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FOREWORD

An analytical study and assessment of state-of-the-art wash
water reclamation technology for advanced manned spacecraft is
presented. All non-phase-change unit operations, unit processes and
subsystems currently under development by NASA are considered.
Included among these are: Filtration, Ultrafiltration, Carbon Adsorp-
tion, Ion Exchange, Chemical Pretreatment, Reverse Osmosis, Hyper-
filtration and certain Urea Removal techniques. Performance data
are given together with the projected weights and sizes of key
components and subsystems. In the final assessment, a simple multi-
filtration, approach consisting of surface-type cartridge filters,
carbon adsorption and ion exchange resins receives the highest rating
for 6-man earth orbital missions of up to 10 years in duration.
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1.0 INTRODUCTION AND SUMMARY "

This is an analytical study and assessment of state-of-the-art wash
water reclamation technology. It covers all non-phase-change unit opera-
tions, unit processes and subsystems currently under development by NASA.
Each approach to wash water reclamation is described in detail. Perfor-
mance data are given together with the projected weights and sizes of
key components and subsystems.

This study concludes that a simple multifiltration subsystem composed
of surface-type cartridge filters, carbon adsorption and ion exchange resins
is the most attractive approach for spacecraft wash water reclamation in
earth orbital missions of up to 10 years in duration. The high rating for
this approach derives mainly from its basic simplicity, its ability to
operate at low pressure, its lack of interfaces with other subsystems and
its high safety and adaptability to flight conditions.

The final comparison in the tradeoff assessment was between multi-
filtration and reverse osmosis. Although previous studies (see Ref 1)
have shown reverse osmosis subsystems to have a lower total equivalent
weight for long duration missions than multifiltration subsystems, several

' recent developments have occurred to lessen that advantage. These are:

1. There are fewer waste contaminants in wash water than
previously projected (total solids = 5.6 vs. 11.9 g/man-day).

2. Higher carbon loadings have been achieved than previously
(0.167 vs. 0.047 g TOC/g carbon).

3. Higher-capacity ion exchange resins have recently been
identified (1.5 vs. 1.0 meq/g).

The final assessment (see Section 8) shows that multifiltration is
considerably lighter than reverse osmosis but uses somewhat more expendable
material, so that after a period of six or seven years the total equivalent
weight of multifiltration becomes a bit greater than for reverse osmosis.
However, this disadvantage-is overcome by other assessment factors.
The overall score, on the basis of 100 points maximum, is 89.0 for multi-
filtration compared to 67.7 for reverse osmosis.



It is concluded that multifiltration will be a lighter, simpler, more
reliable flight system than reverse osmosis, at least for missions up to
10 years in duration, and in addition, if NASA develops multifiltration
rather than reverse osmosis to flight status, considerable cost savings
will accrue by not having to address the following problems, which are
exclusively associated with reverse osmosis.

• Development of a high pressure (400 to 1050 psi)

feed pump.

• Development of reverse osmosis modules.

• The need for development of a pretreatment technique for RO brine
that will control foaming and volatile component carry-over in
the VCD unit,

• The need for development of a pretreatment teachnique to adjust
and control the pH of waste wash water to the range preferred
by the reverse osmosis membrane of choice.

• The sensitivity to the choice of cleansing agents.

• The need for development of a pressure damping device .

• The need for development of a back pressure regulator.

There are no equivalent development problems associated with
multifiltration.



2.0 GROUNDRULES AND BASIC ASSUMPTIONS

2.1 Crew Size. Six.

2.2 Wash Water and Soap Usage Model
This model was defined in the contract statement of work and is

presented in Table 2-1. It was originally developed in Reference 1, which
discusses the rationale for selecting the values shown.

Item

Clothes Washer
(wash and rinse)

Shower

Personal Hygiene
& House Keeping

Dishwasher

Experiment

TOTAL:

Table 2-1. WASH

Water
1 b/ man -day

24

8

4

0

1

37

WATER AND SOAP

Usage
kg/man-day

10.89

3.63

1.81

0

0.45

16.78

Sodium Dodecyl benzene Sulfonate (^i2H25~^6H4

USAGE MODEL

Soap Usage
(active ingredients)

g/man-day .

0.6

1.2

0.2

0

0

2.0

-S03Na), molecular weight=348

2.3 Wash Water Solids Input Model
This model is shown in Table 2-2. It was developed during the first

phase of the contract (see Reference 2) and is based on experimental data
obtained under rigorously controlled conditions. The values are approximately
one fourth as much as previously used values based on theoretical projections.

2.3.1 Ion Balance
In order to obtain an ion balance on the wash water solids input model

shown in Table2-2,it is necessary to know the amount of alkalinity present.
Unfortunately, alkalinity was not one of the parameters measured during the
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Table 2-2. WASH WATER SOLIDS INPUT MODEL

(mg/man-day except as noted)

LAUNDRY WATER
Clothes &
Towel Mat'! Crew

SUSPENDED SOLIDS
Particle Size:

>30yin
8 to 30ym
3 to 8ym
1.2 to 3pm
0.45 to 1.2ym

TOTAL SUSPENDED
SOLIDS

DISSOLVED SOLIDS:

Chloride
Lactic Acid
Sodium
Urea
Potassium
Calcium
Ammonia
Magnesium
Iron
Copper
Soap1
Other?

TOTAL DISSOLVED
SOLIDS

TOTAL SOLIDS

135.
224.

4.7
0
4.7

368.

23.5
6.9

96.8
90.2
13.8
12.5
3.1

13.9
1.9
0.30
0

68.8

332~i

700.

22.3
165.

0
2.4

12.9

98.9
152.0
96.4

253.
63.5
4.9
6.7
5.5
0.13
0.20
0

560.

T24T

1444.

PHYSICAL AND CHEMICAL PROPERTIES:

Turbidity
(FTU- 1/man-day) 432.
Color
(after filtration
to 0.45ym)
(CU -1/man-day) 177.

Specific Cond.
(ymho-1/cm-man-
day) 221.

TOC (after filtra-
tion to 0.45ym) 39.

631.

94.

880.

214.

SHOWER
WATER
crew

470.
168.
4.4
0.3
5.9

649.

96.6
61.9
109.
257.
70.4
3.4
1.8
1.0
0.14
0.22
0

473.

1074̂

1723.

893.

161.

484.

246.

SOAP1

0
0
0
0
0

,1
.7

0
3.6

151.
0.3
0.
0.
0
0.2
0
0

1844
0

2000.

2000.

406.

1109.

TOTAL

627.
557.
9.1
2.7
23.5

1219.

219.
224.
453.
600.
148.
21.
11.
20.
2.2
0.72

1844
1102

,5
,6
.6

4647.

5866.

1956.

432.

1991.

1608.

TOTAL

ppm

(water = 16.78
1/man-day)

37.4
33.2
0.5
0.2
1.4

72.7

13.1
13.3
27.0
35.8
8.8
1.3
0.70
1.2
0.13
0.043

110.
65.7

350.

116. FTU

25. CU

118. ymho/cm

96.

ISodium Dodecylbenzene Sulfonate (Ci2H25~c6H4~so3Na)> molecular weight = 348.
^Probably includes: free fatty acids, cholesterol, triglycerides, glucose, amino
acids, waxes, creatinine, squalene, paraffins, uric acid and other organic materials,



experimental study of wash water constituents. A guess at the amount of

alkalinity present can be made by assuming the relationship between specific

conductance and alkalinity shown in Figure 2-1. This relationship has been

observed by URC in natural water sources. When the pH is less than 8.3,

then all of the alkalinity appears as HC03~ and none as C03~. This would
be the case for wash water.

The specific conductance of the ionic species in wash water can be

calculated by subtracting out the soap contribution as follows:

llSymho-cn
1 . 406 ymho-1-cm" W

16.78 l-man'i-day'1
Q ymho.cm -l

Then, from Figure 2-1 the alkalinity corresponding to this value of specific
conductance is : HC03~ = 52 mg/1.

Figure 2-1. OBSERVED ALKALINITY vs. SPECIFIC CONDUCTANCE
FOR NATURAL WATER. (Results of URC Tests)

/ *>fc4

O 2o $o /oo /zo 140

Specific Conductance, ymho-cn

/go 200 220
1



An ion balance was calculated using this figure for alkalinity and is
presented in Table 2-3. The balance is remarkably close. In fact, it is a
good deal closer than is usually obtained in the best laboratories. The
criterion in Standard Methods (Reference 4) for an acceptable ion balance
requires the absolute value of the difference between the sum of the cations
and the sum of the anions to be less than or equal to the following formula:

|A ions] < 0.1065 + 0.0155 Z anions

In this case: |A ions| <_ 0.1065 + 0.0155(1.2189)

0.0001 < 0.1254

It is felt that the closeness of this ion balance should not be inter-

preted as validating the assumed value of-alkalinity.

Table

CATIONS

Ca++

K+

Na*

NH *
Fe
Cu++

ANIONS

HC03~

Cl"

2-3. ION B
INPUT

mg/1

1.3

1.2

8.8

18.0

0.7

0.13

0.043

52

13.0

ALANCE ON WAS
MODEL

eq wt

- 20.04

- 12.16

- 39.10

- 22.99

- 18.04

- 18.62

- 31.77

* . 61.02
v 35.45

H WATER SOLIDS

meq/1

0.0649

0.0987

0.2251

0.7829

0.0388

0.0070

0.0014

1.2188

0.8522

0.3667

1.2189



2.4 Duty Cycle.

See Reference 3. 8 hr/day, sunlit side, low earth orbit.

2.5 Electric Power Penalties.

See Reference 3.
1b/watt kg/watt

a) Continuous Power
Regulated 115 VAC, 60 hz 0.725 0.329

Regulated 115 VAC, 400 hz, 3 phase 0.710 0.322

Regulated 28 VDC 0.591 0.268

b) Sunlit Side Power (low earth orbit)

Regulated 115 VAC 0.351 0.159

Regulated 28 VDC 0.270 0.122

Unregulated 28 VDC / 0.154 0.070

2.6 Thermal Rejection Penalties.

See Reference 3.

a) Thermal Rejection to Air 0.25 0.113
b) Thermal Rejection to Coolant 0.18 0.082

2-7 Component Weights.
Component weights are for projected flight qualified units. Contractor

projections are used where available. Elsewhere, the values are URC best
estimates.

2.8 Spares.

A 30 per cent allowance for spares is added to the base weight.

2.9 Expendables.
Expendables are computed from the performance data summarized in

Section 3.

2.10 Wash Water Quality Standards.
Tentative standards for wash water were established in December 1971,

by the National Academy of Sciences, National Research Council at the
request of NASA Headquarters. A copy of the report is reproduced in Appendix
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B of Reference 1. The standards are summarized in Table 2-4.

Table 2-4. TENTATIVE STANDARDS FOR WASH WATER

PHYSICAL PARAMETERS

Color, cobalt units
Conductance, specific, ymho-cm at 25°C
Foaming

Odor

CHEMICAL CONSTITUENTS

Carbon, total organic, mg/1
Detergents
Lactic acid, mg/1
Nitrogen, ammonia, mg/1
Oxygen demand, chemical, mg/1
PH
Sodium chloride, mg/1
Solids, dissolved, at 180°C, mg/1
Urea, mg/1

1 15

£ 2000

Nonpersistent
more than 15 sec.

Nonobjectionable

£ 200

Not specified

£ 50 .

£ 5.0

Not specified

5.0 to 7.5

£ 1000

£ 1500

< 50

MICROBIOLOGICAL

Micro-organisms, number per ml, standard
48 hr plate count

< 10



3.0 UNIT OPERATIONS AND PROCESSES

This section describes the unit operations and processes currently
under development by NASA for use in non-phase change wash water reclama-
tion subsystems. In general, the subsystems are designed to accomplish
three major functions:

a) removal of suspended materials,
b) removal of dissolved materials,
c) control of microbiological growth.

3.1 Removal of Suspended Materials.
Suspended materials include all those materials that are not in true

solution. Turbidity, which is a measure of the amount of light scattered
by a suspension, is an indication of the presence of suspended materials.
Suspended materials may be removed by various types of filters. A number
of filter types have been studied in connection with space wash water and
various amounts of performance data are available. In general, both ultra-
filtration and reverse osmosis remove essentially 100% of the suspended
materials from a solution. All other filters remove less than 100%.
Reverse osmosis, in addition to removing suspended material, also removes
many soluble materials. Ultrafiltration and common filters do not remove
soluble material. Ultrafiltration can be designed to operate with very
little fouling and performance degradation. Common filters usually plug
up in time and must be replaced. However, some designs may be cleaned by
backflushing. The water required for backflushing represents a loss in
processing efficiency, a ^characteristic that filter backflushing has with
Ultrafiltration and reverse osmosis. Reverse osmosis, unlike Ultrafiltration,
is sensitive to suspended materials in respect to fouling and performance
degradation. Some form of pre-filtration is usually recommended for reverse
osmosis when applied to space wash water. Chemical pretreatment has been
used to coagulate colloidal material to enhance its filterability.

