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ABSTRACT

i

d

The cross-spectra of temperature and ozone mass mixing ratio at 42 km
I	 ,^

(2 mb) and 28 km (20 mb) have been determined for austral spring (1971)
9	 ^^

and summer (1971-2) over Christchurch, New Zealand (44 S, 172 E). The	 -y

sources of data are the SCR and BUV experiments on Nimbus 4. The
t

observed covariances are compared with a model in which the temperature

i

	

	 and ozone perturbations are forced by an upward-propagating planetary

wave. The agreement between the observations and the model is reason-

able. It is suggested that this cross-spectral method permits an estimate

of the meridional gradient of ozone mass mixing ratio from measurements

of the vertical profile of ozone mass mixing ratio at one location, supported

by temperature profiles from at least two locations (to determine the

meridional temperature gradient).
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1. Introduction

The availability of global measurements of stratospheric temperature and

ozone from satellites is increasing our knowledge of the horizontal, vertical and

temporal distribution of ozone. However, balloon-borne instrumentation is still

a major source of information, particularly for the period before extensive

satellite observations became available. It is, therefore, interesting to consider

how much information on atmospheric motion. can be deduced from the various

time series of balloon observations.

The association between ozone and atmospheric temperature is commonly

described in terms of eddy transport coefficients, with the implication that

dynamic processes with time scales less than several months, are not measured

directly and are only represented by their integrated effects. The balloon

observations are usually made daily so that motion with periods of two or more

days can be satisfactorily measured. It is, therefore, possible to study the ozone

transport on quite short time scales and, hence, obtain an insight into the dy-

namical processes contributing to the eddy transport coefficients.

The temperature and the ozone concentration at a fixed point are influenced

considerably by advection of horizontal gradients so that information on these

gradients is essential. Although the relevant temperature gradients can usually

be obtained from a group of radiosonde stations, the ozone mixing ratio gradient

is seldom available.
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This investigation simulates a set of balloon observations by using the

satellite measurements of temperature and ozone mixing ratio at a fixed geo-

graphic location (Christchurch, New Zealand, 44 S, 172 E). The cross spectrum

of the daily temperature and ozone mixing ratio measurements are calculated

for austral spring (1971) and summer (1971-2). Suitable ozone data for other

seasons were not available at the time of this study. The cross spectrum is

then compared with that calculated from a simple model based on specified

planetary wave modes. The observed seasonal mean values were used to define

the atmospheric properties for the model. An attempt was then made to decide

whether the meridional mixing ratio gradient could be deduced from the phase

spectrum of the temperature-ozone cross -spectra.

2. The Observations

Temperature. Temperature information was taken from the Nimbus 4 SCR

(Barnett et al. , 1972) radiance tapes available from the Department of Atmo-

spheric Physics, University of Oxford. The black-body equivalent of the radiance

is used, i . e. the temperature of a black body which would emit the same radiance

at the same wavelength. The Nimbus 4 SCR weighting functions for the two top

channels have maxima near 42 km (2 mb) and 28 km (20 mb). The equivalent

temperatures are weighted means over altitude regions about 20 km thick.

The Nimbus 4 satellite is sun-synchronous so that the observations are

made near local noon and local midnight. The data used in the analysis was

2
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obtained from the "gridded" tapes where all the radiances for one day have been

reduced to a latitude-longitude grid, the grid points being 4° apart in latitude

and 10° apart in longitude. The equivalent temperatures were obtained from

daily radiances at the grid point (44 S, 172 E) closest to Christchurch, New

Zealand. The mean meridional temperature gradient was calculated from the

difference between the grid points (40 S, 172 E) and (48 S, 172 E).

Ozone. The ozone data was obtained from the Nimbus 4 BUV (Heath et al.,

1973) results available at NASA/Goddard Space Flight Center. Vertical profiles

of ozone partial pressure were given at successive locations along orbits pass-

ing near Christchurch. This BUV data is to be considered as a preliminary

estimate until some inconsistencies in the data have been resolved (Krueger

et al., 1973).

As the SCR weighting functions peak at 	 km (2 mb) and 28 km (20 mb), the

ozone partial pressures for these heights were selected. Themean value and

the meridional gradient were obtained by fitting a least squares plane to the data

from a minimum of two orbits, one on either side of Christchurch. On the few

occasions when only one orbit's data was available for a given day, the mean

value and the gradient were derived from a least squares line. In this latter.

case there is the possibility of contamination due to zonal temperature gradients.

