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TE INVISCID PRESSURE FIELD ON THE TIP OF A SEMI-INFINITE WING 

AND ITS APPLICATION TO THE FORMATION OF A TIP VORTEX 

By G. F. Hall, S. J. Shamroth, H. McDonald and W. R. Briley
 

United Technologies Research Center
 

SUMMARY
 

A method has been developed for determining the aerodynamic loads on the
 
tip of an infinitely thin, swept, cambered semi-infinite wing at an angle of 
attack which is operating subsonically in an inviscid medium and is subjected 
to a sinusoidal gust. Under the assumption of linearized aerodynamics, the
 
loads on the tip are obtained by superposition of the steady aerodynamic 
results for angle of attack and camber, and the unsteady results for the res­
ponse to the sinusoidal gust. The assumption that the major effects of the 
tip are confined to a relatively small finite spanwise length permits the 

loading over the inboard portions of the wing to be approximated by known 
results for the infinite wing. The tip region is treated by a numerical 
doublet-lattice method. The leading edge singularity in the loading is 

removed by applying a correction factor due to Lighthill. The near field 
disturbance pressures in the fluid surrounding the tip are obtained by assun­
ing a dipole representation for the loading on the tip and calculating the 

pressures accordingly. In addition to providing insight into the inviscid flow 
behavior in the vicinity of the tip, the near field pressures are also used to
 
drive a reduced form of the Navier-Stokes equations which yield the tip vortex
 

formation.
 

Although the derivation is valid for the general conditions described
 
above and several inviscid cases have been calculated, the combined viscid­
inviscid analysis has only been applied to determining the pressures and 
examining the vortex rollup in the vicinity of an unswept, uncambered wing 

moving steadily at a Mach number of 0.2 at an angle of attack of 0.1 rad. 

Generally, the pressure behavior is as expected. As the wing surface is ap­
proached in the normal direction, the pressure magnitude increases, culminat­
ing at one-half the dipole magnitude at the surface. External to the region 

containing either the wing or the wake, the pressures go continuously and 
monotonically to zero as the wing plane is approached. In the wake, the 
magnitude increases as the wake is approached until, near the wake, an abrupt 
reversal in trend occurs and the magnitude goes to zero. Finally, in the 
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vicinity of the trailing edge, the pressure magnitude increases until, near 
the wing surface, a reversal in trend is noted with the magnitude decreasing
 

and terminating at one-half the dipole strength. This behavior reflects the
 

change in boundary condition at the trailing edge.
 

The viscous tip flow calculation has shown features expected in the tip 
flow such as the qualitatively proper development of boundary layers on both 

the upper and lower airfoil surfaces. In addition, application of the vis­

cous solution leads to the generation of a 'circular' type flow pattern 

above the airfoil suction surface.
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INTRODUCTION
 

In recent years, there has been a growing interest in the vortex formed
 

due to the pressure equalization condition at the tips of lifting surfaces. 

This tip vortex, whose presence can often be neglected in isolated -airfoil 

aerodynamics, requires a precise definition of its physidal characteristics 

in problems involving interference aerodynamics. A pfimary example of this 

type of problem is the,intersection of a helicopter rotor blade tip vortex 

with the next following blade. This intersection represents a potentially 

serious acoustic problem, (Ref. 1) and has been shown to have'some effect on
 

rotor performance (Ref. 2). In addition to the direct relevance to current
 

helicopter problems, a more complete knowledge of tip vortex dynamics is
 

needed to assist in the design of novel helicopter blade tips for optimum
 

performance, and to provide basic information on the behavior of trailing tip
 

vortices behind large aircraft, to name only two of many applications.
 

In the past, the tip vortex roll-up rate and position have been deter­

mined either by direct experimentation or by analytical techniques utilizing 

Trefftz plane calculations (e.g., Ref. 3). Experimental procedures are reason­

able for many steady flow problems, but they are not yet sufficien ly sophis­

ticated to show all the details of the vortex formation. Trefftz plane analy­

ses generally predict the position of the tip vortex adequately, but yield 

roll-up rates much too slow. Hall (Ref. 4) has modeled the vortex wake behind 

a fixed wing starting impulsively from rest which predicts both a rate and 

position of the tip vortex more compatible with those obser-red, but-this tech­

nique requires large amounts of computer time and storage. Another approach 

to determining the tip vortex behind a lifting surface is a direct numerical 

assault on the Navier-Stokes equations, but this approach also requires large
 

amounts of computer time and storage. It should be noted that classical
 

lifting surface analyses are incapable of treating the roll-up problem; the
 

linearization inherent in these methods is not valid in the tip region. The
 

analysis of the tip vortex formation is a highly nonlinear real fluid problem.
 

Figure 1 is a sketch depicting this formation. 

The present analysis is an attempt to provide a simplified model of the 

tip vortex formation problem. A boundary layer approach is used in which the 

vorticity laden fluid contained in the tip vortex originates in the region near
 

enough the wing surface to be affected by viscosity. The boundary layer condi­

tion that the pressure field is unaffected by viscous displacement effects is
 

assumed so that this pressure field can be determined from inviscid potential
 

theory in which shed vorticity is modeled by discrete vortex elements. It is
 

further assumed that the phenomenon is sufficiently confined to the tip region 

that a semi-infinite wing can be used to determine the pressure field. Since 
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the presence of the vortex requires a loading to exist on the wing, angle of 
attack, camber and unsteadiness must be considered, but thickness can be 
negledted, at least as a first approximation. This models the wing as an 
infinitely thin, curved plate in a subsonic compressible flow containing a 
sinusoidal gust. Once the loading on the wing is determined, the pressure 
field in the fluid around the wing is determined from a pressure dipole solu­
tion. The viscous roll-up is then obtained from a reduced form of the Navier-
Stokes equation. A sketch of the expected tip vortex formation on a flat plate 
tip is shown in Fig. 2. A comparison with Fig. 1 shows that the only basic 
difference in the .hypothesized vortex formation process is that on the wing of 
finite thickness the vortex initiation point may lie aft of the leading edge 
whereas on the infinitely thin wing the initiation point is forced to occur at 
the tip leading edge. 

The approach to be used in this analysis is broadly based on the infinite 
wing analysis of Adamczyk (Refs. 5,6) and the doublet-lattice method of Giesing, 
et al (Ref. 7). In brief, Adamczyk examined the problem of an arbitrary gust 
encounter of an infinite swept wing in a subsonic flow. The solution, which 
basically treated the sinusoidal gust response, is used in a Fourier super­
position method for any arbitrary disturbance, and this technique is employed 
herein for the unsteady vortex formation. Although Adamezyk's method is posed 
for an infinite wing,, it is known that with appropriate modifications in the 
vicinity of a finite tip, such a two-dimensional method will still be valid at 
some distance inboard of the tip. Hence, the Giesing method is applied over 
the actual tip region and is matched to the Adamczyk solution inboard of the 
tip. The match point location-was determined by numerical experimentation 
and was chosen to yield-a-smooth transition between inboard and outboard solu­
tions. This procedure is described in the text below. 
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LIST OF SYMBOLS
 

a o Speed of sound, m/sec 

A Influence coefficient 

b Semichord, normal to span, m 

c Chord, parallel to free stream, m 

C P Pressure coefficient (p-pO) 2/pO0 

AC 
P 

Pressure coefficient change across lifting surface, 
(p(x2-)-p(xr+I)2/poU2 

ACP. ACp due to an infinite wing in a given flow 

D Sublayer damping factor 

ACpc Defined by Eq. ii 

E(X) Complex Fresnel integral 

F,f Equation of the lifting surface 

Jo; Jl Zeroth and first order Bessel functions, respectively 

h Wing thickness, m 

hi, h2, h3 metric coefficients 

0C(1) }Hl(') Zeroth and first order Hankel functions of the first kind 

k Gust wave number, m 
- 1 

kx Gust wave number, x-component, m 
-I 

kGust wave number, y-component, m 
- ! 

k1 Gust wave number in streamwise direction (Ref. 7), m - 1 



LIST OF SYMBOLS (Cont'd)
 

k/b
 

L Spanwise length outboard from which the tip effects are 
assumed concentrated, m 

AMixing length, m 

p Pressure, n/m
2 

Inviscid pressure, n/m
2 

PI 

Po Free stream static pressure, n/mn
2 

R Radius, m or gas constant 

t Time, sec 

T Temperature, 0K 

TL Lift transfer function 

u,v,w Velocity components in viscous analysis, m/sec 

U Freestream velocity, m/sec 

U Velocity vector, m/sec 

u 2 Complex gust amplitude (Ref. 5), m/sec­

w Complex gust amplitude, m/sec 

wg Gust velocity, m/sec 

x~y System co6rdinates, m; x streamwise; y normal to x and 

directed inboard. Origin at tip leading edge. 

x,y,z Cartesian coordinates in viscous analysis, m 

xl, x2 System coordinate, m; x normal to span. x3 parallel to span, 
directed inboard. Origin at midchord of tip. 

x2 Coordinate normal to plane of wing, m
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LIST OF SYMBOLS (Cont'd) 

1Gust inclination angle, degree, or difference operator
 

0Frequency parameter, defined by Eq. (22a) 

Y Cutoff parameter, defined by Eq. (22b) 

Included angle between a point at which induced velocity is 
calculated and the part at which the inducing load is located, 
deg
 

Transformed transverse variable 

8 Wing sweep angle, deg 

1Viscosity, kg/m-sec 

PDensity, kg/m3 

PO Freestream density, kg/m3 

P2 Wing leading edge, radius, m 

1P Complex velocity potential, m2/sec 

0 Complex amplitude of velocity potential, m2 /sec, or arbitrary 
dependent variable 

(-) Complex amplitude 

) Vector 

Mean value 

' Fluctuating value 

Subscripts 

k, 1 -Identifies points at which boundary condition is satisfied 

i,j,n,m Identifies points at which inducing loads are located 
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THEORETICAL FORMULATION 

It is assumed for the purpose of analysis that the semi-infinite wing is 

at rest in a subsonic compressible stream having an imbedded sinusoidal gust
 

which is swept past the wing at the stream speed, U. The pertinent geometry 

of the semi-infinite wing is given in Fig. 3. Of particular interest is the 

spanwise distance, L. This length represents the distance within which the 

tip effect is assumed to be dominant; inboard of this distance the flow and 

the loading is essentially two-dimensional. Both the tip and the normal to 

the gust wave fronts are parallel to the freestream due to restraints imposed 

by the particular version of the doublet-lattice method selected. The wing 

is assumed infinitely thin so that thickness can be neglected, but the effects 

of camber and angle of attack are included in the analysis. It is further 

assumed that all disturbances are small enough that linearization is permitted. 

The disturbance velocity potential is thus defined by the standard linearized 

acoustic equation for subsonic compressible flow.
 

,720- M2 20t-2M I a2 
aX 2 ab xat t28ao =0 

A unique solution to the equation is obtained by applying the necessary bound­

ary conditions (Ref. 5). The linearized pressure field is then obtained from
 

POT - axJ (2) 

The necessary boundary conditions can be stated as follows:
 

P=O x< -y ton 0, x>c-ytonS, oily, x 2 =0 (3a) 

P=O x=c-ytn, y>O, x2 =O (Kutta Condition) (3b) 

DF= 0 x>_-ytonO, x_5 c-ytong, x2 =O, y>O (3c) 

(Flow Tangency) 

- '/ 2 (3d)
0- R R-Wo (Radiation Condition) 

Notb that the boundary-condition 3a really expresses pressure continuity in
 

the wake as well as no disturbance ahead of the wing in the wing plane so
 

that 
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a* a* 
-+U -A=0o x> c- ytan (3e

x>-tn (3e) 

and
 

=0 x<-y tone (f) 

Inspection of both the flow tangency condition and the linearity properties'
 
of the velocity potential permits further simplification of the problem. Let
 
the equation of the surface be given by
 

F(x1 x31t) =x3 - f(x1,t)= 0 (4) 

Then
 

OF af at 8* (5
-t at- U- X 2 gO (5) 

where a/aX2 is the X2-velocity induced by the wing and w is an imposed
 
normal gust velocity. If the wing performs no unsteady moions, then the
 
disturbance velocity potential must satisfy
 

x d + Wg (x1 x3,t) (6) 

Since the velocity potential is a linear function, superposition applies and
 
a steady and unsteady component can be defined.
 