3.2 Removal of Dissolved Materials.

Dissolved materials are commonly divided into two major categories:
organic and inorganic. NASA has investigated activated carbon for the
removal of organics, ion exchange resins for the removal of inorganics,
reverse osmosis for the removal of both organics and inorganics, electrolytic
pretreatment for the removal of organics and chemical pretreatment for the
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precipitation, flocculation and coagulation of both organic and inorganic

materials.

3.3 Control of Microbiological Growth.
In NASA sponsored programs the following techniques have been used

with varying degrees of success to control microbiological growth:
a) microbiological filters
b) ultraviolet irradiation
c) addition of biocides
d) operation at pasteurization temperature, 74° C (165° F)
Microbiological filters and ultraviolet irradiation were used in the

McDonnell Douglas 60-day manned chamber test (see Reference 8) and failed
to satisfactorily control microbiological growth. Biocides must be used
in relatively large doses (see Reference 16) to assure adequate microbio-
logical control and thus they impose a large penalty on adsorption and other
types of. reclamation processes.. The current NASA method of choice is opera-
tion at pasteurization temperature. This has been tried by a number of
different investigators and found to work satisfactorily when system temp-
eratures are maintained near 74°C (165 F),

3.4 Filtration.

Some of the types of filters that have been evaluated with space wash
water and their ability to remove suspended materials (as judged by tur-
bidity removal) are listed in Table 3-1.

Table 3-1. TURBIDITY REMOVAL FROM SPACE WASH WATER BY
VARIOUS FILTERS

Type of Filter
Sand 70
Glass Fiber 75

0.9 ym absolute 82

0.45 ym absolute 89
Ultrafiltration 98.8

Turbidity Removal, % Source of Information
Abcor, Reference 5
Abcor, Reference 5
McDonnell Douglas, Reference 6
Umpqua Research, Reference 2
Abcor, References5,7
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Surface type cartridge filters were the first type used for removal of

suspended materials from space wash water. This type has been used in

several manned chamber tests with acceptable performance. Very little
R&D work has been done, however, toward achieving the higher filter loadings

that are potentially possible with an optimum choice of the size, type and

number of graded filters used in series.

In the McDonnell Douglas 60-day manned chamber test (see Reference 8)

a series of 30, 10, 3, 0.25, 0.15, 0.15 and 0.12 ym surface-type cartridge
filters were used. No loading data were reported. In the McDonnell Douglas

90-day manned chamber test (see Reference 9) 30, 3 and 1 ym surface-type
cartridge filters were used in series. The loading data for these filters

is presented in Table 3-2.

Table 3-2. FILTER LOADING DATA FROM McDONNELL DOUGLAS 90-DAY TEST
(SURFACE TYPE FILTERS)

Filter Size, Total Solids
ym Filtered, g

30 190.7

3 41.7

1 0*

*Below detectable limit.

Wt of Each
No of Filters Filter, Filter Loading,
Used, # 9 9 solids/g filter

4 100 0.477

2 100 0.209

2 100

At NASA Langley Research Center experiments were conducted on a
filtration-reverse osmosis technique for purification of domestic wash water
(see Reference 10). The experimental system contained a series of 50, 25,

10, 5 and 1 ym depth-type cartridge filters followed by a hollow-fiber
reverse osmosis module. This series of filters did not prevent fouling
of the hollow-fiber reverse osmosis module during the test program. The

complete set of filters was changed when the process flow dropped to a
predetermined value. The average loading for two filter sets is shown in

Table 3-3.
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Table 3-3

Filter Size,
jam

50

25

10

5

1

. FILTER LOADING DATA FROM NASA LaRC DOMESTIC WASH
WATER TESTS (DEPTH TYPE FILTERS)

Total. Solids
Filtered, g

32

47

46

109

64

No of Filters
Used, #

2

2

2

2

2

Wt of Each
Filter, g

454

454

454

454

454

Filter Loading,
g solids/g filter

0.0352

0.0518

0.0507

0.1200

0.0705

It is impossible to determine from thesedata how many of the filters

were really loaded to their limits. Individual pressure drop data would be

most useful in this respect. Also, the particle size distribution implied

in Table 3-3 cannot be compared to values in Table 3-2 or Table 2-2 because

the filter ratings are nominal versus absolute and the wash water is domes-

tic versus spacecraft type.

The particle size distribution of the wash water model (see Table 2-2)

indicates that a better series of filters than that shown in Table 3-2.

(30, 8 and 1 ym) would be 30, 8 and 0.45 ym, which will be used for the

present study. The 30 ym is assumed to have the same loading factor as the

30 ym filter in the 90-day test. The 8 ym filter is assumed to have the

same loading factor as the 3 ym filter in the 90-day test. The 0.45 ym

filter is assumed to have the same life as the 8 ym filter (in the 90-day

test the 1 ym filter had the same life as the 3 ym filter). With these as-

sumptions, the expected usages and loadings were calculated and are shown

in Table 3-4.

The physical size and weight information for these surface-type

cartridge filters is summarized in Table 3-5.
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Table 3-4. EXPECTED USAGES AND LOADINGS OF SURFACE-TYPE
CARTRIDGE FILTERS

Filter Size, Solids Filtered,^ Filter Loading, Filter Usage
ym g solids/man-day g solids/g filter g filter/man-day

30 0.627 0.4771 1.31

8 0.557 0.2092 2.67

0.45 0.0353 0.0128 2.673

TOTAL 1.2193 0.6988 6.65
assumed loading (see 30 ym filter, Table 3-2)

2assumed loading (see 3 ym filter, Table 3-2)
o

assumed life (same as 8 ym filter)
see Table 2-2 for total particle size distribution of suspended solids

Table 3-5. PHYSICAL SIZE AND WEIGHTS OF SURFACE-TYPE
CARTRIDGE FILTERS

Installed Installed
Item Weight, Kg Dimensions Volume, cm3

Housing 0.51 10 cm diam x 36 cm

Filter element 0.1 6.6 cm diam x 25 cm

projected Flight Weight
actual weight of a commercially available off-the-shelf

383

• 130

element



14

3.4.1 Filtration with Back-Flush Cleaning.

Martin Marietta Corporation (see Reference 11) has investigated a
concept for cleaning surface filters by backflushing. A schematic of
Martin's subsystem is shown in Figure 3-1.

Figure 3-1. FILTER BACKFLUSHING DEVICE (Ref 11)

The filter to be cleaned is placed in the position indicated and back-
flushed with impingement jets for 2 to 5 minutes. The filter has to be
specially designed for backflushing and to fit the backflush unit. The
solids that are dislodged by backflushing are concentrated by centrifugal
force in the vortex separator and discharged from the unit. The small
amount (10 to 15%) of sol ids that are not removed by the vortex separator
are removed by the system backup filter. When the backup filter becomes
loaded, it is inserted in the cleaning position and backflushed in the
same manner as any other filter.

The Martin subsystem has been successfully tested in zero-gravity
flights using graded road dust and distilled water. It has not been
evaluated with real wash water. For the purpose of this study it is
assumed that the output solids are contained in a slurry composed of
90% water and 10% solids.



15

3.5 Ultrafiltration.

Abcor, Inc., describes ultrafiltration in Reference 12 as follows:

"Ultrafiltration (UF) is a pressure driven membrane separation

process which utilizes a semi-permeable membrane to remove suspended

and colloidal solids from water." In contrast to reverse osmosis mem-

branes which exhibit high rejection efficiencies for dissolved salts

and organics, ultrafiltration membranes readily pass inorganic salts

and most low molecular weight organic molecules but reject suspended

solids, microorganisms and viruses, colloids, and dissolved macromolecules

"In the operation of ultrafiltration systems, a feed solution is

introduced into and pumped through a membrane unit. Suspended and

colloidal solids, which are retained by the membrane, are removed as

a fluid concentrate. Water and some dissolved materials pass through

the membrane under the applied hydrostatic pressure, and are removed as

permeate.

"Ultrafiltration systems are characterized by high water recoveries,

high fluxes and low operating pressures. High water recoveries (some-

times greater than 99%) can be achieved since osmotic pressure limitations
2

are absent. Fluxes in the range of 20-200 gal/ft -day (gfd) can be

achieved, consequently membrane surface area requirements are small.

Operation is generally at 10-50 psig, and low pressure pumps and piping

can be utilized.

"The operation of ultrafiltration can be severely limited by factors

other than the intrinsic characteristics of the membrane employed.

The more critical factors include feed type, operating temperature and

. the hydrodynamic flow conditions along the membrane surface. The latter

is directly related to concentration build-up at the membrane surface

called 'concentration polarization.1 Under certain conditions increased

concentration polarization may lead to membrane fouling by the pre-

cipitation of sparingly soluble colloids or gels. In systems operating

on a mixed feed of colloidal matter and dissolved solids, such as would

be the case with washwater, membrane fouling can be severe, even when

relatively high feed flow rates are employed. In such cases operation

at elevated temperatures can retard membrane fouling. Operation at

temperatures in the order of 60°C has been shown to significantly change

the fouling characteristics of shower waste."
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Compared to a 0.45 ym cartridge filter (see Table 3-1) ultra-filtration
removes approximately 99 versus 89% of the turbidity from space wash water.

The design parameters presented in Table 3-6 were obtained from
Abcor, Inc. (see References 5 and 12), and can be used to determine the
number of UF modules required in the design of a wash water subsystem.

Table 3-6 DESIGN DATA FOR ABCOR, INC., ULTRAFILTRATION MODULES.

Driving Pressure = 3.4 atmg (50 psig)
Membrane Flux * 127.3 1/hr-m2 (75 gal/day-ft2)

Water Recovery = 99.5%
Recirculation Rate = 11.4 1/min-module (3gpm/module)

Pressure Drop = 0.68 atm (10 lb/in2)
Module Size = 1.27 cm diam x 45.7 cm long (V diam x 18")

Mass Transfer Area-= 0.01858 m2/module (0.2 ft2/module)-~-
Module Housing Weight = 2.268 kg/module (5lb module)

Module Weight = 0.1134 kg/module (% Ib/module)
Design Life = 1 year

3.6 Chemical Pretreatment.
DeBell & Richardson, Inc. (see Reference 13), experimented with the

addition of coagulating and flocculating chemicals to remove soap from space
wash water. The highest removal rate occurred for Olive Leaf soap in
ersatz wash water. It was found that adding 170 ppm of FeClg (from a
40% FeClo solution) to an ersatz wash water solution containing 1800 ppm Olive
Leaf soap caused 95% of the Olive Leaf to coagulate. Adding an additional
0.25 ppm of Retan 425 (an anionic polyacrylamide) caused flocculation.
Mixing was required at both rapid (100 rpm) and slow (30 rpm) rates with a
paddle-type stirrer. The treated water equilibrated at a pH of between 3
and 4 as a result of the FeCU, which would necessitate a pH adjustment before
reuse. Little or no work was done with real wash water. It was concluded
that FeClo pretreatment of wash water appeared feasible for Olive Leaf soap.
In experiments with Neutrogena the removal was in the range of 60 to 70
per cent. With Miranal JEM it was in the range of 8 to 13 per cent. The authors
felt that any cleansing agent ultimately selected by NASA, if other than
Olive Leaf and/or Neutrogena, would have to be experimentally studied to
determine how and to what degree it could be removed from waste wash water

by chemical pretreatment.
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3.7 Carbon Adsorption.

Activated carbon is used to remove dissolved organic materials.

There are numerous types of carbon made from various base materials including

pecan shells, coconut shells, wood, coal and petroleum coke. The base

materials are converted to char particles which are then activated by exposure

to an oxidizing gas or steam at high temperature. This process produces a

porous structure in the char with a large internal surface area. Many varia-

tions in the dimensions of the cavities and internal surfaces are possible.

Such variations can produce carbons with high affinities for specific

molecules.

Activated carbon has been used in experimental multifiltration systems

to treat wash water since the earliest days of the space program (see Reference

14). It was used in the McDonnell-Douglas 60-Day Manned Chamber Test (see —

Reference 8) but no loading data are available from this test. Carbon beds

were also used in the McDonnell Douglas 90-Day Manned Chamber Test (see

Reference 9). Bed loading data are shown in Table3:-7. Recent work by Abcor,

Inc. (see Reference 12) has resulted in identifying a carbon with higher

adsorption capacity than that used in the 90-Day Test- A summary of these
carbon capacity data also is presented in Table 3-7.