Only data points taken within 3300 km of Christchurch were used. The ozone

mass mixing ratio was derived as the ratio of ozone partial pressure to the total

air pressure, multiplied by the ratio of the respective molecular weights (1.00).

3
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Vertical Resolution. 	 The vertical resolution of the satellite experiments

is limited by the width of the weighting functions. The half-weight width of the

weighting functions for the upper two Nimbus 4 SCR channels have been estimated

from the published (Barnett et al., 1972) weighting function graphs to be 20 km.
1

Similarly the BUV half-weight widths are 17-18 km for the upper five channels

(Heath et al., 1973). 	 These weighting functions will only slightly attenuate the

responsb to a wave with a vertical wavelength whose half-wavelength is close to

the half-weight width, i.e. a wave whose wavelength is 35-40 km. Waves of
i

i

shorter vertical wavelengths will be resolved progressively less clearly by the

satellite sensors. 	 This is obviously a pessimistic estimate of the vertical reso-

lution as the results from 42 and 28 km appear to be quite independent.

9

fit

3.	 The Observed Temperature-Ozone Covariance

The spectral analysis was performed by calculating the auto- and cross-

correlation functions of the appropriate pairs of time series, applying a Parzen

lag window, and then taking the Fourier transforms to give the auto- and cross- j
t

spectra (Jenkins and Watts, 1969).

The occasional "wild" point was removed from the temperature and ozone
-A

data by rejecting all observations differing from the mean values by more than
l

three sample standard deviations. The gaps, due to rejected observations and

missing data, were filled by linear interpolation between values at either end of

r$
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the gap. The amount of missing data, including "wild" points, was 17% for
{

temperatures and 31% for ozone.

The temperature data is derived from a global estimate for one day, Green-

wich time, while the ozone data is obtained from individual orbit p and there-

fore corresponds to local noon at 172 E. There is, therefore, an effective time

shift of approximately 12 hours between the temperature and ozone time series.

An attempt was made to remove this shift by linear interpolation between suc-

cessive temperature observations. Any changes in the spectra were masked by-

the large fluctuations introduced in the coherence and phase spectra at the

higher frequencies. This presumably occurred because the linear interpolation

is equivalent to a two-point equally weighted running mean with its attendant

sideband problems in the frequency domain. Consequently, the data has not been

corrected for this 12 hour shift. It causes a phase displacement which is linear

with frequency, 00 at 0 cycles per day (cpd) and -90 0 at 0. 5 cpd. At the frequen-

cies of interest in this study, (0.2 cpd and less), the phase shift is comparable

with the phase confidence limits. Much of the subsequent discussion is based

on the limiting value of phase as the frequency tends to zero, so the phase shift

will not be significant.

The correlation functions were calculated for a maximum lag of 20 giving

a maximum resolvable period of 40 days - a minimum resolvable frequency of

0. 025 cpd.

The 1971 austral spring transition is included in the data selected for anal-

ysis. During this period the data will not be statistically stationary so that some

5
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appropriate criterion was needed to distinguish spring from summer. rortunately,

an analysis of southern hemisphere temperature waves based on Nimbus 4 data

was available (Harwood, 1975). Harwood found that by mid-October, 1971, there

was a reduction in the amplitude of wavenumber 2 at 2 mb and a cessation of its

eastward phase progression. The phase velocity of wavenumber 1 was eastward

before mid-October, and westward after that time. Reversals in the meridional

temperature gradient occurred at 2 mb about 28 September and at 10 mb about

23 October. Accordingly 25 October was selected as a date by which the summer

circulation was established in the stratosphere. The summer data is thus likely

to be stationary although the spring data will not be. rebruary 29, 1972, was

selected as the end of summer. The division into spring and summer was made

after the gap-filling procedure was completed.

4. Planetary-Wave Perturbation Temperature and Velocity

The observed pbuce spectrum (see section 0) often appears to have a fairly

simple behavior - a phase of 0° over a wide range of frequencies, or 180° at low

frequencies with a drift to 0° as the frequency increases.

A simple model has been derived to see whether a comparable phase spec-
'

trum is produced by a planetary wave mode with a given zonal wave number.

