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INTRODUCTION
 

This technical report completes one facet of Project ASTIiO. In this report 

we show that signals encoded in a delta modulator. format can undergo arithmetic 

processing without first being transformed into a PCMformat. In addition, we 

show that PCM and DM signals can be converted to the other format with less than 

0.5 dB degradation. 

Since a signal can be encoded into a DM format using half the number of 

binary digits required for PCM conversion, the results presented here indicate 

a way of significantly reducing the memory requirements of a data base. The next 

facet of this study will be to actually encode the data into a DMvI format store the 

bits in the (DM) data base and use that reduced data in the DBMS. 
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AfBSTRACT
 

ARITHMETIC PROCESSING AND DIGITAL CONVERSION
 

OF
 

ADAPTIVE DELTA MODULATION ENCODED SIGNALS'
 

by
 

Joseph L. LoCicero
 

Advisor: Professor Donald L. Schilling
 

This thesis can be divided into three distinct parts:
 

direct arithmetic processing of adaptive delta modulation
 

(ADM) encoded signals, conversion from ADM encoded signals
 

to pulse code modulation (PCM) encoded signals-and conver­

sion from PCM to ADM encoded signals. In the first part,
 

it is shown that signals which are ADM encoded can be arith­

metically processed directly, without first decoding. Oper­

ating on the DM bit stream, and employing only standard
 

digital hardware, the sum, difference and product can be ob­

tained in PCM and ADM format.
 

These arithmetic processing systems are analyzed and
 

simulated on a digital computer. Employing a four-term,
 

non-recursive, averaging filter after the processors, we
 

show that, for constant inputs, the signal-to-noise ratio
 

(SNR) of the DM device is exactly the same as that of their
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PCM counterparts. SNR curves are obtained for these proces­

sors when the inputs are single frequency tones and their
 

performance is compared to similar PCM systems. At high bit
 

rates, the performance of the DM adder is comparable to that
 

of an equivalent, companded PCM system. At moderate and
 

low bit rates, the SNR of the DM adder is at ieast 4 dB
 

better than that of the PCM device. The DM multiplier, at
 

any bit rate, has a SNR which is at least 5-10 dB higher
 

than the SNR of a companded PCM system.
 

The conversion from ADM to PCM encoded signals essen­

tially deals with the changing from a high "information"
 

rate (ADM) to a lower one (PCM). The "information" rate is
 

the frequency at which estimates of the encoded signal are
 

available. This problem is solved by using a digital fil­

ter, which operates on the ADM step sizes and which is de­

signed with ideal low pass filter characteristics, and then
 

utilizing a low (PCM) frequency sampling gate. Since the
 

ADM estimate, x(k), is a wideband signal, even if the input
 

is bandlimited, we must eliminate the high frequency com­

ponents before sampling at the PCM rate or else suffer the
 

disastrous effect of aliasing. We show the effect of the
 
A 

digital filter structure on x(k) by recasting the system into
 

a cascade arrangement and evaluating, in the frequency domain,
 

the transfer function relating x(k) to the improved ADM
 

estimate.
 

The ADM to PCM conversion system, with the non-recursive
 

digital filter structure, is restricted to standard digital
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hardware and its operation is evaluated via computer simula­

tion. The performance of this converter is compared to the­

performance of other systems which will produce the same net
 

result. 'The simplest system achieves ADM to PCM conversion
 

by sampling x(k) at the PCM rate. A family of performance
 

curves, obtained with a sinusoidal input, shows that there
 

is an 8-10 dB improvement in SNR, over the simple system,
 

when the non-recursive digital filter structure is employed
 

in the ADM to PCM converter. We find that the SNR of the
 

optimal converter, which uses ideal analog demodulation of
 

x(k) before PCM sampling, is only 1-2 dB better than the SNR
 

of the converter with the non-recursive digital filter
 

structure.
 

When converting from PCM to ADM encoded signals, i.e.,
 

changing from a low to a high "information" rate, we must
 

estimate the signal excursion at discrete points-between the
 

PCM samples and fit these values to a path through an "ADM
 

signal estimate tree." A number of techniques, both depen­

dent on the input signal statistics and independent of them,
 

are developed to perform this conversion. A detailed statis­

tical analysis is undertaken for one particular system which
 

employs a very simple, all-digital method of converting from
 

PCM to ADM format. This converter uses samples of a linear
 

interpolation between PCM points as the input to an ADM.
 

This system is simulated on a digital computer and SNR curves
 

are generated to determine its performance. We find that for
 

a low frequency tone, the performance of this converter is
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almost as good as if an ADM encoded the original tone. How­

ever, for a high frequency tone, the performance is unaccept­

able.
 

We introduce a non-parametric technique to estimate the
 

midpoint between PCM samples using four adjacent PCM points.
 

The estimator weights the four adjacent PCM points as if they
 

were impulses passing through an ideal low pass filter. A
 

linear interpolation is formulated between the PCM points
 

and the estimated midpoint. Samples of this interpolation
 

are then used as the input to an ADM to achieve conversion.
 

The SNR of the non-parametric converter, for both low and
 

high frequency sinusoids, comes within 1 dB of the SNR for
 

the optimal system, i.e., when the ADM encodes the original
 

tone. This converter utilizes only the standard digital
 

hardware in its realization and stresses a simple structure
 

that can be fabricated on a single, large-scale, integrated
 

circuit chip.
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CHAPTER 1 

INTRODUCTION 

Many modern communication systems utilize digital encod­

ing techniques because of high quality performance and ease
 

in implementation. The rapid advances recently made in the
 

integrated circuit technology contribute greatly to the cur­

rent interest in digital signal processing. Among the
 

existing encoding techniques, adaptive delta modulation (ADM)
 

and pulse code modulation (PCM) are both very popular and
 

widely used in commercial communications. The simplicity of
 

the DM system makes it very attractive and PCM was the first
 

digital encoding technique, dating back to the late 1940s.
 

Consequently, we shall restrict ourselves to the processing
 

of ADM encoded signals and conversion between ADM and PCM.
 

Delta modulation is a technique by which an analog sig­

nal is encoded into a sequence of binary digits (bits) by
 

periodically comparing the analog signal to an estimate
 

signal. If the error between the analog signal and the esti­

mate is positive, then the bit is +1; if it is negative,
 

then the bit is -1. The estimate, formed from the entire
 

sequence of DM bits, is made to approximate, very closely,
 

the analog signal by increasing or decreasing according to
 

the current bit.
 

Since the beginning of delta modulation in the early
 

1950s [1], this simple method of analog-to-digital (A/D)
 



conversion has undergone many changes. The first DMs con­

structed and analyzed were composed of analog devices and
 

employed a single "leaky" integrator as their feedback cir­

cuit or estimator [2]. To improve dynamic range, the DM feed­

back circuit soon became continuously adaptive [3-51, that
 

is, the amount of change that the estimator produced each
 

time one bit was transmitted was a function of the past his­

tory of the signal. It was not long before the feedback cir­

cuit, and then the entire DM, evolved from analog to all­

digital devices [6-8]. Currently, we are working with both
 

all-digital linear DMs and various types of all-digital adap­

tive DMs [9]. Although some analysis and evaluation has been
 

done [10-13], theoretical studies on any system involving
 

ADMs are incomplete, not having treated the nonlinear aspects
 

of the ADMs under investigation.
 

Throughout this dissertation we confine ourselves to the
 

Song audio mode ADM [141 when evaluating performance of the
 

systems that have been developed.- However, the designs are
 

often general enough to be applied to a large class of digi­

tal ADMs. All systems in this thesis are designed to be
 

practically realizable. Thus, we only consider operations
 

which can be constructed with standard digital hardware, that
 

is, adders, delays, hard-wired scalars and common logic cir­

cuits. Consequently, all our ADM devices can be manufactured
 

with large scale integration (LSI) where the distinct advan­

tage is low cost and high reliability. One objective of the
 

entire thesis is always to work with digitally encoded sig­
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nals when developing solutions to our problems.
 

The three topics considered in this dissertation deal
 

with signals encoded in ADM and PCM formats. The first con­

centrates on direct arithmetic processing of ADM encoded
 

signals. The next explores conversion from ADM format to PCM
 

format. And the last studies conversion from PCM format to
 

ADM format.
 

The first topic is investigated because of the popular
 

use of ADM encoded signals and the recent trend toward digi­

tal processing of signals. The real objective is to elimi­

nate the need either to demodulate the ADM signal into an
 

analog waveform or change to PCM form before processing can
 

be done. In Ch. 2 we show that the sum, difference and even
 

the product of DM encoded signals can be obtained by operat­

ing directly on the serial data, i.e., the ADM bit streams.
 

The sum, difference and product signals are presented in
 

either an ADM or a PCM format. We analyze these-processors,
 

discuss their hardware complexity and test them via simula­

tion on a digital computer. The performance is evaluated
 

using a technique developed in Ch. 2. Finally, a comparison
 

is made with equivalent PCM processing systems.
 

The conversion topics are studied to achieve compati­

bility between these two widely used encoding techniques.
 

We can also facilitate digital processing of signals encoded
 

in both ADM and PCM formats by-devising translation units
 

between the two systems. In Ch. 3, a general technique is
 

presented for converting from ADM to PCM format without first
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demodulating the ADM bit stream and returning to the analog
 

domain. The converter utilizes a non-recursive digital fil­

ter that is designed with ideal low pass filter characteris­

tics. A frequency domain analysis is developed to explain
 

why this filtering operation is so vital to the performance
 

of this system. The ADM to PCM converter is simulated on a
 

digital computer and a family of performance curves is pre­

sented for the case of ADM encoded sinusoidal signals. We
 

also give the performance of an optimal analog conversion
 

system to facilitate comparison.
 

When considering PCM to ADM conversion we begin by
 

pointing out the conceptual difficulties that arise. In
 

Ch. 4 we explain several ways to circumvent these diffi­

culties and introduce an "ADM signal estimate tree" to illus­

trate the difficulties and to aid in overcoming them. We
 

design both parametric and non-parametric PCM to ADM conver­

ters. The parametric converters utilize the statistics of
 

the input signal in their design and the non-parametric con­

verters are independent of them. A'detailed statistical
 

analysis is developed to evaluate the performance of the
 

parametric converters. Extensive simulations are performed
 

on all these systems and the quality of their operation is
 

displayed with families of signal-to-noise ratio (SNR) curves.
 

The general results of this thesis are very encouraging.
 

The system designs employed to achieve direct ADM processing
 

and conversion between ADM and PCM formats are relatively
 

simple. All the structures that were developed and simulated
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could easily be realized with standard digital hardware. The
 

SNR curves for the DM processors are either within 1-2 dB
 

of the SNR curves for equivalent companded PCM systems or are
 

several dB better when the ADM bit rate is lower. Likewise,
 

the performance of the converters comes within 1-2 dB of
 

the performance of optimal conversion systems. Although we
 

have developed satisfactory solutions to the three problems
 

investigated, we have, by no means, exhausted these topics.
 

There is still room for more research, whether it be theo­

retical analysis or practical experimentation.
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CHAPTER.2
 

DIRECT ARITHMETIC PROCESSING OF ADM ENCODED SIGNALS
 

Arithmetic processing of digitally encoded signals is
 

traditionally performed on signals that are PCM encoded via
 

standard parallel processing techniques. However, it is be­

coming increasingly popular to use other digital techniques
 

to encode signals. We would like to avoid the necessity of
 

having to return to a PCM format whenever we must arithmetic­

ally process these signals. For the case of DM encoded sig­

nals, it is shown that arithmetic processing can be performed
 

by operating directly on the DM bit stream. The direct DM
 

processors can be constructed using standard digital hard­

ware, that is, binary adders, shift registers, exclusive-OR
 

gates and hard-wired scalars. The performance of these de­

vices is shown to be comparable to PCM processors while the
 

hardware complexity is equivalent to, and in some cases less
 

than, that needed for PCM encoded signals.
 

2.1 The Basic Digital DM
 

A delta modulator is essentially a very simple device
 

to digitally encode an analog signal. The DM bit stream is
 

obtained by hard limiting the difference between the analog
 

signal and the DM estimate and transmitting a +1 or a -l
 

every clock period. The DM estimate is a function of all
 

past DM output bits. We shall be concerned with a type of
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DM which is all-digital in nature. An all-digital DM is one
 

that employs only digital circuftry to produce the DM signal
 

estimate from the DM bit stream.
 

In Fig.1 2.1-1, we show the basic form of a digital DM
 

which is used in a hardware realization. Let us assume that
 

the input signal, x(t), is bandlimited to fm and the DM is
 

operating well above the Nyquist rate, i.e., fs >> 2fm, where
 

fs is the DM clock frequency. The most general mathematical
 

description of a digital DM is given by the following set of
 

equations:
 

ex(k) = sgn[Ex(k)], (2.1-1)
 

A 

E (k) = x(k) - x(k) (2.1-2) 

and 

R(k) = 2(k - 1) + Sx(k), (2.1-3) 

where 

Sx(k) E the step size at the kth interval.
 

Equation (2.1-3) arises because the DM estimate, R(k), is the
 

accumulation of the step sizes as shown in Fig. 2.1-1, i.e.,
 

k 
Q(k) = Z Sx (i). (2.1-4) 

To simplify our discrete signal representation, we have adap­

ted the notation x(t = kTs) x(k), where T. = 1/fs is the DM
 

clock period.
 

To completely specify the particular type of digital DM,
 

we must define the step size algorithm used to formulate
 

Sx (k). For the case of a linear or fixed step DM,
 



fs
 

xX~t) 
k)C 

\-- Accumulator 

Fig. 2.1-1. Basic Digital Delta Modulator 
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Sx(k) = Sex(k - 1). 	 (2.1-5) 

For adaptive DMs there are many step size algorithms where
 

the step size adapts to an input signal parameter, generally
 

to its power. We shall be concerned with a class of DMs
 

derived by minimizing a mean square cost function, i.e.,
 

those described by the Song Algorithm [15]. In this algo­

rithm, the step size is a function of the two past DM bits
 

and the previous step size. We shall primarily deal with the
 

Song audio mode DM, where the step size changes linearly,
 

i.e., 

Sx(k) = ISx(k - i)le,(k - 1) + Sex(k ­ 2), (2.1-6) 

where 

S E the magnitude of the minimum step size. 

2.2 	 Direct DM Addition/Subtraction
 

Consider two signals, x(t) and y(t), both bandlimited to
 

fm and both DM encoded so that we have only the sequences
 

{e,(k)} and {ey(k)} available. The sum and the difference ok
 

these two signals are also bandlimited to fm. Generally,
 

digital addition (or subtraction) is viewed as the binary sum
 

(or appropriate complementing of the subtrahend and then bi­

nary addition) of two K-bit PCM words. If we prohibit over­

flow, the result is K-bit PCM words at a rate 2fm represent­

ing the sum or the difference. Since we are restricted to
 

the DM sequences of x(t) and y(t), we wish to obtain the
 

direct sum of these two signals by performing basic arithme­

tic processing on the two sequences. To achieve this, we
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form the direct sum, aD (k), as the sum of the individual sig­

nal estimates, that is,
 

aD(k) = x(k) + 2(k). (2.2-1) 

Using Eq. (2.1-3) for the estimates of x(t) and y(t), we ob­

tain a design equation for the direct sum as a recursive re­

lationship,
 

aD(k) = aD(k - 1) + Sx(k) + Sy(k), (2.2-2) 

where the step sizes are formed directly from the DM bits.
 

The direct sum, aD(k) , is available in PCM format be­

cause the step sizes, used in the design equation, are gener­

ated as parallel binary words. To obtain the DM bit stream
 

of the sum, {ea(k)}, we merely pass aD (k) through a digital
 

DM. A block diagram showing the structure for the sum of DM
 

encoded signals is presented in Fig. 2.2-1. The DM digital
 

feedback circuit shown in this figure is constructed with the
 

appropriate step size network followed by an accumulator.
 

Thus, to physically realize the entire DM direct sum system,
 

it requires only a full adder, an accumulator and the neces­

sary step size network.
 

One way-to subtract DM encoded signals is to add the
 

negative of the subtrahend signal. If we wish to form
 

x(t) - y(t), we must change +Sy(k) to -Sy(k) in our design
 

equation. Taking the direct difference, dD (k), as the dif­

ference between the signal estimates, we obtain
 

dD(k) = dD(k - 1) + Sx(k) - Sy(k). (2.2r3) 
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Thus, the subtraction algorithm has the same structure as the 

addition algorithm shown in Fig. 2.2-1. Another, even easier 

method to obtain the difference merely entails inverting each 

DM bit of the subtrahend signal. This produces -ey(k) and, 

for the DM step size algorithm cited above, -Sy(k). There­

fore, Fig. 2.2-1 becomes a subtractor by placing an inverter 

after e (k). 

The structure derived above is completely independent 

of the type of DM and is therefore universal for any digital 

DM definable by Eqs. (2.1-1) through (2.1-3). To realize the 

direct sum of signals encoded by a particular type of DM, we 

must construct the circuitry for the step size algorithm em­

ployed in the original DM encoder. For the modes cited above, 

the step size circuitry is constructed with standard digital 

hardware, i.e., full adders, delays, scalers and exclusive-

OR gates. The DM adder for the linear mode is given in 

Fig. 2.2-2. By applying the Song audio mode algorithm, we 

can realize the DM adder which is shown in Fig. 2.2-3. 

The latter device requires multiplications by e(k) = 

±1 and absolute value operations. Since obtaining the mag­

nitude of a quantity is equivalent to multiplication by +1 

if it is positive and by -1 if it is negative, we only need 

to explain the realization of a multiplication by e(k) using 

exclusive-OR gates. We shall assume that the internal arith­

metic employed is offset binary. For other types of internal 

arithmetic, similar realizations can be achieved with differ­

ent logic gates. The main characteristic of offset binary 
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arithmetic is its complementary symmetry about the zero axis;
 

that is, the complement of any quantity represents the nega­

tive of that quantity. If we multiply by e(k) = +1, i.e., a
 

binary 1, we leave the quantity unchanged; and if we multi­

ply by e(k) -!, i.e., a binary 0, we complement the quan­

tity. This operation is easily realized with a bank of ex­

clusive-NOR gates.
 

In the DM adders, and in all ensuing digital circuits,
 

we shall restrict ourselves to numerical scaling by I/2N,
 

where I and N are positive integers with I < 2N and N repre­

senting the number of bits in our internal arithmetic. Any
 

number of this form is expressable as
 

N
I/2N = Z ai/21, (2.2-4) 

i=l 

where
 

= 0 or 1. 

Since a scaling by 1/2i represents a simple shift by i-bits, 

a scale factor of I/2N can be hard-wired as a sum of i-bit 

shifts using only a series of full adders. We emphasize this 

scaling technique even though multipliers, which will pro­

duce the same net result, are readily available on an inte­

grated circuit (IC) chip. The hard-wiring decreases proces­

sing time and makes implementation easier because less com­

ponents are required. 

ai 


2.3 	 Averaging Filter
 

The steady state response of all types of digital DMs to
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a constant input is an estimate signal which has been found
 

to exhibit a periodic pattern. -For a linear DM, the esti­

mate is a simple square wave with a period of two sampling
 

intervals. For any Song mode DM, the signal estimate is
 

found to exhibit a periodic pattern which repeats every four 

sampling instants and which is symmetric about the quantized 

value of the input. In Fig. 2.3-1, we show a typical steady 

state estimate signal for the Song audio mode. In this 

figure, the constant input, x, has been quantized to x where 

Xq - S/2 < x < Xq + S/2 (2.3-1) 

and m is a non-negative integer limited by M. If we specify
 

the amplitude range of the DM encoder as Vpp and allow the
 

steady state pattern to span this range, then
 

(2M + 1)S < VPP. (2.3-2a) 

Consequently,
 

M < (Vpp - S)/2S. (2.3-2b) 

If the internal arithmetic of the DM encoder has B bits,
 

then the minimum step size is
 

S = Vpp/2B (2.3-3) 

and the upper bound on m can be given as
 

M < 2 
B- l (2.3-4) 

Since the direct sum, aD(k), was formulated as the sum
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of the individual signal estimates, we expect it to exhibit
 

a periodic pattern when respondihg to constant inputs. For
 

the Song, audio mode, there are four possible steady state
 

direct sum waveforms. A typical waveform, which can repre­

sent all four, is given in Fig. 2.3-2. In this figure, both
 

n and r are non-negative integers less than or equal to 2M
 

and yq is the quantized value of the constant input y where
 

yq - S/2 < y < yq + S/2. (2.3-5) 

The important property of the four possible steady state 

direct sum patterns is that the arithmetic average of any 

four consecutive values of aD(k) is always equal to x + q
 

yq. This fact inspired the use of a four-term averaging fil­

ter after aD(k).
 

The four-term non-recursive filter that was employed is
 

described by the following equation:
 

A (k) = I[aD(k) + aD(k - 1) + aD(k - 2) + aD(k - 3)].
 

(2.3-6)
 

If we apply Eq. (2.3-6) to the waveform given in Fig. 2.3-2,
 

the result is
 

A(k) = x + y (2.3-7) 
q q 

for all k, as long as aD(k) has reached steady state. Thus,
 

after a four-term averaging filter, the DM sum produces the
 

same result, for constant inputs, obtainable by PCM addition.
 

To realize this filter, we need not use the structure
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Fig. 2.3-2. Steady State Direct Sum for the Song Audio Mode DM 
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dictated by Eq. (2.3-6). We can save hardware by employing
 

the realization shown in Fig. (2.3-3) which uses two,
 

rather than three, adders. In general, by extending this
 

structure, it is possible to realize any N-term averaging
 

filter, where N = 2t and t is a positive integer, in a
 

similar fashion. The advantage is that, instead of needing
 

2t - 1 adders in the realization, only t adders are required.
 

To illustrate the function of the four-term averaging 

filter, we shall determine its digital transfer function, 

Ha(z). Assuming zero initial conditions and taking the 

Z-transform of Eq. (2.3-6), we obtain
 

-1 - 2H (z) _ A(z) _ 4(1 + z + z + z- 3 ). (2.3-8)
a aD(z) 4 

To display the frequency characteristics of this filter, we 

let z = exp(jwT s ) and find that 

J1(w))I = Icos(wTs/2)cos(wT) I. (2.3-9) 

In Fig. (2.3-4-), we plot IHa(O)j on an abscissa normalized
 

to f . A complete derivation of Eq. (2.3-9) is given in
s 

App. 1.
 

From Fig. (2.3-4) and Eq. (2.3-9), we observe that
 

Ha(w) has zeros at integer multiples of fs/4 when the inte­

ger is divisible by 4. It is precisely the first zero that
 

eliminates the four-sampling-interval periodic component in
 

the direct sum. The four-term averaging filter exhibits low
 

pass filter (LPF) characteristics and even slightly attenu­
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ates baseband frequencies. Thus, care must be taken in uti­

lizing this filter because it can introduce some distortion
 

to baseband signals. However, if the maximum baseband fre­

quency is in,the area of fs/10, then distortion will be mini­

mal since IHa(f = fs/10) I = 0.77, which is well above the 

3 dB point of this filter. This is not an unreasonable re­

quirement because the audio mode DM generally operates at
 

fs = 32K bits/second and speech is usually bandlimited to
 

2500 to 3500 Hz.
 

2.4 Direct DM Multiplication
 

Traditionally digital multiplication is treated as a
 

static operation; that is, two K-bit PCM words are either
 

fed into a combinatoric circuit or into a read only memory
 

(ROM) that has been built to perform the multiplication
 

operation. We could even use a random access memory (RAM)
 

that has been preset to multiply, with the appropriate
 

input logic circuit. The result is the product in the form
 

of a 2K-bit PCM word. There are, of course, dynamic tech­

niques capable of performing digital multiplication and we
 

shall discuss them in connection with hardware complexity.
 

In either-case, if we wish to multiply two signals, both
 

bandlimited to fm' then we must perform the static or dy­

namic operation on PCM words from each signal at a rate of
 

4fm to obtain the product in a PCM format. This is because
 

the product will be bandlimited to 2fm as we know from the
 

convolution theorem. This point is important for our later
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performance comparison with PCM. There are other ways to 

obtain the product in PCM form by using the samples of both 

signals at a rate of 2f . This matter is further pursued 

in App. 2. 

The problem that we consider here is the formation-of
 

the product of x(t) and y(t) when we only have their DM se­

quences, {ex(k)} and {ey(k)}, available. Once again we re­

strict ourselves to a design structure that can be imple­

mented with standard digital hardware. Forming the direbt
 

product as the product of the individual signal estimates,
 

we have
 

PD(k) = k(k)y(k). (2.4-1)
 

As in the case of the direct sum, we can develop a recursive
 

relationship as follows:
 

PD PD (k)y(k - 1)P 
k ) 

= PD(k - 1) + S (k x(k - 1) + S 

(2.4-2) 
+ Sx(k)Sy(k). 

The basic block diagram showing the direct product, in PCM
 

format [PD(k)] and in DM format [ep (k)], is given in Fig.
 

(2.4-1). Although the structure for the direct product is
 

universal for any digital DM definable by Eqs. (2.1-1).
 

through (2.1-3), it will be useful only if the step size
 

algorithm is such that-we can recursively realize the
 

particle products, that is, the last three terms in Eq.
 

(2.4-2).
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Fbr the linear DM, no difficulty arises and the direct
 

product is
 

(k l)(k ­PD(k) = PD(k - 1) + Se - l)x(k - 1) + Sex (k 1 1) 

+ S2ex(k - l)e (k 1 (2.4-3)
 

The realization of this system, shown in Fig. (2.,4-2):, is
 

extremely easy because there are no non'linear operations,
 

only simple scaling including multiplication by +1 or -1.
 

To derive the recursive relationships for the partial
 

products with the Song audio mode algorithm, we must use a
 

step size relationship common to all types of DMs, that is,
 

Sx(k) = ISx(k)]ex(k - 1). (2.4-4)
 

This equation says that the sign of the present step size,
 

Sx(k) , is dictated by the past DM output bit, ex(k - 1). 

From Eq. (2.1-6), we see that this property is applicable 

for the Song audio mode as long as ISx(k - 1)1 > S. if 

Sx(k - 1) = 0 and ex(k - 1) = ex(k - 2), then this property 

is also valid. .Onlywhen Sx (k - 1) = 0 and ex(k - 1) 

ex(k - 2), the step size relationship becomes invalid. This 

invalidity is caused by a hardware limitation that allows 

the step size to be zero rather than an arbitrarily small 

value. We shall showi however, that the condition of 

invalidity has a very low probability Of occurrence and the 

resulting signal'estimate used in'the multiplication algo­

rithm does not substantially degrade the product.
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Equation (2.4-4) can only be invalid when Sx(k) = 0. 

-A zero step size occurs primarily when the ADM is in its 

minimum steady.state pattern. That is, the estimate resem­

bles Fig. 2.3-1 when m = 0. This corresponds to the audio 

signal being zero because, in speech, 50% of the time there 

is no voice. Recently, step size statistics have been ob­

- tained for the Song audio mode ADM, using actual speech sig­

nals. They show that the .probabilityof a zero step size is 

approximately 0.04 when fs = 32K bits/second. Since Sx(k). 

= 0 occurS twice in a minimum steady state estimate pattern, 

the probability of such a pattern is 0.08. Let us assume 

that the audio signal is equally likely to increase or de­

crease from its zero.value in any of the four periods of the 

-steady state pattern. Only 2 of the 8 signal variations 

give rise to the condition when.Eq. (2.4-4) will be invalid. 

Therefore, the probability of invalidity is 0.02. 

We have created a situation in Fig. 2.4-3 where the 

step size relationship is invalid. The -solid curve repre­

sents the true ADM estimate and the broken line waveform is 

the estimate used in the multiplication algorithm. From 

this figure, we observe that the estimate used in the multi­

plication algorithm is just as good an approximation to the 

audio signal as the true estimate. We shall see, in Sec.. 

2.8.3, that the use of Eq. (2.4-2) does not noticeably ef­

fect the output SNR of the DM multiplier. 

Now that we have justified the step size relationship, 

we can use it to express recursively the partial products 
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for the Song audio mode:
 

S (k) (k- 1) = S (k - l)x(k - 2)ey(k - l)e (k - 2)
 
y y y Y7
 

+ S (k - 1)Sy(k - l)e(k - )ey(k - 2) (2.4-5) 

+ x(k - l)Sey(k -2)k 

Sx(k)y(k - 1) = Sx(k - l)y(.k - 2)ex(k - l)ex(k - 2) 

+ Sy(k - l)Sx(k - l)ex(k - lI)ex(k - 2) (2.4-6) 

+ y(k - l)Sex(k - 2), 

Sx(k)Sy((k) ,Sx(k l)Sy(k l)jex(k l)ey(k 1) 

+ SISx(k - 1) Iex (k -l)ey(k - 2) 

(2.4-7)
 

+ SISy(k - l)1ey(k- l)ex(k - 2) 

+ S2ex(k - 2)ey(k - 2). 

Equations (2.4-5), (2.4-6) and (2.4-7)-are readily realiz­

able with standard digital hardware similar to the DM
 

adder shown in Fig. 2.2-3. These three terms can be con­

structed with nothing more complicated than adders, delays,
 

hard-wired scalers and exclusive-OR gates to multiply by ±1
 

and produce the absolute value.
 

All of the design structures that we have derived are
 

accumulator type systems. For both the adder (Sec. 2.3) and
 

the multiplier (Sec. 2.4), for all DM modes, the present out­
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put is equal to the past output plus additional terms.
 

Thus, it is important to begin with the- correct initial
 

condition for the past output, or else suffer a constant
 

offset error. It is convenient to start with both signals,
 

x(t) and y(t), at zero so that we can employ a zero initial­

condition for the past output.
 

