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THE INVISCID PRESSURE FIELD ON THE TIP OF A SEMI-INFINITE WING
AND T'FS APPLICATION TO THE FORMATICN OF A TIP VORTEX

By G. F. Hall, 5. J. Shamroth, H. McDonald and W. R. Briley
United Technologies Research Center

SUMMARY

A method has been developed for determining the aerodynamic loads on the
tip of an infinitely thin, swept, cambered semi-infinite wing at an angle of
attack which is operating subsonically in an inviscid medium and is subjected
to a sinusoidal gust. Under the assumption of linearized aerodynamics, the
loads on the tip are obtained by superposition of the steady aerodynamic
results for angle of attack and camber, and the unsteady results for the res-
ponse to the sinusoidal gust. The assumption that the major effects of the
tip are confined to a relatively small finite spanwise length permits the
loading over the inboard portions of the wing to be approximated by known
results for the infinite wing. The +ip region is treated by a numerical
doublet-lattice method. The leading edge singularity in the loading is
removed by applying a correction factor due to Lighthill. The near field
disturbance pressures in the fluid surrounding the tip are obtained by assum-
ing a dipole representation for the loading on the tip and calceulating the
pressures accordingly. In addition to providing insight into the inviscid flow
behavior in the vicinity of the tip, the near field pressures asre alsc used to
drive a reduced form of the Navier-Stokes equations which yield the tip vortex
formation.

Although the derivation is valid for the general conditions described
above and several inviscid cases have been calculated, the combined visecid-
inviscid analysis has only been applied to determining the pressures and
examining the vortex rollup in the viecinity of an unswept, uncambered wing
moving steadily at a Mach number of 0.2 at an angle of attack of 0.1 rad.
Generally. the pressure behavior is as expected. As the wing surface is ap-
proached in the normal direction, the pressure magnitude increases, culminat-
ing at one-half the dipole magnitude at the surface. External to the region
containing either the wing or the wake, the pressures go continuously and
monotenically to zero as the wing plane is approached, In the wake, the
magnitude increases as the wake is approached witil, near the wake, an abrupt
reversal in trend occurs and the magnitude goes o zero. Finally, in the
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vicinity of the trailing edge, the pressure magnitude increases until, near

the wing surface, a reversal in trend is noted with the magnitudé decreasing
and terminating at one-half the dipole strength. This behavior refliects the
change in boundary condition at the trailing edge.

The viscous tip flow caleulation has shown feabures expected in the %ip
flow such as the qualitatively proper development of boundary layers on both
the upper and lower airfolil surfaces. In addition, application of the vis-
cous solution leads 1o the generation of a 'circular' type flow pattern
above the airfoil suction surface.



INTRODUCTION

In recent years, there has been a growing interest in the vortex formed
due to the pressure equalization condition at the tips of Iifting surfaces.
This tip vortex, whose presence can often be neglected in isolated -airfoil
aercdynamics, requires a precise definition of its physical characteristics
in problems involving interference aerodynamics. A primary example of this
type of problem is the intersection of a helicopter rotor blade tip.vortex . .
with the next following blade, This intersectlon represents a potentially
serious acoustic problem, (Ref. 1) and has been shown to have some effect on
rotor performance (Ref. 2). In addition to the direct relevance to current
helicopter problems, a more complete knowledge of tip vortex dynamics is
needed to assist in the design of novel helicopter blade tips for optimum
performance, and to provide basic information on the behavior of trailing tip
vortices behind large aircraft, to nmame only two of many applicabtions.

In the past, the tip vortex roll-up rate and position have been deter-
mined either by direct experimentation or by analytical techniques utiliz ing
Trefftz plane calculations (e.g., Ref. 3). Ixperimental procedures are reason-
able for many steady flow problems, but they are not yet sufficien 1y sophis-
ticated to show all the details of the vortex formation. Trefftz plane analy-
ses generally predict the position of the tip vortex adequately, but yileld
roll-up rates much too slow. Hall (Ref. 4) has modeled the vortex wake behind
a fixed wing starting impulsively from rest which predicte both a rate and
position of the tip vortex more compatible with those observed, but this tech-
nique requires large amounts of compuier time and storage. Another approach
to determining the tip vortex behind a lifting surface is a direct numerical
assault on the Navier-Stokes eguations, but this ‘apprcach also requires large
amounts of computer time and storage. It should be noted that classical
lifting surface analyses are incapable of treating the roil-up problem; the
linearization inherent in these methods is not valid in the tip region. The
analysis of the tip vortex formation is a highly nonlinear real fluid problem.
Figure 1 is a sketch depicting this formation.

The present analysis is an atﬁémpt to provide a simplified model of the
tip vortex formation problem. A boundary layer approach is used in which the
vorticity laden fluid contained in the tip vortex originates in the reglon near
enough the wing surface to be affected by viscosity. The boundary layer condi-
tion that the pressure field is wnaffected by viscous displacement effects is
assumed so that this pressure field can be determined from inviscid potential
theory in which shed vorticity is modeled by discrete vortex elements. It is
further assumed that the phenomenon is sufficiently confined to the tip region
that & semi-infinite wing can be used to determine the pressure field. Since
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the presence of the vortex requires a loading to exist on the wing, angle of
attack, camber and unsteadiness must be considered, but thickness can be
negledted, at least as a first approximstion. This models the wing as an
infinitely thin, curved plate in a subsonic compressible flow containing a
sinusoidal gust. Once the loading on the wing is determined, the pressure
field in the fluid.arouqd the wing is determined from a pressure dipole solu-
tion. The viscous roll-up is then obtained from a reduced form of the Navier-
Stokes equation. A sketch of the expected tip vortex formation on a flat plate
tip is shown in Fig. 2.- A comparison with Fig. 1 shdws that the only basic
difference in the hypothesized vortex formation process is that on the wing of
finite thickness the vortex initiation point may lie aft of the leading edge
whereas on the infinitely thin wing the initiation point is forced to occur at .
the ©tip leading edge.

The approach to be used in this analysis is broadly based on the infinite
wing analysis of Adamczyk (Refs.’5,6) and the doublet-lattice method of Giesing,
et al (Ref. 7). In brief, Adamczyk examined the problem of an arbitrary gust
encounter of an infinite swept wing in a subsonic flow., The solution, which
basically treated the sinusoidal gust response, is used in a Fourier super-
position method for any arbitrary disturbance, and this technigque is employed
herein for the unsteady vortex formation., Although Adamezyk's method is posed
for an infinite wing, 1t is known that with appropriate modifications in the
viecinity of a finife tip, such a two-dimensional method will still be wvalid at
some distance inboard of the tip. Hence, the Glesing method is applied over
the actual tip region and is matched to the Adameryk solution inboard of the
tip. The match point location-was determined by numerical experimentation
and was chosen to yield a smooth transition between inboard and outboard solu-
tions. This procedure is described in the text below.
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LIST OF SYMBOLS

Speed of sound, m/sec

Influence coefficient

Semichord, normal to span, m
Chord, parallel to free stream, m
Pressure coefficient (p-py) 2/p0U2

Pressure coefficient change across lifting surface, |
(o2 )plxat))a/p 2

ACP due to an infinite wing in‘a given flow

Sublayer damping factor

Defined by Eq. 1L

Complex Fresnel integral

Bquation of the lifting surface

Zeroth and first order Bessel functions, respectively
Wing thickness, m

metric coefficients

Zerotﬁ and first order Hankel functions of the Tirst kind

Gust wave number, m~1

Gust wave number, x-component, m-1 -

Gust wave number, y-component, m~L

Gust wave number in streamwise direction (Ref. 7), w1
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LIST OF SYMBOLS (Cont'd)

k/o

Spanwise length oubtboard from which the tip effects are
assumed concentrated, m

Mixing length, m

Pressure, n/m®

Tnviseid pressure, n/mé

Free stream static pressure, n/wm?

Radius, m or gas constant

Time, sec

Temperature, °K

Lift transfer function

Velocity components in viscous analysis, m/sec

Freestream velocity, m/sec

Velocity vector, m/sec

Complex gust amplitude (Ref. 5), m/sec.
Complex gust amplitude, m/sec

Gust velocity, m/sec

System codrdinates, mj x streamwise; y normal to x and
directed inboard. Origin at tip leading edge.

Cartesiasn coordinates in viscous analysis, m

System coordinate, m; x normal to span. x3 parallel to span,
directed inboard. Origin at midchord of tip.

Coordinate normal to plane of wing, m
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LIST OF SYMBOIS (Cont'd)

Gust inclination angle, degree, or difference operator
Frequency parameter, defined by Eq. (22a)

Cutoff parameter, defined by Eg. (22b)

Included angle between a point at which induced velocity is
calculated and the part at which the inducing load is located,
deg

Transformed transverse variable

Wing sweep angle, deg

Viscosity, kg/m-sec

Density, kg/ms

Freestream density, kg/md

Wing leading edge, radius, m

Complex velocity potential, m®/sec

Complex amplitude of velocity potential, m?/sec, or arbitrary
dependent variable

Complex amplitude
Vector
Mean wvalue

Fluctuating value

-Identifies points at which boundary -condition is satisfied -

Identifies points at which inducing loads are located



THEORETICAL FORMULATION

It is agsumed for the purpose of analysis that the semi-infinite wing is
at rest in a subsonic compressible stream having an imbedded sinusoidal gust
which is swept past the wing at the stream speed, U, The pertinent geocmeiry
of the semi=-infinite wing is given in Fig. 3. Of particular interest is the
spenwise distance, L. This length represents the distance within which the
tip effect is assumed to be dominant; inboard of this distance the flow and
the loading is essentially two-dimensional. Both the tip and the normal to
the gust wave fronts are parallel to the freesireem due to restraints imposed
by the particular version of the doublet-latilce method selected. The wing
is assumed infinitely thin so that thickness can be neglected, but the effects
of camber and angle of attack are included in the analysis, It is further
assumed that all disturbances are small enough that linearization is permitted.
The disturbance velocity potential is thus defined by the standard linearized
acoustic equation for subsonic compressible flow,