A simple harmonic planetary wave is assumed to propagate vertically upwards

through an atmosphere whose temperature and wind speed do not change with
'a

altitude. The ozone content is defined by the mass mixing ratio. The mean s

6
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mixing ratio is assumed to vary in the vertical and north-south directions (:JUL

not in the east-west direction) to allow for vertical and meridional advection.

The finite temperature dependence of the photochemical equilibrium ozone

concentration at 2 mb (Barnett, Houghton and Pyle, 1975) also requires some

allowance for meridional temperature advection. A finite meridional tempera-

ture gradient is therefore included, although the mean zonal wind is assumed to

be constant at all heights. This blatant contradiction of the thermal wind equa-

tion is necessary to avoid using Liouville-Green ("WKB") or numerical methods

to cope with the variation of wave phase speed in the (vertical) direction of

propagation which would result from a vertical variation of wind speed.

The physical variables are represented by the following symbols:

A I = amplitude of the perturbation stream function

B = temperature dependence of equilibrium ozone concentration

c = zonal phase velocity of the wave

fa = Coriolis parameter for 45 S

H = scale height

kj,m = eastward, northward and upward wave numbers (radians m'1)

N = buoyancy frequency

P = atmospheric constant (211N 2 /f 0 )

Q = ratio of horizontal to vertical advection terms

R = gas constant for air

R,, = radius of the earth

'd
t

) e
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TO = mean temperature

T' = wave perturbation temperature

T 1 = total perturbation temperature

u O = mean zonal wind speed

u  ,v 1 ,w, = eastward, northward and upward wave perturbation velocity components

x,y,z	 = eastward, northward and upward displacement coordinates

X = ozone mass mixing ratio

X O ,X',X1 = mean, perturbation and total perturbation mass mixing ratios

p = latitude dependence of Coriolis parameter

a
Y - az

77 = temperature coefficient of equilibrium ozone mass mixing ratio

0 = cross-spectral phase

iG' = wave perturbation stream function

w = wave angular frequency

In mathematical form the assumptions of the model are:

auO aTO -	 aXO -

ax - 0	 ax - 0	 ax - 0

aaO au o —	 IUO

at — °	 ay — °	 az = o

aTO = 
0	 aT= 0ac	 az

s
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The wave properties can be deduced by substituting the above assumptions

in the equation for the quasi -geostrophic perturbation potential vorticity on a

mid-latitude p-plane in the absence of heating and the equation for the thermo-

dynamic balance (Charney 1973, Holton 1975).

a +u
o a ) [

02,p1+(fo/N2)

\ a22	

1 a^f +p any = 
0	

(1]ac	 ax	 aZ	 a aZ	 aZ
J.

\at + uo Bx ! as + 
(N2 /fo) Vd ° 0	 (2)

We assume the perturbation stream function appropriate to a simple

harmonic plane wave

1P  = Al exp [i(kx+Qy+mz —wt)+z/2H] 	 (3)

It is convenient to define

y = im + 1/2H

so that

az

Substituting (3) and (4) in (1) we obtain

{(w — kuo) ((k2 +k2)+(fo/N2) (m2 + 1/4112 )) +pk} 0' = 0	 (5)

9
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Eq. (5) has a non-trivial solution if
i

co = kuc —/3k/[(k 2 +g2) +(fa/NZ) (111 2 + 1/4H2 )1	 (6)

Eq. (6) is the required dispersion equation from which we derive the horizontal
3

phase velocity

c = w/k = uo — A/[(k2 +g2) +(fo /NZ) (m'- + 1/41-12 )l 	(7)
i

The vertical wave number is given by

1112 = (N2 i`2 ) [PI(up — c) — (k2 
+ g2 )1 — 1/41-12	(8)

a
The vertical group velocity is

z

20f20 N2 mk/[N2 (k2 +22 ) + f2O (m 2 +1/4112 )1	 (9)	 i

The vertical group velocity gives the appropriate sign for the vertical

wave number (m) in (8). It will be assumed that energy is propagating upwards

through the region; the vertical (m) and zonal (k) wave numbers must then have

the same sign.