Table 3-7. CAPACITY DATA FOR ACTIVATED CARBON USED FOR
WASH WATER RECLAMATION

Loading,
Type of Carbon g TOC/g Carbon Source of Data

Barnebey-Cheney PC 0.047 McDonnell Douglas, Reference 9

Calgon Filtrasorb 4002 0.15 Abcor, Inc., Reference 12

Nuchar WV-H 0.101

Witco 718 ' 0.0731

Pittsburg BPL 0.0671

Barnebey-Cheney PC 0.062 "

Barnebey-Cheney PA 0.0581

Calculated from reported "apparent adsorptive capacity."
2 Bulk density = 0.40 g/ml (25 Ib/cu ft)



3.7.1 Regeneration of Carbon

Regeneration experiments on both impregnated and nonimpregnated carbons
have been performed by Abcor, Inc., and are reported in Reference 12.
Significant capacity losses were reported on each successive regeneration
as follows:

Carbon Capacity (see Reference 12)
Number of Regenerations (non-impregnated Fil bra sorb 400)

0 0.15 g TOC/g carbon
1 0.14
2 0.05

The report concluded that although carbon regeneration is feasible,
the capacity losses noted in the regeneration mode used in the study were too
great to justify the incorporation of the additional equipment required to
accomplish the regeneration.
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3.8 Ion Exchange.

Ion exchange resins are used to remove dissolved ionic species from

solution. Most of the ionic species found in wash water are inorganic

salts. There are basically four types of resins: 1) strongly acid

cation; 2) weakly acidic cation; 3) strongly basic anion; and 4) weakly

basic anion. Abcor, Inc. (see Reference 12), found that the weak

resins did not remove ionic species from wash water whereas good removal

efficiencies were reported for strong resins and measured capacities

were found to be in agreement with manufacturer specifications.

Strongly acidic cation exchange resins remove cations from solution.

The removed cation is replaced with a hydrogen ion from the resin.

In the case of sodium chloride this reaction is represented as follows:

RRS03H + Nad * RRS03Na + HC1

It should be pointed out that for sodium bicarbonate the reaction tends

to liberate CO- and water as follows:

RRS03H + NaHC03 + 2RS03Na + H20 + C02

Thus, if cation resins are used first, then anion resins should not be

required for the removal of HC03~ ions. Strong base anion resins are

required, however, for the removal of other anions in wash water, mainly

Cl~(see Table 2-3). This reaction is represented as follows:

RRNR3OH + HC1 > RRNR3C1 + H2°

The ion exchange resins under discussion have a preferred order in which

ions are exchanged. The hierarchy is shown in Table 3-8 with the ions

listed in descending order of preference. That is, the resins prefer ions

that are higher on the list where equal concentrations are concerned.

This means that any ion that happens to be absorbed on the resin will

be exchanged for one that is higher up the list, but will not be exchanged

for one that is lower on the list. For instance, in the case of Na and



Mg , the following reaction would occur:
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2RRS03Na MgCl, 2RRS03Mg + 2NaCl

Obtaining resins that would not decompose at pasteurization temperatures

(74 C, 165 F) has been a problem in the past. However, Abcor, Inc.,

has experimented with two resins (see Reference 12) that performed up to

the manufacturer's ratings.These two resins and their capacities are

listed in Table 3-9.

Some natural resins (zeolites) are reported (see Reference 15)

to favor the removal of NH« , whereas most synthetic resins, such as those

in Table 3-9, prefer divalent ions and therefore have limited use for

removal of NHL from waste waters. The natural zeolite mentioned in

Reference 15 as being most effective for ammonia removal is Hector

Clinoptilolite. No reference could be found to this material having been
tried on space wash water; whereas Rohm and Haas Amberlite IR-120;i-(AbcorJ
Ref 5), Dowex 50W-X8 (Rutgers, Ref 24) and Baker ANGC-101 (Martin Ref 23)

were all tried.

Table 3-8.

CATION

La+++
4.4-

Ba

Sr++
4.4.

Ca
4-4-

Mg
Cs+

Rb+

Na+

Li +
..+
H

DISPLACEMENT SERIES FOR ION EXCHANGE RESINS
(from Reference 12)

ANION

Cr04
=

•r
NO ~
^

Br"

cr
OH"

F"
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Table 3-9. CAPACITY OF ION EXCHANGE RESINS (Ref 12)

RESIN TYPE IDENTIFICATION CAPACITY meg/g

Strong acid cation

Strong base anion

Amberlite IR-120+

Amberlite IRA-400

1.53

1.36

3.8.1 Regeneration of Ion Exchange Resins
Experiments and calculations by Abcor, Inc., presented in Reference 12

indicate that regeneration of the ion exchange materials listed in Table

3-9 may be desirable. Sulfuric acid is recommended for regenerating the

cation resins and sodium hydroxide is recommended for regenerating the

anion resins. The basic information required for calculating the amounts

of regenerant materials needed is given in Table 3-10.

Table 3-10. RELATIONSHIP BETWEEN AMOUNT OF REGENERANT AND
ION EXCHANGE CAPACITY (Ref 12)

REGENERANT USAGE
meg/ml

CATION RESIN
(Amberlite IR-120+)
CAPACITY, meg/ml

ANION RESIN
(Amberlite IRA-400)
CAPACITY, meg/ml

0.75

2.3

4.6

7.6 (maximum)

0.53

1.05

1.24

1.35

0.48

0.75

0.94

1.20

NOTES:

1. Resin specific weight = 0.88 g/ml (cation), 0.87 g/ml (anion).

2. Regenerant solution concentrations are 1 normal.

3. 4 bed volumes of rinse water are required per regeneration.
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3.9 Reverse Osmosis.

Reverse Osmosis is a pressure driven membrane process that removes
most suspended and dissolved materials. Early NASA sponsored work on

applying reverse osmosis to spacecraft wash water reclamation was done by

Chemtric, Inc. (Reference 16). This work involved experiments with a duPont
hollow-fiber permeator and a Westinghouse tubular RO module,and was carried

out at ambient temperature. Relatively large doses of biocide (up to 1%)
were used unsuccessfully to control microbial activity. This experience,

together with other unsuccessful attempts to control microbiological growth

for reasonably long periods (see Reference 8) led NASA to investigate a
number of promising membranes and sponsor a series of efforts (see References

1, 17, 18, 19, 20, 21) to develop an RO membrane that would work on space-

craft wash water at pasteurization temperature, 74°C (165°F). The basic
problems and the design goals of this effort are summarized in Reference 1.

The most promising high temperature RO membranes that have been
evaluated by NASA to date are summarized in Table 3-11. Of the nine membrane
materials listed, only one (Envirogenics Systems) has been developed to the

full size module stage, and these RO modules had relatively good performance
in a 1000 hour test conducted by McDonnell Douglas (see Reference 6). Of

the five coupons also tested by McDonnell Douglas only two were recommended
for further development. These two materials both showed excellent rejection
factors for the parameters of interest and exhibited little or no performance
degradation over the test period of approximately 200 hours.

The dynamic membrane ( Zr(IV) Oxide Polyacrylic Acid) listed in Table

3-11 was tested at Clemson University and has been subjected to only 19
hours of continuous operation. The reported rejection factors were somewhat
erratic (see,Table 3-12) and appeared to decline with increasing concentration.

Urea exhibited a peculiar trend in that its rejection was almost nil at

first, but later increased to around 70%. Because of the small amount of

test time on the dynamic membrane and the equivocal nature of some of the
data, it is felt that long-term performance projections cannot be made for

this concept until considerably more testing has been accomplished.
An example of the kind of performance degradation that can and usually

does occur with time is illustrated in Table 3-13, which summarizes the
1000 hour test data on the Envirogenics 6-man unit. Note that rejection

factors for every one of the nine parameters shown were significantly lower



e >o
i. E.
o o cu

<«- •— u
Ol C

5 oj t.•o o 0)

01
cc

•8
4->
10 i.

4J
O

?n
VO

o
CO

UJ
DC ft)

XJ

2 UJ O
O •-

OJ
3

»— "O

o
vo

o oin to*— co *o -H «-H
I I f- I I ||

- m ro oj CM

§8 o
o
oo

o
§

r-. cjro r-. vo
o ovr-. ^- ^~
«M O4 *-»

o
o
en

8

o
o
10

o
o
ID

O
o
PI

O) OJ O> O>
4_» 4-1 +J 4J
O) d) CU <U CU CU
E E E E E C/'UIDC toe <o c me me c-*-
t -O -r-o * ^O f -O -^O « O E '

= 0 = 0 = 0 = 0 ~ "
CM t_^ CM t_> CM (_) CMC.)

r- (O CM C

UM- •—
-t- OJ O) U. t-i •

•— <O U

o'o.*-"

§ OJ l/>
•—= l-

•— 3O CUi— "o m ^
O O i-

t-» t-i in
i
c

Q. O
OJ i :

-i£ CJ J
C !

Qj o '

<U r— ID

10 *T CU
o u

0) O OJ CC
•o c c
QJ O OJ O CU (U

gf
O CU

•o
3
o

-
.0

OJ

cu
c j->
>o o.
t- CU

S*.
VI CU

2
Ol
c •*->
<O Q.
1- CU

E ja s: ja

I QJ Ol-—•
t- •— "Or— O
t- CO CU >>CU

CU r^r--r-
i-O 3 O X
O «I c/) cu O

_>, 01

"o "5

c
Ul •—

M-3

il

3 »-•
O

UO f
0«

10 Ol
OJt— <*- t-
VI C7I i— IO
01 C 3 Ol
ee io to in

Si
i- 4J CU 10 CU

f— V)
01 01



24

Table 3-12. PERFORMANCE OF Zr(IV) OXIDE-POLYACRYLIC
ACID DUAL-LAYER MEMBRANE.
(Based on a 19-hr test, See Ref. 16, pp. 41 & 48)

Parameter

Total Organic Carbon
Amount, m/1
Rejection Factor

Ammonia
Amount, mg/1
Rejection Factor

Urea
Amount, mg/1
Rejection Factor

Specific Conductance
Amount, ymho-cm~l
Rejection Factor

Raw Concentrated Electrolytically
Wash Water Wash Water Pretreated Urine

183
.96

31
.78

44
.06

640
.91

4421
.96

82

255
.70

4421

800
.53

2250
.68

18500
.62

Table 3-13. PERFORMANCE DEGRADATION FOR ENVIROGENIC SYSTEMS'
80 GPD (6-man) RO UNIT,
(calculated from data presented in Ref. 6 for
a 1000-hour test)

Parameter

Total Organic Carbon

Specific Conductance

Ammonia

Turbidity

Total Residue

Urea

Lactic Acid

Chloride

MBS

0-6 Weeks

87.8

96.8

65.8

97.8

97.8

61.1

94.7

97.4

98.4

6-12 Weeks

82.1

85.0

53.3

85.7

88.6

5.4

88.7

85.5

92.5



during the second six-week period than the first. In the case of urea, the
rejection factor declined to almost zero. Typical performance declines are
also shown in Reference 22 for 300 hour periods and as a function of brine
concentration.
3.9.1 RO Module Design.

Currently, there are four types of physical constructions used to
package an RO membrane into a module of useful size. The advantages and
disadvantages of each approach are discussed below.

Spiral Wound. The spiral-wound configuration consists of two sheets
of membrane material separated by a porous support material. The
membrane sheets are joined along three sides and the fourth edge is
attached to a tube that has perforations inside the seal area. The
membranes and support material along with a mesh spacer are rolled
around the central tube to form a spiral or "jelly roll". This
configuration has a high packing density (surface area/volume), short
feed flow path, and low pressure losses as the mesh spacer acts as a
turbulence promoter to produce good mixing and minimization of concen-
tration polarization and fouling effects at lower velocities than in
other systems. The design has moderate to serious problems in handling
large-size particulate matter.

Tubular. Tubular modules commonly contain membranes which are assembled
in the shape of cylinders and placed either on the outside or inside
of porous tubes (the membranes are commonly inserted into ^ inch
diameter porous fiber-glass-reinforced epoxy tubes). Tubular modules
can also contain porous ceramic tubes with either cellulosic or
dynamic-type membranes cast in-situ. Tubular systems will handle
larger particulate matter without plugging than other module types.
The tubular design usually requires fluid velocities of at least
1 m/sec to maintain turbulent flow, and hence has high energy re-
quirements. Packing densities are low, with relatively large
volumes required for each unit of membrane area.