+
0 ='S OUS (7) 

Thus the boundary condition can also be separated into steady and unsteady
 
relationships.
 

ax2 axl (8a)
 

aus wg(Xr x3 t)aX2 (8b)
 

This allows treatment of camber and angle of attack as separate solutions to
 
the steady flow problem,while the response of the wing to an unsteady gust is
 
obtained as simply the response of a flat plate to the gust.
 

9 



Since the unsteadiness is represented by a gust harmonic in time, both
 

the disturbance velocitypotential and airload should be harmonic in time
 

p(xt) = (x)e Wi t (9b) 

i
ACp (X_,t) = EzCpw~e (9e) 

This boundary value problem can be converted to a singular integral equa­

tion which relates the local flow angle at the surface to the loading of The 
surface in a manner that expresses the flow tangency condition explicitly with 
the remaining conditions implied 

U-I O7 CK(x- ,y-.) Cp(E,97) (lo) 

where - PX20 )-P(X2= 0 

AC P= P0 UZ 
2 

andkm EC -. EC which is the result for an infinite wing in the sinusoidal 

gust field. A pressure coefficient increment due to the presence of a finite
 
tip can be defined by
 

P P-P (11)
 

which satisfies
 
im 
77-CD ApC-0 (12) 

and which permits.Eq. (10) to be rewritten in the form
 

-- AC c (f, ]dcd(
8Sr ue-1(kAxXkYY)= oc 0 K(X-GoC 

Eq. (13) for points (x,y) on the wing can then be rewritten in the following
 
form
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02 C s dt~IkX -kyY) OD d Y~ 0 C81T eO 

6f Kj.Cpw d djK po 

0 0
 

Now the upwasn induced by an infinite wing in the sinusoidal gust field is
 
given by
 

fjKEC -'vrp36e-i(kxX-kyy)dC d 

CC) 0 O D­

and the upwash induced on the semi-infinite wing by another semi-infinite wing 
extending from the tip to 1 - - is given by the term 

O C __
 

The two wings summed would make an infinite wing. Hence the integral equation 
can be expressed as 

c -­-_(
(KX-.y7")A 

d"l-) d6 d 0=7co. oK(x- y- ACpCO(,7,) d~d'r7 (15) 

Y_>O
 

This equation expresses the physical phenomenon.that the presence of a finite
 
tip induces an upwash increment over the wing surface"to account for the
 
removal of that one half ,of an infinite wing which extends to --. The pre­
vious result is a general result, applying equally to steady or unsteady 
motions as well as flat plates and cambered plates, and wa§ also noted by 
Chu and Widnall (Ref. 8). 

Solution For The Pressure Field At The Tip Of The Semi-Infinite Wing 

The solution to the problem of determining the -loading on the semi­
infinite wing makes use of the simplification afforded by the linearization of
 
the problem. The angle of attack and camber contributions to the loading can 
by computed separately utilizing steady state, aerodynamic and then superimposed
 
onto the unsteady results of a-flat plate responding to a sinusoidal gust. 

Equation 15 represents the basic equation to be solved for the finite
 
tip pressure coefficient increment ACpc. The kernel function, K, has been 
calculated in a form suitable for numerical computation in Ref. 7 while 
EC- represents the solution to the infinite wing responding to the sinusoidal 
gust field and can be obtained from other sources (e.g., Refs. 5 and 6). 
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One approach to a solution is a combination of analytic and numerical
 

techniques in which the known AC is used to compute the upwash on a
 

selected set of control points on the wing numerically. This is the right
 

hand side of Eq. 15. Then the unknown AC is computed at load points on the
 

wing by assuming a series representation made up of chordwise and spanwise 

loading functions which satisfy the edge behavior of the semi-infinite wing
 

.using 

-C p - / x-- -ytan9 (leading edge) 

-- p _48 x- C- ytonB (trailing edge) 

ACP- -cPo Y- O 

(where 8 is the distance to the edge of the wing), and a,set of unknown
 

weighting functions. The weighting functions are determined by satisfying 

Eq. 15 at the selected load points for which the right hand side was calcu­
lated. This is essentially the method proposed in Ref. 8 and is quite satis­

factory for small values of kM. As kM values increase, however, the chord­

wise distribution of EW which defines the chordwise loading function, does
 

not maintain as simple a form.
 

The present solution begins by casting Eq. 15 into a numerical form 

0 I -O N -
Z Z ACpcO K(x-Ciy-7J)A i A'71j =Z Z ACPCnm K(X--nY--m)AnAm (16) 
j=-CO i=1 m=O n=I 

Thus, an infinite set of simultaneous equations, having a infinite number of 
unknowns can, in principle, be solved by standard matrix techniques for ACpe. 
However, this equation can be rewritten as 

0 1 	 M N
Z ZAkil =0 .. (ACPr.m -fECP, im 

i='1 mO n=l (17) 
co N
 

+ 	 2E (ACPnm- CP Onm) Aklnm 

m=M n=l 
where M represents a practical limit on the spanwise position at which two­

dimensional flow is attained, although ideally this is not satisfied except
 
in the limit
 

mn ACPCnOn 

12 CEPRODUOIBLTY OF '-ki
 
ORIGNAL PAGE IS POOR
 



-Thus, for x 3 k L m z M, Apn AC PACnm and Eq. 15 can be written 

0 M N N 
X X Aklij AP0 + X^ Aklnm ACP±o + Aklnr, 'CPcOnm 
j=-Co 1=l M N run=N M n= (-8)

M N WON 

X X AkInm E-CPnm Z AkInmA-CPaonr 
m=0 n=l M n=I 

where now the whole left hand side represents the upwash supplied externally
 
and the second term on the right represents the effect of the two-dimensional 

inboard loading on the tip region. The entire region of the tip effect is 
bounded spanwise by m = o and m = M. Then Eq. (18) may be rewritten in the 
form 

ooN M N 
L.H.S.--XX AkXnmACPcon=X X Aklnm ACPrnm (19)

m=O nl(M l=1 

which gives a set of N by M simultaneous equations which can be solved directly
 
for the tip loading by standard methods. 

Now, the remaining term on the left hand side of Eq. (19) may be written
 
as 

0DN P N cON 
M Z Aklnm Z + Z AkInmC-PwOnmXCPX- AkInmr APw z (20) 

MX AkI rim M n=1 P nzI 

The term Aklnm is the kernel function of subsonic aerodynamics (Ref. 7). 
Normally the complexity of this function precludes analytic treatment, but 
for load points that are far removed from the downwash points, the kernel func­
tion can be simplified so that some integration can be performed. Hence, in
 

anticipation of these simplifications, the last term of Eq. (20) may be
 
rewritten in integral form
 

cO N P N - C 
X Akinm " ECPOnrn= 2 Akanrm ACPC0lm+ - J7fff K(Xk-Cyl-rf) KCPmodd7 (21) 
M n=I M n=l yp 0 

and Eq. (20), rewritten in the form of Eq. (21), can be determined partly by 
numerical and partly by analytic means. 

The formulation of the problem in this manner, with the external specifi­
cation of the length, L, is a key development and permits a practical
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generalization to the problem. Altering this length can alter the spanwise 
gradient in the tip region, although as this length increases, the effect on 
the tip loading will decrease. The choice of L for the present analysis is 

based on the results of Ref. 8, and was taken to be 4 chordlengths for the 
calculations performed herein.
 

The Pressure Loadings On An Infinite Wing Yawed To A Compressible
 
Stream Containing An Imbedded Sinusoidal Gust
 

The solution to an infinite flat plate wing yawed to a compressible free 
stream containing an imbedded sinusoidal gust has been developed by Adamczyk 
(Refs. 5, 6). This solution represents an exact solution to the problem and 

was developed by casting the acoustic equation as a modified Mathieu equation 
and expressing the result, as determined by the boundary conditions, in an 

infinite series of Mathieu functions (Ref. 5). The analytic form of these 
functions is.sufficiently complex that further analysis with then is difficult, 
but they are well suited to numerical computation. For ease in interpreting 
the equations of Ref. 6 the gust encounter geometry of Ref. 6 is given in 
Fig. 4. 

The response of the infinite wing to a sinusoidal gust is characterized
 
in Ref. 6 as a two-parameter solution.
 

3 b Cosa 
I-M2COS19 (22a)
 

[(MCOSG)2_1 11/2-kb sina kb sina 
Si-M 2 cos 2 

e i-M2Cos 2 L si'- (22b) 

-M.2OS26 cos2e- sin2 a]1/ 

The quantity, 0, is simply the chordwise reduced frequency component and has 
its direct counterpart in unswept infinite wing theory. The parameter, Y, 

determines the behavior of solutions at large distances from the airfoil and 
is defined as the cutoff parameter in Ref. 6. It enters the problem formula­

tion through a scaling procedure which reduces the acoustic equation to the 
following form (see Ref. 6). 

(23) 

The fundamental solution to this equation is a source with an asymptotic limit
 

given by
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e-r 	 (24)
 

Form its definition in Eq. (22b), y2 is either positive definite or negative 
definite, and hence y will either be a pure real or a pure imaginary quantity. 
Now, i-f y is imaginary the solution decays exponentially while if y is real 
the solution approaches the asymptotic form of a cylindrical acoustical wave 
propagating outward from the origin. A key parameter here is M*, the phase 
Mach number of the disturbance along the span relative to the freestream 
flow (see Fig. 5a). Whether or not the cut-off parameter, y, is real or 
imaginary depends on whether or not M* is greater or less than one. 

The effect of the relative phase velocity, M*, is to introduce a spanwise 
velocity for which the flow appears stationary in an axis system also moving 
at the spanwise velocity. The nodal lines of the gust in this moving axis 
system are also stationary. The problem is thereby transformed from the non­
stationary problem of a gust encounter at some angle relative to the wing, to 
a problem involving a stationary gust front parallel to M* and lying across 
a wing which moves spanwise at a velocity M* cosa. 

Adamczyk (Ref. 6) has successfully simplified the exact solutions for
 
disturbance pressure for limiting cases of this compressibility cut-off param­
eter. From Ref. 6, the disturbance pressure can be written in several differ­
ent forms for various values of the cut-off paramter, y. When y2 is a small
 
positive quantity,
 

PS= -	 PoUU 2 COS I- jO()-ZjI(e)1 
(0-M2COS2e)'/ " -+X L " (25)1+ 1 

2Cs 2 )/2exp M2cos2eX+ 

with iHo())+i Y/3)2{[H o')/2)_Ho(l)0)]0

Zr- ) 0< Y2< 0.1 

When y2 is negative,
 

PS P UU2cos e I- XI H(Y,P)" 
(I-MCOSZ)1/ 2 I+x1 IO (Y)+I 1(Y)' 

( b sinr+ (26) 
exp L 7 +j3M2 Cos29)x + (I-M2 cosE)I/a X3 iUCoS(8- a)t 
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where Hexp-iy7,97rF'4co 8 -r-f(-- 8)(+PAI+2 rT,?-/2 (+1Lj} 

+rvZ i + Cos2?+rVf/' T+Z sinS] 

8 tan-I(j/) 0> "z 
2
 

For larger positive and negative values of y


ps_	PUU2 cos { 2 C 
(-M 2 0s 2O),/2 v/j[4T) /2-c + (27) 

ex{IGM9cs 6)x(+Ttb sin a x.3- UT<cosC-a)i}] 

x'	 1 =i+I IYZ>0.7 
where
 

E(x)= C(x)-iS(x) 

E(x) CONJUGATE E(x) 

The corresponding pressure -loading on the yawed infinite flat plate wing
 
responding to the sinusoidal gust can be obtained from
 

ECPoo=C0NJ- 2Ps 2 expi Ukcos(0-a)t 	 (28) 

The complex conjugate is taken since Adamozyk solved the conjugate problem to
 
the formulation described herein.
 

