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Chapter 1

INTRODUCTION

1.1 General Background

The concept of an Earth and Ocean Model, in itself, is

nothing new. Every development program involving missiles,

satellites, geodesy, etc., must take into account one or more

geophysical influences, each of which must be mathematically

modeled. The degrees to which these influences are considered

and related within the model are variable but important

factors.

Most models ancillary to development programs have been

restricted in scope and generally confined to one-time appli-

cation. Traditionally, this is a result of limitations in

accuracy and scope of measuring systems and consequent inabil-

ities to isolate interrelated geophysical phenomena. It has

long been known in theory that separated points on the Earth's

surface were in relative oscillatory motion, but these motions

were in the decimeter range and, from the viewpoint of measur-

ing potential, could not be discriminated from the "solid"

Earth.

The advent of artificial satellites and of sophistication

in electromagnetic measuring devices and transportable time

standards afforded the potential and imminent realization of

intercontinental geodetic measurements to precisions in the

centimeter range. This was formally recognized and documented



at a seminar conducted in August 1969. The report (Kaula

1970)) defined the existing and anticipated State-of-the-Art,

and was a basis for an Earth and Ocean Physics Application

Program (EOPAP).

The EOPAP as described in the contract has been devel-

oped to study and utilize the discipline of Earth dynamics

for the benefit of science and mankind. Earth dynamics

include solid-Earth and ocean dynamics, which are concerned

with physical motions, and distortions of the Earth and phys-

ical state of the ocean. Solid-Earth dynamics include forces

responsible for earthquakes, tidal waves, volcanic eruptions,

mineral differentiation and mountain building. Ocean dynamics

embraces ocean circulation and physical state of the ocean

surface. A thorough understanding of Earth dynamics is funda-

mental to intelligent management of the Earth and its impact

on our scientific knowledge and application. Progress in

solving the problems of environmental management and allevia-

tion of natural disasters will be quite limited until a better

understanding has been achieved of physical mechanisms that

respond to these forces. Earth and ocean dynamics are enor-

mously complex, involving important interactions between

components in different parts of the globe, and in the atmo-

sphere, oceans and solid Earth. This precludes any probabil-

ity of finding solutions in terms of simple theoretical des-

criptions. Determination of the probability of catastrophic

natural events will almost certainly have to be based on

strongly empirical numerical computer models that require,



as operational inputs, very large numbers of current synoptic

data. This computer model was intended to identify the need

and mission requirements for flight systems to interface with

the user's requirements; to interrelate various geophysical

and oceanographical phenomena, and to systematically catalog

and store data for ready recall and application. The tasks

of developing and applying a satellite system for a World-

wide network of data points will be impossible without such

a method of correlating and analyzing the collected informa-

tion.

1.2 Objectives and Scope

The major objective of this study was to identify and

formulate an Earth and Ocean Model (EOM) for use in the EOPAP

and to develop a system that would supply information to the

user for applying physical data gathered on a World-wide

basis. It was intended that this would lead to the develop-

ment of theoretical and empirical formulae which could be used

to determine physical forces and influences of geophysical and

oceanographical phenomena.

The EOM is effectively a modular structured system of

computer programs utilizing Earth and ocean dynamical data

keyed to finitely defined parameters. The model is an assem-

blage of mathematical algorithms with an inherent capability

of maturation with progressive improvements in observational

data frequencies, accuracies and scopes. The programs provide

facilities for accepting a broad spectrum of data, not only



for evaluation of equation coefficients but for incidental

storage and retrieval for later program extensions. To .

insure a simple yet practical method for updating geophys-

ical constants and parameters, the values which were selected

are listed in Appendix A and, for the computations, are iso-

lated in a block data subroutine. This provides a ready means

for positive, one-point entry for updating program parameters.

The main program interfaces data input with appropriate module

subprograms and controls interrelated routines.

It was originally intended that the EOM would include

the following geophysical modules:

a. Plate tectonics;

b. Earth rotation and polar motions;

c. Ocean currents;

d. Ocean tides;

e. Earth tides;

f. Magnetic fields;

g. Gravity;

h. Atmospheric motion;

i. Sea state; however, during the investigation

it was established that ocean currents and sea states were not

amenable to practical modeling - the former, since there

•appeared to be considerable disagreement in the literature

(and between oceanographers) of critical transport phenomena,

and the latter, because of a real-time dependency on short-

term variations in the atmospheric mechanism. Required

computing facilities would be far beyond the scope of the EOM



program.l Atmospheric motion was restricted to its effect on

Earth rotation and polar motion.2

A geodetic system where relative coordinates of widely

separated points on the non-rigid, deformable Earth's surface

are instantaneously determined to centimeter accuracies

requires not only a recoverable and stable reference system

but also a means for identifying the short- as well as long-

period variations from the equilibrium Earth figure. The

requirement for the former was the principal concern at an

International colloquium on reference coordinate systems.3

The following keynote was presented by Lundquist (1974):

"The current need for more precisely defined reference

coordinate systems arises for geodynamics because the Earth

can certainly not be treated as a rigid body when measurement

uncertainties reach the few centimeter scale or its angular

equivalent. At least two coordinate systems seem to be

required. The first is a system defined in space relative to

appropriate astronomical objects. This system should approx-

1 The matter of ocean currents and sea states was discussed
with the Director, Space Sciences Lab., MSFC, and the COR.
It was decided to delete the ocean current and sea state
modules.

2 Atmospheric motion is determined by processing continuously
available meteorological data. Global limitations (political
and physical) preclude proper distribution and frequency of
observation stations. This radically limits the effective-
ness of atmospheric motion determinations for other than
localized treatment, and are consequently unsuitable for the
EOM application; however, the synoptic effects of atmospheric
motion are reflected in Earth rotation variation and polar
motion and can be evaluated from statistical analysis of these
effects. (Approved at meeting described in l, above.)

3 International Colloquium on Reference Coordinate Systems
for Earth Dynamics, Torun, Poland, August 1974.



imate an inertial reference frame, or be accurately related

to such a reference, because only such a coordinate system is

suitable for ultimately expressing the dynamical equations of

motion for the Earth. The second required coordinate system

must be associated with the non-rigid Earth in some well-

defined way such that the rotational motions of the whole

Earth are meaningfully represented by the transformation pa-

rameters relating the Earth system to the space-inertial

system. The Earth system should be defined so that the dynam-

ical equations for relative motions of the various internal

mechanical components of the Earth and accurate measurements

of these motions are conveniently expressed in this system."

It was accordingly decided to include a precession

module as an extension of the polar motion module and to

treat the Earth rotation in a separate module. The modules

which were actually modeled and their program names are as

follows:

a. Plate tectonics (EOMPTA)

b. Earth rotation (EOMERA)

c. Polar wobble (EOMPWA)

d. Precession (EOMPMA)

e. Ocean tides (EOMOTA)

f. Earth tides (EOMETA)

g. Magnetic fields (EOMMFA)

h. Gravity (EOMGMA)



The rather large excursions and somewhat periodic secular

motion of the Chandler polar path was investigated in some

detail. It was demonstrated that both could be attributed to

internal Earth's mass redistributions marked by large earth-

quakes.

1.3 Outline of Report

Geophysical considerations relating to development of

the EOM modules are described in Chapter 2; assumptions,

simplifications, and acceptance of specific theories are

discussed in sufficient detail to define and validate adopted

approaches and associated provisions. Chapter 3 contains

mathematical and physical details involved with assembling

the individual EOM modules, as well as limitations and poten-

tial for further development. Chapter 4 presents UNIVAC 1108

system FORTRAN V programming details for the EOM modules to

include a comprehensive indexing of computer materials.

Applications of the EOM and factors bearing on future exten-

sion are discussed in Chapter 5, including the investigation

of the power source for the polar wobble mechanism. Chapter

6 provides a summary of the EOM program and appropriate recom-

mendations and conclusions.



Chapter 2

GEOPHYSICAL CONSIDERATIONS AND CONCEPTS

2.1 General

The Earth's interior has been and still is a largely

undetermined geophysical variable; however, seismic tech-

niques (Takeuchi, et al. (1967)) have provided bases for

assumptive but fairly conclusive determinations of the inter-

nal structure. Supporting the atmosphere and hydrosphere is

a relatively thin crust enclosing, first, a mantle, and then

a core. Crust and mantle are solid while the core is taken

to be liquid (outer core) with the deeper part (inner core)

generally considered to be solid. The mantle-crust boundary

is marked by a significant change in constituent material

called the Mohorovicic discontinuity after its original dis-

coverer. The crust thickness varies over the Earth from about

5 kilometers under oceans to about 70 kilometers beneath

mountains. The average continental crust thickness is about

35 kilometers. There are several published models for the

internal properties of the Earth, but Earth Model B (Bullen

(1963)), shown in Table 2.1, is representative. The outer

core is assumed to act as a self-exciting dynamo. The dynamo

theory, first suggested by J. Larmor in 1919, was worked out

in detail by W.M. Elsasser and E.G. Bullard (Rikitake (1966))

following World War II. The principal portion of the geomag-

netic field is due to this influence of the core and the

8



Table 2.1 Properties of Earth Model B

Depth

33
80

80

200

400

600

1000

1400

1800

2200

2600

2700

2898

2898

3500

4000

4500

4982

5121

6371

P
3.32

3.36

3.87

3.94

4.06

4.18

4.41

4.63

4.84

5.03

5.22

5.27

5.57

9.74

10.60

11.16

11.63

12.00

15.4

18.1

P
0.009

0.025

0.025

0.071

0.150

0.231

0.400

0.58

0.76

0.96

1.16

1.22

1.33

1.33

1.95

2.42

2.85

3.22

3.33

3.95

k

1.16

1.22

(1.40)

(1.58)

(1.92)

(2.61)

3.37

3.96

4.58

5.26

5.89

6.13

6.40

6.4

8.2

10.1

11.6

12.1

13.6

16.4

y
0.63

0.66

(0.76)

(0.83)

(0.99)

(1.34)

1.78

2.03

2.25

2.48

2.71

2.81

2.97

0.0

0.0

0.0

0.0

0.0

(3.2)

(5.0)

g
985

986

986

985

983

980

976

976

982

997

1010

1042

1069

1069

937

815

647

607

573

0

Depth in kilometers; p is the density in g/cm3; p is the

pressure xlO12 dynes/cm2; k is the incompressibility and y the

rigidity, respectively, in the same units as p; g is the

acceleration of gravity in cm/sec2. Discontinuities indicated

at 80, 2898, and ca. 5050 kilometers represent crust-mantle-

outer core-inner core.
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remainder, minute and highly localized, due to remanent mag-

netizations in the crust. There is strong evidence that the

core rotates at a different rate than the mantle-crust system.

This is manifested in a westward drift of the geomagnetic

field and in variations in Earth rotation rate which may be

due to momentum conservation for varying core-mantle relative

angular velocities.

There is, of course, much more known about the Earth's

surface. A continuing mystery, which seems to have been

fairly resolved only in the last decade, concerned paleoecolo-

gists' efforts to account for inconsistencies in distribution

of land masses and of ancient flora and fauna. The first

scientifically reasonable explanation, in terms of continental

drift, was given in 1915 by A. Wegener (Wegener (1924)) . % His

theory was not immediately accepted mainly for lack of a sci-

entifically plausible explanation for the driving forces

required to move continental masses. Continental drift theo-

rists were eventually opposed by polar wandering theorists,5

with a third group accepting a combination of the two (Hapgood

(1970)). There is now a consensus for continental drift in its

scientifically structured form known as plate tectonics.

Plate tectonics are concerned with the tectonic activities

of an Earth's surface divided into a mosaic of rigid, shifting

14 English translation of the original "Die Enstehung der'
Kontinente and Ozeane", Brunswich, Germany (1915).

5 Polar wandering assumes the outer shell to be intermit-
tently shifting about the poles moving continents collec-
tively. Continental drift treats continental motions as
individual.
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plates. There are 14 major plates whose boundaries are asso-

ciated with a seismically active variety of characteristic

features such as rift valleys, oceanic ridges, mountain belts,

volcanic chains and deep oceanic trenches. Oceanic ridges

mark regions where adjacent plates are being pulled apart and

new surface material is formed from cooling magma. Oceanic

trenches are formed by one of the two plates plunging steeply

into the Earth below the other. The total effects of these

actions are to maintain a constant Earth's surface area and

to displace surface features in varying degrees with respect

to an absolute geodetic datum.

It has been estimated from seismic data that plates are

from 70 to 150 kilometers thick and, accordingly, not related

to the mantle-crust differentiation marked as the Mohorovicic

discontinuity. Best evidence indicates that they form a rigid

layer overlying a weaker, hotter layer which becomes increas-

ingly viscous with depth. The supporting surface is called

the asthenosphere. Plate boundaries move at relative veloci-

ties of from 1 to 10 centimeters per year. Since this motion

is on the surface of a sphere the relative motions of any two

plates can be described by a rotation around a single axis

passing through the sphere's center. Given the absolute

motion of any one plate with respect to a set of fixed points

within the mantle, the absolute motion of all the plates can

be determined from knowledge of the individual relative plate

motions. Appropriate processes for this are described by

Dewey (1972) and Solomon and Sleep (1974).
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The sea-level surface of the Earth very nearly conforms

to an ellipsoid of revolution with equal equatorial axes. If

the axis of rotation is along a principal axis, the angular

momentum vector is coincident. It was suggested by Euler

(1765) that if a rigid figure did not rotate about a principal

axis, a free nutation would result as a function of the prin-

cipal moments of inertia. For Earth values this would have a

period of about ten months. It was reported by Chandler

(1891), after an extensive study of latitude variation period-

icity, that a ten-month period did not exist; instead, there

was an annual term and a second term of about fourteen months.

It was shown by Newcomb (1892) that this unexpected increase

from ten to fourteen months was due to mobility of the oceans

and an elastic yielding of the Earth. This non-annual nutata-

tion or polar wobble6 is now known as the Chandler wobble.

The angular momentum vector, in the absence of external

forces on the Earth would retain a fixed orientation in iner-

tial space. It lies within the plane formed by the axes of

rotation and figure, very nearly coinciding with the former.

The rotating Earth is subject to gravitational forces of Sun,

Moon and planets, and the subsequent gyroscopic effect results

in precessional motions7 of the angular momentum vector. The

6 Polar wobble is considered to be the trace .of the rota-
tion axis with respect to some axis on the Earth's surface
to which latitude stations are referenced. Polar wobble
is thus manifest in terms of latitude changes.

7 Precession is a measure of the motion of the angular momen-
tum vector through the celestial sphere. The axis remains
inclined at approximately the same angle to the ecliptic
plane and is manifest in declination changes for the stars.
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process is complicated by non-coincidence of axes of rotation

and figure, deformation of a yielding Earth by gravitational

forces, and seismically induced mass redistributions in the

heterogeneous structure of crust and mantle.

The Earth's rotation rate is influenced by external

torques, changes in inertial moments, wind stress and core-

mantle coupling. External torques include effects of Earth

and ocean long-period tides, gravitational torques on the

equatorial bulge, and the solar wind. Changes in inertial

moments include seismically induced internal mass redistribu-

tions, surface level changes brought about by polar ice and

sea level fluctuations, and atmospheric mass transport. Var-

iations in the rotation rate are monitored by astronomic time

observations and, more precisely, by utilizing such techniques

as the Very Long Base Interferometeric (VLBI) procedure for

observing on extragalactic radio stars (Gold (1967)).

The entire Earth's surface is in continuous, relative,

periodic and systematic motion, and there are no direct means

for selecting and maintaining an absolute geodetic reference

system which can be readily and positively recovered. Since

the reference system must be available at the surface, the

best solution is to find an approach which minimizes undetect-

able displacements. An ideal system would have the origin at

the Earth's center of mass and three or more axes aligned to-

ward selected extragallactic radio sources. The origin is

readily recoverable through appropriate satellite observa-

tions. The same would be true of the inertial axes using
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VLBI except for the lack of a sufficiently accurate means for

relating them to the stellar system. The present choice is

to set the origin at the Earth's center of mass, the z axis

toward a point known as the Conventional International Origin

(CIO)8, the x axis orthogonal to the z and pointing toward a

prime meridian defined by the Bureau Internationale de 1'Heure

(BIH)9 in Paris. The y axis completes the orthogonal set, the

positive direction pointing toward 90° E. longitude. It

should be noted that geophysists utilize this right-handed

system, while astronomers choose the positive y direction

toward 90° W. longitude.