From the stream function we obtain the horizontal perturbation velocity
F

	components and the perturbation temperature:	 "s

a

v'	 ix y'	 (11)	 1
rr

10



T' - (fo/R)'z' (12)

= tyfp /R) Vl'

From the thermodynamic equation (2) and from (4) we have the vertical

perturbation velocity

w' = i(7fo /NZ ) (w — kuo)	 (13)

= i(R/NZ ) (co —kuo )T'	 (14)

Eqs. (4), (11), and (12) give the relationship between the meridional per-

turbation velocity and the perturbation temperature

V = i(kR/yfo)T'.	 (15)

5. A Simple Model For Temperatrre-Ozone Covariance

The rate of change of ozone mass mixing ratio is

dxax	 ,ax	 ,ax
ac = ac s °ay +w aZ 	 (16)

Substituting (14) and (15) in (16) we have

T
X
 aX +^1ay /\yo/T/+i1az)(NZ^(w—kuo)T 	

(17)

Eq. (17) contains the basic principle of this analysis — that the phase difference

between the ozone and temperature variations depends on a combination of atmo-

spheric and wave parameters. It should therefore be possible to deduce some

atmospheric parameters from the frequency dependence of the phase difference

11
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between temperature and ozone perturbations, supported by assumptions or

measurements of the wave parameters.

The time-dependent term in (16) and (17) would be zero if the ozone mass

mixing ratio was a conservative property of the atmosphere. Even if photo-

chemical equilibrium is assumed there still remains the temperature dependence

of the equilibrium mixing ratio. From the discussion by Barnett, Houghton and

Pyle (1975) on the temperature dependence of the ozone concentration near the

stratopause it is estimated that near 2 mb (42 km) the mixing ratio will behave

like exp (B/T), where B 1000 K. Consequently, the temperature coefficient of

the ozone mass mixing ratio is

I ax _

77 = X aT - -h/T2

Hence

(18)

^X = aX (IT
at aT at

= r! X aT
Let the mixing ratio be

(19)

I

X = X 0 + X I

where

X t — exp (—iwt)

12
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^t = -iw('yfo/12)
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From (12)

a

i
Therefore r	 i

dX

i	

dt = —iwX t 	(81)	
i

I  	 .4
'	 I

}	 Combining (11), (13), (16), (19), (20) and (21), and neglecting the spatial gradient
i

i
of the perturbation mixing ratio, we have

—iwX1 = T7Xp dT + 
aayo 

(iky') +i (yfp /NZ ) (w — kuo)O I	 (22)
n'	 S
a

The time-dependent temperature term will contain a direct contribution from

the wave perturbation temperature and another from the advective heating. The
j

temperature is

	

	 t

T=To+Tt

where {

T	 exp (—iwt)	 t
1	 j

i

Therefore
I

j

dT _ 3T' aT0	 (23)

dt	 at 
+v 

ay



W

1

_ -iw(yfp/R)U'+i by k^'

and

1

i

T 1 = ('yfp	
aT

	

/ R)Y -(k/w) T	
(25)	 i

ay

Substituting (24) in (22) we obtain

(	 1
—iwX 1 = 17Xp —iwry(fp /R) G' + i 

aT
ay ko' + i 

aXay ky' + iy(fp /N'-) (w — ku p )y'

	

	 LL
i

so that

X, _ [y,X̂+(XS +X is )/w y+Xv,(up—c)/wly'	 (26)

where
y

Xa _ J?Xp(fp/R)	 i
3.

aXp

x tl	 -k ay

TOXS = -k ^Xp by
I	 a

aX
Xv = k(fp/NZ ) a^°

14
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These four terms represent the changes in ozone mass mixing ratio due to,

respectively, the direct temperature change from wave perturbation, horizontal

advection of the mixing ratio gradient, the temperature change from horizontal

temperature advection, and vertical advection of the mixing ratio gradient,

Similarly the temperature change (25) is the sum of two terms

T, = y'r V1' +(Th /w)O'	 (27)

where T  = fe/R, a direct perturbation term and Th = -k 8To/ay, an advec-

tive term.

The covariance of temperature and mixing ratio is then

C(T, X, w) = T i X1

(28)
= [YTa + T I, /wl [Y*Xa +(XS+Xl,)/w+Y*X,,(uo —c)/wl

The perturbations, Tl and X, , are simple harmonic terms so that the coherence

spectrum is of little interest, being perfect (1, 0) at all frequencies, however the

phase spectrum (0(w)) does contain information,

O(w) = tan - I (C i (T, X, w)/C, (T, X, w))	 (29)

1

1

r

I

where

C = real part of C(T, X, co)

Ci = imaginary part of C(T, X,w).