Plate and Frame. Plate and frame modules use a multiple plate design
consisting of flat membrane sheets placed in metal frames which are
held in racks similar to those used in plate and frame filter presses.
Plate and frame units have low packing densities and require heavy
support structures. Pumping energy requirements are high and uniform
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velocity distributions are difficult to achieve. Modules of this
type have the advantage of accommodating easily fabricated membrane shapes
and are widely used in evaluation of candidate membrane materials.
Hollow Fiber. Hollow fiber modules contain large quantities of
hollow fiber membranes with dimensions of approximately 50 ym OD and
25 ym ID packed into a cylindrical shell in a configuration much like
a shell and tube heat exchanger. These assemblies have very large
total surface areas. The feed is pumped into the shell side of the
module and the product permeates the fibers and is drawn off at the
module end. Hollow fiber systems are characterized by low permeation
rates and high sensitivity to fouling by particulate matter. They
also have high losses in the product water flow path, which reduces
the available driving pressure.

There are two basic modes of operation that are used in RO systems:
1. Brine - recycle
2. Once-through

The advantages and disadvantages of each of these approaches are discussed
below.

Brine-Recycle. The brine-recycle approach has the advantage that a
relatively small percentage of product water is produced on each
cycle, so the mass flows entering and exiting the module are not
significantly different. Thus the velocities necessary to effect a
reduction in concentration polarization and fouling can be easily
maintained throughout the module. A disadvantage is that more pumping
power is required than in a once-through system. A recycle mode is
usually operated batch-wise in order to expose the module to a lower
average brine concentration than it would be subjected to if the process
were continuous. In the continuous case the concentration in the
recycle loop is allowed to build up until the desired recovery fraction
is achieved, and from that point on brine is continuously bled from
the recycle loop at the desired concentration. Thus the RO mdoule is
continually exposed to the maximum brine concentration. In a batch
process, when the recycle loop reaches the maximum concentration
level, essentially all of the brine is expelled and the recycle loop
is filled with a new batch of raw waste water. Thus the RO module in
this case sees an average concentration which is considerably lower
than in the continuous flow case.



27

Once-Through. In the once-through mode of operation it is very
difficult to maintain the minimum internal velocities that are
required by RO modules to reduce fouling and concentration polar-
ization. For a 93% recovery, once-through system, there is approxi-
mately 1/14 as much exit flow as entrance flow. Therefore either the
exit and entrance areas must also reflect this ratio, or the entering
velocity will be 14 times as great as the exit velocity. Two approaches
to solving this problem are (1) utilization of a number of uniformly-
sized modules in a parallel/series arrangement as shown in Figure 3-2
and (2) utilization of several modules of different size in a series
arrangement as shown in Figure 3-3.

Figure 3-2. PARALLEL/SERIES ARRANGEMENT OF UNIFORMLY SIZED
REVERSE OSMOSIS MODULES.

-H h

Figure 3-3. SERIES ARRANGEMENT OF VARIOUS SIZED REVERSE
OSMOSIS MODULES.



A basic approach to sizing RO modules is presented in Reference 1.
This approach considers such module sizing factors as:

• pressure »f low rate
• intrinsic permeability ^recovery fraction
• solute diffusivity «Chilton-Col burn J factor
•concentration polarization

Of all the candidate membranes (see Table 3-11) the only one for
which there is sufficient data to confidently size a module is the 6-man
unit built by Envirogenics Systems. This brine-recycle unit used eight
identical spiral wound modules in series, each approximately 2.5 cm in
diameter and 56 cm long with .0.31 nr of active mass transfer area.

A

The 1000 hour performance test conducted by McDonnell Douglas demonstrated
that these units performed satisfactorily during the first 8 weeks of the
12 week test. In the last four weeks of the test, rejection factors rapidly
deteriorated, especially for urea and lactic acid.

The test set-up is shown schematically in Figure 3-4. Note that
during the test the brine and product streams were continually recycled and
fresh waste wash water was added at one week intervals. It is felt that
this method of testing yields fairly realistic performance data for the RO
modules and product water polishing beds; however, loading data for the
particulate filters would bear little resemblance
to an actual once-through situation. This is because these filters remove
suspended solids contained in the recirculated brine stream. These solids
are formed by coagulation and precipitation during the concentration step
in the RO loop and do not return to their preconcentration state upon return
to the feed storage tank where dilutuion occurs.

The basic design data for Envirogenic Systems' modules as developed
in the MDAC 1000 hour test are summarized in Table 3-14.

3.10 Urea Removal.
In early investigations of wash.water recovery methods it was found

that cellulose acetate RO membranes (the only type available at the time)
had a poor urea rejection factor and that activated carbon generally had a
low adsorption capacity for urea. This prompted investigation into other
ways of removing urea. The general approach persued was to first decompose
urea to ammonia and carbon dioxide, and then remove the ammonia with an ion
exchange resin (see References 5, 23 and 24).



a)
o:

oa:

I

CO

CO

CO
o

CD
O

a:
o

UJ
2C

CO

O-

CO

H-
co

ro
0)



30

Table 3-14. DESIGN DATA FOR ENVIROGENICS SYSTEMS
SPIRAL WOUND, DI- AND TRI- ACETATE BLEND
REVERSE OSMOSIS UNIT

Nominal size
Design duty cycle
Driving pressure
Recirculation flow
Water recovery
Module size
Mass transfer area
Membrane flux (average)
Module weight
# of modules
Module useful! life

Carbon useage
(Calgon Filtrasorb 400)

Resin useage (Rohm & Mass
Amberlite IR"120 Na form)

Rejection factors
Power for pumps and
controls
Power for heating

6 man (37 Ib H20/man-day)
8 hr/day
300 psig
0.8 gpm
up to 98%
1" diam x 22" long
3.3 ft2/module
3.9 gal/day-ft2

2 Ib/module

8 in series

8 weeks at 64 Ib H20/module-day

3583 Ib H20/module

0.62 Ib for 43000 Ib H20
14.4 x 10"6 Ib carbon/lb H20

1.37 Ib for 43000 Ib H20

31.9 x ID'6 Ib resin/lb H20

see Table 3-12

786 w

600 w for 8 modules
39 w for waste line
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Abcor, Inc. (see Reference 5) investigated five methods of urea
decomposition, the results of which are shown in Table 3-15.

Table

Method
NaOCl (pH = 5.0)
Ozone + U.V.
Urease
Ozone
NaOCl (pH = 7.0)

3-15. ABCOR RESULTS OF UREA
EXPERIMENTS (Ref 5)

DECOMPOSITION

Urea Removed from 50 mg/1
Amount Used Amount Used Solution at 45°C After 2

g/1 g/g of Urea Hours of Treatment, %
0.2 4
1. 20

0.1 2

1. 20

0.2 4

88

80

69

55

45

Martin Marietta Corporation (see Reference 23) and Rutgers University (see
Reference 24) both investigated the Urease method, including an immobilized
variation, with about the same results as Abcor.

Martin recommended Baker ANGC-101 resin for NH^+ removal. Rutgers used
Dowex 50W-X8 resin and reported a capacity for NĤ "1" of 4.08 meq/g.

Westgate Research Corporation (see Reference 25) is developing an
Ozone + U.V. reactor under a contract with the U.S. Army which is jointly
sponsored by NASA (Contract DAMD-17-75-C-5013). The device is described in
Reference 25 as follows:

"The UV-ozone reactor fabricated from stainless steel is 7 inches
in diameter and 8 inches long. The reactor holds about 2.5 liters
of water which is held by centrifugal action against the outer
wall by the rotating, flow-directing fins. The fins are rotated
by means of the electric motor at the base of the reacor at a
speed sufficient to maintain positive separation of the gas and
water phases.
"Ozone from the ozone generator is diffused uniformly into the water
by means of porous diffuser tubes mounted along the reactor wall.
The UV radiation is directed into water from the two, 4-watt UV
lamps which are housed within the quartz sheath in the center of the
reactor.
"The water flow in and out of the reactor is continuous at 1.25
liters/hour. Metering pumps are used to introduce and remove the
water from the reactor.



32

"Oxygen from the ECS supply is metered into the ozone generator
at a flow rate of 0.5 standard liters/min to generate 15 mg 03
per minute. The oxygen with traces of unreacted ozone are removed
from the reactor to the ECS catalytic oxidizer where the residual

ozone is decomposed to oxygen.
"The estimated weight, size and power of a prototype-system version

of the components are:
Size Weight

7 in dia x 8 inches 5 Ibs 33 watts
8 3/4 x 3% x 2 5/8" 2 Ibs 42 watts
12 x 8 x 8 inches 5 Ibs 25 watts

Quantity Component Maximum Power

1
2
1

UV-Ozone Reactor
Water Pumps
Ozone Generator

Electrical Energy/lb of Water Purified = 36.3 watt-hrs/pound"

The data7 given above are summarized in Table 3-16. The weight and power
values have been increased somewhat to reflect a packaged unit with controls,

displays and alarms.

Table 3-16. DESIGN DATA FOR WESTGATE RESEARCH
UV-OZONE REACTOR.

water flow
02 flow
03 flow
Overall dimensions (est)
Total weight
Total power

= 1.25 1/hr
= 584 mg 02/min (0.5 std 1/min)
= 15 mg 03/min
= 10cm x 3.5 cm x 3.5 cm

= 7.3 kg
=. 120 watts

Electrolysis is another method of urea decomposition. It has been
extensively investigated for pretreatment of raw urine (see References 26
and 27) but not for wash water. The electrolysis process decomposes urea
to nitrogen, carbon dioxide and water, and ammonia to nitrogen and hydrogen.
Chloride is a necessary component of the solution to be electrolized.



4.0 SUBSYSTEM CONFIGURATION.

The purpose of this section is to describe the wash water reclamation
systems that have already been tested or are under present or future consid-
eration by NASA. A system description and schematic diagram is provided for
each approach. The pertinent performance data for these approaches are sum-
marized in Section 3 under the appropriate unit operation and/or processes.

4.1 Tested Subsystems.
The only subsystems included in this category are those that have been ••

put together and tested as complete man-in-the-loop units, and these are multi-
filtration subsystems. A multifiltration subsystem utilizes the unit operations
and processes of: particulate filtration, carbon adsorption, ion exchange and
some form of microbial control.

4.1.1. Multifiltration. McDonnell Douglas 60-Day Test.
A schematic is shown in Figure 4-1 and overall performance data are

reported in Reference 8. Microbial control was not adequately maintained in
this ambient system that relied on U-V irradiation and microbial filters.
No filter or bed loading data are available.

4.1.2. Multifiltration, McDonnell Douglas 90-Day Test.
A schematic of this subsystem is shown in Figure 4-2. The subsystem

operated satisfactorily except when temperatures in the beds dropped below
their design values. Bed loading and other performance data are presented
in Reference 9. The information pertinent to this study is summarized in
Section 3.

4.2 Developmental Subsystems.

Subsystems were considered to be in this category when a full-scale
unit had been subjected to at least 500 hours of simulated man-in-the-loop
bench testing.

4.2.1. Reverse Osmosis, Envirogenic Systems Unit.
A schematic of this unit is presented in Figure 3-4. It was subjected

to 1000 hours of testing by McDonnell Douglas using recirculated real wash
water that was renewed on a weekly basis during the 12 week test period.
Pertinent data are reported in Reference 6 and Section 3.

4.3. Proposed Subsystems.
These are subsystems that have been recently proposed and are under

serious consideration for development to preprototype status.
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4.3.1 Reverse Osmosis

A schematic of an integrated wash water subsystem utilizing a reverse
osmosis unit is presented in Figure 4-3. A schematic of a reverse osmosis
unit for this system is shown in Figure 4-4. The design requirements and
specifications are given in Reference 1. The RO unit in Figure 4-4 is
depicted as a once-through type. However, the subsystem (Figure 4-3) could
also accommodate a recirculation type RO unit. The type of RO membranes,
the operating pressure and the number and configuration of membrane modules
was left open.

4.3.2 Hyperfiltration.

"Hyperfiltration" is the term that has been applied to the dynamic

reverse osmosis membranes (Zr(IV) Oxide Polyacrylic Acid) being developed at

Clemson University. In a recent Request for Proposal (see Reference 28) NASA

requested proposals for the development of this membrane into a 3-man pre-

prototype unit complete with a low-power f.eed-pressurization pump, a replace-

able membrane module, a urea-ammonia removal unit, a back-pressure control

unit, a heated waste-storage tank, a replaceable filter, hydraulic damping

components, a brine storage tank, and associated ancillary controls and

instrumentation. Umpqua Research Company's schematic interpretation of this

once-through subsystem is shown in Figure 4-5. The concentrated wash water

discharged from the RO unit is processed by a vapor compression distillation

unit. The required controls would be similar to those shown in Figures 4-3

and 4-4. Performance data may be found in Section 3 (Table 3-12).