In the present analysis Eq. (25), (26), or (27) will be used, depending
 
2
on the value of y . If y2 does not fall within the prescribed ranges, the 

exact solution will be used (cf., Ref. 6). 

The steady flow contribution from a flat plate at an angle of attack is 
obtained as a limiting ease of the unsteady analysis at zero reduced frequency. 
The effect of the steady flow camber problem can be treated by obtaining a 
potential flow solution for an infinite wing and then accounting for compress­
ibility by way of the Karman-Tsien relation (Ref. 9). A suitable potential 
flow result for an arbitrary mean line is given by the Munk integral (Ref. 3). 

2coS92rd t_ 
A Cp~p 2c 2 T) )[col( > sin T+ I+ COTd (29)

(6dx 
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where j = cosr1 2XQ Instead of using the Prandtl-Glauert correction factor 
to account for compressibility effects, the Karman-Tsien relationship, which 
is more accurate at high subsonic Mach numbers, is used. This relation is 
given by 

CPMI
 
cP, /ZIi + M- Cpi (30)
 

I+vTlhiz 2 

where C is the pressure coefficient at the Mach number M, and C is the
 
incompresible pressure coefficient at the same location in the a&.
 

At this point attention can be turned momentarily to the problem of
 
determining the pressure in the flow field near the wing but off the surface.
 
The leading edge pressure singularity, which is inherent in the theories of
 
infinitely thin wings and which generally causes no problems in computing the
 
aerodynamics of these wings, must now be treated. If the loading on the wing
 
is represented by pressure dipoles, the disturbance pressures at any point in
 
the flow may be directly determined by
 

d1
 
X.)= . z-wf ( i) i --M(x-)+ /(y- )2+(l-M2)[x+(y-))2 ] 

4r 8x? AREA o(I-M)2 l d7WINGAHEA(31) 
where R1= /(X-o)2+ x2 +(y-') 2 

Unfortunately, the infinite strength dipole at the leading edge will then
 
present infinite pressures throughout the fluid, an obvious physical unreality. 
Hence, the loadings in the vicinity of the leading edge must be modified to
 
eliminate this singularity.
 

Lighthill (Ref. 10) has successfully modified incompressible two-dimen­
sional thin airflow theory to eliminate the leading edge singularity. It is
 
required that the flow near a smooth leading edge be the flow over a parabola,
 
while at points away from the leading edge the flow is adequately predicted
 
by thin airfoil theory. This moves the singularity inside the airfoil contour
 
and provides a smooth flow exterior to the thin wing. As a result the pres­
sure loading on a thin wing can be given, to a first approximation, by the
 
following equation,
 

ACp x 

ACPT.A X+PL/ 2 (32) 

where x is the distance from the leading edge, ACp is the actual pressure
 
loading across the wing, AC T.A" is the thin airfoil theory result at the
 
corresponding chordwide position and p is the airfoil leading edge radius of
 

curvature. Since ACpT.A. varies as (x -i/2 near the leading edge it is easily
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seen that ACp approaches zero continuously as the leading edge is neared. As
 

x approaches unity, AC approaches its thin airfoil valne. Without direct
 

proof, it is assumed te same results will hold for subsonic compressible
 

flow; this is based on the fact that the behavior of the leading edge singular­

ity is the same regardless of compressibility or unsteadiness. That is, for
 

unsteady compressible flow AC -varies as [xP-l/2 near the leading edge.
 

The solution to the problem of predicting the pressure field in the
 

vicinity of a swept, semi-infinite wing consists of a numerical solution to,
 

Eq. (19), utilizing the proper value of ACpW. The necessary doublet-lattice
 

influence coefficients were developed by ciesing, et al (Ref. 7) and the
 

underlying assumptions intheir derivation restrict the solution to the case of
 

tip chord parallel to the flow. Once the thin wing results for the loading
 

are determined, the leading edge singularity is removed by Eq. (32) and the
 

-field aire determined from the dipole distribution, Eq..
prdsures in the near 


(31).
 

An Asymptotic Solution For The Upwash Induced At The Tip By
 

Portions of The Wing Far Removed From The Tip
 

Equation (21) which is repeated below for convenience, describes the
 

upwash on the tip due to that portion of the wing which experiences two-dimen­

sional flow.
 

SN__ P N _­

8-1f fbK(x 1M- Cl.X 3n- $3 )AECPw d ,de3 
M nl M n=1 X: -b

X2Akjmn ACpmnt 2 AMn ACROmn+ . 2, 

Here A represents a numerical form of the-unsteady subsonic flow kernel 

function, K(xl-gl, x-§ ),both of which are given in Ref. 7. The continuols 

form, K3 of the kernel Thnction is more amenable to analytic treatment. The 

following relations, from,-Ref. 7, are required to perform the integration in r . (21). : 

/ 2J( a)IK.I=I MI-
K(x0 ,r) =z ' x °K,/r 

('o62)1/ 2 =--.-€C . - Yo ./2Y-7" (33) 

0 , 0 , .T' 

The integraJ I1 is given exactly-"by
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= 2)3 /2', { (i+u (3 

and approximately by
 

i[1 1 0 koU~z](35)(I2Pu,)/2 ­

where 
11 aII ( nc-iki) 

(36) 

was developed by Laschka (Ref."1) and is reproduced in Ref. 7. The Laschka
 

coefficients necessary for this approximation are an, n, and c.
 

In general the spanwise variation in AC is oscillatory due to the span. 

wise component of the gust. From the -form of Eqs. (25.), (26)-, or (27) it can' 

be seen that 

C(37)
Aa Poo2O=AikS(flD 

Thus the term in integral form on the right hand side of Eq. (21) can be 
written as 

- 2b -per PM 2 OQSCrfmei~ksin 2 e- Lw'Rx,-ocos 0+ (x3 -- 3)sin0] K1 

r2-- x 

Defining r = x3 .3 this can-be restated as ­

e
-- f bA.Pj e_ipM2 cos2 0C, e i s nax 3 e- UL(x- o)cose ./ e0-itk na wUsine J1k r 7r. 21,-C, 

Define the di~tanhe. along the span between the point at which the apwash is 
desired and the load is" applied-to be I.. If this quantity is large certain
 

approximations in the kernel function, Kj!r 2 can be made. In.particular, 

-Yo 022r-- 0 COS 9 
rR .rr2COS~ 2(tfn i(s)+,2)1/ 2 

u= I'M(tan2(-+C) + )-'tOh(-9+) -

U7r COS 8 [M(tana (-9+ E)+/F2)Y 
2 toan(-8+)9+ 
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Combining these approximate forms, the kernal function has the following
 

approximate form
 

ic27 r
' - -
KI [C +M] C - -- ic ' CIJ "7r? + C4 ___n=I bne C4 n=I] N([n8)dne-iC2r (38)7-2=LC4 . gn2+7r/r_ 2]
1'=1r[gn2+ '7r


C= C M(on? (- 8+E)+) 
2 ) 1 2 t(e8 j 

with C 1 = Cos29 CosO 

- fCu /32nCU 
u= C4 rC, bn=One n dn= bn*g n wnose 

1u,2[M (tanr +6) +)2) / 2 _ tan (- 8+ E)] /02 

The angle, e, is the angle between the load point on the wing and the
 

point at which flow tangency is satisfied, measured from a spanwise line
 

through the load point (see Fig. 5b). Note that this angle is a function of
 
chord, but for large spanwise distances between the loadpoint and the flow
 

tangency point this variation can be neglected. The integral

fw e-[rsna-s1nOi"r - d1r 

r2
 
X3-X 

can be evaluated by first defining a parameter 

Wsin9 Wcos8[ M(tan2(-O+s)+)91)1/2-- tan(-O+E)
Dusifl+ + U L p 2 

Use of this parameter then permits evaluation of the following integral forms: 
-CID e-''7r d.-oD e-iD7)r d77-OD e- ID77r 7r 

3- 7r+?rr x3 -x dl?r. X3-X r[gn2+ 7l Urp 

The integrations are performed in the complex plane and the following simple 
form is obtained 

KfC3 7rD " u e0--iD Ir M ] + SGN(D) r ne c IGnI] 

4 + 2dr? Cq 1 SGNDIn 
(39)
 

where 
Gn : Dg­n
 

This calculation represents a small, real component to the upwash due to
 

portions of the wing far removed from the tip Tegion.
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NUMERICAL RESULTS FOR IfVISCID PRESSURE FI ID 

The computational procedure to determine the tip loading consists of
 

representing the tip region (0 < x3 < L) by the doublet-lattice model des­

cribed in Ref. 7. Use of this model presently restricts the tip chord line
 
to be parallel to the freestream. The length, L, at which the tip influence
 

substantially disappears is adequately given by 4 chord lengths. The inboard 

reagion of the wing is described by a combination of analytical and numerical 

forms, utilizing the infinite wing results of Ref. 6,the numerical kernel
 

function of Ref. 7, and Eq. (39). Camber effects due to an infinite wing in 

steady subsonic flow are treated by combining the incompressible solution 

of Eq. (29) with the Karman-Tsien equation (Eq. 30) to account for compres­

sibility. Equation (19) is then solved numerically for the unknown pressure 

loads on the tip, ACpnm. The final loads on the tip region are obtained by 

removing the leading edge singularity from the ACpnm via Eq. (32). 

Before applying the approximate pressure fields described by Eqs. (25),
 
(26), and (27) to the solution for the semi-infinite wing, it is desirable to
 

establish some limits of accuracy for these analytic forms. The .quantityof
 

primary interest is, of course, the pressure. However, the lift transfer
 

function TL (which is a normalized lift coefficient that includes the effects
 

of compressibility and the wake) is also of interest and has been examined 

in the figures which follow. Adamczyk (Ref. 6) has developed these transfer
 

functions for the following tentative values of the cut-off parameter.
 
[ibkcosa[ Jo()-iZJlJ3) (M2,6 COS2)+!JI(M2GCOS2B)] 

T[Le 40(M i>Y>b (4o) 

io (1+i/3MZcos 2 )+Il(Y+ I3 M2 Cos 2 ( ) 
e, + "2,(Y) -~I 

H(y) e'{cs8:ein c 
7T 8] tI+sin8 ] 

TL Y MCOS2 EE+ ( M2Cs2)] 

2(y-M 2 COS 26) + _Pl 2 COS 2O 

i 2)Y e2I(Y- 13M 2 cos 2 0) E([42(Y+BM200S2) 

Y-/3Mzcos2 8e Y+/3M 2CS6 2I >> 2 
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where Z and H (y,P") are defined in Eqs. (25) and (26). Note these transfer 
functions are referred to the gust amplitude at the leading edge rather than
 
mid-chord.
 

