete the conversion.

The scaling by 1/R can be introduced anywhere in the conver-



o - DPCM | '
PZ& Format | J/ | ; ! , ADM ':0\""““"
X(Rk) o——o—= o 4+ ) > ) - b : 'é'x(k)

| where R=1/fy
= U/T, = Nyquist Rate

D —e T, seconds deldy

"Fig. 43-1. A.Basic PCM to ADM Converter

LTT
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ter and can even be entirely eliminated without affecting
the system performance. It is merely a constant multipli-
.cative factor. We have included it-in Fig., 4.3-1 merely for
completeness so that wv(k) can be accuraéely described. The
sampling switch can be viewed as an AND gate being clocked
at the ADM bit rate or, even more simply, as the accumula-
tor clocking in the wvalue A(Rk) R Fimes every Nyquist period.
If the ADM were operated at a sufficiently high rate,
the filtered DM estimate, denoted as w{t}, would very closely
approximate a linear piecewise function formed by connecting
the PCM samﬁles with straight lines. By viewing the estima-
tion circuit as a digital filter which transforms the PCM
samples into the stalrcase waveform, we can use the appro-
priate inverse fllter after w(t) to obtain the PCM samples
once again. Using this approach, the SNR of the conversion
"system approaches infinity.
' Thisg point of wview is not very pradtical for a number
of reasons. As mentioned'before, the ADM bit rate is previ-
ously set by the value of R and normally we will encounter
‘moderate values of £ . The transformation from the PCM
samples .to w(t) must include the ADM, which performs a non-
linear operation. Thus, the true inverse transform is not
readlly realizable. As a more realistic aééfoach, we shall
use the piecewise linear waveform, w(t), without any.inverse
filtering, to obtain an upper bound on the SNR of the con-.
version system. This will be the basis of our analysis of

the system performance and the calculation of in-band SNR.
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4.3.2 Optimization of Converter Performance

The figure of merit of our converter will be the output,
in-band signal-to-noise ratio, SNRO; However, if we use the
difference between x{t) -and wi(t) as .the source of the outpﬁt
noise, this will yield somewhat misleading results. Without
loss of generality, we can amplify and delay w(t) to improve
SNR, because constant attenuation and time delay cause no
. distortion in audio signals.

If we allow w(t) to be scaled. by a factor, K, and de-
layed by a time, v, then the error signal that‘we are con-

cerned with becomes
d{t) = x(t) - Rw(t - v) . (4.3-2)

We now determine the autocorrelation function of the error

signal as -

Ry(t) = Bla(e)d(t + )1 , T (4.3-3)
where

E{a) = the expectation of «a.

' By using the expression for d(t) given in Eg. (4.3-2), the

autocorrelation function of the error can be expanded to

Rg(T) = Ry(t) + K*Ry (1)

(4.3-4)
- K[RXW(T -v) + RXW(T + )1,

where
Rg(T) = the autocorrelation function of x(t),

Rw(f) = the autocorrelation function of w(t) -
1
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and

R (1) = the cross-correlation function of x(t)
W
and w(t).

In deriving Eg. (4.3-4), we have made use of the fact, as
will be shown later, that w(t) is . a linear function of the

PCM samples of x(t). A consequence of this is

Elw{t - v)x{(t + 1)1

14

Ryg(T + ¥) = Ry, (T + ¥) , (4.3-5)

or alternately, Rxw(a) is real and an even function of a.
To. obtain the power spectral density of the error -sig- -
nal, we must take the Fourier transform of Eg. {4.3-4). The

error signal power spectral density 1is thus seen to be

Gq(f) = G, (£) + K2G,(£) - 2Kcos (2mEY)Gy (f) , (4.3-6)
whefe

Gx{f) = the Fourier transform of RX(TO,

G, (f) = the Fourier transform of R_(t)
and

wa(f) = the Fourier transform of RXW(T).

" Due to the propefty of w(t) mentioned abéve, Gy (£) is also
real and an even function of f£f. Finally, integrating over
the bandwidth. of x{(t), we f£ind the in—band‘noise-power, that
is
fm
Pq = {de(f)df . - 2 . (4.3-7)

Employing Eg. (4.3-6), the noise power is expressed as
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£

m ’ .

= 2 - ) -

P, =P _+ KB 2K£fco§(2ﬂfy)§ (£)af , (4.3-8)
m .

where P, and P are defined in a manner similar to Pg in Eq.
(4.3-7). The signal power, P, is defined as the in-band

power contained in Kw({t -~ v}, i.e.,
P_. = R*P_ . (4.3-9)

Using Bgs. (4.3-8) and- (4.3-9), we can formulate the

optimized figure of merit as
SNRoy = Q = P./P3 (4.3-10)

which is found to-be

A 2 S e oe .--: T - -t
Q = 2w ; (4.3-11)
P, + K?P, - 2Ku(y)
where

fm
u(y) = [ cos(27fY)C,, (£)4f . - (4.3-12)

-f

m

Now we seek to maximize Q by applying

320(K,Y) _ g (4.3-13)
ayoK :

By setting 9Q/3y equal to zero, we find.that y is a constant,
denoted as vy,, independent of K, which satisfies the rela-
tionship

i

_g £5in (27Ey ) Gy (F)AE = 0 © (4.3-14)
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The result of equating BQ(K,YO)/BK‘to zero gives us the opti-
mum X as

K, = P /ulyy) .- (4.3-15)

e

Finally, we have the maximum optimized SNR, Q_ = QK rY,) s

expressable as

P. P
2.5l ;- (4.3-16)

Q:
(o) _ 2
A PP, = 1 {y,)

where

fr

u(yy) = f cos(2wfy )G, (£)af . (4.3-17)
_..fm

We observe that the relationship givén in Eq. (4.3-14)
is,satisfied when v, = 0. " This corresponds to the expres-—
sion for Qq shown above. Since Qo is to be a maximum wvalue,
the denominator should be minimized. This is achieved by
picking the maximum of uz(yo), which occurs at vy, = 0. To
further support this last claim, we introduce a result which
-is derivéd later in this chapter. When w(t) is given as a
'iinear function éf the PCM saﬁples of x(t), the cross-power
spectral density, wa(f), is proportional -to the input power

spectral density. Since G, (£) is bandlimited to f£ar SO is

Gy €

f}).
Because G, (f) is real and even, we can use a slightly

modified definition for the cross-correlation function £30],

R, (1) = [ cos(2nfr)G  (£)dAE , (4.3-18)

-0
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together with the fact that wa(f) is bandlimited to fm’ to

show that
B{Yg) = R (v.) . (4.3-19)
A simple property of this correlation function [31] is

IR, (D) | < R (0) . (4.3-20)

" Consequently, Yo = 0 yields the maximum value -of u(y,) and

the maximum value of‘QO. We can now fewrite Egq. (4.3-16) as

PP
0, = X W , (4.3-21)
PP - me )
where ’
fm .

Let us view the choice of vy, from a practical‘viewpoint.
Since we have defined w(t) as a linear piecewise signal
formed by connecting tﬁé.féM‘samples of x(t), we really have
not shifted w(t) with respect to x(t). If we recall, ¥, is
* the delay introdﬁced in w(t) to optimize the SNR. Bﬁt sinée
w(t) has not been shifted at all, we naturally expect Y, to
be zero. In App. 4, we further pursue the dependence of Qg
on Y, by working through an exéﬁple where we obtain‘a-plot
of'Qo as a function of y, normalized by the NyquisF period,

~

TN -
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£.3.3 SNR Statistical Analysis

’ To determine the SNR of our coﬁvertér, we must first
calculate the autocorrelation function of w(t) and the cross-
cgrrelation function of x(t) and w{t).. To accomplish this

we set up a coordinate system depicted in Fig. 4.3-2 and ob-
serve that the piecewise linear curve, w(t), .is actually the
sum of a éequence of ramps of slope m; and the steps of am-
plitude-wi. To keep the time axig‘comp}etely’arbitrary, we.
introduce a random starting time for fhe ramp functions,
shown as -t,. Independent of this, we are insured that w(t)
is a stationary randém process, as long as x(£1 is specified
as being stationary, since it is obtained via a lineAr trans-
‘formation on x(t). We introduce, in Fig. 4.3-2, a random
variable, A, which Is unifofmlj’distributed in the interval

0 to T To completely define this coordinate syétem, we

N
must specify the parameters:

i= fT/TNT = the greatest integer < t/Ty. ,(4.3-23)

= 4T+ ng s (4.3-24)
* and o
. (4.3-25)

n=1t1-1iTg + A =n, + A, for 0 <A<

o] TN
Notice:- that ng is just a positive constant in the interval
[0, Ty), which-is specified by the choice of T, and-n is a
raridom variable obtained via a linear transformafiop of A.

We start by deriving the autocorrelation function of

w(t). To facilitate matters, let us express the ramps at
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Fig. 4.3-2. Coordinate System for Converter SNR Analysis
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times t1 and t, as

z(t,) = mg ! (4.3-267~ —
and o
z(t2 =i, + T} = m.n ;N <T
* : (4.3-27)
= mi+1 (Ti - TN) e N> T .
The slope of the ramps can be expressed as
m, = (wi+1 - Wi)/TN (4.3-28)

and the amplitude of the steps, wi,'is merely the sample ,

values of x(t), i.e.,

Ws: = X: (4.3-29)

e — ——— .