4.3.3 Ultrafiltration.

Abcor has recommended (see References 7 and 12) a basically multifil-
tration subsystem that incorporates Ultrafiltration, non-regenerable carbon
adsorption, ozonation and regenerable ion exchange. The basic approach is
shown in Figure 4-6. A schematic of the subsystem is shown in Figure 4-7.

4.3.4 Multifiltration.

The basic form of the multifiltration approach is always a prime
candidate for wash water recovery because of its inherent simplicity, low
initial weight and relative insensitivity to gravity effects. A subsystem
schematic is shown in Figure 4-8. The required controls would be similar to
those shown in Figure 4-3. Performance data are summarized in Tables 3-4,
3-5, 3-7, 3-9, and 3-10.
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4.4 Other Possible Subsystems.

Other possible subsystems can be otained by various substitutions
and/or alternative combinations of the unit processes discussed in Section
3. Such variations are considered and evaluated in Section 8.
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5.0 PRELIMINARY TRADEOFF ANALYSIS

In order to obtain tradeoff results that are truly comparable it is
usually necessary to analyze complete subsystems. However, in this study,
the various filtration methods under consideration for the particulate
removal step can be compared to each other on a direct basis. This is be-
cause each filtration approach is assumed to have the same impact on what-
ever unit operations and/or processes are subsequently used for the removal
of dissolved materials.

Data show (see Reference 6) that filtration of space wash water with a
0.9 ym filter provides sufficient removal of suspended material to insure
little or no fouling of a reverse osmosis membrane module over a 77-day
period. Longer term effects are not known. Other data show (see Reference 9)
that a 1 ym filter is sufficient to protect carbon adsorption and ion exchange
beds from fouling over 20-day and 45-day periods respectively. These
periods were the useful lifetimes of the beds. It is not known if finer
pre-filtration would have produced higher material loading factors-and
extended the life of these beds.

Until such time as there is definite information that shows if, and the
extent to which, filtration to levels below 0.45 ym benefits reverse osmosis
modules, carbon beds, and ion exchange resins, trade-off comparisons giving
an advantage to ultrafiltration for its ability to filter submicron particles
cannot be made. At this time, any low-end filtration benefits that ultra-
filtration may offer must be ignored. It will be assumed that ultrafiltra-
tion provides the same benefits as any filter in which suspended material
is removed down to the 0.45 ym level. With this groundrule it is possible
to compare some of the various methods of removing suspended material alone
without having to look at downstream processes as well.

The three methods of ~particulate~filtration to be analyzed are:---
1. Surface type cartridge filter (Section 3.4)
2. Filtration with backflush cleaning (Section 3.4.1)
3. Ultrafiltration (Section 3.5)
A schematic representation of each filtration approach is depicted in

Figure 5-1. It is assumed that waste water is available at 1.4 atmg and 74°C
from a waste water holding tank and that after filtration the water leaves at
1.0 atmg and 74°C. The other groundrules and basic assumptions for this analy-
sis are summarized in Section 2.

Envirogenics spiral wound, cellulosedi- and tri-acetate blend.
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5.1 Surface-type Cartridge Filters.

The total equivalent weight and expendable rate for surface-type
cartridge filters are summarized in Table 5-1.

Table 5-1. SURFACE-TYPE CARTRIDGE FILTERS:
WEIGHT, POWER AND EXPENDABLES

(see Figure 5-1A)

Item Source
A. Filter

Housings(3) (Table 3-5)

B. Filter
Cartridges (footnote 1)

C. Plumbing,
Fittings,etc.(estimate)

(30% of A + C)
(footnote 2) _

TOTAL:

Installed
Weight

kg

1.5

Power Thermal Total
Equiv. Rej. Equiv. Equiv.
Weight Weight Weight

kg __ kg __ kg

1.5

D. Spares
E. Heating

0.5
0.6
0.7 11.1 7.9

0.5
0.6

19.7

3.3 11.1

Expendable
Rate
kg/year

14.6

1. Expendable rate(Table3-4) =
= 0.0399 kg/day = 14.6 kg/yr

2. Heat for maintaining 74°C:
3 components @ 20 w each

heating tapes: 3 1/3 m -@ 3. w/m

Installed;wt (estimate) = 70
Power equiv wt (112.5) = 70

Thermal rej equiv wt(fi2.6)- 70

7.9 22.3
6.65 g/man-day x 6 men

14.6
39.9 g/day

(estimate) = 60 w
(estimate) = 1Q w

TOTAL = 70 w
w x 10 g/w (est) = 0.7 kg
w x 0.159 kg/w (Sec 2.5) = 11.1 kg
w x 0.113 kg/w (Sec 2.6)= 7.9 kg

5.2 Filtration with Backflush Cleaning.
The total equivalent weight and expendables rate for filtration

with backflush cleaning are summarized in Table 5-2.
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Table 5-2. FILTRATION WITH BACKFLUSH CLEANING:
WEIGHT, POWER AND EXPENDABLES

Item
Information
Source

A.Filters

Power
Installed Equiv.
Weight Weight

kg kg

(Table 5-1)

(Figures 3-1
and 5-1B)
(30% of B)

D.VCD Penalty (Footnote 3)
E.Heating (Footnote 4)

TOTAL:

B .Cleaning
Unit

C .Spares

2.6

68.0

20.4

1.2

2.0

2391

0.2

31.8

Thermal
Rej. Equiv.
Weight

kg

170̂

0.1

22.6

94.2 271.0 192.7

Total
Equiv.
Weight

kg

2.6

477.0
20.4
1.5

56.4

557.9

Expendable
Rate

kg/yr

1. Power equiv. wt. = 1.5 kw x 0.159 kg/watt = 239 kg

2." Thermal rej. Equiv. wt. = 1.5 kw x 0.113 kg/watt = 170 kg

3. The VCD penalty is for processing 0.0730 I/day of concentrate in a vapor

compression distillation(yCD)unit. The penalties were computed by

proportioning the VCD weights and powers (see Reference 3) according to

the ratio (0.0730/32.5).

Feed rate, I/day
Duty Cycle, hr
Electric Power, w
Thermal Rej.
Installed wt, kg
Spares wt, kg

Backflush
VCD 6-Man Unit Penalty
Design (Ref .3) Proportion kg/w

32.5 . 0.0730
8 8

480 1.1 0.159
480 1.1 0.113
404 .9
118 .3

Backflush Unit
VCD Penalty

0.2 kg
0.1 kg

T-1.2 kg

4. Heat for maintaing 74°C: 7 components @ 20 w each (estimate) = 140 w
20 m of line @ 3 w/m (estimate) = 60 w

TOTAL = 200 w

Installed weight = 200 w x 10 g/w (estimate) = 2.0 kg

Power equiv wt = 200 w x 0.159 kg/w (Section 2.5) = 31.8 kg

Thermal rej equiv wt = 200 w x 0.113 kg/w (Section 2.6) = 22.6 kg
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5.3 Ultrafiltration.

The total equivalent weight and expendables rate for ultrafiltra-
tion are summarized in Table 5-3:

Table 5-3. ULTRAFILTRATION:
WEIGHT, POWER AND
(see Figure 5-16)

A.

B.

C.

D.

E.

F.

G.

H.

Item

UF Modules (6)

EXPENDABLES

Power
Installed Equiv.

Information Weight Weight
Source kg kg

Pressurization Tank

Pressurization Pump

Circulation Pump

Plumbing .Fittings,

Spares

VCD Penalty

Heating

etc

(Footnote

(Ref. 3)

(Footnote

(Footnote

1)

2)

3)

. (estimate)

(30%of:A+B+C+D+E)

(Footnote

(Footnote

4)

5)

TOTAL:

1. UF Modules (See design data

No. of Modules

Wt. of Module

Expendable wt.

2. Pressurization

duty cycle

efficiency

flow

power

Power equiv wt

13.6

20.6

4.7

5.9

4.5

14.8

8.1

2.4

74.6

3.

35.

1.

38.

78.

1

5

2

2

0

Thermal Total •
Rej Equiv Equiv
Weight Weight

kg kg

2.2

25.2

0.8

27.1

55.3

13.6

20.6

10.0

66.6

4.5

14.8

10.1

67.7

207.9

Expendable
Rate
kg/yr

0.68

0.68

in Table 3-6)

= (100.7 I/day *£

= 5.32 modul

housings = 6

of

es

modul

UF modules = 6

= 0

r hr/day)* (127

call

e x 2.

modul

.00186

: 6

268

e/yr

.3

modul

1/hr-m2 x 0.01858 m2/module)

es

kg/module = 13.6 kg

x 0.

kg/day =

1134 kg/module

0.679 kg/yr

* 365 days/yr

Pump
=

=
2 hr/day

25%

= 16.78 kg/man-^day x 6 men

= 50.34 kg/hr x 2.205 Ib/kg

x 1.355 w-sec/ft-lb *' {(n

= 19.3 w

(112. 5) = 19.

Thermal rej equiv wt (U2.6)

3 w x

= 19

0.159

.3 w x

* 2

x

kg/w =

0.113

hr/day = 50.34 kg/hr

50 lb/in2 x 144 in2/ft2

0.25) x 62.4 Ib/ft3x 3600 sec/hr}

3 .1 kg

kg/w = 2.2 kg
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Table 5-3 Continued

3. Circulation Pump
Module configuration = assume 3 parallel banks of 2 modules each

flow = 3 gpm/module bank x 3 module banks = 9 gpm

AP = 10 psig/module in series x 2 = 20 psig

efficiency = 35%
power = 9 gal/min x 8.33 Ib/gal x 20 lb/in2 x 144in2/ft2

x 1.355 w-sec/ft-lb v { (n=0.35) x 62.4 lb/ft3

x 60 min/hr}

= 223 w

Power equiv wt (U2.5) = 223 w x 0.159 kg/w = 35.5 kg

Thermal rej equiv wt (H2.6) = 223 w x 0.113 kg/w = 25.2 kg

4. VCD Penalty
The VCD penalty is for processing 0^504 I/day of concentrate

in a vapor compression distillation (VCD) unit. The penalties were
computed by proportioning the weights and powers of a 6-man VCD unit
(see Reference 3) accoridng to the flow ratio (0.504/32.5).

.Ultrafiltration Ultrafiltration
VCD 6-Man Unit Penalty Unit
Design (Ref 3) Proportion kg/w VCD Penalty

Feed Rate, I/day 32.5 0.504
Duty Cycle, hr/day 8 8
Electric power,w 480 7.4 0.159 1.2 kg
Thermal rej, w 480 7.4 0.113 .8 kg
Installed wt, kg 404 6.3
Spares wt, kg 118 1.8 » J>1 kg

5. Heat for maintaining 74°C
9 components @ 20 w each (estimate) = 180 w

20 m of line & 3 w/m (estimate) = 60 w
240 w

Installed wt (estimate) = 240 w x 10 g/w = 2.4 kg
Power equiv wt (fl 2.5) = 240 w x 0.159 kg/w = 38.2 kg

Thermal Rej equiv wt (U 2.6) = 240 w x 0.113 kg/w = 27.1 kg
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5.4 Summary of Particulate Filtration Methods.

Weight and power penalties for the three particulate filtration methods
depicted in Figure 5-1 are surrenarized in Table 5-4. Tradeoff curves are
presented in Figure 5-2. These show that particulate filtration with surface
type cartridge filters results in the lowest total equivalent weight for
missions up to 12 years duration.

Table 5-4. SUMMARY
WEIGHT,

Installed
Information Weight

Item Source kg
Surface Type
Cartridge
Filters (Table 5-1) 3.3
Filtration
with
Backflush
Cleaning (Table 5-2) 94.2

Ultra-
filtration (Table 5-3) 74.6

OF PARTICULATE FILTRATION METHODS:
POWER AND EXPENDABLES

Thermal Total
Equiv Rej Equiv Equiv Expendable
Weight Weight Weight Rate

kg kg kg kg/yr

11.1 7.9- 22.3 14.6

271.0 192.7 557.9 0

78.0 55.3 207.9 0.68

6oo -,

Soo •

U

V-

Gr
Ui

\oo

BAcKFiUSH

U LTR. A f ILTR. AT 10 M

O I Z 3 4 5" 7 9 10 i/ 12.

Figure 5-2. PARTICULATE FILTRATION METHODS, TRADEOFF CURVES
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6.0 COMPARABLE BASELINE SUBSYSTEMS.