In Fig. 6 the "exact" solution for TL is compared with the approximate 
forms for positive in Eqs. (4o) and (42). (The exact calculations were 
obtained by a direct numerical integration of Eq. 21 of Ref. 6.) The upper
 
panel contains the comparison for M = 0.3 and the lower panel for M = 0.6, 
both over the range of reduced frequencies 0.05 kb S 6.0. In both cases it 
is seen that Eq. (40) which is the low frequency approximation, compares
 
favorably with the exact solution up to kb = 0.2. Beyond this value Eq. (40) 
diverges from the exact solution, with a greater divergence at M = 0.6 than at
 
M = 0.3. In contrast to this, Eq, (42), which is the high frequency approxi­
mation, is in poor agreement forkb < 0.5, but improves in its ability to ­
represent the exact solution as kb increases beyond this value. This is also
 
illustrated in Fig. 7 in which the magnitude and phase angle of TL are plotted 
versus the cut-off parameter Y. Based on the results of these two figures, it 
appears that Eq. (4o) can be used for y - 0.3 while Eq. (42) can be used for
 
y 0
o.3.
 

Figure 8 shows the chordwise pressure distribution on an infinite wing 
at a Mach number of 0.3 for a reduced frequency of 0.1 in part a (and shows
 
the variation with reduced frequency at x/c = 0.2 in part b). Comparison 
of these results indicate that Eq. (25) yields acceptable pressure distribu-, 
tions for y Z 0.2 while Eq. (27) is more than adequate for Y > 0.2. Figure 9 
shows a similar set of comparisons for a Mach number of 0.6. For this set of
 
conditions, Eq. (25) represents an adequate solution up to kb = 0.1 and is 
possibly extendable to kb 9 0.2. Equation (27), however, appears to compare 
quite well withthe exact results beyond kb a 0.2. This implies that Eq. (27) 
still gives an adequate descritpion of the pressures for y > 0.2 while Eq. (25)
 
is valid for y Z 0.2. 

It should be noted that the foregoing comparisons relate to conditions 
for Y2 > 0, in which acoustic propagation is present. The conditions for 

< 0 have not been investigated herein and remain a field for further study. 

Deviations begin to appear in both the lift transfer function and the 
pressure distributions at high values of reduced frequency at both Mach numbers 
considered with the deviations becoming more pronounced as Mach number
 
increases. This is a result believed due to the truncation of the infinite
 
series of Mathieu function which describes the exact solution. Equation (27) 
is a solution comprised of the first two terms of an infinite series in reduced
 
frequency in which the disturbance due to the plate is modeled by acoustical
 
waves emanating from the leading and trailing edges. This solution inherently 
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increases in accuracy as the reduced frequency increases (at a given Mach 
number / 0) and so it is expected the results of Eq. (27) are more accurate 
than the truncated representation of the exact solfltiQn at high values of kb. 

Pressure Loadings on The Semi-Infinite Wing
 

Figures 10 and 11 describe the spanwise variation in chordwise pressure
 

distributions of the semi-infinite wing at various sweep angles. The wing is
 
an uncambered flat plate at an -angle of attack of 0.25 rad in incompressible
 

flow. Generally, the chordwise distributions are of similar form, end the
 
spanwise variation decreases smoothly to zero at the tips. The effect-of sweep
 

is to lower the overall magnitudes.
 

Figure 12 represents the steady response of a cambered (NACA 4415 profile).
 
unswept semi-infinite wing at an angle of attack of 0.25 rad. A comparison of
 

this figure with Fig. 10 shows that the effect of camber is to increase the
 

chordwise load distribution. For completeness, the unsteady distribution for
 
kb = 0.1 is included in Fig. 13. As stated earlier in the text, the complete
 

solution is the linear superposition of the steady and unsteady components of
 
the response which are illustrated in Figs. 12 and 13.
 

Pressure Distribution In The Vicinity of Tip of Semi-Infinite Wing
 

Figure 14 shows the pressures in a region surrounding the tip of a semi­
infinite unswept wing in steady subsonic flow at a Mach number of 0.2. The
 

angle of attack is taken to be 0.1 rad and camber is zero. In each panel the
 

pressure coefficient is plotted horizontally versus the normal distance to the
 
plane of the wing. The left column of panels at y/c = 2.0.is the distribution
 

two chordlengths inboard of the wing tip, and the right column of panels at
 
y/c = -2.0 is the distribution two chordlengths outboard of the tip. The
 
first horizontal row at x/c = 0.15 is the distribution at points that are 15
 

percent chord aft of the leading edge locus, the second.row for x/c = 0.95
 
(consisting,of -asingle panel)-is at a point that is 95 percent chord aft of
 

the leading edge locus, and the third row at x/c = 1.45 is for points that
 
are 45 percent chord aft of the trailing edge locus. The right hand column
 

can be dismissed immediately as representing typical variations of pressure
 

in the vicinity of, but external to, a lifting surface and its wake. The top
 

panel of the left hand-column for a point near the wing leading edge contains
 

the characteristid jt. 'ue to the dipole loading. Negative pressures (Cp 0) 
axe observed for'x >'0 whle positive pressures are observed for x2 <0. The 

bottom panel of the left hand column for a point in the wing wake shows the
 
far field dipole influence at points far removed from the wake jx2 1>>O.
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However, as the wake is approached a reversal of this trend is observed and 
the boundary condition of zero pressure difference in the wake is satisfied. 

Finally, the center panel of the left hand column represents a point near the 
wing trailing edge. Here the pressure variation is transitional between the 
dipole jump on the wing and the continuous pressure in the wake. As the wing 
is approached the pressure magnitude initially increases. At a small but
 
finite distance from the surface of the wing, the trend is reversed and the
 

pressures tend toward zero, but terminate in a discontinuous dipole jump on
 
the surface. This combination of form, near a point where the boundary condi­
tions change abruptly, is characteristic of the elliptic equations which 

describe subsonic steady flow. 
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VISCOUS FLOW CONSIDERATIONS 

General
 

Although an accurate solution of the potential flow equations can give
 

a qualitative picture of the flow in the region of an airfoil tip, the flow
 

field in this region is affected significantly by three-dimensional viscous
 

phenomena arising from boundary layers on both the upper and lower wing sur­

face as well as on the wing tip itself. Viscous effects could be modeled
 

partially in a potential flow solution through use of isolated and discrete
 

vortex filaments. The filaments would represent the vorticity originally
 

generated in the viscous boundary layers which break away from the airfoil 

to form the wake. However, a complete potential flow solution which includes
 

discrete vortices would require a calculation of the interaction of the
 

vortices with each other as well as their combined effect upon the wing.
 

.However, even such a complete potential solution could not satisfy the sur­

face no-slip boundary condition. Although failure to satisfy the no-slip 

boundary condition may not be serious in determining the pressure field, it 

may lead to inaccurate predictions of secondary flows in the vicinity of the 

wing even in regions which have little direct viscous effects. In addition,
 

a vortex filament solution would require assumptions on the vortex core size
 

and upon the position and angle at which the filaments leave the wing as both 

of these items are dependent upon viscous effects.
 

Since a complete interacting vortex filament-potential flow solution
 

would not be able to model either the airfoil boundary layer or the viscous 

core correctly but would still present a formidable computational problem, 

it is appropriate to consider viscous solutions of the tip flow field. One 

possible viscous solution would attack the full three-dimensional Navier-

Stokes equations. Solutions of the full Navier-Stokes equations can now be
 

considered possible (e.g., see Briley and McDonald(Ref. 12)), however, their
 

relatively long computer run times dictate that the full three-dimensional
 

Navier-Stokes equations be solved only when no suitable alternative is avail­

able. 

Although flow situations exist for which a three-dimensional Navier-Stokes 

solution is appropriate and necessary, the wing tip problem does contain sim­

plifying features that may alleviate the need for a full three-dimensional 

Navier-Stokes solution. In particular, the tip flow region contains a primary
 

flow direction which, for the zero camber case considered in the present
 

effort, is in the plane of the oncoming flow and at only a small angle rela­

tire to the wing chord. Furthermore, the velocity component in the streamwise
 

direction is considerably greater than velocity components normal to this 
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streamwise direction and derivatives in the streamwise direction are expected
 
to be considerably less than derivatives normal to this streamqise direction.
 

In this sense, the problem appears to be similar to the classical three­
dimensional boundary layer problem. However, the classical three-dimensional
 

boundary layer approach imposes two additional assumptions which are not
 
valid in the airfoil tip region. Under the first of these additional assump­

tions the static pressure is assumed to be invariant in a plane normal to the
 
streamwise direction; obviously, such an assumption upon the static pressure
 

clearly makes classical three-dimensional boundary layer theory invalid for the
 
airfoil tip problem. Secondly, three-dimensional boundary layer theory assumes
 

that significant gradients exist in one direction only, i.e., that a thin
 

relatively flat boundary sheet exists wherein viscous effects resulting from
 
the mean flow gradients are significant only as a result of the velocity
 

change across the sheet and not along the sheet. Obviously the assumption
 
of a thin relatively flat boundary sheet is inappropriate in the region of
 

a wing tip.
 

The need to develop a three-dimensional forward marching viscous calcula­

tion procedure which is more general than three-dimensional boundary layer 

theory has been motivated by a variety of fluid mechanics problems such as
 
three-dimensional duct flow problems, three dimensional jet problems, and the
 

airfoil tip problem. Therefore, considerable recent effort has been expended
 

upon development of computational procedures for three-dimensional viscous
 
flows with a dominant streamwise direction. These procedures would not be
 
limited by the classical three-dimensional boundary layer assumption of con­

stant static pressure in planes normal to the approximate flow direction but
 

would still allow treatment of the flow field in question as an initial value
 
problem. Such three-dimensional viscous forward marching solutions have been
 

developed by Patankar and Spalding (Ref. 13), Caretto, Curr and Spalding
 

(Ref. 14) and Briley (Ref. 15) all of whom developed numerical solutions for
 
laminar incompressible flows in straight ducts with rectangular-cross sections.
 

The governing equations were solved by integrating in a primary flow coordin­
ate direction while retaining viscous stresses in both transverse coordinate
 

directions as opposed to only one direction for three-dimensional boundary
 

layer theory. In addition, certain assumptions were made about the behavior
 
of pressure gradient terms for incompressible flow to permit solution by
 

forward marching integration. Subsequently, this general approach has been
 

used to compute laminar incompressible flow in helical tubes by Patankar,
 

Pratap and Spalding (Ref. 16).
 

Recently in companion studies, Brileyand McDonald (Refs. 12, 17) have
 
developed a stable and efficient noniterative implicit numerical technique
 
for application to systems of coupled nonlinear multidimensional parabolic
 

and/or hyperbolic equations. These general techniques were applied in
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Ref. (17) to the computation by forward marching integration of laminar
 
supersonic flow in rectangular jets. Finally, the technique was extended
 
in Ref. (18) to the prediction of subsonic turbulent compressible flow in
 
curved ducts. In the present effort this same basic viscous, three-dimen­

sional forward marching technique is applied to the airfoil tip problem, and
 
a preliminary assessment of its potential for calculating the tip flow field
 
is made.
 

The Governing Equations
 

Central to the present analysis is the formulation of approximate
 
governing equations which can be solved by forward marching integration in 
the direction of a "primary flow". The entire flow field then can be 

obtained by a sequence of essentially two-dimensional calculations, and this 

feature of the method results in a substantial saving of computer time and 
storage compared to that which would be required for solution of the full 
(elliptic) Navier-Stokes equations. Although the present effort utilizes a
 
cartesian coordinate system to represent the airfoil tip flow field, the
 
equations have been derived and coded in a more general orthogonal system.
 