15
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In a homogeneous atmosphere

3x	 3x

a - 0	 and	 â = 03 

and the numerator of (28) is zero. The sign of the denominator depends only on

the sign of r;, which is a negative number. Consequently, (fi(w) =180% The

correlation coefficient between the two simple harmonic variables is then

cos (O(w) ) = -1, 0,

Wherever 0— 90, the correlation coefficient will be very small, even if the

coherence is perfect. Consequently, it is inadvisable to use the correlation

coefficient to express the relationship between quasi-periodic variables; an

insignificant correlation coefficient does not necessarily imply a lack of

dependence — it may merely indicate a phase difference close to 900.

0. Comparison of the Model and Observed Covariances

In relating the model to observed covariances, the number of free param-

eters has been minimized by taldng the mean temperature and the mean mass

mixing ratio and their respective gradients from the data itself. The values

used are given in Table 1. Where magnitudes did not differ greatly from each

other, a representative value was selected to simplify comparsions. Ibr

Instance, the summer meridional temperature gradients at 2 and 20 mb were

-2. 5 and +3. 0 K over 100 of latitude, while the 20 mb spring gradient was +1. 3K

over 100 of latitude. A magnitude of 2 K over 10 0 of latitude was therefore

chosen, with the appropriate signs, for each of these values.

16
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The 2 mb observations represent conditions of approximate photochemical

equilibriuu, with a known temperature dependence of the ozone concentration

(Barnett, Boughton and Pyle, 1975). Conversely, the equilibrium time at 20 mb

is of the order of months (Nicolet, 1975) so that on the time scales relevant

here, only advective changes need be considered. This is achieved by setting to

zero the value of the temperature coefficient of the ozone mass mixing ratio at

20 mb.

The selection of suitable zonal winds is also difficult as there is consider-

able variation in the spring, and some variation during the four summer months.

Calculations with a wide range of model parameters confirmed that the dominant

effect of the wind is to determine when a given wave mode becomes evanescent,

through the (u0 -c) term in (8). The wind speed also appears in the (uo -c) term

of (28). As the wind speed is always associated with wave number and with the

independent variable w in

(uo — c) = (ua — w/k),

it is possible to qualitatively estimate the effect of a wind speed change from

the consequent changes in co and k necessary to maintain a given value of (ue-c).

The model assumes a typical wind speed of 20 m sec- 1 , the direction being

eastward in the spring and westward in the summer at both 2 and 20 mb.

In this preliminary study, no observational estimate of the meridional wave

number was sought, so a value of zero was selected, making this model

17



consistent with that of Hirota (1971), 	 Dolton (1975) discusses the problems of

meridional scale and polar boundary values in the R -plane approximation,

The observed 2 mb spring phase spectrum (Fig. 1) tends to a limiting value
f

_	 of about 215 0 at low frequencies.	 This behavior is consistent with the model and i

)Suggests that the limiting phase angle (as the frequency decreases to zero) may

have some significance, despite the fact that the periods greater than 40 days
^ ^	

t

are not directly observable. 	 From (29) it can be shown that
i
I

Limiit O(w)=tail2meN/((PQ /^^a)— i) 	 (30
J

'
where

4

me = Limit in (equation 8)

1
P	 = 2HN2/fc

o	 a
(	 l	 r

a^ e/
lQ	

= \^ ay + Xo yc//\ XO

The product PQ is independent of the wave number and comprises a constant P
y

t	 9

(-C, x 104 m sec I in this model) and a dimensionless number (Q) which is the

ratio of the horizontal to vertical advection terms.

The limiting vertical wave number (m o ) does depend on the zonal wave

number through (8).	 However, the consequent variation in phase is not great,
!y
'I

as shown in Table 2,

7
t

t	
18



Eq. (30) shows that the limiting phase is controlled by the ratio (Q) of

horizontal to vertical advection terms. For instance, if there is no vertical

ozone gradient, the Limiting phase angle will be 0 or 180 , depending on the

relative magnitudes of the horizontal temperature and ozone advection terms.

This is in agreement with the phase difference between meridional displacement

and perturbation temperature calculated from (15). Around 20 mb and below, Q

Will simply be the ratio of horizontal to vertical ozone gradients as the equilib-

rium time is so long.