Rochester (1973) has tabulated the spectrum of changes

in Earth's rotation and associated geophysical mechanisms.

These are presented in Tables 2.2 and 2.3, respectively.

Elements in columns A, B and C of Table 2.2 are discussed in

detail in Sections 2.10, 2.14 and 2.13, respectively.

The Earth's elastic properties can be effectively sum-

marized in a set of dimensionless parameters known as Love

numbers. Love (1909) introduced the numbers h and k to char-

acterize the various aspects of Earth tides. His theory was

keyed to the concept that since the tidal potential can be

adequately represented by a second-degree spherical harmonic

function, all deformations due to this potential may be eval-

8 The CIO is defined as the average position of the true
celestial pole from 1900 to 1905 as determined from adopted
latitudes of the International Latitude Service (ILS) lati-
tude stations.

9 The BIH determines changes in adopted observatory longi-
tudes necessary to maintain an absolute prime meridian that
is not necessarily the same as the Greenwich meridian.
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Table 2.3 Mechanisms with Effects now Distinguishable

on the Earth's Rotation

Mechanism Effect*

Sun
Gravitational torque
Solar wind torque

Moon
Gravitational torque

Mantle
Elasticity
Earthquakes
Solid friction
Viscosity

Liquid core
Inertial coupling
Topographic coupling
Electromagnetic coupling

Solid inner core
Inertial coupling

Oceans
Loading and inertia
Friction

Groundwater
Loading and inertia

Atmosphere
Loading and inertia
Wind stress
Atmospheric tide

A, B7, Cl, C3c
C2c(?)

A, B7, Cl, C3d

Bl, B3-4, Cl-2a, C3c-d
Bl, B3
B3(?), Cl
C2a

A2-3, B2, B6
C2b-c(?)
A4(?), B3, C2

B2(?)

Bl, B3, B5, C2a
B3(?) , Cl

B4

B4
C2c, C3a-c
Cl

Letters and numbers refer to Table 2.2
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uated by multiplying the harmonic function by the appropriate

Love number; e.g., the Earth surface is raised by—h, where U

is the surface potential and g is the acceleration of gravity.

The consequent gravitational potential is given by U*k. The

horizontal analogue of the Love numbers, i, was suggested by

Shida and Matsuyama (1912) . It if; generally treated as an

additional Love number. Application of the Love numbers are

discussed in detail in Section 2.8.

Although the point has been made that the Earth is not a

rigid body and must be treated apart from rigid body theory,

the departures from rigidity are sufficiently small to be

considered as perturbations to the rigid body solutions.

Since these solutions are well known, a combination of pertur-

bation technique and Love number application provides a com-

pletely adequate treatment. An effective approach was pre-

sented by Munk and MacDonald (1960) and is adopted in this

study.

The theoretical influences of lunar and solar potential

on an elastic Earth are conveniently expressed in terms of

spherical harmonics. Laplace (1796-1825) separated the poten-

tial into three groupings; he called these the tides of the

first, second and third type which are uniquely representable

as zonal, tesseral and sectorial harmonics, respectively (See

Section 2.15). (These correspond to long-period, diurnal and

semi-diurnal periods, respectively.) The total tide repre-

sents the sum contributions of all its components at a speci-

fied time and place. Component arguments can be expressed in
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terms of six independent astronomical variables. There are

31 principal components (Melchior (1966)) with relative am-

plitudes ranging from 910 to 3. The practical majority of

the tide can be determined by using three long-period, three

diurnal and three semi-diurnal components.

A reasonable solution for the Earth tide can be obtained

using second-degree spherical harmonics if Love numbers are

utilized to account for elasticity, and some lag factor is

introduced to account for delay in Earth-potential response

time.

The situation is much more involved for ocean tides

which include the open ocean (pelagic) tides as well as the

more familiar ones in the vicinity of land masses. The indi-

cated approach for the Earth tide is essentially a static

one which can not be applied to the ocean tide. The principal

problems are Earth's rotation (Coriolis effect) and the limit-

ing effect of ocean depth on tidal wave speed. Ignoring the

Coriolis forces for the moment, a direct response of the ocean

to lunar or solar gravitational attractions requires that the

bulge travels at the same speed as the attracting body. If it

does so, the result is known as the direct tide; however, the

tidal wave speed is dependent upon water depth and the bulge

can fall behind, leading to a 90 degree phase shift and an

inverted tide. Since the apparent speed of the attracting

body is a function of latitude this would, by itself, lead to

radical discontinuities in ocean levels and mass transport.
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This, of course, does not occur, but the matter of dynami-

cally evaluating the pelagic tide is a problem with no pos-

sible direct solution. Assumptions must be made of average

water depths, optimized boundary configurations, transport

processes, etcetera. Boundary conditions are the observed

tides at or near land masses. In practice, solutions are

made for separate components, each of which is manifest as

an amphidromic system (See Section 2.16).

2.2 Reference Frames and Transformations

2.2.1 Geographic Frame:

The first considered reference frame is a set of axes

rotating with the Earth. There are several possibilities,

but the most feasible and readily implemented system is a set

of orthogonal axes defined by the coordinates of a network of

observatories. In this sense the axes are fixed to the solid

Earth and rotate with it. The existence of a deforming Earth

and its effect on a rigid set of axes imposes a requirement

that the observatory coordinate definition be modified to in-

clude provisions for variations due to oscillatory and secular

motions.

The z axis, which very nearly represents the rotation

axis, is defined as the Conventional International Origin

(CIO). The CIO was adopted in 1967 by the International

Astronomical Union (IAU) and the International Union of Geod-

esy and Geophysics (IUGG). It set the pole to the average

position defined by the five stations of the International
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Latitude Service (ILS) for the period 1900-1905. The Bureau

Internationale de 1'Heure (BIH) converted their system to the

CIO by adjusting the BIH polar paths to those of the ILS for

the years 1964-1966. The x axis is orthogonal to the z axis

and in the plane of a zero meridian determined by longitude

(time) observations of the BIH. The y axis is orthogonal to

the xz plane and considered here as positive in the direction

of 90° E. longitude.

The BIH utilizes data from its latitude and longitude

stations and from the Dahlgren Polar Monitoring Service

(DPMS) to provide continuous observatory updates for long-

period and secular Earth motions. Provisions for higher fre-

quency motions are made in the data reduction processes of the

individual observatories.

The coordinate origin is the Earth's center of mass.

This is readily recoverable through satellite observations.

2.2.2 Inertial Frame:

The inertial reference system is made up of three or-

thogonal axes oriented with respect to the ecliptic and ver-

nal equinox of some selected epoch. Here the epoch of choice

is 1950.0 or the Julian date, 2433282.5. The inertial refer-

ence system is related to the Earth-fixed rotating system

through the three Euler angles. The relationship of the two

frames is shown in Figure 2.1. The positive directions of the

Euler angles 0, (j> and \\i are indicated in the figure. The dots

over the Euler elements indicate the time derivatives. '. The
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Figure 2.1 Inertial-Rotating Frames

CIO Pole*

Ecliptic
(1950.0)

Vernal Equinox
(1950.0)

Equator of CIO*

BIH definition of
Greenwich meridian

* Figure presents an assumption that the CIO axis remains an
axis of figure. In practice, the CIO axis is replaced by the
minor axis of figure, and the CIO equator is defined by the
major axes of figure.
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inertial axes are X,Y,Z; rotating axes are x,y,z.

The kinematical relationships of the Euler angle deriv-

atives are developed by adding details of Figure 2.2 to those

of Figure 2.1. The axes x,y,z of Figure 2.2 repeat those of

Figure 2.1. The additional axes are the angular momentum axis

OH and the instantaneous rotation axis OP. (Note that H lies

on the great circle arc zP.) It can be seen from the two

figures that

u =o) sin Y cos T ,

u) =o) sin y sin T ,

to = a) cos
3

(1)

where u>. is the polar rotation vector, the components 1,2,3

representing x,y,z, respectively; w is the rotation vector

magnitude and Y and F are angles indicated in the figure.

The rotations u>. which determine the motion of the CIO axis

with respect to the instantaneous rotation axis represent

the same motion as the Euler angle derivatives. These rela-

tions are found by resolving each of the vectors 9,^,$ into

its components along the CIO axis. The result is

0)

-sin6sin<j> -cosc() 0

-sin6cos<t> sin<)> 0

cos6 0 1

(2)

The inverse relationship is



Figure 2.2 ClO-Polar Axis Relationship
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F lies in the plane of
the CIO equator

-csc6sincf> -csc9cos<{> 0

-cos<{> sin<|) 0

cot6sin<(> cot6cos(f) 1

(3)

Note that since 6 remains on the order of 23 .5 no mathemati-

cal difficulties are presented by the first of Eq. (3).

The transformations between the X. system and the x.

system obey the following relations:

Xj = ajix

(4)

(5)

where
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cos<j>cosi|;-sin<J>sini|;cos0 cos4>sinijj+sin<j>cosi{jcos6 -sin<j>sin0

•sin<t>cosi|j-cos(|>sintjjcos6 -sin(j>sini{j+cos4>cosijjcos6 -coscj>sin0

cosi|jsin0 cos©

. (6)

2.2.3 Geodetic and Associated Frames:

A geocentric system of coordinates can be expressed by

the equations,

(v+H) cos<|> cosX

(v+H) cos<j> sinX

_[v(l-e2)+H] sine))

(7)

where: <j> is the geodetic latitude; X is the longitude (positive

in the eastern hemisphere);H is the height of the point above

the ellipsoid, and

v =

e2 =

d-e'sin2*}))'5

_2 K2a —D

(8)

(9)

1-e2 -51 , (10)
a

with a and b the semi-major and semi-minor ellipsoid axes,

respectively. The inverse of (7) is

X = tan-1(^) (11)

and the iterative solution of



= sin-i
v(l-e2)+H
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(12)

where cj> = sin" (—) is introduced into v for the initial

determination. The <f> in v must be successively updated until

the increment in the determined <J> becomes negligible. When

H=0 the exact solution is

<J> = tan-1 z sinX

yd-e2)
= tan-1 z cos A

x(l-e2)

The geocentric latitude ty is given by

= tan-1 [(1-e2) tan<{>] ,

and for the radius vector p.

where the flattening f is

(13)

(14)

(15)

(16)

for points on the ellipsoid surface. For points at elevations H,

pe + H (17)

Given geocentric rather than geodetic coordinates, the geo-

centric coordinates are

X "

Y

z

~

pu cosijj cosA
n

pu cosij; sinA
n

PH sinij;

(18)
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The accuracy of (18) is improved by substituting ^ for

where $„ is given byn

• . . d9)

The reduced latitude 3 for a point on the ellipsoid is given by

[
-1

| tan*] . . . . (20)

Ellipsoidal coordinates u,0,A are related to rectangular co-

ordinates by (where 0 = 90 - 3* the reduced latitude)

X

Y

z_

=

(u2+E2)^cos3cosA

(u2+E2)iscos3sinA

u sin3

=

a cos3cosX

a cos3sinA

b sinB - u=b

where E is the linear eccentricity,

E = (a'-b2)*5

(21)

(22)

Figure 2.3 Latitude Definitions

.A. Geodetic and Geocentric
Latitudes

B. Reduced
Latitude



27

Altitude corrections of latitudes are given by (with H in

meters),

A<J> = 1".71 H sin2<}> x ICT" = AS - (23)

The latitudes are defined in Figure 2.3. In Figure 2.3A,

the radius vector p is the length OP. The line nP is a

normal to the ellipsoid surface. OE is the equatorial line

intersected by the plane ONP. In Figure 2.3B, the line Ob
L

equals (u2+E2) , the line Oa equals u, and these two radii

represent the semi-major and -minor axes of the ellipsoid

surface. P, in both figures, is the observation point.

2.2.4 Astronomic Frames:

The astronomic coordinate systems of interest here are

the ecliptic and right ascension systems for some specified

epoch or instant. The ecliptic system locates the astronomic

body in respect to the ecliptic and vernal equinox; the right

ascension system, in respect to the Earth's equator and vernal

equinox. Ecliptic coordinates are latitude, 6, and longitude,

A. Right ascension coordinates are declination, 6, and right

ascension, a. The two systems are related by the equations

cosficosot = cos3cosA , (24)

sin6 = cos$sinAsine + singcose , (25)

cos6sina = cosBsinAcose - sinftsine , (26)

cosScosA = cosficosa , (27)

sing = -cosfisinasine + sin6cose , (28)

cosBsinA = cosfisinacose + sin6sine , (29)
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where e is the obliquity of the ecliptic. Given the ecliptic

parameters B,X,e, the value of 6 is obtained from (25); a is

obtained after dividing (26) by (24). Given the right ascen-

sion parameters 6,a,e, the value of 6 is obtained from (28);

the value of X is obtained after dividing (29) by (27).

2.3 Vector Relationships Applicable to Plate Motions

Rotational components of an ellipsoid normal with coor-

dinates (j>,X, are given by

(30)

03
X

03y
03z.

= 03

cost)) cosX

cos<}> sinX

sin*_ J

u> = to.to is the rotation magnitude and co. the rotation vector.

The displacement of a point moving on a plate rotating on an

axis with coordinates <|>,X, at a rate to. can be established

from the diagrams in Figure 2.4. The relationships associated

with the diagrams are given with the figure. From these,

(31)

"AX"

Ay

AZ
— «

= t

0 -03 03
z y

0 3 0 - 0 3
Z X

03 0) 0
y x J

'x

y
z

i.e.

Ax, = eijk«-
jxkt , (31')

where £• -t ^
s *-he completely antisymmetric permutation tensor

1]K

(refer to text on tensor calculus; e.g., Hotine (1969)).
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Figure 2.4 Rotation Diagrams

(x,y,z)

(y,z)

Sketch A Sketch B Sketch C

y

(̂
wy

D:

CAx'
r^ ~ - /" A Z

/ /P(x,z)

MS/ /

-* -x

Sketch D

Ax1 = zw t

Az' = -xu).t

i A — cos v L.' sin v it'

AA = u t
z

s - rAA = (x2+y2)!su) t
Z

Ax = -s sinA = -yw t
z

c. 6. co-'-M y ) -in-M z )

A9 = u) t
X

s- =f r'A6 = (y
2+z2)^wxt

Ay' = -s' sin6 = -zw t

Az = yu> t
Ji
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From Eq. (7) with H=0 and setting (l-e2)=l (noting that

(l-e2)=0.9933) ,

X

y
z

= V

cos<}> cosX

cos<}> sinX

sin<f>

X = tan"1(£)

4> = sin"1 (^)

dX = TC— dx 4- 7;—9x 3y

dz

(32)

x2+y2

>• (33)

(xdy - ydx) , (34)

vcos<J> '

where v is considered constant. Introducing (31) into

(35)

(34) and (35) (noting that lim
z+0

= lim -2-),
b2

dX = u) t -z (36)

z -vjr x )t (37)

In Eqs. (36) and (37), t represents the interval of time in

years from the epoch (time at which positions were assumed to

be fixed) to the time of observation. The quantities w. are

obtained from adopted values of the absolute plate motions

which are prescribed here in Appendix A.

Note that — = tan<j>secA, — = tan<J>cscA, cosA = j- ,

sinA = ^—r- . • From Eq. (36) and these,
(x z +y 2 )
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r . a) w ~i
AA

(38)

= a) - z cosA sinA (— + —^) t|_ z y x'J

= CD - tan(j> (oj cos A + w sinA) t .[_ z x y J

In a like manner Eq. (37) can be written as

= (ui sinA - w cosA) t . (39)

2.4 Complex Parameters for Excitation Functions

The various geophysical effects upon the Earth's motion

will be treated in terms of excitation functions. They are most

simply treated in complex form. All forms of ¥ in the fol-

lowing are complex:

T = fc cosot + fs sinot = V+ el0t + <F~ e~iat (40)

¥+| ei(ot+AY +

f = (arg V) V~ = (arg Y~) (42)

4»c = vj/-1" + v--' vj(s _ ijijr* _ y-y (43)

(44)

f = (ellipticity or flattening) (45)

The major axis lies in east longitude ^(A +A ) and has a mag-

nitude |f | +|rJ/~| . It is occupied at such a time that

at = %(A~-A+).
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2 . 5 Interpolation Formula

Interpolation of non-linear tabular data (e.g., ephem-

eris data) is by Gauss's forward interpolation formula

(refer to Hildebrand (1956) for the general form) where the

desired interpolated value f is given by
\J i 1 1 W/

f = f +n{A - f c U + { A + { A + - { A }}}}} , ( 46 )
o+nw o 1 2 2 J 3 4 | 4 - ) 5

where:

A = f,-2f0+f_1
2

A = f2-3f!+3f0-f_!