The reduction to a cartesian system is straightforward and is indicated
 
during the discussion.
 

The equations are derived in a curvilinear orthogonal coord'imte system
 
which is aligned with the flow geometry such that one coordinate direction can
 
be identified as the primary flow direction while the remaining two coordinate
 

directions determine the secondary flow plane. The transverse plane is
 
assumed to be perpendicular to the airfoil. Only the tip region of the air­

foil within one-half chord of the edge is considered. The airfoil tip is
 
assumed to lie in the plane z = 0 between 0 x 9c and -h/2 < y < h/2 where
 

h is the airfoil thickness. The leading and trailing, edges of the airfoil are
 

assumed to lie in the planes x = 0 and x = c, respectively. A sketch of the
 
airfoil tip coordinate system used in the viscous analysis is presented in
 
Fig. i5.
 

In the general case x, y, and z represent the approximate streamwise
 
(primary flow) and two transverse coordimates in an orthogonal coordinate
 
system, respectively. Since the analysis consideres a general orthogonal sys­
tem, metric coefficients h,, h , and h are defined such that an incremental 
distance (4s)2 = (hfSx)2 + Ch2ty)2 + ( 36z)2; for a cartesian system h1 h2 ­

h = 1. The governing equations are derived from the Navier-Stokes equations 
describing the compressible flow of a viscous, heat conducting, perfect gas.

In vector form, these equations are given by
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*/lt+v. (43a)
(pU) =o 


pU/t+p(-u. 7)7+Vp =F (43b) 

where U is the velocity vector, p is density, t is time, p is pressure, F is a
 

vector representing the viscous force acting on the surface of a fluid element
 
and V is the gradient operator. The total enthalpy E may be specified through
 

an energy conservation equation (Ref. 18); however, in the present effort the
 
assumption is made that the total temperature is constant throughout the flow
 

field. The equation of state is p = pRT, where R is the gas constant. Expres­
sions defining F in an orthogonal coordinate system are given by"Pai (Ref. 19)
 
and may be found in Ref. 18.
 

In the present analysis the reasoning followed to estimate the order of 
magnitude of viscous terms and turbulence quantities is the same as is often 
employed to derive three-dimensional boundary layer equations The rationale 
is discussed in detail in Ref. 18, and for convenience this discussion is now 

repeated in a condensed form. As discussed in Ref. 18, it is assumed that, 
viscous effects are negligible except in thin layers near solid boundaries, 
and thus boundary layer concepts can be employed to examine the relative 
importance of viscous terms in the governing equations. Consequently, vis­
cous terms which are considered important for boundary layer flow on solid 
surfaces aligned with either of the two coordinate planes which are parallel 
to the primary flow coordinate are retained throughout the entire region of 
the viscous flow calculation; other viscous terms are neglected. In the 
context of the present investigation the lower and upper surfaces of the wing 

represent solid surfaces aligned in the 'y'-direction and the tip represents 
a solid surface aligned in the 'z'-direction. Both of these solid surfaces 
are parallel to the primary flow direction, 'x'. If the flow is turbulent, 
the governing equations are time-averaged in the usual manner for turbulent 
flows (e.g., Hinze, Ref. 20). The dependent variables are reprebented as the 
sum of a time-averaged quantity denoted by an overbar (-) and an instanta­
neous fluctuating quantity denoted by a prime ('). This process of averaging 
produces turbulent correlations which are conventionally termed Reynolds 
stresses. The order of magnitude of viscous terms, including the turbulent 

Reynolds stresses, is examiaedunder two sets of-circumstances, namely, those 
appropriate for boundary layer flow near either of two types of wall, one for 
which y is constant (a y-wall) and one for which z is constant (a z-wall). 
Near a y-wal!, (v/UREFi and )0/(yiREF) are assumed to be of order 'Sand 1/6 
respectively; near a z-wall, (w/UREF) and 6( )/6(z/L F) are of order 6 and 
1/6. Here, 6 is the shear layer thickness. If the viscous terms are to be 
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of the same order of magnitude as the remaining terms, then the dimensionless 
molecular viscosity (P/PREF VREFLREF) must be of the order 62. Similarly, it 
is assumed that dimensionless turbulent double correlations are of order 6 

-
(i.e., turbulent fluctuations are of order 62) and that triple correlations 
are negligible. All other dependent variables and derivatives are assumed 
to be of order unity. Retaining only those terms which are of order unity 
in either of the two types of shear layers described above, the viscous terms 
are greatly simplified, and the time-averaged governing equations can be 
written in the following form: 

a$(h 2 h3 )+A-h(hIh3 P)+ + (hih 2 'W);O (44a) 

(h aya ah(~ ~ -- h3U -­ (hIh2-2 
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Laz hz 2 -hp a2] y­

dy I2z Lh3 dZ 
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For entirely supersonic flows, Eqs. (44a-d) together with boundary and
 
initial conditiohs can be solved without further approximation by forward
 
marching integration in the x direction as was demonstrated by McDonald and
 
Briley (Ref. 17) for laminar flow in rectangular jets. For subsonic flow, 
however, the inviscid flow region is known to be governed by equations which 
are elliptic; that is, by equations which require downstream boundary condi­
tions for solution. Therefore, in the subsonic case, if the pressure is
 
required to emerge from the solution it is by no means clear that a stable
 
numerical solution could be obtained from a forward marching calculation and
 
even if a stable numerical solution could be obtained, solution by forward
 
marching integration is not physically appropriate, at least not without some
 
sort of iterative procedure to satisfy the downstream boundary conditions.
 
Therefore, it appears that in the subsonic case some approximation must be
 
made in regard to the pressure field. The present airfoil tip analysis follows
 
the approach of Ref. 18 and assumes the pressure field appropriate for invis­
cid flow represents a given reasonable first approximation to the actual pres­
sure field. . Thus, the inviscid streamwise pressure gradient computed with 
appropriate downstream boundary conditions is "imposed" upon the flow, as a 
known source term in the streainwise momentum equation much as in conventional 
boundary layer theory, so as to permit solution by forward marching integra­
tion of the viscous flow equations for subsonic flows. This choice of the 
pressure approximation is not the only possible choice and the manner in which
 
the necessary pressure approximation is made is still a subject of current 
investigation. In any case the imposition of inviscid pressure gradients
 
incorporates a priori the elliptic effects associated with a subsonic pres­
sure field without the necessity of solving elliptic equations other than for
 
an inviscid flow. In the present application, the inviscid pressure distri­
bution was obtained via the inviscid analysis described in the previous
 
sections.
 

Method of Solution
 

The governing equations can be solved (after modeling the Reynolds
 
stresses in the case of turbulent flow) following the general approach
 
developed by McDonald and Briley (Ref. 17) for laminar supersonic flow in
 
rectangular jets. A detailed discussion of the calculation procedure is not
 
included here, as such a discussion would be lengthy, and discussions of the
 
general approach are available elsewhere (Refs. 12, 17, 18). The method used
 
is based on an implicit scheme which is potentially stable for large step
 
sizes. Thus, as a practical matter, stability restrictions which limit the
 
streamwise step size relative to the transverse mesh spacing and which become
 
prohibitive for even locally refined meshes (e.g., in laminar sublayers) are 
not a factor in making the calculations. The general approach is to employ 
an implicit difference formulation and to linearize the implicit equations by
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expansion about the solution at the most recent streamwise location. Terms
 
in the difference equations are then grouped by coordinate direction and one
 
of the available alternating-direction implicit (ADI) or splitting techniques
 
is used to reduce the multidimensional difference equations to a sequence of
 
one-dimensional equations. These linear one-dimensional difference equations
 
can be written in block-tridiagonal or a closely related matrix form and
 
solved efficiently and without iteration by standard block elimination
 
techniques. The general solution procedure is quite flexible in matters of
 
detail such as the type and order of accuracy of the difference approximations
 
and the particular scheme for splitting multidimensional difference approxi­
mations. Based on previous experience, however, it is believed that the con­
sistent use of a formal linearization procedure, which incidentally requires
 
the solution of coupled difference equations in most instances, is a major
 

factor in realizing the potential favorable stability properties generally
 
attributed to implicit difference schemes.
 

As indicated above the details of the method of solution are quite
 
lengthy and have been discussed in elsewhere. Rather than repeat the discus­
sion in detail within the body of the present report, the specific numerical
 
method is described in Ref. (18) and given briefly in Appendix A. The topics
 
in this appendix include the difference operators, the linearization process,
 
the difference equations and the matrix inversion procedure.
 

In brief, the numerical technique represents first and second derivatives
 
by either first or second order difference formulas. However, a simple
 
direct substitution of the difference representations into the differential
 

equations would lead to a nonlinear set of algebraic difference equations.
 
Therefore, a linearization procedure is required. The linearization procedure
 
is based upon previous work by Briley and McDonald (Refs. 12 and 17) which
 
assume the solution to the equations is Taylor expandable and, therefore,
 
approximates the solution at streamwise station n+ 1 through a Taylor expan­
sion of the known solution at station n. The result is a set of linear
 
difference equations representing the nonlinear differential equations at
 

station n + 1. The finite difference solution itself is an ADI solution
 
based upon the splitting technique of Yanenko (Ref. 21) which results in a
 
two step procedure in advancing the solution from station n to station n + 1.
 
Each step requires the inversion of a block diagonal matrix which is accom­
plished through a standard block elimination technique (e.g., Ref. 22).
 
Further details of these procedures are found in-Appendix A.
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Grid Transformation, Difference Representation
 
and Boundary Conditionis
 

The minimization of the computational effort necessary to compute a
 
solution requires that a nonuniform grid spacing be used to ensure that grid
 
points are closely spaced in regions where the solution varies rapidly and
 
widely spaced elsewhere. In the present calculations, steep gradients occur
 
in the boundary layers on the airfoil surface and in the vicinity of the
 
airfoil tip and it is in these regions that closely spaced grid points are
 
required. In the present procedure grid point packing is obtained using a
 
transformation originally devised by Roberts (Ref. 23). For the purpose of
 
demonstrating the Robert's transformation suppose that N grid points are to
 
be-used in the range yl y y2 and a boundary layer or sublayer of thick­
ness G(y2 -yl) is present near yl, then Roberts' transformation (y) is given
 
by
 

71()N+(N-1)Ilo (y+ b-C l'og [(b4o\
y+b c / \b-o) (45) 

where a = y2 -y I b
2 = a2/(-c) and c = y. The use of equally spaced points 

in the transformed coordinate f ensures.an adequate resolution of both the 
overall region between y1 and y and the boundary layer region between yl and
 

Yl + s (y -y ). Derivatives with respect to the physical coordinate y are
 
oktained fromi the following formulae:
 

6 d '9 
a dy- ri' (46)dy aq(6 

a2 j d7l)2a2 + d a"6y2=\"y a17 dy2- 6*q 

The use of three point difference operators for f derivatives in Eqs. (46)
 
produces similar operators for y derivatives. These y-derivative operators
 
can be computed at the start of the calculation and stored, along with the y
 
locations of grid points.
 

In the present calculations the grid was resolved in the y-direction
 
along both the upper and lower surfaces of the airfoil and in the z-direction
 
in the vicinity of the airfoil tip. In the y-direction the limits of the
 
computational region were taken between -. 5 y/c .5 and transformations 
were performed both above and below y = 0 (the wing centerplane). For the 
transformation above the wing centerplane, y2 was takenas 0.5c, y1 was taken 
as 0.0 and e was taken as .0k; below the wing centerline y2 was taken as -0.5c, 

ylwas taken as 0.0 and e was taken as .04. Similarly, in the z-direction
 
transformations were performed both inboard and outboard of the wing tip plane.
 