As in the case of the direct sum, we expect the'direct
 

product, since it is formulated as the product of the indiA
 

vidual signal estimates, to exhibit a periodic pittern when
 

responding to constant inputs. Wheh using the Song audio
 

mode algorithm, the direct product generates four possible­

steady state waveforms. In Fig. 2.4-4, we show the general
 

structure of a steady state waveform. The values of -C and
 

* C1 depend upon Xq and yq and the amplitude of the steady 

state error pattern (x - q and y - yq), while d2 and d2 de­

pend only on thel'atter of these two. The numerical values 

of di and d. can be entirely different, but they both have 

the same form, as can be seen by multiplying two steady 

state patterns together, that is,
 

Idil-= L/4, (2.4-8)
 

where
 

i= ,2,
 

L a positive integer
 

and
 

L < 4M 2 + 4M + 1 (2.4-9) 

where M is bounded in Eq. (2.3-4). 
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The arithmetic average of any four consecutive values
 

of PD(k) always equals the product of the quantized values
 

of the inputs plus a second-order term depending on S2 .
 

This warrants the use of the following four-term non-recur­

sive filter after PD(k):
 

P(k) = 1[pD(k) + p (k -1l) + PD(k - 2) + pD(k - 3)]. (2.4-10) 

4~ D D D D 

Applying Eq. (2.4-10) to the waveform shown in Fig. 2.4-3,
 

we see-that
 

P(k) = Xqyq + (d 
1 

+ d 
2 
)s2/2 (2.4-1) 

for all k, as long as PD(k) has reached the steady state. 

We have found, through computer simulations, that the fac­

tor (di + d2)/2 generally is no larger than 10 or 20. In a 

practical DM encoder with 10 bits of internal arithmetic 

and an amplitude range of Vpp = 10 volts, the minimum step 

size, S, will be approximately 10 millivolts. Therefore, 

the secohd-order term will be in the order of 1-2 millivolts. 

Even if we allow (d1 +'d 2 )/2 to be 100, the error only 

reaches 10 millivolts or one minimum step size. Certainly, 

one step size out of 1024 can be considered insignificant. 

For any reasonably small value of step size, the second 

order term, (d + d )S 2/2, is negligible and thus, after 
2 

the four-term averaging filter, the DM product yields a re­

sult almost identical to the PCM product.
 

The direct DM product design structure that we have
 

derived is not a unique solution to this problem. The de­
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performance comparison with PCM. There are other ways to 

obtain the product in PCM form by using the samples of both 

signals at a rate of 2f . This matter is further pursued 

in App. 2. 

The problem that we consider here is the formation-of
 

the product of x(t) and y(t) when we only have their DM se­

quences, {ex(k)} and {ey(k)}, available. Once again we re­

strict ourselves to a design structure that can be imple­

mented with standard digital hardware. Forming the direbt
 

product as the product of the individual signal estimates,
 

we have
 

PD(k) = k(k)y(k). (2.4-1)
 

As in the case of the direct sum, we can develop a recursive
 

relationship as follows:
 

PD PD (k)y(k - 1)P 
k ) 

= PD(k - 1) + S (k x(k - 1) + S 

(2.4-2) 
+ Sx(k)Sy(k). 

The basic block diagram showing the direct product, in PCM
 

format [PD(k)] and in DM format [ep (k)], is given in Fig.
 

(2.4-1). Although the structure for the direct product is
 

universal for any digital DM definable by Eqs. (2.1-1).
 

through (2.1-3), it will be useful only if the step size
 

algorithm is such that-we can recursively realize the
 

particle products, that is, the last three terms in Eq.
 

(2.4-2).
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Fbr the linear DM, no difficulty arises and the direct
 

product is
 

(k l)(k ­PD(k) = PD(k - 1) + Se - l)x(k - 1) + Sex (k 1 1) 

+ S2ex(k - l)e (k 1 (2.4-3)
 

The realization of this system, shown in Fig. (2.,4-2):, is
 

extremely easy because there are no non'linear operations,
 

only simple scaling including multiplication by +1 or -1.
 

To derive the recursive relationships for the partial
 

products with the Song audio mode algorithm, we must use a
 

step size relationship common to all types of DMs, that is,
 

Sx(k) = ISx(k)]ex(k - 1). (2.4-4)
 

This equation says that the sign of the present step size,
 

Sx(k) , is dictated by the past DM output bit, ex(k - 1). 

From Eq. (2.1-6), we see that this property is applicable 

for the Song audio mode as long as ISx(k - 1)1 > S. if 

Sx(k - 1) = 0 and ex(k - 1) = ex(k - 2), then this property 

is also valid. .Onlywhen Sx (k - 1) = 0 and ex(k - 1) 

ex(k - 2), the step size relationship becomes invalid. This 

invalidity is caused by a hardware limitation that allows 

the step size to be zero rather than an arbitrarily small 

value. We shall showi however, that the condition of 

invalidity has a very low probability Of occurrence and the 

resulting signal'estimate used in'the multiplication algo­

rithm does not substantially degrade the product.
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Equation (2.4-4) can only be invalid when Sx(k) = 0. 

-A zero step size occurs primarily when the ADM is in its 

minimum steady.state pattern. That is, the estimate resem­

bles Fig. 2.3-1 when m = 0. This corresponds to the audio 

signal being zero because, in speech, 50% of the time there 

is no voice. Recently, step size statistics have been ob­

- tained for the Song audio mode ADM, using actual speech sig­

nals. They show that the .probabilityof a zero step size is 

approximately 0.04 when fs = 32K bits/second. Since Sx(k). 

= 0 occurS twice in a minimum steady state estimate pattern, 

the probability of such a pattern is 0.08. Let us assume 

that the audio signal is equally likely to increase or de­

crease from its zero.value in any of the four periods of the 

-steady state pattern. Only 2 of the 8 signal variations 

give rise to the condition when.Eq. (2.4-4) will be invalid. 

Therefore, the probability of invalidity is 0.02. 

We have created a situation in Fig. 2.4-3 where the 

step size relationship is invalid. The -solid curve repre­

sents the true ADM estimate and the broken line waveform is 

the estimate used in the multiplication algorithm. From 

this figure, we observe that the estimate used in the multi­

plication algorithm is just as good an approximation to the 

audio signal as the true estimate. We shall see, in Sec.. 

2.8.3, that the use of Eq. (2.4-2) does not noticeably ef­

fect the output SNR of the DM multiplier. 

Now that we have justified the step size relationship, 

we can use it to express recursively the partial products 



I--I 
I I 

Estimate used, in 
Multiplication Algorithm 

Audio Signal. True ADM Estimate 

II 

t-eFig. 2.4-3. Example when the Step Size Relationship is Invalid 



- - - -

30 

for the Song audio mode:
 

S (k) (k- 1) = S (k - l)x(k - 2)ey(k - l)e (k - 2)
 
y y y Y7
 

+ S (k - 1)Sy(k - l)e(k - )ey(k - 2) (2.4-5) 

+ x(k - l)Sey(k -2)k 

Sx(k)y(k - 1) = Sx(k - l)y(.k - 2)ex(k - l)ex(k - 2) 

+ Sy(k - l)Sx(k - l)ex(k - lI)ex(k - 2) (2.4-6) 

+ y(k - l)Sex(k - 2), 

Sx(k)Sy((k) ,Sx(k l)Sy(k l)jex(k l)ey(k 1) 

+ SISx(k - 1) Iex (k -l)ey(k - 2) 

(2.4-7)
 

+ SISy(k - l)1ey(k- l)ex(k - 2) 

+ S2ex(k - 2)ey(k - 2). 

Equations (2.4-5), (2.4-6) and (2.4-7)-are readily realiz­

able with standard digital hardware similar to the DM
 

adder shown in Fig. 2.2-3. These three terms can be con­

structed with nothing more complicated than adders, delays,
 

hard-wired scalers and exclusive-OR gates to multiply by ±1
 

and produce the absolute value.
 

All of the design structures that we have derived are
 

accumulator type systems. For both the adder (Sec. 2.3) and
 

the multiplier (Sec. 2.4), for all DM modes, the present out­
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put is equal to the past output plus additional terms.
 

Thus, it is important to begin with the- correct initial
 

condition for the past output, or else suffer a constant
 

offset error. It is convenient to start with both signals,
 

x(t) and y(t), at zero so that we can employ a zero initial­

condition for the past output.
 

As in the case of the direct sum, we expect the'direct
 

product, since it is formulated as the product of the indiA
 

vidual signal estimates, to exhibit a periodic pittern when
 

responding to constant inputs. Wheh using the Song audio
 

mode algorithm, the direct product generates four possible­

steady state waveforms. In Fig. 2.4-4, we show the general
 

structure of a steady state waveform. The values of -C and
 

* C1 depend upon Xq and yq and the amplitude of the steady 

state error pattern (x - q and y - yq), while d2 and d2 de­

pend only on thel'atter of these two. The numerical values 

of di and d. can be entirely different, but they both have 

the same form, as can be seen by multiplying two steady 

state patterns together, that is,
 

Idil-= L/4, (2.4-8)
 

where
 

i= ,2,
 

L a positive integer
 

and
 

L < 4M 2 + 4M + 1 (2.4-9) 

where M is bounded in Eq. (2.3-4). 
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Fig. 2.4-4. Steady State Direct Product for Song Audio Mode DM 

with Constant Inputs 
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The arithmetic average of any four consecutive values
 

of PD(k) always equals the product of the quantized values
 

of the inputs plus a second-order term depending on S2 .
 

This warrants the use of the following four-term non-recur­

sive filter after PD(k):
 

P(k) = 1[pD(k) + p (k -1l) + PD(k - 2) + pD(k - 3)]. (2.4-10) 

4~ D D D D 

Applying Eq. (2.4-10) to the waveform shown in Fig. 2.4-3,
 

we see-that
 

P(k) = Xqyq + (d 
1 

+ d 
2 
)s2/2 (2.4-1) 

for all k, as long as PD(k) has reached the steady state. 

We have found, through computer simulations, that the fac­

tor (di + d2)/2 generally is no larger than 10 or 20. In a 

practical DM encoder with 10 bits of internal arithmetic 

and an amplitude range of Vpp = 10 volts, the minimum step 

size, S, will be approximately 10 millivolts. Therefore, 

the secohd-order term will be in the order of 1-2 millivolts. 

Even if we allow (d1 +'d 2 )/2 to be 100, the error only 

reaches 10 millivolts or one minimum step size. Certainly, 

one step size out of 1024 can be considered insignificant. 

For any reasonably small value of step size, the second 

order term, (d + d )S 2/2, is negligible and thus, after 
2 

the four-term averaging filter, the DM product yields a re­

sult almost identical to the PCM product.
 

The direct DM product design structure that we have
 

derived is not a unique solution to this problem. The de­



34
 

sign presented does, however, perform well and this will be
 

seen from the simulation responses for elementary input
 

waveforms and also from the SNR performance curves. There
 

are other design techniques that could have been incorpora­

ted into the direct product design. We could introduce a
 

"leak" factor-in Eq. (2.4-2) and feedback a fraction of the
 

output, PD(k), to generate, say 0.9PD(k - 1). -Alternately,
 

we might use a different averaging filter after PD(k); or
 

we could perform some kind of averaging on Z(k) and y(k) be­

fore we form their product. Each of these ideas would have
 

to be analyzed individually to determine its merits and
 

shortcomings-in formulating the direct DM product.
 

2.5 Hardware Complexity
 

From Eq. (2.2-2) or Fig. 2.2-1 we see that the complex­

ity and quantity of the hardware needed for a DM adder is
 

essentially equivalent to that needed for a PCM adder. In
 

PCM addition, since we have two K-bit words coming from
 

x(t) and y(t), we require two K-bit input storage registers,
 

one K-bit full adder and, since we do-not allow overflow,
 

one K-bit output-register. To obtain the DM direct sum, we
 

need the step size circuitry for both signals (some of which
 

can be time shared) terminating in registers with less than
 

K-bit capacity, one transfer register with enough bits to
 

represent twice the maximum step size, one K-bit full adder
 

and one K-bit delay register.
 

The -comparison of hardware complexity for multiplica­
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tion is somewhat more involved. PCM multiplication is gen­

erally treated as a static operation where two K-bit words
 

are either fed into a combinatorial circuit, or into a pre­

programmed ROM, or into a repeating add-store-and-shift cir­

cuit. We must also remember that-to multiply two signals,
 

bandlimited to fm' we must perform this static operation on
 

the PCM words from Ehe two signals at a rate of 4fm since
 

the product will be bandlimited to 2f .
 

Now we can examine the hardware complexity needed for
 

these PCM multipliers. A combinatorial circuit needs two
 

K-bit input storage registers, K2 AND gates, K K-bit full
 

adders and a 2K-bit output storage register. This is
 

easily seen by observing the structure that arises when we
 

use "long" multiplication to obtain the product of two K-bit
 

words, AK-'A2A. and BK'''B2B I. A ROM, with a 2K-bit input
 

'address, normally has 22K memory locations. Even though
 

there are only K2 different product values, the ROM must
 

still use 2 2K memory locations to multiply as well as need­-

ing input and output registers. The repeating add-store­

and-shift device requires two K-bit input registers, a K-bit
 

shift register, K AND gates, a 2K-bit full adder and a
 

2K-bit output register. However, for this last multiplier,
 

we must perform K repeated additions in the time interval
 

I/4fm before we obtain the final product word.
 

Considering the DM multiplier for the linear mode, as
 

shown in Fig. 2.4-2, the hardware needed is two 2-bit shift
 

registers, two accumulators (each having a K-bit full adder
 

-
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for the Song audio mode:
 

S (k) (k- 1) = S (k - l)x(k - 2)ey(k - l)e (k - 2)
 
y y y Y7
 

+ S (k - 1)Sy(k - l)e(k - )ey(k - 2) (2.4-5) 

+ x(k - l)Sey(k -2)k 

Sx(k)y(k - 1) = Sx(k - l)y(.k - 2)ex(k - l)ex(k - 2) 

+ Sy(k - l)Sx(k - l)ex(k - lI)ex(k - 2) (2.4-6) 

+ y(k - l)Sex(k - 2), 

Sx(k)Sy((k) ,Sx(k l)Sy(k l)jex(k l)ey(k 1) 

+ SISx(k - 1) Iex (k -l)ey(k - 2) 

(2.4-7)
 

+ SISy(k - l)1ey(k- l)ex(k - 2) 

+ S2ex(k - 2)ey(k - 2). 

Equations (2.4-5), (2.4-6) and (2.4-7)-are readily realiz­

able with standard digital hardware similar to the DM
 

adder shown in Fig. 2.2-3. These three terms can be con­

structed with nothing more complicated than adders, delays,
 

hard-wired scalers and exclusive-OR gates to multiply by ±1
 

and produce the absolute value.
 

All of the design structures that we have derived are
 

accumulator type systems. For both the adder (Sec. 2.3) and
 

the multiplier (Sec. 2.4), for all DM modes, the present out­



3.7
 

racy .of the product, while, at the same time, increasing the
 

complexity of the hardware. 
 -

2.6 	 SNR with Constant Inputs
 

Consider first the SNR obtained by adding two statis­

tically independent constant signals, such as x and y, that
 

are PCM encoded. Defining the quantized samples as xq and
 

yq, and the respective errors as ex and cy, the PCM sum is
 

seen 	to be
 

aq =2 Xq + Yq' (2.6-1), 

where 

Xq =x -ex (2.6-2) 

and 

yq = - (2.6-3) 

We can also express the PCM sum as
 

a = 	 a - at (2.6-4)q a
 

where the true sum is
 

a =x + y (2.6-5)
 

and the sum error is 

= E + 6. (2.6-6) 
a 	 x y 

If the minimum step size, S, is the distance between PCM
 

levels and it is sufficiently small, then Ex and Ey will-be
 

equally likely in the interval [-S/2, S/2]. One can readily
 

show [161 that
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Fbr the linear DM, no difficulty arises and the direct
 

product is
 

(k l)(k ­PD(k) = PD(k - 1) + Se - l)x(k - 1) + Sex (k 1 1) 

+ S2ex(k - l)e (k 1 (2.4-3)
 

The realization of this system, shown in Fig. (2.,4-2):, is
 

extremely easy because there are no non'linear operations,
 

only simple scaling including multiplication by +1 or -1.
 

To derive the recursive relationships for the partial
 

products with the Song audio mode algorithm, we must use a
 

step size relationship common to all types of DMs, that is,
 

Sx(k) = ISx(k)]ex(k - 1). (2.4-4)
 

This equation says that the sign of the present step size,
 

Sx(k) , is dictated by the past DM output bit, ex(k - 1). 

From Eq. (2.1-6), we see that this property is applicable 

for the Song audio mode as long as ISx(k - 1)1 > S. if 

Sx(k - 1) = 0 and ex(k - 1) = ex(k - 2), then this property 

is also valid. .Onlywhen Sx (k - 1) = 0 and ex(k - 1) 

ex(k - 2), the step size relationship becomes invalid. This 

invalidity is caused by a hardware limitation that allows 

the step size to be zero rather than an arbitrarily small 

value. We shall showi however, that the condition of 

invalidity has a very low probability Of occurrence and the 

resulting signal'estimate used in'the multiplication algo­

rithm does not substantially degrade the product.
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sign presented does, however, perform well and this will be
 

seen from the simulation responses for elementary input
 

waveforms and also from the SNR performance curves. There
 

are other design techniques that could have been incorpora­

ted into the direct product design. We could introduce a
 

"leak" factor-in Eq. (2.4-2) and feedback a fraction of the
 

output, PD(k), to generate, say 0.9PD(k - 1). -Alternately,
 

we might use a different averaging filter after PD(k); or
 

we could perform some kind of averaging on Z(k) and y(k) be­

fore we form their product. Each of these ideas would have
 

to be analyzed individually to determine its merits and
 

shortcomings-in formulating the direct DM product.
 

2.5 Hardware Complexity
 

From Eq. (2.2-2) or Fig. 2.2-1 we see that the complex­

ity and quantity of the hardware needed for a DM adder is
 

essentially equivalent to that needed for a PCM adder. In
 

PCM addition, since we have two K-bit words coming from
 

x(t) and y(t), we require two K-bit input storage registers,
 

one K-bit full adder and, since we do-not allow overflow,
 

one K-bit output-register. To obtain the DM direct sum, we
 

need the step size circuitry for both signals (some of which
 

can be time shared) terminating in registers with less than
 

K-bit capacity, one transfer register with enough bits to
 

represent twice the maximum step size, one K-bit full adder
 

and one K-bit delay register.
 

The -comparison of hardware complexity for multiplica­
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tion is somewhat more involved. PCM multiplication is gen­

erally treated as a static operation where two K-bit words
 

are either fed into a combinatorial circuit, or into a pre­

programmed ROM, or into a repeating add-store-and-shift cir­

cuit. We must also remember that-to multiply two signals,
 

bandlimited to fm' we must perform this static operation on
 

the PCM words from Ehe two signals at a rate of 4fm since
 

the product will be bandlimited to 2f .
 

Now we can examine the hardware complexity needed for
 

these PCM multipliers. A combinatorial circuit needs two
 

K-bit input storage registers, K2 AND gates, K K-bit full
 

adders and a 2K-bit output storage register. This is
 

easily seen by observing the structure that arises when we
 

use "long" multiplication to obtain the product of two K-bit
 

words, AK-'A2A. and BK'''B2B I. A ROM, with a 2K-bit input
 

'address, normally has 22K memory locations. Even though
 

there are only K2 different product values, the ROM must
 

still use 2 2K memory locations to multiply as well as need­-

ing input and output registers. The repeating add-store­

and-shift device requires two K-bit input registers, a K-bit
 

shift register, K AND gates, a 2K-bit full adder and a
 

2K-bit output register. However, for this last multiplier,
 

we must perform K repeated additions in the time interval
 

I/4fm before we obtain the final product word.
 

Considering the DM multiplier for the linear mode, as
 

shown in Fig. 2.4-2, the hardware needed is two 2-bit shift
 

registers, two accumulators (each having a K-bit full adder
 

-
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sign presented does, however, perform well and this will be
 

seen from the simulation responses for elementary input
 

waveforms and also from the SNR performance curves. There
 

are other design techniques that could have been incorpora­

ted into the direct product design. We could introduce a
 

"leak" factor-in Eq. (2.4-2) and feedback a fraction of the
 

output, PD(k), to generate, say 0.9PD(k - 1). -Alternately,
 

we might use a different averaging filter after PD(k); or
 

we could perform some kind of averaging on Z(k) and y(k) be­

fore we form their product. Each of these ideas would have
 

to be analyzed individually to determine its merits and
 

shortcomings-in formulating the direct DM product.
 

2.5 Hardware Complexity
 

From Eq. (2.2-2) or Fig. 2.2-1 we see that the complex­

ity and quantity of the hardware needed for a DM adder is
 

essentially equivalent to that needed for a PCM adder. In
 

PCM addition, since we have two K-bit words coming from
 

x(t) and y(t), we require two K-bit input storage registers,
 

one K-bit full adder and, since we do-not allow overflow,
 

one K-bit output-register. To obtain the DM direct sum, we
 

need the step size circuitry for both signals (some of which
 

can be time shared) terminating in registers with less than
 

K-bit capacity, one transfer register with enough bits to
 

represent twice the maximum step size, one K-bit full adder
 

and one K-bit delay register.
 

The -comparison of hardware complexity for multiplica­
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tion is somewhat more involved. PCM multiplication is gen­

erally treated as a static operation where two K-bit words
 

are either fed into a combinatorial circuit, or into a pre­

programmed ROM, or into a repeating add-store-and-shift cir­

cuit. We must also remember that-to multiply two signals,
 

bandlimited to fm' we must perform this static operation on
 

the PCM words from Ehe two signals at a rate of 4fm since
 

the product will be bandlimited to 2f .
 

Now we can examine the hardware complexity needed for
 

these PCM multipliers. A combinatorial circuit needs two
 

K-bit input storage registers, K2 AND gates, K K-bit full
 

adders and a 2K-bit output storage register. This is
 

easily seen by observing the structure that arises when we
 

use "long" multiplication to obtain the product of two K-bit
 

words, AK-'A2A. and BK'''B2B I. A ROM, with a 2K-bit input
 

'address, normally has 22K memory locations. Even though
 

there are only K2 different product values, the ROM must
 

still use 2 2K memory locations to multiply as well as need­-

ing input and output registers. The repeating add-store­

and-shift device requires two K-bit input registers, a K-bit
 

shift register, K AND gates, a 2K-bit full adder and a
 

2K-bit output register. However, for this last multiplier,
 

we must perform K repeated additions in the time interval
 

I/4fm before we obtain the final product word.
 

Considering the DM multiplier for the linear mode, as
 

shown in Fig. 2.4-2, the hardware needed is two 2-bit shift
 

registers, two accumulators (each having a K-bit full adder
 

-
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and a K-bit storage register), 2K+l exclusive-OR gates, a
 

2K-bit transfer register, a 2K-bit full adder and a 2K-bit
 

output register. This hardware complexity is equivalent to
 

that needed in the repeating add-store-and-shift PCM multi­

plier. Of course, the amount of hardware needed for the DM
 

device depends on the step size algorithm employed.
 

Finally, we observe that, as the number of bits in­

creases, the amount of hardware increases linearly with K
 

for any DM multiplier . This is not true for all PCM multi­

pliers. The complexity of the combinatorial circuit and
 

K2
the ROM increases as and 2 2K, respectively. Although
 

the complexity of the repeating add-store-and-shift,circuit
 

increases linearly-with K, the time required to obtain the
 

product of two K-bit words also-increases linearly with K.
 

When evaluating the total complexity of our DM multi­

plier, we conclude that the hardware required is comparable 

to a PCM multiplier. Signals are generally encoded with an 

ADM, where the step size algorithm, and consequently the 

required product circuitry, is somewhat more involved than
 

when a linear DM is used as the encoder. However, the DM
 

multiplier performs all its operations directly on the DM
 

bit streams, a concept never considered heretofore in digi­

tal signal processing where DM signals were involved. The
 

conventional alternative is to convert the DM bits into PCM
 

format first. This would give rise'to a conversion error.
 

Then we can perform PCM.multiplication, but this would in­

crease the conversion error and further add to the inaccu­
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and a K-bit storage register), 2K+l exclusive-OR gates, a
 

2K-bit transfer register, a 2K-bit full adder and a 2K-bit
 

output register. This hardware complexity is equivalent to
 

that needed in the repeating add-store-and-shift PCM multi­

plier. Of course, the amount of hardware needed for the DM
 

device depends on the step size algorithm employed.
 

Finally, we observe that, as the number of bits in­

creases, the amount of hardware increases linearly with K
 

for any DM multiplier . This is not true for all PCM multi­

pliers. The complexity of the combinatorial circuit and
 

K2
the ROM increases as and 2 2K, respectively. Although
 

the complexity of the repeating add-store-and-shift,circuit
 

increases linearly-with K, the time required to obtain the
 

product of two K-bit words also-increases linearly with K.
 

When evaluating the total complexity of our DM multi­

plier, we conclude that the hardware required is comparable 

to a PCM multiplier. Signals are generally encoded with an 

ADM, where the step size algorithm, and consequently the 

required product circuitry, is somewhat more involved than
 

when a linear DM is used as the encoder. However, the DM
 

multiplier performs all its operations directly on the DM
 

bit streams, a concept never considered heretofore in digi­

tal signal processing where DM signals were involved. The
 

conventional alternative is to convert the DM bits into PCM
 

format first. This would give rise'to a conversion error.
 

Then we can perform PCM.multiplication, but this would in­

crease the conversion error and further add to the inaccu­
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performance comparison with PCM. There are other ways to 

obtain the product in PCM form by using the samples of both 

signals at a rate of 2f . This matter is further pursued 

in App. 2. 

The problem that we consider here is the formation-of
 

the product of x(t) and y(t) when we only have their DM se­

quences, {ex(k)} and {ey(k)}, available. Once again we re­

strict ourselves to a design structure that can be imple­

mented with standard digital hardware. Forming the direbt
 

product as the product of the individual signal estimates,
 

we have
 

PD(k) = k(k)y(k). (2.4-1)
 

As in the case of the direct sum, we can develop a recursive
 

relationship as follows:
 

PD PD (k)y(k - 1)P 
k ) 

= PD(k - 1) + S (k x(k - 1) + S 

(2.4-2) 
+ Sx(k)Sy(k). 

The basic block diagram showing the direct product, in PCM
 

format [PD(k)] and in DM format [ep (k)], is given in Fig.
 

(2.4-1). Although the structure for the direct product is
 

universal for any digital DM definable by Eqs. (2.1-1).
 

through (2.1-3), it will be useful only if the step size
 

algorithm is such that-we can recursively realize the
 

particle products, that is, the last three terms in Eq.
 

(2.4-2).
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Fbr the linear DM, no difficulty arises and the direct
 

product is
 

(k l)(k ­PD(k) = PD(k - 1) + Se - l)x(k - 1) + Sex (k 1 1) 

+ S2ex(k - l)e (k 1 (2.4-3)
 

The realization of this system, shown in Fig. (2.,4-2):, is
 

extremely easy because there are no non'linear operations,
 

only simple scaling including multiplication by +1 or -1.
 

To derive the recursive relationships for the partial
 

products with the Song audio mode algorithm, we must use a
 

step size relationship common to all types of DMs, that is,
 

Sx(k) = ISx(k)]ex(k - 1). (2.4-4)
 

This equation says that the sign of the present step size,
 

Sx(k) , is dictated by the past DM output bit, ex(k - 1). 

From Eq. (2.1-6), we see that this property is applicable 

for the Song audio mode as long as ISx(k - 1)1 > S. if 

Sx(k - 1) = 0 and ex(k - 1) = ex(k - 2), then this property 

is also valid. .Onlywhen Sx (k - 1) = 0 and ex(k - 1) 

ex(k - 2), the step size relationship becomes invalid. This 

invalidity is caused by a hardware limitation that allows 

the step size to be zero rather than an arbitrarily small 

value. We shall showi however, that the condition of 

invalidity has a very low probability Of occurrence and the 

resulting signal'estimate used in'the multiplication algo­

rithm does not substantially degrade the product.
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Equation (2.4-4) can only be invalid when Sx(k) = 0. 

-A zero step size occurs primarily when the ADM is in its 

minimum steady.state pattern. That is, the estimate resem­

bles Fig. 2.3-1 when m = 0. This corresponds to the audio 

signal being zero because, in speech, 50% of the time there 

is no voice. Recently, step size statistics have been ob­

- tained for the Song audio mode ADM, using actual speech sig­

nals. They show that the .probabilityof a zero step size is 

approximately 0.04 when fs = 32K bits/second. Since Sx(k). 

= 0 occurS twice in a minimum steady state estimate pattern, 

the probability of such a pattern is 0.08. Let us assume 

that the audio signal is equally likely to increase or de­

crease from its zero.value in any of the four periods of the 

-steady state pattern. Only 2 of the 8 signal variations 

give rise to the condition when.Eq. (2.4-4) will be invalid. 

Therefore, the probability of invalidity is 0.02. 

We have created a situation in Fig. 2.4-3 where the 

step size relationship is invalid. The -solid curve repre­

sents the true ADM estimate and the broken line waveform is 

the estimate used in the multiplication algorithm. From 

this figure, we observe that the estimate used in the multi­

plication algorithm is just as good an approximation to the 

audio signal as the true estimate. We shall see, in Sec.. 

2.8.3, that the use of Eq. (2.4-2) does not noticeably ef­

fect the output SNR of the DM multiplier. 