A = f2-4ft+6f0-4f_j+f_2

A = f ,-5f , + 10f .-10f n-f5f_,-f_,
5 3 * . 1 ° l * ,

and the subscripts are obtained from the Julian dates,

J'D'Eph. * J'D-Obs. = Subscript.

2.6 Spherical Harmonics

The Legendre functions for the spherical harmonics used

in the EOM may be any one of four types: the regular form

denoted by P or P (See Heiskanen and Moritz (1967)); an
n n

alternative form denoted by p or p (See Jeffreys and Jef-

freys (1962)); a partially normalized form denoted by P or

P™ (See Schmidt (1964)), and a fully normalized form denoted

by P' or P'm (See Heiskanen and Moritz 1967)). These dif-

ferent forms are related as follows:
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pn ~ Pn (47 )

m = (n-m) i pm ( 48 )
^n n! n

p = P ( 4 9 )n n

5™ = (2 (n-m) !.*5 m (50)
n ( (n+m) l' n v '

P' = (2n+l)* P (51)
n n

(52)

mThe Legendre expression P can be calculated using the equa-

tion (modified from Munk and MacDonald (I960)),

" r=0

where t=sin<J>.

2.7 The Normal Potential1°

The normal potential can be expressed using only zonal

harmonics because of the rotational symmetry. The potential

series is of the form (where y=sin<}>) ,

GM P (U) ' • P (V)
~V = ~ + A -2 - + A —5 - + • • • / (54)

2 3 i» 5

i o

A - n k M E n 2n me
A - . -

2n ~ ^HTT~ 2nT3

E = (a 2 -b 2 ) = ea = e'b , (56)

qo = 2 ( 3 5 e' 3 - 57 e'5 + e'? - * ' ' } ' (57)

Source is Heiskanen and Moritz (1967).
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Eq. (55) can also be written as

,2n3GME'
2n (2n+3) - n + 5n —)

ME2
(58)

If the potential V is written in the form,

v = ^[l - J2(f)
2P2(y) - J,(f)

n=l
(59)

then the J (noting A = -Ola J ) are given by

J2n = (-l)
n+1 3e2n

(2n+3) - n C-A (60)

From the general form of Eq. (54),

v- z; n

n=0 m=

Rm(0,X)
J" n

n rn+l n

An = Gjr'
nPn(y') dM

(n-m)
(n+m)| G(r'nRm(e',X')

J n

nm _ i (n~"t) 1 p| r . > n
c

m r f l ' 1MD = £.—, ; r-r- «| r b lo ,A )n (n+m)! J n

dM

dM

(61)

> (62)

The solid harmonics r

polynomials in x, y and z. For example,

and rS are simply homogeneous

r2S2 = 3r2sin29sin2X = 6r2sin2OsinXcosX = 6(r sinGcosX) (r sinSsinX) ,
2
= 6xy .
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The moments of inertia with respect to the x, y, z axes are

A = J(yl2+z'2) dM ,

B = j(z|2+x|2) dM ,

C = f(x'2+y'2) dM ,

D = Jx'y' dM .

From Eqs. (62) and (63), setting A=B,

(63)

AQ = GM A = A1 =i i B1 = A1 = B1 = A2 = 0,
(64)

= G(A - C),

(Note that GM for the Earth is here taken as 3.98603 xlO14 MKS.)

The gravity formula in closed form is

GM r,, e'q'
Y =

a(a2sin2B

e'q1

——)sin2B+(l-m-| 5-) cos2 e) . (65)
<3« 6 3^

At the equator (3=0),

Ya ab

e'q'.
(66)

At the poles (£= ±90°),

(67)

Note that q is given by Eq. (57). For q1 ,

(68)

m = o)2a2b

GM
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a-b Yb~Ya
With f=-^—, f*= , the rigorous form of Clairaut's formula

a Ya
is

£ + f. . (69)

The gravity formula (65) can be written in series form as

in •*<}>] , (70)Y = Ya [ l + ( - f + m + f 2 — f m + 2 ) s i n 2 < t > + ( - f 2 + f m ) sin •

or

Y = Y a d+f 2 s in 2 4>+f .^sin1^) , ( 7 0 ' )

with

f2 =

4f2+lfm

Eq. (70') can be written as

(71)

Y = Yad+f*sin24.-jf1<sin224.) , (70" )

where f* is known as the gravity flattening.

The normal gravity at elevation H above the ellipsoid is

= Y l--(l+f+m-2fsin2<f>)H+-H2 ]
L a ^ 2 • *

(72)
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2.8 Love Numbers and Applications

Love numbers may, in theory, be taken to any degree n.

The measure of application is the nature of the disturbing

potential. Since the Earth is effectively subject only to a

second-degree potential, Love numbers of consideration are h,

k and J6. The matter has been studied by a number of research-

ers,11 but the most detailed investigation appears to be that

of Takeuchi (1950). Love number determinations are made from

observations of seismic phenomena, and tidal induced tilts,

variations of gravity and position. The k coefficient can

also be determined from observations of polar wobble period.

Estimates are subject to contributions of Earth's core, mantle

and yielding oceans. Since Love numbers are indicators of

elastic characteristics, values should vary randomlv for dif-

ferent locations; in addition, a latitude dependency has been

suggested by Kaula (1969) based on analysis of published data.

There is, however, no strong reason to systematically charac-

terize variabilities in Love numbers, and, for the purposes of

the EOM, values of h=0.59, k=0.29 and £=0.07 have been adopted.

The Chandler period is given by Kaula (1968) as

T _ A+ko)2a5/(3G) _

C-A-ku)2a5/(3G)

11 These include Jeffreys (1970), Kaula (1968), Kozai (1965),
Lamb (1917), Love (1911), Longman (1966), Melchior (1966),
Munk and MacDonald (1960), Nishimuri (1950), Shida and Mat-
suyama (1912), Takeuchi (1966), Vicente (1961).
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The products of inertia due to rotational deformation (Munk

and MacDonald (I960)) are

= 16.-
ka5

3G (74)

where I=^(C1+C2+C3) is the Earth's inertia, a is the mean

radius and G is the Earth's mass. Note that the effect of

elasticity in (73) is to lengthen the period and in (74) to

induce products of inertia.

The luni-solar potential is effectively given (See

Section 2.9) by

W2 = - (i - 3 cos
2?)

r3
(75)

For a non-deformable Earth, the horizontal components of the

luni-solar force are

e R 38

£ -A R sine ax '

(76)

where 9 is the colatitude and A the east longitude. The cor

responding vertical deflections are

•9

n' =T '

>(77)

where ?' is the meridian and n1 the prime vertical components,
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respectively. The spatial displacements for an elastic Earth

are

a 9W2
v = g TF '

gsine Tr '

(78)

in the meridian and prime vertical directions, respectively.

The total disturbing potential is (l+k)W2 and a static oceanic

tide should have an effective height (l+k)W2/g; a tide gage,

however, indicates variations between ocean tide and crustal

motion, the latter being given by — W2 . An observed tidal am-

plitude will, therefore, be the difference between these two,

or

W h W W
(l+h)-J. - |W = (1+k-h)— = Y— • (79)

Given V as the initial Earth's potential, gravitational

acceleration is

GM 3Vo

But the Earth's potential, deformed by the luni-solar action,

is

3V
V' = Wa + W2'

 + T^ + Vo '

and the variation of g will be the derivative with respect to R

of the additional potential,
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Here W2' represents the additional potential due to the

Earth's deformation (in the form S,/R3) while

(81)
y -

Performing the indicated differentiations in (80),

W 3W 8W2
Ag = 2ir(l+h-fk) = (l+h-fk)̂  = -55- . (82)

The angle between the normal and the deformed surface

is of .interest. The equation for the latter is

W2
p = R + h— . (83)g

The flattening of this surface can be calculated by relating

its equation with that of an ellipsoid of revolution with mean

radius a and ellipticity e; i.e.,

.2
p' = R[l+̂ -(|-cos20)] , (84)

where 9 is the colatitude. From (84) and the value of g for

a homogeneous sphere of radius R and mean density d, or
4

g=-s-irGdR, the deformed eccentricity is given by

2 = . (85)e =
gr3

The angle a of the normal to this ellipsoid with the unperturbed

ellipsoidal normal is
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2

3 GMhR . _0 1 h 2

" sin29 = - g R

This quantity added to the pendulum deviation, — — 5-5- ,
ixCf o o

gives the observed effect as

~^g 5F" ~ Rg 39 *

The crust deformation is in the same direction as the force

and thus is partly compensating. The factor y is the ratio

of the observed deflection amplitude to the calculated theo-

retical static amplitude.

Deflections cause a variance in astronomic coordinates.

The deflection is not related to the crust but to the direc-

tion of the Earth's rotation axis in inertial space. Eqs.

(77) and (78) express the respective components of vertical

deflection and surface deformation. The deformation will also

cause a supplementary disturbing potential kW2 which must be

added to W2 in the expressions. Finally, the deflection of

the vertical with respect to the Earth's axis will be

1 3W2 A 3W2
= (1+k-fc) Rg 86 Rg iTe '

1 8W2 A 9W2
n - M -t-Tf-P N •*" — _n - U-I-K MRgsine §^-

(87)
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Figure 2.5 Tidal Force

2.9 Tidal Force

The tidal force acting on a unit mass at point P due to

the attraction of an extraterrestrial mass M is

x.-X.
F. = GM

x.

hi'-
(88)

where M is the mass of the attracting body. Expanding the

denominator of the first term and assuming X.I = R « Ix.j = r

F. = - •x,) . (89)

Eq. (89) can be resolved into its horizontal and vertical

components which are

F(h) = JGM—si
r3

F(v) = GM— (l-3cos2rj
r3

(90)

(91)
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It can be seen that Eqs. (90) and (91) can be derived from

the potential,

w = GM Bl (3 cos2^ _ 1} f (92)

by taking the derivatives,

! ̂ 2
F(h) = - R

and

3
F(v) = -

2.10 Precession and Nutation

2.10.1 Louiville Equation:

The Eulerian equations of motion in a coordinate system

x. rotating with angular velocity w. relative to coordinates

X. fixed in inertial space are

Ni = "i + e ( J° J H k ' (93)

N. and H. are torque and angular momentum vectors, respectively,

and e. ., is the completely unsymmetric permutation tensor.
1JK

Following Munk and MacDonald (1960), we separate the angular

momentum into two parts:

Hi = C i ' ( t ) w ^ + h i ( t ) ( 9 4 )

where

pj = l o f x x (S^ - v v-hriv (95)\^ • t }-t \ A* A \J , H • j{ j Uiv \ -/ -* I
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is the inertial tensor, p is the density and 6. is the Kron-

ecker delta. The second right-hand term of (94) denotes a

relative angular momentum,

h± = j pe.^x-'u- dV , (96)

due to the velocity u. relative to the x. system. Introducing

(95) and (96) into (93) we obtain

Ni = ar <cijwj + h> + £" j ( c k + hk) - (97)

the Louiville equation.

2.10.2 Dynamic Equations for the Precession:

In terms of rectangular coordinates x. ' of M1 (the

external attracting mass) in the CIO coordinate system (with

BIH prime meridian), the couple, N., exerted on the Earth is

Ni = e X J I F k = - e X J I v k u ' (98)

Introducing these into (97) ,

C± .J + C . . 0 . 3 + h. + e. jkJ(CkVhk> = ^.^<^V . (99)

Assume, for the moment, that the relative angular momenta, h^,

are included in the angular momenta, C. .u> , and these are constant.

Then (99) becomes

CijiJ + £ijk"Jck\ = - eijkXJI.vku ' (100)

We next make the temporary assumption that there are no products
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of inertia. Then setting Cll=A, C2 =B, C =C, C..=0, i^j,

and expanding (100),

C-B, 1, , 3U , 3U
-ft-^2^3 - A(X3~31T[ - x ^^

, (101)

3U v .

The right-hand terms of (101) can be written in terms of

Euler angles and we obtain

T-.-, • I '"" - ' + -^ •

We can set A=B, whence 3U/3<J)=0 because of the symmetry, and

C-A . _ sinfl 9U cos(j) 3_U" ~ ~ _
A sinG 3^ A 90

/ m - > \
' (103)

C-A cose)) 8U . sincj) 3U
-^ = - - + A 39

o>3 = constant.

2.10.3 Precession and Nutation for a Rigid Earth:

The complexity of the problem indicates that the best

solution would be to treat the precession using a rigid Earth

and making such corrections as are necessary for the elastic
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yielding in a separate process. This provides a highly accurate

representation and will afford firm bases for correcting for

departures from rigidity. We follow to some extent the work

of Woolard (1953) .

The first assumption is that there are no products of

inertia; secondly, that the moments about the two minor axes of

figure are equal. Eq. (103) is thus applicable. Differenti-

ating the first two of Eq. (3) , we eventually obtain

9 = - sine oT(*sine)

and

cu, sine - 55TsTnff3 3

• •>

c

cos6

ecose <104>

(105)

Eqs. (104) and (105) can be utilized in an approximate

form by considering only their first right-hand terms. This

gives a close approximation of the axis of figure. Small ad-

ditions to account for the effect of the unused terms are

appreciable but can be easily obtained by an iterative solution,

the convergence being quite rapid.

The force function U for the gravitational action exerted

on the Earth by a external rigid body with mass M' and principal

moments of inertia A' ,B' ,C' , is

3I +B-+C" -31'

2r 2r

where I and I1 are moments of inertia of Earth and M1, respec-

tively, about the line r joining the C.M.s of the two bodies.
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In the case of luni-solar forces, effects of extended terms

and of the A',B',C' inequalities are so small we can take

Sl+BI+C'=3lr and

0 = GM'( + > ^ (1Q6)
r 2r3

Setting the Earth's coordinate axes along the principal iner-

tial axes and denoting the coordinates of the C.M. of mass of

M1 , in this system, by x1 . , we have with x.x =r2 ,

1 = — (Ax'2+Bxl2+Cxl2) . (107)r 2 i 2 3

Since r does not depend upon the orientation of the Earth's

principal axes, it is independent of the Euler angles with

respect to which U is differentiated in the equations of mo-

tion; therefore, all terms in U which depend only upon r and

constants can be disregarded. Setting A=B in (106), we

obtain

U = - 3GM1— x!2 . (108)
2r5

In terms of the X. system, the coordinates of the disturbing

body are

X = r cosB cosA ,i o o

X = r cosB sinA ,2 o o

= r

•(109)
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where 6 and X are the latitude and longitude, respectively,

of M1 referred to the fixed mean equinox and ecliptic of

specified epoch. From Eqs. (4) and (109),

x' = r(sin9cos8 sin(X -^) + cos9sin3 ) . (110)
3 O O O

Introducing (110) into (108), differentiating, and introducing

into (104) and (105), as appropriate, (utilizing only the

first right-hand terms of these latter two) we obtain

6 = -3GM'-^——{sin9cos60sin(Xo-ifj)+cos9sin$o}cos3ocos(Xo-40 (111)

and

ty - -3GM1 sinOcosB sin(X -^)+cos9sin8 }{cot9cos8 sin(X -ty)

-sinBQ} . (112)

The coordinates 3 ,X , of the Sun and Moon, referred to

a fixed mean equinox and ecliptic of some epoch are obtained

from solar and lunar theories; but these theories give the

coordinate expressions referred to a moving mean equinox and

ecliptic of date, and it is therefore necessary to transform

Eqs. (Ill) and (112) to these coordinates. Through an appro-

priate process (refer to Woolard (1953)), the coordinate re-

lationships between 3 , X and 8,X (the latter being the coor-

dinates of date) are
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Figure 2.6 Ecliptics and Equinoxes of Epoch and Date
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cos3 cos(X -\l>) = cos3{cos(A.-A+ IIj -i|>

cos3 sin(A -iJO = cos3{sin(A-A+H -fy) -2sin (A-A) cos (H -\l>) sin2%Tr1 }

sin$ = cos3sin( A-A) simr +sin3cosir ,o 1 1

where the elements are defined in Figure 2.6.