2 2 BB oM %% 1 PP (1)

axX? Op 9x0t 02 3t

A unique solution to the equation is obtained by applying the necessary bound-
ary conditions (Ref. 5). The linearized pressure field is then obtained from

;._=_[g_‘f+ug—f] (2)

The necessary boundary conditions can be stated as follows:

P=0 x<-y tan g, x>c—ytand, ally, x,=0 (32)
P=0 x=c—ytong, y>0, x,=0 (Kutta Condition) (3b)
%;:O x> -y tanég, x< ¢c—ytang, Xy =0, y>0 (3¢)

( Flow Tangency)

b2 R—~  {Radiation Condition} (30)

Note that the boundary condition 3a really expresses pressure continuity in
the wake as well as no disturbance zhead of the wing in the wing plane so
that
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R+Uﬁ-o x“)C‘—yTGDS (3e)
and
, $=0 x<—-y tan (3£)

Inspection of both the flow tangency condition and the linearity properties’
of the velocity potential permits further simplification of the problem. ILet
the equation of the surface be given by

Fix, x51 =x3=f{x,=0 (L)
Then
S T R (5)

Dt~ 3t ~ 9% dxz

where a¢/ax2 is the Xé—velocity induced by the wing and w_ is an imposed
normal gust velocity. If the wing performs no unsteady mo%ions, then the
disturbance velocity potential must satisfy

aP of

—_— =UJ— +w

2% 3%, g(m.x34) X (6)
Since the velocity potential is a linear function, superposition applies and
a steady and unsteady component can be defined.

=g+ by (7)

Thus the boundary condition can alsc be separated into steady .and unsteady
relationships.

3%s_ ., df

Sr, O Ox, (8a)
dPus .
axuz = Wg(xl,x‘?’,ﬂ (8.b)

This allows trestment of camber and angle of attack as separafe solubions to
the steady flow problem,while the response of the wing to an unsteady gust is
cbtained as simply the response of a flat plate to the gust.



_ Since the unsteadiness is represented by a gust harmonic in time, both
the disturbance veleocity potential and airload should be harmenic in time

b(x,1)= p(x) ! (98)
P(x,N=P(x1e" (5b)
ACp(x,1) = ABplx)e™ (9¢)

This boundary value problem can be converted to a singular integral equa-~
tion which relates the loeal flow angle at the surface to the loading of the
surface in a manner that expresses the flow tangency condition explicitly with
the remaining conditions iwplied

T w ik Xtkgy) . L D c — £ y_m AC d
ek _B_WL j; K{x— &y-1) ACp (&) OE i (10)

where — P(X2=20")-P{x,=0)
i 2
5 Po U

and | im E\EP - ;:Tcpa, which is the result for an infinite wing in the sinusoidal
m - -
gust field. A pressure coefficient inecrement due to the presence of a finite

tip can be defined by

ACpe = ACpg~ ACe (11)
which satisfies
fim .
= ACPC—'O (12)

and .which permits.Eq. (10) to be rewritten in the form

W * - @ pC AL A
g T etk < KyY) = fo ,{) K(x=& Y-m)ACe (€m)— BCr, (67| dgan (13)

BEq. (13) for points (x,y) on the wing can then be rewritbten in the following
form :
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u- - Jayj; © :£D~£ 0 -

(14)
wg GICK R, d¢ dn

Now the upwasn induced by an infinite wing in the sinusoidal gust field is
given by

i

@ C AC H + .
f ‘/. KACP d{ d'r;=87r .‘LMl]_e—'lthx kyy)
=00 w

and the upwash induced on the semi-infinite wing by another semi-infinite wing
extending from the tip to 1] = -» is given by the term

_f;j;cK&pm dgd'f]

The two wings summed would make an infinite wing. _Hence the inﬁegral equation
can be expressed as ’

' c - o 0,C — ‘
_ -/:Dfo K(x-&y-m) ACp (£,7) d¢ dn=:'£o<£K(x~ &y— M ACpy(£,9) dédn . (%)
N ; y20

This equation expresses the physical phenomenon-that the presence of a finite
tip induces an upwash increment over the wing surface to account for the
removal of that one half of an infinite wing which exiends to -=. The pre-
vious result is a general result, applying equally o steady or unsteady
motions as well as flat plates and cambered plates, and ‘wad also noted by
Chu and Widnall (Ref. 8).

Solution For The Pressure Field At The Tip Of The Semi-Infinite Wing

The solution to the problem of determining the-loading on the semi-
infinite wing makes use of the simplification afforded by the linearization of
the problem. The angle of attack and camber contributions to the loading can
by computed separately utilizing steady stabe. aerodynamic and then superimposed
onto the unsteady results of a flat. plate responding to a sinusoidal gust.

Equation 15 represents the basic equation to be solved for the finite
tip pressure coefficient increment ACPC.‘ The kernel function, K, has been
calculated in a form suiteble for numerical computation in Ref. 7 while
EEB;'represents the solution to the infinite wing responding teo the sinusoidal
gust field and can be cbtained from other sources (e.g., Refs. 5 and 6).

1



One approach to a solution is a combination of analytic and numerical
techniques in which the known AC__ is used to compute the upwash on &
selected set of control points on the wing numerically, This is the right
hend side of Fa. 15. Then the unknown AC. is computed at load points on the
wing by assuming a series representation made up of chordwise and spaunwise
loading functions which satisfy the edge behavior of the semi-infinite wing

using
ACp — /175 x— -ytan8 (leading edge)

ACp —~ /5 x-— C- ytan8 (irailing edge)
A_Cp —“'\& y— 0
RP - RPCO y— @

(where & is the distance to the edge of the wing), and a set of unknown
weighting functions. The weighting functions are determined by satisfying
BEq., 15 at the selected load points for which the right hend side was calcu-
lated. This is essentially the method proposed in Ref. 8 and is quite satise
factory for small values of KM. As kM values increase, however, the chord-
wise distribution of EE;; which defines the chordwise loading funetion, does

not maintain as simple a form,

The present solution begins by casting Eq. 15 into & numerical form

Too] N -—
ACPCDij K(X—Ei,Y-"TJ)&EiA'ﬂj =F % ACanm K(X=EnY=Tm) A& An (16)
| m=Q n=i

TR R

0
2
j:

j=-

Thus, an infinite set of simultaneous eguations, having a infinite number of
unknowns can, in principle, be solved by standard matrix techniques for ACP .
However, this equation can be rewritten asg ¢

o I . M N _ N
Y. T Ak ACey. =2 X (ACp T ACpy ) Ay
- e ki Q)u m=0 n=i nm Onm nm (17)

4=

m
where M represents a practical limit on the gpanwise position at which two-
dimensional flow is atbained, although ideally this is not satisfied except
in the limit ’

™8

N —
MZn_E(ACan— ACPCOnm) Akinm

E\LT-CO ACpcnm -0
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Thus, for x3 2 L—=m=M, ACan = ACPmnm and Fq. 15 can be written

DY X Ak ACp, T Y Aklinm ACP + kinm 8bpy
j=-co 1= ] Dij meon= Dam Wi qZ4 n (18)
] @ N
= z z Aklnm Acpnm+z z Aklam ACPCDnm

m=0 n=I =]
where now the whole left hand side represents the upwash supplied externally
and the second term on the right represents the effect of the two-dimensional
inboard loading on the tip region, The entire region of the Ltip effect is

bounded spanwise by m = o and m = M. Then Eq. (18) may be rewritten in the
form

> B3 Ay £ -
L.H.S. Ainm ACh Aytnm ACe
T nm wLOn m=0 ol nm nm (19)

which gives a set of N by M gimultaneous equations which can be solved directly
for the tip loading by standard methods.

Now, the remaining term on the left hand side of Eq. (19) may be written
a.s

o N P N . azag _
A AC = A AC + Ay nmACp 20

The term Aq.. is the kernel function of subsonic aerodynamics (Ref. 7).
Normally the complexity of this function precludes analytic treatment, but

for load points that are far removed from the downwash points, the kKernel fune-
tion can be simplified so that some integration can be performed. Hence, in
anticipation of these simplifications, the last term of Eq. (20) may be
rewritten in Integral form

Akiam ACpy =

IM=

w
2
M

M=z

=™

w »C _
' y

PO

and Fq. (20), rewritten in the form of Eq. (21), can be determined partly by
numerical and partly by analytic mesans.

The formulation of the problem in this mamnner, with the external specifi-
cation of the length, L, is a key development and permits a practical
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generalization to the problem. Altering this length can alter the spanwise
gradient in the tip region, although as this length increases, the effect on
the tip loading will decrease. The choice of T for the present analysis is
based on the results of Ref. 8, and was taken to be 4 chordlengths for the
calculations performed herein.

The Pressure Idadings On An Infinite Wing Yawed To A Compressible
Stream Containing An Imbedded Sinusoidal Gust

The solubtion to an infinite flat plate wing yawed to a compressible free
stream containing an imbedded sinusoidal gust has been developed by Adamezyk
(Refs. 5, 6). This solution represents an exact solution to the problem and
was developed by casting the acoustic equation as a modified Mathieu equation
and expressing the result, as determined by the boundery conditions, in an
infinite series of Mathieu functions (Ref. 5). The analytic form of these
functions is.sufficiently ecomplex that further analysis with then is difficult,
but they are well suited to numerical computation. For ease in interpreting
the equations of Ref., 6 the gust encounter geometry of Ref. 6 ig given in
Fig. b.

The response of the infinite wing to a sinusoidal gust is characterized
in Ref. 6 as a two-parameter solution.