Now that we have justified the step size relationship, 

we can use it to express recursively the partial products 
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for the Song audio mode:
 

S (k) (k- 1) = S (k - l)x(k - 2)ey(k - l)e (k - 2)
 
y y y Y7
 

+ S (k - 1)Sy(k - l)e(k - )ey(k - 2) (2.4-5) 

+ x(k - l)Sey(k -2)k 

Sx(k)y(k - 1) = Sx(k - l)y(.k - 2)ex(k - l)ex(k - 2) 

+ Sy(k - l)Sx(k - l)ex(k - lI)ex(k - 2) (2.4-6) 

+ y(k - l)Sex(k - 2), 

Sx(k)Sy((k) ,Sx(k l)Sy(k l)jex(k l)ey(k 1) 

+ SISx(k - 1) Iex (k -l)ey(k - 2) 

(2.4-7)
 

+ SISy(k - l)1ey(k- l)ex(k - 2) 

+ S2ex(k - 2)ey(k - 2). 

Equations (2.4-5), (2.4-6) and (2.4-7)-are readily realiz­

able with standard digital hardware similar to the DM
 

adder shown in Fig. 2.2-3. These three terms can be con­

structed with nothing more complicated than adders, delays,
 

hard-wired scalers and exclusive-OR gates to multiply by ±1
 

and produce the absolute value.
 

All of the design structures that we have derived are
 

accumulator type systems. For both the adder (Sec. 2.3) and
 

the multiplier (Sec. 2.4), for all DM modes, the present out­
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put is equal to the past output plus additional terms.
 

Thus, it is important to begin with the- correct initial
 

condition for the past output, or else suffer a constant
 

offset error. It is convenient to start with both signals,
 

x(t) and y(t), at zero so that we can employ a zero initial­

condition for the past output.
 

As in the case of the direct sum, we expect the'direct
 

product, since it is formulated as the product of the indiA
 

vidual signal estimates, to exhibit a periodic pittern when
 

responding to constant inputs. Wheh using the Song audio
 

mode algorithm, the direct product generates four possible­

steady state waveforms. In Fig. 2.4-4, we show the general
 

structure of a steady state waveform. The values of -C and
 

* C1 depend upon Xq and yq and the amplitude of the steady 

state error pattern (x - q and y - yq), while d2 and d2 de­

pend only on thel'atter of these two. The numerical values 

of di and d. can be entirely different, but they both have 

the same form, as can be seen by multiplying two steady 

state patterns together, that is,
 

Idil-= L/4, (2.4-8)
 

where
 

i= ,2,
 

L a positive integer
 

and
 

L < 4M 2 + 4M + 1 (2.4-9) 

where M is bounded in Eq. (2.3-4). 
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The arithmetic average of any four consecutive values
 

of PD(k) always equals the product of the quantized values
 

of the inputs plus a second-order term depending on S2 .
 

This warrants the use of the following four-term non-recur­

sive filter after PD(k):
 

P(k) = 1[pD(k) + p (k -1l) + PD(k - 2) + pD(k - 3)]. (2.4-10) 

4~ D D D D 

Applying Eq. (2.4-10) to the waveform shown in Fig. 2.4-3,
 

we see-that
 

P(k) = Xqyq + (d 
1 

+ d 
2 
)s2/2 (2.4-1) 

for all k, as long as PD(k) has reached the steady state. 

We have found, through computer simulations, that the fac­

tor (di + d2)/2 generally is no larger than 10 or 20. In a 

practical DM encoder with 10 bits of internal arithmetic 

and an amplitude range of Vpp = 10 volts, the minimum step 

size, S, will be approximately 10 millivolts. Therefore, 

the secohd-order term will be in the order of 1-2 millivolts. 

Even if we allow (d1 +'d 2 )/2 to be 100, the error only 

reaches 10 millivolts or one minimum step size. Certainly, 

one step size out of 1024 can be considered insignificant. 

For any reasonably small value of step size, the second 

order term, (d + d )S 2/2, is negligible and thus, after 
2 

the four-term averaging filter, the DM product yields a re­

sult almost identical to the PCM product.
 

The direct DM product design structure that we have
 

derived is not a unique solution to this problem. The de­
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sign presented does, however, perform well and this will be
 

seen from the simulation responses for elementary input
 

waveforms and also from the SNR performance curves. There
 

are other design techniques that could have been incorpora­

ted into the direct product design. We could introduce a
 

"leak" factor-in Eq. (2.4-2) and feedback a fraction of the
 

output, PD(k), to generate, say 0.9PD(k - 1). -Alternately,
 

we might use a different averaging filter after PD(k); or
 

we could perform some kind of averaging on Z(k) and y(k) be­

fore we form their product. Each of these ideas would have
 

to be analyzed individually to determine its merits and
 

shortcomings-in formulating the direct DM product.
 

2.5 Hardware Complexity
 

From Eq. (2.2-2) or Fig. 2.2-1 we see that the complex­

ity and quantity of the hardware needed for a DM adder is
 

essentially equivalent to that needed for a PCM adder. In
 

PCM addition, since we have two K-bit words coming from
 

x(t) and y(t), we require two K-bit input storage registers,
 

one K-bit full adder and, since we do-not allow overflow,
 

one K-bit output-register. To obtain the DM direct sum, we
 

need the step size circuitry for both signals (some of which
 

can be time shared) terminating in registers with less than
 

K-bit capacity, one transfer register with enough bits to
 

represent twice the maximum step size, one K-bit full adder
 

and one K-bit delay register.
 

The -comparison of hardware complexity for multiplica­
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tion is somewhat more involved. PCM multiplication is gen­

erally treated as a static operation where two K-bit words
 

are either fed into a combinatorial circuit, or into a pre­

programmed ROM, or into a repeating add-store-and-shift cir­

cuit. We must also remember that-to multiply two signals,
 

bandlimited to fm' we must perform this static operation on
 

the PCM words from Ehe two signals at a rate of 4fm since
 

the product will be bandlimited to 2f .
 

Now we can examine the hardware complexity needed for
 

these PCM multipliers. A combinatorial circuit needs two
 

K-bit input storage registers, K2 AND gates, K K-bit full
 

adders and a 2K-bit output storage register. This is
 

easily seen by observing the structure that arises when we
 

use "long" multiplication to obtain the product of two K-bit
 

words, AK-'A2A. and BK'''B2B I. A ROM, with a 2K-bit input
 

'address, normally has 22K memory locations. Even though
 

there are only K2 different product values, the ROM must
 

still use 2 2K memory locations to multiply as well as need­-

ing input and output registers. The repeating add-store­

and-shift device requires two K-bit input registers, a K-bit
 

shift register, K AND gates, a 2K-bit full adder and a
 

2K-bit output register. However, for this last multiplier,
 

we must perform K repeated additions in the time interval
 

I/4fm before we obtain the final product word.
 

Considering the DM multiplier for the linear mode, as
 

shown in Fig. 2.4-2, the hardware needed is two 2-bit shift
 

registers, two accumulators (each having a K-bit full adder
 

-
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and then evaluate the performance. Since the inputs are
 

statistically independent, the pioduct signal power is
 

2
p= x (2.6-24)
x y
 

For PCM signals, the sample value and the error are likewise
 

statistically independent. Consequently,
 

Ep 0 (2.6-25a) 

and 

Var(s ) l = x2 E2 + y2 E2 + E2 E2. (2.6-25b) 
p =p y x x
 

Evaluating the variance of the product error, we obtain
 

Var(Ep) = (U 2 + a2 )S2 /12 + S4/144 (2.6-26)
p x y 

Thus, for the product of PCM encoded signals,
 

SNRp(PCM) = 14 + (2.6-27) 
p 12 (O" + UZ)S2 ±S4 26-7 

If the two signals have equal power and the step size is
 

small (a al a2 >> S2), the SNR becomes
 
x y
 

SNRp(PCM) = 6a2/S2 (2.6-28)
 

For the direct product of DM encoded signals, we can
 

similarly develop an expression for the SNR. Again, we in­

clude the averaging filter introduced in Eq. (2.4-10) and
 

the DM error is formulated as
 

Ep= p - p , (2.6-29) 
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where
 

P = P(k) = Xqyq + 6S2 (2.6-30)
 

Here we have assumed that p (k) has reached steady state and
 D
 

6 represents the-constant, (d, + d2)/2, introduced previ­

ously. With the aid of-Eqs. (2.6-19) and (2.6-20),, we find
 

that
 

p= + 6S2 (2.6-31)
 

Let us define the product SNR for DM signals to be
 

= 2 

SNRp(DM) = Var(p (2.6-32)
 

To calculate SNRp(DM), we must evaluate
 

Ep= 6S2 _, (2.6-33a)
 

P-s + 6 Sk (2.6-33b)
 

and
 

2= e (2.6-33c)
Var(Cp) = -

But Eq. (2.6-33c) implies that 

Var(Ep) = Var( p) (2.6-33d) 

and 

SN%(DM) = SNRp (PCM) (2.6-34) 

Therefore, 

SNRp(DM) = 6a 2/S 2 , (2.6-35) 



3.7
 

racy .of the product, while, at the same time, increasing the
 

complexity of the hardware. 
 -

2.6 	 SNR with Constant Inputs
 

Consider first the SNR obtained by adding two statis­

tically independent constant signals, such as x and y, that
 

are PCM encoded. Defining the quantized samples as xq and
 

yq, and the respective errors as ex and cy, the PCM sum is
 

seen 	to be
 

aq =2 Xq + Yq' (2.6-1), 

where 

Xq =x -ex (2.6-2) 

and 

yq = - (2.6-3) 

We can also express the PCM sum as
 

a = 	 a - at (2.6-4)q a
 

where the true sum is
 

a =x + y (2.6-5)
 

and the sum error is 

= E + 6. (2.6-6) 
a 	 x y 

If the minimum step size, S, is the distance between PCM
 

levels and it is sufficiently small, then Ex and Ey will-be
 

equally likely in the interval [-S/2, S/2]. One can readily
 

show [161 that
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x= Cy = 0 (2.6-7a) 

and 

-2= S2/12, .. (2.6-7b)
 

where the bar in the above equations denotes the probabalis­

-tic expected value.
 

Let us now .define the sum SNR for PCM signals to be
 

SNR (PCM) Var2 a (2.6-8)
 

where
 

a a2
 

Va(a) B (a - a)2 a - a (2.6-9) 

Assuming x and y to be independent, zero mean, -Gaussian ran­

dom variables with variances axand a2 the varianCe-of the
 
x ­

sum is
 

2
a =a + a 2 (2.6-10)
 
- x 7 

To determine the variance of the sum error, Var(c ), we note
 a
 

that
 

= 0 , (2.6-11a)
a
 

so that
 

Var(s a = s = s2 + E2= S2/6 (2.6-iib-) 
a a x y
 

Thus,. for PCM encoded signals,
 

SNR (PCM) = 6 (U2 + a2 )/S2 (2.6-12a)
 
a X y 
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Setting a2 G2 = 2, Eq. (2.6-12a) becomes x y
 

2/S2
SNR (PCM) = 12a (2.6-12b) 
a 

For the direct sum of DM encoded signals, an analysis
 

similar to the PCM case can be conducted by evaluating the
 

difference between a and aD. However, the actual error
 

that we are concerned with is after the non-recursive four­

term averaging filter introduced in Eq. (2.3-6). This
 

error is
 

A = a - A , (2.6-13) 

where 

A.= A(k) = x q+ yq (2.6-14) 

as obtained in Eq. (2.3-7) when aD(k) has reached steady
 

state. With the help of Eqs. (2.6-1) and (2.6-4), we see
 

that
 

A E: (2.6-15)
 

that is, the DM sum error after.the averaging filter is
 

exactly the same as the PCM sum error.
 

Defining the sum-SNR for DM signals'to be,
 

SNR (DM) V a (2.6-16)
a -Var ( A) 

it is apparent that
 

SNR (DM) = SNR (PCM) • (2.6-17)
a
a 
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REPRODUCIBILITY OF THE 
ORIGINAL PAGE 18 POORConsequently,
 

2
SNR (DM) = 12a 2/S , (2.6-18) 

a 

where we have assumed that both x and y possess the same
 

signal power, a2 . The conclusion,is that, for the case of
 

constant input signals, the performance of the direct DM
 

adder followedby the averaging filter is identical to the
 

PCM adder performance when the comparison is based on SNR.
 

Now we shall consider the SNR obtained by multiplying
 

two constant, statistically independent signals that are PCM
 

encoded. Using the same notation as in the sum analysis,
 

the PCM product is
 

pq = xqyq (2.6-19)
 

Expressing the PCM product as
 

Pg P - p , (2.6-20)
q p 

and using the defining relationships for Xq and yq in Eq..
 

(2.6-19), we see that the true product is
 

p = xy (2.6-21)
 

and the product error is
 

Ep = XSy + Ysx - Exey" (2.6-22) 

We can specify the product SNR for PCM signals as
 

•SNR (PCM) P2 (2.6-23)
p
p -Var(E '
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and then evaluate the performance. Since the inputs are
 

statistically independent, the pioduct signal power is
 

2
p= x (2.6-24)
x y
 

For PCM signals, the sample value and the error are likewise
 

statistically independent. Consequently,
 

Ep 0 (2.6-25a) 

and 

Var(s ) l = x2 E2 + y2 E2 + E2 E2. (2.6-25b) 
p =p y x x
 

Evaluating the variance of the product error, we obtain
 

Var(Ep) = (U 2 + a2 )S2 /12 + S4/144 (2.6-26)
p x y 

Thus, for the product of PCM encoded signals,
 

SNRp(PCM) = 14 + (2.6-27) 
p 12 (O" + UZ)S2 ±S4 26-7 

If the two signals have equal power and the step size is
 

small (a al a2 >> S2), the SNR becomes
 
x y
 

SNRp(PCM) = 6a2/S2 (2.6-28)
 

For the direct product of DM encoded signals, we can
 

similarly develop an expression for the SNR. Again, we in­

clude the averaging filter introduced in Eq. (2.4-10) and
 

the DM error is formulated as
 

Ep= p - p , (2.6-29) 
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performance comparison with PCM. There are other ways to 

obtain the product in PCM form by using the samples of both 

signals at a rate of 2f . This matter is further pursued 

in App. 2. 

The problem that we consider here is the formation-of
 

the product of x(t) and y(t) when we only have their DM se­

quences, {ex(k)} and {ey(k)}, available. Once again we re­

strict ourselves to a design structure that can be imple­

mented with standard digital hardware. Forming the direbt
 

product as the product of the individual signal estimates,
 

we have
 

PD(k) = k(k)y(k). (2.4-1)
 

As in the case of the direct sum, we can develop a recursive
 

relationship as follows:
 

PD PD (k)y(k - 1)P 
k ) 

= PD(k - 1) + S (k x(k - 1) + S 

(2.4-2) 
+ Sx(k)Sy(k). 

The basic block diagram showing the direct product, in PCM
 

format [PD(k)] and in DM format [ep (k)], is given in Fig.
 

(2.4-1). Although the structure for the direct product is
 

universal for any digital DM definable by Eqs. (2.1-1).
 

through (2.1-3), it will be useful only if the step size
 

algorithm is such that-we can recursively realize the
 

particle products, that is, the last three terms in Eq.
 

(2.4-2).
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Fbr the linear DM, no difficulty arises and the direct
 

product is
 

(k l)(k ­PD(k) = PD(k - 1) + Se - l)x(k - 1) + Sex (k 1 1) 

+ S2ex(k - l)e (k 1 (2.4-3)
 

The realization of this system, shown in Fig. (2.,4-2):, is
 

extremely easy because there are no non'linear operations,
 

only simple scaling including multiplication by +1 or -1.
 

To derive the recursive relationships for the partial
 

products with the Song audio mode algorithm, we must use a
 

step size relationship common to all types of DMs, that is,
 

Sx(k) = ISx(k)]ex(k - 1). (2.4-4)
 

This equation says that the sign of the present step size,
 

Sx(k) , is dictated by the past DM output bit, ex(k - 1). 

From Eq. (2.1-6), we see that this property is applicable 

for the Song audio mode as long as ISx(k - 1)1 > S. if 

Sx(k - 1) = 0 and ex(k - 1) = ex(k - 2), then this property 

is also valid. .Onlywhen Sx (k - 1) = 0 and ex(k - 1) 

ex(k - 2), the step size relationship becomes invalid. This 

invalidity is caused by a hardware limitation that allows 

the step size to be zero rather than an arbitrarily small 

value. We shall showi however, that the condition of 

invalidity has a very low probability Of occurrence and the 

resulting signal'estimate used in'the multiplication algo­

rithm does not substantially degrade the product.
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Fig. 2.4- 2. DM Multiplier for Linear Mode
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Equation (2.4-4) can only be invalid when Sx(k) = 0. 

-A zero step size occurs primarily when the ADM is in its 

minimum steady.state pattern. That is, the estimate resem­

bles Fig. 2.3-1 when m = 0. This corresponds to the audio 

signal being zero because, in speech, 50% of the time there 

is no voice. Recently, step size statistics have been ob­

- tained for the Song audio mode ADM, using actual speech sig­

nals. They show that the .probabilityof a zero step size is 

approximately 0.04 when fs = 32K bits/second. Since Sx(k). 

= 0 occurS twice in a minimum steady state estimate pattern, 

the probability of such a pattern is 0.08. Let us assume 

that the audio signal is equally likely to increase or de­

crease from its zero.value in any of the four periods of the 

-steady state pattern. Only 2 of the 8 signal variations 

give rise to the condition when.Eq. (2.4-4) will be invalid. 

Therefore, the probability of invalidity is 0.02. 

We have created a situation in Fig. 2.4-3 where the 

step size relationship is invalid. The -solid curve repre­

sents the true ADM estimate and the broken line waveform is 

the estimate used in the multiplication algorithm. From 

this figure, we observe that the estimate used in the multi­

plication algorithm is just as good an approximation to the 

audio signal as the true estimate. We shall see, in Sec.. 

2.8.3, that the use of Eq. (2.4-2) does not noticeably ef­

fect the output SNR of the DM multiplier. 

Now that we have justified the step size relationship, 

we can use it to express recursively the partial products 
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for the Song audio mode:
 

S (k) (k- 1) = S (k - l)x(k - 2)ey(k - l)e (k - 2)
 
y y y Y7
 

+ S (k - 1)Sy(k - l)e(k - )ey(k - 2) (2.4-5) 

+ x(k - l)Sey(k -2)k 

Sx(k)y(k - 1) = Sx(k - l)y(.k - 2)ex(k - l)ex(k - 2) 

+ Sy(k - l)Sx(k - l)ex(k - lI)ex(k - 2) (2.4-6) 

+ y(k - l)Sex(k - 2), 

Sx(k)Sy((k) ,Sx(k l)Sy(k l)jex(k l)ey(k 1) 

+ SISx(k - 1) Iex (k -l)ey(k - 2) 

(2.4-7)
 

+ SISy(k - l)1ey(k- l)ex(k - 2) 

+ S2ex(k - 2)ey(k - 2). 

Equations (2.4-5), (2.4-6) and (2.4-7)-are readily realiz­

able with standard digital hardware similar to the DM
 

adder shown in Fig. 2.2-3. These three terms can be con­

structed with nothing more complicated than adders, delays,
 

hard-wired scalers and exclusive-OR gates to multiply by ±1
 

and produce the absolute value.
 

All of the design structures that we have derived are
 

accumulator type systems. For both the adder (Sec. 2.3) and
 

the multiplier (Sec. 2.4), for all DM modes, the present out­
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put is equal to the past output plus additional terms.
 

Thus, it is important to begin with the- correct initial
 

condition for the past output, or else suffer a constant
 

offset error. It is convenient to start with both signals,
 

x(t) and y(t), at zero so that we can employ a zero initial­

condition for the past output.
 

As in the case of the direct sum, we expect the'direct
 

product, since it is formulated as the product of the indiA
 

vidual signal estimates, to exhibit a periodic pittern when
 

responding to constant inputs. Wheh using the Song audio
 

mode algorithm, the direct product generates four possible­

steady state waveforms. In Fig. 2.4-4, we show the general
 

structure of a steady state waveform. The values of -C and
 

* C1 depend upon Xq and yq and the amplitude of the steady 

state error pattern (x - q and y - yq), while d2 and d2 de­

pend only on thel'atter of these two. The numerical values 

of di and d. can be entirely different, but they both have 

the same form, as can be seen by multiplying two steady 

state patterns together, that is,
 

Idil-= L/4, (2.4-8)
 

where
 

i= ,2,
 

L a positive integer
 

and
 

L < 4M 2 + 4M + 1 (2.4-9) 

where M is bounded in Eq. (2.3-4). 
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The arithmetic average of any four consecutive values
 

of PD(k) always equals the product of the quantized values
 

of the inputs plus a second-order term depending on S2 .
 

This warrants the use of the following four-term non-recur­

sive filter after PD(k):
 

P(k) = 1[pD(k) + p (k -1l) + PD(k - 2) + pD(k - 3)]. (2.4-10) 

4~ D D D D 

Applying Eq. (2.4-10) to the waveform shown in Fig. 2.4-3,
 

we see-that
 

P(k) = Xqyq + (d 
1 

+ d 
2 
)s2/2 (2.4-1) 

for all k, as long as PD(k) has reached the steady state. 

We have found, through computer simulations, that the fac­

tor (di + d2)/2 generally is no larger than 10 or 20. In a 

practical DM encoder with 10 bits of internal arithmetic 

and an amplitude range of Vpp = 10 volts, the minimum step 

size, S, will be approximately 10 millivolts. Therefore, 

the secohd-order term will be in the order of 1-2 millivolts. 

Even if we allow (d1 +'d 2 )/2 to be 100, the error only 

reaches 10 millivolts or one minimum step size. Certainly, 

one step size out of 1024 can be considered insignificant. 

For any reasonably small value of step size, the second 

order term, (d + d )S 2/2, is negligible and thus, after 
2 

the four-term averaging filter, the DM product yields a re­

sult almost identical to the PCM product.
 

The direct DM product design structure that we have
 

derived is not a unique solution to this problem. The de­
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sign presented does, however, perform well and this will be
 

seen from the simulation responses for elementary input
 

waveforms and also from the SNR performance curves. There
 

are other design techniques that could have been incorpora­

ted into the direct product design. We could introduce a
 

"leak" factor-in Eq. (2.4-2) and feedback a fraction of the
 

output, PD(k), to generate, say 0.9PD(k - 1). -Alternately,
 

we might use a different averaging filter after PD(k); or
 

we could perform some kind of averaging on Z(k) and y(k) be­

fore we form their product. Each of these ideas would have
 

to be analyzed individually to determine its merits and
 

shortcomings-in formulating the direct DM product.
 

2.5 Hardware Complexity
 

From Eq. (2.2-2) or Fig. 2.2-1 we see that the complex­

ity and quantity of the hardware needed for a DM adder is
 

essentially equivalent to that needed for a PCM adder. In
 

PCM addition, since we have two K-bit words coming from
 

x(t) and y(t), we require two K-bit input storage registers,
 

one K-bit full adder and, since we do-not allow overflow,
 

one K-bit output-register. To obtain the DM direct sum, we
 

need the step size circuitry for both signals (some of which
 

can be time shared) terminating in registers with less than
 

K-bit capacity, one transfer register with enough bits to
 

represent twice the maximum step size, one K-bit full adder
 

and one K-bit delay register.
 

The -comparison of hardware complexity for multiplica­
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tion is somewhat more involved. PCM multiplication is gen­

erally treated as a static operation where two K-bit words
 

are either fed into a combinatorial circuit, or into a pre­

programmed ROM, or into a repeating add-store-and-shift cir­

cuit. We must also remember that-to multiply two signals,
 

bandlimited to fm' we must perform this static operation on
 

the PCM words from Ehe two signals at a rate of 4fm since
 

the product will be bandlimited to 2f .
 

Now we can examine the hardware complexity needed for
 

these PCM multipliers. A combinatorial circuit needs two
 

K-bit input storage registers, K2 AND gates, K K-bit full
 

adders and a 2K-bit output storage register. This is
 

easily seen by observing the structure that arises when we
 

use "long" multiplication to obtain the product of two K-bit
 

words, AK-'A2A. and BK'''B2B I. A ROM, with a 2K-bit input
 

'address, normally has 22K memory locations. Even though
 

there are only K2 different product values, the ROM must
 

still use 2 2K memory locations to multiply as well as need­-

ing input and output registers. The repeating add-store­

and-shift device requires two K-bit input registers, a K-bit
 

shift register, K AND gates, a 2K-bit full adder and a
 

2K-bit output register. However, for this last multiplier,
 

we must perform K repeated additions in the time interval
 

I/4fm before we obtain the final product word.
 

Considering the DM multiplier for the linear mode, as
 

shown in Fig. 2.4-2, the hardware needed is two 2-bit shift
 

registers, two accumulators (each having a K-bit full adder
 

-
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and then evaluate the performance. Since the inputs are
 

statistically independent, the pioduct signal power is
 

2
p= x (2.6-24)
x y
 

For PCM signals, the sample value and the error are likewise
 

statistically independent. Consequently,
 

Ep 0 (2.6-25a) 

and 

Var(s ) l = x2 E2 + y2 E2 + E2 E2. (2.6-25b) 
p =p y x x
 

Evaluating the variance of the product error, we obtain
 

Var(Ep) = (U 2 + a2 )S2 /12 + S4/144 (2.6-26)
p x y 

Thus, for the product of PCM encoded signals,
 

SNRp(PCM) = 14 + (2.6-27) 
p 12 (O" + UZ)S2 ±S4 26-7 

If the two signals have equal power and the step size is
 

small (a al a2 >> S2), the SNR becomes
 
x y
 

SNRp(PCM) = 6a2/S2 (2.6-28)
 

For the direct product of DM encoded signals, we can
 

similarly develop an expression for the SNR. Again, we in­

clude the averaging filter introduced in Eq. (2.4-10) and
 

the DM error is formulated as
 

Ep= p - p , (2.6-29) 
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where
 

P = P(k) = Xqyq + 6S2 (2.6-30)
 

Here we have assumed that p (k) has reached steady state and
 D
 

6 represents the-constant, (d, + d2)/2, introduced previ­

ously. With the aid of-Eqs. (2.6-19) and (2.6-20),, we find
 

that
 

p= + 6S2 (2.6-31)
 

Let us define the product SNR for DM signals to be
 

= 2 

SNRp(DM) = Var(p (2.6-32)
 

To calculate SNRp(DM), we must evaluate
 

Ep= 6S2 _, (2.6-33a)
 

P-s + 6 Sk (2.6-33b)
 

and
 

2= e (2.6-33c)
Var(Cp) = -

But Eq. (2.6-33c) implies that 

Var(Ep) = Var( p) (2.6-33d) 

and 

SN%(DM) = SNRp (PCM) (2.6-34) 

Therefore, 

SNRp(DM) = 6a 2/S 2 , (2.6-35) 
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where
 

P = P(k) = Xqyq + 6S2 (2.6-30)
 

Here we have assumed that p (k) has reached steady state and
 D
 

6 represents the-constant, (d, + d2)/2, introduced previ­

ously. With the aid of-Eqs. (2.6-19) and (2.6-20),, we find
 

that
 

p= + 6S2 (2.6-31)
 

Let us define the product SNR for DM signals to be
 

= 2 

SNRp(DM) = Var(p (2.6-32)
 

To calculate SNRp(DM), we must evaluate
 

Ep= 6S2 _, (2.6-33a)
 

P-s + 6 Sk (2.6-33b)
 

and
 

2= e (2.6-33c)
Var(Cp) = -

But Eq. (2.6-33c) implies that 

Var(Ep) = Var( p) (2.6-33d) 

and 

SN%(DM) = SNRp (PCM) (2.6-34) 

Therefore, 

SNRp(DM) = 6a 2/S 2 , (2.6-35) 
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where we have again allowed the two signals to have equal
 

2
power (a2) and taken a >> S2 . -As in the case of addition,
 

we conclude that, based upon SNR, the performance of the
 

direct DM multiplier followed by the averaging.filter is
 

identical to the PCM multiplier performance when dealing
 

with constant input signals.
 

2.7 	 Simulation Results with Elementary Signals
 

The direct atithmetic processors that have been de­

signed exhibit some very encouraging characteristics. They
 

are readily physically realizable without an excessive
 

amount of hardware complexity and,with the averaging fil­

ter, the SNRs for constant inputs is the same as obtained
 

with PCM processors. To determine the response Eo a set
 

of elementary input signals, we simulated the direct DM
 

adder and multiplier on a digital computer. In these simu­

lations, we used the Song audio mode algorithm and thus had
 

to realize the circuit shown in Fig. 2.2-3 for the adder..
 

The DM multiplier was constructed from Eqs. (2.4-2), (2.4-5),
 

(2.4-6) and (2.4-7). We also had to simulate two DM en­

coders in order to generate the bit streams fex(k,)} and 

{ey (k)}. 

All the simulations were performed on a PDP 8/L compu­

ter with 8K bytes of memory. First, the DM encoders were
 

constructed and it was confirmed that the estimate varied
 

according to the Song audio mode algorithm, i.e., Eq.
 

(2.1-6). Likewise, it was verified that the steady state
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estimate to a constant input took the form shown in Fig.
 

2.3-1. Then we simulated the system for the direct sum fol­

lowed by the averaging filter defined by Eq. (2.3-6). Ini­

tiai tests were performed on the direct adder with step in­

puts, pulse inputs and sinusoidal signals.
 

In all simulation results, the step size and the samp­

ling period are normalized to unity. Figure 2.7-1 shows the
 

sum of a-step function and a pulse; Fig. 2.7-2 displays the
 

result of adding a step function and a sinusoid; and Fig.
 

2.7-3 gives the addition of two in-phase sinusoids with the
 

same amplitudes and frequencies. In all cases we have in­

cluded the actual sum, shifted to account for the proces­

sor's delay. With the actual sum, we can visually evaluate
 

these initial tests.
 