An alternate and much more simple procedure12 may be

used in developing the quantities 3 /A from $(t), A(t) for

Eqs. (Ill) and (112). We have, for an epoch of 1350.0,

T = (J.D. (obs) ~ 2433282.5)/36525

eQ = 23°. 445787

e = 23°. 445787 - 0°.0130125T - 0°. 00000164T2

+ 0°.00000050T3 + Ae ,

where Ae is the nutation in the obliquity; then,

6 = sin" l (cos3sinAsine + sin3cose) ,

a = cos"1 (cos3cosA/cos6) ,

£ = z -0".791T2 - 0".0013T3

6 = - 2004". 255T + 0".426T2 + 0".0416T3 ,

q = sin6{tan6 + cos(a+C ) tan^G } ,

Aa - y = tan-1{qsin (a+C )/ l-qcos(a+C ) } ,

a = a + Aa ,

= 6 + 2tan-1{tanJ56secJ5(Aa-y)cos [ ( a + ? ) +*5 (Aa-y)

i 2 See Am. Ephem. and Naut. Aim., NHO, 1976, pp. 536 and 552,
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z = - 2304" .948T - 0".302T2 - 0".0179T3 ,

8 = sin"1 (-cos<5 sincx sine + sin6 cose ) , (114)o o o o o o

X = cos"1(cosfi cosa sec3 )o o o o (115)

A less rigorous transformation from 3(t), A(t) to 3 ,

A is obtained from the expressions,

3Q = 3 + b sin(X+c) , (116)

A = A + a - bcos(A+c)tan3 , (117)

where

a = -1°.396319T - 0°.000308T2

b = -0°.013076T + 0°.000010T2

c = 5°.59258 - 1°.15473T - 0°.00015T2

Setting

K = - 3GM , C-A

P = sin6cos3 sin (A -lii) + cos6sin3 ,o o o

Q = cosB cos(A -

R = cos3 sin(A -i - sin3 ,

(118)
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(1111)

(112')

(119)

Eqs. (Ill) and (112) can be written as

0 = KPQ

= KPR

Noting that

= K(PR + PR)

P = KP{Qcos6sin(A -fy) - Rsin0cos(X -ijj) }cosB

- QsinGsing ,

Q = KPRcosB sin (A -

R = - KP{Qsin(A -ip) + JsRsin29cos ( A -ip) }cosg csc29 .o o o

Introducing Eqs. (Ill1), (1121), (119) and (120) into Eqs. (104)

and (105), we obtain the bases for iterative solutions of (104)

and (105) ,

(120)

• • *
6 = KPQ + -̂ -{ (PR + PR) sine + 2KQRP2cos9} , (121)

Jjj. = KPR -
AK

Ch) gi (PQ + PQ - JsKP 2R 2sin26) (122)

where the underbars are introduced to discriminate from the

provisional values Q,ty, used in forming the right-hand terms,

which will be successively updated in the iteration process.

Final values of 6 (t) and ty (t) are obtained by integrat

ing updated 0̂ (t) and (̂t) quantities. The remaining Euler

angle, <J> , is obtained from the expression,
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T0 + T , . (123)

where T is the ephemeris value for the Julian date of the

midnight preceeding the first observation date, and T is

given by

T = 360°.98565 (J.D.(Qbs) - J.D.Q)

2.10.4 Correction for a Deformable Earth:

The effects of the luni-solar force on a deformable

Earth are considered in Section 2.15. Values which substan-

tially compensate for the rigid Earth assumption made in this

section are derived.

2.11 Plate Tectonics

Plate tectonics theory has been extensively developed

over a relatively short period, with the investigative pro-

cess being ultimately directed toward discovering a scientif-

ically valid mechanism for the plate motions. Relative plate

motions, manifested as continental drifts, are fully accepted

phenomena and have been (for at least the ten largest plates)

fairly well evaluated.13 The matter of absolute motions;

i.e., motion with respect to the fixed portion of the mantle,

say, the asthenosphere, presents a more'illusory problem,

since there are no proven means for referencing to a fixed

13 Refer to Chase (1972), LePichon (1968), Minster et al.
(1974) , Morgan (1968).
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triad in the inner mantle. A number of authors11* have pre-

sented theories for absolutely relating one or more plate

motions to fixed interior references. The consensus links

absolute motion determination with the plate driving mech-

anism, and most writers have tried to bring them together

as a total system.

Plate boundaries are fairly well delineated by system-

atically tracing seismic activities. Maps, such as those

described by Barazangi and Dorman (1969) provide indications

of plate demarcations and directions of motion. Kaula (1975)15

outlines the boundaries of thirteen plates in a system of

great circle arcs. These plates and their boundaries were

incorporated in the EOM. A fourteenth, the Caribbean, was

added, with boundary based on Maifait and Dinkleman (1972).

A number of absolute plate motion systems were evalu-

ated for application to the EOM. The system of choice was

one of the models proposed by Solomon and Sleep (1974) . The

selected Model A fixed the absolute motion of one plate based

on a general concept that there was a uniform drag beneath

all plates. This simple model agreed remarkably well with

more sophisticated ones (Morgan (1973), Minster et al. (1974)),

whose velocities were calculated from the hypothesis of fixed

14 These include Burke and Wilson (1972), Clague and Jarrard
(1973), Duncan et al. (1972), Kaula (1975), Mckenzie et al.
(1974), Minster et al. (1974), Sleep (1975), Solomon and Sleep
(1974), Solomon et al. (1975), Turcotte (1975), Wilson (1965).

15 Referred to by the author in a computing program. Program
details and boundaries are on computing tape. (Refer to
Section 4.10.)
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hot spots, and there is no basis for a more involved system,

with the present state of knowledge.16 The absolute motions

of the remaining plates were calculated from the relative

motion data given by Solomon and Sleep (1974).

Plate parameters are the coordinates of the rotation

pole, and the rotation rate or, more simply, only the compon-

ents of the rotation vector. Plate names, identifying numbers

and rotation parameters are given in Table 2.4. An example

Table 2.4 Tectonic Plate Parameters

Plate
Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

ui (10~
7deg/yr)

Plate Name

African

Antarctic

Arabian

Cocos

Eurasian

Indian

Nazca

North American

Pacific

South American

Bering

Philippine

Somali

Caribbean

Abbreviation

AFRC

ANTA

ARAB

COCO

EURA

INDI

NAZC

NOAM

PCFC

SOAM

BERI

PHLP

SMLI

CARI

00
X

1.3483

-0.2660

4.8787

-7.3499

-1.2936

5.4483

-2.2031

0.1281

-1.2867

0.1281

0.1281

3.2305

1.3483

-0.4474

OJ
Y

-2.4585

-0.4475

-1.0630

-15.2714

-1.1125

2.0823

-4.6138

-1.7780

2.8497

-1.7780

-1.7780

1.0976

-2.4585

-0.2825

z

2.8415

2.6859

4.5355

7.5398

-1.4502

4.4787

6.0178

-0.3030

-6.4968

-0.3030

-0.3030

-6.0047

2.8415

0.5532

1 6 Any model can be readily introduced into the EOM by
making the desired changes in the rotation parameters.
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for updating plate parameters follows:

Given the absolute rotation pole parameters for the

Pacific plate (PCFC) as <|>=-64O.3, A=114°.3, u>=7.21xlO~7deg/hr;

given the pole parameters of the African plate (AFRC) relative

to PCFC (assumed fixed in motion) as <j>=57°.6, A=-63°.6, u>=11.06

xlO~7deg/hr; find the absolute rotational components of AFRC:

From Eq. (30),

Absolute PCFC: o> = -1.2867, w = 2.8497, to = -6.4968.x y z

Relative AFRC: CD = 2.6350, u> = -5.3082, u = 9.3383.x z

Wi (PCFC)+(°i (AFRC) : % = 1-3483 "y=-2.4585 ^ = 2.8415.

The inverse procedure (rotation components to pole pa-

rameters) is given by16

. co (positive root, only),

(JO

'•(124).

X = tan-1
co
X

The general boundaries of the plates are shown in Fig-

ure 2.7. A more exact plot is given on the map attachment to

the computing materials (See Section 4.2.3). in most cases,

identification of the appropriate plate for a station of given

coordinates will be quite simple; however, when a station lies

16 Note that, for all poles, latitudes are positive and lon-
gitudes are negative. When w is negative, |A|>90°; otherwise,
|XI<90°. x
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near a plate boundary, the boundary description may be too

general, and a definite check must be made to identify the

proper plate. For this reason, and because of the imprac-

ticability of mathematically delineating the highly irregu-

lar and often changing boundaries, it was decided to require

a "hand-identification" process for all points; thus avoiding

problems for critically located sites.

Figure 2.7 Tectonic Plate Boundaries

(Adapted from Solomon and Sleep (1974))

-180 -135 -90

r -30

-60

180



58

2.12 Atmospherics Applied to Polar Wobble

The polar wobble exhibits an annual component due to

atmospheric variations. Specific influences can be calculated

from appropriate pressure field measurements, if these are made

at sites uniformally distributed over the Earth; unfortunately,

this appears to be physically and.politically impossible, and

there are extensive regions from which needed data can not be

obtained. The impact of inadequate coverage was noted by

Wilson (1975): he compared atmospheric excitation functions

published by a Soviet investigator, with functions derived by

others and concluded that the rather significant differences

were due to restricted availability of Siberian meteorology.

Atmospherics, like any phenomena conforming to a spheri-

cal surface, can be mathematically treated, most conveniently,

using spherical harmonics. This has been done by a number of

authors.17 The process is complicated, however, by the need to

maintain orthogonality of the functions. Kaula (1967) de-

scribes statistical analyses of data distributed over a sphere,

and rigorous requirements to insure validity. Data gaps cause

non-orthogonality and require analytical measures involving

covariances; mere substitution of null values, followed by

least-squares determinations or other devices, may result in

inordinately specious harmonic coefficients. Although harmonic

17 Includes Awade et al. (1975), Eliasen (1958), Eliasen and
Machenhauer (1965), Ellsaesser (1966) , Graham (1955), Hassan
(1960), Haurwitz (1940), Moses (1974), Neatan (1946), Platz-
man (1960).
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methods can be advantageously employed for limited area cov-

erage, their applications to world-wide atmospherics do not

appear to be feasible due to the limited scope of our present

meteorological observing system.

Straightforward methods, for analyzing pressure field

motions, probably provide a more satisfactory means for deter-

mining atmospheric influences. Seasonal variations in air

mass distribution, which contribute to the annual component

of polar wobble, can be estimated from the ground level pres-

sure field. Seasonal wind variations do contribute to changes

in the earth rotation rate, but, as shown by Munk and MacDonald

(1960), these appear to have little or no effect on polar wob-

ble. The data gap problem still exists, and there appears to

be little likelihood of approaching a 50 percent representation.

Since the actual effects can be determined rather positively

from spectral analysis of long-period latitude observations (See

Section 2.14), atmospheric analysis appears to offer little more

than academic interest in the polar wobble application.

2.13 Earth Rotation

Earth rotation rate, referred to the inertial frame,

affords a general measure of sidereal time. The fundamental

unit of sidereal time is the mean sidereal day, the interval

between two successive transits of the mean vernal equinox over

a given meridian, corrected for polar motion and certain peri-

odic irregularities in earth rotation rate. The more readily

utilized solar time is based on the local hour angle of a
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fictitious sun. Solar time, when referenced to a defined

prime meridian, is termed universal time (UT). There are

four UT systems in use: UTO is observed UT; UT1 is UTO cor-

rected for the BIH definition of the prime meridian (corrected

for polar wobble); UT2 is UT1 corrected for periodic variations

in earth rotation; UTC (coordinated universal time) is the

system used in radio time signal transmission, and is an

approximation to UT1, obtained from international atomic time18

(TAI) by the relationship, UTC = TAI - 15s.

Rotation rate is continuously monitored by observatories

of the BIH, which issues a monthly report of five-day raw and

smoothed time and polar wobble data; these include values for

UT2-UTC and UT1-UTC. More accurate determinations will become

available with implementation of new techniques, most impor-

tantly, that of VLBI.

Principal variations in earth rotation rate are caused

by tides, polar wobble and zonal wind circulation. Lesser,

periodic influences, are,due to atmospheric pressure and hydro-

logical variables (snow, ground water, vegetation, etc.).

Secular changes in rotation rate are due to core-mantle coupling

and effect of lunar torque on the tidal bulge of the Earth.

Tidal effects include fortnightly, monthly, semi-annual

and annual terms; polar wobble influences the rate over a four-

teen-month period; zonal winds add semi-annual, annual and,

intermittently, near-biennial contributions. Atmosphere pres-

1 8 TAI is directly based on the data of atomic clocks.
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sure and hydrological variables occur at semi-annual and annual

frequencies. The core-mantle coupling effect is manifest in a

secular variation of the geomagnetic field (See Sction 1.17);

it is a consequence of angular momentum conservation during

variations in rotation rates between core and mantle. The ef-

fect of a lag in developement of the tidal bulge (caused by

imperfect elasticity and, thus, energy dissipation) is a torque

by the Moon on the Earth, slowing the earth rotation.

Tidal effects can be theoretically calculated, but the

meteorological measuring situation noted in Section 2.12 applies,

and estimates of zonal wind influence are subject to consider-

able uncertainty; evaluations of atmospheric pressure and hydro-

logical effects are highly conjectural; secular contributions

are fairly observable.

Influences on earth rotation can be characterized by

dimensionless excitation functions (See Sections 2.4 and 2.14).

Lambeck and Cazenave (1973) give a number of these functions

which are listed in Table 2.5.

Polar wobble does not have a direct effect on earth

rotation. Astronomic coordinates of the time observatories

must be corrected for the effect of polar wobble to insure

proper orientation with the CIO and BIH prime meridian.19 The

fortnightly and monthly tidal terms do not lend themselves

well to the format used for the excitation functions of the

other terms; the lunar motion introduces a complication.

Excitation functions for these (Munk and MacDonald (I960)) are

19 See, also, lijima and Okazaki (1972).
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Table 2.5 Excitation Functions

Period
T( Months)

6

6

6

6

6

12

12

12

12

12

24

24

6

12

24

Coefficients

A

-0.051

0.050

-0.0006

0.003

0.161

-0.344

-0.024

-0.0032

0.017

-0.028

-0.077

-0.001

0.162

-0.382

-0.078

Excitation function,

number of months fro

given in units of 10

B

0.260

0.010

0.0000

-0.005

-0.060

-0.131

-0.010

0.0027

0.022

-0.001

0.029

-0.003

0.205

-0.117

0.026

¥3 A

m Jan 0 ,

"8

Geophysical Factor

Zonal wind (altitude 0-30km)

Zonal wind (altitude 30-60km)

Atmospheric pressure

Ground water

Earth tides

Zonal wind (altitude 0-30km)

Zonal wind (altitude 30-60km)

Atmospheric pressure

Ground water

Earth tides

Zonal wind (altitude 0-30km)

Zonal wind (altitude 30-60km)

Total for 6 month period

Total for 12 month period

Total for 24 month period

2irt . _ . 2irt . , . .*m *̂  *•• Ĵ  t> r-t -m V* •-* 1*. r*. 1̂  r̂  *• ^ «-• &-cos _ T c oin _ , wncirc t io u.

1958, and coefficients A and B ar>

and

= 0.16xlO~8cos(2s-N)

+ 0.38xlO~8cos2s

= 0.20xlO~8cos(s-p)

(125)

(126)

where Eq. (125) is the excitation function for the fortnightly
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term and Eq. (126), for the monthly term. The arguments are

s = 270 .434358 + 13 .1763965263d - 0 .001133To o
+ 0°.0000019T 3 , (127)

N = 259°.183275 - 0°.0529539222d + 0°.002078T 2o o
+ 0°.000002To

3 , (128)

p = 334°.329653 + 0°.1114040803d - 0°.010325T 2r o o

- 00.000012TQ
3 , (129)

where s, N and p are the mean longitude of the moon, longitude

of the mean ascending node of the lunar orbit, and mean longi-

tude of the lunar perigee, respectively. T and d are

defined as

and

= dQ/36525 (130)

d = J.D., . . - 2415020.0 . (131)
O (ObS) :

The total excitation function (Table 2.5 data and Eqs

(125) and (126)) is (in units of 10~8)

= 0.162cos^ -1-0.205 sin - 0.382
3 D D

- 0.117 sin - 0.078 cos + 0.026 s

- 0.16 cos(2s-N) - 0.38 cos2s - 0.20 cos(s-p) . (132)

The equation of motion is (See Eq. (140)
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where the right-hand side is represented by the arbitrary

evaluation in Eq. (132). (Elements of (133) are defined in

Section 2.14.) From Eq. (140),

m3 = Y3 (134)

W
3where, from Eq. (137), m3 = 1, is the "direction cosine - 1"

relating the rotation axis to the axis of figure. (See Fig-

ure 2.2 and footnote to Figure 2.1.)