By taking the expectation over both the ensemble of the ran-

8

dom process z(t) and the random variable A, we can find the
autocorrelation function of the ramps, that is
ELz(t,)z(¢;)] = (1/2Tg)n, (Ty - o) Ry, (1)

+ (/3T (T - ng) "Ry ()
. : (4.3-30)

+ (1/2T) (ng - TN)[T§ - (TN - nO)ZJRm(i + 1)

Q3T [T - (T - ng) IR (L + 1),

where

R (i) = Emm ;)
. (4.3-31)
= [2R (1) = R (i + 1) - R (1 - l)]/T§
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and
|

_Rx(i) = E(xkxk+i) = Rx(iTN) . o (4.3-32)

If we combine the ramps and the steps, then. we can rep-

resent w(t) at times t, and t, in the following way:

W(t1) = W, + mgh (4.3-33) -
and
w(t ) = w: + m:n ‘, n<T
2 S N (4.3-34)
=W,q * mi+l(n - Tyq) s n > Ty

-

Using the averaging technique described above and the re-
sults found in Eq. (4.3-30),. we can evaluate the autocorrela-

tion function of w(t), i.e.,

R, (1)

Elw(t,}w(t,)]

(1/Ty) (Ty = ngIR, (1)
+ (L/6T ) (T - ng) (2T + n IR (1)
+ (1/2T) (T, = ng) *Elmw;)

+ (1/2TN)(T§ - ng)E(miwo) . .
LTy OF THh

opuc
_ %gi;NALP%Gﬁigﬁﬁﬁﬁ

+ (ng/TR (1 + 1)

+ (n3/6Ty) (3T - n )Ry (i + 1)
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+ (ng/2Ty) (2T - N JE(mgwiyg)

+ (ng/2T) Em; 1w, ) (4.3-35)

where

Rw(iY = E(Wkwk+i) = Rx(i} ) (£.3-36)

and

B(ngn) = [Re(k = 3 = 1) = Re(x =) 1/Ty . (4.3-37)

Simplifying Eq. (4.3-35), we arrive at a final form of the

autocorrelation function of w(t), >

R, (T

I

(ng/6TR [3R (i) + R _(1 + 2)1]

+ [(Ty - ng)3/6TF1IR (4 = 1) + 3R (1 + 1)]

(1/T§)[nng(i) + (TN'— ng) 2R (1 + 1)1

+ (2/3)[R (1) + R (1 + 1], (4.3-38)

" where

No = T = iTy : (4.3-39)
and i1 is the greatest integer less than or equal to.T1/Ty.

We can reformulate this final form of the autocorrela-
tion function of w(t) such that it takes on a generél struc-

ture and is a function of T, that is,
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Ro(T) = A;T%/T§ + B.T®/Tf + Cyt/Ty + Dy ,  (4.3~40)

where _ '

Ai’ Bi’ ci’ D‘

i = real numbers which are a

function-of -i-and Rx(i).

We see that RX(T) is a-pieéewise‘continuous function having
different values of the coefficients Ai, Bi' Ci and Di for
each interval of =, {iTN, (i + l)TN]. A'plot of RW(T);
which shéil be shown later, reveals tha% it is a well be-
haved éﬁtocor&elation function, being continuous, real and
symmetric about T = 0. ‘

Employing the notation for w(t,) introduced in Eq.
(4.3-33), it becomes a less formidable task to calculate the
cross—cor;elation function between x(t) and w(t). If we

obsérve, from Fig. 4.3-2, that w0 and W, can be expressed as

wo = x(t, - 2) ' (4.3-41)
and

w, = x(t, - A+ TN) ’ (4.3-42)
then it can readily be shown that,

R, (t) = R_(t) = Elw(t)x(t, + )]

KW WX (4.3-43)

(T = /TR (t + A + (/TR _(x ¥ X - T

where the average in Eq. (4.3;43) is over the random variable

X. This can further be reduced to
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Ty ‘ -
R (T} = (1/TN)£ (1 = A/ IR (T + A) + R_(T - AYldx .

(4.3-44).

Consequently, if the correlation function of xkt)_is
specified, we can formulate the correlation function of d4d(t),
‘as given in Eq. (4.3-4), and its power spectral density, \
from Eg. (4.3-6). We can continue to simplify our results
and show that the power spectral density obtained from
RXW(T) is a functioﬁ of the power spectral density of x(t).
Taking the Fourier transform of Eg. (4.3-44) and performing

some mathematical manipulations, we obtain, in'its simplest

~ 4

form,

Gyr (£)7 = G (£) Esin (wETE)AnETGA? -0 - . . . (4..3-45) ..

To completely spécify the power spectral density of d(t), we
must .calculate GW(%) from the correlation function of w(t}.
Since R, (t) takes the polynomial form givén in Eg. (4.3-40),
we can use a slightly modified version of a well known numer-—
ical technique for the evaluation of the Fourier éransform
"to obtain an exa&t expression for G (f) [321.

By taking the third derivative, with respect to 71, of

the polynomial form of RW(T), given in Eg. (4.3-40), we obtain
R (1) = 6A; /TS - (4.3-46)

Recall that Ai takes on a different wvalue for each interval
of t, [iTy, (L + 1)Tyl. Thus, R&tl(T) takes on a different

constant value every Ty seconds. Taking one more derivative
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with respect to T, we see that

T%R;"'(T) = M;6(T - iTg) o (4.3-47)
1==—oa

-

where, owing to the symmetry of RW(T),

- .

'M.o"= leo r ’ (4.3_48)
and ]
Mi = M“i =_)6(Ai - A.i;l) r for i = 1’2’3,... i (4..3-49)
and -
§{a) = Diraé's delta function.

If we take the Fourier transform of Eq. (4.3-47), we obtain

] y . e LT
3[T§R;Jtl 1 (t)yl = TE,(jw} qu(M) = 3 Mie JwiTy

j=-—c0

. (4.3-50)

Reformulating this, we have

- y : 3 4 -
G, (£} = [Mo + ZiElMicos(ZﬂflTN)]/TN(Zﬁf) . (4.3-51)
Now that we have derived expressions for ka(f) and
Gw(f), we must still evaluate wa and PW to calculate the
SNR. The unoptimized SNR is the expression for Q with K = 1
and vy = 0, that is, from Eq. (4.3-11),
Py

SNR_ = . ' (4.3-52)
(o] PX + PW - ZPXW

The optimized SNR, Q_, is given in Eq. (4.3-21) . Because

O
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wa(f) is bandlimited t? fm’ we can easily evaluate P, via

L Ty
Py = Ry (0) = (2/TN)£ (L ~ A/T)R, (A)dX . (4.3-53)

However, the calculation of Pw.is not so straightforward be-
cause Gw(f) is not bandlimited and the value of GW(Ol goes
to infinity. Thus, we cannot integrate Gw(f) from ;fm to

+f,. Comsequently, we must use

By = Ry (0) - By (4.3-54)

where the out-of-band power in w(t) is given as

W

P, = 2f G (f)af (4.3-55)
o F .

m
and the  total power in w(t), RW(O), is found from Eq.
(4.3-38) by setting Mo and i to zero. If we employ.Gw(f),
as given in Eq. (4.3-51), then P takes the form

o

0

-— s 3 -
P, =V M + i viM; . (4.3-56)
O 1=1

where V; is a weighting coefficient that is a function of
0.57 — Si(i) and Si(a) is the sine integral, defined in
Eg. (3.3-15}.

We shall demonstrate the results of this statistical
analysis by evaluating the SNR for two examples. In the

first example, the input signal has a white, bandlimited
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power spectral density and in the second exémple the input'
power spectral density has ‘a triangular shape. For the for-
mer case, the -sum in Eg. (4.3-56) is finite. For the latter
case, we can truncate after only 5 terms because the series
converges rapidly td'zero; -In the next part,-where.we in-
troduce improvements on this basic PCM to ADM conversion
system, 'the series does not converge so rapidly and we ﬁust*
introduce an estimation procedure to evaluate PWo to_ayoid
excessive laborious calculation.

If we specify unity input power, the power spectral
density of the white,-ﬁéndlimitéd process {E.g. 1) is given

as

G, (E) = Ty, [£] < £y o )
’ -(4.3-57)
=0, |£] > £, -
and its correlation function is
Ry, (€)= sin(zﬁfmri/zﬂfm¢ . (4.3-58)

For this example, the output SNR and the optimized SNR is

calculated to be

SNR_(E.g. 1) = 8.6 dB
and

Q_(B.g. 1) = 12.7 dB .

When the input spectrum has a triangular shape and we again
set the input power to unity (E.g. 2), the power spectral

density takes the form
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G, (£) = 2¢°g(1 - [£/£ |}, [£] <

A
h

_ - (4.3-59)
=0 o lE] > £ .

For this process, the autocorrelation function is seen to be
_ * 2
Ry (1) = [sin(nf 1) /v t]* . (4.3-60)
The figures of merit for this example'are evaluated as

SNR_ (E.g. 2) = 14.2 @B
and

Q,(B.g. 2) = 17.3 @ .-

Obviously, this level SNR is not acceptabie,.even for the
extreme case of a Whlte, bandlimited 1nput power spectrum.
Therefore, we mns£ 1ntroduce a reflnement of “this basic

conversion technique to improve the performance and yield

larger values of SNR.