Next, the direct DM product system, again followed by
 

the four-term averaging filter, was successfully simulated.
 

We confirmed that the steady state direct product with con­

stant inputs did, in fact, take the form shown in Fig.
 

2.4-3. As in the base of the direct sum, we used the same
 

set of elementary signals in our initial tests. In Fig.
 

2.7-4, we show the product of a step function and a pulse.
 

In Fig. 2.7-5, we display the result of multiplying a step
 

.function and a sinusoid. In Fig. 2.7-6, we give the multi­

plication of two in-phase sinusoids with the same amplitudes
 

and frequencies. Again, we include the actual product de­

layed to facilitate the evaluation of the direct DM product.
 

All of these simulation results verify the theory de­
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veloped for both the DM direct sum and the DM direct product.
 

We must emphasize the role played by the four-term averaging
 

filter to achieve both sum and product results that are so
 

accurate. To fully appreciate the effect of this four-term
 

averaging, we show in Fig. 2;7-7 the direct product of a
 

step and a pulse without the four-term averaging. Compar­

ing this with Fig. 2.774, which is the result after four­

.term averaging, clearly demonstrates the important role
 

played by this filter.
 

As a concluding remark, we observe an important charac­

teristic of the DM multiplfer. In Fig. 2.7-8, we show the
 

response of a Song audio mode DM to a step of amplitude 150.
 

The response time, needed to reach 150, is at least 17 samp­

ling periods. Notice, from Fig. 2.7-4, that for the multi­

plier to reach an amplitude of 150 it takes only 8 sampling
 

periods. Thus, we have expanded the bandwidth by a factor
 

of two, consistent with the previous assumption of the mul­

tiplication process.
 

2.8 Performance Evaluation
 

The simulation results presented above offer a suffi­

ciently good qualitative evaluation of the operation of the
 

DM adder and multiplier. However, we also would like to
 

obtain a quantitative figure of merit which will allow easy
 

comparison with other digital processing systems. Since we
 

have confined ourselves to a DM audio mode algorithm, we
 

shall apply an evaluation criterion commonly used for
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speech waveforms.
 

Voice signals generally occupy a bandwidth of approxi­

mately 2506-3000 Hz, starting about 200-300 Hz and having
 

most of their energy in the area of 600-800 Hz. A voice
 

system is often tested by using a single tone of frequency
 

600-800 Hz as the input and measuring the output SNR after
 

a LPF which cutsoff at about four times the tone frequency.
 

We have developed a technique to simulate this type of eval­

uation test on a digital computer and have generated a
 

family of SNR curves for both the DM adder and the DM
 

multiplier.
 

2.8.1 	 Fourier Series Representation of the DM Estimate
 

First, we shall develop the theory needed to calculate
 

the output SNR for the simple case of a DM encoder. Then
 

we shall show that it will be a natural extension to apply
 

this theory to the DM processors.
 

Let x(t), the input to a DM encoder, be a sinusoid of
 

frequency f0 and let the DM bit rate be
 

fs oft (2.8-1)
 

where P is a positive integer greater than one. Whenever
 

the sampling frequency is an integer multiple of the sinu­

soid frequency, the DM estimate, x(k), will assume a periodic
 

a
sinusoidal steady state pattern which can be expressed as 


Fourier series. The frequency components of this series
 

can be calculated and low pass filtered. The resulting
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filtered estimate then can be used to determine the output
 

SNR.
 

A much stronger statement of this concept can be made
 

by not limiting x(t) to be a sinusoid, but only to be a
 

periodic signal. If fs is now an-integral multiple of the
 

fundamental frequency of the input, then we can always der
 

termine the spectral composition of the estimate. For our
 

purposes, however, we need only be concerned with sinusoidal
 

inputs.
 

Consequently, the period of the estimate will be To,
 

where
 

To= 1/fo , (2.8-2) 

or any integral multiple of To . For the sake of simplicity
 

in deriving its Fourier series, let us assume that the fun­

damental frequency of the estimate is fo and not a submul­

tiple of it. 'This means that x(k) periodically takes on P
 

discrete values, denoted as xj,. every To seconds. In this
 

analysis, the estimate takes the form of a staircase-like
 

lasts for To/P seconds.
waveform and each discrete value., xj, 


Using the continuous notation, x(t), the Fourier series of
 

the DM estimate can be expressed as
 

x(t) = C0 + : Cncos( 2 fnfot + 4 n ) , (2.8-3a) 

n=1 

where To 

= (i/To)f x(t)dt , (2.8-3b)Co 
0
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Bn ,. .CnC /A'n + B'(2.8-3c). 

n =-arctan(B n/A n )  (2.8-3a) 

and T 

A = (2/T0 )f (t)cos(2nfot)dt , . (2.8-3e) 
-0
 

To
 

Bn = 0T)f x(t)sin(2rnfot)dt . (2.8-3f) 
0 

Substituting the discrete values of x(t),, we can re­

write Eqs. (2..8-3e) and (2.8-3f) as
 

P ,jTo/P 
An = (2/T ) E xjf cos (2irnf t)dt (2. 8-4a)

Sj=l (j-l)To/P0 

P JTo/P 

Bn =(2/To ) s x j sin(2rnf t)dt . (2.8-4b)
j=l 3(j-l)T /P 0 

By invoking some trigonometric identities, we can further
 

reduce A and B to a form which is readily adaptable for
n n 

computer simulation, that is,
 

P 
An_ 2sin(nr/P) Z xcos[n (2j - 1)/P] (2.8-5a-)

nwr j=l 

P 
Bn- 2sin(nT/P) F x.sin[n (2j
nit j=l 3 - 1)/P] (2.8-5b) 



56 

Now we have available the strength of the Fourier components
 

of the DM estimate, Cn, and thus- the essential information
 

to evaluate the DM performance. Since we are ultimately
 

concerned with the performance of the DM processors, it
 

remains to extend this development to the DM sum and the
 

DM product.
 

Similar to the case when we considered the response of
 

the DM adder and multiplier to constant inputs, we need only
 

refer to the basic initial design equations, i.e., Eq.
 

(2.2-1) and Eq. (2.4-1). These tell us that the direct
 

sum and product are formulated as the sum and product, re­

spectively, of the individual signal estimates. Since we
 

shall be adding or multiplying two periodic sinusoidal
 

steady state patterns, aD(k) and PD(k) must also be periodic
 

signals. Therefore, the Fourier series representation
 

theory is immediately applicable to the DM direct sum and
 

product.
 

2.8.2 Output SNR
 

To determine the desired figure of merit, we must go
 

from the Fourier series of the DM estimate to the output
 

SNR. Since we are concerned with an audio mode DM, it
 

would seem reasonable to choose a low pass filter (LPF) ap­

plicable to voice signals to bridge this gap. A LPF com­

monly used in experimental work is a fourth-order Butterworth
 

type whose magnitude-squared transfer function is given-as,
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IHB(S)I 2 = 1/[l + (S/Wc )8, (2.8-6) 

where 

Wo = the radian cutoff frequency.
 

The. frequency characteristics of this LPF are:
 

2 .= ) ]
IH1(f) i[/E + (-f/f , (2.8-7) 

where 

fc= c/2n . (2.8p-8) 

To realistically represent a voice signal, we shall 

choose fo = 800 Hz and fc = 4fo = 3200 Hz. From Eq. (2.8-7) 

we can obtain the attenuation factor, an, that we must scale' 

the Fourier components of x(t) by to simulate low pass fil­

tering. Using fc = 4fo, we find that 

an = El + (n/4)81] 2 (2.8-9) 

Since all harmonics are orthogonal, we shall be concerned
 

only with the attenuation produced by the LPF and not con­

sider the phase shift which arises.
 

After final low pass filtering, the output signal power
 

becomes
 

SO !(a1 C1 )2 . (2.8"10)

0 2 

The output noise power comes from all the filtered frequency
 

harmonics other than the fundamental. After the LPF, the
 

output noise power is expressable as
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= nZ (QnC ). (2.8-11)No 
 n=2 

Thus, the output signal-to-noise ratio (SNRO0
) is given as
 

S 0 (a__ __ __ 

SNR - 1 (2.8-12)
0 NO 

n=2
 

2.8.3 Performance Curves
 

From our system simulations we verified that the DM
 

estimate, the direct DM sum and the direct DM product all
 

produced-periodic responses to-sinusoidal inputs when the
 

DM bit-rate was an integral multiple of the frequency of
 

the sinusoid. By expanding the simulation programs we were
 

able to incorporate the calculation of the Fourier compo­

nents of the various outputs. All the simulations., includ­

ing calculation of output SNR, were carried out on the PDP.
 

8/L computgr using the FOCAL system. FOCAL, an abbreviation
 

for Formulating On-line Calculations in Algebraic Language,
 

is a conversational programming language which is similar
 

to, but iot as powerful as FORTRAN or BASIC.
 

In determining SNRo, we did not use an infinite number
 

of harmonics to calculate the noise power as required by
 

Eq. (2.8-11). Instead, we truncated after the ninth har­

1 0)2
monic since (aleC was negligible in comparison with the
 

noise due to the second through Ainth harmonics. We have
 

found that, for the same input signal power and for thesame
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ratio, fs/fo, the periodic sinusoidal steady state pattern
 

that the DM estimate assumes, and consequently the SNRo, are
 

very dependent upon the starting point of the input sinu­

soid. Since the input is zero before the sinusoid starts
 

and the ADM estimate tracks the zero input with a periodic
 

pattern of duration 4Ts, the sinusoid can start at any point
 

within this interval with equal probability. The SNRo has
 

become a random variable dependent on the starting point of
 

the input sine wave. In Fig. 2.8-1, we show the ADM re­

sponse to a constant input and a number of possible start­

ing points of the input sinusoid. To obtain a truly repre­

sentative value of SNRo we employed 40 different starting
 

points and calculated the mean and the standard deviation
 

about the mean, O(SNRo).
 

We have generated several families of performance
 

curves. In Fig. 2.8-2, we show the SNR in dB for the
 

direct sum, SNR a, versus relative input signal power over
 

a range of 54 dB for ratios of fs/fo = 60, 40 and 20. This
 

ratio is equivalent to the fs/Ra = 7.5, 5 and 2.5, where
 

Thus,
the variable Ra is the PCM Nyquist rate for the sum. 


fs/Ra is the number of bits in an equivalent PCM system.
 

The input signal power was varied by changing the amplitude
 

of the input sinusoid. A relative input signal power of
 

-6 .dB corresponds to an amplitude of 5S, where S is the min­

imum step size, while 42 dB represents an amplitude of 1280S.
 

To obtain the performance curves for the direct product-,
 

we let both inputs equal the same sinusoid. Therefore, the
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product becomes the square of the input signal. In this
 

case, the output signal power comes from the product fre­

quency, fp = 2fo, and the noise from all other harmonics.
 

In Fig. 2.8-3, we give the SNR for the direct product,
 

SNR , as a function of relative input signal power over the
 

same range of 54 dB with the parameter fs/fp taking on 

values 30, 20 and 10. This parameter-is the same as the 

ratio f s/2R = 3.75, 2.5 and 1.25, where Rp is the PCM 

Nyquist rate for the product. We shall see that fs/2Rp 

is the number of input bits in ,an equivalent PCM multiplier. 

Since the output signal frequency is twice the input signal 

frequency, we naturally expect SNRp to be less than the SNR 

from -the DM sum because the DM is frequency sensitive. 

Recall that the SNR is actually a random variable, as
 

explained previously. Consequently, all the plots shown
 

above were drawn as smooth curves through windows of one
 

standard -deviation about the mean value of the SNR. On the
 

SNR a family we show the set of windows for one curve. In
 

lieu of the other standard deviation windows, we denote the
 

range of the standard deviation for each curve in both the
 

sum family and the product family. The significance of
 

these performance curves will be detailed in the next sec­

tion when we compare the DM systems to PCM processors.
 

2.9 Comparison with PCM Systems
 

We shall compare the DM direct processors with their
 

dual PCM systems based on the SNR achieved with equivalent
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channel bit,rates. To achieve a wide dynamic range,
 

companded PCM is generally used for encoding speech signals.
 

With an input sinusoid, the SNR for companded PCM is given
 

as
 

SNR(PCM) = GN + 1.8 + I(cd) dB , (2.9-la) 

where 

N = the number of bits used-to PCM 
encode the input signal 

and 

I(a) = the companding improvement-factor, 
a function of the input signal
 

power.
 

For logarithmic companding commonly used by the telephone
 

company, a family of improvement curves is given -which dis­

plays I(au) as a function of signal power below full load
 

sinusoid for several values of the compression factor, p
 

A full load sinusoid has the maximum amplitude that
[17]. 

can be encoded with N bits. 

If we choose a median value for the compression factor 

(p = 100), then, for a full load sinusoid, I -9.5 dB. 

Thus, the maximum SNR for companded PCM with p = 100 is 

SNRm(PCM) = 6N - 7.7 dB (2.9-ib) 

Since this compression factor yields a SNR curve which drops
 

off only 3 dB from the maximum value over a dynamic range
 

of 30 dB, Eq. (2.9-ib) will be our basis of comparison for
 

companded PCM systems.
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For the case of digital addition, for both PCM and DM,
 

it does not matter if.we encode,-process and transmit or
 

encode, transmit and process. There -is no change in channel
 

bit rate. This point will be critical when comparing multi­

plication. To best explain the comparison with the PCM ad­

dition system, we shall refer to the chart given in Table
 

2.9-1. Consider the bandwidth of each input signal to be
 

B Hz. The input signals are encoded into N-bit PCM and then
 

processed. Since we are adding the two signals, the output
 

bandwidth is also B Hz. The PCM sampling rate for the sum
 

is
 

Ra = 2B, (2.9-2) 

and the, number of bits it will have, assuming no overflow,
 

is
 

N N . (2.9-3) 
a 

Consequently, the PCM channel bit rate becomes
 

RaNa = 2BN (2.9-4)
 

Since we use an input tone of frequency f in determining
 

performance curves and set the output LPF to cutoff at
 

4f0 , we must equate the cutoff frequency to the output
 

bandwidth, i.e.,
 

fc = 4fo = B (2.9-5)
 

To compare the systems, we specify equivalent channel
 



PERFORMANCE PARAMETERS
 

FOR COMPARING DM ENCODED aD(k) & pD (k) TO N-BIT PCM
 

SuM PRODUCT 

Input Signal-Bandwidth B B 

Output Signal Bandwidth B 2B 

PCM Sampling Rate Ra 2B Rp = 4B 

PCM Bits in Processor Na = N Np =2N -

PCM Channel Rate 21BN 8BN 

Input Tone Frequency fo fo 

Output LPF Cutoff Frequency fc = 4fo = B fc ,= = 2B4fo 

DM Sampling Rate fs = 2BN = NRa fs 8BN 2N%= 


DM SNR Index fs/Ra = N fs/2Rp = N 
==2fs/ N2.5 f 2fR .2( 

2
DM Performance Curves fs = 20f 5Ra = 20f0 = 1.25(2RP) 

Sampling Rates fs = 40fo = 5 Ra fs = 40fo = 2.5(2R
S 0 p
 

fs = 60fo 7 "5 Ra fs = 60fo =3.75(2Rp)
 

TABLE 2.9-1. Comparison of DM and PCM Arithmetic Processors
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bit rate. For the DM adder, the bit rate isfs. Therefore,
 

fs = 2BN = RaN (2.9-6)
 

The DM SNR index used in Fig. 2.8-2is clearly the number
 

of PCM bits used to encode the input signals, i.e.,
 

fs/R = N (2.9-7)
 

On the performance graph for the DM direct sum, Fig,
 

2.8-2, we have plotted the SNR for N-bit companded PCM, when
 

N = 7.5 and 5. For these curves, we set the full load am­

plitude equal to 512S, representing a DM system with 10 bits
 

of internal arithmetic. In these two cases, the PCM and DM
 

systems yield comparable performance. When N = 2.5,
 

SNRm(PCM) = 7.3 dB in comparison with approximately 16 dB
 

for the ADM adder. At low transmission rates, the DM sys­

tem clearly has the advantage.
 

When considering digital multiplication, it is very
 

important to process first and then to transmit. If we re­

verse this order, the DM bit rate will increase by a factor
 

of two and the resulting performance will appear that much
 

downgraded. As in the case of addition, we shall refer to
 

Table 2.9-1 extensively in this comparison. Again, the
 

input signals are bandlimited to B Hz and encoded into N-bit
 

PCM signals. The PCM multiplication causes the output sig­

nal to have a bandwidth of 2B and consequently, the sampling
 

rate for the product must be
 

RPRODqUIBILITY OF TU11 
OiLIGINAL PAGE IS Poor 
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'
 R 4B . (2.9-8) 

More important, the number of.bits needed for the product is 

N = 2N (2.9-9) 

Thus; the channel bit rate is
 

= 8BN (2.9-10) 

Again, the frequency of the input tone is f and the
 

LPF cutoff frequency is set to 4f.. Equating the output
 

bandwidth to the cutoff.frequency, we obtain
 

fc = 4fo = 2B (2.9-11)
 

Now we can compare the systems on the basis of equal chan­

nel bit rate. Since we are transmitting the DM encoded di­

rect product the bit rate is still fs" Therefore,
 

fs = 8BN = 2RpN . (2.9-12) 

Now it is obvious that the parameter employed in the 
DM 

product SNR graph is the number of bits used to PCM encode 

the input signals, that is, 

fs/2Rp = N . (2.9-13) 

Comparing the performance curves shown in Fig. 2.8-3 with
 

Eq. (2.9-ib), we find that the DM SNR is consistently
 

higher. We must remember that because'we have DM encoded
 

PD(k) in this comparison system, we should 
really look at
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the SNR curves of pD(k). But these curves are exactly the
 

same as Fig. 2.8-3 except 1-2 dB lower. This is the same
 

effect as experienced when placing DM links in tandem [181.
 

We have shown the feasibility of adding and multiplying
 

DM encoded signals. The systems presented use only standard
 

digital devices in their realizations and the performance
 

curves do not show any surprising results. Comparing the
 

DM processors to PCM systems for the same bit rate, we have
 

shown that their performance is either comparable or better.
 

Although the order of operation is unimportant when adding,
 

it is vital to first process and then transmit when multi­

plying.
 

As a concluding remark, we shall consider some practi­

cal aspects of the DR processors. The DM adder can be ap­

plied when we need to mix voice channels, as in a stereo
 

system.. The DM multiplier can serve as the basis for con­

structing a correlator. Although we can realize only dis­

crete time delays, they take the very simple form of one-bit
 

shift registers, since we must merely delay ex (k).
 

A final consideration is the measurement of output SNR.
 

With a DM system that has to be physically constructed, the
 

SNR will not be a random variable dependent on the starting
 

point of the input sinusoid. Consequently, we will not mea­

sure different values of SNR each time the device or the
 

input is turned on. In a real system, we can never guaran­

tee that fs will be an exact integral multiple of fo. In
 

fact, the DM clock and an input sinusoid &re actually non­
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coherent signals. This noncoherence has been-modeled as
 

different starting points. The measured output SNR is
 

therefore analogous to the mean SNR with an infinite number
 

of different initial conditions.
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CHAPTER 3
 

CONVERSION FROM ADM ENCODED SIGNALS TO PCM ENCODED
 
SIGNALS USING DIGITAL FILTER TECHNIQUES
 

Due to high quality performance and ease in implemen­

tation, many modern communications systems are employing
 

digital encoding techniques. Among-the existing digital
 

encoding techniques, ADM and PCM are widely utilized in com­

mercial communications. To facilitate digital processing
 

of signals encoded in ADM and PCM formats, there is a need
 

for translation units between the two systems. In this
 

chapter, we consider conversion from ADM to PCM format.
 

A general technique is presented for converting ADM
 

encoded signals to PCM format without first demodulating the
 

ADM bit stream and returning to the analog domain. The
 

translation unit that is derived employs only standard digi­

tal hardware.and is applicable to a large class of ADM en­

coders. SNR curves are given for PCM converted, sinusoidal
 

signals obtained from the three different systems which are
 

presented in this chapter. Thus, we can present a relevant
 

evaluation of the performance of these ADM to PCM converters.
 

3.1 	 Basic ADM-PCM Conversion Philosophy
 

Consider an analog signal, x(t), assumed bandlimited
 

to fm' which has been ADM encoded at a rate fs. The general
 

form of the ADM was given in Fig. 2.1-1 and mathematically
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described by Eqs. (2.1-1) through (2.1-4). The only con­

straint imposed upon this system is that the ADM bit rate is
 

an integral multiple of the Nyquist rate, that is,
 

f= RfN, (3.1-1)
 

where.
 

fN = 2f (3.1-2) 

and 

R = a positive integer greater than 1. 

In our conversion system, the value of R is set by fs and
 

we cannot vary this in our design. Since we are converting
 

between two digital encoding systems, we restrict our design
 

to an all-digital technique which can be implemented with
 

standard digital hardware.
 

The conversion from ADM to PCM encoded signals entails
 

changing from a high "information" rate (ADM) to a lower
 

one (PCM). Formally stated, an ADM to PCM converter oper­

ates on the sequence {ex (k)} and produces x(t) in PCM-for­

mat. Examining the ADM in Fig. 2.1-1, we see that one of
 

its basic equations is
 

x(k) = 2(k) + x(k) , (3.1-3) 

where
 

x(k) = the input signal,
 
x(k) = the ADM estimate
 

and
 

Ex(k) = the error signal.
 

Since the ADM is operating at a rate fs, the above notation
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means that
 

.x(k) =x(t = kTs ) (3.1-4) 

where 

Ts = 1/fs (3.1-5)
 

Usually, x(k) is given and we find x(k). Now the prob-


A 

lem is reversed: x(k) is given, via the-ADM bits, {E(k)V
 

and we want to find x(t). To do this, we must estimate
 

(k). Then, to achieve PCM format, we must sample x(t) +
 

Qx(k) at a rate fN = fs/R. Consequently, the ADM to PCM
 

converter should perform the function:
 

x(Rk) = A(Rk) + E (Rk) , (3.1-6) 

where x(k) and x(k) are formed from the ADM bits and then
 

they are sampled at the PCM rate, iN" We observe that
 

x(Rk) = x(t = kTN) = x(t = RkTS) (3.1-7) 

since 

TN = l/fN = RTS . (3.1-8) 

To obtain Ex(k) from ex(k),>we must realize the inverse
 

of a hard limiter. But, there is no physically realizable
 

one-to-one inverse of a hard limiter. The information lost
 

going from Ex(k) to ex (k) cannot be.recovered. However,
 

the basic idea of improving the ADM estimate is still a
 

valid concept. This is exactly the problem that we are
 

faced with, that is, how to improve x(k) before we decrease
 

the "information" rate from fs to fN by sampling at the Nyquist
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rate.
 

The PCM values obtained in this way are in a linear
 

PCM form&t. However, most existing PCM systems use a com­

panded code. To achieve compatibility, we can use a simple
 

ROM as a digital code converter since there is a one-to-one
 

mapping between linear and companded PCM.
 

3.2 	 ADM Decoder Technique
 

The ADM to PCM converters that will be discussed are
 

applicable to any ADM that can be described with Eqs.
 

(2.1-1) through (2.1-4). However, when simulating and ob­

taining performance curves, we must use a particular ADM
 

mode. Since we are confining our applications to speech
 

signals, all references to the ADM step size will apply to
 

the Song audio mode algorithm given in Eq. (2.1-6).
 

The simplest and most obvious method of converting an
 

ADM encoded signal to a PCM encoded signal is to decode
 

{ex(k)} by generating and accumulating the step sizes,
 

Sx(k), to form the ADM estimate,tx(k). By the very nature
 

of the DM digital feedback circuit, x(k) is a parallel digi­

tal word. Since the DM operates at a rate much higher than 

the Nyquist rate, the estimate must be resampled, via a bank 

of AND gates, at the Nyquist rate, to yield PCM words, 

x(Rk). This device, called the ADM estimate converter, is 

shown in Fig. 3.1-1. In this converter, we have set *(Rk) 

= 0 in Eq. (3.1-6) and, therefore, we have not improved 

x(Rk) at all. 



Sf 
PCM Format 

ex(k) 0 , ((Rk) 

Accumulator-/ 

T-F . --- N--,,! o 

FIg. 3.1-1. ADM Estimate Converter 
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t<Iristically, we can argue that this technique will 

Produce a high quality PCM-signal regardless of the num­

/ber of bits used in the accumulator to form x(k). This is
 

due to the high probability of.choosing a "poor" value of
 

x(k), i.e., a sample yielding a large error between it.and
 

the true value, x(k). A "poor" ADM estimate is often pro­

duced when the.step size has grown too large causing the
 

estimate'to overshoot the input signal. If the input con­

tinues to increase, the estimate must reverse direction for
 

one ADM period, due to the overshoot, before it again con­

tinues to increase. The one period, where the estimate has
 

reversed direction, generally yields an extremely "poor"
 

value of x(k).
 

Consequently, although we can obtain a high quality
 

representation of the originalsignal by analog low pass
 

filtering the entire ADM estimate, the same is not true if
 

we filter samples of the estimate taken at the Nyquist rate.
 

When X(k) is passed through a LPF, the "poor" estimate
 

values, occurring for only Ts seconds, are easily averaged
 

out because the LPF cutoff frequency is much less than fs.
 

However, since the PCM samples occur at the Nyquist rate, a
 

"poor" value will give rise to a considerable error, even
 

after final low pass filtering. This has been verified
 

through computer simulation and will be presented later.
 

The analog LPF is used to return to the analog domain, where
 

performance is evaluated and for no other purpose.
 

The conclusion of this heuristic argument can be further
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strengthened with a frequency domain analysis of the ADM es­

timate converter. The ADM encoding process, even when oper­

ating on an initially bandlimited signal, always generates
 

If we
out-of-band frequency components in the estimate. 


let M(f) represent the spectrum of X2(k), then M(f) will not
 

be bandlimited to fm" In this converter, the basic opera­

tion that must be performed to achieve a PCM format is samp­

ling at the Nyquist rate, fN" -The sampling operation causes
 

a shifting of M(f) along the frequency axis. The .spectrum
 

of x(k) sampled at the Nyquist rate is given as,
 

MN(f)-= M(f) + Z [M(f + ifN ) + M(f - if N ) , (3.2-3) 
i=l 

where the above additions are performed vectorially since
 

M(f) is a complex quantity. The result of sampling a non­

bandlimited signal is, of course, aliasing. It is precisely
 

this fact that causes distortion in the resultant PCM sig­

nal and, therefore, a low quality representation of'the
 

original signal which, as we shall see later, manifests it­

self as a low SNR on our performance curves..
 

To eliminate the "poor" values of x(k) and still main­

tain a completely discrete system, we can insert a digital
 

LPF after the DM estimate, just before the gating device
 

operating at the Nyquist rate. This digital filter may be
 

viewed as a device which filters in the frequency domain,
 

produces a statistical estimate or performs a digital inter­

polation. In all cases, it will decrease the out-of-band
 

noise and make all the estimate values accurate before we
 



resample. This concept will be further pursued -in the next
 

section.
 

3.3 Non-Recursive Digital LPF Technique
 

The objective of the ADM to PCM converter is to elimi­

nate the "poor" values of x(k) before resampling. Since
 

these "poor" values are surrounded by many "good" values of
 

x(k), some averaging or filtering of x(k) before Nyquist
 

sampling should improve the PCM signal. The method pre­

sented to achieve this objective is an extension of the con­

cept originally proposed byD. Goodman [19] to perform ana­

log to PCM conversion using a DM as an intermediate step.
 

We now apply, this technique to a general class of ADMs
 

rather than to merely a linear DM which was done in this
 

reference. Goodman used a minimum mean-square error cri­

terion to determine the -coefficients in the non-recursive
 

digital filter. To complete the design, it was necessary
 

to assume input signal statistics. In our system, we em­

ploy a method to determine the filter coefficients which is
 

completely independent of input signal statistics. Our de­

sign is therefore robust.
 

To improve the PCM converted signal over that obtained
 

from the system shown in Fig. 3.1-1, we insert a low pass
 

filter after the accumulator to eliminate the spurious fre­

quency components of the signal estimate. The ADM to PCM
 

converter now has the-step size, Sx(k), acting as the input
 

of two cascaded, linear filters. The latter of these linear
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filters is sampled at the Nyquist rate to produce improved
 

PCM samples, i(Rk). The block diagram of this system is
 

given in Fig. 3.3-1. The accumulator is represented as an
 

ideal integrator, whose impulse response is
 

a(t) = 1, t > 0 , (3.3-1) 

-0, t<0 , 

and the LPF is designated by its impulse response, h(t).
 