B= kb cos o

AL —
I—M2cos=8 ’ (22a)

- Th o /2
_ kbsina S = kb sina kmmmef_ﬂ

= a2 bd YY) 2
[-M=CcoS=8 1-mM2cos28 L sina (22b)
k /2
" oy [M° 05?0~ s0%d]

The quantity, B, is simply the chordwise reduced frequency component and has
its direct counterpart in unswept infinite wing thecry. The psarameter, Y,
determines the behavior of solutions at large distances from the airfoil and
is defined as the cutoff parameter in Ref. 6. It enters the problem formula-
tion through a scaling procedure which reduces the acoustic equation to the
following form (see Ref. 6).

2% =
Pxyx FPxoxpt 7P =0 (23)

The fundamental sclution to this equation is a source with an asymptotic limit
given by
1



IYR» . 7-
¢-i&? R=v/x2¥x5% (24)

Form its definition in BEg. (22b), Y2 is either positive definite or negative
definite, and hence vy will either be a pure real or a pure imaginary quantity.
Now, if v is imaginary the solution decays exponentially while if vy is real
the solution approaches the asymptotic form of a cylindrical acoustical wave
propagating outward from the origin. A key parameter here is M¥, the phase’
Mach number of the disturbance along the span relative to the freestreanm

flow {see Fig. 5a). Whether or not the cut~off parameter, Y, is real or
imaginary depends on whether or not M¢ is greater or less than one.

The effect of the relative phase veloeity, M¢, is to introduce a spanwise
velocity for which the fiow appears stationary in an axis system also moving
at the spanwise velocity. The nodal lines of the gust in this moving axis
system are also stationary. The problem is thereby transformed from the non-
stationary problem of a gust encounter at some angle relative to the wing, to
a problem involving a stabionary gust front parallel o M¥ and lying across
a wing which moves spanwise at a velocity M¥* cose.

Adamezyk (Ref. 6) has successfully simplified the exact solutions for
disturbance pressure for limiting cases of this compressibility cub-off param-
eter. From Ref., 6, the disturbance pressure can be written in several differ-
ent forms for various values of the cut-off paramter, Y. When Yg is a small
positive quantity,

__ 'po UG, COSQ —x; [ JolB)-ZJ4(B)
Pg (- MZCOSZQ)VZ . '\/: [ I+7Z ]

(25)
{[-BMcos2ox+ kbsina —kucos(@-a]}
expii| -8 I+ (CMcos2gy/e %3 kucos(f—alt
with iHo () +i '(Y/B)a[Hé”(wal—Hom (B)] >
i 2=— 0. OS Y <Ol
Hy (B)
When YE is negative,
Po Ui, COs 8 /T— X H()’,ﬁ)‘
B=— — .
7 (I-MZcos29)72 l+x IO+ (7)
o _ ‘ (26)
kb sina Xz~ ikucos(8-ajt .

exp[—(y +iBM?cos®gIx + (I—MZ COs2 §)i72

15



ind; 3
where exp{-i /727 B2[cos - T (F - BN 14 2 yEE BRUH o0}
H{y, B)=

I+ y2+32[[+00528+ﬂ1/72+82 Sin8]

S=tan—!(y/8) 0>7r?
For larger positive and negative values of Vv2,

AU, c0s8 | [+1 [+i =
R=_ for2 _ — ]
ST 1—mM2cosegyire S a2 +E (/27 ﬁ))}

27)
exp{l[()’- BmZcos? 9)x,+kb sin @ x; - Ukcos(§~-a) t]}

Xp= X+ ly?-l>0.?
where
E(x)=C(x)-1S(x)

E{x)= CONJUGATE E{x)

The corresponding pressure Toading on the yawed infinite flat plate wing
responding to the sinusoidal gust can be obtained from

2Ps expi UEcos(a—a)’r]

ACp_= CONJ|—
Fo [ o L2 : (28)
0

L
2

The complex conjugate is taken since Adameczyk solved the conjugabe problem to
the formulation described herein.

In the present analysis Eq. (25), (26), or (27) will be used, depending
on the value of y2. If ¥° does not fall within the prescribed ranges, the
exact solution will be used (ef., Ref. 6).

The steady flow contributlion from a flat plate at an angle of attack is
obtained as a limiting case of the unsteady analysis at zero reduced freduency.
The effect of the steady flow camber problem can be treated by obtaining a
potential flow sclution for an infinite wing and then accounting for compress-
ibility by way of the Karman-Tsien relation (Ref. 9). A suitsble potential
flow result for an arbitrary mean line is given by the Munk integral (ﬁef. 3).

2 p2
ACp () =— 22 9[ "o (r)[ 1

Fsiny “‘;l)- sin T4+ COSr]dT (29}
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where | = cos~l 2x1 . Instead of using the Pranditl-Glauert correction factor
to account for compressibility effects, the Karman-Tsien relationship, which
is more accurate at high subsonic Mach numbers, is used., This relation is
given by

Com _ I
Cp[ .‘/I—Mz‘i‘ M2 Cpi (30)
+./1-m2 2

where C_ is the pressure coefficient at the Mach number M, and C__ is the
incompressible pressure coefficient at the same location in the fgﬁ .

At this point attention can be turned momentarily to the problem of
determining the pressure in the flow field near the wing but off the surface.
The leading edge pressure singularity, which is inherent in the theories of
infinitely thin wings and which generally causes no problems in computing the
aerodynamics of these wings, must now be treated., If the loading on the wing
is represented by pressure dipoles, the disturbance pressures at any point in
the flow may be directly determined by

5@)=ZI_ 9 fﬂ-i(im) e.w[ — Mix—8)+/(x— £)2+(1—2Ma)fx2+(y-fi)2]
T 9%z yinG aRea Qp(i1=M)

KN (1)

T R/ (x- 6124 12 +ly—m)?

Unfortunately, the infinite strength dipole at the leading edge will then
present infinite pressures throughout the fiuid, an obvious physical unreality.
Hence, the loadings in the vicinity of the leading edge must be modified to
eliminate this singularity.

Lighthill (Ref. 10) has successfully modified incompressible two-dimen-
gional thin airflow theory to eliminate the leading edge singularity, It is
required that the flow near a smooth leading edge be the flow over a parasbola,
while at points away from the leading edge the flow is adequately predicted
by thin alrfoil theory. This moves the singularity inside the airfoil contour
and provides a smooth flow exterior to the thin wing. As a result the pres-
sure loading on a thin wing can be given, to a first approximation, by the
following eduation,

ACp X

where x i1s the distance from the leading edge, AC_ is the actual pressure
loading across the wing, ACPT.A. is the thin airfoil theory result at the
corregsponding chordwide position and p. is the airfoil leading edge radius of
curvabure. Since AcpT.Au varies as (x%“1/2 near the leading edge it is easily

17



zM™M8

vz

BILITY OF THE

OoDUG! '
%%];EENMJ PAGE IS POORI

seen that ACP approaches zero conbtinuously as the leading edge is neared. As
¥ spproaches unity, AC_ approaches its thin airfoil value. Without direct
procf, it is assumed tﬁe same results will hold for subsonic compressible

flow; this is based on the fact that the behavior of the leading edge singular-
ity is the same regardless of compressibility or unsteadiness. That is, for
unsteady compressible flow AC, varies as [x}“1/2 near the leading edge.

The solution to the problem of predicting the pressure field in the
vicinity of a swept, semi-infinite wing consists of a numerical solution to
Fa. (19), utilizing the proper velue of AC__. The necessary doublet-lattice
influence coefficients were developed by Gggsing, et al (Ref. 7) and the
underlying assumptions in their derivation restrict the solution to the case of
tip chord parallel to the flow. Once the thin wing results for the loading
are determined, the leading edge singularity is removed by Eq. (32) and the
préssures'in the near field are determined from the dipole distribution, Eq.

(31).

An Asymptotic Solution For The Upwash Induced At The Tip By
Portions of The Wing Far Removed From The Tip

Equation (21) which is repeated below for convenience, describes the
upwash on the tip due to that portion of the wing which experiences two-dimen-
gional flow, ’ -

_ PN ’ © 5 - :

. o o & F (21

IAklmn BCpmn~ %%Ak'm" ACroomn + ﬁf f K(xp = &1 X3~ €3) ACPp d€|d§3 (21)-
= 7 ! -

Here ﬂklmn represents a numerical form of the- unsteady subsonip’flow kerhel
function, XK(x3-§, x3-§ ), both of which are given in Ref. 7. The continuous
form, K; of the kernél §Unction is more amenable to analytic treaimentﬂ The
following relations, from Ref. 7, are required to perform the integration in-
m. (21). ] -_ :

i

: —iky .
PERTP g Mepe s
‘ S - (33)
; 2472 i/2
R:(KOZ-E-BZ yO) ‘ ' x0=,-x_§ ) . B:[I_MZJ ‘ __‘YO=;Y“7]

?@e*integraifIl is given exactly by
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- i (14-u2)3/2 (3k)
and approximately by °
co My W
.I'-e [I (1+u2)i72 'klIO(”"k*)] : (35)
where ' -
: Il e MU (nelik))
gl k) =

20242 c
n=l nNeCs+k

‘ (36)
was developed by Laschka (Ref. 11) and is reproduced in Ref. 7. The Laschka
coefficients necessary for this approximation .are a‘n, n, and c.

In general the spanwise variation in AC_ is oscillatory due to‘the span-
wise component of the gust., From the form oF Eas. (25), (26), or (27) it cam
be seen that .