4,.3.4 Converter Improvement via Wiener Linear Interpola-
tion

The performance of éhis converter can be improved with
a parametric technique, by first estimating a PCM midpoint
from adjacent PCM samples, that is, both past and future
values, and then converting to ADM format. The structure of
the improved converter is basically the same as before and
is ‘shown in Fig. 4.3-3. We form the difference between the
midpoint estiméte and the éCM sample at the beginning of the

Nyquist interval, scale this value by 2/R and accumulate it
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R/2 times during the first half of the PCM clock period.
This forms the signal v(k) which is encoded by the ADM.
Then we formulate the difference between the PCM value at
the end of the Nyquist interval and the midpoint estimate.
This value is scaled by 2/R and accumulated R/2 times during
the last half of the PCM clock period. This continues to
éfoduce the v(k) signal which is again ADM encoded into the
seguence of bits, e, (k). This process will vield two equi-
amplitude staircases of different slopes for v(k) during
each PCM sampling period.

A Wiener linear interpolation technique is employed to
pbtain the PCM midpoiﬁt estimate since it minimizes the mean-—

square error [33]. The midpoint estimate‘is formulated as a
1ine;r combination‘of the adjacent PCM sa%ples. The weight-
ing coefficients in the linear combination are a function of
the autocorrelation function of the input process. The im-
provement is demonstrated by analyzing this converter when

2 and then 4 adjacent PCM samples are used to esﬁimate the
midpoint. The rgsulting SNR is evaluated for the two
examples mentioned above, that is, two different input power
spectral densities. To determine a bound on the performance
of this converter, we calculate the SNR limit by letting the
estimated PCM midpoint actually become the true PCM sample.

The basic theory of linear mean-square estimation is

best presented using a general approach. Since we ﬁavg as-

sumed that x(t) is a stationary random process, then all

samples of it will be random variables. We must estimate
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the midpoint between two samples from these random variables.
If we use 2I sample points, then the midpoint estimate can

be formulated as a linear combination of these random vari-

ables in the. following way:

xP(Rk + R/2) = a_(1-1)

X(Rk - (I-L)R) + ...

+ a_lx(Rk - R) + aox(Rk) (4.3—61)

+ alx(Rk + R) + ..; + aIx(Rk + IR) .

Using a shorthand notation, we can express the midpoint es-
timate as
I
xp = i=_§1_1)aixi . (4.3-62)
To - find the values of a; we appiy the orthogonalify
principle. This principle states that the error must bé

orthogonal to the randem variables. In other words,

- 37 . =
E[(xP xp)xj] ; ‘
' (4.3-63)
for j = -(I-1), «se, =1, 0,1, «v., I .
" After taking the expected value, we obtain
I
R (j - 0.5) = ) a:R_(j - i) ,
® j=—(I-1) = %
(4.3-64)
for § = =(I-1), eeey =Ly 0, 1, wues I 4

which is merely a set of 2T equations with 2I unknowns.

v

Thus, we see that the values of a; depend on the autocorre-
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lation function of the input process.

Now we can investigate the PCM to ADM converter per-—
formance when the midpoint is estimated with 2 and 4 adjacent
PCM samples, this is, when I = 1 and 2, respectively. The
statistical analysis deals with w(t), which is a straight
line approximation between PCM points and midpoint estimates.
To facilitate the SNR analysis, we divide the time axis-into

intervals of width TN/Z and index them-as follows:

B=0, 1, 2, «.. for t > 0 ,

=_l, _2’ —3, - e e fort< 0 -

We can again represent w(t) as the sum of steps and ramps.
However, the form of the step and the ramp will be different
for n odd and even. But, they will .always be a functién of
the adjacent PCM samples due to the linear interpolation
technique used to formulate the midpoint estimates.

To determine RW(T), we can formulate w(tl) and w(t,) in
a manner similar to Egs. (4.3-33) and (4.3—34)1r except w(tl)
now spans two intervals and w(t,) spans three because the
" width of each inﬁerval is only TN/Z. Now we must calculate
RW(T) for n odd and n even, since the value-of T sets n ac—

cording to
n = [27/Ty] = the greatest integer < 21/Ty. (4.3-65)

Also, the amount of computation that must be perfofmed in-
creases by several orders of magnitude and cannot be readily

computerized because there is extensive algebraic manipulations.
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When the midpoint is estimated by 2 adjacent PCM

samples, the autocorrelation function takes the form

R (1) = C_2Rx(n - 2) + ?ORx(n)

L

_ N ‘ (4.3-66a)

+ C2Rx(n - 2) + C4Rx(n + 4)

for n even, .and-
(4.3-66Db)

+ ClRX(n + 1) + C3Rx(n + 3)

for n odd, where
C¢. = a third order polynomial function
3~ of Mg and a function of~ai.

For this éonvert_er, we use

Froﬁ the form of RW(T) given above, it can be expressed as
a third order polynomial function of T and, therefore, we
_can apply the technique aiscussed in Sec. 4.3.3 to calculate
the power speétral density of w(t) and the in—band‘power, P
The evaluation of the cross-correlation function is
approached exactly as described in the previous section.
Because w(t)) spans two intervals, the amount of computation-
greatly increases in determining Rxw(r). After several pages

of calculations, the final form becomes
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N2 .
(2/TN)£ (2 = a;A/Ty)

Ryw (T)

(Rx(r + A) + RX(T - A))dax

-

2/ e, (1= ATy (4.3-68)
Tn/2

(RX(T + A) + RX(T - l))d} P

where

G,r O, = & function of aj .

Taking the Fourier transform of Eg. (4.3-68), we again find
" that Gy (£) is bandlimited to fm so that we can calculate

the. in-band cross-—-power via
Py = Ry (0) {(4.3-69)

The figures of merit can now be evaluated, using Eq.
(4.3~25) to determine SNR, and Eq. (4.3-21) for Qg+ For
" example 1, where the power spectral density is white and band-

limited, we obtain

SNR_(B.g. 1) = 10.2 dB

aﬁd

it

QO(E.g. 1) 11.7 dB .
When the input spectrum is triangular shaped, we find that

SNR, (E.g. 2) = 15.5 dB
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and

9, (E.g. 2) = 16.2 4B .
b

The slight- increase in performance over the basic converter
without a midpoint estimate indicates that our interpolation
of the midpoint is not nearly accurate endﬁgh. We shall con-
sider one more case, that is, estimating the midpoint from 4
adjacen£ PCM samples. Then we shall analyze the limiting.
case, where the estimated midpoint actﬁglly becomes the true
PCM sample.

The statisticél analysis, when the midpoint is esti-
mated from 4'adjacent PCM poihts, takes the exact structure
as described previously. Thué, all we shall do is present
an outline of the results. The autocorrelation function of

w(t) takes the form:

RW(T) = I Cz-RX(n + 24), for n even, {(4.3-70a)

and

R (1) = I 3czj_lRX(n + 23 - 1), for n odd, (4.3~70b)
j==

where Cj is giveﬁ after Egs. (4.3-66).

The effect of employing more PCM samples to estimate the
midpoint manifests itself in the dependence of RW(T) on the
input autocorrelation function. The cross-correlation
function is structured exactly as in Eg. (4.3-68) except’

that now A is integrated over 4 intervals, of width TN/4,'
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in going from A = 0 to A = Tyq- Consequently, G, (f) is'again
bandlimited to fm and we can use Eq: (4.3-69) to determine
Pow® As before, the in~band power, Pogr is found by applying
the technique discussed in Sec. 4.3.3. Through all this
analysis, the important results are‘still the figures of .
merit. For the white, bandlimited power specéral density

we obtain

-SNRO(E.g. 1) = 13.0 dB
and

Qo(E.g. 1) = 14.3 4B .
If the input specﬁium is triangular shaped, the results are

. Ce e SNR_(E.g. 2) = 17.8 dB-

and~

i

0 (E.g. 2) = 18.2 dB .

Although the performance of this convérter will con-
tinue to improve as more PCM samples are used to estimate
the midpoint, we would like to know the maximum value of
"the SNR. To determine the maximum SNR, we must‘consider the
limiting casé where the estimated midpoint actually becomes
the true PCM sample. The statistical analysis for the limit-
ing case has_already been comple£ed. When the estimated mid-’
point becomes the true PCM sample the entire structure of thé
converter reverts back-to the basic PCM to ADM convérter ex—
cept the PCM rate is now 2fy. Therefore, the results are

identical to those derived in Sec. 4.3.3, but we must repiace
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Ty by TN/2. This must be done everywhere, so the meaning of

Rx(n) now becomes
Rx(n) = RX(T = nTN/Z) . (4.3-71)

Returning to the expressions for Gﬁ(f) and R, (1) and
changing TN to gq/z, it becomes simply én arithmetic task to
calculate PW and Por® The results for the white, bandlimited
and the‘triangular shaped power spectral densities are as

follows:

SNR_(E.g. 1) = 21.1 dB

25.3 4B

il

_QO(E-G- 1)
:and
SNRG(EEQ: 2) = 26.4 @B

Q4 (E.g. 2) = 29.3 dB .

Now the SNR is beginning to reach moderate levels. However,
it is only at the expense of very precise estimation of the
PCM midpoint. 1In the next section, we consider further im-
provement of this PCM to ADM converter and a simple estima-

tion technique to calculate SNR.