The effect of core-mantle coupling is more difficult

to characterize. Munk and MacDonald (1960) discuss the

marked westward drift of the geomagnetic field and suggest

the possibility of comparing observed westward drift with

mantle rotation. A number of additional authors20 have in-

vestigated the apparent correlation between geomagnetic and

astronomical time observations. The consensus is that the

correlation is positive and valid, it is difficult to numeri-

cally evaluate, and the matter bears further investigation.

This item is discussed in more detail in Section 2.17.21

20 These include Aoki (1969), Bondi and Littleton (1948),
(1953), Bullard et al. (1950), Elsasser (1950), lijima and
Okazaki (1972), Kahle et al. (1967), Malin and Saunders
(1973), Munk and Revelle (1952), Nagata (1965), Rochester
(1960),(1968),(1973), Runcorn (1954), Siran (1969), Steen-
beck and Helmis (1975), Triet (1974), Vestine (1952),(1953),
Vestine and Kahle (1968), Yukatake (1962),(1972).

21 The effect of the core-mantle coupling on polar wobble,
as well, has been reported by several investigators; this
will be discussed here.
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Lambeck and Cazenave (1974) discuss uncertainties in

several of their suggested excitation function values (shown

in Table 2.5.) These estimated errors, coupled with greater

ones for other functions, indicate that an earth rotation

model could be subject to considerable error; however, the

literature22 presents evidence that uncertainties are sig-

nificantly smaller than magnitudes. In addition, the EOM

design affords a ready input facility as more valid data be-

comes available. The matter of correcting astronomical longi-

tude observations for polar wobble effects (discussed above)

is covered in Section 2.14, and provisions are made for such

corrections in the computing modules.

A final note concerns the possible effect of solar

winds on the earth rotation. Coleman (1974) suggested that

the solar wind could measurably affect the rotation rate;

Hirshberg (1972) and Hines (1974) point out that the effects

would not be significant; Gribbin and Plagemann (1973) claim

a variation of 10 msec (jump in AT-UT2) between August 7 and

8, 1972 during a great solar storm, confirming their predic-

tions of such results; O'Hora and Penny (1973) saw no such

result and, since a storm of the observed magnitude provided

such minimal effects, feel that there are good grounds for

believing that changes in the length of the day are induced

2ZRefer to Brouwer (1952), Challinor (1971), Fliegel and
Hawkins (1967), Frostman et al. (1967), Guinot (1970),
lijima et al. (1964), lijima and Okazaki (1972), Lambeck
(1975), Markowitz (1970), Mintz and Munk (1951),(1954),
Munk and MacDonald (1960), Munk and Revelle (1952),
Rochester (1973), Sidorenkov (1968),(1973), Woolard (1959).
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by some other mechanism. Evaluation of these reports indicates

little likelihood for variations in earth rotation due to so-

lar wind or flares.

2.14 Polar Wobble

For convenience, the mathematical development for the

polar wobble and Earth's rotation are discussed in this section.

We follow Munk and MacDonald (1960) in the general approach.

The basic equations for the polar wobble and rotation are the

Liouville equations given in (97), which, in component form, are

i - i Ik 2V
N, = C, .u)J + C, .o)J + h, + u) (u)_C -w C ) + to_h_ - u>_h

-L J. ] -L J J. K. ^ j £ 3 3

= C
2j

C2ji •(135)

Consider the perturbation scheme where/ in the moment of inertia

tensor,

A+cll C12 '13

C21 B+C22 C23

C31 C32 C+C33

(136)

A, B and C are the moments of inertia referred to the principal

axes and c.. are small corrections and products of inertia for

i=j and i^j, respectively. Let
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wl = um^, w2 = wm2, w3 = oj(l+m3), (137)

where w=

setting B=A,

!. Introducing (136) and (137) into (135) and

ml = (C-A)

_1

(C-A)

1

-(U>2C13 we23 uh, m» - N0) ,^ z

+ wh™ - h - Awm + N,) ,

h3 -

c. . h.
It can be seen that — •=*-, m. and — ̂ are small, diraensionless

C 1 d)C

quantities whose products and squares can be neglected. We set

« -CTr -
C~A (139)

Introducing (139) into (138), noting the vanishing products,

m9 ., ^ • • h2 N2

o

C 33 oj 01 I ,dt) =

(140)

The right hand terms represent the dimensionless excitation

functions, <j>., and are determined by geophysical observations;
/

the left-hand terms are determined by astronomical observa-

tions.

The first two of (140) represent the polar wobble equa-

tions of motion. They are more conveniently handled in complex



68

form, with

m = m, + im~ <j> = <t>. + i<t>0 ,
i. £. i L £•

and written as the single equation,

*

i ^- + m = <J> (141)
r

The third of (140) is the equation of motion for the earth

rotation. Quantities N., h. and c.. in (140) are qualified

as follows:

a. The initial time t marks the instant the rotating

x. and fixed X. frames coincide. All components of torque,

momentum and inertia are referenced to the x. axes.

b. N. are exterior torques acting on the contents of

a volume V which is arbitrary.

c. Quantities h. and c.. depend on the fields of den-

sity p(x.,t) and relative velocity, u.(x.,t), where p and u.

are independent variables subject to constraints of laws of

conservation and equations of state.

d. Let y. be a coordinate system rotating with the same

angular velocity, a), as the x. system, but with y, directed

always along the instantaneous rotation axis. Then,

x. = — y, , (142)
1 (l) J

U) .

so that — are the direction cosines of the rotation axis
0)

relative to the reference axis; thus, the wobble components are

u), and to-.
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The expression o in (141) is based on a rigid Earth.

From Jeffreys (1970) , the total external gravitational poten-

tial is

p_ 2 i-
, (143)

r3 r5

and, from the same source, MacCullagh's formula for the grav-

itational potential from a distant point is

+ B + c _ 3I) = GM + _G_ c. . (r
 2
n
1 J-3xixj ) . (144)

2r3 r 2r5

Equating equivalent components of (143) and (144),

GCi. (r
2nlj-3x1xj) = 2ka5U , (145)

where n is the unit matrix. For a rotating deformable Earth,

the concern is for the centrifugal potential,

U = w'rMuKX)2 = to2r2 + u)a).(r 2n-3xx) . (146)

Substituting the right-hand part of (146) (discarding the radial

component, )2r2, since it has no influence) into (145) yields

(147)

. which can be written as

ka5
C. . = In, . + ^- w.w. + Constant ,
1J 1] JG 1 J

where I = -~C . is the inertia of the sphere; free of rotational

deformation. This determines the constant and we have



70

ka , 1 ? \ /1 * n \
-^-(u.u. - T«J n,- •) - (148)

Orienting the x3 axis along the rotation axis, 0̂ =1̂  = 0

and

k a5 . 2k a5

2

C-ASetting — =— = H, (H is known as the precessional constant)

we obtain

k - 3GHC n Sf
s " s2 '

where k applies to the rotational case carried on for the
O

total of the Earth's rotation time, and is known as the secular

Love number. It is considered equivalent to the fluid Love

number, kf. The secular Love number has been evaluated as

k =0.96 (Munk and MacDonald (I960)), and this value is applied
S

to kf.

From (147) andr(150), we find the products of inertia

to be

from which,

c. = £- (C-A) m , c = 3- (C-A) m . (152)
1 3 K-f I 23 K-c 2

Substituting these into the first two of (140) (for the moment,

disregarding h. and N.),
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, m

(153>

In the complex mode, these are written as

= (m - i ) . (154)

kWe set ty =r— m, andD kf

(155)

Introducing (155) into (141),

JL
im , . D . / n c /• \_ + m = ̂  _ !_ % ̂  . (156)

C—AThe approximation depends upon the magnitude of and here
/A

the error ^ 0.1 percent. The expression ij; may be interpreted

as that part of the excitation function § that is due to rota-

tional deformation. Then,

im + a m = 0 ,

which differs from the corresponding rigid Earth expression

when 4>=0,

im + a m = 0 ,

in that the frequency of free nutation has been reduced from a
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to

kf-k
a0 = ar -£- . (157)

(We note again the adopted value, k=0.29, given in Section 2.9.)

The excitation function, <|>, may be defined in terms of

a number of excitation components, ty., dependent upon the nature

of deformations or other geophysical phenomena. These will vary

the frequency of wobble, but, if the excitation functions are

properly defined, the corresponding wobble frequencies can be

introduced. We consider excitation functions in the form,

T. = KI|». = 4>.
i rl ri

where K is some transfer function separately considered for

various geophysical excitations. Some excellent examples are

given by Munk and MacDonald (1960), regarding this matter and

various rotation poles for(given excitations. The differential

equations, using the general format are

- + m = V (158)
o

m3 = V3 , (159)

for the polar wobble and the Earth's rotation, respectively.

The solution of (158), which is of the form,

dM
— + P(t)M - Q(t) =0 ,
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which can be solved using the integrating factor, e =e o ,

is

m (t) = elaot[m0 - iaQ f^U) e
 iaoT drj , (160)

where m is an arbitrary complex constant. Consider, first,

^(t)=JH(t), where H(t) is the Heaviside step function. Then,

m =0, m=0 for t<0, and

m(t) = J(l-e10ot) t>0 (161)

The second case of interest is that for a harmonic excitation

of any frequency, o:

f = 4/Ccosat + fssinat . (162)

c e s sThe four numbers T, f, ¥, ¥ , determine phase and amplitude

of the excitation. It is also convenient to use alternate

forms (See Section 2.4). The solution for the harmonic excita-

tion is

,.. io t ., ao iat . o -iat nc^\m(t) = m e o + e + —-— e , (163)
ao-o ao+a

with the forced frequency, a.

The solution of (159) is

m = * . (164)
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The effects of polar wobble on observed astronomical

latitudes and longitudes (or times) are determined as follows:

The transformation matrix, a.., for the transformation,

x(Astro) aij X(CIO)

is

a . . =
13

~

where

cos x
P

0

sin x
P

I 0

0 I

x y
.. P P

Ax^f —
Xp R '

0 -sin x
P

I 0

0 cos x
P'

-xp

-yp
1

•

1 0 0

0 cos y -sin y
P P

0 sin y cos y
P P

, . (165)

y = y ; Ax and Ay are the linear, positive wobble
P R

displacements in the prime meridian and 90 E. longitude direc-

tions, respectively, and R is the Earth's mean radius. The

small magnitudes of x , y are considered in the approximations

employed in (165). The transformation from the instantaneous

rotation axis to the CIO axis is given by

X(CIO) aji X(Astro)
(166)

or

COS(|>COSA

cos<|)sinA

sin<J)

=

1 0 x '
P

o i yp

fXP "YP * i

cosd) cosATa a

coscj) sinAa a

_ a

(166')
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Utilizing first-order Taylor expansions,

= sin4> + Ac|> cos(j>
a a

cos(|> = cosi}) - Ac)) sincj)a a

cosX = cosX - AX sinX ,a a -

where A(J>=<j>-<(> , AX=X-X ,
ct 3.

we eventually find

4> = * - (x "cosX + y "sinX )" , (167)
d p a. p cl

X = X - (x "sinX - y "cosX )" , ' (168)
3 P cl p cl

t = t - ̂ -(x "sinX - y "cosX )"tancj> , (169)
a J.D p a p a a

where in (167) through (169), x ", y " are given in arc seconds,

and the corrective terms are in arc seconds, as well (units are

seconds of time in (169)). We mention, again, the convention

difference, geodesy vs. astronomy, with the former taking y as

positive toward 90° E. longitude, and the latter, otherwise.

This difference is reflected in equations given, for example,

in Bomford (1971) and Mueller (1969), compared with those taken

with the geodetic convention, as above.

The investigation of polar wobble is well documented
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in the literature;23 however, despite a plethora of research

and theorizing, there is no real agreement about the source

and dissipation of the force which appears to permanently

maintain the Chandler component of the wobble. Most agree on

the existence of a rather consistent annual component, and

some fewer, on an equally consistent semi-annual component.

The instantaneous polar wobble represents the integra-

tion over the Earth's lifetime of all mass redistributions

within, under and above its crust. Periodic contributors are

seasonal motions of the atmospheric mass; ocean and bodily

tides, with additional contributions due to asymmetric distri-

bution of land and ocean areas; ground water, snow and vegeta-

tion changes; ocean effects such as surface height variations

23 In addition to the authors already referenced above,
those reviewed in connection with the EOM program include
Anderle (1973),(1975), Arun and Mueller (1971) , Ben-Menahem
and Israel (1970), Beuglass and Anderle (1972), Capitaine
(1975), Chinnery and Wells (1972), Colombo and Shapiro
(1968), Currie (1974), Feissel et al. (1972), Gaposchkin
(1972), Graber (1974), (1976), Guinot (1965), (1972), Hau-
brich (1970), Israel et al. (1973), Jeffreys (1916),(1940),
(1968),(1972), Jeffreys and Vicente (1957a),(1957b), Lam-
beck (1972), Liu et al. (1974), Mansinha and Smylie (1967),
(1940), Markowitz (1940), McCarthy (1974), McClure (1976),
Mueller and Schwarz (1972), Munk and Grove (1952),. Myerson
(1970), O'Connell and Dziewonski (1976), O'Hora and Thomas
(1970), Okazaki and Nasaka (1972), Pedersen and Rochester
(1972), Pines and Shaham (1973), Proverbio et al. (1972).
Rochester (1970), Rochester et al. (1974), Rosenhead
(1929), Rudnick (1956), Runcorn (1970), Rykhlova (1967),
(1969),(1974), Shimazaki and Takeuchi (1972), Smylie and
Mansinha (1968),(1971), Smylie et al. (1970), Toomre
(1974), Vanicek (1969), Vicente and Yumi (1969),(1970),
Walker and Young (1955), (1956) , Wako (1972), Yashkov (1965),
Yatskiv et al. (1973), Yumi and Wako (1970).
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(inverted barometer phenomena), although mass transport con-

tributes only an insignificant amount. Efforts to directly

analyze these periodic effects fail due to lack of complete

coverage by observation and processing techniques; however,

spectral analyses of latitude data, observed over a number of

decades, afford consistent and apparently quite representative

excitation functions. Refer to Gaposchkin (1972) and Wilson

(1975), for example, and to Section 5.2 for a detailed descrip-

tion.

Spectral analyses of ILS polar data from 1900 to 1975

are shown in Figures 2.8 through 2.10. The plot in Figure 2.8

is unfiltered; the plot in Figure 2.9 represents time data

treated with a Hann filter;25 the plots in Figure 2.10 are for

four groupings of 30-year series against the overall 76 year

series. This last figure gives the power in logarithmic form

to provide better low-power detail. It can be seen that all

plots show a specific high power at precisely the 2ir frequency

(annual period). Figure 2.8 shows three additional peaks at

5.21, 5.39 and 5.65 rad/yr, while Figure 2.9 shows a fourth at

5.03 rad/yr. It might be assumed that the unfiltered indicates

three Chandler frequencies, and the filtered one, four; how-

ever, Pedersen and Rochester (1972) suggest that too much con-

fidence should not be placed on the discrimination validity of

25 Hann filtering represents a premultiplication of time domain
data by h (1-cos (2ir j/n) ) , where j represents the point number of
the equispaced time series of n elements. The purpose is to
cause spurious side bands to decay at an inverse third- rather
than first-order rate.
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Figure 2.10 Power Spectra (Without Filter)
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spectral analyses due to the limited (in their case, 70 year)

observation period, and that the Chandler period may really

be a single valued quantity. We agree with the statement of

non-validity, but the matter of whether the Chandler frequency

is a single or multiple valued function is not clear. The

many contributors to its value (from oceans, crust and core),

and the heterogeneous constituency of crust and upper mantle,

leave this as a highly unresolvable matter. In addition, the

Q factor (discussed below) has a definite influence on the pe-

riod, and there may be several Q values involved which could

have radically different values for oceans and Earth. For

computation purposes we have arbitrarily chosen a Chandler

frequency26 of 5.3 rad/yr and a Q factor of 50. (These values

represent implied consensuses (general averages).)