Ko = Ap(g) 6= 1M cos28gkinass

@ (37)

Thus the term in integral form on the Jf'ight hand side of Hg. (21) can be
written as ) .

fb RP e-."kBMz Co.sze{[fmeﬁ‘sinqu e— l—L‘—"KKr&[)COS 94‘(!3'*'63]51!18] -}_(_L dg dg
‘b . A . . re 3=

—

Defining Tlr = x3-$§3— this can-be restatéd as

t

 br iAM2cos?8E T iksmax -iﬂ'(x- eos® F P _ilksnas¥sinGlnk 4
- _f ACp, € . ‘e o e U “heo f e RERY ajq?r.'rﬁld"hd‘fl
. b . T X3~ A : .
Defirie the didtance. along the span between the point at which the ‘upwé.sh& ig
desired and the load is applied- to be T]I.. If this guantity is large c¢ertain
approximations in the kernel function, I{l/r2 can be made. In.particular,
a2y 2 =n2eost g
rR=n,2c0s2g (tan2(-.8-+ &) +8
72, .
~ M{tan2 (-8 +¢€) +8%) / —tan(~8+¢<)
U= Bz -

. /2 .
kU S g cose[M(funz(—e"'GHBa)./ —ton(—9+s)]
U= = -

.i 1 Bz

1/2
2y’
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Combining these approximate forms, the kernal function has the following
approximate form

~iC27)r N p,e 127 . =ica7r
.K_lg[_c.:}.;._“_‘-]i_.z_-—-q-.l_. Bt L d”ea 5 (38)
r Ca Ci/ 7 Ca g g.2+9,° Cq oy Mr [gn +7r ]
o w [M(mn2 (- 6+6)+BE)”2-—1on(—9+6)]
with C) = cos®8 Ca= g cos®
u Ba nCU
l - —nCu -
oL ] P S— Cq=Cy ba=gne dn=ba*gp gns ——
mz— weosg
172

Uy = [M(mnz (~g+e)+ B2 2 —ton(- 0+ e)] /832

The angle, €, is the angle between the load point on the wing and the
point at which flow tangency is satisfied, measured from a spanwise line
through the load point (see Fig. 5b). Note that this angle is a function of
chord, but for large spanwise distances between the loadpoint and the flow
tangency point this variation can be neglected. The integral

fCD e-i[ismah’gslngjm Ki dn

X3-A re

can be evaluated by first defining a parameber

wsing  woosf [ Mitarn2(— 8+ + 82 °— tan(-6+¢) ]

D=ksma+

u 3] BZ
Use of this parameter then permits evaluation of the following integral forms:
j__w e—anr f—co e 07 g ~0 e~ D7y
g L (- S
s=n M xgox G xh o af]

The integrations are performed in the complex plane and the following simple
form is obtained -

-©  _ip I g ey —16n!
f e"”rf_li d rg[g_%.+ﬁ_]lf_f_> . SGNO) 7 &L__.[l_ssm(m.ze "]
X —h r 4 C| 2 C4 2 n=| qn
® : (39)
where
Gn=Dgy

This calculation represents a small, real component to the upwash due to
portions of the wing far removed from the tip region.
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NUMERTCAT, RESUITS FOR INVISCID PRESSURE FIELD

The computational procedure to determine the tip loading consists of
representing the tip region (0 < %3 < L) by the doublet-lattice model des-
eribed in Ref. 7. Use of this model presently restricts the tip chord line
to be parallel to the freestream. The length, L, at which the tip influence
subgtantislly disappears is adequately given by 4 chord lengths. The inbcard
resgion of the wing is described by a combination of analytical and numerical
forms, utilizing the infinite wing results of Ref. 6, the numerical kernel '
function of Ref., 7, and Eq. (39)., Camber effects due to an infinite wing in
gteady subsonic flow are treated by combining the incompressible golution
of Eq. (29) with the Karmen-Tsien equation (EQ. 30) to account for compres-
gibility. Hquation (19) is then solved numerically for the unknown pressure
loads on the tip, AC - The final loads on the tip region are obtained by
removing the leading edge singularity from the Acpnm via Eg. (32).

Before applying the approximate pressure fields described by Egs. (25),
(26), and (27) to the solution for the semi-infinite wing, it is desirable to
establish some limits of accuracy for these analytic forms. The quantity of
primary interest is, of course, the pressure. However, the 1ift transfer
funetion T (which is a normalized 1ift coefficient that includes the effects
of compress:.bllrby and the wake) is also of interest and has been examined
in the figures which follow. Adamczyk (Ref. 6) has developed these transfer
functions for the following tentative values of the cut-off parameter.

- gibk cos@ [ Jo(B) ~iZ41(B) ‘J[ Jo (M2 cos? 9)+N|(MEBCOSZQ)]

L 1+2 :
. >y>0 (40)
. 20ns?

1= b (7 +iBMEcos?@)+I(y +1BM"COS 8) H{y, B)elkbcosa

L)+ I{y)

° ! -n'[l;— - 8][i+-]-2— sinb‘]

g Y5 B? {0058 - — . }

Hiy, B) = i+27./y2+ B2 U+05sindT

I+ 7./y24 32 [I+c0328+7J72+ﬁ2 sinS] (k1)

¥2<0

My

L -
=y e “/Y—Bmz c0s28 Narayreremnl
e ig[«/%’]

_ 2ity—PBm2cos?) -1 +
* [I € 2(y— M2 cos?8) y—BM%cos?8
N v 21y~ Bm?cos26) Lo
l 4 272 e E[«/Z(}"*‘BMaCOSz 9)]} ( )
— M cos 8 /vy + BM2C0SE

| r2]>>
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where 7 and H (v,B) are defined in Fas. (25) and (26). Note these transfer
functions are referred to the gust amplitude at the leading edge rather than

mid-chord.

Tn Fig. 6 the "exact" solution for Ty is compared with the approximate
forms for positive Y2 in Eqs. (40) and (42). (The exact calculations were
obtained by a direct numerical integration of Eq. 21 of Ref. 6.) The upper
panel contains the comparison for M = 0.3 and the }pwer panel for M = 0.6,
both over the range of reduced frequencies 0.05 < kb < 6.0, In both cases it_
is seen that Eq, (40) which is the low frequency approximation, compares
favorably with the exaect solution up to kb = 0.2, Beyond this value Eq. (40}
diverges from the exact solution, with a greater divergence at M = 0.6 than at
M = 0.3. 1In contrast to this, Eq. (42), which is the high frequency approxi-
mation, is in poor agreement for kb < 0.5, but improves in i%s ability to -
represent the exact solution as kb increases beyond this value, This is also
illustrated in Fig., 7 in which the magnitude and phase angle of TL are plotted
versus the cut-off parameter Y. Based on the results of these two figures, it
appears that Eq. (40) can be used for vy ¥ 0.3 while Eq. (42) can be used for
v < 0.3. :

Figure 8 shows the chordwise pressure distribution on an infinite wing
at a Mach number of 0.3 for a reduced frequency of 0.1 in part a (and shows
the variation with reduced frequency at x/e¢ = 0.2 in part b). Comparison
of these results indicate that Eq. (25) yields acceptable pressure distribu~-
tions for v < 0.2 while Eq. (27) is more than adequate for v 3 0.2. Figure 9
shows a similar set of comparisons for a Mach number of 0-6; For this set of
conditions, Eq. (25) represents an adequate solution up to kb = 0.1 and is
possibly extendable to kb = 0.2. Eguation (27), however, appears to compare
quite well with the exact results beyond kb = 0.2, This implies that Fa. (27)
still gives an adeguate descritpion of the pressures for Y < 0.2 while Ea. (25)
is valid for v 2 0.2.

It should be noted that the foregoing comparisons relate to conditions
for ye > 0, in which acoustic propagation is present, The conditions for
Ye < 0 have not been investigated herein and remain a field for further study.

Deviations begin to appear in both the 1ift transfer function and the _
pressure distributions at high values of reduced frequency at both Mach numbers
considered with the deviations becoming more pronounced as Mach number
increases. This is a result believed due to the truncation of the infinite
series of Mathieu function which describes the exact solution, ZFguation (27)
is a solution comprised of the first two terms of an infinite series in reduced
frequency in which the disturbance due to the plate is modeled by acoustical
waves emanating from the leading and trailing edges. This solution inherently
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increases in accuracy as the reduced frequency increases (at a given Mach
number £ 0) and so it is expected the results of Eq. (27) are more accurate
than the truncated representation of the exact solution at high values of kb,

Pressure Loadings on The Semi-Infinite Wing
Figures 10 and 11 describe the spanwise variation in chofdwisg pressure
distributions of the semi-infinite wing at various sweep angles. The wing is
an uncambered flat plate at an angle of attack of 0.25 rad in incompressible
flow. Generally, the chordwise distributions are of similar form, end the
spanwise variation decreases smoothly to zero at the tips. The effect of sweep
is to lower the overall magnitudes.

Figure 12 represents the steady response of a canmbered (NACA 4415 profile).
unswept semi-infinite wing at an angle of attack of 0.25 rad. A comparison of
this figure with Fig, 10 shows that the effect of camber is to increase the
chordwise load distribution. For completeness, the unsteady distribution for
Kb = 0.1 is included in Fig. 13. As stated earlier in the text, the complete
solution is the linear superposition of the steady and unsteady components of
the response which are illustrated in Figs. 12 and 13.