4.3.5 Performance of the Improved Converters

A further refinement of this conversion technique is
obtained by estimating two PCM values between adjacent PCM
samples and employing all of these points to convert to ADM
format. The two estimated PCM values are obtained, as be-

fore, using the Wiener criterion. In this case, we have ’
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three equiamplitude staircases during eéch PCM sampiiné iﬁ-
terval, ?hé SNR analysis can easily be extended to this sys-
tem just as was done when only the ﬁidpoint was estimated.
However, the algebraic computation becomes much too exten-
sive. 'To ascertain the performance that we achieve with .
this improved method, we can evaluaté the limiting SNR for
the two input power spectral densities cited above.
If we wish to apply the original statistical analysis
to the limiting case for 2, 3 or m estimated points between
adjacent PCM samples, all-we must replace Ty by TN/m,
in all the results derived in Sec. 4.3.3. However, in cal-
culating the output signal power, PW, we begin to experiéncé
computational difficulties. Since'Pw was formulated as the
‘difference between the total power and the out-of-band power ;-
PWo’ we must calculate PWO from an infinite sum of terms via
Eg. (4.3-56). When we estimate more PCM points and take the
limiting case, PWO requi;es.more ané more terms to yield
‘ meaningful ;esults. These terms are a function of the sine
integral. The result now depends on the accuracy of the Sine
* integral tables .or computation.
To circumvent this computational problem, we introduce
a simple estimation technique to calculate SNR. We start
with the expression for the optimized SNR, where the input

power has been normalized to unity, i.e.,

Py

2
- Pyw

0, = (4.3-72)

Py
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We note that all terms in the expression for Q, are just
slightly less than unity, particularly for the limiting
cases where we estimate 2 or more péints between PCM samples.
Consequently, the denominator of Eq. (4.3-72) becomes -the
dominant term. Since Q, can never be negative, the smallest

- value of P is
w

Pw(min) = P%W . {4,.3-73)

*

Therefore, the upper limit on the out-of-band power of w(t)

becomes
Pwoﬂmax) = R,(0) - P2y - (4.3-74)
Since the lower limit on PWo is zero, we can express it as
Pwo = aPWO(max), 0 < a < l_. (4.3-75)

The objective"of this estimation technigue is to elimi-
nate PW so there is no need to calculate PWo' We can then
arrive at an expression for the SNR which is composed of
terms that are easily evaluated. Using Egs. (4.3-74) and

* (4.3-75) we can formulate the output in-band.power as

P, = (1 - a)R (0) + oPgy - '(4.3-76)

We can now obtain the desired figures of merit without deter-
mining P, Setting the input power to unity, we obtain the
following expressions for the SNR, before and after optimi-

zation,
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(1 - a)Ry(0) + aP%y,
1+ (1 - o)R,(0) +.aP%, — 2Py

SNR A =

o (4.3-77)

and.
(L - 0)Ry,{(0) + aP%y,

Qg = - (4.3-78)
(1= a) (R (0) - PEy)

Fitting these expressions to the results obtaineé so far, we
have found that a value of a = 0.5 yields a very good' ap-
proximation.

The performance of all PCM to ADM converters discussed
so far, for the two input power spectral densities cited
above, is summarized in Table 4:371. Here we list SNR, and
Qb~through the limiting case when three points are estimated- : |
bééﬁeen adjacent PCM samples. Applyiné the SNR -estimation
technique described above, we have extended the resﬁlts—to
seven estimated PCM points. In Fig. 4.3-4, we plot SNR, in
dB versus the number of estimated PCM points, for the limit—
ing case, for both E.g. 1 and E.g. 2. As expected, each fur-
. ther refinement yields a higher SNR than all other converters
previously considered. The tradeoff is, of course, an in-
crease in hardware complexity.

To see the progressive change in converter performance,
with each subsequént modification, we can examine the auto-
cofrelation function of w(t). In Figs. 4.3-5 and 4.3-6, we
have plotted R,(t1) for E.g. 1 and E.g. 2, respectively, for . .

three different PCM to ADM converter structures. As we go
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STRAIGHT LINE APPROXIMATION BETWEEN PCM AND ESTIMATED PCM POINTS

NO. OF ADJACENT

NO. OF ESTIMATE PCM POINTS
POINTS
0 -
1 2
1 4
1 Limiting Case
2 Limiting Case
3 Limiting Case

4 Gy(f)
Tn
E.g:l i :_f

"’fm fm

SNR,, (dB) Qq (dB)
8.6 ‘12.7-
10.2 11.7
13.0 14.8
21.1 25.3

' 28.3 32.6
33.3 37.6

"y

L))
ZTN-'
E.g2 _f
"fm fm
SNR, (dB) Qo (dB)
14.2 17.3
15.5 16.2.
17.8 ' 18.2
26.4 29.3
33.5 36.6
38.5 41.6

TABLE 4.3-1. Performance of Parametric PCM to ADM Converters .

LST
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Fig. 4.3-4. SNR of Improved PCM to ADM
Converters for the Limiting Case
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1 Estimate Polnt(Limiting Case,
l.e.,,Estimate Point — True PCM
Point)

-1 Estimate Point(From 4
Adjacent PCM Points)

e

. M — i ¢ ) S i< ' e T iy p
-4 ~3 <2 -1 0. 1 2 ~~-"3 4 5 6

09T

Fig. 4.3-6. Correlation Function of w(t) when Input Power Spectrum is Triangular
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from the basic convertéer where no PCM points are estimated,
to the system which estimates a midéoipt from four adjacent
PCM samples, to the limiting case for one estimate point, we
observe -that R, (r) yields a betéér and- better approximation .
for the input autocorrelation functions, defined in Egs.
(4.3-58) and (4.3-60)}, for these two examples: The closer
the autocorrelation function of w(t) is to RX(T), the nearer
P, and wa‘will be to P,. This, of course, gives us a
higher and highe£ output SNR. Therefore, the shape of R, (1)
acts as a very good indication of the performarice of our PCM

to ADM converter.

.4.3.6 Simulation of the Fundamental Converter

The basic PCM.to ADM converter,- as shown in Fig. é.3f1,
was simulated using a PDP 8/L cbmputer. The Song audio mode
ADM algorithm was employed in this simulation and several
different elementary input signals were used to test its
operation. To evaluate the performance of this converter,
we utilized an ADM decoder, which is merely the feedback
_circuit of the encoder, and simulated a fourth-order Butter-
worth filter as the output LPF. A sinusoidal test tone was
‘applied to the input and SNR was measured after the output
IPF. The simulation system is given in Fig. 4.3-7. Note
that the cutoff frequency of the LPF, fc, sets the bandwidth
of the system aﬁd, therefore, the PCM sampling rate'used‘at

the input becomes

(4.3-79)
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In all previous performance evaluations, we employed a
test- tone of frequency fo and specified the LPF cutoff fre-
quency to be 4£f,. This, however, is not sufficient to
accurately test the performance of this converter. In Fig.
4.3-8, we show a low and a high test tone, at-frequencies
fo and 3f,, respectively. Both inputs must be utilized to
ascertain a true picture of the operation of this system.

On the low and high tones, we have superimposed the PCM
samples and -the étraight line approxiﬁations between then
which represent w{t). To gain a further idea of the system
performance with the low tone, we have caiculated the SNR of
v{k) for various values of R. Recall that v(k) is the stair-
‘case waveforﬁ between PCM points and R, defined in Eq.
(4.2-1), is actually the number of steps between PCM points.

We display, in Fig. 4.3-9, SNRy, which is thé SNR fpr
v(k), after final low pass filtering,.as a function of R.
Since w({t) follows Q(t) so well, and because SNR, is rela-
tively high, we do not expect much degradation when ADM con-
verting v{k). We expect this test tone to yield good per--

- formance curves,‘indicating that the PCM to ADM converter is
-a success without using any PCM estimate points between ad-
jacent samples. However, for the high tone, we observe that
w(t) is a poor approximation to x(t). It is so poor, in fact,
thqt‘without even calculating SNR_,, we know that we must use,
at least, an estimated midpoint to achieve accepfabie per-
formance. But, we cannot estimate a midpoint based on the

theory presented previously because it employed probabalistic



Fig. 4.3-8. Test Tones for PCM to ADM Converter and Straight Line
Approximations between PCM Points
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parameters of the input signal. These are virtually meaning-
less for a determtnlstlc 51gnal llke a 51nu501da1 input. In_
the next sectlon, we shall present the quantltatlve results
obtained from these simulations. and-then go on to introduce -

a non-parametric technigque to -estimate points which can

easily be applied- to the sinusoidal inputs.