Since both a(t) and h(t) represent linear systems,
 

they can be combined into one linear filter, via convolu­

tion, i.e.,
 

t 
g(t) = a(t),h(t) = f a(t - X)h(X)dA , (3.3-2) 

where the upper limit is due to the causality of the accumu­

lator, that is, a(t - X) = 0 for X > t. For the limits of 

integration in Eq. (3.2-2), a(t - X) = 1, and therefore 

t 
g(t) f h(X)dX (3.3-3) 

which is merely the unit step response of the LPF. The im­

proved ADM- estimate, R(k), can be formulated from the fol­

lowing discrete convolution,
 

r Sx(k -(k) j)g(j) , (3.3-4) 

where
 

g(j) = g(jT S )
 

and
 

T s = the ADM sampling period.
 



fS Accumulator LPF
ek) (k) - - 0)7(Rk)
 

Fig. 3.3-1. Improved ADM Estimate Converter 

'I­00
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Since g(t) represents the unit step response of a LPF,
 

we know that
 

lim g(j) = 1 , (3.3-5a) 
4-W 

and there exists a value of j for which g(j) is arbitrarily
 

close to 1. If we designate this value of j as Q, then we
 

have
 

g(j.) = 1, for j > Q (3.3-5b) 

The improved ADM estimate can therefore be approximated very
 

closely by
 

Q-1 
R(k) = S Sx(k - j)g(j) + Z Sx(k - j) (3.3-6) 

j=-W j=Q 

If we change the index in the second sum, letting i = k - j, 

then 

Wk-Q
 
E Sx(k - j) = Z Sx(i) = 2(k - Q) (3.3-7)=Q i=-m
 

Specifying the LPF as being causal so that h(t) = 0 for 

t < 0 and, consequently, g(t) = 0 for t <-0, the final dis­

crete form of i(k) is given as 

Q-1
 
(k)= E g(j)Sx(k - j) + 2(k - Q) (3.3-8) 

j=0 

From Eq. (3.3-8), we observe that the original ADM es­

timate, X2(k - Q), is modified by the addition of a weighted 

-sum of past -step sizes. The PCM samples now take the exact
 

J form suggested by Eq. (3.1-6), except for a time delay in 

K' 
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the ADM estimate.. This entire system is depicted in Fig.
 

3.3-2i where we show an ADM to PCM converter with a non­

recursive digital filter. The advantages of this cbnfigura­

tion are that the filter is absolutely stable, the coeffi­

cients of the filter can deviate from the exact value without
 

drastically affecting the filter frequency characteristics,
 

and, as pointed out in a somewhat similar practical realiza­

tion-of this concept [20], the hardware capacity needed for
 

filtering Sx(k) is much less than that needed if we opera­

ted on the estimate, x(k), with a non-recursive filter.
 

In the realization of the ADM to PCM converter using a
 

non-recursive filter, there are several practical consider-­

ations that should be pointed out. Since the filter coeffi­

cients do not require extreme precision; we may be able to
 

realize the products g(j)Sx(k - j) by employing hard-wired
 

scalers as discussed in Sec. 2.2. Thus, we eliminate the
 

need for digital multipliers and reduce the hardware com­

plexity of the system.
 

The hardware structure for this converter can be com­

pletely modified by recursively realizing the product
 

g(j)Sx(k - j) from the ADM bit stream. Let us define this
 

term as 

v.(k) = g(j)Sx(k - j) (3.3-9) 

Using the Song audio mode algorithm for the step size, Eq.
 

(2.1-6), the product becomes
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Fig. 5.3-2. ADM to PCM Converter with Non-Recursive Filter 
A. 
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v (k) = g(j) ISx(k - j ­ 1)iex(k - j- 1) 

(3.3-10) 

+ g(j)Sex (k - j - 2). . 

if we'employ the step size relationship given in Eq.
 

(2.4-4), we obtain
 

v.(k) = g(j)Sx(k - j - 1)ex(k - j - l)ex(k - j - 2) 

j - 2). (3.3-11)
- + g(j)Sex(k -

Expressed recursively, the product now becomes
 

vj(k) = vj(k - l)ex (k - j - l)ex(k - j - 2) 

(3.3-12)
+ g(j)Sex(k - j - 2). 


The block diagram realization of vj (k) is shown in Fig.
 

(3.3-3).
 

Returning to Eq. (3.3-8)., the improved estimate can be
 

formulated as
 

Q-1
 
Z (k) + (3.3-13)*(k) = v. x(k - Q) 

j=0 3 

The block diagram corresponding to this equation for the ADM
 

to PCM converter with non-recursive filter is given in Fig.
 

(3.3-4). Although there is no saving in hardware with this
 

modified realization, the accuracy of the product is 
im-


This can be seen from Fig. 3.3-3. Even though we
proved. 


here we are scaling one minimum
still must scale by g(j), 

- j). Even if the numerical scale step size rather than Sx(k 


factor is a gross approximation to the true value, 
the most
 



1 e + og(j)S,(k-j) 

g 0) 

Fig. &.3-3. Realization of the Product g(I)Slk-J) 
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Fig. 3.3-4. Modified Realization of ADM to PCM Converter with Non-Recursive Filter 
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error that could arise is one minimum step size.
 

3.3.1 Realizing an Ideal Digital LPF
 

Now that we have derived a digital structure for ADM
 

to PCM conversion, the only design that remains is the
 

choice of the filter coefficients, g(j). Since the objec­

tive of the filter is to eliminate the spurious out-of-band
 

frequency components, we wish to obtain the best out-of-band
 

noise rejection with the least in-band signal distortion.
 

In an attempt to achieve this, we -employ a time domain de­

sign technique utilizing the unit step response of an ideal
 

low pass filter (ILPF), i.e.,
 

g(t)= 0.5 + (1/n))Si(2 Wfct - KO ) (3.3-14) 

where 

Si(a) ISL--x , (3.3'15) 
x0 

fc fm = f =/2	the cutoff frequency
 
of the ILPF
 

Ko = 2wfcTd 	 (3.3-16)
 

-and
 

Td = the constant time delay of the ILPF.
 

In Fig. 3.3-5, we plot g(t) as a function of time normalized
 

by i/2 1rfc when K. = 0.
 

Although an ILPF 	is non-causal and, therefore, not
 

physically realizable, this does not hinder our design of
 

the digital filter. When a non-recursive digital filter is
 



g(t)
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Fig. 3.3-5. Unit Step Response of an ILPF'with Zero Time Delay 

SO0 
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constructed, we can choose any coefficients desired to simu­

late a given characteristic. In our design, we are not con­

cerned with the time delay, Td, nor are we concerned with
 

the anticipatory response of this analog ILPF. We only
 

focus on the Q values of-g(t) found between the asymptotic
 

limits of 0 and 1 that g(t) approaches as t gdes to minus
 

and plus infinity. These Q values of g(t) complete the de­

sign.
 

Since we are not concerned with the ILPF time delay,
 

we shall set K such that the values Qf the filter coeffi­
0
 

cients are symmetrically distributed about 0.5. To deter­

mine the value of Q, we must specify the desired filter rise
 

time, Tr' or the region r, shown in-Fig. 3.3-5, outside of
 

which we assume that gCj) takes on only values arbitrarily­

close t6 0 or 1. If we set a value of r' then we can
 

calculate
 

Tror/2rf . (3.3-17) 

We observe that Q values of g(j) imply Q - 1 intervals of Ts 

seconds in Tr . Therefore, 

Tr = (Q - I)Ts (3.3-18) 

or 

Q = rR/ + 1 (3.3-19) 

which is found by setting R = fs/fN. Because Q must be an
 

integer, we shall specify it as
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Q = r rR/f] + 1 (3.3-20) 

where 

[a] =_the greatest integer < a.
 

Now we can determine the filter coefficients by evalu­

ating g(t), at t = jTs, symmetrically about 0.5. The coef­

ficients are given as
 

_ g(j) = 0.5 + (1/i)Si(ir(j - Ro)/R) (3.3-21) 

-where 

j = O,0-, " , Q - 1 

and 

R° = 0.5r rR/n1] (3.3-22) 

Implicit in this evaluation of coefficients is that g(j) is
 

set to zero to the left of r and set to one to its right.
 

It is seen from Table 3.3-1 that the coefficients obtained
 

from this technique, via Eq. (3.3-14), are within 1% of the
 

values obtained by Goodman [211 for the example documented
 

in this reference. We stress that these coefficients are
 

independent of the input signal statistics.
 

3.3.2 Characteristics of the Ideal Digital LPF
 

The algorithm for the improved ADM estimate, i.e., Eq.
 

(3.3-8), does not show the effect of the non-recursive fil-.
 

tet on the original estimate, _(k). However, with some
 

algebraic manipulations, we can transform the ADM to PCM
 

converter shown in Fig. 3.3-2 into the cascade arrangement
 

depicted in Fig. 3.3-6. Repeating Eq. (3.3-8),
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j 
g(j) OBTAINED BY 
ILPF TECHNIQUE 

g(j) OBTAINED BY MINIMUM 
MEAN-SQUARE ERROR TECHNIQUE 

1 0.15839 0.15996 

2 0.37776 0.38571 

3 -0.62224 0.61437 

4 0.84161 0.84013 

5 1.00000 1.00009 

TABLE 3.1-1. Coefficients for the Non-Recursive 
Digital LPF 
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Q-1
 
R(k) = x(k - Q) + Z g(i)Sx (k - i) (3.3-8) 

i=O
 

and observing that Eq. (2.1-4) can be rewritten as
 

SX(k) = 2(k) - R(k - 1) , (2.1-4) 

we now see that
 

Q-1
 
R(k) = x(k - Q) + E g(i)

i=O
 
(3.3-23) 

[x(k - 1) - X (k - i - 1)] 

Taking the Z-transform of Eq. (3.3-23), assuming zero ini­

tial conditions, we obtain the form of the cascade filter,
 

SQ-1 

-
HcD (z) = X(z)/X(z) = z- Q + -(l - z - ) E g(i)z 1 (3.3-24)

i=O 

where 

X(z) the Z-transform of R(k) 

and 

X(z) - the Z-transform of x(k) 

By taking advantage of the symmetry of the g(i) coef­

ficients about 0.5 and letting
 

z = exp(jmT s ) , (3.3-25) 

we can determine the frequency characteristics of the cascade
 

filter. The following transfer function was derived from
 

the filter structure used in simulation where Q was an even
 

integer and g(0) = 0,
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HCD(f) = exp(-j (Q + l) if/2Rf c ) (cos(r(Q - l)f/2Rf0 ) 

Q/2-1 
+ 4sin(Wf/2Rfc) [ E g' (Q/2 - i)sin(iwf/Rfc) 1} 

i=J.
 

(3.3-26) 
+ j{-sin(7r(Q - l)f/ 2 RfC) +. 2sin(rf/2Rfc) 

Q/2-1
 
[0.5 + z cos(irf/Rf C)

i=l 

where 

g' (i) = 0.5 - g(i) (3.3-27) 

A derivation of HCD(f) is given in App. 3.
 

Since our simulation uses an input tone of-frequency f
 

and a cutoff frequency of 4f to -determine SNR for the audio 

mode ADM, we shall plot HCD(f)- on a frequency-scale normal­

ized to f0 Figure 3.3-7 displays the amplitude and phase
 

characteristics for the case where R 8 andQ = 10, repre­

=senting 9 values of g(t), between g(l) = 0.064 and g(9) 

0.936, symmetric about g(5) = 0.5. In this example, *r only 

extends from Q0 to Q, (see Fig. 3.3-5) since larger values 

of @r, and consequently more g(i) coefficients, afford negli­

gible SNR improvement. 

In Fig. 3.3-8, we plot the amplitude characteristics of
 

RCD f)for the other two cases considered in our simula­

tions, i.e., R = 6, Q = 8*and R = 4, Q = 6. In both cases, 

g(0) = 0 and the g(i)s fall betweenQ 0 and Q on Fig. 3.3-5. 

Note the similarity with the amplitude characteristics when 

R = 8 and Q = 10. The phase characteristics for these last 
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two cases are similar to the plot shown in Fig. 3.3-7. The
 

phase is extremely linear with the slope changing from -28f 0
 

degrees/second when R = 8, Q = 10 to -30f O degrees/second
 

and -34f, degrees/second when R = 6:, Q = 8 and R = 4, Q = 6,
 

respectively.
 

From the frequency characteristics of the converter
 

filter, we see a disadvantage to the ADM to PCM converter
 

described above. There is a definite shaping of the in-band
 

spectrum due to the attenuation below fc. This will cause
 

distortion of the signal. In determining the performance
 

curves, this attenuation was corrected for so as not to
 

yield misleading results. If this was not done, the SNR of
 

the converter with non-recursive filter would sometimes be
 

greater than the SNR of the optimum converter (described in
 

a later section), which employs analog demodulation. After
 

the performance curves are presented, we shall discuss reme­

dies for, and alternatives to, the in-band spectrum shaping.
 

Equally important as realizing that spectral shaping
 

does occur is the explanation of why it exists at all in
 

this system. Our initial design employs the unit step re­

sponse of an ideal LPF simply because it has the most desir­

able frequency characteristics. However, the brick wall
 

frequency characteristics only hold if we realize the analog
 

ILPF. The ADM to PCM converter utilizes a digital LPF which
 

uses a finite number of discrete points on the unit step re­

sponse. HCD(f) will not approach a brick wall characteris­

tic if we use more points on the tailsof the g(t) curve.
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This can be accomplished by choosing the points closer toge­

ther. However, to maintain the same cutoff frequency, we
 

would have to increase the ADM bit rate. But, in ADM to PCM
 

conversion of this type, we are constrained to a previously
 

set ADM rate. Thus, we are not at liberty to use this tech­

nique to eliminate spectral shaping.
 

3.3.3 Converter Simulation and Sinusoidal Response
 

Using our PDP 8/L computer with 8K memory we simulated
 

the Song audio mode ADM to encode test signals. Then-we
 

simulated the ADM to PCM converter with non-recursive filter
 

exactly as depicted in Fig. 3.3-2. The original system used
 

R = 8, Q = 10 and thus had 9 filter coefficients. These
 

coefficients were approximated by the nearest integral mul­

tiple of 1/16 to simulate a hard-wired scaler. The initial
 

test employed a sinusoidal signal encoded by the ADM operat­

ing at a rate which was an integral multiple of the input
 

sinusoid frequency. The ADM bit stream, {ex (k), was then
 

used as the input to the converter.
 

Whenever the ADM bit rate is an integral multiple of
 

the input sinusoid frequency, we know that the estimate,
 

x(k), will assume a periodic sinusoidal steady state pat­

tern. Since the improved estimate, R(k), and the resulting
 

PCM samples are derived from xZ(k) by linear filtering opera­

tions, these signals also take on a periodic pattern. The
 

periodicity of x(k) and i(k) was verified by the system
 

simulation.
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To show the qualitative improvement of the ADM estimate
 

afforded by the non-recursive digital filter, we have dis­

played, in Fig. 3.3-9, the improved ADM estimate, k(k). We
 

have also plotted the delayed analog input and the original
 

ADM estimate, x(k). These curves represent a converter where
 

R = 8 and Q = 10, .exactly as described in Sec. 3.3.2. This
 

emphatically shows the "poor" PCM samples that can be ob­

tained from x(k) and the consistently good quality of virtu­

ally all the samples of i(k).
 

3.3.4 Evaluation of Performance
 

The families of performance curves are obtained with
 

the same approach as discussed in Sec. 2.8. With a single
 

tone input, we obtain a periodic pattern for (k), c(k) and
 

the resulting PCM samples. Thus, all of these waveforms can
 

be expressed as a Fourier series. The frequency components
 

of these series can be calculated and used to determine out­

put SNR. Let the frequency of the sinusoid be fo. We have
 

shown in Ch. 2, adhering to the assumptions made there, that
 

the ADM estimate, and any signal derived from it, can be ex­

pressed in the form
 

x(t) = CO + z Cncos(2rnfot + 4n) (3.3-28) 
n=1 

where Co l Cn and @n are defined as- the standard Fourier am­

plitude and phase coefficients, i.e., Eqs. (2.8-3b) through 

(2.8-3f); *We have shown, in Sec. 2.8, that the calculation 

of these coefficients is-readily adaptable to computer
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simulation.
 

In determining the frequency spectrum.of the PCM signal,
 

we utilize the Fourier series technique in two different
 

ways, dependingon the conversion system under analysis.
 

The time domainf approach simulates the entire converter and
 

determines-the Fourier components, Cn, from the periodic
 

pattern of the PCM samples. The time and frequency domain
 

approach computes the amplitude.and phase components of the
 

ADM estimate (Cn and n) and then simulates digital low pass
 

filtering, resampling and holding with the appropriate
 

transfer functions in the frequency domain. Digital low
 

pass filtering uses HCD(f) from Eq. (3.3-26); resampling em­

ploys the frequency shifting given in Eq. (3.2-3); and the
 

holding circuit, for the Nyquist period, is described by [22]
 

GH(f) _ sin(wf/fN) (3.3-29)irf/fN
 

The former of these two techniques cannot be used if we
 

wish to correct for the spectral shapingcaused by HCD(f).
 

Consequently, we must employ the latter method. Applying
 

this approach to the cascade arrangement of the ADM to PCM
 

converter with the non-recursive filter (Fig. 3.3-6), the
 

held PCM spectrum is given as
 

(f) = %(f) E i(f + if )HID(f + ifN , (3.3-30) 

where
 

*(f) = the frequency spectrum of the ADM estimate
 

http:spectrum.of
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and HLD(f) represents the cascade digital LPF after spectral
 

-shaping-has been eliminated. The correction is accomplished
 

during simulation by setting the amplitude of HCD(f) to be 1
 

at f = fo, 2fo and 3fo, and by specifying it as 0.707 at
 

f = fc = 4fo. The phase of HCD(f) was left unchanged. If 

this correction was not made,- HCD(f) would attenuate the
 

-second through fourth harmonics. We would then have less
 

harmonic noise and, therefore, a higher SNR. All operations
 

in Eq. (3.3-30) are performed on complex quantities. Thus,
 

the multiplications and additions are actually vector
 

products and vector sums.
 

-Since we are concerned with an.audio mode ADM, we again 


choose an output LPF, to return to the analog domain, which
 

is applicable to voice signals, i.e., a fourth-order Butter­

worth LPF whose frequency characteristics are given in Eq.
 

(2.8-7). Exactly as in Sec. 2.8.2, we choose the LPF cutoff
 

frequency, fc' to be 4f where f. is our input tone. The.
 

LPF attenuation factor, an , is the same as Eq.-(2.8-9) and
 

the output signal-to-noise ratio, SNR0 , is given by Eq.
 

(2.8-12), where Cn now represent the strength of the Fourier
 

components of the output PCM signal obtained from Eq.
 

(3.3-30).
 

To avoid several infinite sums and products in the
 

actual calculation of the held PCM'spectrum, R H(f), we
 

truncated the spectrum of i(k), i.e., x(f)HD(f), after the
 

ninth harmonic. The attenuation afforded by the digital LPF
 

causes the frequency components of R(k) to be insignificant
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from the tenth harmonic on. It was then possible to reduce 

the infinite sum in Eq. (3.3-30) to a sum from-2 to +2. 

Because of the truncation-of the spectrum of i(k), further
 

sliding along the frequency axis added hothing significant
 

to XNH(f), especially after the attenuating.effect of the
 

holding circuit, GH(f). Finally, -in determining SNR0 we
 

truncated the noise power after the ninth harmonic since
 

(a 0C10)2-was negligible in comparison to the noise due to
 

the second through ninth harmonics. As in Ch. 2, we found­

that, for the same input signal amplitude, the periodic pat­

tern that the ADM estimate assumes and, consequently, the
 

SNR0 are very dependent upon the starting point of the input
 

sinusoid. To obtain a truly representative value of SNR o,
 

we averaged over 32 different starting points.-'ll SNR
 

curves are given at the end of this chapter to facilitate
 

comparison between the-various conversiohtiechniques dis­

cussed.
 

3.4- Other Digital Conversion Techniques
 

In addition to the ADM estimate converter and the con­

verter with non-recursive filter discussed above, there are
 

several other digital techniques that can be applied to
 

achieve ADM to PCM conversion. The most straightforward ap­

prQach is to use a cascade digital LPF before we resample.
 

We could accumulate the step sizes and then LPF the estimate,
 

or, low pass filter Sx(k) and then accumulate the filtered
 

step sizes. Both systems are equivalent because the LPF and
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the accumulator are linear devices and, therefore, inter­

changeable.
 

Although L.D.J. Eggermont [23] proposed an ADM to PCM
 

converter following Goodman's design techniqueJ124], he
 

actually used a non-recursive digital filter in cascade, be­

fore,the accumulator. He reported that "at a sampling fre­

quency of 64K Hz the system performed very well for speech
 

encoding"- [25]. However, no performance curves were given
 

for his ADM to PCM converter. We have-considered using this
 

same cascade technique, except with a recursive digital LPF.
 

before the accumulator. A recursive digital LPF can achieve
 

a very sharp frequency cutoff with a minimum amount of hard­

ware. We-have designed second- through fourth-order recur­

sive LPFs using both the impulse invariant method and the
 

squared-magnitude method [26]. However, with a- recursive
 

digital filter, the accuracy of the filter coefficients is
 

critical in maintaining stability and in obtaining the de­

sired frequency characteristics. Since we must increase the
 

hardware complexity to guarantee accurate coefficients and
 

because the converter derived in Sec. 3.3 performs so well,
 

these ADM to PCM converters, with recursive filter, were
 

never simulated. As lhng as the filter has a sharp fre­

quency cutoff, this type of converter will perform well;
 

but, we must deal with the coefficient problem-mentioned
 

above.
 

Several other authors have very recently approached the
 

problem of DM to PCM conversion. T. Ohno, H. Kuwahara,
 



106 

M. Miyata and K. Imai [27] use a linear DM to-achieve analog
 

to PCM conversion. Since they must operate the linear DM at
 

a very high bit rate (8.192M Hz), -their system converts to
 

PCM by using two 'cascadedbit reduction devices. They do
 

not consider adaptive DM processors at all. On the other
 

hand, J. H. Miller [28] deals with ADM to PCM conversion
 

using only digital hardware. However, he has the added prob­

lem that -the ADM encoder which he must use is completely
 

analog. Thus, he must derive the digital equivalents to all
 

the analog circuits. L. B. Jackson, J. F. Kaiser and
 

H. S. McDonald [29] also considered the use of a linear DM
 

in converting from analog to PCM encoded signals. Their
 

scheme employs a digital differential technique before a
 

first-order digital LPF converts to PCM format. None of
 

these, however, add any additional concepts to the actual
 

problem of converting from ADM encoded signals to PCM type
 

signals. The important thread that is common to all conver­

sion techniques is the absolute need for some type of low
 

pass filtering before resampling to avoid the disastrous
 

aliasing effect discussed in Sec. 3.2.
 

3.5 Analog Demodulation Technique
 

The last ADM to PCM system that we consider decodes
 

ex(k) to produce the ADM estimate and then uses an analog
 

LPF to demodulate x(k) before resampling at the Nyquist rate.
 

This analog demodulation converter is shown in Fig. 3.5-1.
 

We purposely omit the quantizer and PCM encoder after the
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sample-and-hold (S/H) circuit because our performance evalu­

ation is based on harmonic noise and the quantization noise
 

is considered negligible.
 

Although this is not a completely digital system and
 

we do not want to construct this device, it is the optimum­

converter if an ideal LPF is used to demodulate x(k).- It
 

will yield the best performance, i.e., highest SNRo, because
 

the ILPF eliminates all the out-of-band frequency components
 

from the ADM estimate before PCM sampling. Thus, there is
 

no aliasing to-degrade the PCM signal. Analyzing this sys­

tem gives a good basis of comparison for the performance
 

curves presented later.
 

The ideal analog demodulation converter has been simu­

lated and its performance determined by using the time and
 

frequency domain approach. The ADM encoder is simulated in
 

the time domain and we calculate the Fourier spectrum of
 

x(k) for a single tone input using the technique described
 

in Sec. 2.8. The ILPF is simulated in the frequency domain
 

by eliminating all frequency components of x(k) above fc and
 

letting all harmonics below fc pass unattenuated. The S/H
 

circuit is simulated Via the frequency shifting given in
 

Eq. (3.2-3) and the holding transfer function, GH(f), given
 

by Eq. (3.3-29).
 

Let us define the transfer function of the ILPF to be
 

Gi(f) = 1, f < fc 3
 
= 0.707, f = fc (3.5-1)
 
= 0, f > fc 
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The output of the ideal analogdemodulation cbnverter is de­

noted as xf(Rk) and its frequency spectrum can be expressed 

in the following manner: 

XfNH (f) = GH(f) . X(f + ifN)Gi(f + ifN) (3.5-2) 

We must define Gi(f) at f because, as before,, the cutoff
: C 

frequency-is set to four times the test tone and x(k) will
 

have a harmonic at f In calculating SNRo , we again use
 

the fourth-order Butterworth filter, the expression for SNRo
 

given in Eq. (2.8-12) and,-as before, truncate the noise
 

power after the ninth harmonic. Similarly, SNR0 acts as a
 

random variable dependent upon the starting point of the
 

input sinusoid and we average over 32 different starting
 

points to obtain a mean SNRo .
 

Before we actually calculate SNR for the ideal analog
 

demodulation converter, we can estimate that its value will
 

be very close to the SNR of the ADM estimate, x(k). Since
 

we have assumed impulse sampling at fN and negligible quan­

tization effect, we can conclude that both xf(Rk) and x(k)
 

have exactly the same in-band frequency spectrum. They both
 

have out-of-band harmonics which are attenuated by the out­

put LPF and, therefore, have a secondary effect on the SNR.
 

Thus, the SNR of x(k) will be a very close approximation to
 

the SNR of xf(Rk).
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3.6 	 Comparison of Conversion Systems
 

The three converters discussed at length in this chap-_
 

ter were completely simulated and tested: the ADM estimate
 

converter, shown in Fig. 3.1-1, the ADM to PCM converter with
 

nonrrecursive filter, given in Fig. 3.3-2, and the ideal ana­

log demodulation converter, depicted in Fig. 3.5-1. -In this
 

section we present the techniqueoused to evaluate the SNR
 

for each system and its corresponding family of performance
 

curves. These curves display the variation of SNRo with
 

relative input signal power-for several ADM bit rates. Thus,
 

we-are ableto present an evaluation of the performance of
 

all ADM to PCM conversion systems.
 

3.6.1 SNR Evaluation
 

To determine the Fourier components of the held PCM
 

samples, the time domain approach was used for the ADM esti­

mate converter. the time and frequency domain approach was
 

used for the ADM to PCM converter with non-recursive filter
 

and for the ideal analog demodulation converter. In all
 

cases, we used a fourth-order Butterworth LPF before calcu­

lating SNRo . In determining SNRo , we truncated the noise
 

power after the ninth harmonic.
 

When 	evaluating the performance of the first converter,
 

we-found that for the same input and ADM bit rate, the posi­

tion 	of the gating pulse in the Nyquist interval would give
 

rise 	to different values of SNR0 . In Fig. 3.1-1, we show
 

how the gating pulse, of duration Ts seconds, produces x2(Rk)
 



by-permitting one Value of x(k) through the AND gate every
 

TN seconds. The gating time can be expressed as
 

tg = kTN + jTs , (3.6-1) 

where 

j=0,1, 2, "', R -1 

Initially, it seemed surprising that even though the sinu­

soidal steady state pattern of x(k) did not change, we could
 

still obtain different values of SNRo by varying the gating
 

time, i.e., j in Eq. (3.6-1). This variation of SNRO can
 

best be explained by viewing the gating times (kTN) as fixed
 

values and allowing the signal x(k) to be shifted by jTs,
 

instead of shifting the gating times for a fixed x(k).
 

Now we see that we have a fixed time reference and the
 

phase, or time delay, of the sinusoidal steady state pattern
 

of x(k) varies with jTs . Therefore, although the shape of
 

x(k) and, consequently, its amplitude spectrum remain the
 

same for all values of j, the phase spectrum does not. By
 

viewihg the gating as resampling which causes aliasing, we
 

now realize that the overlapping spectra, when added vec­

torially, yield different results depending upon the phase
 

spectrum of x(k). Therefore, SNRo will be different for dif­

ferent values of jTs.
 

For all converters, we found that SNRo acted as a ran­

dom variable dependent upon the starting point of the input
 

sinusoid. For the first converter, both the gating time and
 

the starting point were varied to yield 32 values of SNRo .
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When evaluating the last two converters-only the starting
 

point was changed 32 times because the time and frequency
 

domain approach was used and it does not use a gating cir­

cuit. For all cases, the mean SNRo -was calculated along
 

with the standard deviation,of SNRo .
 

3.6.2 Three Families of SNR Curves
 

In F-ig. 3.6-1 we show, for the three ADM to PCM con­

verters, the output signal-to-noise ratio; SNRo, in dB ver­

sus relative input signal power over a range of 54 dB for 

ratios of fs/fN = R = 8, 6 and 4. As noted in Ch. 2, the 

input signal amplitude was varied from 5S, corresponding to' 

-6 dB, to 1280S at 42 dB to generate the curves. Of course, 

S is the minimum ADM step size found in the Song audio mode 

algorithm. For these performance curves, the test tone 

frequency was fo; the LPF cutoff frequency is set at fc = 

4fo; and the PCM rate employed is fN = 2fc = 8fo. The plots 

shown are smooth curves drawn through windows of ±1 standard 

deviation about the mean SNR0 for various input amplitudes. 

For these curves, the standard deviation was approximately 

1-2 dB. The ADM to PCM converter with non-recursive filter 

produces an 8-10 dB improvement over-the ADM estimate con­

verter and, for moderately high ADM bit rates, it comes 

within 1-2 dB of the ideal analog demodulation converter, 

which is the -optimal system. 

We see from the performance curves that the ADM to PCM
 

converter with non-recursive filter yields a good represen­
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tation of the original signal in PCM format: 'By examining
 

its hardware structure in Fig. 3.3-2, we observe that it is
 

easily realizable with readily available digital circuits.
 

In our simulation, we have used only 9, 7 and 5 filter coef.­

ficients for R = 8, 6 and 4, respectively. It has already
 

been noted that more coefficients resulted in negligible
 

increase in SNRo . -The other advantage of this structure is
 

that the -accuracy of the filter coefficients is not extremely
 

critical. The coefficients used in the simulations were ap-­

proximated by the nearest integral multiple of 1/16. This
 

represents, at most, an additional 4 bits needed in the in­

ternal arithmetic. For this case, we suffered about 0.1 dB
 

decrease in SNRo .
 

Let us return to the problem of.spectral.shaping caused
 

by the frequency characteristics of the converter filter.
 