Polar plots of BIH data are shown in Figure 2.11 for the

period 1966.04 to 1968.96. The two plots show the motion with

and without the annual and semi-annual excitation components.

The process for removing these periodic components is described

in Section 5.2. A comparison of the ILS (IPMS) with the BIH

data (both corrected for annual and semi-annual contributions)

is given in Figure 2.12 for the same period.

The fact that the Chandler period is longer than the

theoretical Euler (rigid Earth) period is due to bodily defor-

mation and effects of oceans and liquid core. These involve an

26 Several authors (including, but not limited to, Chandler
(1891), Graber (1076), Jeffreys (1940),(1968), Munk and Mac-
Donald (1960), Rudnick (1956), and Yashkov (1965)) have de-
termined one or more Chandler frequencies based on spectral
and other analyses.
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exchange of energy and imply some dissipation rate at the

Chandler frequency. This requires that the Chandler frequency

be complex, the dissipation appearing in the imaginary term, or

d = 1 + ) (170)

where the Q, or quality factor, is the inverse of what is

known as the specific dissipation function, given by

2?r AE (171)

which is defined as the ratio of energy dissipation to total

energy, occurring in a single cycle. Kaula (1968) shows that
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the kinetic energy has a phase lag — ,

<172>

and, in terms of thermodynamics, the dissipation factor is

related directly to the change in entropy per cycle, AS, or

= .
Q 2TTE ' U/J)

where T is the Kelvin temperature. If, then, in Eq. (160),

^(t) were to remain constant, wobble motion would decay in a

time - — and the axes of rotation and excitation would ulti-
o

mately coincide; i.e., noting

"o = ao + ia ' (174)

lim m(t) = lim eloot|e~
atm + V (e~laot-l)l = 4'(e~1Oot-l)

t~>0 t+0 L

thus, characterization of Chandler excitation functions re-

quires frequency and dissipation factors for each component,

as well as initial magnitudes and orientations.

Attempts to demonstrate the source of energy driving

the Chandler wobble have not been too successful. Wilson (1975)

concluded that meteorological variations account for a signifi-

cant portion, but not all of the wobble, and that other non-

meteorological sources, such as earthquakes should not be ex-

cluded from consideration. Mansinha and Smylie (1967), (1970),

Smylie and Mansinha (1968), Smylie et al. (1970) all indicate

a high degree of correlation between changes in pole path and
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earthquakes with magnitude, M>7.5, in recent years. Pines and

Shaham (1973) claim to show that the Chandler wobble and earth-

quakes may have a common excitation source with the right sign

and strength to explain the "pumping" of the Chandler wobble.

O'Connell and Dziewonski (1976) conclude from analysis of 234

earthquakes with M>7.8 (occurring between 1901 and 1970) that

earthquakes represent the major factor in wobble excitation.

Myerson (1970) finds strong support for the Mansinha and

Smylie (1967) theory but feels that the earthquakes, themselves,

are not the source but a parallel effect to the wobble excita-

tion. Ben-Menahem and Israel (1970) find that an earthquake of

magnitude 8.5, under favorable circumstances, may suffice to

maintain the wobble for about one year; hence they deduce that

earthquakes may at most account for 30 percent of the observed

secular polar shift. A strong rejection of the Mansinha and

Smylie theory was made by Haubrich (1970) who found that the

excitation, from actual historical events, is at least an order

of magnitude too low to maintain the observed wobble. O'Hora

and Thomas (1970) report negatively on the earthquake as being

a significant source, while Chinnery and Wells (1972) feel the

matter is still open but not resolvable with present data.

Runcorn (1970) feels that treatment of earthquake effects as

step functions is incorrect and that the input should be impulse

types. Israel et al. (1973) feel that earthquakes are insuffi-

cient to maintain the Chandler wobble. It was determined in the

course of this EOM study that seismic disturbances leading to

earthquakes could, indeed, be responsible for the major portion
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of the Chandler wobble power as well as the secular drift of

the mean pole. The seismic contribution is impossible to

realistically preprogram and, since its magnitude far out-

weighs that of any other possible source (and these issues

are so thoroughly treated in the literature) , no further dis-

cussion will be made of Chandler components. Details of the

EOM findings are given in Section 5.2.

2.15 Earth Tides

The complete tidal potential can be written as
Op

GM GM •• GM \-\R.n /ncx
W = — = -- — s - p7-5: = — / (-) Pn(y) • d75)

f) r(l-2̂ cosf;+̂ -) 2 r '--••• r n

r ' 2 ' n=0r^

where, referring to Figure 2.5, p=PM, r=x., R=OP, and P are

the Legendre polynomials described in Section 2.6. From (53)

and (175),

GMW = — , a constant affording no tidal effect,

Wj = — RcosC , which provides a radial potential applying

to the Keppler-Newtonian equations for orbital motion, but is

not part of the tidal effect, and,

•W, ' = ~ — (3 cosH - 1) , (176)
2 r3

w = (5 C0s
3r, - 3 cose) / (177)

2 "
P M R ''

= (35 COS"^ ~ 30 cos2? + 3) , (178)
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Eq. (176) is the same expression given earlier in (75) and (92);

note, also, that R«r, which explains the relative vanishing of

W , W^ , etc., with respect to W . Substituting

cosi; - sin<J)sin5 + cos<j>cos5cos (t+A ) (179)

and the decomposition formula,27

P (cosij;) = P (cos0)P (cosO1) +

+ Snm(0't)Snm(e''A)] ; (180)

where <f>, A is the latitude and longitude of the point P, respec-

tively, <S, t is the declination and hour angle of the exterior

body, respectively, 0=90°-((), 0'=90°-6,

Rnm = Pnm(cos0)cos(mt),

Snm = Pnm(cos0)sin(mt),

into Eqs. (176) through (178), we eventually obtain,

:(J>-^-) (sin26-^-) + sin2())Bin26cos (t+A)

,
f cos?-(j)cosx6cos2 ( t + X ) J , (181)

r*MR ^ I
W •= -- 2 (5sin3())-3sin(()) (5sin36-3sin6) + 3cos4)cos6 (5sin2cl>-l)

8r" L

(5sin%S-l)cos( t+A) + 30sin<|)sin6cos2(f)cos2 6cos2 (t+A )

+ 5cos3cj)cos36cos3

?' Refer to a text discussing spherical harmonics; e.g.,
Heiskanen and Moritz (1967).
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These can be combined into long period, diurnal, semi-diurnal,

ter-diurnal, quarter-diurnal, etc., tides:

w = { f _ 16(3sin2cj>-l) (3sin26-l)+—(5sin3(I>-3sin<J>) (5sin36-3sin6)
64r3 r

—(35sin"(l)-30sin2(()+3) (35sin"6-30sin26+3)
r2

J48sin2<J>sin26+^-^cos<l>cos6 (5sin ?<j>-l) (5sin26-l)

*)

-
r2

os<|>cos<5 (7sin34>-3sin(|>) (7sin36-3sin6) cos ( t+A)
J

2

(7s in 2 6- l )Jcos2( t+A) }

^cos 3<|>cos 3 6+280R sin^cos 3<J>sin6cos3 6J cos3 ( t+A)r 2 Jr2

o c p2

+ cos'>4)cos'<6cos4 ( t + A ) . (182)
r2

For all practical purposes of the EOM, the expansion of W as

given in (181) is adequate for W.

As mentioned in the introduction, the total tide rep-

resents the sum contributions of all its components. There

are at least 31 major contributors; each operate like a sep-

arate tide inducing body traveling at its own individual rate

It has been found that all tides can be expressed in terms of

one or more of a set of six variables. Doodson (1921) de-

scribes the procedure and sets up a systematic classification
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for these tidal waves. The defining variables are

T = 15°.0 t + h - s - X ,

s = 277°.0248 + 481267°.8906T + 0°.0020T2 ,

h = 280°.1895 + 36000°.7689T + 0°.0003T2

_ - n (183)
p = 334 .3853 + 4069 .0340T - 0 .0103T2

N1 = 100°.8432 + 1934°.1420T - 0°.002lTi

Pj = 281°.2209 + 1°.7192T + 0°.0005T2

where,

T = (Julian Date(obs) - 2415020.5)/36525,

T is the local mean lunar time reduced to angle, s is the

Moon's mean longitude, h is the Sun's mean longitude, p is

the longitude of Moon's perigee, N1 = -N, where N is the

longitude of the Moon's ascending node, p1 is the longitude

of the Sun's perigee and A is the longitude of the station.

The speeds per mean solar day are

T = 360°.0 - 12°.19074939

s = 13°.17639673 ,

h = 0°.98564734 ,
n (184)

p = 0 .11140408 ,

N' = 0°.05295392

Pj = 0°.00004747 .

Doodson's classification is in terms of the arguments defined

in (183) which would apply to a given tidal wave. For example,

the argument for the R2 wave is

R2 : 2t - h + 2s - PJ
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Doodson's classification is a six digit one,

a, (b+5), (c+5), (d+5), (e+5), (f+5), (185)

where the letters, above, are the coefficients of the wave

expression,

a + bs + ch + dp + eN1 + fpj

Finally, there is a decimal separating the third from the

fourth coefficient in (185). The classification for R2 is,

therefore,

R : 274.554

Note that the larger the argument number, the greater is the

speed of the component tidal wave.

The harmonic development of the equilibrium tide is

discussed in Section 2.16 where its application will have

more relevance.

The influence of luni-solar tides on the deformable

Earth was described in Section 2.8. It was assumed there

that the tide was an equilibrium one, and no consideration was

made of what is known as the secondary tidal effect, that due

to Earth loading by oceanic tides. The equilibrium concept

applies fairly well to Earth tides with the exception of some

phase angle in the tidal bulge due to a given tide. Phase

angles vary (they may be positive as well as negative) at a

given station for a given tide.28 Although expressions are

given (see, e.g., Kaula (1968)) for the lag angle, they depend

upon variables which are not available.

2 8 See Melchior (1966).
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Darwin (1879) appears to have made the first calcula-

tions on tidal loading of the Earth's surface (secondary

effect), taking into account the distortion of the Earth's

surface. The problem of effects on the vertical deflection

was presented in a rather comprehensive fashion by Lamb (1917).

Theoretical effects based on various Earth models were dis-

cussed by a number of authors including Alsop and Kuo (1964),

Caputo (1962), Longman (1962),(1963),(1966) , and Takeuchi

(1950), the latter being an especially comprehensive treatment.

Lambert (1974) applied tidal spectroscopy methods (developed

by Munk and Cartwright (1966)) to analyses of total gravity

and tilt data to develop a weighting system to describe the

Earth tide more accurately in an environment of complex ocean

tide perturbations. A study by Nishimura (1950) indicated

that elasticity of the Earth's mantle is 20 to 30 percent

smaller in the N-S than in the E-W direction. Kuo and Ewing

(1966) noted that ocean tidal loading effects decay approxi-

mately exponentially as a function of station distances from

the effective ocean water; however, for stations in the imme-

diate ocean vicinity, tidal loading effects on tidal gravity,

due to land tidal conditions, is very complex, small and

irregular. Kuo and Jachens (1970) investigated the conti-

nental tidal gravity profile across the United States and

found that tidal characteristics of both oceans entered, but

they could find no observable correlation between tidal gravity

parameters and regional geology. Lambert (1942) had already
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determined that at inland stations the secondary effects may

be perceptible for considerable distances, even as much as

4000 kilometers, and that at coastal stations, secondary

effects could mask out entirely the primary effects; his work

suggested that (See Eq. (181)) component hour angles should

be modified by subtracting appropriate phase angles e , e .

The effects of ocean loading can be measured by using

gravimeters, tiltmeters, horizontal pendulums and extensome-

ters (strain gauges). A complete description of instruments

and techniques is given by Melchior (1966), and Slichter

(1970) provides an excellent and comprehensive treatment of

observational efforts to measure interaction of ocean and

land tides and describes efforts and results at a number of

stations. Investigation of local effects have been conducted

by Beavan (1974), Egedal (1959), Harrison et al. (1963),

Lambert (1970) and Lennon (1962).

Interactions between Earth and ocean tides were studied

by Kozai (1965) who found that effects of the tides are about

10 percent of the direct luni-solar effects on the satellite,

and that eccentricity, as well as the semi-major axis, are not

disturbed except for short-term periodicities. Lambeck et al.

(1974) found that consideration of the attraction of ocean

tides was quite important in utilizing satellites for deter-

mining the Love number k, and that an equilibrium theory was

not adequate for correcting for ocean tides; after more appro-

priate treatment, improved values of k were obtained, but poor

solutions for phase angles indicated a need for more precise
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satellite tracking data and tidal models.

There appears to be no analytical means for introducing

corrections for secondary effects into the EOM, and no bases

for adopting values for phase angles. Munk and MacDonald

(1960) indicate a relationship between phase angle and Q (for

large Q) ,

e = tan"1

which, for a Q of 50 (adopted arbitrarily for the EOM) , indi-

cates an e=0 .57. This, of course, is merely a generalization,

and values given in Melchior (1966) indicate no possibility for

presupposing a fixed phase angle. In fact, the wide range of

magnitudes and signs leaves this parameter as a unique element

to be specified only from direct observations for given compo-

nents of the tide. The EOM does not incorporate phase angle

values for given stations but, instead treats the luni-solar

influence as an equilibrium tide; however, values as they

become available, can be readily introduced if desired.

The number of tides considered for the EOM have been

reduced to three components in each of the long period, diurnal,

and semi-diurnal classes. These are the S , M , M,., O , P ,sa m i . * *

Kj, N2 , M2 , S2 components with argument numbers:

sa : 057.555 Ol: 145.555 N2: 245.655

M : 065.455 P,: 163.555 M2 : 255.555m A ^m

Mf : 075.555 Kl: 165.555 S2 : 273.555

(186)
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2.16 Ocean Tides

The familiar ocean tide appears to an observer on shore

as a repetitive, systematic rise and fall of the ocean level.

The range of the tide varies with relative positions of Sun

and Moon, and, sometimes, quite spectacularly: when the coast-

al configuration lends itself to resonance conditions,29 which

can cause extremes in highs and lows. Constraints imposed by

land systems provide unique local circumstances which can be

closely characterized by a finite system of descriptive param-

eters called harmonic tidal constituents.

The method of harmonic analysis was first developed by

Thomson (1875), and perfected by Doodson (1921) into a suc-

cessful system; Doodson (1957) was also the first to success-

fully treat for shallow water constituents. In practice,

tidal constituents are determined by harmonic analysis of ex-

tended tidal height measurements, in the following general

fashion: Let the observation equations be written for the k

constituents as

k

A cosu) t. + B sinw t. + h - h. = v. , (187)_, r ri r r i o i i f

where i = -n, -n+1, . . . , 0, . . . n-1, n, are the observa-

tions taken at uniform intervals At, where n=0 is the middle

observation of the time series, for which to=0; A , B are

magnitudes of the tidal constituents to be determined; h is

2 9 See Garrett (1972)
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the mean level to be determined; w are the known frequencies

associated with the selected tidal constituents, h. are the

observed amplitudes at the times t., and v. are the residuals

whose summed squares are to be minimized. As many constituents

(A,B) are chosen as will completely satisfy the unique char-

acteristics of the local tide; e.g., for Anchorage, Alaska,

Zetler and Cummings (1967) required 114 constituents to prop-

erly define the tide.

The height of the tide at any coastal point and time may

be represented by the expression,

k

f = f0 +
 f

n
hncos(a)nt"(|)n) ' (188)

n=l

where fQ is the mean height in respect to a reference level;

h are mean amplitudes of constituents during the extended

period over which h were determined; f are node factors

depending on variables p, N1 and p for which the periods are

approximately 8.6, 18.6 and 21,000 years, respectively; t is

the time in UT; <b = - q\ + K - u S - (V +u ) ; X is the lon-n n n n n

gitude of the point east of Greenwich; q is the species number

(0 for long-period, 1 for diurnal, 2 for semi-diurnal, etc.);

(V +u ) are equilibrium constituents at Greenwich; S is the

number of hours which standard time at the site follows Green-

wich; g = K - q A - w S, and, together with h , are called the

harmonic constants for the point. Procedure is to determine

<}> for a given period, together with h and find the value g

from the above. Averages of h , g over an 18.6 year cycle
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are utilized, and K are phase lags of the tidal constituents

behind the corresponding equilibrium constituents at Green-

wich. Constants f and (V +u ) are computed and available inn . n n

Shureman (1941).