4,3,7 “SNR Curves

All technigues, assumptions end manipulations used in
Chs. 2 and 3 to determine output SNR, when a sinusoidal input
is applied to a computet simulated-system, will again be
utilized with the basic PCM to ADM converter. Since the
input PCM samples, for both the low and high tones, are peri-
odic, v(k) is alsc periodic and so is the resulting ADM es-
timate, v(k). We must first determine the Fourier series of
the estimate. Then we cau ﬁPF v (k) by scaling the frequency
components as described in Sec.” 2.8. Finally, we can calcu-
- late the output performance flgure of merit, SNR,, from Eq.
(2.8~ 12), usmng the output noise power truncated after the
" ninth harmonic. ' _
Bf suifting the input x(t) with respect to the sampling
"clock, we again éenerated different steady state estimate
patterns for v (k) aud, therefore, different values of SNR,.
Treatlng the output SNR as a random variable, we calculated
its mean and variance for 32 different starting p01nts of the
input sinusoid. In Fig. 4.,3-10, we display the performance

curves for the basic PCM to ADM converter, i.e., with no
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estimate points between PCM samples, when a low frequéncy
tone is used as the input. The input sinuﬁoid.is of fre-
quency f,; the LPF cutoff frequency "is fixed at 4fo; and the
Nyquist rate éet at 8f,. On this graph, we,show‘SNRO versusr: -
relative input signal power, over a range of 54 dB, when the
parameter R = fs/fN takes on values 4, 6 and 8. To have a
basis of comparison, we give the SNR curves obtained frém an
ADM, operating at'a rate £, when the input is a sinusoidal
signal: This represents the best perfprmance.that can be
achieved when an ADM is used in the  converter. All these
plots are smooth curves-draﬁﬂ from the mean SNR, and an
average sténdard deviation of 1-2 dB. "We observe, és expec-
ted, that this converter works very well for a low frequency
signal.

When employing the high frequency tone as an input, i.e.,
frequency 3fo’ we maintained the same LPF cutoff frequency
and the same PCM rate. Likewise, the input signal was varied
over the same range, from an amplitude of 5 minimum step
sizes at -6 dB_fo 1280.minimum step sizes at 42 dB. The out-
' put SNR is shown in Fig. 4.3~11 for the basic PCM to ADM con-
verter and an ADM encoder. The common parameter used is
R = 4 and 8. We have again plotted the average SNR,, with
a standard deviation of approximately 1-3 dB, to obtain smooth
curves for both the converter and the encoder.

For the low fregquency tone, the performance is‘quite
acceptable since it is within about 1 dB of the maximum SNR.

However, we find the figure of merit down 4 and 8 4B, for
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R = 4 and 8, respectively, from the best SNR obtainable.
Consequently, the basic converter is not acceptable in its _
present form and we must at least add a midpoint éCM estiﬁate
to raise the performance to reasonable quality. In the next-

section, we present a non-parametric estimation -technique

that Will do just this.

4.4 Non-Parametric PCM-ADM Converter’

The obvious -advantage of designing a non-parametric PCM
+o ADM converter is that the structure of the system is inde-
pendent of the input signal. We do not have to know the
probability statistics or the power spectrum of the input.

In considering the design of a non-parametric converter, we
still wish to maintain a simple structure that can be réadily
built with all-digital hardware. In addition, we must avoid
both the "multipath™ and the "endpoint" problems discussed

in Sec., 4.1.

4,4.1 PCM Estimation Technique

. Let us consider the structure of the converter discussed
in Sec. 4.3. With the ADM encoder as part of the converter,
we automatically eliminate the "multipath” and "endpoint" |
problems. Thus, we must only deal with the derivation of
vi{k), i.e., the input to the ADM, from the PCM samples,
x{Rk). As a natural extension of the techniqﬁe deséribed in..
Sec. 4.3, we can calculate the ADM input values using a

method similar to that used to estimate points between
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adjacent PCM samples. Taking this to its limit, we can de-
termine R-1 estimate poigts every Ty seconds.

Deriving the estimate pointé from the PCM samples can
be viewed as a filtering operation to obtain each estimate.
A‘non-recursive digital filter structure would yield a
specific weighting for every estimate point. ’Certainly,
filtefs are designed without knowledge of the input signai
statistics or its power spectrum. It-thus becomes & ques-
tiﬁn of what non-parametric design teéhnique is optimal to
employ when calculating estimate points between PCM samples.
In the next section, we shall déscribe the best weighting

technique that reguires knowledge of only the bandwidth of

"the system.

4.4.2 Ideal LPF Impulse Response Weighting

If we consider the PCM points to be impulses, then the
optimum technique to recover the input signal would be to
ideal ILPF the impulses. Therefore, we cén find the value of
the signal at any point between PCM samples by a superposi-

- tion of the inpuﬁ impulses. This cqﬁcept is one statement
of the sampling theorem [34], that is, if x(t) is bandlimited

‘to £, then it can be represented by the eqguation

x(t) = I =x(kTph(t ~ kTy) . (4.4-1)
k=—c

where

Ty = 1/2f, . (2.4-2)
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The "interpoclation function",

. _ sin2wf t .
h(t) & ——mm——, ~(4.4-3)
2rf t

is the impulse response of an ideal rectangular filter with

transfer function

H(f)

Ty l£] < £, »

: (4.4-4)
o , [£E] > £, -

The terms x(kTy) are the PCM sample values, previcusly de-
noted as x(Rk). To exaétlf calculate points between adjacent
PCM samples will take an infinite number of samples, thus
infinite time. .

'

The form of the estimator given in Eq. (4.4-1) is
exactly the struéture of a digital recursive filter. There-
fore, the implementatién is readily adaptable to digital
hardware. However, there are practical consideratiomns that
must be addressed. We must truncate the sum in Eq. 64.4—1)
to a finite number of terms and still maintain an accurate
estimate of the signal value. If we eliminate gome of the
R-1 estimate points'and use instead the staircase approxima-
tion originally presented in Sec. 4.3, the complexity of the
converter can be considerably reduced. We wish to know how
many estimate points can be omitted and still achieve accept-
able performance. These practical -considerations a?e‘dealt-ﬂ

with by reverting back to the basic PCM to ADM converter that .

employs only cne estimate point between PCM samples.
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4.4,3 Converter with Midpoint- Estimate

Let us first consider the truncation of the infinite sum
given in Egq. (4.4-1). The most general solution to this
problem is by application of the Landau-Pollak bandwidth- -
constraint theorem [35]. However, this essentiallg requires
.that we consider the sampling function, h(t), to be negli-
gible after a certain value of t. The Landau—-Pollak theorem
gives the error that will result from a finite number of
terms in thé estimation equation. We have found, with vari-
ous simulation signals, that if h(t) is neglected aftexr its
second zero, then the estimate obtained with four adjacent
PCM samples is within 10% of the true signal value. This
will act as a "rule of thumb" for the accuracy of our esti-
mate points since the use of more PCM-samples in the estima-
tor does not significantly improve the performance of this
converter.

To determine the number of estimate.values that can bé
eliminated and replaced by a staircase waveform, we return
to the PCM to ADM converter with midpoint estimate. Using
the ideal LPF weighting function with four adjaéent PCM
samples, we calculate the midpoint with the following equa-

tion:

1l

x' (Rk + R/2) = h(3Ty/2)x(Rk - R)

+ h(TN/Z)X(Rk} f(4 45)

4.

h(—TN/2)x(Rk + R)

+ h(ﬂSTN/Z)X(Rk + 2R) .
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To show the qualifative effect of such a system, we have de-
termined the midpoints needed in a fypical high tone test
signal using the above algorithm for x'{Rk + R/2). By observ-
ing ﬁhe straight line approximation, w(t), superimposed on
the test tone in Fig. 4.4-1, we see that this'represehts a
fairly good approximation to the input sinusoid.

We shall see that the performance of this converter
comes within about 1 dB of.the optimum figure of merit curve.
In Fig. 4.4-2, wé show a block diagram of the -PCM to ADM
converter with midpoint estimates using four adjacent PCM

points. The weighting coetfficients are defined as

hl

h(£3Tg/2) = 2/37 ' (4.4-6)
and vu?‘ |

h, = h(:Ty/2) = 2/7 . (4.4-7)

This system represents a simple, straightforward hardware
realization. =~ To improve the converter performance and come
closer than 1 dB to the optimum SNR curve by estimating 2 or
3 points between PCM samples, it would be necessary to in-
crease the hardwére of the system by about a factor of two..
An unrewarding tradecff for less than 1 dB increase in output

SNR,

4.4.4 Simulation and Performance

Using the PDP 8/L, the PCM to ADM converter depicted in.
Fig. 4.4-2 was simulated and tested with elementary input

signals to verify its operation. Similar to the techniqué



'Fig. 4.4-1. Straight Line Approxim'ation betwe’en_PCM Points and Non-Parametric
PCM Midpoint Obtdined from Four Adjacent PCM Samples
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employed in Ch. 3, the coefficients h1 and h, were approxi-
mated by the nearest integral multiple of 1/16. The result-
ing decrease in output SNR was insiénificant to warrant more
precision in realizing the scalars h, and hz.- To determine
the performance of this device, we.repeat the procedure em-
ployed in Sec. 4.3 with the high frequency tone. The simu-
lation system is exactly as shown in Fig. 4.3-7. We calcu-
lafe the Fourier series representation of the ADM estimate,
v(k), and determine the output SNR after low pass filtering
v(k) and truncating the noise power. The SNR acts as a ran-
dom variable dependent ubon the starting point of the input
. sinusoid and we must calculate its mean and standard devia-
tion. This is &all done only for the high frequency tone
since the basic PCM to ADM converter performed very well with
the low frequency input.