It has already been noted that we are not at liberty to rec­

tify this by choosing more filter coefficients closer toge­

ther on the g(t) curve. The spectral shaping can, however,
 

be remedied by using an output digital filter that has in­

band characteristics which are the inverse of HCD(f).
 

Alternatively, it could be corrected by using a better method
 

of choosing the filter coefficients, such as starting with
 

the .frequency domain filter characteristics and then calcu­

lating the time domain coefficients.
 

A final idea would be to redesign the system, similar
 

to Fig. 3.3-6, and construct a purely cascaded digital fil­

ter. However, by using the rather gross time domain design
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method presented in Sec. 3.3, we have come to'wtthin 1-2 dB­

of the optimum converter performance. Thus, one can ques­

tion the need to resort to very sophisticated filter design
 

techniques. We have, in any event, shown conclusively that
 

we need some sort of LPF before PCM aampling and why we can­

not do without it. Thus, regardless of the structure and
 

how it is designed and implemented,.an ADM to PCM converter
 

must employ a LPF before resampling if we are to achieve
 

acceptable.performance.
 

http:implemented,.an
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CHAPTER 4
 

CONVERSION FROM PCM ENCODED SIGNALS
 
TO ADM ENCODED SIGNALS
 

In this.chapter, we consider the dual of .the problem
 

addressed in Ch. 3, that is, conversion from PCM to ADM for­

mat. We can describe a PCM to ADM converter as a device
 

which operates on values of the information source, occur­

ring at the Nyquist (or PCM) rate, and produces an ADM bit
 

stream. Since there-is a unique mapping between the ADM
 

bit stream and the-ADM estimate (when the ADM initial con­

ditions are specified), and since the ADM operates at a rate
 

several timCqTHigher than the Nyquistirate, we are convert- ­

ing from a low "information" rate (the PCM samples) to a
 

high "information" rate (the ADM estimates).
 

Several techniques are developed to perform this type
 

of conversion'. One uses the probabalistic statistics of the
 

Another employs the spectral parameters
information source. 


,of the input signal. Still another is completely non-para­

metric. All techniques deal with the lack of information
 

about the signal excursion between PCM samples. The resolu­

tion of this problem dictates the structure of each PCM to
 

ADM converter.
 

All the PCM to ADM converters that we design are restric­

ted to circuits that are physically realizable with standard
 

digital hardware and which entail a minimum amount of hard­
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ware complexity. The sole constraint applied to all conver­

sion systems is that the ADM bit rate is an integral multi­

ple of the Nyquist rate. The PCM to ADM converters pre­

sented in this chapter wil either be statistically analyzed
 

or simulated on a digital computer or both. In all cases,
 

we shall generate SNR curves so that the perf6rmance of the
 

converters can be objectively evaluated.
 

4.1 DM Signal Estimate Tree
 

To illustrate the conceptual difficulties associated
 

with PCM to ADM conversion, we introduce a "DM signal esti­

mate tree" and construct part of this tree for a particular
 

.variable step size DM. A "DM signal estimate tree" is 
a
 

graph of all poss1kle -ahfls&t DWatimate, i (k), may 

follow starting with a set of initial conditions. The paths
 

are generated from all possible binary sequences of the DM
 

bits, ex(k). Every variable step size DM will give rise to
 

its own particular "estimate tree" but each tree exhibits
 

the same problems for PCM to ADM conversion. Thus, the con­

ceptual difficulties are universal to all DMs.
 

4.1.1 Paths through the Signal Estimate Tree
 

.Since we are primarily concerned with speech signals,
 

without loss of generality, we shall invoke the Song audio
 

mode algorithm whenever we refer-to an-ADM. In Fig. 4.1-1,
 

we show part-of a'I)M estimate tree"for this particular step
 

size algorithm, i.e., Eq. (2.1-6), on which we have super­
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imposed two PCM samples, at points A and B. Now we observe
 

where the difficulty lies in convereing from PCM to ADM for­

mat. In going from the starting point to points on the "DM
 

estimate tree" which are adjacent to point B, that is, points
 

Bi and B2 , we can traverse any of four possible paths: r1 ,
 

r2, r3 or rk. Which path to choose is the problem in PCM to
 

ADM conversion. We shall--term this the "multipath" problem.
 

4.1.2 	 Path Endpoints
 

The complexity of the "multipath" problem can be some­

what 	reduced by coping with another conceptual difficulty,
 

the "endpoint" problem. Because the "DM estimate tree" di­

-vergesso rapidly for a variable step size algorithm, the
 

PCM samples may not always lielon a branh in the tree.
 

Although a PCM sample, like point B, in Fig. 4.1-1, can take
 

on any one of the integral values of S, the estimate, at
 

that time, is restricted to endpoints of the ADM paths orig­

inating from the starting point. By first choosing endpoints
 

for the PCM samples, we automatically eliminate some pos­

sible paths through the "DM estimate tree" and, thereby, re­

duce the complexity of the "multipath" problem and the re­

sulting PCM to ADM conversion.
 

4.2 Statistical PCM-ADM Converter
 

There are several approaches to the PCM to ADM conver­

sion problem, but they all require the addition or derivation
 

of more information about the signal source or about the
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excursion of the actual signal. For the techniques con­

sidered later, we shall estimate the signal excursion at
 

discrete points between PCM samples and essentially fit
 

these values to a path through the ADM signal estimate tree.
 

For the statistical PCM to ADM conversion technique, we must
 

introduce a set of probabalistic statistics f6r the input
 

signal.
 

Let us assume that we have a stationary information
 

source, x(t), which is bandlimited to fm' and that the ADM
 

bit rate, fs, is an integral multiple of the PCM rate, fN;
 

that is,
 

fs =RfN (4.2-1)
 

where
 

R = a positive integer greater than 1,
 

and
 

f = 2fm (4.2-2)
 

We also specify an R-dimension joint probability density
 

function, representing R sampled values of x(t) in the in­

terval TN, where
 

TN = 1/fN (4.2-3) 

This can be expressed as
 

px(a) = px(a , a21 . , R) (4.2-4) 

where 

x represents the R-dimensional vector of x(t). 
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We can assume that the conversion is a continuing pro­

cess and we are choosing a path between each adjacent pair
 

of PCM samples. Thus, the initial conditions for each tree
 

are known from the previous path chosen. The estimate path
 

is mapped into one of the 2Rpossible R-bit sequences repre­

senting ex(k) in each Nyquist interval. When evaluating the
 

"estimate tree" in each PCM period, we need not consider all
 

2R sequences in our .quest for the most likely path. As seen
 

in Fig. 4.1-1, we can limit ourselves to those paths actu­

ally going between-possible endpoints.
 

The method that we shall describe for determining the
 

most likely path is extremely general and can be applied to
 

virtually any ADM system. This technique is based on the
 

most elementary principle of DM operation. If the signal
 

value is greater than the estimate, i.e., x(k) > x(k), then
 

the estimate must increase and ex (k) = +1. Likewise, if the
 

signal value is less than the estimate, i.e., x(k) < x(k),
 

then the estimate must decrease and ex(k) = -1. Using this
 

principle, along with the joint statistics of x, we can cal­

culate the probability of each possible path. The obvious
 

criterion to use is: the most likely path has the highest
 

probability. That path is chosen and mapped into its ADM
 

bit sequence. By using the given PCM values at the end­

points, we can eliminate some of the possible paths at the
 

outset and thus reduce the necessary computation.
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4.2.1 	 Choosing Tree Path Endpoints
 

For each Nyquist interval, we have a starting point de­

fined as the end of the estimate path traversing the previ­

ous interval.. Emanating from the starting point will be
 

several possible estimate paths which terminate at or are
 

adjacent to the next PCM sample. If no path goes through
 

the hext PCM sample, then we have-two possible endpoints,
 

as -shown.on the tree in Fig. 4.1-1. Since we wish to use
 

the PCM samples ds advantageously as possible, -point B shall
 

be used to determine the path endpoint.
 

The criterion that we shall employ to choose the end­

point is extremely simple: 'select the point that will yield
 

-the least error between it and the PCM sample. Let us de­

fine the error for points B, and B2, respectively, to be
 

-B1 = jBI - B	 (4.2-5)I 


and
 

B2 	 IB- BI (4.2-6)
 

We apply the following rule to choose the endpoint:
 

if eB < ,,B2 choose B, 

if 	 B2 < BI, choose B2 , (4.2-7) 

if SB = ,B2 choose B, and B2
 

This is equivalent to choosing the endpoint closest'to the
 

PCM sample. By choosing either B, or B2 , we automatically
 

eliminate all paths going to B2 or B1.
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4.2.2 Choosing the Most Likely Path
 

To best explain the technique.for determining the most
 

likely path, we apply this procedure to the example given in
 

Fig. 4.1-1.' By using the initial conditions of the "esti­

mate tree" and the PCM sample at the beginning of the path,
 

we determine the first ex(k) and try to eliminate some pos­

= 
sible paths. From Fig. 4.1-1, we see that c.1 C... so we
 

choose both endpoint, B I or B2 , and must consider paths rl,
 

r2 , r3 and r4 . Observe that the PCM sample A = x(l) > x(l)
 

so that ex(l) = +1 and path r4 is eliminated. Now we must
 

only calculate the probability of paths r1 , r2 "and r3.
 

The probability density function used to determine the
 

most likely path also takes advantage of the specified PCM
 

value at the beginning of the path. This conditional pr6b­

ability density function is expressed as
 

Pxjx1 (2,ctsct 4I = A) = Px(A,a 2 ,as,4)/Px1 (A) , (4.2-8) 

where the marginal density function is given as
 

Px1(a 1 ) = fffpX(ll,cZct4)d 2d 3dct .4 (4.2-9) 

Now we can calculate the probability of path r, , r2 and r, .
 

Let us call these path probabilities Pr1 , Pr2 and Pr3 , re­

spectively. By tracing each path through the tree, with the
 

aid of the step size algorithm for the Song audio mode ADM,
 

we find that the probability of path ri can be expressed as
 



124 

Prz = P(x(2)>S, x(3)>3S, x(4)<6S) 

(4.2-10) 
c 6S 

Sff I JpXIX (a~laaaIlA)dada 3dak4S 3S
 

Similarly, the probability of path r. is seen to be
 

Pr = P(x(2)>S, x(3)<3S, x(4)>2S) 

(4.2-11) 
3S 

= Pj a3 ,a41a1 A)ddt3d±4
f (a2 1

S -- 2S
 

Finally, we formulate the probability of path r3 as
 

Pr = P(x(2)<S, x(3)>S, x(4)>O) 
s 

(4.2-12)
 
S 

S 0 

Now we apply the criterion that the most likely path
 

has the highest path probability and state the path decision
 

rule thusly:
 

if Pr > Pr and Pr , choose r, 
1- 2 3 

if Pr > Pr and P , choose r. (4.2-13) 
2 1 3 

if'Pr > Pr and Pr choose r3
3 1 2 

The chosen path is mapped into its ex(k) sequence and one
 

cycle of the PCM to ADM conversion is completed. The-pro­

cess is subsequently repeated with the introduction of each
 

new PCM sample.
 



125
 

This concept can be expanded to more than one Nyquist 

period; making the possible paths through the tree longer 

and taking advantage of the interdependence between the 

paths and several PCM samples. Alternately, we can modify 

the original procedure by not choosing an endpoint by apply­

ing Eq. (4.2-7). Instead, we might weight the path proba­

bilities with a monotonically decreasing function of the 

endpoint error, e, such as 1/s. Our most likely path deci­

sion will then be based on the largest weighted path proba­

bility.
 

There are, of course, many other variations on this
 

theme. However, we stop here without an evaluation of the
 

converter performance because we are searching for a robust
 

system, not dependent on the probability statistics of the
 

speaker. Using this system would require a "learning"
 

period, during which time the machine determines the proba­

bility statistics of the speaker. This would have to be
 

done for each speaker! Under these circumstances, this con­

verter becomes impractical.
 

4.3 	 Parametric PCM-ADM Converter
 

A non-statistical method of solving the "multipath"
 

problem is to first employ an estimation technique that in­

troduces information about the signal between PCM samples.
 

We can use this additional information and the PCM samples
 

to generate a path through the estimate tree and produce the
 

ADM bit stream. The parameter of the input signal that shall
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be used to evaluate the converter performance and estimate
 

the signal between PCM samples is the power spectral density
 

of x(t), Gx(f). The estimation part of the converter can
 

be designed-entirely independent of-the ADM employed. How­

ever, tb enerate the bit stream, ex(k), we must specify a
 

step size algorithm for the ADM.
 

4.3.1 A Simple, All-Digital Technique
 

The most straightforward approach to achieve PCM to ADM
 

conversion is to use an estimation technique which yields a
 

linear approximation between PCM samples, take samples of
 

this linear approximation signal at the ADM bit rate, and
 

use these samples as the input to our Song audio mode ADM.
 

We-then automatically generate an ADM encoded signal, ex(k),
 

and, at the same time, choose a path through the "DM signal
 

estimate tree."
 

A completely digital circuit that can be easily imple­

mented to perform this conversion is shown-in Fig. 4.3-1.
 

First, we form a differehtial PCM (DPCM) signal,
 

A(Rk) = x(Rk) - x(R(k - 1)) , (4.3-1) 

which is then digitally scaled by a factor l/R, sampled and 

accumulated at the ADM rate, f . The output of the accumu­
s 

lator, v(k), is an equiamplitude staircase following the
 

linear piecewise waveform formed by connecting the PCM
 

samples. By ADM encoding v(k), we complete the conversion.
 

The scaling by 1/R can be introduced anywhere in the conver­
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oRIGENAL PAGE IS POOR 

ter and can even be entirely eliminated without affecting
 

the system performance. It is merely a constant multipli­

cative factor. We have included it in Fig. 4.3-1 merely for
 

completeness so that v(k) can be accurately described. The
 

sampling switch can be viewed as an AND gate being clocked
 

at the ADM bit rate or, even more simply, as the accumula­

tor clocking in the value A(Rk) R times every Nyquist period.
 

If the ADM were operated at a sufficiently high rate,
 

the filtered DM estimate, denoted as w(t), would very closely
 

approximate a linear piecewise function formed by connecting
 

the PCM samples with straight lines. By viewing the estima­

tion circuit as a digital filter which transforms the PCM
 

samples.into the staircase waveform, we can use the appro­

priate inverse filter after w(t) to obtain the PCM samples
 

once again. Using this approach, the SNR of the conversion
 

system approaches infinity.
 

This point of view is not very practical for a number
 

of reasons. As mentioned-before, the ADM bit rate is previ­

ously set by the value of R and normally we will encounter
 

moderate values of fs. The transformation from the PCM
 

samples.to w(t) must include the ADM, which performs a non­

linear operation. Thus, the true inverse transform is not
 

readily realizable. As a more realistic approach, we shall
 

use the piecewise linear waveform, w(t), without any.inverse
 

filtering, to obtain an upper bound on the SNR of the con-.
 

version system. This will be the basis of our analysis of
 

the system performance and the calculation of in-band SNR.
 

http:samples.to
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4.3.2 Optimization of Converter Performance
 

The figure of merit of our converter will be the output,
 

in-band signal-to-noise ratio, SNRo . However, if we use the
 

difference between x(t)-and w(t) as .thelsource of the output
 

noise, this will yield somewhat misleading results. Without
 

loss of generality, we can amplify and delay w(t) to improve
 

SNRo because constant attenuation and time delay cause no
 

distortion in audio signals.
 

If we allow w(t) to be scaled by a factor, K, and de­

layed by a time, y, then the error signal that we are con­

cerned with becomes
 

d(t) = x(t) - Kw(t - y) (4.3-2) 

We now determine the autocorrelation function of the error
 

signal as
 

Ra() F E[d(t)d(t + T)] , (4.3-3) 

where 

E(a) = the expectation of a. 

'By using the expression for d(t) given in Eq. (4.3.2), the
 

autocorrelation function of the error can be expanded to
 

Rd(T) = Rx(T) + K2 Rw(T) 

(4.3-4) 
- K[Rxw( - y) + Rxw(t + y)] 

where
 

Rx(T) = the autocorrelation function of x(t),
 

Rw(T) = the autocorrelation function of w(t)
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and 

Rxw(T) = the cross-correlation function of x(t) 
and.w (t). 

In deriving Eq. (4.3-4), we have made- use of the fact, as
 

will be shown later-, that w(t) is a linear function of the
 

PCM samples-of x(t). A consequence of this is
 

E[w(t - y)x(t + T)] E RWX'(T + y) = RXW(T + y) , (4.3-5) 

or alternately, Rxw(a) is real and an even function of a.
 

To.obtain the power spectral density of the error -sig­

nal, we must take the Fourier transform of Eq. (4.3-4). The
 

error signal power spectral density is thus seen to be
 

Gd(f) = Gx(f) + K2 Gw(f) - 2Kcos(2nfy)Gxw(f) , (4.3-6) 

where 

Gx(f) = the Fourier-transform of RX(T), 

Gw(f) = the Fourier transform of RW(T) 

and 

Gxw(f)- = the Fourier transform of Rxw(T). 

Due to the property of w(t) mentioned above, Gxw(f) is also
 

-real and an even function of f. Finally, integrating over
 

the bandwidth of x(t), we find the in-band noise-power, that
 

is
 

P fm 437
 
(437)d f Gd(f)df-f
 

m
 

Employing Eq. (4.3-6), the noise power is expressed as
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f 
P = P + K2P - 2Kffmcos(2 fy)G (f)df (4.3-8)

d X W fm ~ Xw 

where Px and Pw are defined in a manner similar to Pd in Eq.
 

(4.3-7). The signal power, Ps, is defined as the in-band
 

power contained in Kw(t - y), i.e.,
 

Ps - K2Pw (4.3-9) 

Using Eqs. (4.3-8) and-(4.3-9), we can formulate the
 

optimized figure of merit as
 

SNRopt = Q Ps/Pd , (4.3-10)
 

which is found to be
 

Q ,>p (4.3-11) 

P + K 2Pw - 2Kp(y) 

where
 

f
 
=
p(y) fm cos(27fy)Gxw (f)df (4.3-12)


-fm
 

Now we seek to maximize Q by applying
 

32Q(KY) - (4.3-13) 

By setting aQ/ay equal to zero, we find that y is a constant,
 

denoted as yo, independent of K, which satisfies the rela­

tionship
 

fm
 

*f fsin(2rfy 0)Gxw(f)df = 0 (4.3-14) 
0
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The result of equating 3Q(K,y )/3K to zero gives us the opti­

mum K as
 

= Px/' (yo) (4.3-15)Ko 

Finally, we have the maximum optimized SNR, Q = Q(Ko'Yo), 

expressable as
 

Q = = PXPW (4.3-16)Qo P~w _ 2 (yo)" 

where
 

fm
 

i(yo) = f cos(2rfyo)Gxw(f)df (4.3-17) 
- fm-fM
 

We observe that the relationship given in Eq. (4.3-14)
 

is .satisfiedwhen Yo = 0. This corresponds to the expres­

sion for Q/ shown above. Since Q0 is to be a maximum value, 

the denominator shouldbe minimized. This is achieved by
 

picking the maximum of p2 (yo), which occurs at yo = 0. To
 

further support this last claim, we introduce a result which
 

-is derived later in this chapter. When w(t) is given as a
 

*linear function of the PCM samples of x(t), the cross-power
 

spectral density, Gxw (f), is proportional -to the input power
 

spectral density. Since Gx(f) is bandlimited to fm' so is
 

Gxw(f).
 

Because Gxw(f) is real and even, we can use a slightly
 

modified definition for the cross-correlation function [30],
 

RXW(T) = f cos(2rfT)Gxw(f)df , (4.3-18) 
-x
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together with the fact that Gxw(f) is bandlimited to fm" to
 

show that
 

pery) = Rw(yc) (4.3-19) 

A simple property of this correlation function [31] is.
 

IRxw(t) I < Rxw(0) (4.3-20)
 

Consequently, yo = 0 yields the maximum value of 11(yo) and 

the maximum value of Qo . We can now rewrite Eq. (4.3-16) as 
-0 

Q0 = xw (4.3-21) 

pp -p 2 

where
 

fm 

Pxw f Gxw(f)df (4.3-22) 

_fm 

Let us view the choice of yo from a practical viewpoint.
 

Since we have defined w(t) as a linear piecewise signal
 

formed by connecting the PCM samples of x(t), we really have
 

not shifted w(t) with respect to x(t). If we recall, yo is
 

'the delay introduced in w(t) to optimize the SNR. But since
 

w(t) has not been shifted at all, we naturally expect yo to
 

be zero. In App. 4, we further pursue the dependence of Qo
 

on yo by working through an example where we obtain a plot
 

of .Qo as a function of yo normalized by the Nyquist period,
 

TN
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4.3.3 SNR Statistical Analysis
 

To determine the SNR of our coxiverter, we must first
 

calculate the autocorrelatibn function of w(t) and the cross­

correlation function of x(t) and w(t).. To accomplish this
 

we set up a coordinate system depicted in Fig. 4.3-2 and ob­

serve that the piecewise linear curve, w(t), As actually the
 

sum of a sequence of ramps of slope-mi and the steps of am­

plitude wi . To keep the time axis completely arbitrary, we
 

introduce a random starting time for the ramp functions,
 

shown as -T0 . Independent of this, we are insured that w(t)
 

is a stationary random process, as long as x(t) is specified
 

as being stationary, since it is obtained via a linear trans­

formation on x(t). We introduce, in Fig. 4.3-2, a random
 

variable, X, which is uniformly distributed in the interval
 

0 to TN To completely define this coordinate system, we
 

must specify the parameters:
 

i = FT/TNlI the greatest integer-< T/TN. ,(4.3-23) 

= JTN + fol (4.3-24) 

'and 

fl= T - iTN + X = o + A, for 0 < A < TN .(4.3-25) 

Notice-that no is just a positive constant in the interval 

[0, TN), which-is specified by the choice of T, and n is a 

random variable bbtained via a linear transformation of X. 

We start by deriving the autocorrelation function of
 

w(t). To facilitate matters, let us express the ramps at
 



Ramp of slope 
X-XB 

mo= T Ramp, mi ] x(t) 

Step of amplitude 

' 1 ,I1j 

- XX° 1 oII., TN
N 

II tt 1 .I It t= t2- t1+T 

ITN 

FIg. 4.3-2. Coordinate System for Converter SNR Analysis 
LC 
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times t, and t. as
 

z(t1 ) = m0 (4.3-26-­

and 

z(t2 = ti + T) = ri<T (4.3-27) 

= mi+l(n - TN), n > T 

The slope of the ramps can be expressed as
 

m (wi+1 - wi)/T N (4.3-28)
 

and the amplitude of the steps, wi, is merely the sample
 

values of x(t), i.e.,
 

wi = xi (4.3-29) 

By taking the expectation over both the ensemble of the ran­

dom process z(t) and the random variable X, we can find-the
 

-autocorrelation
function of the ramps, that is
 

E[z(t 1 )z(t2 )] = (I/2 TN)no(TN - no)'Rm(i) 

+ (I/3TN) (TN - n)3Rm(i) 

(4.3-30)
 

+ (1/2TN) (no - TN)[TN - (TN - no)R(i + 1) 

+ (1/3TN)[T3 - (TN - n) 3]%(i + 1) 

where
 

Rm E(mkmk+i )
 
-(4.3--31)
 

= [2Rx(i) - Rx(i + 1) - Rx(i 1)]/T? 
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and 

• (i) = E(Xkxk+ i ) - RX(iTN) (4.3-32) 

If we combine the ramps and the steps, then.we can rep­

resent w(t) at times ti and t. in the following way:
 

w(t 1 ) = w0 + moX (4.3-33) 

and
 

w(t 2 ) = wi + mi , n < TN 

W + mi+ I - TN ) , n > TN 

Using the averaging technique described above and the re­

sults found in Eq. (4.3-30),.we can evaluate the autocorrela­

tion function of w(t), i.e.,
 

RW(t) = E[w(tl)w(t 2 )] 

= (I/TN)(TN - o)Rw(i) 

+ (I/6TN)(TN - No) 2 (2TN + 7o)Rm(i) 

+ (1/2TN) (TN - o) 2E(moWi) 

i w + (I/2TN) (TA -
N 

T2 
0

)E(m O )
10IO UCM ' 

+ (no/TN)Rw(i + 1) 

+ (flg/6T N)(3TN - n)Rm(i + 1) 
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+ (no/2TN ) (2T N - 7 0 )E (mowi+l) 

+ (no/2TN) E (mi+lwo ) .(4.3-35) 

where
 

Rw(i) = E(WkWki) = Rx(i) (4.3-36) 

and 

E(mjwk) = [Rx(k - j 1) - Rx(k -j)]/TN-. (4.3-37) 

Simplifying Eq. (4.3-35), we arrive at a final form of the
 

autocorrelation function of w(t),
 

RW(T) = (n/6T3)E3Rx(i) + R (i + 2)] 

+ E(TN - nO) 3 /6T1[Rx(i - 1) +-3Rx(i + 1)] 

- (I/T2)[n2 R (i) + CT - no) 2Rx(i + 1)]
N ox TN -70 x
 

+ (2/3)[Rx(i) + Rx(i + 1)] , (4.3-38) 

•where 

no = T - iTN (4.3-39) 

and i is the greatest integer less than or equal to.r/TN.
 

We can reformulate this final form of the autocorrela­

tion function of w(t) such that it takes on a general struc­

ture and is a function of T, that is,
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RW(r)= Aiz 3/T3 + Bi 2 /TA + CiT/TN + Di , (4.3-40) 

where
 

Ai, Bi, Ci, Di = real numbers which are a
 
function-of-i-and Rx (i).
 

We see that R (T) is a-piecewise continuous function having 

different values of the coefficients Air Bi, Ci and Di for 

each interval of T, iTN, (i + l)TNJ. A plot of Rw(T), 

which shall be shown later, reveals that it is a well be­

haved autocorrelation function, being continuous, real and 

symmetric about T = 0. 

- Employing the notation for w(t ) introduced in Eq. 

(4.3-33), it becomes a less formidable task to calculate the 

cross-correlation function between x(t) and w(t). If we 

observe, from Fig. 4.3-2, that w and w1 can be expressed as 

-w o = x(t i - A) (4.3-41) 

and 

W x(t - A + TN) (4.3-42) 

then it can readily be shown that,
 

Rxwt = RWX() = E[w(t 1 )x(t 1 + T)] (44) 

= (1- X/TN)Rx T + A) + (X/TN)Rx(r + X - TN) 

where the average in Eq. (4.3-43) is over the random variable
 

X. This can further be reduced to
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TN
 

Rxw(-) = (I/TN)f (I - X/TN)ERx(T + X) + Rx (T-- X)]dX

0
 

(4.3-44) 

Consequently, if the correlation function of x(t)_is
 

specified, we can formulate the correlation function of d(t),
 

as given in Eq; (4.3-4), and its power spectral density,
 

from Eq. (4.3-6). We can continue to simplify our results
 

and show that the power spectral density obtained from
 

Rxw(T) is a function of the power spectral density of x(t).
 

Taking the Fourier transform of Eq. (4.3-44) and performing
 

some mathematical manipulations, we obtain, in its simplest
 

form,
 

2 . ... ...
 Gxw (f)' = x (f)-sin(ifT)mfNQ- ( .r-45) ..... 

To completely sp&cify the power spectral density of d(t), we
 

must calculate Gw(f) from the correlation function of w(t).
 

Since RW(T) takes the polynomial form given in Eq. (4.3-40),
 

we can use a slightly modified version of a well known numer­

ical technique for the evaluation of the Fourier transform
 

to obtain an exact expression for Gw(f) [32].
 

By taking the third derivative, with respect to T, of
 

the polynomial form of Rw(t), given in Eq. (4.3-40), we obtain
 

(T)= 6Ai/TA (4.3-46)
 

Recall that A. takes on a different value for each interval
 

of t, EiTN, (i + I)TNI. Thus, n'' (t) takes on a different
 

constant value every TN seconds. Taking one more derivative
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with respect to T, we see that 

Co 

T3R (t) = Z M6(T -iTN) (4.3-47)
N w :­

where, owing to the symmetry of Rw(T),
 

Mo-= 12A , (4.3-48) 

anid
 
M i = M_i = 6(A i - Ai-l), for i =1,2,3-" , (4.3-49) 

and
 

d(a) H Dirac's delta function.
 

If we take the Fourier transform of Eq. (4.3-47), we obtain
 

UET~~tW 3 3jW4 e- j-iTN 

R.... TN(j)Gw() ) = S Me- T (4.3-50)()] 

Reformulating this, we have
 

Co 

%[(f) + 2 E Micos (21fiTN)]/TA(27rf))4 (4.3-51)
= 
i=:l
 

Now that we have derived expressions for Gxw(f) and
 

(f), we must still evaluate Pxw and Pw to calculate the 

SNR. The unoptimized SNR is the expression for Q with K = 

and y = 0, that is, from Eq. (4.3-11), 

Pw (4.3-52)SNR0
The op ex + Pw - 2Pxw
 

The optimized SNR, Qo'is given in Eq. (4.3-21). Because
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Gxw(f) is bandlimited to fm" we can easily evaluate Pxw via
 

TN
 

Pxw- = Rxw(0) = (2/TN)! (1 - X/TN)Rx(X)dX . (4.3-53) 
0 

However, the calculation of P is not so straightforward be­

cause Gw(f) is not bandlimited and the value of Gw(0) goes
 

to
to infinity. Thus, we cannot integrate Gw(f) from -fm 


+fm" Consequently, we must use
 

Pw = R w(0) - Pw (4.3-54)
 

where the out-of-band power in w(t) is given as 

(4.3-55)

E 2f Gm(f)df

fm
 

and the total power in w(t), Rw(O), is found from Eq.
 