Equation (188) fails for tides in open oceans (pelagic

tides). Water speed limitations of various tidal waves, and

Coriolis effect present problems which must be solved in some

other manner. The basis for modern efforts are solutions of

Laplace's tidal equations. The involved mathematics and

restrictions are given by Hendershott (1975), as well as the

general status of numerical modeling of ocean tides. Diffi-

culties involved in modeling the pelagic tide include require-

ments for specifying ocean depths and boundaries. Since both

are highly irregular and not analytic, a complete mathematical

solution is impossible. Investigators must specify boundaries

in the forms of meridians and parallels, and uniform depths,

in order to achieve any solution at all.30

The resultant of motions of tidal waves affected by the

Coriolis forces and moderating influences of land masses,

result in each component of the tide forming individual amphi-

dromic systems. A sample of an amphidromic system for the M2

tide, taken from Luther and Wunsch (1975) is shown in Figure

2.13.

Amphidromic points are points where, for that particular

tidal component, the water level remains fixed in height.

30 See Doodson (1927), (1936), Goldsbrough (1927), (1929) , Hen-
dershott (1975), Pekeris and Accad (1969), Proudman (1916),
(1925) , (1932),(1936),(1944) .
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Figure 2.13 M Amphidromic System

. \i \/\ \r r i
I1.0* HO

Radiating out from the amphidromic points are solid cotidal

lines representing the phase of the tide in even hours from

the high tide at Greenwich; i.e., the phase lag to high water

after passage of the representative body over Greenwich (in

this case, in solar hours). The dashed lines are co-range or

co-amplitude values representing the tidal amplitudes in cen-

timeters. Computational procedures for amphidromic systems

are modified by boundary conditions presented by tidal data

at continental coastal stations, as well as those on island

systems. These coastal and island tidal data are collected
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and distributed by the International Tidal Bureau at Monaco.

(Tidal parameters for about 4,000 stations distributed through-

out the World are included in the computer package.)

Additional authors involved in determinations of amphi-

dromes whose works were reviewed included Cartwright et al.

(1969), Defant (1961), Fairbairn (1955), Irish et al. (1971),

Munk et al. (1970), Neumann and Pierson (1966), Parke (1976),

Platzman (1975), Zetler et al. (1975).

A complete set of amphidromes (for all practical pur-

poses) would include the six annual and semi-annual compo-

nents given in (86). The tide for a given point and time

would be given by the algebraic sum of the reduced levels.

In practice, phase and amplitude values would be stored on

tape for specified grid points, and extracted by using double

interpolations (See Section 3.3.5).

The long-period tides (S , M , M^) are treated as
Scl lu I.

equilibrium tides. From Maximov (1970), the equilibrium equa-

tions are (with W in centimeters),

H(S ) = 0.95(l-3sin2<}>)cos2h ,sa

H(M ) = 1.08(l-3sin2<)))cos(s-p)m

H ( M f ) = 2.05(l-3sin2c|>)cos2s

(189)

where H is the disturbance in mean-sea level, <f> is the latitude

of the point and s, h and p are defined in (183). These values,

when added algebraically to those obtained from the amphidromic

systems, give the total tide (See Section 3.3.5).
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2.17 Geomagnetic Field

2.17.1 General Note:

The magnetic field existing at the Earth's surface and

at satellite heights is made up principally of geomagnetic

components. These include a combination of what is known as the

dipole and non-dipole field. The dipole and lower order non-

dipole (below the 7th harmonic degree) are apparently maintained

by core-mantle interaction, through what has become known as the

"dynamo effect"; higher-order components may include contribu-

tions of magnetic materials in the Earth's outer crust.

Solar storms and solar wind influence the Earth's magnetic

field, the former, at times, inducing large field changes, but

such phenomena are not preprogrammable items, and can be evalu-

ated only from direct observation. Such considerations are

beyond the scope of this preliminary EOM system and, as a

consequence, effects of solar radiation have not been considered.

There is, however, nothing to preclude introduction of such in-

formation if and when indicated by future studies, since the

module designs have been kept open-ended.

2.17.2 Geomagnetic Nomenclature and' Relationships:

The conventional magnetic elements are X, Y, Z, D, I, H,

F; where X, Y And Z are the magnetic field intensity components

(usually given in gamma units = 10~5 Gauss) in the North, East

and Down directions, respectively; D is the magnetic declina-

tion or clockwise angle of magnetic north from geographic north;

I is the magnetic dip or angle below the local horizontal in the
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magnetic north direction; other elements and relationships are

F = (X2+Y2+Z2)Js

and

H = FcosI,

for the total magnetic field intensity and its horizontal compon-

ent, respectively. The vertical plane through the magnetic force

vector, X., is called the local magnetic meridian. It makes the

angle D with the geographic meridian. Geomagnetic coordinates,

and their conversions from geographic coordinates are illustra-

ted in Figure 2.14.

Figure 2.14 Geographic to Geomagnetic Coordinate Conversion

A-X. B is the magnetic pole with geographic
coordinates <(>!, X^ P is the point with
geographic coordinates <)>, X. Geomag-
netic coordinates are $, A, and are
given by

$=sin-1

The geomagnetic field is conventionally represented31

in spherical harmonics of the Schmidt form (See (49), (50),

(53) for definition). The harmonics have the following inter-

pretations:

3X See Barraclough et al. (1975), Cain et al. (1965),(1967) ,
Hurwitz et al. (1966), Vestine et al. (1963a),(1963b), for
expressions of the geomagnetic field in spherical harmonics.
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Axial dipole = P ,

Equatorial dipole = pj ,

Centered dipole = Px, P|

Eccentric dipole = Pt, Pj,

Non-dipole field = P2 , P* ,

Not considered = P. .

P2, P*,

P /

The magnetic elements can be developed from the negative

derivative of the potential or,

F = -VV = - 3.V

and

Fr =

p =
*8

FX =

8V
9r

I 1Y
r 99 '

1 3V
r sine "3T

X = - Fg cos6 - F sin6 ,

Z = FQ sin6 -F cos60 r

Y =Y

- tan"1 tan<J>]

The potential, in spherical harmonics, is

,

(g
mcosmA+hmsinmA)Pm(cose) .V = a> (a-

f — i1 rn=l —?m=0 n n n

(a=average radius vector^6371. 2km)

-(190)

(191)
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Introducing (190) into (191),

n(max) r n Dr)m

F

n(max) n < ^ m
\ ,p. n+2\ /ro - \ . i _ n i . •>, n= - y (—) / (g cosmX+h sinmX)—5-*
/_ , r Z- i n n °fce
n=l m=0

n(max) n m m
_ _ \~' .p. n+2\ ' m ( g sinmX-h cosmX)P (9) ,

X ~ / *r / n n n
n=l m=0

n(max) n

n=l m=0

where p is given by (15) and, for points at altitude, we use

(19) for ^; r = p + H, where H is the altitude of the point

above sea-level. Coefficients gm and hm have been selectedn n

from Cain et al. (1967) and are stored in the computing package,

2.17.3 Geomagnetic Field:

The geomagnetic field appears to have been universally ac-

cepted32 as the result of a self-exciting dynamo activated by

fluid motions of the conducting liquid Earth's core, which act

like a rotating disc in a disc dynamo. The mechanism is simply

explained by Takeuchi et al. (1967). The element of interest is

the westward drift which has been investigated by a number of

scientists (See Footnote 20 on p. 64). This element was dis-

cussed in Section 2.13, and its possible influence on the Earth's

rotation must be a factor in any further development of the EOM.

A few comments are in order before closing out this section:

The dipole is oriented at an angle to the rotation axis of

32 These include Bullard et al. (1950), Bullard and Gellman
(1954), Inglis (1965), Parker (1955). .
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— 1 T" 2 2 3< T

tan [(g} +hj ) /gJ; an angle of some amount is necessary accord-

ing to Cowling (1957), who showed that a magnetic field symmetric

about an axis could not be maintained by a symmetric motion.

Leaton et al. (1965) give the adopted positions of the north

magnetic dip pole at <|>=75O.5N, X=259 .5E and the south magnetic

dip pole at <f>=66 .55, X=139 .4E; they also give the rate of

change of the dipole moment at (-16+2)r3 gamma/yr, where r is

the mean radius. Bullard et al. (1950) discuss thermal convec-

tion in the core and indicate that resultant radial motions

require that material near the outside of the core rotate with

a lesser angular velocity than that inside, in order that angu-

lar momentum be conserved. Yukatake (1972) suggests that the

angular velocity of the mantle changes with conductivity var-

iance of the lower mantle (which is important if a small amount

of leakage of the toroidal field occurs from core into mantle);

he further notes that a one percent change in the dipole moment

may cause a variation in Earth's rotation rate of 5xlO~12 sec"1;

thus leaving open the possibility that the dipole could be a

cause of short-period fluctuations in Earth's rotation, par-

ticularly so if toroidal field leakage participates in the coup-

ling. Rochester (1960) considers the moments of inertia of core

and mantle and determines that a decrease in the rate of west-

ward drift by one-tenth of its steady-state value lengthens the

day by 1.3 msec. Equations relating the westward drift have

been suggested by James (1968), Nagata (1962),(1965), Rikitake

(1966) and Winch (1968) .
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2.18 Gravity

Use of Earth satellites and improved observational accu-

racies have afforded, not only means, but reasons, for more

extensive knowledge of the Earth's gravity field. The gravity

field at altitude is, effectively, an upward continuation of

the Earth's surface gravity. Differences between observed

gravity and normal gravity (See Section 2.7), taken at ground

level, are high-frequency phenomena and can be characterized

only in discrete form. The situation becomes more analytic

with altitude, and methods of spherical harmonics become quite

effective and useful there in describing the gravity field.

Zonal harmonic coefficients can be obtained from long-term

orbital observations by analyzing perturbations and secular

changes in orbital elements; tesseral coefficients can be

determined only with precise tracking of orbital oscillations.

The keys to comprehensive results are uniform distribution of

observational data, a variety of satellites with appropriate
-v

orbital inclinations, provisions for properly treating atmo-

spheric drag, and accurate and varied observational systems.

A great amount of ground gravity data has been accumu-

lated and utilized in determining the geopotential configura-

tion and the parameters of a best-fitting representative

ellipsoid. Data holdings (1959) are given by Heiskanen and

Moritz (1967), but the collection has been continuing, subject

only to physical and political constraints. Procedures for

utilizing ground gravimetric data for geoid determinations are
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described extensively in the literature.33 These data have been

advantageously combined with satellite gravimetry, providing a

complementary filtering effect. Results have been reported by

a number of authors.31*

Satellite altimetry offers a means for directly deter-

mining the ocean geoid, and thus the gravity field. Mourad

(1975) reports on pending experiments, as well as the first

effort on Skylab in 1973 (McGoogan et al. (1974)). Additional

reports35 indicate considerable promise for this method. The

pelagic tides will enter into this approach in the following

manner: theoretically, satellite altimetry (SEASAT) could pro-

vide means for completing the amphidromic characterizations,

but the tidal influence on the satellite path could render this

somewhat of a "bootstrap" operation, unless the SEASAT could be

monitored to isolate these perturbations.36

Other satellite gravimetric methods are mentioned by

Chovitz (1975), involving satellite-to-satellite tracking tech-

niques (Comfort (1973) and Yionoulis and Piscane (1972)). A

satellite application of gravity gradiometry is described by

Forward (1973), and it is compared with other systems by Glaser

33 See, e.g., Bomford (1971), Caputo (1967), Heiskanen and
Moritz (1967), Heiskanen and Vening Meinesz (1958), Stokes
(1849), Uotilla (1960), Zhongolovich (1957).

311 See Caputo (1967), Cook (1963), Gaposchkin (1974) , (1975) ,
Hopkins (1972), Koch (1974), Lerch et al. (1974), Rapp (1971).

35 These include Brown and Furry (1973), Lundquist and Gia-
caglia (1972), McCandless (1974), Weiffenbach (1972).

36 See Musen and Estes (1972), Musen and Felsentreger (1973).
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and Sherry (1972) .

Limitations of spherical harmonic determination and va-

lidity of expression are discussed by Gaposchkin (1975) . He

suggests that satellite data are strong only for degrees less

than 12, and spherical harmonics are probably reliable only

for degrees less than 10. This is in general keeping with an

empirical relationship given by Kaula (1968) : the magnitude of

normalized coefficients of the Earth's gravitational field up

to about degree £,=15 is approximately 10~5/&2. Despite these

limitations, it was decided that the gravity field of Gaposchkin

(1974), in spherical harmonics to the 18th degree and order,

should be utilized to those extents in the EOM.

Spherical harmonics for gravity have traditionally been

the fully normalized ones shown in Eqs. (51) through (53) .

Gravity is given (for Earth-bound points) by

18 n

"'(n+1) (£)
nV[cmcosmX+Sm sinmx]p'm - |u2r (1-P'2 //5) , (193)

n=0

where:

p = [Vcos'B+b'sin^l*5 = a[cos2 &+ (1-e2 ) sin

3 = tan-1 [(l-e2Ptan<j>J + 1" .71Hsin2(f>xlO-" ,

0 = 90°-<t>' , r = p+H, < j » ' = <J>+l".7lHsin2<J>xlO-" >

a and b are the Earth's semi-major and -minor axes, respectively

(a = 6378160 meters, b = 6356774.719 meters), GM is the product

of the universal gravitational constant and the Earth's mass



106

(GM = 3.986010 x 101* m3sec~2), (p,B,A) are the ellipsoidal co-

ordinates of the point, <}> and X are the latitude and longitude

of the point, respectively, Cm and Sm are normalized harmonic

coefficients, H is the altitude of the point in meters, P'm are

fully normalized Legendre polynomials, to is the Earth's rotation

rate (u> = 7.292105 x 10~5sec~1). For satellite points, the

right-hand term in (193) is disregarded, and GM = 3.986013 x 1011*

m3sec~2 to include the atmosphere.



Chapter 3

EARTH AND OCEAN MODULES

3.1 General Design

Each modular component of the EOM has the facility for

ready update when it is desired to change or increment the

system. The main program is known as the Input-Output pro-

gram (IOP), and is the place where the user selects a par-

ticular operational mode, introduces data to be processed,

and necessary input-output coordinate transformations are

made. Details of mode selection are given in Section 3.2.

All constants and other parameters which apply to indi-

vidual geophysical modules are put into Common statements

where possible; data changes are made in the modules where

they are introduced. A description is made in each of the

sections giving geophysical module details (Sections 3.3.1

through 3.3.8) of each parameter identification code and its

location.

In principle, the IOP would have a direct tie to each

geophysical module (GM) as shown in the block diagram in

Figure 3.1, and in the flow diagrams in Figure 3.2. It was

decided, however, for convenience, to tie only four of the

modules to an IOP, and to maintain the remaining four'' as

individual units. Factors bearing on this decision are dis-

cussed in Sections 3.2 and 3.3.

107
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Figure 3.2 Flow Diagrams
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Figure 3.2 Flow Diagrams (Continued)
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Figure 3.2 Flow Diagrams (Continued)
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In Figure 3.1, the (X.)Q input to the precession module

defines the epoch of choice for the inertial reference system;

inter-module data flow'is shown by two-way and one-way symbol-

ism. The first two diagrams in Figure 3.2 show the input and

output stages, respectively; interfacing points rAj and\FJ are

keyed to all GM programs. Direct data exchange, not involving

the IOP, are for interface points (Bj through (E), respectively.

Inter-module operations requiring iterative interactions are

shown in the third and fourth diagrams in Figure 3.2.

Input-Output Modes

The flow diagram of the system of four modules tied into
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Figure 3.3 Flow Diagram of Four-Module System
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the IOM is shown in Figure 3.3. The system is designed to

accept station coordinates in either rectangular geocentric

(metric units) or geodetic (sexagesimal format) with eleva-

tions in meters. Output, for all cases, is in the geodetic

format. Additional options can be readily introduced, but

it is felt that for such isolated cases as might occur., the

simplest procedure would be to transform them in a separate

program. The probability of using the geomagnetic field and

gravity modules exclusively for certain operations led to the

decision to keep these separate and intact; they are not

directly related to the IOM, but the IOM can be used to con-

vert rectangular coordinates to the required geodetic values

for the modules. The conversion system built into the IOM

can be reproduced for either, or both, of these latter two

modules.