The performanﬁe curveé given in Fig. 4.4-3 are smooth
plots of thé average SNR,, with a stanaard deviation of
1-2 dB, over a relative input power range of 54. dB. The
parameter R takes on values of 4 and 8 yielding a system
that makes 2 or 4 steps between each PCM sample and its
adjacent midpoints. The graph in Fig. 4.4-3 represents an
‘extremely comprehensive view of the performance of this con-
verter. As before, we show the SNR of the PCM to ADM con-
~verter with zero estimate points, i.e., the basic cﬁnverter.'
We have plotted the SNR when one estimate point, the midpoint,
is non-parametrically evaluated using four adjacent PCM

samples. Observe that there is an increase of 7 and 3 dB
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over the basic converter when R = 8 and 4, reséeptively.
FProm the last two curves, we obtain a good feeling for the
worth of the converter with midpoint -estimate. When three
estimate points are dérived from four adjacent.PCM samples,
there isonly an increase of 0.5 dB. Likewise, the optimum
performance, when we ADM encode samples at fs; yields oniy a
1 4B increase over the system given in Fig. 4.2-2. We cannot
use two estimate points between PCM samples because we must.
have an integral'numbér of steps betwéen_the various PCM
values. With the values of R utilized, this ;s impossible.
We can conclude that the non-parametric PCM to ADM con-
verter, with midpdint estimate, is a rather successful sys-

tem. It represents a compromise between a minimum amount of

" very simple digital hardware and the—maximum figure of merit.

:Since there is so little imprévement in performance by going
to a converter which utilizes three estimate values beﬁﬁeen
PCM points, we are quite-éontent not to extend the complexity
of this dgvice. Furthermore, with preéent—day technology,
this entire system could be constructed, using large-scale

-integration, on one integrated circuit chip.

4.5 Other PCM-ADM Converters

-Following the converter concept presented previously,
where a digital filter operates on the PCM samples to pro-
.duce signal estimates, at a rate fg, which are then. ADM en-

coded, we can introduce several other PCM to ADM converters.

The essential difference is the technigque that is employea
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to derive the signal estimates, i.e., the digital filtef.
We shall consider digital filters which range from an ex-
tremelf simple estimator circuit to a submultiple sampling

filter designed with a Z-transform approach.

4.5.1 -~ Digital Zero-Order Hold Circuit

Perhaps the simplest device that can be employed t& es-—
timate values from the PCM samples is a- zero-order hold fil-
ter. This technigque is analogous to fhe concept used by
D. Goodman and J. Flanagan [36] to convert from ADM to linear
DM formats. A zero-order hold circuit will keep the same
PCM value for R ADM periods every Nyguist interval. This
"PCM value is used as the input to an ADM and the encoder
treats it 1like a step input. Thus, the ADM estimate aﬁ—
proaches the PCM level and then hovers about it for the re-
mainder of the Nygquist interval.

_We could, of course, simply use a D/A converter and a
holding circuit to keep the input at the ADM constant for
the entire Nyquist interval. However, we woﬁld like to em~
‘ploy a completelf digital hold circuit. If we define the
digital zero-order hold fiiter as a ciréuit which holds one
value at its output for R periods when the held value is the
input during the first period'and there is zero input for
the second through rth periods, then it has the following

transfer function:

rR-1 :
Golz) = T 27+, _ (4.5-1)
i=0 :



REPRODUCIBILITY OF THE 181
ORIGINAL PAGE IS POCR. :

whe¥e z~1 represents a delay of T, seconds. From the block
diagram shown in Fig. 4.5-1, it is obvious that this circuit
will produce the desired result.

hn alternate digital hold circuit would be a bank of
flip~flops, all operating on the'PCM clock, to store the PCM
sample word and hold it at the output until a'pew PCM sample
was clocked into the flip-flops. This realization, although
not giving rise to a more mathematical transfer function, as
BEg. (4.5-1), is the practical approach to the problem because
of its hardware .-simplicity. _Although we will not analyze
this system in depth, we shall make some pertinent comments
about its operation. We can determine the exact effect that

“the digital hold circuit will have on x(Rk) by evaluating

Gy (w) from Eg. (4.5-1) with
z = exp(juTy) - (4.5-2)

However, for the purposes of this discussion, we can simply
recall that an analog holding circuit transfer function,
gifen in Bg. (3.3-29),represents a crude low pass filter.
Viewing the‘operation of this converter in the frequency

domain, we wish to eliminate the ﬁigh frequency components
found in the sampled x(t) signal and retain, undisturbed,

the baseband spectrum. . But, we expect the performance of .
this converter to be ﬁorse thén the basic converter des-
cribed in Sec. 4.3. The basic converter employed a filter
which produced a straight line between PCM samples and used

values on this line as the input to the ADM. This filter is
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a first-order hold and acts as a better LPF than the zero-
order hold circuit. The only real virtue of the zero-order

hold converter is its utter simplicity.

4.5.2 Submultiple Sampling Technigque

A more refined approach- to PCM to ADM conversion is to
actually consider the design of a digital LPF which extracts
signal estimates at a rate fg from the PCM samples, which
occurs at a rate f; = £./R. The digital filter that will
perform this,functioﬁ must oéerate in the submultiple samp-
ling mode [37]. When a digital system operates' in the sub-
multiple sampling mode it simply means that the system pro-
‘duces outputs at a frequency which is an integral multiple
of the input frequency. This is exactly the case that exists
in this converter. To thoroughly describe the submultiple
sampling technigue, we shall introduce two possible system
designs. ‘

The first sysﬁém.design ﬁses the PCM samples as inputs
to the filter with R-1 zeros inserted between PCM samples.

" 8ince we shall e#plain this theory in a general fashion,

omitting the particular characteristics of the LPC, let us
start with the Z-transform of a digital LPF represented by
Hg (z) and the input and output of the filter specified by

X;(z) and X (2), respectively. Then, as we normally expect,
Xo(2z) = Hg(2)X;5(2) (4.5-3)

where z~1 now represents a delay of Ty seconds.
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If we want the output to occur R times in the Nyqﬁist
sampling period and the input to have R-1 zeros between the

PCM samples of X (z), then the output is expressed as

X, (2)g = Hg(2) X, (2) (4.5-4)
where

Ho{(z)g = Hg(z) ]z = z
T = T:/R . (4.5-5)
N N

Hs(z)R is referfed to as the submultiple sampling Z-transform
of the digital LPF, H,(z), and is realized exactly the same
as the ordinary digital filter except delay elements are re-
duced by a factor R and scalars with the constant Ty inclu-
-ded are attenuated by the factor R. This implies that the
'diqital filter operates at a frequenpy“Rﬁﬁquene out of every --
R cycles sets the input to a PCM sample and the rest are in-
serted zero. The Ffilter operates on these inputs to produce
signal estimates which are used as the input to fhe ADM.

The second system design employs the PCM samples as £il-
ter inputs for R ADM periods e&ery Ty seconds. This is simi-
. lar to the PCM samples being held for the Nygquist period.

If we incorporate the digital zero-order hold circuit pre-
sented above with the submultiple sampling mode-digital LPF,
then we shall have achieved the desired design system. The

PCM-held filtered output is given by
XOH(Z)R = GO(Z)RHS(Z)RXi(z) P (4.5-6)

where
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R-1
G (z)p = % z /R | (4.5-7)
S i=0Q . :

Again, the filter outputs. are used as the input to-ﬁﬁe ADM
to complete the conversion.

~The actual.characteristics of the digitai LPF and -the
comparison of these two &esign tgchniques ig left for future
research. We expect Ehat fhe perfdrmange will be directly
proporﬁional to the order of the‘digital LPF‘cﬁosen.' Inher-
ently, it seems that the holding circuit should add an addi-
tional low pass filtering effect and thereby enhance the
systém,operqtion. These conjectures are left to be verified

by a more thorough investigation.

4.5.3 Recent Developments

There is not a gréat deal of literature that deals with
systems to perform PCM to DM'conversion and the feiatgd dif~
ficulties‘involved.with such systems. Some very brief -
articles employ a binary rate multiplier and digital filters
in converting from PCM to linear DM [38]. These studies are
geared toward extremely simple hardware for the purpose of
inexpensive realization. However, they must employ a t&e—
mendously high bit rate'for the linear DM: in the order of
sevefal megaﬁité per second.

Virtually nothing has been reported that seriéusly con-
siders PCM to ADM conversion. There is no practical, sys- '

tems-oriented research nor do we find any detailed theoreti-
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cal analysis. Therefore, this area is almost completely open

for many new ideas and much further investigation.
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. CHAPTER 5

CONCLUSIONS

In this final chapter, we summarize the contributions
of this research work. We also pregent a brief comparison
between the systems desiénéd and other digital circuits,
where practical, or optimal systems which perform the same
function. In addition, we discuss new problems that can be
addressed as naturél extensions of this thesis.

The work done on the tépics considered in this thesis
is viewed as .a-success. We were able to solve the three
‘problems introduced with simple, all-digital systéms and
achieve good performance with simple hardware. In Ch. 2,
we have conclusively shown that arithmetic'processing.can
be performed on ADﬁ en&oded signals by operation on the ADM
bit streams. Thus, we do not have to resort to PCM or ana-
log processors. We have demonstrated that the performance
and hardware complexity of the direct ADM adder and multi-
'plier are comparable to those of equivalent PCM:devices.

In Ch. 3, we have derived a theoretical design technique
for constructing an ADM to PCM converter. We have also shown
that, for moderate ADM bit rates, the SNR-of this system is
within 1 dB of the performance of the ideal analog_demodula—
tion converter. Neifher of these two accomplishmen£s is,

however, the most important aspect of this work. The most

significant contribution-is the thorough explanation of why
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some sort of LPF is needed in eonVerting from ADM to PCM
formats. )

The work on PCM to ADM conversion addresses a problem
almost untouched in the literature and obtains. significant,
practical results for the first time. We refer particularly
to the multipath" problem and the various wayé that it can
be solved, i.e.: with probabalistic statistics of the input
signal, or parametrically, -utilizing the input power spec-
trum, or non—parémetrically, using no‘information about the
input signal except its bandwidth. The SNR obtained for the
non-parametric PCM to ADM converter, with one estimate PCM
point obtained f;dh four adjacent PCM samples, came within
"1 dB of the optimal PCM to ADM cocnverter, in which samples
of the input signal are directly ADM encoded..