(4.3-38) by setting rio and i to zero. If we employ Gw(f),
 

as given in Eq. (4.3-51) then Pw takes the form
 
0 

(4.3-56)
VMo + iZiVMi
Pwo= 

where Vi is a weighting coefficient that is a function of
 

0.57T - Si(i) and Si() is the sine integral, defined in
 

Eq. (3.3-15).
 

We shall demonstrate the results of this statistical
 

analysis by evaluating the SNR for two examples. In the
 

first example, the input signal has a white, bandlimited
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power spectral density and in the second example the input 

power spectral density has a triangular shape. For' the for­

mer case, the-sum in Eq. (4.3-56) is finite. For the latter 

case, we can truncate after only 5 terms because the series 

converges rapidly to zero. In the next part, where we in­

troduce improvements on this basic PCM to ADM conversion
 

system, -the series does not converge so rapidly and we must
 

introduce an estimation procedure to evaluate Pw to .avoid
 

excessive laborious calculation.
 

If we specify unity input power, the power spectral
 

density of the white, -bandlimited process -(E.g. 1) is given
 

as
 

Glx(f) TN 1ff, <- fm 

-(4.3-57)
=0 , fj > fm'
 

and its correlation function is
 

RlxU) = sin(21TfmTr)/ 2 1fmT (4.3-58) 

For this example, the output SNR and the optimized SNR is 

calculated to be 

SNR (E.g. 1) = 8.6 dB 

and
 

Qo(E.g. 1) = 12.7 dB
 

When the input spectrum has a triangular shape and we again
 

set the'input power to unity (E.g. 2), the power spectral
 

density takes the form
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G2x(f) = 2TN(1 - If/f)m ' Ifi < fm 

(4.3-59) 
0 
 ,fl > fm "
 

For this 	process, the autocorrelation function is seen to be
 

R2x() = 	 [sin(rfm-r)/Tfm T ]2  (A.3-60) 

The figures of merit for this example are evaluated as
 

SNRo(E.g. 2) = 14.2 dB
 

and
 

Qo(E.g. 2) = 17.3 UB
 

Obviously,, this level SNR is not acceptable, even for the
 

extreme case of a white; bandlimited input power spectrum.
 

Therefore, we must introduce a refinemint of 'this basic
 

conversion technique to improve the performance and yield
 

larger values of SNR.
 

4.3.4 	 Converter Improvement via Wiener Linear Interpola­

tion
 

The performance of this converter can be improved with
 

a parametric technique, by first estimating a PCM midpoint
 

from adjacent PCM samples, that is, both past and future
 

values, and then converting to ADM format. The structure of
 

the improved converter is basically the same as before and
 

is'shown in Fig. 4.3-3. We form the difference between the
 

midpoint estimate and the PCM sample at the beginning of the
 

Nyquist interval, scale this value by 2/R and accumulate it
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R/2 times during the first half of the PCM clock period.
 

This -forms the signal v(k) which is encoded by the ADM.
 

Then we formulate the difference between the PCM value at
 

the end of the Nyquist interval and the midpoint estimate.
 

This value is scaled by 2/R and accumulated R/2 times during
 

the last half of the PCM clock period. This continues to
 

produce the v(k) signal which is'again ADM encoded into the
 

sequence of bits, ex(k). This process will yield two equi­

amplitude staircases of different slopes for v(k) during
 

each PCM sampling period.
 

A Wiener linear interpolation technique is employed to
 

obtain the PCM midpoint estimate-since it minimizes the mean­

square error [33]. The midpoint estimate is formulated as a
 

linear combination of the adjacent PCM samples. The weight­

ing coefficients in the linear combination are a function of
 

the autocorrelation function of the input process. The im­

provement is demonstrated by analyzing this converter when
 

2 and then 4 adjacent PCM samples are used to estimate the
 

midpoint. The resulting SNR is evaluated for the two
 

examples mentioned above, that is, two different input-power
 

spectral densities. To determine a bound on the performance
 

of-this converter, we calculate the SNR limit by letting the
 

estimated PCM midpoint actually become the true PCM sample.
 

The basic theory of linear mean-square estimation is
 

best presented using a general approach. Since we have as­

sumed that x(t) is a stationary random process, then all
 

samples of it will be random variables. We must estimate
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the midpoint between two samples from these random variables.
 

If we use 21 sample points, then the midpoint estimate can
 

be formulated as a linear combination of these random vari­

ables in the. following way:
 

p (Rk +VR/2) = a_(i_)X(Rk - (I-l)R) + 

+ aix(Rk - R) + a0x(Rk) (4.3-61)-

+ alx(Rk + R) + ... + aix(Rk + IR) 

Using a shorthand notation, we can express the midpoint es­

timate as
 

I 
= S a.x. (4.3-62)

p i=-(I-l) 

To find the values of ai we apply the orthogonality
 

principle. This principle states that the error must be
 

orthogonal to the random variables. In other words,
 

E[(xp - Ep )xj] = 0 

(4.3-63)
 
for j-= -(1-1), .. ,-i, 0, i, .. ,1 

After taking the expected value, we obtain
 

I 
Rx(j - 0.5) = aiRx j - i) , 

(4.3-64) 

for j = -(1-1), ... , -1, 0, 1, A1 

which is merely a set of 21 equations with 21 unknowns.
 

Thus, we see that the values of ai depend on the autocorre­
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lation function of the input process.
 

Now we can investigate the PCM to ADM converter per­

formance when the -midpoint is estimated with 2 and 4 adjacent
 

PCM samples, this is, when I = 1 and 2, respectively. The
 

statistical analysis deals with w(t), which is a straight
 

line approximation between PCM points and midpoint estimates.
 

To facilitate the SNR analysis, we divide the time axis into
 

intervals of width TN/2 and index them"as follows:
 

n 	= 0, 1, 2, ... for t > 0 

= -1, -2, -3, ... for t < 0 

We can again represent w(t) as the sum of steps and ramps.
 

However, the form of the step and the ramp will be different
 

for n odd and even. But, they will always be a function of
 

the adjacent PCM samples due to the linear interpolation
 

technique used to formulate the midpoint estimates.
 

To determine RW(T), we can formulate w(t1 ) and w(t2 ) in
 

a 	manner similar to Eqs. (4.3-33) and (4.3-34), except w(t1 )
 

now spans two intervals and w(t2 ) spans three because the
 

width of each interval is only TN/2 . Now we must calculate
 

RW(t) for n odd and n even, since the value of T sets n ac­

cording to
 

n = F2T/TNJ = the greatest integer < 2T/T N. (4.3-65) 

Also, the amount of computation that must be performed in­

creases by several orders of magnitude and cannot be readily
 

computerized because there is extensive algebraic manipulations.
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When the midpoint is estimated by 2 adjacent PCM
 

samples,. the autocorrelation function takes the form
 

RW(T) = C_ 2 Rx(n - 2) + C0Rx(n) 

(4.3-66a) 
+ C2 Rx(n 2) + C4Rx(n + 4) 

for n even, and­

Rw(T) = C_ 3 Rx(n - 3) + ClRx(n - 1) 

(4.3-66b) 
+ ClRx(n + 1) + C3Rx(n + 3)
 

for n odd, where
 

C. = a third order polynomial function 
3 --of no and a function of ai. 

For this converter, we use
 

no =.T - nTN/2 (4.3-67)
 

From the form of R (T) given above, it can be expressed as
w 

a third order polynomial function of T and, therefore,,we
 

can apply the technique discussed in Sec. 4.3.3 to calculate
 

the power spectral density of w(t) and the in-band power, Pw"
 

The evaluation of the cross-correlation function is
 

approached exactly as described in the previous section.
 

Because w(t;) spans two intervals, the amount of computation--­

grdatly increases in determining Rxw(T). After several pages
 

of calculations, the final form becomes
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TN/2 

RXW(T)= (2/TN)f (2 -.ai/TN) 
0
 

(Rx (T + X) + Rx(T ­

+ 	 (2/TN)f a2(l - X/TN) (4.3-68) 
TN/2 

(R x(T + X) + RXCr - X))dX 

where
 

a,, a2 = a function of ai . 

Taking the Fourier transform of Eq. (4.3-68), we again find
 

that Gxw(f) is bandlimited to fm so that we can calculate
 

the.in-band cross-power via
 

Pxw = Rxw(0) 	 (4.3-69) 

The figures of mierit can now be evaluated, using Eq.
 

(4.3-25) to determine SNRo and Eq. (4.3-21) for Qo0 For
 

example 	1,where the power spectral density is white and band­

limited, we obtain
 

SNR (E.g. I) = 10.2 dB 

and
 

Qo(E.g. 1) = 11.7 dB
 

When the input spectrum is triangular shaped, we find that
 

SNRo(E.g. 2) = 15.5 dB 
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and 

Qo(E.g. 2) = 16.2 dB
 

The slight increase in performance over the basic converter
 

without a midpoint estimate indicates that our interpolation
 

of the midpoint is not nearly accurate enough. We shall con­

sider one more case, that is, estimating the midpoint from 4
 

adjacent PCM samples. Then we shall analyze the limiting,
 

case, where the estimated midpoint actually becomes the true
 

PCM sample.
 

The statistical analysis, when the midpoint is esti­

mated from 4 adjacent PCM points, takes the exact-structure
 

as described previously. Thus, all we shall do is present
 

an outline of the results. The autocorrelation function of
 

w(t) takes the form:
 

4 
C(z) S_ C2 .R (n + 2j), for n even, (4.3-70a)

j= 3 z
 

and
 
4 

Rw() = Z C2j_IRx(n + 2j - 1), for n odd, (4.3-70b) 
j= 3 

where Cj is given after Eqs. (4.3-66).
 

The effect of employing more PCM samples to estimate the
 

midpoint manifests itself in the dependence of RW(T) on the
 

input autocorrelation function. The cross-correlation
 

function is structured exactly as in Eq. (4.3-68) except'
 

that now X is integrated over 4 intervals, of width T,/4,
 



152 

in going from X= 0 to X = TN. Consequently, Gxw(f) is again
 

bandlimited to fm and we can use Eq. (4.3-69) to determine
 

Pxw" As before, the in-band power, Pw, is found by applying
 

the technique discussed in Sec. 4.3.3. Through all this
 

analysis, the important results are still the figures of,
 

merit. For the white, bandlimited power spectral density
 

we obtain
 

SNRo(E.g. 1) = 13.0 dB 

and 

Qo(E.g. 1) = 14.3 dB 

If the input spectrum is triangular shaped, the results are
 

... .. .SNRo(E.g. 2) = 17.8 dB-­

and 

Qo(E.g. 2) = 18.2 dB 

Although the performance of this converter will con­

tinue to improve as more PCM samples are used to estimate
 

the midpoint, we would like to know the maximum value of
 

the SNR. To determine the maximum SNR, we must consider the
 

limiting case where the estimated midpoint actually becomes
 

the true PCM sample. The statistical analysis for the limit­

ing case has already been completed. When the estimated mid­

point becomes the true PCM sample the entire structure of the
 

converter reverts back-to the basic PCM to ADM converter ex­

cept the PCM rate is now 2fN . Therefore, the results are
 

identical to those derived in Sec. 4.3.3, but we must repiace
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TN by TN/ 2 . This must be done everywhere, so the meaning of
 

Rx (n) now becomes 

Rx(n) = Rx(T = nTN/2 ) (4.3-71) 

Returning to the expressions for Gw(f) and Rxw(-) and
 

changing TN to V2, it becomes simply an arithmetic task to
 

calculate Pw and Pxw. The results for the white, bandlimited
 

and the triangular shaped power spectral densities are as
 

follows:
 

SNRo(E.g. 1) = 21.1 dB 

Qo(E.g. 1) = 25.3SdB 

.and 

SNR (E.g. 2) = 26.4 dB 

Qo(E.g. 2) = 29.3 dB 

Now the SNR is beginning to reach moderate levels. However,
 

it is only at the expense of very precise estimation of the
 

PCM midpoint. In the next section, we consider further im­

provement of this PCM to ADM converter and a simple estima­

tion technique to calculate SNR.
 

4.3.5 Performance of the Improved Converters
 

A further refinement of this conversion technique is
 

obtained by estimating two PCM values between adjacent PCM
 

samples and employing all of these points to convert to ADM
 

format. The two estimated PCM values are obtained, as be­

fore, using the Wiener criterion. In this case, we have
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three equiamplitude staircases during each PCM sampling in­

terval. The SNR analysis can easily be extended to this sys­

tem just as was done when only the midpoint was estimated.
 

However, the algebraic computation becomes much too exten­

sive. To ascertain the performance that we achieve with,
 

this improved method, we can evaluate the limiting.SNR for
 

the two input power spectral densities cited above.
 

If we wish to apply the original statistical analysis
 

to the limiting case for 2, 3 or inestimated points between
 

adjacent PCM samples, all-we must replace TN by TN/m,
 

in all the results derived in Sec. 4.3.3. However, in cal­

culating the output signal power, Pw' we begin to experience
 

computational difficulties-. Since' w was formulated as the
 

difference between the total power and the out-of-band poweri-


Pwo, we must calculate Pwo from an infinite sum of terms via
 

Eq. (4.3-56). When we estimate more PCM points and take the
 

limiting case, Pw requires .more and more terms to yield
 

meaningful results. These terms are a function of the sine
 

integral. The result now depends on the accuracy of the sine
 

,integral tables or computation.
 

To circumvent this computational problem, we introduce
 

a simple estimation technique to calculate SNR. We start
 

with the expression for the optimized SNR, where the input
 

power has been normalized to unity, i.e.,
 

S LP2 (4.3-72) 
pQw 
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We note that all terms in the expression for Q. are just
 

slightly less than unity, particularly for the limiting
 

cases where we estimate 2 or more points between PCM samples.
 

Consequently, the denominator of Eq. (4.3-72) becomes the
 

dominant term. Since Q can never be negative, the smallest
 

.value of P is
 
w 

P (mi n ) = P2 (4.3-73) 

Therefore, the upper limit on the out-of-band power of w(t)
 

becomes
 

Po(max) R(0) (4.3-74)-2 

Since the lower-limit on Pwo is zero, we can express it as
 

Pwo= Pwo(max), 0 < a < 1 . (4.3-75) 

The objective of this estimation technique is to elimi­

nate Pw so there is no need to calculate Pw0 We can then
 

arrive at an expression for the SNR which is composed of
 

terms that are easily evaluated. Using Eqs. (4.3-74) and
 

(4.3-75) we can formulate the output in-band.power as
 

= - a))Rw (0) + cP . (4.3-76) 

We can now obtain the desired figures of merit without deter­

mining Pw" Setting the input power to unity, we obtain the
 

following expressions for the SNR, before and after optimi­

zation,
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SNR( - a))Rw(0) +c P w (4.3-77) 
lN1+l a)Rw(O) +.aP2 - 2Pxw 

and 

(1 - )WO + xw 
Q0 = (- c)RW(0) - (4.3-78) 

ai-) (R'(0) - Pxz) 

Fitting these expressions to the results obtained so far, we
 

have found that a value of a = 0.5 yields a very good ap­

proximation.
 

The performance of all PCM to ADM converters discussed
 

so far, for the two input power spectral densities cited
 

above, is summarized in Table 4.3-1. Here we list SNRo and
 

Qb-through the limiting case when three po nts are estimated-­

between adjacent PCM samples. Applying the SNR-estimation
 

technique described above, we have extended the results-to
 

seven estimated PCM-points. In Fig. 4.3-4, we plot SNRo in
 

dB versus the number of estimated PCM points, for the limit­

ing case, for both E.g. 1 and E.g. 2. As expected, each fur­

,ther refinement yields a higher SNR than all other converters
 

previously considered. The tradeoff is, of course, an in­

crease in hardware complexity.
 

To see the progressive change in converter performance,
 

with each subsequent modification, we can examine the auto-


In Figs. 4.3-5 and 4.3-6, we
correlation function of w(t). 


have plotted RW(-) for E.g. 1 and E.g. 2, respectively, for.
 

three different PCM to ADM converter structures. As we go
 



STRAIGHT LINE APPROXIMATION BETWEEN PCM AND ESTIMATED PCM POINTS
 

NO. OF ADJACENT E.g; 11 _ E.g.2 
NO. OF ESTIMATE PCM POINTS fm 

POINTS SNRo(dB) Qo(dB) SNRo(dB) 

8.6 '12.7 14.2
0 

1 2 10.2 11.7 15.5 


1 4 13.0 14.8 17.8 


1 Limiting Case 21.1 25.3 26.4 


2 Limiting Case 28.3 32.6 33.5 


3 Limiting Case 33.3 37.6 38.5 


TABLE 4.3-1. Performance of Parametric PCM to ADM Converters
 

f 
fm
 

Qo(dB)
 

17.3
 

16.2.
 

18.2
 

29.3
 

36.6
 

41.6
 

* H 
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Fig. 4.3-4. 	 SNR of Improved PCM to ADM 
Converters for the Limiting Case 
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from the basic converter where no PCM points are estimated,
 

to the system which estimates a midpoint from four adjacent
 

PCM samples, to the limiting case for one estimate point, we
 

observe-that Rw() yields a better and-better approximation
 

for the input autocorrelation functions, defined in Eqs.
 

(4.3-58) and (4.3-60), for these two examples. The dloser
 

the autocorrelation function of w(t) is to RX(T), the nearer
 

Pw and P., will be to P.. This, of coutse, gives us a
 

higher and higher output SNR. Therefore, the shape of Rw(r)
 

acts as a very good indication of the performance of our PCM
 

to ADM converter.
 

*4.3.6 Simulation of the Fundamental Converter
 

The basic PCM-to ADM converter,-as shown in Fig. 4.3-1,
 

w&s simulated using a PDP 8/L computer. The Song audio mode
 

ADM algorithm was employed in this simulation and several
 

different elementary input signals were used to test its
 

operation. To evaluate the performance of this converter,
 

we utilized an ADM decoder, which is merely the feedback
 

circuit of the encoder, and simulated a fourth-order Butter­

worth filter as the output LPF. A sinusoidal test tone was
 

applied to the input and SNR was measured after the output
 

LPF. The simulation system is given in Fig. 4.3-7. Note
 

that the cutoff frequency of the LPF, fc, sets the bandwidth
 

of the system and, therefore, the PCM sampling rate used'at
 

the input becomes
 

fN = 2fc . (4.3-79) 



PCM Format ADM Format SNRo 

PCM thADM
x(Rk) to M(k) ?k Order 
ADM DcoAD e Butterworth v(t)

VNCSinusoid LPF,
Converter fc 

Fig. 4.3-7. Simulation System for PCM to ADM Converter' Performance 
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In all previous performance evaluations, we employed a
 

test-tone of frequency f0 and specified the LPF cutoff fre­

quency to be 4fO . This, however, is not sufficient to
 

accurately test the performance of this converter. In Fig.
 

4.3-8, we show a low and a high test tone, at frequencies
 

fo and 3fo, respectively. Both inputs must be utilized to
 

ascertain a true picture of the operation of this system.
 

On the low and high tones, we have superimposed the PCM
 

samples and-the straight line approximations between them
 

which represent w(t). To gain a further idea of the system
 

performance with the low tone, we have calculated the SNR of
 

v(k) for various values of R. Recall that v(k) is the stair­

case waveform between PCM points and R, defined in Eq.
 

(4.2-1), is actually the nimber of steps between PCM points.
 

We display, in Fig. 4.3-9, SNRV, which is the SNR for
 

v(k), after final low pass filtering,-as a function of R.
 

Since w(t) follows x(t) so well, and because SNRv is rela­

tively high, we do not expect much degradation when ADM con­

verting v(k). We expect this test tone to yield good per-­

formance curves, indicating that the PCM to ADM converter is
 

a success without using any PCM estimate points between ad­

jacent samples. However, for the high tone, we observe that
 

w(t) is a poor approximation to x(t). It is so poor, in fact,
 

that without even calculating SNRV, we know that we must use,
 

at least, an estimated midpoint to achieve acceptabie per­

formance. But, we cannot estimate a midpoint based on the
 

theory presented previously because it employed probabalistic
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Fig. 4.3-8. Test Tones for PCM to ADM Converter and Straight Line 
Approximations between PCM Points 
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parameters of the input signal. These are virtually meaning­

less for a deterministic signal like a sinusoidal input. In
 

the next section, we shall present the quantitative results
 

obtained from these simulations and-then go on to introduce­

a non-parametric technique to -estimate points which can
 

easily be applied-to the sinusoidal inputs.
 

4.3.7 	 -SNR Curves
 

All techniques, assumptions and manipulations used in
 

Chs. 2 and 3 to determine output SNR, when a sinusoidal input
 

is applied to a computer simulated system, will again be
 

utilized with the basic PCM to ADM converter. Since the
 

input PCM samples, for both the low and high tones, are peri­

odic, v(k) is also periodic and so is the resulting ADM es­

timate, v(k). We must first determine the Fourier series of
 

the estimate. Then we can LPF v(k)-by scaling the frequency
 

components as described in Sec. 2.8. Finally-, we can calcu­

late 	the output performance figure of'merit, SNRo, from Eq .
 

(2.8-12), using the output noise power truncated after the
 

ninth harmonic.
 

By shifting the input x(t) with respect to the sampling
 

clock, we again generated different steady state estimate
 

patterns for v(k) and, therefore, different values of SNRo .
 

Treating the output SNR as a random variable, we calculated
 

its mean and variance for 32 different starting points of the
 

input sinusoid. In Fig. 4.3-10, we display the performance
 

curves for the basic PCM to ADM converter, i.e., with no
 



- - - - --- --- 

40 SNR0 (dB) SNR of ADM 

SNR of PCM to ADM Converter 
Frqun6-- c 1 R= 8

36 fo =Sine Frequency---­

fc=4fo = LPF Cutoff Frequency 

32 fN=2 fc=8f° Nyquist ' 7 /f 
Frequency A 

--- R=6 

28.
 

24= 

// 

20-

Relative Input16- / 
Signal Power 

- (dB) 
-6 0 6 12 '18 24 30 36 42 

Fig. 4.3-10. SNR of PCM to ADM Converter with Low Frequency Tone 
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estimate points between PCM samples, when a low frequency
 

tone is used as the input. The input sinusoid is of fre­

quency fo; the LPF cutoff frequency-is fixed at 4f0 ; and the
 

Nyquist rate set at 8fo . On this graph, we show SNRo versus-­

relative input signal power, over a range of 54 dB, when the
 

parameter R = fs/fN takes on values 4, 6 and 8. To have a
 

basis of comparison, we give the SNR curves obtained from an
 

ADM, operating at a rate fs, when the input is a sinusoidal
 

signal; This represents the best performance that can be
 

achieved when an ADM is used in the- converter. All these
 

plots are smooth curves drawn from the mean SNRo and an
 

average standard deviation of 1-2 dB. 'We observe, as expec­

ted, that this converter works very well for a low frequency
 

signal.
 

When employing the high frequency tone as an input, i.e.,
 

frequency 3f., we maintained the same LPF cutoff frequency
 

and the same PCM rate. Likewise, the input signal was varied
 

over the same range, from an amplitude of 5 minimum step
 

sizes at -6 dB to 1280 minimum step sizes at 42 dB. The out­

put SNR is shown in Fig. 4.3-11 for the basic PCM to ADM con­

verter and an ADM encoder. The common parameter used is
 

R = 4 and 8. We have again plotted the average SNRo , with
 

a standard deviation of approximately 1-3 dB, to obtain smooth
 

curves for both the converter and the encoder.
 

For the low frequency tone, the performance is quite
 

acceptable since it is within about 1 dB of the maximum SNR.
 

However, we find the figure of merit down 4 and 8 dB, for
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R = 4 and 8, respectively, from the best SNR obtainable.
 

Consequently, the basic converter is not acceptable in its
 

present form and we must at least add a midpoint PCM estimate
 

to raise the performance to reasonable quality. In the next­

section, we present a non-parametric estimation -technique
 

that will do just this.
 

4.4 Non-Parametric PCM-ADM Converter
 

The obvious advantage of designing a non-parametric PCM
 

to ADM converter is that the structure of the system is inde­

pendent of the input signal. We do not have to know the
 

probability statistics or the power spectrum of the input.
 

In considering the design of a non-parametric converter, we
 

still wish to maintain a simple structure that can be readily
 

built with all-digital hardware. In addition, we must avoid
 

both the "multipath" and the "endpoint" problems discussed
 

in Sec. 4.1.
 

4.4.1 	 PCM Estimation Technique
 

Let us consider the structure of the converter discussed
 

in Sec. 4.3. With the ADM encoder as part of the converter,
 

we automatically eliminate the "multipath" and "endpoint"
 

problems. Thus,-we must only deal with the derivation of
 

v(k), i.e., the input to the ADM, from the PCM samples,
 

x(Rk). As a natural extension of the technique described in.,
 

Sec. 4.3, we can calculate the ADM input values using a
 

method similar to that used to estimate points between
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adjacent PCM samples. Taking this to its limit, we can de­

termine R-l estimate points every T" seconds.
N
 

Deriving the estimate points from the PCM samples can
 

be viewed as a filtering operation to obtain each estimate.
 

A non-recursive digital filter structure would yield a
 

specific weighting for every estimate point. 'Certainly,
 

filters are designed without knowledge of the input signal
 

statistics or its power spectrum. It thus becomes a ques­

tion of what non-parametric design technique is optimal to
 

employ when calculating estimate points between PCM samples.
 

In the next section, we shall describe the best weighting
 

technique that requires knowledge of only the bandwidth of
 

the system.
 

4.4.2 Ideal LPF Impulse Response Weighting
 

If we consider the PCM points to be impulses, then the
 

optimum technique to recover the input signal would be to
 

ideal LPF the impulses. Therefore, we can find the value of
 

the signal at any point between PCM samples by a superposi­

•tion of the input impulses. This concept is one statement
 

of the sampling theorem [34], that is, if x(t) is bandlimited
 

to fc then it can be represented by the equation
 

x(t) = Z x(kTN)h(t - kTN) , (4-.4-1) 
k=­

where
 

TN = 1/2fc (4.4-2)
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The "interpolation function",
 

sin27rf cth(t) 


is the impulse response of an ideal rectangular filter with
 

transfer function
 

H(f) TN r Iff < f ,
 
(4.4-4)
0 , Jfl > fo
 

The terms x(kTN) are the PCM sample values, previously de­

noted as x(Rk). To exactly calculate points between adjacent
 

PCM samples will take an infinite numberof samples, thus
 

infinite time.
 

The form of the estimator given in Eq. (4.4-1) is
 

exactly the structure of a digital recursive filter. There­

fore, the implementation is readily adaptable to digital
 

hardware. However, there are practical considerations that
 

must be addressed. We must truncate the sum in Eq. (4.4-1)
 

to a finite number of terms and still maintain an accurate
 

estimate of the signal value. If we eliminate some of the
 

R-1 estimate points and use instead the staircase approxima­

tion originally presented in Sec., 4.3, the complexity of the
 

converter can be considerably reduced. We wish to know how
 

many estimate points can be omitted and still achieve accept­

able performance. These practical-cons-iderations are dealt ­

with by reverting back to the basic PCM to ADM converter that
 

employs only one estimate point between PCM samples.
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4.4.3 Converter with Midpoint-Estimate
 

Let us first consider the truncation of the infinite sum
 

given in Eq. (4.4-1). The most general solution to this
 

problem is by application of the Landau-Pollak bandwidth­

constraint theorem [35]. However, this essentially requires
 

-that we consider the sampling function, h(t), to be negli­

gible after a certain value of t. The Landau-Pollak theorem
 

gives the error that will result from a finite number of
 

terms in the estimation equation. We have found, with vari­

ous simulation signals, that if h(t) is neglected after its
 

second zero, then the estimate obtained- with four adjacent
 

PCM samples is within 10% of the true signal value. This
 

will act as a "rule of thumb" for the accuracy of our esti­

mate points since the use of more PCM-samples in the estima­

tor does not significantly improve the performance of this
 

converter.
 

To determine the number of estimate-values that can be
 

eliminated and replaced by a staircase waveform, we return
 

to the PCM to ADM converter with midpoint estimate. Using
 

the ideal LPF weighting function with four adjacent PCM
 

samples, we calculate the midpoint with the following equa­

tion:
 

x' (Rk + R/2) = h(3TN/2)x(Rk - R) 

+ h(TN/2 )x(Rk) (4.4-5)
 

+ h(-TN/2)x(Rk + R) 

+ h(-3TN/2)x(Rk + 2R)
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To show the qualitative effect of such a system, we have de­

termined the midpoints needed in a typical high tone test
 

signal using the above algorithm for x'(Rk + R/2). By observ­

ing the straight line approximation,-w(t), superimposed on
 

the test tone in Fig. 4.4-1, we see that this represents a
 

fairly good approximation to the input sinusoid.
 

We shall see that the performance of this converter
 

comes within about 1 dB of-the optimum figure of merit curve.
 

In Fig. 4.4-2, we show a block diagram of the PCM to ADM
 

converter with midpoint estimates using four adjacent PCM
 

points. The weighting coefficients are defined as
 

h i =h(±3TN/2) = 2/3r (4.4-6) 

and 

h2 =h(±TN/2 ) = 2/w . (4.4-7) 

This 	system represents a simple, straightforward hardware
 

realization.- To improve the converter performance and come
 

closer than 1 dB to the optimum SNR curve by estimating 2 or
 

3 points between PCM samples, it would be necessary to in­

crease the hardware of the system by about a factor of two..
 

An unrewarding tradeoff for less than 1 dB increase in output
 

SNR.
 