In these transformations y1 was set to zero, e to 0.04 and y2 was set to 40.4
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Results 

Inviscid Calculation - Although the present section is concerned
 
primarily with results of the viscous calculation procedure, the viscous
 
procedure requires as input an inviscid approximation to the pressure field.
 
Since this inviscid pressure fieid is used as an imposed source term in the
 
streamwise momentum equation, the inviscid pressure distribution plays a
 
significant role in determining the viscous results. Therefore, before
 
examining the results of the viscous procedure, it is appropriate to review
 
briefly the inviscid calculation procedure and to examine the inviscid pre­
dictions in the airfoil tip region.
 

Under the present effort, the inviscid flow field was determined by a
 
doublet lattice method (see previous sections of the present report). For
 
steady flows the doublet lattice method reduces to the modeling of the wing
 
by a group of horseshoe vortices. The wing is divided into V rectangular
 
sections and the bound filament qf a horseshoe vortex is placed in each seg­
ment. In addition, one collocation point is placed in each rectangular seg­
ment. Generally, the bound filament is placed along the local quarter chord
 
line of each rectangular element and the collocation point at the 3/4 chord
 
point midway between the tips of the element. The strength of each bound
 
vortex is chosen so that the total normal wash due to the oncoming free stream
 
flow and to all horseshoe vortex elements is zero at all collocation points.
 

Therefore, in the doublet lattice method the zero normal wash condition need 
be satisfied at only N discrete points on the wing; nomal wash may be present
 

at all other points on the wing.
 

The doublet lattice method does represent an efficient and versatile 
method of solving the inviscid flow about a wing of general planform and may
 
be capable of giving accurate predictions of lift and moment coefficients.
 
However, unless an extremely large number of rectangular sections and colloca­
tion points are used, the procedure suffers from obvious deficiencies in its
 
ability to determine the flow field in the immediate vicinity of the wing.
 
The deficiency results from the zero normal wash boundary condition being
 
satisfied only at isolated points (one per section) and, therefore, at all
 
other points the correct physical boundary condition is not being satisfied.
 
In the present inviscid calculation which was used to obtain the inviscia
 
pressure field required by the viscous procedure only a moderately dense grid
 
was used and, consequently, the zero normalwash condition in the immediate
 
vicinity of the wing tip was not well satisfied. A typical spanwise distribu­
tion of the noralwash velocity is presented in Table I. The distribution
 
was calculated by summing the contributions from each horseshoe vortex and
 
the oncoming free stream flow. The distribution is taken at x/c " .325 and 
y/c = 0.02; the velocity is normalized by the oncoming free stream velocity. 
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and -0.4c for the outboard and inboard transformations, respectively. It
 

should be noted that the y-grid is symmetric about the wing centerplane and
 
the z-grid is symmetric about the wing tip. The locations of the grid points
 
versus point number are presented in Fig. 16.
 

In regard to the finite difference representation, in the present effort 
second derivatives are represented by three point central difference operators. 

First derivatives are represented by two different difference operators. In 
the spanwise direction a two point backwards difference operator is used.- In 
the transverse y direction for points above the wing centerplane a two point 
backwards difference is used whereas for points below the wing centerplane a 
two point forwards difference is used. It should be noted that with this
 
difference scheme, differencing is always done away from boundaries which in
 
truth can only be set at infinity.
 

The final item to the specified before proceeding to a discussion of
 
results is the application of boundary conditions. During the course of the
 
present effort several combinations of boundary conditions were investigated.
 

One possible choice along all outer boundaries of the computational region is
 
the specification of the inviscid function values. However, this specifica­
tion should require the flow in the outer portions of the computational region
 

to be free from both direct and indirect (viscous displacement) viscous effects.
 

In the present computations, the regions in the vicinity of the upper and
 
lower (y= constant) boundaries are not expected to be free from inner layer
 
viscous displacement effects and, therefore, along these boundaries second
 

derivatives of u, w, and P were set to zero. The most satisfactory boundary
 
condition for the fourth variable, v, was obtained by setting the first
 

derivative, bv/6y, equal to the inviscid value. On the left hand z-boundary
 
(which cuts through the wing) the second derivatives of u, v and p are set
 
to zero and the spanwise velocity, w is set equal to its inviscid value modi­
fied-by a boundary layer profile, f(y/8), in the vicinity of the wind surface.
 

Finally, on the right hand z=constant boundary, which should be reasonably
 
free from all viscous effects, p, u and v are set to their inviscid values
 
and a2w/3 2 z is. set equal to zero.
 

Once a calculation has begun to march downstream, the continuity equation
 

and the three momentum equations are solved in finite difference form. How­

ever, a special procedure is required to start the calculations. In this
 

special starting procedure during the y-implicit sweeps of the ADI procedure,
 

the y-momentum equation is replaced by the condition that the pressure equal
 

the inviscid.pressure. Likewise during the z-implicit sweeps the z-momentum
 
equation is replaced by the inviscid pressure condition. This special starting
 

procedure only is required on the first step of the calculation and serves to
 
generate a viscous flow field compatible with the inviscid pressure
 
distribution.
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Table I - Calculated Inviscid Normalwash Velocity
 

z/c -.20 -.15 -.10 -.05 0
 

v/u .002 .009 .02 .07 .21
 

Obviously, the zero normalwash condition is not being held in the immediate
 
vicinity of the tip. Therefore, for the purpose of the viscous calculation,
 
the tip was taken to be at z/c = .l and the z-location was then shifted by
 
+0.1 so as to put the new assumed tip location back to z/c = 0.
 

In addition to the problem of nonsatisfaction of the zero normalwash
 
condition (which in principle could be overcome through a dense calculation
 
grid), the doublet lattice method assumes the trailing vortices to lie in a
 
plane which in the present inviscid calculation coincides with the plane of
 
the wing. This restriction further constrains the flow since the vortices
 
are not free to interact one with the other. Although such a constraint may
 
not represent a significant problem in lift and moment coefficient calcula­
tions, the constraint may lead to critical inaccuracies if the correct
 
detailed flow field in the vicinity of the airfoil wing is the object of the
 
investigation. Therefore, in summary the inviscid calculation procedure
 
used has two drawbacks in so far as the wing tip flow field is concerned:
 
(i) satisfaction of the zero normalwash condition only at specific points and
 
(ii) constraint of the vortex trailing filaments to a specified plane.
 

Predictions of the inviscid flow field obtained with the doublet lattice
 
method are presented in Fig. 17-22. Figures 17-19 show contour plots of the
 
streamwise, normal and spanwise (u, v, and w) velocity components, respectively, 
at x/c = 0.175. As can be seen in these figures the streamwise velocity above 
the wing is greater than that below the wing and the normal and spanwise flow
 
velocities show flow around the wing. Flow around the wing can be deduced
 
from the prediction of positive v at the wing tip in conjunction with posi­
tive w below the wing and negative w above the wing. In addition it should
 
be noted that a strong positive v-velocity occurs just beyond the wing tip
 
location for the inviscid flow calculation (z/c = 0.1). This reaches a maxi­
mum value of approximately v = 0.2. Far from the wing the ratio of v/u
 
approaches a value of approximately 0.1 which is consistent with a 0.1 radian
 
incidence angle. It should be noted that the inviscid solution shows no evi­
dence of a circular secondary flow pattern in the y-z plane. Above the wing
 
the spanwise velocity w is consistently negative while below the wing it is
 
consistently positive. The normal velocity is always positive. The lack of
 
any circular inviscid flow pattern in the y-z plane is a result found at all
 
stations examined and may be due to constraining the trailing vortices in a
 
planar wake. Figures 20-22 show the three inviscid velocity components at the
 
plane x/c = 0.375; the flow pattern is similar to that found in the upstream
 
flow plane. 
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Viscous Solution - The inviscid flow field obtained from the doublet
 

lattice procedure is used as input for the viscous calculation. The inviscid
 

pressure field is imposed unchanged upon the streamwise momentum equation and
 

the inviscid velocity field is used to obtain both upstream initial conditions
 

and some boundary conditions. Although the tip flow field in general will be
 

turbulent, the present calculations were run as laminar at a chord Reynolds
 

number of approximately 2000. It is expected that the tip flow field region
 
l


will be qualitatively similar in the laminar and turbulent cases and, there


fore, a laminar prediction should serve to assess the three-dimensional
 

viscous flow field generated by the code. Treatment of the turbulent problem
 

would add the complication of hypothesizing a turbulence model and further­

more would require a simultaneous assessment of the turbulence model and the
 

basic three dimensional calculation. The separation of these two items in
 

one calculation is difficult at best and, therefore, it is proper in this
 

first assessment to avoid the complications of a turbulent flow. Turbulent
 

flow can be considered at a later date by adding an appropriate turbulence
 

model to the calculation procedure.
 

The calculation was initiated at the station x/c = 0.175 by inputting
 

the inviscid velocity field and adding a boundary layer correction in the
 

vicinity of the wing. The computational grid used consisted of twenty-one
 

points in the spanwise direction and forty-one points in the transverse
 

direction. In the present calculation a boundary layer thickness, 6, was
 

chosen to initiate the calculation and each velocity component, u., was
 

scaled such that
 

U- Uj INVISCID f(y/8) (47) 

where y is the distance from the wing and f(y/8) is the Pohlhausen velocity
 

profile. For the purpose of this preliminary assessment of the procedure, a
 

convenient boundary layer thickness was simply assumed. inboard of the wing
 

tip (z < a) the boundary layer thickness was assumed to be 61 = .08 c and
 

outboard of the wing tip ( z > 0) 82 was assumed to be .015 c. Although the
 

initial plane flow field obtained by superimposing a Tohlhausen type profile
 

upon an independently calculated inviscid flow does give a qLalitatively
 

reasonable set of initial plane conditions, the procedure may give profiles
 

which change rapidly during the first few stations of the viscous flow cal­

culation. This problem is likely to be particularly acute in the region of
 
the airfoil tip. The generation of initial plane conditions which are in
 

concert with both the inviscid pressure field and the viscous flow equations
 

is a major problem which must be faced in the three-dimensional viscous flow
 

analysis.
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The results of the viscous calculation are shown in Figs. 23-30. For
 
the y-z plane grid used, the calculation of one streamwise step required
 
approximately 30 system seconds of UNIVAC 1110 CAU time. The velocity fields
 
at the fifth streamwise station, x/c = 0.19, are presented in Figs. 23-25.
 
The streamwise velocity, u, presented in Fig. 23 clearly shows the velocity
 
boundary layeas on both the upper and lower wing surfaces as well as at the
 
wing tip. A detailed examination of the calculation shows the boundary
 
layer thickness on the upper surface, 61/c, is approximately 0.08 and the
 
boundary layer thickness at the tip is approximately 0.035. It should be
 
noted that in order to define the boundary layer region, the scale in Fig.
 