The preliminary tradeoff analysis (Section 5) shows that surface-
type cartridge filters have a decided equivalent weight advantage over
other methods of removing suspended materials from space wash water. In
addition, the method is considerably less complex than the other approaches.
It is, therefore, the method of choice for removal of suspended materials.
Thus, the basic approaches to non-phase change wash water recovery are
reduced to: 1) multifiltration and

2) reverse osmosis.
In this section, these two subsystems are defined on a comparable

basis and weight, power and expendable figures are calculated. In addition,
several variations of each approach are considered and a number of different
assumptions are made in respect to various performance factors. This is
done in order to realistically bracket the possible range of operation
and determine the sensitivity of the analysis to variations in performance
assumptions.

6.1 Multifiltration Baseline Subsystem.

The baseline multifiltration subsystem is shown in Figure 6-1. Only
the wash water recovery equipment is included in the tradeoff analysis
because the other components are common to all wash water recovery methods
under consideration. The total equivalent weight and expendables for the
baseline subsystem are summarized in Table 6-1.

There are several variations of the baseline subsystem, and these are
treated in the following paragraphs.

6.1.1 MF Performance Based on 90-Day Test Data.

The bed loading data used for the baseline system was reported by
Abcor, Inc. (see Tables 3-7 and 3-9), and are the highest loadings reported
to date. In the McDonnell Douglas 90-Day Manned Chamber Test (see Reference
9) a carbon loading of 0.047 g TOC/g carbon was reported for Barnebey-
Cheney PC carbon and the total resin usage was reported as 20.2 g/man-day.
There were two resin beds, Dow ARM-381 mixed resin followed by ARC-351
cation resin.

The expendable rates for these materials are calculated below and the
results are summarized in Table 6-2.
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Table 6-1 MULTIFILTRATION BASELINE SUBSYSTEM:
WEIGHT, POWER AND EXPENDABLES

(see Figure 6-1)

Item
Information
Source

Installed
Weight

kg

Power
Equiv
Weight

kg

Surface-Type
Cartridge
Filters (Table 5-1) 3.3 11.1

Therma1
Rej Equiv
Weight

kg

7.9

Total
Equiv Expendable
Weight Rate

kg kg/year

22.3 14.6

Carbon Beds (Footnote 1)

Cation Resin (Footnote 2)

Anion Resin (Footnote 3)

Waste Water
Tank (Ref 3)

Product Water
Tank (Ref 3)

Plumbing,
Fittings,etc.( estimate)

Cartridge
Drying

Controller

Spares

Heating

(estimate)

(estimate)

(30%)

(Footnote 4)

TOTAL:

1.0

0.5

0.5

15.0

15.0

1.5

12.0

5.0

15.1

3.5

72.4

8.0 5.7

55.7 39.6

74.8 53.2

1.0

0.5

0.5

15.0

15.0

1.5

"12.0

18.7

15.1

98.8

23.5

29.3

9.9

200.4 77.3

Carbon Beds.

amount of soluble TOC (Table 2-2) = 1608 mg TOC/man-day x 6 men =

9.648-g TOC/day

loading for Filtrasorb 400 (Table 3-7) = 0.15 g TOC/g Carbon

amount of carbon = 9.648 g TOC/day T 0.15 g TOC/g Carbon = 0.0643 kg/day

23.5 kg/yr

weight of carbon canisters = 0.5 .kg/canister x 2 canisters = 1.0 kg

Cation Resin.

amount of cations (Table 2-3) = 1.2188 meq/1 x 16.78 1/man-day x

6 men = 122.7 meq/day

loading for Amberlite IR-120+ (Table 3-10) = 1.35 meq/ml v 0.88 g/ml =

1.53 meq/g
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Table 6-1. Continued

amount of resin = 122.7 meq/day -^ 1.53 meq/g resin = 0.0802 kg/day =
29.3 kg/yr

weight of resin canister =0.5 kg/canister x 1 canister = 0.5 kg
3. Anion Resin.

amount of anions (C1~, Table 2-3) = 0.3667 meq/1 x 16.78 1/man-day x
6 men = 36.92 meq/day

loading for Amerlite IRA-400 (Table 3-9) = 1.36 meq/g
amount of resin = 36.92 meq/day * 1.36 meq/g resin = 0.0271 kg/day =

9.9 kg/yr
weight of resin canister = 0.5 kg/canister x 1 canister = 0.5 kg

4. Heat for Maintaining 74°C.
4 canisters @ 20 w each (estimate) = 80 w
2 tanks @ 120 w each (Ref 9) = 240 w
10 m of line @ 3 w/m (estimate) = 30 w

350 w

installed weight (estimate) = 350 w x 10 g/w = 3.5 kg
Power equiv wt (112.5) = 350 w x 0.159 kg/w = 55.7 kg
Thermal rej equiv wt (112.6) = 350 w x 0.113 kg/w = 39.6 kg
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Item

Baseline MF
Subsystem

With 90-Day Test
Data

With Urea Removal
by UV-03

With Regenerable
Resins

With Chemical
Pretreatment

Table 6-2.

Information
Source

Table 6-1

116. 1.1

Table 6-3

Table 6-4

Table 6-5

VARIATIONS OF THE MULTI FILTRATION
BASELINE SUBSYSTEM - WEIGHT, POWER
AND EXPENDABLES

Installed
Weight

kg

72.4

72.4

135.7

142.8

109.9

Power
Equiv
Weight

kg

74.8

74.8

202.0

155.6

99.8

Thermal
Rej. Equiv
Weight

kg

53.2

53.2

143.6

110.6

71.0

Total
Equiv
Weight

kg

200.4

200.4

481.3

409.0

280.7

Expendable
Rate
kg/yr

77.3

133.7

77.3

42.0

70.3

Table 6-3.

Installed
Weight

Item kg -
Installed wt 48.7
Spares (30%) 14.6

63.3

UREA REMOVAL BY UV-03 FOR MF-
WEIGHT, POWER AND EXPENDABLES

Power
Equiv
Weight

kg
127.2

127.2

Thermal
Rej Equiv
Weight

kg
90.4

90.4

Total
Equiv
Weight

kg
266.3
14.6

280.9

Expendable
Rate
kg/yr
0

0



Carbon Beds.
Amount of soluble TOC (Table 6-1, footnote 1) = 9.648 g TOC/day

Loading of carbon used in 90-Day Test (Ref 9) = 0.047 g TOC/g carbon

Amount of carbon (90-Day Test) = 9.648 g TOC/day * 0.047 g TOC/g carbon =

= 0.205 kg/day

Amount of carbon (Baseline) (Table 6-1) = 0.0643 kg/day
^, __...._ _ — ___-.- — _ .. — _«. — __— — — .— — — — ~ — — — —.— — —— — — —— — — — — — — — — — _____« . •_ — — —.—— — —— — — — — —

Additional carbon expendables over baseline= 0.205 - 0.0643:= 0.1407 kg/day

= 51.4 kg/yr

Resins.
Amount of resin (90-Day Test) = 20.2 g/man-day x 6 men = 0.121 kg/day

Amount of resin (Baseline) (Table 6-1) = 0.0802+0.0271 = 0.1073 kg/day

Additional resin expendables over baseline = 0.121 - 0.1073 = 0.0137 kg/day

= "5.0 kg/yr

6.1.2 Urea Removal by UV-0^ for MF.
Abcor, Inc. (Reference 12) reports that the urea removal efficiency for

a multifiltration subsystem similar to the multifiltration baseline subsystem
(Figure 6-1) was 60%. Abcor is concerned that this is too low a percentage
removal for a recycle system in which the product water must not exceed 50 rng/1
of urea (see Table 2-4). The pertinent analysis is as follows:

a) The basic flow loop and nomenclautre are given in Figure 6-2.

CF
I

4

ML/LTlf/ L.-TRfiTI OH

(FIGUKE 6-0

c?

1

T
Nomenclature: Cj = concentration of input material, mg/1

Cp = concentration of feed material, mg/1
.concentration of product material, mg/1

= removal or rejection factor =(Cp --Cp)/Cp
CD =

Figure 6-2. FLOW LOOP FOR ANALYSIS OF THE MJJLTIFILTRATION BASELINE SUBSYSTEM



b) The applicable equations are:

Cp = Cp + Cj 6-1

Cp = (1 - Rj) Cp 6-2

Combining equations 6-1 and 6-2:

Cj = Rj CF 6-3
Cj = CP/( 1/Rj - 1) 6-4

c) The maximum allowable urea input for Cp = 50 mg/1 and Rj = 0.6
Cj is calculated by equation 6-4.

Cj = 50 ( I/.6 - 1) = 75 mg/1

Abcor's input water contained 72 mg/1, thus their concern. However,
this water had urea added to it according to the old McDonnell Douglas
formula (see Reference 1). The Umpqua Research Study (see Reference 2)
determined that considerably less urea will be present in wash water and
that the model presented in Table'2-2 is the one that should be applied.
In this model the input concentration for urea is 35.8 mg/1. The lowest
urea removal factor that can be accommodated with a urea input of 35.8 mg/1
is calculated by eq. 6-4:

35.8 = 50/ ( 1/Rj - 1)
1/Rj = 50/35.8 + 1 = 2.397

Rj = 0.42

It is felt that the multifiltration baseline system will be capable
of obtaining closer to 60% urea removal and that a special additional urea
removal step will not be required. However, the weight, power and expenda-
bles for an additional urea removal step, based on the Westgate Research (WR)
UV-Oo concept,;are estimated as follows:

efficiency of urea removal by UV-03 (Table 3-15) = 80%
amount of 03 required (Table 3-16) = 20 g/g urea
amount of 03 available (Table 3-16) = 15 mg 03/min
duty cycle = 8 hr
03 generated by WR unit = 15 mg 03/min x 60 min/hr x 8 hr = 7.2 g/day
amount of urea input (Table 2-2) = 600 mg/man-day x 6 men =3.6 g/day
amount of 03 required = 20 g 03/g urea x 3.6 g urea/day = 72 g/day
# of WR units required based on 03 demand = 72 g/day v 7.2 g/day = 10
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amount of water processed by WR unit (Table 3-16) = 1.25 1/hr x

8 hr/day = 10 I/day

amount of water requiring processing (Table 2-1) = 100.7 I/day

§ of WR units required based on water demand: 100.7 I/day *

10 I/day = 10

This analysis shows that the Westgate Research UV-Og unit described in

Table 3-16 must be scaled up by a factor of 10 to accommodate the 6 man

baseline case of this study. A direct scale up of weight and power results

in a 73 kg unit requiring 1.2 kg of electric power. However, it will be

assumed that these weight and power figures would be reduced by 1/3 in a

flight development program. The calculated values are:

Installed wt = 73 kg - (l/3)(73 kg)= =,48.7 kg

Spares (30%) = = 14.6 kg

Power equiv wt = 1.2 kw-(l/3)(1.2kw)= 0.8 kw x 0.159 kg/w=127.2 kg

Thermal reg equivwt = = 0.8 kw x 0.113 kg/w= 90.4 kg

TOTAL =280.9 kg

These values are summarized in Table 6-3. The total weight, power' and

expendables for multifiltration with Urea removal by UV-03 are summarized

in Table 6-2.

6.1.3 Regenerable Resins for MF.

Abcor, Inc. (see Reference 12) proposes using regenerable ion exchange

resins-4n connection with multifiltration. In this scheme-sulfuric acid

would be stored on board to regenerate cation resins and sodium hydroxide

would be stored to regenerate anion resins. The lowest level of regenerant

usage shown in Table 3-10 (0.75 meq regenerant/ml resin) was recommended.

The amounts of H2S04 and NaOH required are calculated as follows:

H2S04 Requirement

H2S04 (Table 3-10) = 0.75 meq H2S04/ml resin T 0.53 meq cations/ml resin

= 1.42 meq H2S04/ meq cations

cations (table 2-3)= 1.2188 meq/1 x 100.7 I/day x 365 day/yr

= 44,798 meq cations/yr

= 44,798 x 1.42 = 63,613 meq H2S04/yr

= 63,613 meq H2S04/yr x 49 mg H2$04/meq H2S04
=3.1 kg/yr
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NaOH Requirement

NaOH (Table 3-10) = 0.75 meq NaOH/ml resin f 0.48 meq anions/ml resin

=1.56 meq NaOH/meq anions

Anions (Table 2-3)= 0.3667 meq/1 x 100.7 I/day x 365 day/yr

= 13,478 meq anions/yr

NaOH = 13,478 x 1.56 = 21,026 meq NaOH/yr

= 21,026 meq NaOH/yr x 40 W NaOH/meq NaOH

= 0.84 kg/yr

Total Regenerants

H2S04 + NaOH = 3.1 + 0.84 = 3.94 kg/yr

Amount of Resin Saved

cation resin + anion resin (Table 6-1) = 29.3 + 9.9 = 39.2 kg/yr

Net Expendable Savings from Baseline

Savings = 39.2 - 3.94 = 35.3 kg/yr

The installed weight and power figures for a resin regenerating sub-

system are taken from Abcor (see Reference 12).