Pressure Distribution In The Vieinity of Tip of Semi-Infinite Wing

Figure 1L shows the pressures in a region surrounding the tip of a semi-
infinite unswept wing in steady subsonic flow at a Mach number of 0.2. The
angle of attack is taken to be 0.1 rad and camber is zero. In each panel the
pressure coefficient is plotted horizontally versus the normal distance to the
plane of the wing. The left column of panels at y/c = 2.0. is the distribution
two chordlengbhs inboard of the wing tip, and the right column of panels at
y/c = -2.0 is the distribution two chordlengths outboard of the tip. The
first horizontal row at x/c = 0,15 is the distribution at points that are 15
percent chord aft of the leading edge locus, the second. row for x/c = 0.95
(consisting. of -a single panel) is at a point that is 95 percent chord aft of
the leading edge locus, and the third row at x/c = 1.45 is for points that
are It5 percent chord aft of the trailing edge locus. The right hand column
can be dismissed immediately as representing typical variations of pressure
in the vicinity of, but external to, a lifting surface and its wake, The top
panel of the left hand column for a point near the wing leading edge contains
the characterlstlc Jump *iue to the dipole loading. Negative pressures (Cp <0)
are chserved for xg >0 whlle positive pressures are observed for X5 < (0. The

bottom panel of the left hand column for a point in the wing wake shows the
" far field dipole influence at points far removed from the weke |x2|>>0
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However, as the wake is approached a reversal of this trend is observed and
the boundary condition of zerc pressure difference in the wake is satisfied.
Finally, the center panel of the left hand column represents a point near the
wing trailing edge. Here the pressure variation is transitional between the
dipole jump on the wihg and the conbtinucus pressure In the wake. As the wing
is approached the pressure magnitude initially increases. At a small but
finite distance from the surface of the wing, the trend is reversed and the
pressures tend toward zero, but terminate in a discontinuous dipole Jjump on
the surface, This cowbinstion of form, near & point where the boundary condi-
tions change sbruptly, is characteristic of the elliptic eguations which
describe subsonic steady flow,
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VISCOUS FLOW CONSIDERATICNS

General

Although an accurate solution of the potential flow equations can give
a qualitative picture of the flow in the region of an airfoil tip, the flow
field in this region is affected significantly by three-dimensional viscous
phenomena arising from boundary layers on both the upper and, lower wing sur-
face as well as on the wing tip itself. Viscous effects could be modeled
partially in a potential flow solution through use of lsolated and discrete
vortex filaments. The filaments would represent the vorticity originally
generated in the viscous boundary layers which break away from the airfoil
to form the wake. However, a complete potential flow solution which includes
discrete vortices would require a calculation of the interaction of the
vortices with each other as well as their combined effect upon the wing.
However, even such a complete potential solution could not satisiy the sur-
face no-slip boundary condition. Although failure to satisfy the no-slip
boundary condition may not be serious in determining the pressure field, 1t
may lead to inaccurate predictions of secondary flows in the vieinity of the
wing even in regions which have little direct viscous effects. In addition,
a vortex filament solution would require assumptions on the vortex core size
and upon the position and angle at which the filaments leave the wing as both
of these items are dependent upon viscous effects. -

Since a complete interacting vortex filament-potential flow solution
would not be able to model either the airfoil boundary layer or the viscous
core correctly but would still present a formidable computational problem,
it is appropriate to consider viscous solutions of the tip flow field, One
possible viscous solution would attack the full three-~dimensional Navier-
Stokes equations, Solubtions of the full Navier-Stokes equations can now be
considered possible (e.g., see Briley and McDonald(Ref. 12)), however, their
relatively long compubter run times dictabe that the full three-dimensional
Navier-Stokes equations be solved only when no suitable alternative is avail-
able. ~

Although flow situations exist for which a three-dimensional Navier-S8tokes
solution is appropriate and necessary, the wing tip problem does contain sim-
plifying features that may alleviate the need for a full three-dimensional
Navier-Stokes solution. In particular, the tip flow region contains a primary
flow direction which, for the zero camber case considered in the present
effort, is in the pleane of the oncoming flow and at only a small angle rela-
tive to the wing chord. Furthermore, the velocity component in the streamwise
direction is considerably greater than wvelocity components normal to this
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streamwise direction and derivatives in the streamwise direction are expected
to be considerably legs than derivatives normal to this streamwise direction.
In this sense, the problem appears to be similar to the classical three-
dimensional boundary layer problem. However, the classical three-dimensional
boundary lasyer approach impoges two additional assumpitions which are not

valid in the airfoil tip region. Under the first of these additional assump-
tions the static pressure is assumed to be invariant in a plane normal to the
streamwise direction; obviously, such an assumption upcon the static pressure
clearly makes classical three-dimensional boundary layer theory invalid for the
airfoil tip problem. Secondly, three-dimensional boundary layer theory assumes
that significant gradients exist in one direction only, i.e., that a thin
relatively flat boundary sheet exists wherein viscous effects resulting from
the mean flow gradients are significant only as a result of the veloecity
change across the sheet and not along the sheet. Obviously the assumption

of a thin relatively flat boundary sheet is inappropriate in the region of

a wing tip.

The need to develop a three-dimensional forward marching viscous calcula-
tion procedure which is more general than three-dimensiocnal boundary layer
theory has been motivated by a variety of fluid mechanics problems such as
three-dimensional duct flow problems, three dimensional jet problems, and the
airfoil tip problem. Therefore, considerable recent effort has been expended
upon development of computational procedures for three-dimensional viscous
flows with a dominant streamwise direction. These procedures would not be
limited by the classical three-dimensicnal boundary layer assumption of con-
gtant static pressure in planes normal to the approximate flow direction but
would still allow treatment of the flow field in question as an initial value
problem. Such three-dimensional viscous forward marching solutions have been
developed by Patankar and Spalding (Ref. 13), Caretto, Curr and Spalding
(Ref. 14) and Briley (Ref. 15) all of whom developed numerical solutions for
laminar incompressible flows in straight ducts with rectangular cross sections.
The governing equations were solved by integrating in a primary flow coordin-
ate direction while retaining viscous stresses in both transverse coordinate
directions as opposed to only one direction for three-dimensional boundary
layer theory. In addition, certain assumptions were made about the behavior
of préssure gradient terms for incompressible flow to permit solution by
forward marching integration. Subseguently, this general approach has been
used to compute laminar incompressible flow in helical tubes by Pabankar,
Pratap and Spalding (Ref. 16).

Recently in companion studies, Briley ‘and McDonald (Refs. 12, 17} have
developed a stable and efficient noniterative implicit numerical technique
for application to systems of coupled nonlinear multidimensicnal parabolic
and/or hyperbolic equations. These general techniques were applied in
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Ref. (17) to the computation by forward marching integration of laminar
supersonic flow in rectangular Jets. Finally, the technique was extended

in Ref. (18) to the prediction of subsoniec turbulent compressible flow in
curved ducts. In the present effort this same basic viscous, three-dimen-
sional forward marching technigue is applied to the airfoil tip problem, and
a preliminary assessment of its potential for calculating the tip flow field
is made.

The Governing Equations

Central to the present analysis is the formulation of approximate
governing equations which can be solved by forward marching integration in
the direction of a "primary flow". The entire flow field then can be
obtained by a sequence of essentially two-dimensional calculaticns, and this
feature of the method results in a substantial saving of computer time and
storage comparad to that which would be required for solution of the full
(elliptic) Navier-Stokes equations. Although the present effort utilizes a
cartesian coordinate system to represent the airfoil tip flow field, the
equations have been derived and coded in a more general orthogonal system.
The reduction to a cartesian system is straightforward and is indicated
during the discussion.

The equations are derived in a curvilinear orthogonal coordimte system
which is aligned with the flow geometry such that one coordinate direction can
be identified as the primasry flow direction while the remaining two coordinate
directions determine the secondary {low plane. The transverse plane is
assumed to be perpendicular to the airfoil., Only the tip region of the air-
Toil within one-half chord of the edge is considered. The ajirfoll tip is
assumed to lie in the plane £ = O between 0 < x € ¢ and -h/2 €y < h/2 where
h is the airfoil thickness. The leading and trailing edges of the airfoil are
assumed to lie in the planes ¥ = 0 and x = ¢, respectively. A sketch of the
airfo;l tip coordinate system used in the viscous analysiz is presented in
Fig. 15.

In the general case x, ¥, and z represent the approximate streamwise
(primary flow) and two transverse coordirmtes in an orthogonal coordinate
system, respectively. Since the analysis consideres a general orthogonal sys-
tem, metric coefficients h,, h,., and h, are defined such that an Iincremental
distance (8s)2 = (hlﬁx)2 + (hpdy)e + (h362)2; for a cartesian system hy =h, =
h, = 1. The governing equations are derived from the Navier-3tokes equations
describing the compressible flow of a viscous, heat conducting, perfect gas.
In vector form, these equations are given by
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dp/at+¥ . (pU) =0 (432)

pdU/dt+p(U. VYU +Vp =F (430)

where U is the velocity wvector, p is density, t is time, p is pressure, F is 2
vector representing the viscous force acting on the surface of a fluid element
and vy is the gradient operator. The total enthalpy E may be specified through
an energy conservation equation (Ref. 18); however, in the present effort the
assumption is made that the total temperature is constant throughout the flow
field. The equation of state is p = pRT, where R is the gas constant. Expres-
gsions defining F in an orthogonal coordinate system are given by Pai (Ref. 19)
and may be found in Ref, 18.

In the present analysis the reasoning followed to estimate the order of
magnitude of viscous terms and turbulence quantities is the same as is often
employed to derive three-dimensional boundary layer equations. The rationale
is discussed in detail in Ref, 18, and for convenience this discussion is now
repeated in a condensed form. As discussed in Ref, 18, it is assumed that,
viscous effects are negligible except in thin layers near solid boundaries,
and thus boundary layer concepts can be employed to examine the relative
importance of viscous terms in the governing equations. Consequently, vis-
cous terms which are considered important for boundary layer flow on solid
surfaces aligned with either of the two coordinate planes which are parallel
to the primary flow coordinate are retalned throughout the entire region of
the viscous flowlcqlculationg-other viscous terms are neglected. 1In the -
context of the present investigation the lower and upper surfaces of the wing
represent solid surfaces aligned in the 'y'~direction and the tip represents
a 801lid surface aligned in the 'z'-direction. Both of these solid surfaces
are parallel to the primary flow direction, 'x'. If the flow is turbulent,
the governing equations are time-averaged in the usual manner for  turbulent
flows (e.g., Hinze, Ref. 20). The dependent variables are represented as the
sum of a time-averaged auantity denoted by an overbar ( ) and an instanta-
necus fluctuating quantity denoted by a prime (*). This process of averaging
produces turbulent correlations which are conventionally termed Reynolds
stresses. The order of magnitude of viscous terms, including the turbulent
Reynolds stresses, is examined under two sets bf-ciréumstances, namely, those
appropriate for boundary layer flow near either of two types of wall, one for
which y is constant (a y- wall) and one for which z is constant (a z~.wall).
Near a y-wall, (v/Uggp)andd( }/3(y/Lggr) are assumed to be of order % and 1/6
respectively; near a z-wall, (w/Uggp) and 3( )/d(z/Lggr) are of order & and
1/8, Here, & is the shear layer thickness. If the viscous terms are to be
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of the same order of magnitude as the remaining terms, then the dimensionless
moleculay viscosity (”‘/‘JREF VREFLBEF) must be of the order 62. Similarly, it
is assumed that dimensionless turbulent double correlations are of order 6
(i.e., turbulent fluctuations are of order 62) and that triple correlations
are negligivle. All other dependent variables and derivatives are assumed
to be of order unity. Retaining dénly those terms which are of order unity
in either of the two types of shear layers described above, the viscous terms
are greatly simplified, and the time-averaged governing eguations can be
written in the following form:

i(hah3fsa)+£;(h‘hap—v)+-.a_ (hyh, BW) = 0 (bika)

gx hz X
o 1 9y _p AP __p Ohy
op J K av — (4he)
*hhsTey = hhe 3 [ h, 01 'P‘_‘W]

d i oh — 2 — d A
ah dh d D 1
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For entirely supersonic flows, Egs. (Mlia-d) together with boundary and
initial conditiohs can be solved without further approximstion by forward
marching integration in the x direction as was demonstrated by McDonsld and
Briley (Ref. 17) Ffor laminar flow in rectangular jets. TFor subsonic £low,
however, the inviscid flow region 1s known to be governed by equations which
are elliptic; that i1s, by equations which require downstream boundary condi-
tions for solution. Therefore, in the subsonic case, if the pressure is
required to emerge from the solution it is by no means clear that a stable
numerieal solution could be obtained from a foxward marching cadlculabion and
even if a stable numerical solution could be obtained, solubion by forward
marching integration is not physically appropriate, at least not without some
sort of lterative procedure to sabisfy the downstream boundary conditions.
Therefore, it appears that in the subsonic case some approximation must be
made in regard to the pressure field. The present airfoil tip analysis follows
the approach of Ref, 18 and assumes the pressure field appropriate for invis-
cid Tlow represents a given reascnable first approximation to the actual pres-
gsure field. . Thus, the inviscid streamwise pressure gradient computed with
appropriate downstream boundary conditions is "imposed" upon the flow, as a
known sourece ferm in the streamwise momentum equation much as in conventional
boundary layer theory, so as to permit solution by forward marching integra-
tion of the viscous flow equations for subsonic flows. This choice of the
pressure approximation is nol the only possible choiece and the manner in which
the necessary pressure approximation is made is still a subject of current
investigation. In any case the imposition of inviscid pressure gradients
incorporates a priori the elliptic effects associated with a subsonic pres-
sure field without the necessity of solving elliptic equations other than for
an inviscid flow. In the present application, the inviscid pressure distri-
bution was obtained via the inviscid analysis described in the previous
sections, )

Method of Solution

The governing equationg can be solved (after modeling the Reynolds
stresses in the case of turbulent flow) following the general approach
developed by McDonald and Briley (Ref. 17) for laminar supersonic flow in
rectangular jets. A detailed discussion of the calculation procedure is not
included here, as such a discussion would be lengthy, and discussions of the
general approach are available elsewhere (Refs. 12, 17, 18). The method used
is based on an implicit scheme which is potentially stsble for large step
sizes. Thus, as a practical matter, stability restrictions which limit the
streanwise step size relative to the transverse mesh spacing and which become
prohibitive for even locally refinéd meshes (e.g., in laminsr sublayers) are
not a factor in making the calculations. The general approach is to employ
an implieit difference formulation and to linearize the implicit equations by

30



expansion about the solution at the most recent streamwise location. Terms
in the difference eguations are then grouped by coordinate direction and one
of the available alternating-direction implieit (ADI) or splitting technigues
is used to reduce the multidimensional difference equations to a sequence of
one-dimensional equations. These linear one-dimensional difference equations
can be written in block-tridiagonal or a closely related matrix form and
solved efficiently and without ifteration by standard bloeck elimination
techniques. The general solution procedure is quite flexible in matters of
detail such as the type and order of accuracy of the difference approximations
and the particular scheme for splitting multidimensional difference approxi-
mations. Rased on previous experience, however, it is believed that the con-
sistent use of a formal linearization procedure, which incidentally requires
the solution of coupled difference equations in most instances, is a major
facktor in realizing the potential favorable stability properties generally
attributed to implicit difference zschemes.

As indicated sbove the details of the method of solution are quite
lengthy and have been discussed in elsewhere. Rather than repeat the discus-
sion in detail within the body of the present report, the specific numerical
method is described in Ref. (18) and given briefly in Appendix A. The topies
in this appendix ineluvude the difference operators, the linearization process,
the &ifference equations and the matrix inversion procedure.

In brief, the numericsl technigue represents first and second derivatives
by either first or second order difference formulas. However, a simple
direct substitution of the difference representations into the differential
equations would lead to a nonlinear set of algebraic difference eguations.
Therefore, a linearization procedure is required, The linearization procedure
is based upon previous work by Briley and McDonald (Refs. 12 and 17) which
assume the solution o the equations is Taylor expandable and, therefore,
approximates the solution at streamwise station n'+ 1 through a Taylor expan-
sion of the known scolution at station n. The result is a set of linear
difference equations representing the nonlinear differential equations at
station n + 1. The finite difference solution itself is an ADI solution
based upon the splitting technique of Yanenko (Ref. 21) which results in a
two step procedure in advancing the solution from station n to station n + 1.
Fach step redquires the inversion of a block diagonal matrix which is accom-
plished through a standard block elimination technique (e.g., Ref. 22).
Further details of these procedures are found in. Appendix A.
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Grid Transformation, Difference Representation
and Boundary Conditions

The minimization of the computational effort necessary to compute a
golukion requires that a nonuniform grid spacing be used to ensure that grid
points are closely spaced in regions where the solubion varies rapidly and
widely spaced elsewhere. 1In the present calculatlons, steep gradients occur
in the boundary layers on the airfoil surface and in the vicinity of the
airfoil tip and it is in these regions that closely spaced grid points are
required. In the present procedure grid point packing is obtained using a
transformation originally devised by Roberts (Ref. 23). TFor the purpose of
demonstrating the Robert's transformation suppose that N grid points are to
be-used in the range ¥y sy =y_ and a boundary layer or sublayer of thick-
ness e(yé~yl) is present near ¥yo then Roberts' transformation T(y) is given

by
n{y)=N+(N-1) log (;’r—:———m/ioq (g—f‘) (45)

where a = ¥_.-y. s b2 = a2/(l-e), and ¢ = y,. The use of equally spaced points
in the transformed coordinate T ensures.an adequate resolution of both the
overall region between yl and y_ and the boundary layer region belween yy and
yv. + € (y.-v. ). Derivatives Wi%h respect to the physical coordinate y are
o%tained romr the following formulae:

3 _d4m 4 :

dy dy aT) (ll-6)
32 =(d’7)2 R i -
dy* "\dy / am ~ dyz a7

The use of threepoint difference operators for 1T derivatives in Egs. (46)
produces similar operastors for y derivatives. These y-derivative operators
can be computed at the start of the calculation and stored, along with the y
locations of grid points.

In the present calculations the grid was resolved in the y-direction
along both the upper and lower surfaces of the airfoil and in the z-direction
in the vieinity of the airfoil tip. In the y-direction the limits of the
computational region were taken between -.5 < y/c % .5 and transformations
were performed both above and below y = 0 (the wing centerplane)., For the
transformation above the wing centerplane, ¥, was taken .as 0.5¢, y, was taken
as 0.0 and e was taken as .0lt; below the wing centerline y. was taken as -0.5c,
¥y, was taken as 0.0 and ¢ was taken as .0k, similarly, in the z-direction
transformations were performed both inboard and outboard of the wing tip plane.
In these transformations ¥y was set to zero, € to 0.0h and ¥, was set to +0.4L
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Results

Inviseid Caleulation - Although the present section is concerned
primarily with results of the viscous calenlation procedure, the viscous
procedure requires as input an inviscid approximation to the pressure field.
Since this inviscid pressure field is used as an imposed source term in the
streamwise momentum equation, the inviscid pressure distribution plays a
significant role in determining the viscous results. Therefore, before
examining the results of the viscous procedure, it is appropriate to review
briefly the inviscid calculation procedure and to examine the inviscid pre-
dictions in the airfoil tip region.

Under the present effort, the inviscid flow field was determined by a
doublet lattice method (see previous sections of the present report). Tor
steady flows the doublet lattice method reduces to the modeling of the wing
by a group of horgeshoe vortices. The wing is divided into N rectangular
sections and the bound filament of a horseshoe vortex is placed in each seg-
ment. In addifion, one collocation point is placed in each rectangular seg-
ment. Generally, the bound filament is placed along the local guarter chord
line of esach rectangular element and the collocation point at the 3/h chord
point midway between the tips of the element. The sirength of each bound
vortex is chosen so that the total normal wash due to the oncoming free stream
flow and to all horseshoe vortex elements is zerc at all colioecation points.
Therefore, in the doublet lattice method the zero normal wash condition need
be satisfied at only N discrete points on the wing; romal wash may be present
at all other points on the wing.

The doublet lattice method does represent an efficient and versatile
method of solving the inviscid flow about a wing of general planform and may
be capable of giving accurabe predictions of 1ift and moment coefficients.
However, unless an extremely large number of rectangular sections and colloca-
tion points are used, the procedure suffers from obvious deficiencies in its
ability to determine the flow field in the immediate vicinity of the wing.