23 is considerably less than that in Fig. 17. The major difference between
 
the inviscid 'u'field of Fig. 17 and the"viscous 'u' field of Fig. 23 is
 
the viscous requirement of a no slip boundary condition. Outside of the
 
boundary layer region the inviscid and viscous predictions of the 'u' com­
ponent of velocity are very similar. The v and w components of velocity are,
 
shown in Figs. 24 and 25. Again the scale of Figs. 24 and 25 are less than
 
those of Fig. 18 and 19. However, a comparison of the detailed calculations
 
of Figs. 18 and 24 show that the 'v' distribution is modified significantly
 
by viscous effects. Both above and below the wing, 'v' is modified by bound­
ary layer displacement effects whereas in the vicinity of the wing tip, the
 
rapid changes of 'v'with respect to z in the inviscid calculation are con­
siderably softened by the viscous solution. Finally, the symmetry in the
 
inviscid v-component field above and below the wing is not present in the
 
viscous case. This destruction of symmetry results from the boundary layer
 
above the wing being subjected to an adverse pressure gradient whereas
 
that below the wing being, subjected to a favorable pressure gradient. -The
 

major difference between viscous and inviscid solutions is found in the
 
spanwise w-velocity calculations. In the inviscid calculation 'w' is nega­
tive at all points above the wing (Fig. 19), however, in the viscous cal­

culation a thin layer of positive 'w'appears immediately above the wing
 
(Fig. 25). At this stage since 'v' is positive above the wing, no circular
 

flow pattern can be discerned.
 

Viscous calculations at x/c = .35 are presented in Pigs. 26-30. The,
 
region in the immediate vicinity of the tip is shown in detail in Figs.
 
26-27. In particular, Fig. 26 shows the v-velocity component field and it
 

should be noted that at this station negative values of 'v' have-appeared
 
above the wing. Figure 27 shows that the region above the wing also contains
 

both positive and negative values of 'W. Therefore, a 'circular' type flow
 
pattern has appeared with a center at the location where v = w = 0; this center
 
point has the approximate coordinates y/c = .025, z/c = -.04. This 'circular'
 
flow pattern does not contain the nearly circular streamlines expected in a
 
tip vortex since w >> v; furthermore, the vortex is relatively weak. However,
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considering that the inviscid flow field prediction shows no evidence of a
 
vortex (Figs. 21 and 22) this emergence of a 'circular' flow pattern, due to
 
viscous effects and pressure gradients generated by the viscous solution in
 
the secondary flow plane, does indicate the potential capability of the
 
three-dimensional viscous flow procedure in treating the airfoil tip problem.
 

The overall flow field encompassing more than the-immediate tip region
 
is shown in Figs. 28-30. When compared against the analagous calculations for
 
X/c = .175 (Figs. 23-25), it is clear that the major difference is that at
 
this latter station the boundary layers now encompass more of the flow field.
 
In addition some spurious spanwise velocities have appeared at the outer
 
calculation boundaries (ly/cl> .3)which are beyond the locations shown in
 
the figures. These velocities are unrealistic and indicate more effort must
 
be devoted to the treatment of boundary conditions, however, they are confined
 
to the outer part of the flow calculation region and, therefore, do not
 
influence the immediate tip region shown in Figs. 26 and 27. A table of
 
calculated velocities in the vicinity of the wing tip at x/c = .354 is pre­
sented in Appendix B.
 

Summary and Conclusions for Viscous Procedure
 

A three dimensional forward marching, viscous, subsonic flow calculation
 
procedure has been applied to the airfoil tip problem. The procedure inte­
grates a reduced set of Navier-Stokes equations in which (i) streamwise diffu­
sion is neglected and (ii) the pressure gradient in the streamwise momentum
 
equation is obtained from an external source. In the present effort the
 
doublet lattice method was used to generate the streamwise pressure gradients
 
and with the inviscid calculation grid used this method did not properly define
 
the flow in the vicinity of the tip. Furthermore, the doublet lattice method
 
constrains the trailing vortices to lie in a plane.
 

These deficiencies in the inviscid pressure field make an assessment
 
of the viscous procedure somewhat difficult. However, the viscous procedure
 
has shown features expected in the flow such as the qualitatively proper
 
development of the viscous boundary layers both on the upper and lower sur­
faces of the airfoil as well as on the airfoil tip surface. The viscous cal­
culation also shows the generally expected flow pattern around the tip from
 
the lower to the upper surface of the airfoil. Finally, the viscous procedure
 
does predict a 'circular' type flow pattern to appear above the airfoil suction
 
surface; this feature was completely lacking in the inviscid solution. There­
fore, the procedure is promising in its application to the airfoil tip problem,
 
however, the results presented must be regarded as preliminary. Further inves­
tigations which would include improvements of the viscous as well as the-invis­
cid procedure used to generate the required streamwise pressure gradients must
 
be made before the present approach can be fully assessed.
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APPENDIX A
 

SOLUTION PROCEDURE
 

Numerical Techniques
 

As an outline of the particulars of the numerical method, the treatment 

of the continuity equation is considered, as this is the simplest equation, 

and yet this discussion will cover most aspects of the method. The flow region 

is discretized by grid points having equal spacings Ax, Ay, and Az. Provisions 

for nonuniform grid spacing will be introduced subsequently. The subscripts 

i, j and superscript n are grid point indices associated with y, z, and x, 

respectively. Thus $.. . denotes 0 (xn, y,, z.) where 0 can represent any of 

the dependent variableA. The subscripts arefrequently omitted if clarity is 
preserved, so that 0 is equivalent of 9P .. For convenience, the following 

shorthand difference operator notation IA used for derivative difference 
formulas: 

Y ~ on,1 @7,I@Pa -,I) + on) y] 

B ,2 . - a)+(-)( ~c,i ]/Ay. (48) 

82 o= n ,°+(9 
; [0i1 j_ ,i tI/, 6y)2 (9 

2
 

with analogous definitions for 6z, 8 . Here a parameter a,has been intro­.


duced ( 0 c 1 1) so as to permit,continuous variation from backward to for­
ward differences. The standard central difference formula is recovered for
 
a = 1/2. Throughout the following discussion, it is assumed that the solu­

tion is knowm at xn and is desired at x n+l
 

Consider the continuity equation
 

a(hzhapu/ax+a (hh 3pv)/ay+a(hIhzpwi/a z2o (50)
 

Equation (50) is differenced in the x or marching direction as follows:
 

+
(h2 h5 pu) -(h h3Pu)' + [a(hh 3 pv/8y4 8(hh 2pw)/az]
Ax + (I+f3) ­

+-[achh 3Pv/ay +3(hahpw/az (50) 
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x

Here a parameter 0 has been introduced so as to permit a variable centering of 
the scheme in the x direction. Equation (51) produces a backward difference
 
formulation for P = 0 and a Crank-Nicolson formulation for p = 1. The depen­
dent variables in Eq. (51) are linearized by expansion about the solution at 
n 
(Refs. 12 and 17). Here a first-order accurate linearization is used for
 

the x derivative, and the result is
 

nh n+1h n+ nhn
(pu~~nln2nn + nn. (h- h3. "h'h3) 

hAx A X
 

rn-n- n + ,n, in nv1 By (hoI hn3 PAnV n1i n 

+ 8Z [h'I"' h]+ lw+-pw1+ h2 pnwn)xO(pnwn+lp n8(h' 

(52)
 

After eliminating the pressure gradients in Eqs. (44 b-d) via the equation of
 
state, the procedure outlined above for the continuity equation can be employed 
to derive linear implicit different approximations analogous to Eq. (52) for
 
the three momentum equations. The resulting difference approximations can be
 
grouped by coordinate direction and written in the following compact linear
 
matrix difference operator notation as
 

(4)n,_(fn) . D) n+l+4 . + (53) 
A Xy z - (3 

where is a column vector containing the dependent variables, p, u, v, w, and 
A is a square (4 x 4) matrix. D and Dz are 4 x 4 matrices containing elements
 
which are themselves spatial difference operators for the y and z directions,
 
respectively. S is a column vector reserved for any source terms which may be
 
present. The matrices A, Dy, and Dz contain only quantities which are known
 
from a computational viewpoint. Equation (53) is linear in
 

The advantage in grouping the dependent variables by the direction of
 
differencing is that numerous ADI or splitting techniques are immediately
 
available for reducing the multidimensional implicit equation (53) to a
 
sequence of one-dimensional equations (e.g., Douglas & Gunn, Ref. 24; Yanenko,
 
Ref. 21), and this permits efficient solution while retaining the favorable
 
stability properties of the basic implicit scheme. In the present application,
 
however, the technique of splitting (Yanenko, Ref. 21) is being employed.
 
Using the technique of splitting, Eq. (53) can be written as the following two­
step scheme.
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(D* D) (D +S1 (54a) 
Ax 

A DzIP + S (54b) 

where 0* is an intermediate result having computational significance but no 
particular physical significance, and where S1"+ S2 =. 

As discussed in the main body of the report, for subsonic flow, an invis­
cid solution is used as a first approximation to the pressure field. This is
 
accomplished by setting p = p, in the axial momentum equation, where p, is the
 
inviscid pressure. In the axial momentum equation, the pressure gradient is
 
therefore replaced by
 

ap = ap1 
-ax aX (55) 

The pressure gradient terms in the transverse mementum equations are not
 
altered.
 

Solutions of the Split Difference Equations
 

The coupled set of linear implicit difference equations arising along 
rows of grid points during each step of the ADI solution procedure, together 
with the prescribed boundary conditions, can be written in a form having the 
following matrix structure. 

Ao Bo Co 0 do
 

A] BI C1 0 0 di 

A2 B82 C2 02 d2 (56) 

AN- 2 BN-2 CN-2 0 N-2 dN-2 

AN-1 B N-I CN-1 ON-I dN1 

AN BN CN ON dN 4. 



For each grid point index i, 0. is a column vector containing the dependent 

variables p, u, -w, w. Ai, Bi, and C. are square (4 x 4) matrices containing 

the implicit difference c6efficients. di is a column vector containing only 

computationally known quantities. There are N + 1 grid points along the row 

under consideration. Difference approximations for the four governing equa­

tions are associated with symbols having subscripts 1 through N-1, the sub­

scripts 0 and N are associated with the boundary conditions, which may involve 

up to three grid points. Equation (56) represents 4 (N + 1) linear equation 

in 4 (N + 1) dependent variables. Excluding the elements C and AN, the 

matrix structure of Eq. (56) is block tridiagonal, and direct solution by 

standard block elimination techniques (cf., Isaacson & Keller, Ref. 22) is 

both straightforward and efficient. The precise scheme used here consisted of 

Gaussian elimination for a simple tridiagonal system (sometimes called the 

Thomas algorithm) but with elements of the tridiagonal matrix treated as 

square submatrices rather than as simple coefficients. The required inverses 

of diagonal submatrices were obtained by a Gauss-Jordan reduction. The 

additional operations necessary to include the nonblock-tridiagonal elements 

and AN are easily incorporated provided the original block tridiagonal
Co 

coding is carefully organized. 
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APPENDIX B
 

Calculated Velocities at X/C = c.354 
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U - VEL
 

-O.i042- -0.0667 -o.o4c8 -0.0234 -0.0121 -0.0047 

O.1047 1.0319 1.0327 1.0326 1.O314 1.034o i.O426 
0.0833 1.0131 1.0155 1.o16o 1.0121 1.0091 1.0257 
o.0656 o.961o 0.9654 o.9668 o.9603 0.956o o.994o 
0.0510 o.8451 0.8509 0.8533 o.848o 0.8588 0.9327 
0.0390 o.6844 o.6913 0.6952 0.6949 0.7263 0.8266 
0.0293 0.5150 0.5223 0.5272 0.5325 0.5768 o.6849 
o.o214 o.3632 o.3697 0.3747 0.3832 o.4291 0.5310 
0.0151 0.2382 0.2431 0.2473 0.2562 0.296o 0.3844 
0.0100 0.1384 o.i415 o.1445 0.1519 0.1822 0.2540 
9.0059 0.0593 o.0605 0.0621 0.0674 0.0879 O.1427 
0.0026 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
-0.0026 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
-0.0059 0.0736 0.0736 0.0740 0.0764 0.0889 0.1295 
-0.0100 0.1656 0.1657 0.1663 o.1682 0.c8o4 0.2220 
-0.0151 0.2737 0.2742 0.2750 0.2764 0.2874 0.3274 
-0.0214 0.3981 0.3991 0.4003 0.4014 0.4102 0.4462 
-0.0293 0.5357 0.5375 0.5394 0.54oi 0.5465 0.5773 
-0.0390 0.6773 0.6802 0.6828 0.6836 0.6873 0.7118 
-0.0510 0.8042 o.8o8i o.8116 0.8128 o.8146 0.8316 
-o.o656 0.8913 0.8961 0.9002 0.9024 o.9046 0.9156 
-0.0833 0.9280 0.9331 0.9375 0.9410 0.9462 0.9554 
-0.1047 0.9426 0.9476 0.9520 0.9563 0.9639 0.9731 
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U - VEL (CONT'D) 