4.4.4 	 Simulation and Performance
 

Using the PDP 8/L, the PCM to ADM converter depicted in,
 

Fig. 4.4-2 was simulated and tested with elementary input
 

signals to verify its operation. Similar to the technique
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employed in Ch. 3, the coefficients h I and h2 were approxi­

mated by the nearest integral multiple of 1/16. The result­

ing decrease in output SNR was insignificant to warrant more
 

precision in realizing the scalars h.I and h2 . To determine
 

the performance of this device, we repeat the procedure em­

ployed in Sec. 4.3 with the high frequency tone. The simu­

lation system is exactly as shown in Fig. 4f3-7. We calcu­

late the Fourier series representation of the ADM estimate,
 

v(k), and determine the output SNR after low pass filtering
 

v(k) and truncating the noise power. The SNR acts as a ran­

dom variable dependent upon the starting point of the input
 

sinusoid and we must calculate its mean and standard devia­

tion. This is all done only for the high frequency tone
 

since the basic PCM to ADM converter performed very well with
 

the low frequency input.
 

The performance curves given in Fig. 4.4-3 are smooth'
 

plots of the average SNR o , with a standard deviation of
 

1-2 dB, over a relative input power range of 54. dB. The
 

parameter R takes on yalues of 4 and 8 yielding a system
 

that makes 2 or 4 steps between each PCM sample and its
 

adjacent midpoints. The graph in Fig. 4.4-3 represents an
 

extremely comprehensive view of the performance of this con­

verter. As before, we show the SNR of the PCM to ADM con­

verter with zero estimate-points, i.e., the basic converter.
 

We have plotted the SNR when one estimate point, the midpoint.,
 

is non-parametrically evaluated using four adjacent PCM
 

samples. Observe that there is an increase of 7 and 3 dB
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over the basic converter when R = 8 and 4, respectively.
 

From the last two curves, we obtain a good feeling for the
 

worth of the converter with midpoint-estimate. When three
 

estimate points are derived from four- adjacent PCM samples,
 

there is-only an increase of 0.5 dB. Likewise, the optimum
 

performance, when we ADM encode samples at fs, yields only a 

1 dB increase over the system given in Fig. 4.2-2. We cannot 

use two estimate points between PCM samples because we must. 

have an integral number of steps between the various PCM
 

values. With the values of R utilized, this is impossible.
 

We can conclude that the non-parametric PCM to ADM con­

verter, with midpoint estimate, is a rather successful sys­

tem. It represents a compromise between a minimum amount of
 

very simple digital hardware and the maximum figure of merit.
 

-Since there is so little improvement in performance by going
 

to a converter which utilizes three estimate values between
 

PCM points, we are quite content not to extend the complexity
 

of this device. Furthermore, with present-day technology,
 

this entire system could be constructed, using large-scale
 

integration, on one integrated circuit chip.
 

4.5 Other PCM-ADM Converters
 

-Following the converter concept presented previously,
 

-where a digital filter operates on the PCM samples to pro­

duce signal estimates, at a rate fsr which are then ADM en­

zcoded, we can introduce several other PCM to ADM converters.
 

09 The essential difference is the technique that is employed
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to derive the signal estimates, i.e., the digital filter.
 

We shall consider digital filters which range from an ex­

tremely simple estimator circuit to a submultiple sampling
 

filter designed with a Z-transform approach.
 

4.5.1 	 Digital Zero-Order Hold Circuit
 

Perhaps the simplest device that can be employed to es­

timate values from the PCM samples is a-zero-order hold fil­

ter. This technique is analogous to the concept used by
 

D. Goodman and J. Flanagan [36] to convert from ADM to linear
 

DM formats. A zero-order hold circuit will keep the same
 

PCM value for R ADM periods every Nyquist interval. This
 

PCM value is used as the input to an ADM and the encoder
 

treats it like a step input. Thus, the ADM estimate ap­

re­proaches the PCM level and then hovers about it for the 


mainder of the Nyquist interval.
 

We could, of course, simply use a D/A converter and a
 

holding circuit to keep the input at the ADM constant for
 

the entire Nyquist interval. However, we would like to em­

ploy 	a completely digital hold circuit. If we define the
 

digital zero-order hold filter as a circuit which holds one
 

value at its output for R periods when the held value is the
 

input during the first period and there is zero input for
 

the second through Rth periods, then it has the following
 

transfer function:
 

R-1
 
-
Go(z) = E z , (4.5-1) 

i=0 
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-
where z 1 represents a delay of Ts seconds. From the block
 

diagram shown in Fig. 4.5-1, it is obvious that this circuit
 

will produce the desired result.
 

An alternate digital hold circuit would be a bank of
 

flip-flops, all operating on the PCM clock, to store the PCM
 

sample word and hold it at the output until a'new PCM sample
 

was clocked into the flip-flops. This realization, although
 

not giving rise to a more mathematical transfer function, as
 

Eq. (4.5-1), is the practical approach to the problem because
 

of its hardware-simplicity. Although we will not analyze
 

this system -in depth, we shall make some pertinent comments
 

about its operation. We can determine the exact effect that
 

-the digital hold circuit will have on x(Rk) by evaluating
 

Go(w) from Eq. (4.5-1) with
 

z = exp(jwT s) (4.5-2) 

However, for the purposes of this discussion, we can simply
 

recall that an analog holding circuit transfer function,
 

given in Eq. (3.3-29),represents a crude low pass filter.
 

Viewing the operation of this converter in the frequency
 

domain, we wish to eliminate the high frequency components
 

found in the sampled x(t) signal and retain, undisturbed,
 

the baseband spectrum. But, we expect the performance of.
 

this converter to be worse than the basic converter des­

cribed in Sec. 4.3. The basic converter employed a filter
 

which produced a straight line between PCM samples and used
 

This filter is
values on this line as the input to the ADM. 
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Fig.. 4.5-1. Digital Hold Circuit 
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a first-order hold and acts as a better LPF than the zero­

order hold circuit. The only real tirtue of the zero-order
 

hold converter is its utter simplicity.
 

4.5.2 	 Submultiple Sampling Technique
 

A more refined approach to PCM to ADM conversion is to
 

actually consider the design of a digital LPF which extracts
 

signal estimates at a rate fs from the PCM samples, which
 

occurs at a rate fN = fs/R. The digital filter that will
 

perform this function must operate in the submultiple samp­

ling 	mode [37]. When a digital system operates in the sub­

multiple sampling mode it simply means that the system pro­

duces outputs at a frequency which is an integral multiple
 

of the input frequency. This is exactly the case that exists
 

in this converter. To thoroughly describe the submultiple
 

sampling technique, we shall introduce two possible system
 

designs.
 

The first system design uses the PCM samples as inputs
 

to the filter with R-1 zeros inserted between PCM samples.
 

.Since we shall explain this theory in a general fashion,
 

omitting the particular characteristics of the LPC, let us
 

start with the Z-transform of a digital LPF represented by
 

Hs(z) and the input and output of the filter specified by
 

Xi(z) and Xo(z), respectively. Then, as we normally expecti
 

Xo (z) = Hs(z)Xi(z) , 	 (4.5-3) 

where z-1 now represents a delay of TN seconds.
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If we want the output to occur R times in the Nyquist
 

sampling period and the input to have R-1 zeros between the
 

PCM samples of Xi(z), then the output is expressed as
 

X (z)R = Hs(Z)RXi(z) , (4.5-4) 

where
 

z =
Hs(Z)R = .,s(z) z/R 

TN =TN/R (4.5-5) 

Hs(z)R is referred to as the submultiple sampling Z-transform
 

of the digital LPF, Hs(z), and is realized exactly the same
 

as the ordinary digital filter except delay elements are re­

duced by a factor R and scalars with the constant TN inclu­

-ded are attenuated-by the factor R. This implies that the
 

digital filter operates at a frequency--Rf-r- One out of every,-


R cycles sets the input to a PCM sample and the rest are in­

serted zero. The filter operates on these inputs to produce
 

signal estimates which are used as the input to the ADM.
 

The second system design employs the PCM samples as fil­

ter inputs for R ADM periods every TN seconds. This is simi­

*lar to the PCM samples being held for the Nyquist period.
 

If we incorporate the digital zero-order hold circuit pre­

sented above with the submultiple sampling mode digital LPF,
 

then we shall -have achieved the desired design system. The
 

PCM-held filtered output is given by
 

SXoH(z)R = Go(z)RHs(z)RXi(z) , (4.5-6) 

where
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R-1
 
i/ R  
Go(z)R Z - (4.5-7)
 

i=O
 

Again, the- filter outputs are used as the input to -the ADM
 

to complete the conversion.
 

The actual-characteristics of the digital LPF and-the
 

comparison of these two design techniques is left for future
 

research. We expect that the performance will be directly
 

proportional to the order of the digital LPF ,chosen. Inher­

ently, it seems that the holding circuit should add an addi­

tional low pass filtering effect'and thfereb"yenhance the
 

systdm operation. These conjectures are left to be verified
 

by a more thorough investigation.
 

4.5.3 	 Recent Developments
 

There is not a great deal of literature that deals with
 

systems to perform PCM to DM conversion and the related dif­

ficulties involved with such systems. Some very brief­

articles employ a binary rate multiplier and digital filters
 

in converting from PCM to linear DM [381. These studies are
 

geared toward extremely simple hardware for the purpose of
 

inexpensive realization. However, they must employ a tre­

mendously high bit rate for the linear DM, in the order of
 

several megabits per second.
 

Virtually nothing has been reported that seriously con­

siders PCM to ADM conversion. There is no practical, sys­

tems-oriented research nor-do we find any detailed theoreti­
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cal analysis. Therefore, this area is almost completely open,
 

for many new ideas and much further investigation.
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CHAPTER 5
 

CONCLUSIONS
 

In this final chapter, we summarize the contributions
 

of this research work. We also present a brief comparison
 

between the systems designed and other digital circuits,
 

where practical, or optimal systems which perform the same
 

function. In addition, we discuss new problems that can be
 

addressed as natural extensions of this thesis.
 

The work done on the topics considered in this thesis
 

is viewed as a.success. We were able to solve the three
 

problems introduced with simple, all-digital systems and
 

achieve good performance with simple hardware. In Ch. 2,
 

we have conclusively shown that arithmetic processing-can
 

be performed on ADM encoded signals by operation.on the ADM
 

bit streams. Thus, we do not have to resort to PCM or ana­

log processors. We have demonstrated that the performance
 

and hardware complexity of the direct ADM adder and multi­

plier are comparable to those of equivalent PCM devices.
 

In Ch. 3, we have derived a theoretical design technique
 

for constructing an ADM to PCM converter. We have also shown
 

that, for moderate ADM bit rates, the SNR-of this system is
 

within 1 dB of the performance of the ideal analog demodula­

tion converter. Neither of these two accomplishments is,
 

however, the most important aspect of this work. The most
 

significant contribution-is the thorough explanation of why
 



188a
 

some sort of LPF is needed in converting from ADM to PCM
 

formats.
 

The work on PCM to ADM conversion addresses a problem
 

almost untouched in the literature and obtains significant,
 

practical results for the first time. We refer particularly
 

to the 'iultipath" problem and the various ways that it can
 

be solved, i.e.: with probabalistic statistics of the input
 

signal, or parametrically, -utilizing the input power spec­

trum, or non-parametrically, using no information about the
 

input signal except its bandwidth. The SNR obtained 'for the
 

non-parametric PCM to ADM converter, with one estimate PCM
 

point obtained from four adjacent PCM samples, came within
 

1 dB of the optimal PCM to ADM converter, in which samples
 

of the input signal are directly ADM encoded.
 

From the basic results of these three chapters, we see
 

that the overall purpose of this research was accomplished.
 

We were able to design direct ADM arithmetic processors and
 

to devise conversion systems between ADM and PCM formats with
 

simple, all-digital circuits 'that yield good performance.
 

This leads us to the additional ideas that were generated by
 

this thesis and new work that can be done as an extension
 

of it.
 

Other than the few examples mentioned in Ch. 2, the use
 

and applications of the ADM arithmetic processors still re­

main to be explored. This is- also true for the conversion
 

systems, particularly PCM to ADM since, ADM to.PCM conversion
 

can generally be employed as an intermediate step in A/D con­
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version. There are two new ideas that emerge from the study
 

of direct arithmetic processing of ADM encoded signals. The
 

first concept is the mapping of the ADM bits, ex(k) and ey(k)?
 

into a processed ADM bit, er (k). The-processed bit can have
 

2, 3 or more values depending on-the current and perhaps even
 

on the past ADM input bits; This processed bit would then
 

be employed in an algorithm, let us say, similar to that of
 

a Song audio mode decoder to generate,ah estimate of the sum
 

or product of the two input signals. The mapping of ex(k)
 

and e (k) into er (k) as-well as perhaps the decoding algorithm
y
 

for er(k) will be different for addition and multiplication.
 

The second idea, completely different from the first, is to
 

the ADM encoded-signals to linear DM formats, operat­

ing-at a higher rate. We can now use the very simple linear
 

DM multiplier, designed to obtain the product, and then-con­

vert back to ADM. The considerations in this approach are
 

performance and the hardware complexity required to construct
 

such a system.
 

In Chs. 3 and 4, we have briefly mentioned several other
 

conversion techniques that require a follow-up study. In
 

-convert 


particular, the submultiple sampling filter approach to PCM
 

to ADM conversion appears to be a rather easy and straight­

forward solution to this problem. We must consider the ef­

fect of starting with a companded rather than a linear PCM
 

format. We would like to investigate the variation in per­

formance as a function of the order and type of filter em­

ployed. We can employ different ways of measuring converter
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performance. If we use white Gaussian noise, bandlimited
 

from 500 to 1000 Hz, to represent a speech waveform, then we
 

can encode this waveform in ADM or PCM and apply our conver­

sion process. We can then measure output power in and out
 

of the 500 Hz band to determine converter performance. This
 

represents, a possible, significant improvement over the re­

sults obtained with a single test tone. Likewise, we could
 

generate -oice tapes with systems that have been physically
 

realized.
 

This brings us to the last few thoughts that could be
 

pursued as future work. For all three topics discussed,
 

since the designs have been oriented toward digital hardware,
 

we would like to construct real time versions of the proces­

sors and converters. Then, we can truly-test voice signals­

with subjective evaluation and even extend all the work to
 

the Song video mode ADM and observe the effect on picture
 

quality. An experimental study of this type will bring out
 

additional practical aspects of the work accomplished here,
 

some of which may not appear otherwise.
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APPENDIX 1
 

AMPLITUDE-FREQUENCY CHARACTERISTICS OF THE
 
FOUR-TERM NON-RECURSIVE AVERAGING FILTER 

In this appendix, we derive the expression for IHa(W) [, 
i.e., Eq. (2.3-9), from the digital transfer function, 

Ha(Z) = (1 + z 1 + z 2 z- 3 )/4 (Al-I) 

If we set 

z = exp(jwt S ) (Al-2) 

and separate terms,-we obtain 

Ha(0o) = (l + e-JwTs)/4 + e-J 2wTs(i + e-jWTs)/4 .(Al-3)
 

Factoring Eq. (Al-3), it reduces to
 

-
Ha(w) = (i + e j Ts) (i + e-J2oTs)/ 4 (Al-4) 

By removing e-JwTs/2 from the first term of this product and 

e-JwTs from the second-term, we reveal a rather familiar form 

Ha(o) = eJWTs/2[(eJwTs/ 2 + e-JTs/2)/21 (A1-5) 

(Al-5) 

e-JtoTs[(eJwTs + e-JwTs)/21 

Recognizing the exponential definition of the cosine, we can
 

now write
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Ha() = e-J3wTs/ 2cos(Ts/2)cos(wTs) (AI-6)
 

Thus, by observation, we see that the amplitude-frequency
 

characteristics of the four-term non-recursive averaging fil­

ter are given by
 

IHa(w}I Icos(oTs/2)cosCS(Ts)I (AI-7) 
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APPENDIX 2
 

THE PCM PRODUCT VIA ALTERNATE TECHNIQUES
 

There are many other techniques to obtain the PCM
 

product of x(t) and y(t) by using the'samples of both sig­

nals at a rate 2fm . Some-of these shall be discussed in
 

this appehdix. It is clear-that we can low pass filter the
 

samples of each signal, return to the analog domain, perform
 

an analog multiplication and then resample at 4fm . This
 

will certainly give us PCM samples of the product. However,
 

we must resort to a complete analog multiplication. This
 

°.can be avoided by holding the samples of each signal for
 

i/2fm seconds and multiplying the held values. If we as­

sume that the samples are actually quantized values, then
 

we have a multiplication of discrete values yielding a dis­

crete product--just like digital multiplication. The only
 

difference is that the product is a held waveform rather
 

than being samples. To obtain the PCM product, we must re­

,sample the held product at 4fm and A/D convert.
 

We shall show first that the holding and multiplying
 

technique described above does, in fact, produce the product
 

of x(t) and y(t) and second that it is not a good technique
 

to employ because of the distortion that it introduces into
 

the product. It is intuitively apparent that this technique
 

will yield the product because, by holding the samples of
 

each signal, we are low pass filtering them. The transfer
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function of the holding circuit for a signal bandlimited to
 

fm and sampled at the Nyquist frequency is given as [39]
 

GH(W) sin(wTN/2 )
 

GH (_ = _TN/2 (A2-1) 

where 

TN = 1/2f m = the Nyquist period. (A2-2) 

Although the holding circuit has LPF characteristics, they
 

are not very flat in-band and do not cutoff sharply. This
 

causes distortion of the in-band signal spectrum and does
 

not completely eliminate the out-of-band spectrum.
 

To demonstrate this concept, we define the Fourier
 

transform of x(t) and y(t) as 

X(W) 3Ex(t)] (A2-3) 

and
 

Y(w) E 3[y(t)] (A2-4) 

The sampled spectra of x(t) and y(t) are given as 

X*()= E X(w + nb)N) (A2-5) 

and
 

Y*(w) = E Y(w + nwnN) (A2-6) 

where 

"N =2rfN (A2-7) 

and 

fN = I/TN B the Nyquist frequency. (A2-8) 
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After holding, X*() and Y*(w) are multiplied by GH(w) which
 

greatly attenuates, but does not completely eliminate, the
 

out-of-band spectra. If we multiply the held signals.in the
 

time domain, we must convolve their frequency domain spectra.
 

Denoting this product spectrum as Z(w), it is expressable as
 

Z(t) =f GH(V)X*(v)GH(W - v)Y*( - v)dv (A2-9) 

To show that the actual product spectrum is imbedded in
 

Z(w), we must decompose X*(w) and Y*(w) into its in-band and
 

out-of-band spectra, i.e.,
 

x*(w) = X(m) + Xo(M) -(A2-10) 

where 

XO(e) = Z [X(w + nwN) + X(m - nN)] (A2-11)
0 n=l
 

and
 

Y*(W) = Y(n) + Y () (A2-12)

o 

where 

YO(w) E [Y(n + nwN) + Y(oy- nN)] (A2-13)
0 n=l
 

Now we can recast Z(M) in the following form:
 

Z(w) + f GH(V)GH( - v)X(v)Y(w - v)dv + Zdl(w) ,(A2-14) 

where
 
co 

Zdl(w) = f GH(v)GHNm - v)[X(v)Yo(en - v) 

(A2-15) 

+ Xo(v)Y 6 (w - v)]dv 

http:signals.in
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and this term, Zdl(w), represents distortion. 

With the aid of some trigonometric identities, we can 

expand GH(v)GH(W - V) into the following form: 

2 )
sin (wTN/2 )sin (vTN/

2 )cos (vTN/ 
-GH(V)G 11Cm V 


- v)T2/4 


(A2-16)
 

-Wv 


cos (wTN/ 2 ) sin2 (vTN/ 2 ) 

(wy v2 )TA2/4
 

Letting the second-term of Eq. (A2-16) also contribute to
 

distortion, we rewrite Z(w) as
 

7Z sin(TN/2) sin(vTN)x( - v)dv 

,-
TA/4 yv 2 


(A2-17)
 

+ Zd2(M + Zdl(w) 

where
 

-cos(wTN/2) sin (vTN/2 )
 
Zd2Cb) T24 f Wv-V2 X(v)Y(w v)dv


T I4 _ mv-v 
­

(A2-18) 

By expanding sin(VTN) into its power series,
 

sin(vTN) = VTN - (vTN)3 /3! + (vTN)5/5! - + *-- ,(A2-19) 

canceling 'the common factor (v) from the denominator (v -v),
 

and then writing the power series for 1/(w - v) as
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(I/c)[l/(l - v/W] = (1/W)[1 + v/ + (v/) 2 + .. , 

(A2-20) 

we can express sin(VTN)/(wv - V2 ) as 

sii (VTN)/(WV - v2 ) = (TN/c)El + v/o + (v/) 2 + ... ] 

- (T'/3[)[V2 + V 3/ + V4/ + ... ] + . 

(A2-21) 

If we allow all terms but TN/ in Eq. (A2-21) to contribute 

to distortion, then we can write Z(c) as: 

Z(m) 4sin(cTN/2) 7 X(v)Y(w - v)dv + Zd3(t) 
wTN/2 

(A2-22)
 
+ Zd2( ) + Zdl(l)l W , 

where
 

-

V2 W
1X(V)y(o-Za 3 (W) = sin( OTN/2)f sirl(vTN) TN idv 

sTN/2 WV ­
(A2-23) 

We recognize the spectrum of the product in Eq. (A2-22)
 

as the convolution of X(c) and Y(). However, we observe
 

that it is shaped by sin(wTN/2 )/(WTN/2 ) and there are the
 

additive distortion terms, Zdl(w), Zd2(w) and Zd3(). Thus,
 

although we have shown that the actual product is embedded
 

in . (), we have also shown that we do not expect the product
 

to be of very high quality because of all the distortion con,
 

tained in Z(w).
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AP-PENDIX 3
 

FREQUENCY CHARACTERISTICS OF THE CASCADE ARRANGEMENT
 
FILTER, HOD(Z), USED IN ADM TO PCM CONVERSION
 

In this appendix, we present a derivation of the trans­

fer function, HCD(f), given in Eq. (3.3-26), which shows the 

effect of the non-recursive filter (Fig. 3.3-2) on the ADM 

estimate, x(k). The filter coefficients, g(i), are obtained 

from the step response of an ILPF (Fig. 3.3-5). We have set 

Q, the number of filter coefficients, to be an even integer 

and specified g(0) = 0. The remaining Q-i coefficients are 

symmetrically distributed about 0.5 on the g(t) curve. Due 

to the symmetry of g(t), this implies that 

g(Q/2) = 0.5 , (A3-1) 

g(i) = - for i 1, 2, 0/2 - I,(A3-2)0.5 g'(i), = Q.., 

and
 

g(i) = 0.5 + g'(Q - i), for i = Q/2 + 1, Q/2 + 2, 

... , Q - 1 (A3-3) 

To find the frequency characteristics of HCD(z), where
 

HCD(z) = z -Q + (1 - z - 1 ) 0-1g(-)z - , (A3-4) 
i=0 

we first evaluate the frequency spectrum of
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Q-( -i
 
Ho(Z) E g(i)z (A3-5)

i=0
 

-Q/2
Factoring out z and noting that g(O) 0, Eq. (A3-5) be­

comes
 
Q-1
 

Ho (Z) = z - Q/ 2 Q g(i)zQ/ 2 - i (A3-6) 
i=l 

If we substitute Eqs. (A3-1-), (A3-2) ard (A3-3) in the above 

expression for Ho(z) and gather terms from the sum, in pairs 

of two, by mating the terms (i = 1, i = Q- 1), (i = 2, 

i = Q - 2), --. , we shall produce Q/2 - 1 pairs of the form 

0.5[zQ/ 2 - m + z-(Q/2 - m)] _ g,(m)[zQ/ 2 - m - z-(Q/2 -- m)] 

where
 

m = 1, 2, , 0/2 - 1 

° 
and one term, when i = Q/2, yielding g(Q/2)z = 0.5. 

By letting 

z = exp(jaT s ) , (A3-7) 

we see that each pair gives rise to a cosine and a sine term
 

of the form
 

cos(w(Q/2 - m)Ts) - 2jg'(m)sin(w(Q/ 2 -jm)T S ) 

If we now set
 

m = Q/2 - i (A3-8)
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sum all pairs, and include the term when i = Q/2, we obtain 

HO(W) = e-JQiTs/ 2 [C() + jS(a)] , (A3-9) 

where 

Q/2-1 

CMn) = 0.5 + E cos(iwT s ) (A3-10) 

i=l1 

and 
Q/2-1 

S(w) = -2 Z g' (Q/2 - i)sin(iwT s ) (A3-11) 
i--1 

- (Q+I)/2 
Returning to Eq. (A3-4) and factoring out z , we 

see that 

H(Z) = z-(Q+)/2 [z- (Q-)/2 + (z / 2 - z-1/2)zQ/2H (z)] 

_(A3-12) 

Again letting
 

z exp(jwTs ) , (A3-13-) 

the above expression becomes
 

-j (Q+l)Ts/2 {e-j (Q-l)mTs/2HCD (w) = e { 

(A3-14)
 

+ 2jsin(wTs/2)[C(w) + jS(n)1}
 

-
If we apply Euler's formula to e j (Q-I)wTs/2 and expand Eq.
 

(A3-14), we find that
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HCD(w) e- j (Q+l)wTS/Z{rcos (wTs - 1)/2) 

- 2sin (cTs/2)S (w) 

(A3-15) 
+ j[-sin(wTs (Q - 1)/2) 

+ 2sin(Ts/2)C(w)]} 

Now we combine the following equations
 

= 2rf , (A3-16) 

fs = l/Ts =RfN (A3-17)
 

and
 

fN = 2fc (A3-18) 

.to see that 

wT s = irf/Rf c (A3-19) 

By substituting Eq. (A3-19) and the formulae for C(b) and
 

s(w), given in Eqs. (A3-10) and (A-11), respectively, into
 

Eq. (A3-15), we arrive at the final form of HCD(f), i.e.,
 

HCD(f) = exp(-j(Q + 1)7rf/2Rf) (({cos(r(Q - l)f/2Rf C ) 

Q/2-1
 
+ 4sin(nf/2Rfc)[ Z g'(Q/2 - i)sin(inf/Rfc )]} 

il
 

+ j{-sin~ir(Q -- l) f/2Rf0 ) + 2sin(Trf/2Rf c) 
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[0.5 + Q/2-1E cos(iif/Rf c ) ll]) 

iA 

(A3-20 ) 
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ORIGINAL PAGE IS POOR 

APPENDIX 4
 

THE EFFECT OF TIME DELAY ON THE SNR OF THE
 
BASIC PCM TO ADM CONVERTER
 

Although we have shown that the time delay, yo, required
 

to maximize the optimum SNR of the basic PCM to ADM converter
 

is zero, it is interesting to study the relationship between
 

Qo and the time delay, yo. We shall explore this dependence
 

for the case of a white, bandlimited input power spectral
 

density, that is,
 

Gx(f) = TN ' If! < fm 

(A4-1) 
= 0 , If > fm 

where 

TN = i/2fm (A4-2) 

This input power spectrum is one of the examples applied to
 

the SNR statistical analysis.
 

Since the input power is set to unity, as seen from Eq.
 

(A4-1), we shall begin from the expression for Qo given in
 

Eq. (4.3-16), with Px = 1, i.e., 

Qo=1 (A4-3)= - 12 1(yo)/p w 

The in-band signal power is calculated from
 

Pw = Rw(0) - Pw0 (A4-4) 
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where
 

Rw(O) 	= the total power in w(t),,which is 
evaluated from Eq. (4.3-38) for this
 
particular example,
 

and
 

PWO = 	 the out-of-band power in w(t); found 
from Eq. (4.3756). 

For the basic PCM to ADM converter, and this example, these
 

calculations are easily made since Eq. (4.3-56) becomes a
 

short, finite sum.
 

We must evaluate p(yo) to see the effect of yo on the
 

SNR. Starting with Eqs. (4.3-17) and (4.3-45), and the even
 

property of Gxw(f), we can express p(yo) by the following
 

integral,
 

O )

i(yo ) = Lim(4/TN)f cos(2rfv

6- 0 	 (27rf) 

cosC(27f(yo + 	 TN)) + cos(2rf(yo - TN)) 

2 (2nf) 2 

(A4-5)
 

where we have employed some trigonometric identities and used 

the limit as c 0 because the integrand blows up at f = 0. 

After changing variables and using a well-known relationship 

from a table of integrals, 

fco sx cosx 1(46 
-=d 005X 1 d n > 1 (A4-6) 

xn (n-l)xn - (pil rl, caclt a 

we can, with the aid of L'Hospitall-s rule, calculate all 
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terms in Eq. (A4-5).
 

The final expression for p(yo) takes the following form:
 

v (yo) - (4/r2)cos (Tyo/TN) 

- (2/7(To/TN) Si (nyo/TN) 

+ (l/Tr)(l + yo/TN)Si(r(l + yo/TN)) 

.+ (1/))(I1- Yo/TN)Si(7(l - Yo/TN)) 

(A4-7)
 

where
 

Si() E fsin x (A4-8)
0 x
 

and the sine integral, Si(), is a common tabulated function.
 

Now we can evaluate Qo from Eq. (A4-3) for various values of
 

yo/TN. In Fig. A4-1, we show a plot of Q. versus yo/TN for
 

Iyol < TN' When Iyol > TN, Qo will oscillate between 0 and
 

1.5 dB. We observe that the peak occurs at yo = 0 as expec­

ted and after yo = +0.2TN the Qo curve falls off very rapidly.
 

This indicates that we can have a delay of several ADM peri­

ods before we suffer a drastic reduction in SNR, but no more
 

than one-fifth of the Nyquist period.
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Fig. A4-I. Optimum SNR of the Basic PCM to ADM Converter
 
as a Function of Optimizing Time Delay
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