The deficiency results from the zero normal wash boundary condition being
satisfied only at isolated points (one per section) and, therefore, at all
other pointes the correct physical boundary condition is not being satisfied.
Tn the present inviscid calculation which was used to obtain the inviseid
pressure field reguired by the viscous procedure only a moderately dense grid
was used and, consequently, the zerc normalwash condition in the immediate
vieinity of the wing tip was not well satisfied. A typical spanwlse distribu-
tion of the normalwash veloclby i1z presented in Table I. The distribution
was calculated by suming the contributions from each horseshoe vortex and
the oncoming free stream flow. The distribution is taken at x/c = 0.325 and
y/c = 0.02; the velocity is normalized by the oncoming free stream velocity.
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and -0.4e for the outboard and inboard transformations, respectively. It
should be noted that the y-grid is symmetric about the wing centerplane and
the z~-grid is symmetric about the wing tip. The locations of the grid points
versus point number are presented in Fig. 16,

In regard to the finite difference represgentation, in the present effort
second derivatives are repfesented by three point central difference operators.
First derivatives are represented by two different difference operators. In
the spanwise direction a two point backwards difference operator is used. In
the transverse y direction for points above the wing centerplane a two point
backwards difference is used whereas for points below the wing centerplane a
two point forwards difference is used. It should be noted that with this
difference scheme, differencing is always done away from boundaries which in
truth can only be set at infinity.

The final item %o the specified before proceeding to a discussion of
results is the application of boundary conditions. During the course of the
present effort several combinations of boundary conditions were investigated.
Cne possible choice along all outer boundaries of the computational region is
the specificaftion of the inviscild function values. However, this specifica-
tion should require the flow in the outer portions of the computational region
t0 be free from both direct and indirect (viscous displacement) wviscous effects.
In the present computations, the regions in the vieinity of the upper and
lower {y= constant) boundaries are not expected to be free from inner layer
viscous displacement effects and, therefore, along these boundaries second
derivatives of u, w, and P were set to zero. The most satisfactory boundary
condition for the fourth variable, v, was obtained by setting the first
derivative, 3v/dy, equal to the inviscid value. On the left hand z-boundary
(which cuts through the wing) the second derivatives of u, v and p are set
to zero and the spanwise velocity, w is set equal to its inviscid value modi-
fied by a boundary layer profile, f(y/8), in the vieinity of the wind surface.
Finally, on the right hand z=constant boundary, which should be reasonably
free from all viscous effects, p, u and v are set to their inviscid values
and 3%w/3%z is set equal to zero.

Once a calculation has begun to march downstream, the continuity equation
and the three momentum equations are golved in finite difference form. How-
ever, a special procedure is reguired to start the caleunlations. In this
special starting procedure during the y-implicit sweeps of the ADI procedure,
the y-momentum equation is replaced by the condition that the pressure equal
the inviscid pressure. Likewise during the z-implicit sweeps the 7 -momentum
equation is replaced by the inviscid pressure condition. This special starting
procedure only is required on the first step of the calculation and serves to
generate a viseous flow field compatible with the invisecid pressure
distribution.
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Table I - Calculated Tnviscid Normelwash Velocity
z/c -.20 -.15 -.10 -.05 0
v/u .002 .009 .02 .07 .21

Obviously, the zero normalwash condition is not being held in the immediate
vieinity of the tip. Therefore, for the purpose of the viscous calculation,
the tip was taken to be at z/c = -.1 and the z-location was then shifted by
0.1 so as to put the new assumed tip location back to z/e = 0.

In addition to the problem of nonsatisfzcetion of the zero normalwash
condition (which in principle could be overcome through a dense calculation
grid), the doublet lattice method assumes the trailing vortices to lie in a
plane which in the present inviscid caleculation coincides with the plane of
the wing. This restriction further constrains the flow since the vortices
are not free to interact one with the other. Although such a constraint may
not represent a significant problem in 1ift and moment coefficient calecula-
tions, the constraint may lead to critical inaccuracies if the correct
detailed flow field in the vicinity of the airfoil wing is the object of the
investigation. Therefore, in summary the inviscid calculation procedure
used has two drawbacks in so far as the wing tip flow field is concerned:
(1) satisfaction of the zero normalwash condition only at specific points and
(ii) constraint of the vortex trailing filaments to a specified plane.

Predictions of the inviscid flow field obtained with the doublet lattice
method are presented in Fig. 17-22. Figures 17-19 show contour plots of the
streamwise, normal and spamwise (u, v, and w) velocity components, respectively,
at x/c = 0.175. As can be seen in these figures the streamwise veloecity above
the wing is greater than that below the wing and the normal and spanwise flow
velocities show flow arocund the wing. TFlow around the wing can be deduced
from the prediction of positive v at the wing tip in conjunction with posi-
tive w below the wing and negative w above the wing. TIn addition it should
be noted that a strong positive v-velocity occurs just beyond the wing tip
location for the inviscid flow caleculation (z/c = 0.1). This reaches a maxi-
mum value of approximately v = 0.2. Far from the wing the ratio of v/u
approaches a value of approximately 0.1 which is consistent with a 0.1 radian
incidence angle. Tt should be noted that the inviscid solution shows no evi-
dence of a circular secondary flow battern in the y-z plane. Above the wWing
the spanwise velocity w is consistently negative while below the wing it is
consistently positive. The normal velocity is slways positive. The lack of
any circular inviscid flow pattern in the y-z plane is a result found at all
. stations examined and may be due to constraining the trailing vortices in a
planar wake. Figures 20-22 show the three inviseid velocity components at the
plane x/c = 0.375; the flow pattern is similar to that found ih the upstream
flow plane. 35



Viscous Solution - The inviscid flow field obtained from the doublet
lattice procedure is used as input for the viscous calculation. The inviscid
pressure field is imposed unchanged upon the streamwise momentum equation and
the inviscid velocity field is used to obtain both upstream initial conditions
and some boundary conditions. Although the tip flow field in general will be
turbulent, the present calculations were run as laminar at a chord Reynolds
nunber of approximately 2000. It is expected that the tip flow field region
will be qualitatively similar in the laminar and turbulent cases and, there-
fore, a laminar prediction should serve to assess the three-dimensional
viscous flow field generated by the code. Treatment of the turbulent problem
would =zdd the complication of hypothesizing a turbulence model and further-
more would reguire a simultaneous assessment of the turbulence model and the
basic three dimensional ealculation. The separation of these two items in
one ealeulation is diffiecult at best and, therefore, it is proper in this
first assessment to avoid the complications of a turbulent flow. Turbulent
flow can be considered at a later date by adding an appropriate turbulence
model to the caleculation procedure.

The calculation was initiated at the station x/c = 0.175 by inputting
the invisgcid velocity field and adding a boundary layer correction in the
vieinity of the wing. The computational grid used consisted of twenty-one
points in the spanwise direction and forty-one points in the transverse
direction. 1In the present calculation a boundary layer thickness, §, was
chosen to initiate the ealculation and each veloecity component, uj, was
scaled such that

W= Ui inviscip fly/3) (47)
where y is the distance from the wing and f(y/ﬁ) is the Pohlhausen velocity
profile. For the purpose of this preliminary assessment of the procedure, a
convenient boundary layer thickness was simply assumed. TInboard of the wing
tip {z < 0) the boundary layer thickness was assumed to be 6 = .08 ¢ and
outboard of the wing tip ( z > 0) 6, was assumed to be .015 ¢. Although the
initial plane flow field obtained by superimposing a Pohlhausen type profile
upon an independentily calculated inviscid flow does give a qhalitatively
reasonable set of initial plane conditions, the procedure may give profiles
which change rapidly during the first few stations of the wviscous flow cal-
culation, This problem is likely to be particularly acute in the region of
the airfoil tip. The generation of initial plane conditions which are in
concert with both the inviscld pressure field and the viscous flow equations
is a major problem which must be faced in the three-dimensional viscous flow
analysis.
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The results of the viscous caleculation are shown in Figs. 23-30. For
the y-z plane grid used, the calculation of one streamwise step required
approximately 30 syslem seconds of UNIVAC 1110 CAU time. The velociiy fields
at the fifth streamwise station, x/c = 0.19, are presented in Figs. 23-25.
The streamwise velocity, u, presented in Fig. 23 clearly shows the velocity
boundary layers on both the upper and lower wilng surfaces as well as at the
wing tip. A detailed examination of the calculation shows the boundary
layer thickness on the upper surface, 5l/c, is approximately 0.08 and the _
boundary layer thickness at the tip is spproximately 0.035. It should be
noted that in order to define the boundary layer reglon, the scale in Fig.
23 is considerably less than that in Fig. 17. The major difference between
the inviseid 'u' field of Fig. 17 and the viscous "u' field of Fig. 23 is
the viscous requirement of a no slip boundary condition. Ouiside of the
boundary layer region the inviscid and viscous predictions of the ™' com-
ponent of velocity are very similar. The v and w components of velocity are
shown in Pigs. 24 and 25. Again the scale of Figs. 24 and 25 are less than
those of Fig. 18 and 19. However, a comparison of the detailed calculations
of Fige. 18 and 2l show that the 'v' distribution is modified significantly
by viscous effects. Both above and below the wing, 'v' is modified by bound-
ary layer displacement effects whereas in the vicinity of the wing tip, the
rapid changes of 'v' with respect to z in the inviscid caleculation are con-
siderably softened by the viscous solution. Finally, the symmetry in the
inviscid v-component field above and below the wing is not present in the
viscous case. This destruction of symmetry results from the boundary layer
above the wing being subjected to an adverse pressure gradient whereas
that below the wing being subjected to a favorable pressure gradient. The
major difference hetween viscous and inviseid solutions is found in the
spanwigse w-velocity calculations. In the inviscid caleulation 'w' is nega-~
tive at all points above the wing (Fig. 19), however, in the viscous cal-
culation a thin layer of positive 'w' appears immediately above the wing
(Fig. 25). At this stage since 'v' is positive above the wing, no circular
flow pattern can be discerned.