From the basic results of theée three chapters, we see
that the overall purpose of this research was accomplished.
We were able to design direct ADM arithmetic processors and
to devise conve;sion systems betﬁeen ADM and PCM formats with
simple, all-digital circuits'fhat yield good performance.
This leads us to-the additional ideas that were generated by
this thesis and new work that can be done as an extension
of it. '

Other than the few examples mentioned in Ch. 2, the use
and applications of the ADM arithmetic processors still re-
main to be explored. This is.also true for the conversion

systems, particularly PCM to ADM since, ADM to. PCM conversion

can generally be employed as an intermediate step in A/D con-
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version. There are two new ideas that emerge from the study
of direct arithmetic processing of ADM encoded signals. The
first concept is the mapping of.Fhe ADM bits, e.(k) and ey(k),
into a processed ADM bit, er(k). The processed bit can have
2, 3 or more values depending on-the current and perhaps even
on the past ADM input bits. This processed bit would then

be employed in an algorithm, let us say, similar to that of

a Song audio mode decoder to generate an estimate of the sum
or product"of thé two input signals. The mapping of ex(k)
and ey(k) into er(k) as well aé'perhaps the decoding algorithm
for e (k) will be different for addition and multiplication.
The second idea, cbmpletely different from the first, is to
"convert the ADM éncoded.signals to linear DM formats, operat-
ing- at a higher rate. We can now use the very simple linear
DM multiplier, designed to obtain the product, and then con-
vert back to ADM. The considerations in this approach are
performance and the hardware complexity required to construct
such a system.

In Chs. 3 and 4, we have briefly mentioned several other-

' conversion techniques that require a follow-up study. In
particular, the submultiple_sampling filter approach to PCM
to ADM conversion appears to, be a‘rather easy and straight-
forward solution to this problem. We must consider the ef-
fect of starting with a companded rather than a linear PCM
format. We woula like to investigate the variation'in per-
formance as a function of the order and type of filter em-

ployed. We can employ different ways of measuring converter
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performance. If we use white Gaussian noise, bandlimited

from 500 to 1000 Hz, to represent a speech waveform, then we

can encode this waveform in ADM or PCM and apply our conver-
sion process. We can then measure output power in aﬁd out
of the 500 Hz band to determine converter performance. -This
represents, a possible, significant improvement over the re-
sultsnobtained with a single test tone. Likewise, we could
generate voice tapes with systems that have been physically
realizeé. h

This brings us to the last few thoughts that could be
pursued as future work. For all three topics discussed,
siﬁce the designs have been oriented toward digital hardware,
we would like to construct real time versions of the proces-
sors and converters. Then, we can truly-test voice signals -
with subjective evaluation and even extend all the w;rk to
the Song video mode ADM and observe the effect on picture
quality. 2An experlmental study of this type will bring out

additional practical aspects of the work accomplished here,

some of which may not appear otherwise.
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APPENDIX 1

AMPLITUDE~-FREQUENCY CHARACTERISTICS OF THE
FOUR-TERM NON—-RECURSIVE AVERAGING FILTER

In this appendix, we derive the expression for [Ha(w)[,

i.e;, ﬁq. {(2.3-9), from the digi?al transfer function,
JHy(z) = (1 + 2"l + z72 + 273)/4 . . (Al-1)
If we set |
z = exp (juT,) T (al1-2)
‘and separate tgfms,-we obtain
JH () = (1 + e7uTs) /4 4+ 7I20Ts (1 + 730Ts) /4 | (RL-3)
factbring Eg. (Al-3), it reduces to
Hy(w) = (1 + e'jMTS)(l + e-jszS)/4 . | (A1l-4)

By removing e 39Ts/2 £rom the first term of this product and

e~ J0Ts from the second. term, we reveal a rather familiar form
Hy(w) = e I0Ts/2[(I0Ts/2 + ¢730Ts/2) /21 (a1-5)
(A1-5)

. e J0Ts[ (oJ0Ts 4 ~I0Tsy /27

Recognizing the exponential definition of the cosine, we can

now write
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-J30Tg/2

H (n) = e cos (0Ty/2) cos (wTg) . (Al-6)

Thus, by observation,'we see that the amplitude-frequency -
characteristics of the four-term non-recursive averaging fil-

ter are given by

|H, (w) | = ]cos(wTs/2)cos(wTS)] . (a1-7)
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_ APPENDIX 2

THE PCM PRODUCT VIA ALTERNATE TECHNIQUES

There are many other techniques to obtain the PCM
product of x(t) and y(t) by using the‘samples'of both sig-
nals at a rate me. Some- of thege shall be discussed in
this appehdix. It 1s clear_that we can low pass filter the
samples of each éignal, return to the analog domain, perform
an analog multiplication and then resample at 4f. This
will certainly give us PCM samples of the product. However,
we must resort to a complete analog multiplication. This
"can be avoided by holding the samples of each signal for
1/2f, seconds and multiplying the-ﬁéia values. If we as-
sume that the samples are actually quantized values, then
we have a multiplication of discrete values yielding a dis-
crete product--just like digital multiplication. The only
difference is that the product is a held waveform rather
than being samples. To obtain the PCM product, we must re-
' sample the held ﬁ;oﬁuct at 4£f, and A/D convert.

We shall show first that the holding and multiplying
technique described above does, in fact, produce the product
of x(t) and y(t) and second that it is not a good technique
to_émploy because of the diétortion that it introduces into
the product. It is intuitively apparent that this technique
will yield the product because, by holding the samples of

each signal, we are low pass filtering them. The transfer
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function of the holding circuit for a signal bandlimited to

f, and sampled at the Nyguist frequency is given as [391]

sin (0T, /2
Gy (w) = w2 (A2-1)
wT/2
where
Ty = l/2fm = the Nyquist period. . (A2-2)

Although the holding qircuit has LPF¥ characteristics,.they-
are not very flat in-band and do not cutoff sharply. This
causes distortion of the in—band signal spectrum and does
not completely eliminate the out-of-band spectrum.

To demonstrate this concept, we define the Fpuriér‘

-y e, [ Py

transform of x(t) and vy (t) as - it

X(o) = 5[x(0)1 - (a2-3)

and.

Y(w) = Fy(e)] . “(A2-4)

1§

The sampled spectra of x(t) and y(t) are given as

co

X*¥{w) = I Xi{w + an) {(A2-5)
Nn=-w
and
Y*(w) = I Y(w + nmN) (A2-6)
T=—00 -
where -
Wy = 21y (A2-7)
and

fx = 1/Ty = the Nyquist freguency. (A2-8)
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Affér holding, X*(w) and ¥*(w) are multiplied by GH(m) thch
greatly attenuates, but does not completely eliminate, the

out-of-band spectra. If we multipl? the held signals.in the
time domain, we must convolve their fregquency domain spectra.

Denoting this product spectrum as Z(w), it is expressable as

Z(w) =.f Gg(VIX*(v)Cglw = VI¥*(w - v¥dv .  (A2-9)
To show that the actual product spectrum is imbedded in
Z({w), we must decompose X*(w) and Y*(w) into its in-band and

out-of-band spectra, i.e.,

X*(w)‘= X(w) + Xo(m) . {Aa2-10)
where '
X (0) = nil[X(w + nuwy) + Xlw - nwg) ] (A2-11)
and -
¥*(w) = ¥Y(w) + Yo(m) (a2-12)
where
Yo(w) f nil[Y(w + noyg) + Y(o - nwg)d . (A2-13)

Now we can recast Z(w) in the following form:

Z(w) + [ Gg()Ggla = VIXMY(w - v}dv + Zgy(w) ,(A2-14)

whére
2 @) = [ GpvIcyle - VLX) Y (0 = V)

(A2-15)
+ Xo(v)¥gy (e - v} ldv
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and this term, Zdliw), represents distortion.
With the aid of some trigonomeéric identities, we can

expand GH(v)GH(w - v) into the following form:

sin(mTN/Z)sin(vTN/Z)cos(vTN/Z)

GH(v)GH(w - v) =
{wv - vz)T§/4

{A2-16)

_ cos (wTy/2) sin? (vIyg/2)

(wv - v2)Th/4

Letting the second- term of Eg. (A2-16) also contribute to

distortion, we rewrite Z({w) as

sin (wTy/2) ? sin (viIy)

Z(w) = X{(vi¥(w - v)dv
T§/4 % gy - \)2 \ J.;,:;f.'—. ’
Cod
) (a2-17)
+ Zdz(m) + Zdl(m) .
where
. ~cos (0Tx/2) © sin (vVTy/2)
Zgy (W) = /2 N2 (Y (e - vav
‘ TR/4 - gy - v?
(A2-18)
By expanding sin(vTy) into its power series,
sin(vTy) = vIy - (voy) 3/31 + (\JTN)S/S! - 4+ =+~ ,{A2-19)})

canceling‘the common factor (v) from the denominator (wv - v?),

and then writing the power series for 1/{(w - v) as
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(L/)L1/(1 = v/wl = (1/w)[1 + v/u + (v/w)? + ++-1,