The precession module has little relationship with

other modules, and its complexity and time-consuming compu-

tational characteristics indicates a separate role as the

best practice.

The polar wobble module requires an elaborate update

procedure which makes its integration with other modules an

impracticable concept. Specifics are discussed in detail in

Sections 3.3.2 and 5.2.

Input data and updating procedures are discussed in

the individual GM sections.
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3.3 Geophysical Module Details

3.3.1 Precession Module:

The precession module (EOMPMA) includes 11 subroutines

in the calling sequence indicated in Figure 3.4. Data and

Figure 3.4 EOMPMA Subroutine Calling Sequence

( EOMPMA J

( INITIAL ) f SOLVE J

f EPHEM ) RKVS1 ) r*of RITE )

RKM ( M1M2 Jj
f LOOKUP J C HEAVEN J

( CURVE J
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parameters are located as follows:

EOMPMA Function is Main; no data.

INITIAL Accepts read-in data. These include:

NPRT = Number of print intervals;
IEPOCH = Epoch of astronomical constants. It is either

1900 or 1950 (Default). (In Format 502 card, a non-zero element
in column 10 calls for 1900.)

TSTART = Julian starting date.
DELP = Print intervals.
TP = Print interval cutoffs.
AO(1) = Initial Theta value (in radians) for TSTART.
AO(2) = Initial Psi value (in radians) for TSTART.
AO(3) = (Leave blank).
XMO(I) = (Leave blank).
CM = Polar moment of inertia.
AM = Equatorial moment of inertia.
RR = Adopted constant for Earth's rotation.
AA = Earth's semi-major axis.
GK = Gravitational constant.
XMASS(l) = Sun's mass.
XMASS(2) = Moon's mass.

(These cards are punched and located in data section. All
above data preceding CM must be updated for user's option.
Item CM and those following may be kept at the user's option.)

BLOCK DATA Not a subroutine. Contains data not subject to
change.

EPHEM Parameter NTTP = 366 indicates maximum number of days
permissible for a run. Routine reads ephemeris data. These
data are those provided by the US Naval Observatory converted
into EOM format. (Coverage: 1970 - 1980.)

SOLVE Coordinating program for data interpolations, integra-
tions, and associated computations. No variable data.

RKVSl Integrating routine. No variable data.

RKM, LOOKUP, HEAVEN, CURVE Concerned with interpolation and
application of ephemeris data. No variable data.

PHI, M1M2 These are used to calculate the Euler angle Phi
and the direction cosines, respectively. Direction cosines
indicate diurnal motion of the pole. No variable data.

RITE Controls the output printout. No variable data.
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Program outputs are the Euler angles relating the

ecliptic of 1950.0 to the Earth's axis of figure, and the

diurnal luni-solar axis motion in arc seconds.

3.3.2 Polar Wobble Module:

The polar wobble module is a single program which

develops a simulated model of the polar coordinates at

mid-monthly points. Data are output in punched card form

as well as in print. Simulation is a curve fitting tech-

nique using the equation,

_ iati a i2irt^ a -i2irti sa i4irti
mi ~ moe + o-2ir e o+2ir e a-4ir e

_i»- m
Sti + J k ( l - e k ) , (194)

k=l

where all quantities are complex except for t.; m^ are the

polar coordinates; mQ are the initial coordinates at time t0;

T are excitation functions (with subscript a and sa referring

to annual and semi-annual, respectively); a is the adopted

value of the Chandler frequency (taken here as 5. 3 (1+0.01«i) ) ;

S is the secular drift in the pole; J^ are Heaviside step

functions introduced at times, T^, and m is the number of step

functions. Step functions and other elements of Eq. (194) are

obtained from supplementary programs and operations as 'follows;

Polar motion data of the IPMS and ILS are not provided

at convenient equal time intervals which are necessary for

Fourier analysis. These are converted using WBBLCONV, an
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adaptation of a cubic spline curve fit. Output is in punched

cards as well as in print.

Transformation from the time to frequency domain and

return is through use of a Fast Fourier Transform (FFT) pro-

gram called FOURT. Utilizing FOURT as a subroutine to programs

POWER, REVTRFM AND SPECTRUM, we obtain the following:

POWER provides the power spectrum of the polar wobble

time series. The annual-and semi-annual power contributions

are noted and reduced to the average levels in those frequency

regions.

REVTRFM returns the frequencies with adjusted powers to

the appropriate time series. This provides polar wobble data

with annual and semi-annual effects removed. Both POWER and

REVTRFM outputs are in punched cards as well as in print.

SPECTRUM is, in general, the same as POWER with some

modifications including Hanning and a logarithmic power out-

put. Output is in punched cards as well as in print.

ATMOSPH calculates the annual and semi-annual excita-

tion functions from the REVTRFM output, for various Chandler

frequencies and dissipation function values. It also calcu-

lates the annual effects in terms of X and Y components.

Output is in print.
/

SUBATMO removes the determined annual and semi-annual

excitations from any polar wobble time series. Output is in

punched cards as well as in print.

CWBLANALY and CWBLANALY2 are used to determine the
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magnitudes and directions of the step functions required to

duplicate the actual polar motion. CWBANALY is used for the

initial investigation; when a number of step functions have

been determined, further operations must be through CWBANALY2.

The procedure is to determine the points in time which mark

the limits of a series of points which are generally equi-

distant along a smooth arc, for each particular section.

These times are introduced into the program, and corresponding

complex step values are determined. (Note: When continuing

with a subsequent series, the last two or so previously

determined step values should be discarded. The action to

take will be quite obvious from the punched or printed output.)

CORRPLOT is used to determine the mean position of the

pole for given periods over the extent of the polar motion

time series. Output is in print.

3.3.3 Earth Rotation Module:

The Earth rotation module is the first option of the

IOM routine. The input procedure is the same for all four

and is as follows:

The name of the multi-program is EOMIO. The first

data card is in Format 502 and takes the values:

NLC = Number of stations.
NTI = Number of intervals.
DELP = Spacing between intervals (time)
TSTART = Starting time (Julian date with a decimal

equal to .5; i.e., a UT = 0 hours.)
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PEPOCH = Epoch for the plate tectonics calculation given
in Julian date.

BIHIO = Tabular value of UT2-TAI taken from BIH smoothed
data (pink sheets in the annual report) for the TSTART value.
When only the Earth's rotation data is required, the value of
DELP should be taken as 5.0. Note, also, that TSTART should
be a multiple of 5 for most convenience in using this section
in an individual mode.

SECROT = Secular variation of UT2-TAI determined from
the most recent smoothed BIH estended series.

MNU(I) are default options for introducing or excluding
one or more of the IOM modules. A non-zero quantity in col-
umns 73,74,75,76 introduces EOMERA, EOMETA, EOMOTA, EOMPTA,
respectively, into operation.

The second and subsequent (1 through NLC) cards are

station description cards. The first element (column 1)

defines the type of coordinates. A "1" indicates rectangular

geocentric coordinates. Any other option indicates geodetic

(sexagesimal) coordinates. After the option is noted, the

card is read in its entirety in an appropriate program section.

Data read, in turn, are:

ICO = Coordinate option.
LOG = Station name.
(Coordinates) = Either X,Y,Z (option "1") or latitude,

longitude and elevation (default option). (H is the elevation.)
ITPN = Tectonic plate number.

The Earth rotation module parameters and constants are

considered firm and should be corrected only as provided in

the EOMIO input.

3.3.4 Earth Tide Module:

The Earth tide module includes 6 subroutines in the cal-

ling sequence indicated in Figure 3.5.' Functions are similar

to those subroutines of EOMPMA of like name. HEAVER is anal-

ogous to HEAVEN, etc., with the function of RITE being assigned

to EOMETA. Constants are fairly well established within these,
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Figure 3.5 EOMETA Subroutine Calling Sequence

( BCMIO J

- 1 ——*•--,
EOMETA

( EPHEM J V SOLVE2 J

f TIDAL )

f LOOKUP J ( HEAVER )

( CURVE )

except for XLH = 0.59, XK = 0 .29 , XLL = 0.07, which are the

Love numbers h, k, I, respectively, which the user may care

to vary.

S

3.3.5 Ocean Tide Module

The ocean tide module is, of necessity, incomplete

until amphidromic data for all six principal (semi-diurnal
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and diurnal) tides become available. Presently we have in-

corporated a preliminary set of M2 amphidromic data to set

the procedure for future availability of these data. The

procedure for expanding the system is quite obvious from the

format. The procedure for defining data points is through

use of a rectangular mercator system of 6 grid intervals.

The system has a Northing of 102°, a Southing of -120°, an

Easting of 282° and a Westing of -72°. There will be a total

of 2280 points for which phase angles and amplitudes are

given. Conversion of geodetic coordinates to this system

are given by

= ln(cot(45° - 4 > ) ) - , (195)

E = X - 180° , (196)m

where 4>, A are the geodetic coordinates with the additional

provision that X is taken as positive from 0° to 360°.

Constants are fairly firm with the exception of values

VI (I), which are amplitudes for the S . S , M and M longa sa m r

period tides (in mm) , which may be varied at the discretion
«

of the user.

3.3.6 Plate Tectonics Module:

The plate tectonics module constants for plate motions

are not considered firm, but they are fairly representative.

These rotation parameters are given as W(I,J), in units of

10"7 deg/yr, and are identified by number in Table 2.4.
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3.3.7 Geomagnetic Module:

The geomagnetic field module EOMMFA treats the field

in terms of spherical harmonics using coefficients developed

by Cain et al. (1967). The input data are:

LOG = Station name.
PHI = Latitude (degrees and decimal.)
XLAM = Longitude (degrees and decimal.)
H = Elevation in meters.
MAXN = 10 = Maximum degree of harmonics used. This may

be taken as less if desired.
LFN = Type of Legendre polynomial. For EOMMFA this is

type 3 (Schmidt partially normalized form).
IHAR = Option for ellipsoidal harmonics. Leave blank.
NEWAB = Default option. First station card carries a

"1"; is followed by the harmonic coefficients, and these are
followed by remaining station data cards with NEWAB blank.

Outputs are the magnetic field parameters described in Sec-

tion 2.17.2.

3.3.8 Gravity Module:

The gravity module uses spherical harmonics, with coef-

ficients developed by Gaposchkin (1974). Input data for

EOMGMA is the same as for EOMMFA except that MAXN =18,

IHAR = 4 (fully normalized form), and there is no default

option. Outputs are the gravity at the indicated altitude

in two forms: G, which is the gravity of a body rotating

with the Earth, and, GP, which is the gravity for a body

independent of the Earth's rotation.



Chapter 4

APPLICATIONS OF THE EARTH AND OCEAN MODEL

4.1 General Note on Applications

There are several areas where in-depth studies of geo-

physical phenomena can be advantageously conducted using the

EOM format; however, the complexity of Earth and ocean dynam-

ics preclude, or at least, inhibit, an effective predictive

application. Data measurements made with already achieved

high precisions provide a wealth of material for evaluation

of cause and effect. Areas of best application are Earth's

rotation and polar motion, the geomagnetic and gravity fields,

and the pelagic tides.

Effective time services provided by the BIH and improved

timing and rotation monitoring systems can be correlated with

atmospheric and other disturbing sources to develop more pre-

cise estimates of secular and aperiodic time changes. SEASAT

provides an excellent opportunity to establish the pelagic

tidal components in an empirical rather than the presently

employed, theoretical, but unnatural procedure.

There appears to be a less than coincidental relationship

between the drift of the geomagnetic field and variation of the

Earth's rotation rate. Correlations could be detected and ex-

ploited through an EOM application.

Polar motion studies can be effectively made using the

EOM and some work was done in this area while conducting this

123
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study. The purpose was to test an hypothesis advanced by

Smylie and Mansinha (1968), and others, that the irregular

and large variations of the polar path from its theoretically

proper trace were due to readjustments of Earth's mass associ-

ated with large earthquakes. The report of this investiga-

tion is given in the following section.

4 . 2 Polar Wobble Study

Details of polar wobble have been given somewhat exten-

sively in Section 2.14 and will not be repeated here. The

polar motion is mathematically described in Eq. (194), and,

given enough Heaviside step functions, any polar path can

be faithfully reproduced. The problem lies in assigning

causes for these steps, to the amplitudes and frequencies (of

occurrence) necessary for the fitting configuration.

The atmospheric influence was rather thoroughly tested

by Wilson (1975) and considered inadequate as the motive

force. A number of authors have utilized Fourier techniques

to determine the atmospheric influence. The consensus was

that it was a highly predictable phenomenon! with a remarkably

constant annual (and to a lesser degree, semi-annual) period,

but not sufficient to cause the observed effects.

An alternative has always been to assume errors in the

astronomic observations and reductions; however, the ILS

observations conducted under rather stringent conditions over

a period exceeding 75 years, have exhibited internal consist-

encies not warranting the noted excursions. The ILS procedure
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to utilize the same stars at all stations for their observing

program precluded significance of systematic star position

errors. Some systematic error problems still existed, pri-

marily that of evaluating instrumental constants. In the last

two decades, the BIH has made a significant contribution to

polar motion monitoring. More recently, doppler observations

on artificial satellites (by the DPMS) have provided polar

motion data, and these are combined with the BIH in their

reports. Although ILS data is not completely consistent with

BIH data, they exhibit the same trends, and the indication is

that some factor other than observation error is involved.

The only remaining "culprit" would be some fairly sudden

changes in distribution of Earth's mass; possibly signalled

by a large earthquake. This logical premise has been investi-

gated by geophysists and seismologists with varying results.

The problem hinges on finding enough mass shift to cause the

looked-for results. The consensus is that phenomena associated

with earthquakes are insufficient by a factor of about 10 to

account for the polar wobble transients.

In connection with the EOM development, a test was made

to determine whether an approximation to the polar wobble

could be developed assuming that influences took effect only

at times of very large earthquakes. Earthquakes and their

dates were taken from O'Connell and Dziewonski (1976) and

involved 30 events from 1901 through 1964. Magnitudes were

8.4 or larger on the Richter scale. Using a program called



126

WBLSMOOTHXY, at earthquake times, the Heaviside step values

were determined to best fit ILS data (corrected for atmospheric

effect) by a smooth spiral (exponentially decaying due to a

dissipation factor of 50) joining fixed points. Values of the

determined Heaviside step values are shown with other data in

Table 4.1. The program output included a new set of polar

data points which, when plotted, were reasonably consistent

with plotted ILS values

The average earthquake effects (shifts in the center of

rotation of polar axis from one earthquake to the next) are

11.9 in X and 12.9 in Y (Units are 10 8 radians) or a diagonal

value of 17.5, or 36 msecs of arc. Values determined by

O'Connell and Dziewonski averaged to 19 msecs of arc. The

determination was within a factor of 2 of the seismologists'

estimate, well within the uncertainty of their deductions.

There was no correlation between direction of step values,

but their estimates were developed from rather uncertain pro-

jections to subsurface faultings. Comparisons of ILS and

the simulated earthquake traces are shown in Figures 4.1

through 4.3 and are representative of the group. The units

in the figures are 10"8 radians.

The conclusion which might be drawn from this experi-

ment is that it is quite possible that the source, inducing

variations in radii of the polar motion trace, may be

mass redistributions in the Earth signalled by very large

earthquakes.
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Figure 4.1 Polar Wobble Plot 1

128

50-

oou 0-

-50

-100

-100 -50 50
REAL COORD.

Eq.

ILS Units = 10~8 rad.

100



100"

50

Figure 4.2 Polar Wobble Plot 2
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Figure 4.3 Polar Wobble Plot 3
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Chapter 5

SUMMARY OF THE EARTH AND OCEAN MODELING PROGRAM

The EOM in its present state is a first-order approach

to a geophysical model of the Earth's dynamics. Period of

effort was inadequate to effectively exploit interactions

between, for example, the ocean and Earth tides; i.e., the

secondary effect of the ocean tide. The text of the report

provides a fairly concise, yet reasonably complete overview,

of the problems involved in Earth and ocean modeling. The

programs should be checked more completely than was possible

in the allotted contract time. It should certainly be con-

tinued and adapted to some active experimental roles.

Programs and data are on magnetic tape. In addition,

listings, with sample data inputs, are provided for the con-

venience of the user. Approximately 4,000 tidal stations

(data from the International Hydrographic Office at Monaco)

are in punched card form. These could be applied as boundary

conditions in the event that it was decided to investigate

amphidromic systems.
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