/ 0.0000 0.o047 0.0120 0.0234 O.o4O8 

o.o47 1.0362 1.0228 1.0203 1.0282 1.0292 

0.0833 1.0288 1.0206 1.0227 1.0320 1.0341 
0.0656 i.o:6± 1.0208 1.0255 1.0372 1.)0420 
0.0510 0.9818 1.0117 1.0213 1.0398 1.0507 

0.0390 0.9035 0.9698 0.9947 1.0296 1.0533 
0.0293 0.7834 0.8872 0.9377 0.9998 i.o446 
0.0214 o.6416 o.7766 o.8561 0.9518 1.0241 
0.0151 0.4990 0.6591 0.7654 0.8942 0.9954 

0.0100 0.3670 0.5501 0.6797 0.8369 0.9644 

0.0059 0.2496 0.4551 0.6056 0.7862 0.9356 

0.0026 0.0000 0.3363 0.5447 0.7503 .0.9131 
0.0000 0.0000 0.3210 0.5305 0.7381 0.9033 
-0.0026 0.0000 0.3186 0.5263 0.7321 0.8972 
-0.0059 0.2190 0.4002 0.5559 0.7421 0.9003 

-0.0100 0.3066 0.4594 0.5991 0.7675 0.9094 
-0.0151 0.4038 0.531-4 0.6532 0.7988 0.9195 
-0.0214 0.5132 0.6195 0.7209 0.8385 0.9332 

-0.0293 0.6341 0.7206 0.7992 o.8851 0.9505 
-0.0390 0.7563 0.8204 0.8734 0.9268 0.9644 
-0.0510 o.8615 0.9000 0.9281 0.9542 0.9713 

-0.0656 0.9311 o.9461 0.9555 0.9654 0.9721 
-0.0833 0.9611 0.9606 0.9606 0.9656 0.9701 

-0.1047 0.9735 0.9657 0.9602 ..9642 0.9686 

45 



V - VED
 

/C=-0.1042 -0.0667 -0.0408 -0.0234 -0.0121 -0.0047 

o.1o47 O.0178o 0.01341 o.o164 0,02088 0.04760 o.o6144 
0.0833 0.01357 o.oo988 0.00859 o.o1766 o.o4413 o.o6093 
0.0656 0.00828 0.00535 o.bo451 0.01303 0.03814 0.05716 
0.0510 0.00338 6.oo18 0.00073 0.00838 0.03065 0.04983 
0.0390 -0.00017 -a.00176 -o.oo191 o.o0463 0.02304 0.04033 
0.0293 -0.00200 -0.00313 -0.00312 0.00211 0.01621 0.03022 
0.0214 -0.00241. -0.00318 -0.00309 0.00070 0.01053 0.02045 
0.0151 -0.00198 -0.00245 -0.00235 0.00001 0.00580 0.01124 
0.0100 .­0.00115 -0.00138 -0.00133 -0.00034 0.00176 0.00279 
0.0059 -0.00015 -0.00019 -0.00024 -0.00040 -0.001i2 -0.00350 
0.0026 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
0.0000 0.00000 0.00000 0..00000 0.00000 0.00000 0.00000 
-0.0026 0.00000 0.00000 0.00000 0.,00000 0.00000 0.00000 
-0.0059 -0.00024 -0.00022 -0.00018 o.oooo6 0.00125 0.00510 
-0.0100 0.00010 0.00020 0.00015 -0.00040 -0.00152 -0:00070 
-0.0151 -o.oooo4 0.00019 0.00014 -0.00106 -0.00472 -0.00773 
-0.0214 -0.00082 -0.00042 -0.00042 -0.00208 -0.00784 -0.01435 
-0.0293 -0.00239 -0.00181 -0,00174 .0.00376 -0.01119 -0.02044 
-0.0390 -o.oo488 -0.00413 -0.00403 -0.00639 -0.01516- -0.02631 
-0.0510 -o.oo841 -0.00753- -0.00742 -0.01013 -0.01990 -0.03189 
-o.o656 -0.01275 -o.o118o -0.01172 -o.011478 -o.0251o -0.03655 
-0.0833 -0.01704 -o.o±6ao -o.o1611 -0.01947 -0.02978 -0.03918 
-0.1047 -0.02000 -0.01918 -0.01935 -0.02296 -0.03263 -0.03883 
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V - VEL (CoNTOiMr~) 

z/o 0.0000 0.0047 0.0121 0.0234 o.o4o8 

0.1047 0.03993 -o.o1614 0.01755 0.04487 0:05134 
00833 0.03995 -0.02577 0.01439 0.04417 0.05171 
0.0656 0.03864 -0.03358 0.01047 0.04273 0.05183 
0.0510 0.03495 -0.03880 o.oo544 .0.03999 0.05120 

0.o390 0.02852 -o.o414± o.ooo16 0.03617 o.o4969 
0.0293 0.02049 -o.o416 -0.00424 0-03206 o.04771 
0.0214 0.02206 -0.03857 -0.00673 0.02873 0.04594 
0.0151 0.00389 -0.03395 0.00669 0.02704 0.04504 
0.0100 -0.00362 -o.o28o6 -0.00402 .002734 0.04528 
0.0059 -0.00898 -o.o2o81 0.00129 0.02966 o.o4664 
0.0026 0.00000 -0.00244 0.01307 0.03429 o.04821 
0.0000 0.00000 0.00776 0.02039 0.03772 0.o4964 

-0.0026 0.00000 0.01771 0.02773 0.04123 0.05113 
-0.0059" 0.01403 0.03363 0.03836 0.04613_ 0.05328 
-0.0100 0.00881 O.03887 0.04590 0.05146 0.05627 
-0.0151 0.O 11 o.o4292t 0.05205 0.05595 0.05894 
-0.021L -o.oo4l4 d-.04704 0.05762 o.o6on o.o6152 
-0.0293 -0.00950 o.05148 0.06282 o.06 1o 0.06403 
-0.0390 -o.o41o 0,05537- 0.06706 0.06720 o.o6614 
-0.0510 -001771 0M05773 0.o6993 0.06955 0.06780 

-O.o656 -0.01966 0.05798 0.07122 - 0.07106 o.o69o8 
-o.o833 -0.01925 0.05610 0.07091 0.07174 o.06999 
-0.1047 -o.061641 0.05265 O.06922 0.07166 0.67052, 
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W - VEL 

= -o.1042 -o.o667 -o.0408 -0.0234 -o.0121 -o.oo47 

0.1o47 -0.0826 '-0.0927 -0.1000 -0.io46 -0.1072 -o.io86 
0.0833 -o.o871 -0.0974 -o.l048 -0.1093 -0.1115 -0.1130 
o.o656 -0.0815 -0.0901 -0.0962 -0.0999 -0.1015 -0.1037 
0.0510 -0.0633 -0.0685 -0.0722 -0.0745 -0.0759 -0.0803 
0.0390 -0.0406 -0.0421 -0.0435 -o.o444 -0.0461 -0.0526 
0.0293 -0.0180 -0.0163 -0.0155 -0.0151 -0.0172 -0.0246 
0.0214 0.0030 0.0075 0.0104 0.0120 0.0100 0.0024 
0.0151 0.0233 0.0305 0.0356 0.0383 0.0367 0.0294 
0.0100 0.0469 0.0574 o.o646 0.0687 0.0678 0.0605 
0.0059 0.0803 0.0953 0.1056 0.1113 O.1112 0.1034 
0.0026 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
-0.0026 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
-0.0059 0.0963 o.1119 0.1220 0.1278 0.1288 0.1224 
-0.0100 o.o748 o.o864 o.0942 0.0988 0.1001 0.0959 
-0.0151 o.o671 o.o762 o.o824 0.o861 0.0873 o.o846 
-0.0214 o.0657 0.0730 0.0779 o.08o8 0.o818 0.0800 
-0.0293 0.0639 0.o695 0.0730 0.0751 0.0759 0.0745 
-0.0390 0.0590 0.o623 o.o644 o.o655 o.o658 o.0646 
-0.0510 0.0507 0.0517 0.0521 0.0521 0.0520 0.0510 
-o.o656 0.0399 0.0387 0.0375 0.0366 0.036o 0.0351 
-0.0833 0.0284 0.0254 0.0230 0.0213 0.0201 0.0192 
-O.:O47 o.o184 o.0141 0.0107 o.oo84 o.0069 0.0058 

REPRO)DUCMILTy OF THE 
ORIGNAL PAGE IS P0o0p 
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W - VEL (coin'D) 

Z/c= 0.0000 3.o047 0.0121 0.0234 o.o4o8 

Y/c 

0.1047 -0.1093 -0.1102 -0.1093 -0.1088 -0.1086 

0.0833 -o.1144 -0.1157 -0.1158 -o.1163 -o.1174 
o.o656 -o.1o68 -o.lo96 -0.1111 -0.1136 -0.1170 
0.0510 -0.0857 -0.0909 -0.0937 -0.0932 -0.1047 
0.0390 -0.0597 -0.0670 -O.0698 -0.0755 -0.0835 
0.0293 -0.0327 -o.o4i7 -0.0430 -0.0483 -o.o566 
0.o214 -0.0063 -0.0171 -0.0159 -0.0195 -0.0266 

0.0151 0.0195 0.0057 0.0107 0.0098 0.0051 
0.0100 o.o484 0.0283 0.0389 0.0423 0.0409 

0.0059 0.0866 0.0543 0.074o 0.0838 o.o86o 
0.0026 0.0000 -0.0001 0.0531 0.0800 0.0923 

0.0000 0.0000 0.0002 0.0519 0.0792 0.0930 

-0.0026 0.0000 0.0005 0.0527 0.0809 0.0959 

-0.0059 0.1063 0.0750 0.0962 0.1109 0.1190 
-0.0100 0.0857 0.0676 0.0813 0.0920 0.0995 
-0.0151 0.0780 0.0676 0.0774 0.086o 0.0927 

-0.0214 0.0756 0.0692 0.0766 0.0835 0.0890 

-0.0293 0.0713 0.0670 0.0725 0.0774 0.0808 

-0.0390 0.0622 0.0592 0.0628 0.0657 o.o668 
-0.0510 0.0492 0.0471 0.0491 0.0503 0.0499 

-0.0656 0.0339 0.0326 0.0336 0.0338 0 0329 

-0.0833 0.0185 0.0176 0.0183 0.0181 o.oi74 

-o.lo47 0.0053 0.0044 0.0052 0.0050 o.oo44 
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Figure 1. - Schematic of vortex formation at tip of wing with finite thickness. 
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Figure 2. - Schematic of vortex formation at tip of thin flat plate 
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Figure 3. - Geometry of encounter of semi-infinite wing with asinusoidal gust 
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Figure 4. - Geometry of encounter of infinite wing with gust wave fronts 
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Figure 29. - Viscous flow calculation. 
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