Viscous calculations at x/c = .35 are presented in Figs. 26-30. The-
region in the immediate viecinity of the tip is shown in detail in Figs.
26-27. 1In particular, Fig. 26 shows the v-velocity component field and it
should be noted that at this station negative values of 'v' have- appeared
above the wing. Figure 27 shows that the region above the wing also contains

both positive and negative values of 'w'. Therefore, a 'circular' type flow
pattern has appeared with a center at the location where v =w = 0; this center
point has the approximate coordinates y/c = ,025, z/c = -0k, This 'circular'’

fiow pattern does not contain the nearly circular streamlines expected in a
tip vortex since w > vj furthermore, the vortex is relatively weak. However,
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considering that the inviscid flow field prediction shows no evidence of a
vortex (Figs. 21 and 22) this emergence of a 'circular' flow pattern, due to
viscous effects and pressure gradients generated by the viscous solution in
the secondary flow plane, does indicate the potential capability of the
three-dimensional viscous flow procedure in treating the airfoil tip problem.

The overall flow field encompassing more than the immediate tip region
is shown in Figs. 28-~30. When compared against the analagous caleulations for
x/c = .175 (Figs. 23-25), it is clear that the major difference is that at
this latier station the boundary layers now encompass more of the flow field.
In addition some spurious spamwise velocities have appeared at the outer
calenlation boundaries (Iy/c1> .3) which are beyond the locations shown in
the figures. These velocitieg are unrealistic and indicate more effort must
be devoted to the treatment of boundary conditions, however, they are confined
to the outer part of the flow caleulation region and, therefore, do not
influence the immediate tip region shown in Figs. 26 and 27. A table of
calculated velocities in the vicinity of the wing tip at x/c = .354 is pre-
sented in Appendix B. ’

Summary and Conclusions for Viscous Procedure

A three dimensional forward marching, wviscous, subsonie flow calculation
procedure has been applied to the airfoil tip problem. The procedure inte-
grates a reduced set of Navier-Stokes equations in which (i) streamwise diffu-
sion is neglected and (ii) the pressure gradient in the streamwise momentum
equation is obtained from an external source. In the present effort the
doublet lattice methed was used to generate the streamwise pressure gradients
and with the inviseld ecaleulation grid used this method did not properly define
the Tlow in the vicinity of the tip. Furthermore, the doublet lattice method
constraing the trailing vortices to lie in a plane.

These deficiencies in the inviscid pressure field make an assessment
of the viscous procedure somewhat difficult. However, the viscous procedure
has shown features expected in the flow such as the qualitatively proper
development of the viscous boundary layers both on the upper and lower sur-
faces of the airfoil as well as on the airfoil tip surface. The viscous cal-
culation also shows the generally expected flow pattern around the tip from
the lower to the upper surface of the airfoil. Finally, the visecous procedure
does predict a 'eircular' type flow pattern to appear above the airfoil suction
surface; this feature was completely lacking in the inviscid solution. There-
fore, the procedure is promising in its appliecation to the airfoil tip problem,
however, the results presented must be regarded as preliminary. PFurther inves-
tigations which would include improvements of the viscous as well as the-invis-
cid procedure used to generate the required streamwise pressure gradients must
be made before the present approach can be fully assessed.
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APPENDIX A

SOLUTICN FROCEDURE

Numerical Techniques

As an outline of the particulars of the numerical wmethod, the treatment
of the continuily equation is considered, as this is the simplest equation,
and yet this discussion will cover most aspects of the method. The flow region
is discretized by grid points having equal spacings Ax, Ay, and Az. Provisicns
for nommiform grid spacing will be introduced subsequently. The subscripts
i, .j and superseript n are grid point indices assoeiated with ¥, 2z, and x,
respectively. Thus qb‘i‘ . denotes ¢ (x, ¥i» z.) where ¢ can represent any of
the dependent variabled. The subscripts arefrequently omitted if clarity is
preserved, so that ¢ is equivalent of ¢ .. For convenience, the following
shorthand difference operator notation %éaused for derivative difference
Fformulas:

n
Sy = [.a(db"a.l- b)) + (u-a')(¢?..,,-¢?)]/0w (48)

52 ¢"= (o], ~2'97; + #la]/ (090 (9)

i"'!i-
2 .
with analogous definitions for &, §,. Here a parameter « has been intro-
duced ( 0 £ @ £ 1) so as to permit, continuocus variation from backward to for-
ward differences. The standard central difference formula is recovered for
o = 1/2. Throughout the following discussion, it is assumed that the solu-
tion is known at x? and is desired at x O

Consider the continuity equation

dUh,hypul /ax+ alh hyp) /3y + alhhpw) /220 (50)
Equation (50) is differenced in the x or marching direction as follows:

(hohy pu)" ™ - (hh pu)® .
Ax {1+ 3)

* (1+3) [&(hlhap\’)/dy +a(h;thw)/azln=o (50)

[ottns /2y + othynpwi/oz]”
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Here a parameter B has been introduced so as to permit a variable centering of
the scheme in the x direction. Equation (51) produces a backward difference
formulation for B = 0 and a Crank-Nicolson formuletion for p = 1. The depen-
dent variables in Eq., (51) are linearized by expansion sbout the solution at
x? (Refs., 12 and 17). Here a first-order accurate linearization is used for

the x derivative, and the result is

N+l o+) NN
hn hn (Pnum+'+Pn+|Un-2ann) + P"Unu (hz h} 'hz 3)
e 3 Ax ' Ax
+“-%—m‘ 5, [nhy ™ (PO 4 pM IR oM 4 _—heﬁl Sy (", b 2"V
+ (l iﬁ) 82 [hlﬂ+|h2n+{(inn+| _‘:Pn'H wn_in.n)] + (I+BB) St(hn' hﬂe inn) ‘0

(52)

After eliminating the pressure gradients in Egs. (44 b-d) via the equation of
state, the procedure outlined sbove for the continuity equation can be employed
to derive linear implicit different approximations analogous to Eg¢. (52) for
the three momenitum eguations. The resulting difference approximations can be
grouped by coordinate direction and written in the following compact linear
matrix difference operator notation as

' +
et teeM s 0,0™ 40, 0" 4 5

Ax (53)

where & is a column vector containing the dependent variables, p, u, v, w, and
A is a square (b x 4) matrix. D_ and D, are 4 x L matrices containing elements
which are themselves spatial dif¥erence operators for the y and z directions,
respectively. S is a column vector reserved for any source terms which may be
present. The matrices A, Dy, and D, contain only quantities which are known
from a computational viewpoint. ZFRguation (53) is linear in @+l

The advantage in grouping the dependent variables by the direction of
differencing is that numerous ADI or splitting technigues are immedistely
available for reducing the multidimensional implicit equation (53) to a
sequence of one-dimensional equationg (e.g., Douglas & Gunn, Ref. 2h4; Yanenko,
Ref. 21), and this permits efficient soclution while retaining the favorable
stability properties of the basic implicit scheme, In the present application,
however, the technique of splitting (Yanenko, Ref. 21) is being employed.

Using the technique of splitting, Eq. (53) can be written as the following two-
step scheme,.
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A
—5(o*- o™ = 0,045 . (sha)

A (o™ie”) . Dz¢>"”+s (5b)

Ax 2

where #* is an intermediate reswlt having compubational significance but no
particular physical significance, and where Sl‘+ 82 = 5.

As discussed in the main body of the report, for subsonic flow, an invis-
cid solution is used as a first approximation to the pressure field, This is
accomplished by setting » = Pt in the axial momentum equation, where Py is the
inviscid pressure. In the axial momentum equation, the pressure gradient is
therefore replaced by

% Bx (55)

The pressure gradient terms in the transverse mementum equations are not
altered,

Solutions of the Split Difference Equations

The coupled set of linear implicit difference equations arising along
rows of grid points during each step of the ADI solution procedure, together
with the prescribed houndary conditions, can be written in a form having the
following matrix structure.

Ay By G g d
[ ] [ ] [ ] [ J L }

[ ] * [ ] L ] [ ]
Ap-2By-z Cy-2 Buy-2 dy-2
An-1 Bn-p Cpep Pn-) Ay




For each grid ypoint index i, ¢i is a column vector containing the dependent
veriables p, U, vV, W. A;, By, and C, are square (% x 1) matrices containing
the implicit difference cdefficients. d; is a column vector containing only
computationally known quantities. There are N + 1 grid points along the row
under consideration., Difference approximations for the four governing equa-
tions are associated with symbols having subseripts 1 through N-1, the sub-~
seripts O and N are asgociated with the boundary conditions, which may involve
up to three grid points., Equation (56) represents U (I + 1) linear equation
in b (N + 1) @ependent varizbles. Excluding the elements C_ and A, the
matrix structure of Eq. (56) is block tridiagonal, and direct solution by
standard block elimination techniques (cf., Isascson & Keller, Ref, 22) is
both straightforward and efficient. The precise scheme used here consisted of
Gaugsian elimination for a simple tridiagonal system (sometimes called the
Thomas algorithm)} but with elements of the tridiagonal matrix treated as
square submatrices rather than as simple coefficients. The required inverses
of dizgonal submatrices were obtained by a Gauss-Jordan reduction. The
additional operations necessary to include the nonblock-tridiagonal elements
Co and AN are eagily incorporated provided the original block tridiagonal
coding is carefully organized,
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Calculated Velocities at X/C = 0.354

43



U ~ VEL

z/c= -0.10k2 - -0.0667  -0.0408  -0.0234  -0.012%L . -0.00L7
¥/C=
0.1047 1.0319 1.0327 1.0326 1.031k 1.034%0 1.0426
0.0833 1.0131 1.0155 1.0160 1.0121 1.0091 1.0257
0.0656 0,9610 0.9654 0.9668 0.9603 0.9560 0.9940
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Figure 1. — Schematic of vortex formation at tip of wing with finite thickness.
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Figure 3. — Geometry of encounter of semi-infinite wing with a sinusoidal gust
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for a swept semi-infinite wing
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Figure 14. — Pressure distribution in vicinity of tip of semi-infinite wing
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