Installed weight (see Ref. 12) = 51 Ib * 2.205 Ib/kg = 23.1 kg

Spares (30%) '= 6.9 kg

Installed wt incl spares = 30.0 kg

Electrical power (see Ref. 12) = 196 kw-hr/yr

assume duty cycle = 8 hr/wk (1 regeneration/wk)

power ' = 196 kw-hr/yr -=• (8 hr/wk x 52 wk/yr

= 471 w
Power equiv wt (U2.5)- = 471 w x 0.159 kg/w = 74.9 kg

Thermal rej equiv wt (112.6) = 471 w x 0.113 kg/w = 53.2 kg

VCD Penalty

First calculate the flow of regenerants to the VCD

H2S04 + NaOH = 63.6 + 21.0 = 84.6 eq/yr

Since regenerants are used in a 1 normal solution:
Regenerant Flow = 84.6eq/yr x 1 1/eq =84.6 1/yr

Regeneration will occur once a week and 4 bed volumes of rinse water

are required for each of the two beds. Since each bed is-about- -

2 liters in size, approximately 16 1/wk of rinse water is required.
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Feed rate, I/day
Duty cycle, hr
Electric Power, w
Thermal Rej, w
Installed Wt, kg
Spares Wt, kg

The total flow that must be processed in a VCD is then:
Total flow =(84.6 1/yr i- 365 day/yr) + (l6 1/wk * 7 day/wk)

= 0.23 + 2.29 = 2.52 I/day

The VCD penalty is obtained by proportioning weights and powers
of a 6-man VCD Unit (see Ref 3) according to the ratio of flows
(2.52/32.5).

Resin Regen
Unit
Proportion Penalty

2.52

VCD 6-man
Design(Ref 3)

32.5
8

480 37.2
480 37.2
404 31.3
118 9.1

Resin Regen
Unit
VCD Penalty

0.159kg/w

0.113kg/w

5.9 kg
4.2 kg

4̂0.4

TOTAL: 50.5 kg

These equivalent weights are summarized in Table 6-4 and the
totals are added to the baseline MF figures and entered in Table

6-2.

Table 6-4. REGENERABLE RESINS FOR MF-
WEIGHT, POWER AND EXPENDABLES

Item

Installed
Weight
Spares (30%)
VCD Penalty

Installed
Weight*'

kg

23.1
6.9
40.4

70.4

Net savings

Power
Equiv
Weight

kg

74.9

5.9

80.8

on baseli

Thermal
Rej Equiv
Weight

kg

53.2

4.2
57.4

Total
Equiv Expendable
Weight Rate

kg kg/yr

151.2 3.94

6.9

50.5

208.6 3.94

ne MF expendable rate = 39.2 - 3.

Expendable
Resin rate
without
Regen

kq/yr

39.2

39.2

94 = 35.3 kg/yr
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6.1.4 Chemical Pretreatment for MF.
In order to determine to what extent chemical pretreatment could

benefit multifiltration, it will be assumed that a coagulant and fToccu-
lant are available that would precipitate 100% of the cleansing agent
from solution and allow its subsequent removal by filtration on a 30 urn
filter. Such a pretreatment in effect shifts the load from the activated
carbon to the particulate filters, which have a considerably greater load-
ing factor than carbon. The weight, power and expendable figures are
presented in Table 6-5, and the totals are added to the baseline MF fig-
ures and entered in Table 6-2.

6.1.5 Comparison of Multifiltration Options.

The multifiltration options discussed above are summarized in Table
6-2 and plotted in Figure 6-3 for mission lengths up to 10 years.

6.2 Reverse Osmosis Baseline Subsystem.

The baseline reverse osmosis subsystem is shown in Figure 6-4. .
Only the reclamation, equipment in Figure 6-4 is included in
the tradeoff analysis because the other equipment is common to
all wash water recovery systems under consideration.
The baseline RO subsystem is shown in the brine-recycle mode rather than
in the once-through mode because that is the only full-scale version
tested to date. Also, the small weight savings that would accrue by elim-
ination of the recirculation pump would probably be more than offset by the
ramifications of having to design modules for lower flows and face velo-
cities.

The baseline RO subsystem assumes the best performing RO membranes
(North Star and Gulf Environmental Systems, Table 3-11). It is also
assumed that these membranes can be packaged into a spiral wound module.
Urea-removal and/or other polishing operations are not needed in the base-
line RO subsystem because of the high rejection factors of the selected
membranes.

The weight, power and expendable rate for the baseline RO subsystem
are'summarized in Table 6-6. Variations of the baseline system are
treated in the following paragraphs.
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Table 6-5. CHEMICAL PRETREATMENT FOR MF
WEIGHT, POWER AND EXPENDABLES

Item
Information
Source

Contact Tank
Stirrer
Plumbing,
Fittings, etc.
Spares
Heating
Surface-type
Cartridge
Filters
Carbon
Chemicals

(estimate)
(estimate)

(estimate)
(30%)
(footnote 1)

(footnote 2)
(footnote 3)
(footnote 2)
TOTAL:

Installed
Weight

kg
20.6
4.7

2.5

8.3

1.4

Power Thermal Total Expenda-
Equiv Rej Equiv Equiv ble
Weight Weight Weight Rate

kg kg kg kg/yr

Expendable
Carbon Rate
Without
Chemical
Pretreatment

kg/yr

3.1 2.2

21.9 15.6

20.6

10.0

2.5

8.3

37.5

9.3

6.8

0.4

23.5

37.5 25.0 17.8 78.9 16.5 23.5

Net savings on baseline MF expendable rate = 23.5 -
16.5 =7.0 kg/yr

Heat for maintaining 74°C

1 Tank @ 120 w (Reference 9) = 120 w
6 m of line @ 3 w/m (estimate) = 18 w

138 w
installed wt (estimate) = 138 w x 10 g/w = 1.4 kg
Power equiv wt (U2.5) =" 138 w x 0.159 kg/w = 21.9 kg
Thermal rej equivwt (112.6) = 138 w x 0.113 kg/w = 15.6 kg

Filters
amount of cleansing agent (Table 2-2) = 110 mg/1 x 100.7 I/day x

365 day/yr =4.04 kg/yr
amount of cleansing agent TOC = 4.04 kg/yr x 216 gC/348 g soap =

2.51 kg/yr
amount of chemical (113.6) = 4.04 kg/yr x 0.1 g chemical/g soap

0.404 kg/yr
amount of 30 urn filters (Table 3-4) = (4.04 + 0.404) kg solids/yr *

0.477 g solids/ g filter = 9.32 kg/yr
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Table 6-5. CHEMICAL PRETREATMENT FOR MF
WEIGHT, POWER AND EXPENDABLES

(Continued)

3. Carbon Beds
amount of carbon saved (Table 3-7) = 2.52 kg TOC/yr T

0.15 g TOC/g carbon = 16.7 kg/yr
amount of carbon used (Table 6-1)= 23.5 kg/yr - 16.7 kg/yr

6.8 kg/yr
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Table 6-6. REVERSE OSMOSIS BASELINE SUBSYSTEM
WEIGHT, POWER AND EXPENDABLES

(see Figure 6-4)

Power Thermal
Installed Equiv Rej Equiv

Information Weight Weight Weight
Item Source kg kg kg

Surface-Type
Cartridge Filters (Table 5-1) 3.3 11.1 7.9

RO Module Housings (footnote 1) 24.0

RO Modules ' (footnote 2)

Accumulator (assumed) 4.0
HP Feed Pump (250 w) (footnote 3) 10.0 39.8 28.3

•Recirc Pump (39.7 w) (footnote 4) 5.9 6.3 4.5

Back Press Reg (estimate) 2.0

Brine Storage Tank (estimate) 10.0

Waste Water Tank (Ref 3) 15.0

Product Water Tank (Ref 3) 15.0
Controller (100 w) (footnote 5) 9.0 15.9 11.3
Plumbing, Fittings,

etc. (estimate) 9.5

Spares (30%) 31.3
VCD Penalty (footnote 6) 97.0 14.2 10.1

Heatinq (footnote 7) 5.8 92.2 65.5

TOTAL: 241.8 179.5 127.6

Power Summary

Power for pumps & controls = 389.7 w

Power for heating = 580 w

1. RO Module Housings
Installed weight = 6 kg/housing x 4 housings = 24.0

(note: there are 2 modules per housing)

Total
Equiv Expendable '
Weight Rate

kg kg/yr

22.3 14.6

24.0
7. 3 {life

4.0 = l yr

78.1
16.7

2.0
10.0

15.0
15.0
36.2

9.5
31.3
121.3 2.2

163.5

548.9 24.1

kg
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Table 6-6. REVERSE OSMOSIS BASELINE SUBSYSTEM
WEIGHT, POWER AND EXPENDABLES

(continued)

RO modules

Assume a high rejection membrane such as North Star or Gulf Environmental
Systems (Table 3-11). Flux for these membranes is in the 3 to 6 gallon/ •
ft^-day range. Assume membranes are packaged in spiral wound modules.
With these assumptions, the size, weight, configuration and number of modules
is the same as shown in Table 3-14 for Envirogenics Systems 6-man unit.

Module weight = 0.907 kg
# of modules = 8
total weight of 8 modules = 0.907 kg/module x 8 modules = 7.3 kg

expendable rate of modules:

Life • Expendable Rate
kg/yr

2 mo 43.8

6 mo 14.6
1 yr 7.3
2 yr 3.7
Syr 1.5

3. HP Feed Pump

Duty Cycle = 8 hr/day
Power (Ref 29, Tables 3-2 and 4-4) = 250 w
Installed wt (estimated) = 10 kg
Power-equiv-wt-(fl2.5) = 250 w,x-0.159 kg/w..= 39.8_kg .
Thermal rej. equiv wt (U2.6) = 250 w x 0.113 kg/w = 28.3 kg

4. :Reeirculation Pump
module configuration = 8 modules in series

flow =0.8 gpm
AP =5 psi/module x 8 modules = 40 psi

efficiency =35%
power = 0.8 gal/min x 8.33 Ib/gal x 40 lb/in2

x 144 iji?/ft? x 1.355_w-sec/ft-lb *
(35% x 62.4 lb/ft3 x 60 min/hr)

= 39.7 w



Table 6-6 REVERSE OSMOSIS BASELINE SUBSYSTEM
WEIGHT, POWER AND EXPENDABLES

(Continued)

Power equiv wt (112.5) = 39.7 w x 0.159 kg/w = 6.3 kg
Thermal rej equiv wt (U2.6) = 39.7 w x 0.113 kg/w = 4.5 kg

5. Controller
installed weight (estimate) = 9.0 kg
Power (estimate) = 100 w
Power equiv wt (U2.5) = 100 w x 0.159 kg/w = 15.9 kg
Thermal rej equiv wt (1\2.6) = 100 w x 0.113 kg/w = 11.3 kg

6. VCD Penalty
assume water recovery = 94%

VCD 6-man RO Unit RO Unit

Design(Ref 3) Proportion Penalty VCD Penalty

Feed rate, I/day 32.5 6.04 2.20 kg/yr*
Duty cycle, hr/day 8 8
Electric power, w 480 89.2 0.159 kg/w 14.2 kg
Thermal rej, w 480 89.2 0,113 kg/w 10.1 kg
Installed wt, kg 404 75.1
Spares wt, kg 118 21.9 }97'° kg

*Assumes chemical pretreatment at the rate of 1 g/1:
expendable rate = 6.04 I/day x 365 day/yr x 1 g/1 = 2.20 kg/yr

7. Heat for maintaining 74°C
11 components @ 20 w each (estimate) = 220 w
2 Tanks @ 120"w each (Ref 9) = 240 w
40 m of line @ 3 w/m (estimate) = 120 w

580 w

installed wt (estimate) = 580 w x 10 g/w = 5.8 kg

Power equiv wt (112.5) = 580 w x 0.159 kg/w = 92.2 kg

Thermal rej equiv wt(H2.6)= 580 w x 0.113 kg/ w = 65.5 kg



6.2.1 Envirogem'cs Systems 6-Man RO Unit,

It is assumed that a flight version of the Envirogenics 6-tnan unit
(see Figure 3-4) would weigh the same as the baseline RO unit. However,
module life would be shorter, carbon and resin beds would be required for
post treatment polishing, and power would be greater.