(A2-20)

we can express sin(vI)/(wv - v?) as

Siﬁ(vTN)/(wv - v2) = (TN/m)[l + v/u + (v/m)% 4+ ees]

- (T&/w3!)[v2 + vi¥/w + vV F e 4+ = eee
(a2-21)
If we allow all terms but Tyg/w in Eq: (A2-21) to contribute

to distortion, then we can write Z(w) as:

z(w) = 220 OT/2) ¢y )y - viay + 2, (@)
wTy/2 e |
- . (A2-22)
+ Zdz(m) + Zdl ((.0) r * ?_'-!___ , -

where

. g3 (@) = sin(uwTy/2) ¢ 18in(VT) - TN|x(y) ¥ (0 - v)av
wTy/2 ~Clwv - v? et

(a2-23)

We recognize the spectrum of the product in Eg. (A2-22)
' as the convolution of X(w) and ¥(w). However, we observe
that it is shaped by sin(wTN/z)/(mTN/Z) and there are the
additive distortion terms, Zdl(m), Zdz(w) and Zd3(w). Thus,
although we have shown that the actual product is embedded
ip_Z(w), we have also shown that we do not expect the product
to be of wvery high qualify because of all the disto&tion cons

tained in Z{(w).
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_ APPENDIX 3

FREQUENCY CHARACTERISTICS OF THE CASCADE ARRANGEMENT
FILTER, H{-.D(z) , USED IN ADM TO PCM CONVERSION

in this appendix, wé present a derivation of the trans-
fer function, HCD(f), given in Eq. (3.3-26), which shows the
effect of -the non—recuréi&e_filter (Fig. 3.3-2) on the ADM
estimate, x(k). _The ﬁilter—coefficient;, g(ii, are obtained
from the step response of an ILPF (Fig. 3.3-5). We have set
Q, the number of filter coefficients, to be an even integer
and specified g(0) =‘0. The reﬁaining Q-1 coefficients are

symmetrically distributed about 0.5 on the g(t) curve. Due

fo the éymmetry of g(t), this implies -that - . -
g(0/2) = 0.5 , (23-1)
g{i) = 0.5 - g' (1), for 1 = 1, 2, ***, ka - 1,(A3-2)
and

g(i) = 0.5 + g'(Q - i), for 1 = Q/2 + 1, Q/2 + 2,

sse, - 1. (A3-3)
To find the frequency characteristics of HCD(Z), where

o-1
Hop(2) = 29+ (1 -2"1 = g(i)z_l ' (A3-4)
i=0

we first evaluate the frequency spectrum of
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0-1 .
H (z) = I g(i)z . (A3-5)
i=0

. -Q/2 : o
Factoring out z o/ and noting that g(0) = 0, Eg. (A3-5) be-

comes

~

o-1 . .
H (z) = z_Q/z_Zlg(i)zQ/z_l (A3-6)
i=

If we substitute Egs. (A3-1), (A3-2) and (A3-3) in the above

expression for H,(z) and gather terms from the sum, in pairs

of two, by mating the terms (i = 1, i =Q - 1), (L = 2,

i=0-2), *++, we shall produce Q/2 - 1 pairs of the form

L 0.5[22/2 - ® 4 z7(Q/2 - m)y | gr(my[oQ/2 - W - 2~ (Q/2 — m) ]

where
m=1,2, ===, 0/2 -1,

and one term, when i = Q/2, yielding g(Q/z)zo = 0.5.

By letting
z = exp(juTg) , (A3-7)

we see that each pair gives rise to a cosine and a sine term

of the form
cos (w(Q/2 - m)T;) - 23g"' (m)sin(w(Q/2 - m)T.)
If we now sét

m=09/2 - i, (n3-8)
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sum all pairs, and include the term when i = Q/2, we obtain

Ho(w) = e 9T/ 2rc(w) + js@)] , (a3-9) —
where
Q/2~1
C(w) = 0.5 + Z cos(iwTg) ) (A3-10)
i=1
and
- Q/2~1 - .
- 8(w) = -2 & g'(Q/2 - i)sin(iwTy) - (A3-11)
- - i=1 . .

' , -(0+1) /2
Returning to Eg. (A3-4) and factoring out z (Q+1)/ , We

see that

HCD(Z) = Z_(Q+l)/2[Z—(Q—l)/2 + (21/2 - Z-l/z)ZQ/ZHO(Z)]
(A3-12}

Again letting

"z = exp(juTg) . (AB—IB)
the above expreésion becomes
HCD(N)-= e—j(Q+l)wTs/2{e-](Q—l)st/2 ‘

(A3-14)

+ 2jsin(wT, /2) [C(w) + 8 (w) 1} .

If we apply Euler's formula to eI Q1 uTe/2 4ng expand Eg.

(33-14), we £ind that



201

i

CD(w) e—j(Q+1)wTS/2{[cos(wTs(Q - 1)/2)

‘2sin (wT_/2)5 (w)

(A3-15)
+ jl-sin(wT (Q - 1)/2)
+ 2sin(st/2)c(m)3}'.
Now we combine the following equations
w = 2%f , (A3~16)
B £, = 1/T_ = Rfy (A3-17)
and
fN = 2fc ’ (A3-18)
.to see that
wT = 'rrf/Rfc . (A3-19)

By substituting Fg. (A3-19) and the formulae for C(w) and
" s(w), given in Egs. (A3-10) and (A3-1l), respectively, into

Eg. (A3-15), we arrive at the final form of HCD(f), i.e.,

Hop (£) = exp(-3(Q + l)wf/2Rfc)[{cos(ﬂ(Q ~ 1)£/2RE )
Q/2~-1 C
+ 4sin(mE/2RE)L T g'(Q/2 - i)sin(iwf/RE )1}
: i=1

4+

j{-sin (7 (Q ~-l)f/2Rfc) + 25in(ﬁf/2Rfc)
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0/2-1
» [0.5 + I cos(imf/RE;)I}) .
i=1 '

(A3-20)
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. APPENDIX 4

THE EFFECT OF TIME DELAY ON THE SNR OF THE
BASIC PCM TO ADM CONVERTER

Although we have shown that the time deléy, Yor ?equired
to maximize the optimum SNR of the basic PCM to ADM converter
is =zero, it is interesting to study the relationship between
Qo and the time delay, v,- hWe shall exﬁlore this depeﬂdence

for the case of a white, bandlimited input power spectral

density, that is,

Gy (£) = Ty . [£] < £, »
(Ad-1)
’ - =0 |, €] > £,
where )
Ty = 1/2fm . (Ad-2)

This input power spectrum is one of the examples applied to
the SNR statistical analysis.

- Since the input power is set to unity, as seen from Eq.
{A4-1), we shall begin from the expression for Q4 given in
Eq. (4.3-16), with Px =1, i.e.,

o = 1 . (a4-3)

°© 1 -t (yy) /By

The in-band signal power is calculated from

P, = Ry(0) - By_ (a4-4)
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where

R, (0) = the total power in w(t), which is
evaluated from Eg. (4.3-38) for this
particular example,

and

the out-of-band power in w(t), found

Py
° from Eq. (4.3-56).

For the basic PCM to ADM converter, and this example, these

calculations are easily made since Eq. k4.3—5é) becomes a
shbrtr finite -sum,

We must evaluate u(YO) to see the effect of Yo OR the
SNR. Starting with Egs. (4.3-17) and (4.3-45), and the even

property of wa(f), we can express u(yo) by the following

integral,

cos (2mfyg)

wlygy) = Lim(4/m) [ [
g0 € (2m£) 2

cos (21f (Yo + Ty)) + cos(2nf(y, - Ty))
2 (2nf)?

1at ,

{A4-5)
where we have employed some trigonometric identities and used
the limit as e + 0 because the integrand blows up at £ = 0.
After changing variables and using a well-known relationship

from a table of integrals,

fcosxix — ___ Cosx - 1 Singdx , n>1 , (Ad-6)
x0 (n-1)xn-1 (n-1) " xn~1

we can, with the aid of L'Hospital's rule, calculate all
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Ferﬁs in Eg. (a4-5).
_ The final expression for u(yo)_takes the following form:
ulyy) = —(4/m)cos (myy/Ty)
- (2/m) (Yo/Ty) 81 (wy o /Ty)
+ (L/M (L + vo/Ty ) Si(n(l + v /Ty))

4 (L/T) (L= Yo/T) SL(T(L = Yo/Ty))

(ad-7)
where
o, ;
Si(a) = [§&E§dx (A4-8)
0 X '

aﬁd the sine integral, Si(o), is a common tabulated function.
Now we can evaluate Q, from Eqg. (A4-3) for various values of
Yo/Ty- In Fig. Ad-1, we show a piot of Q, versus Yo/fN for
lvol < Ty- When [y | > Ty, Q, will oscillate between 0 and
1.5 8B. We observe that the peak occurs at vy, = 0 as expec-

ted and after vy, = #0.2T, the Q  curve falls off very rapidly.

N
This indicates that we can have a delay of several ADM peri-
ods before we suffer a drastic reduction in SNR, but no more

than one-fifth of the Nyguist period.
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Fig. A4-1. Optimum SNR of the Basic PCM to ADM Converter
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