The summer phase spectrum at 2 mb (Fig. 2) is not significantly different

from 1800 for frequencies less than 0.15 cpd. Thereafter, the phase decreases,

but the phase fluctuations increase as the coherence decreases. This behavior

is also consistent with the model, although the 180 0 phase angle there corresponds

to the evanescent model.

Hirota (1975) reported a westward moving vertically propagating wave

number 1 mode in the southern hemisphere for summer 1972-3. ' 1-d. is con-

sistent with the trend in Harwood's (1975) analysis for October 1971. Hirota

also reported eastward moving waves with wave numbers 2 and 3 and ,suggested

that these might be evanescent modes as (uo -c) was negative. The phase speed

of the westward mode was -28 m sec 1 at 30 S and -10 m sec-1 at 80 S. It

would therefore be about -22 m sec-1 at 44 S but the mean zonal wind is not

given, so no comparison can be made with this model, but if the wind were coin-

parable with that assumed for this model, the wave mode would be close to evanes-

cence (and therefore close to the maximum response to a given amplitude of lower

19
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boundary forcing — see Hirota, 1971). However, the experimentally observed

low frequency phase is best explained by an evanescent mode in the model as the

propagating modes have phase differences of about 90 0 near their low frequency

limit.

The 20 mb spring phase spectrum (Fig. 3) is not significantly different at

low frequencies from that predicted by the model. The 20 mb summer phase

spectrum is not considered, as the coherence spectrum nowhere reached the 951%

significance level, presumably because the westward winds suppressed propaga-

tion.

7. Conclusion

In principle, then, ozone measurements by balloon from one location could

provide an estimate of the meridional ozone gradient, provided there are enough

temperature observations to determine the meridional temperature gradient. 	 j

4
i

The feasibility of this approach will need more extensive analysis of (30) with 	 k

various gradients and due allowance for the confidence limits of observable

phase. The latter depend in turn on the coherence spectrum. The coherence and

phase are amplitude-independent and give no indication of the amount of energy

at the various frequencies; the cross-amplitude spectrum is therefore essential

to any discussion of relative energy contributions of the various wave modes.

The model will then require modification to include the dependence of forced

amplitude on the vertical wave number (Hirota, 1971) and consequent assumptions

N
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about the spatial and temporal spectra of the forcing perturbation at the lower

boundary.

It is also necessary to confirm the assumption that the temperature and

ozone perturbations are due to the sane planetary wave. This study must await

the availability of ozone data for several seasons around a latitude circle.

The summer phase spectra and Hirota's (1975) results imply that evanes-

cent modes need to be considered more closely; this will require a more care-

ful examination of boundary conditions and the direction of energy propagation

than has been assumed here for propagating modes.

A further and highly desirable extension of this study is to see whether

the principle exemplified by (30) can be extended to total ozone measurements

made by a ground-based u. v. spectrophotometer at one location.
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.	 \

Krueger, &e, Heath, D. F. and Mateer,RL.,BG: Variations 5the	 2}

|stratospheric ozone field inferred from Nimbus satelli@observations.	 •

Pure and #A a9&s. , 106-108 1254-1263.

	

	 \
 g

m^^ M., g5: Stratospheric ozone an introduction @Gray I ' 	 }

a95a ,13, 593-636.	 j

) 	 »j

!

|	 ^^	 \

^	 ;	 4

,

/	 2

\	 ^	 ^
z
w^.^	 .	 .	 .	 . 	 ..	 ...	 ...	 .	 ..	 ...	 .	 ...^.



I

Table 1

Observed Mean Values Used as Model Parameters

Height Season
PTO

ay

axo

ay

axo

3z

42 kin (2 nib) spring -6 K/ 100 lat. +10-12 m"1 -10'9 ni'1

42 km (2 mb) summer -2 -10.13 -10'9

28 km (20 mb) spring +2 +2 X 10 "12 -3 X l0"10

28 km (20 nib) summer -2 +10-13 -3 X 10 -10

1
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Table 2

Low Frequency Limit Of Model Phase Spectrum in Siring

Height
Zonal Wave Number

-3 -2 -1 -1 +2 +3

42 knr (2 mb) 1570 1480 1440 2160 2120 2030

28 km (20 mb) 3560 3540 3530 7° 60 4°

Positive zonal wave numbers indicate eastward-moving waves; negative zonal wave
numbers indicate westward-moving waves.
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