Module life

module life (Table 3-14)

amount of water to be processed:

module life :

expendable rate of modules =

Carbon beds

carbon usage (Table 3-14)
expendable rate of carbon

Resin Beds

resin usage (Tabe 3-14)

expendable rate of resin =

3583 lb H20/module

100.7 I/day x 2.205 lb/1 ^ 8 modules

= 27.76 Ib/day-module

3583 v 27.76 = 129 day = 0.354 yr

0.907 kg/module x 8 module -r 0.354 yr

= 20.5 kg/yr

14.4 x 10"6 kg carbon/kg H20
14.4 x 10"6 x 100.7 kg H20 /day x 365 day/yr

= 0.53 kg/yr

31.9 x 10~6 kg resin/kg H20
31.9 x 10"6x 100.7 kg H20/day x 365 day/yr

= 1.17 kg/yr

Power

pumps and controls
heating

TOTAL

= 786 w

= 639 w

=1425 w

= 1425 w x 0.159 kg/w = 226.6 kg
= 1425 w x 0.113 kg/w ='161.0 kg

power equiv wt
thermal rej equiv wt

Calculation of weight, power and expendables

= 241.8 kg (same as baseline)
= filters + modules + carbon + resin +

VCD Penalty

= 14.6 + 20.5 + 0.53 + 1.17+2.2 = 39.0 kg'/yr

installed weight
expendable rate
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power equjv wt = filters + pumps, controls & heating
= 11.1 + 226.6 = 237.7 kg/yr

thermal rej equiv wt = filters + pumps, controls & heating
= 7.9 + 161.0 = 168.9 kg/yr

6.2.2 Hyperfiltration.

It is assumed that a flight version of this concept (see 114.3.2)
would operate in a recirculation mode and would have the same weight and
power as the baseline RO subsystem. Although membrane flux is higher than
for the baseline unit, packing density would most likely be enough lower
to offset this advantage. Other assumptions are that module regeneration
will be possible and that a special urea removal step will not be required
because the hyperfiltration rejection-factor for urea would be 60% (see
116.1.2).

Module life

expendable rate of modules = 0

Module regeneration

installed wt (assumed) = 35 kg {assumes module regeneration

expendable rate (assumed) =3.3 kg/yr each 100 days}

Recirculation power

Recirculation power will probably be greater for hyperfiltration than
for the baseline unit because a considerably higher surface velocity is
required for hyperfiltration. However, because there is insufficient data
available to allow computation of a recirculation power requirement, hyper-
filtration will be assumed to use the same power as the baseline subsystem.

Calculation of weight, power and expendables

installed weight = baseline + module regeneration =
241.8 + 35 = 276.8 kg

expendable rate = filters + VCD Penalty + module
regeneration

= 14.6 + 2.2 + 3.3 = 20.1 kg/yr
These values are summarized in Table 6-7.

6.2.3 .UV-03 Urea Removal for RO.

The weight, power and expendable values for urea removal by UV-03 are
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given in Table 6-3. These values are added to the baseline RO values and
entered in Table 6-7.

6.2.4 Chemical Pretreatment for RO

Coagulation, flocculation and filtration of the cleansing agent would
benefit reverse osmosis by reducing the dissolved solids load and thus
allowing a greater water recovery fraction for a given brine concentration.
If all of the cleansing agent were removed in this fashion from the baseline
RO subsystem, the water recovery fraction would increase from 94% to 96%
at a brine concentration of approximately 500 ppm (see Reference 1, Figure
8-2). The weight, power and expendables for chemical pretreatment are
summarized in Table 6-5. These figures would apply to the RO subsystem
except that the expendable rate of 6.8 kg/yr for carbon would not be
included. The new VCD penalty for a water recovery of 96% is:

VCD Penalty

water recovery = 96%

VCD 6-mair
Design (Ref 3)

32.5

8

480

480

404

118

RO unit
Proportion

4.03

8

59.5

59.5

50.1

14.6

RO unit
Penalty VCD Penalty

1.47 kg/yr*

0.159 kg/w 9.5 kg

0.113 kg/w 6.7 kg

J-64.7 kg

Feed rate, I/day
Duty cycle, hr/day
Electric power, w
Thermal rej, w
Installed wt, kg
Spares wt, kg

*assumes chemical pretreatment at the rate of 1 g/1:
expendable rate = 4.03 I/day x 365 day/yr x 1 g/1 = 1.47 kg/yr

The saving in VCD penalty over the baseline case is:

VCD penalty RO VCD penalty Savings in
baseline H20 ^0 recovery VCD
Recovery = 94% = 96% penalty

installed wt and spares, kg 97.0 64.7 32.3
power equiv wt, kg 14.2 9.5 4.7
thermal rej equiv wt, kg 10.1 6.7 3.4
expendable rate.,-kg/yr 2.20 1.47 0.73
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The weight, power and expendable figures for reverse osmosis with
chemical pretreatment are calculated as shown in Table 6-8 and are summar-
ized in Table 6-7 with the other RO subsystem variations.

6.2.5 Comparison of Reverse Osmosis Options.

The reverse osmosis options discussed above are summarized in Table
6-7 and plotted in Figure 6-5 for mission lengths up to 10 years.
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Table

Item

Baseline RO Subsystem
Envirogenics 6-Man Unit
Hyperfiltration
With UV-03 Urea Removal
With Chemical

Pretreatment

6-7 VARIATIONS OF THE REVERSE OSMOSIS
BASELINE SUBSYSTEM - WEIGHT, POWER
AND EXPENDABLES

Information
Source

Table 6-6
H6.2.1
116.2. 2
116.2.3

Table 6-8

Installed
Weight

kg

241.8
241.8

276.8

305.1

247.0

Power Thermal
Equiv Rej Equiv
Weight Weight

kg kg

179.5 127.6
237.7 168.9

179.5 127.6

306.7 218.0

199.8 142.0

Total
Equiv Expendable •
Weight Rate

kg kg/yr

548.9 24.1
648.4 39.0
583.9 20.1

829.8 24.1

587.4 33.1

Table 6-8 CHEMICAL PRETREATMENT FOR RO
WEIGHT, POWER AND EXPENDABLES

Installed
Information Weight

Item Source kg
Baseline RO Subsystem Table 6-6 241 8

Chemical Pretreatment Table 6-5 37.5
VCD Penalty 116.2.4 -32.3

247.0

Power Thermal Total
Equiv Rej Equiv Equiv Expendable
Weight Weight Weight Rate

kg kg kg kg/yr

179.5 127.6 548.9 24.1

25.0 17.8 78.9 9.7

-4.7 -3.4 -40.4 -0.73

142.0 587.4 33.1
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7.0 ASSESSMENT MODEL

The assessment model is based on the one used in Reference 3 for evaluat-
ing spacecraft waste management subsystems. In mathematical terms the model
is: g

S-,'TOTAL v

Where: ^TOTAL = t^ie tota^ rating score for a given candidate process;
MCS = Critical Safety Coefficient for the candidate process;
M = Critical Performance Coefficient for the candidate process;
s- = comparison-category terms, scored separately for the

candidate process and then summed.

Reference 3 describes the model as follows:
"This model form, which consists of a combination of weighted summation
(additive) terms and coefficient (multiplicative) terms, is very similar
not only to those typically used by systems analysts in the aerospace
industry, but also to several popular models used in the chemical process
industries for comparative evaluation of new commercial-venture alterna-
tives. The successful application of these trade-off models as management
descision-structuring tools, for purposes similar to those of interest
in this study, has been well documented."

In Reference 3, six categories were selected for the term s. in equation
7-1. Since the wash water recovery subsystems under consideration in this
study are, like those in Reference 3, intended for use in the area of spacecraft
waste management life support, it is appropriate to use the same six evaluation
categories as were used in Reference 3 and the same rating factors.

The six evaluation categories are the following:

• General safety characteristics
• Operating complexity of the system
• Simplicity of interfacing
• Adaptability to flight conditions
• Versatility
• Penalties (weight, volume, power, thermal)

These six categories together with their weighting factors and the
criteria for assigning points in each category are described in Table 7-1.
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Table 7-1 WEIGHTING FACTORS AND POINT ASSIGNMENT
CRITERIA FOR COMPARISON CATEGORIES, S.,
IN ASSESSMENT MODEL. 1

Evaluation
Category

1. General
Safety
Characteristics

2.

3.

Weighting Factor
Maximum Point Value

20

Operating
Complexity of
the Subsystems

(S2)

18

Simplicity of
Interfacing

12

Point-assignment Criteria

Points are assigned for freedom,
generally, from potential safety
hazards such as fire, atmosphere
contamination, explosion, bacter-
iological problems, crew injury, and
equipment damage to other sub-systems,
High-risk range (0-5 pts.); moderate
risk range (6-15 pts.); low to insign-
ificant risk range (16-20 pts.).
Highest points are assigned for
greatest simplicity of operating
procedures and least technical
complexity in hardware functions.
Favorable consideration is also
given to higher potential for
effective, reliable automation of
operations; reduced crew time and
stress during maintenance; and ease
of modularizing equipment. Excessive
complexity range (0-4 pts.); moderate
complexity range (5-14 pts.); low to
insignificant complexity (15-18 pts.)
Highest points are assigned for least
requirement for interfaces with other
spacecraft subsystems and services
for operaion of the candidate-process
sub-system. Typical interfaces
include vacuum source , oxygen or
nitrogen supplies, water supply,
biocide source, power connections,
plumbing, etc. Excessive inter-
facing complexity range (0-3 pts.);
moderate interfacing complexity
range (4-8 pts.); low to insignifi-
cant interfacing complexity range
(9-12 pts.).



Table 7-1 WEIGHTING FACTORS AND POINT ASSIGNMENT
CRITERIA FOR COMPARISON CATEGORIES, S.,
IN ASSESSMENT MODEL. 1

(Continued)

4. Adaptability to
Flight Conditions

(S4)

16

5. Versatility
(V

6. Penalties
(V

27

TOTAL: 100

Points are assigned proportional to
an estimated probability that the can-
didate-process sub-system will be
operational for an assumed application
(in the 1980-1990 time period) based
on confidence in information and
approaches to problem solutions
(i.e., fail-operational/fail-safe;
failure-mode effect analysis).Includes
consideration of potential sensitivity
to flight conditions (zero-g, vibra-
tion and shock, etc.).
Points are assigned according to the
potential adaptability of the candi-
date process sub-system to various
mission applications. Involve varia-
ble such as crew size, power and heat
sources availability (i.e., solar
cells, radioisotope sources, etc.),
spacecraft configurations (e.g.,
vehicle free volume, equipment
load capacity, etc.), and mission
duration. Low versatility range (0-
1); moderate versatility range (2-5);
high to ideal versatility range (6-7).

Points assigned proportional to actual
estimated values for installed
weight, spares weight, volume, power
and thermal rejection requirements
for each candidate process sub-system,
all converted to equivalent-weight
values for simplicity in points
assignment.

The range of scoring values for the critical, potentially abortive or

catastrophic factors (system go/no-go importance) MCS and Mcp in the model

was selected to be zero (preemptive rejection of the candidate) to one (no

likelihood of problems, and therefore no impact on the selection of this can-

didate). Criteria for the assignment of scoring values for these two coeffi-

cients involved estimates of probabilities that no critical safety or perfor-

mance problems will be likely to occur in operational design version of the

candidate process sub-system, based upon currently available information.
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8.0 ASSESSMENT

First, a weight comparison of multifiltration and reverse osmosis sub-
systems is presented. This is followed by a qualitative assessment of the
two approaches using the assessment model defined in Section 7.

8.1 Weight Comparison of MF and RO Subsystems.

Weight comparisons are presented in Figure 8-6. In all cases multi-
filtration is initially lighter but has a higher expendable rate than reverse
osmosis so that after- 5 years the total-weights areaboutthe same for both
approaches (within 10 per cent).

8.2 Overall Assessment of MF and RO Subsystems.

The overall assessment of multifiltration and reverse osmosis subsystems,
using the assessment model defined in Section 7, is presented in Table 8-1.
This assessment shows a clear advantage for multifiltration. This advantage
derives mainly from the basic simplicity of multifiltration, its ability to
operate at low pressure,its lack of interfaces with other subsystems and its
high safety and adaptability to flight conditions.
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Table 8-1 OVERALL ASSESSMENT OF MULTIFILTRATION AND
REVERSE OSMOSIS SUBSYSTEMS

Maximum Points
(weighting Factor)

MF Baseline RO Baseline

A. Comparison Categories
(Si)

1. Safety 20
2. Operating Complexity 18
3. Simplicity of

Interfacing 12
4. Adaptability to

Flight Conditions 16
5. Versatility 7
6. Penalties (10 yrs) 27

TOTALS (ZSi) 100

18

17

11

15

6

20

15

12

12

5

22

87 75

B. Critical Coefficients (M)
1. Critical Safety

Coefficient (MC$)
2. Critical Performance
• Coefficient (Mcp)

1.0

1.0

.98

.98

.94

.96

C. Computation of

TOTAL
89.0 67.7
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