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ABSTRACT

Starting with certain identities obtained by Reid and Redheffer for

general matrix Riccati equations we give various algorithms for the case y

of constant coefficients. The algorithms are based on two ideas -- first,

relate the RE solution with general initial conditions to anchored RE solutions;

and second, when the coefficients are constant the anchored solutions have

a basic shift-invariance property. These ideas are used to construct an

integration free superlinearly convergent iterative solution to the algebraic

RE. Our algorithm, arranged in square-root form, is thought to be numerically

stable and competitive with other methods of solving the algebraic RE.
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I. INTRODUCTION	 I
a

We shall be concerned here with the solution of the following matrix
A

Riccati differential equation ( RE) which lies at the heart of many systems

problems, e.g. optimal control (e.g.[3]) and least-squares estimation ( e.g.[4]):

i

5

dt P(t) = FP(t) + P ( t)FT + Q - P ( t)DP(t),	 P(0) = TI	 (7)
	

J^

In this paper F, Q, and D are assumed to be known constant matrices.

It has been shown in a wide body of literature that if P s (.) is the

solution of

P

	

dt 
P s (t) = FP s (t) + Ps (t ) FT + Q - P s (t)DPs ( t), t > s, P s ( s) = 0	 (2)

i.e. a solution of (t) anchored to zero at time s, then one can recover

P(.) from P s (.) through the relation

	

P(t) = P s (t) + 0(t,slPs(.))[I + P(s) 11 ( t,slPs (.)) ] -1 P(s) 0T (t,slPs (.))	 ( 3)

where ^(., . IPs(.)) and u( ... IPs(•)) are defined by

8t m(t,slPs(.)) _ [F - P s (t ) D] ^P(t,SIPa(.)),	 o(s,slP S M ), = I	 (4)

t

u(t,s1Ps(.)) = J	 0T ( i ,s1Ps(.)) D0 ( T ,sIP s (.))dr	(5)
s
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Equation (3) has been known at least since the work of Sandor[5] who obtained

it in a slightly different form (he assumed that P(s) is nonsingular). To

the best of our knowledge the representation (3), in fact for general nonsym-

metric REs, is due to Reid, see e.g. [6, eqn. 2.81. Reid's notation for

the arguments of I, and µ has been adopted since it emphasizes the role of

Ps (.). In an estimation context, relations such as (3)-(5) have been discovered

by Lainiotis[8] via his partitioning approach and also by Womble and Potter[91-

[10]. Lainiotis' work highlighted the importance of the smoothing error

variance relation

P(slt) = [P-1 (s) + 1j(t,s1P s (.))3 -1	(6)

r• ;

In this paper we review certain integration-free representations for

RE solutions and use these recursions to construct a superlinearly convergent

solution to the algebraic RE. Our results are expressed in algorithmic form.

II. SHIFT-INVARIANCE PROPERTY OF P s (.), m(.,.IPs(.)) and µ(.,IPs(.))

When F, Q, and D are constant, it has been noted independently by Womble

and Potter[91-[101, Sidhu[7,section III.8], and Lainiotis[81 that Ps(.),

W(.,.IPs(.)) and µ(.,.IPS(.)) have an important shift-invariance property,

namely that for all t > s > 0,

Ps(t) = PO(t - s);	 1^(t,slPs(.)) = 0(t-s,0IP0(.));
(7)

µ(t,slPs(.)) = µ(t - s,OIPO(.))

2	 JPL Technical Memorandum 33-799



relation

l

r

4
which prompt the simpler notation 4, 0 (t) = 0 ( t,olPO(.)) and u0 ( t) = p(t,OIPO(.)).	 }

Thus ( 3) can now be written as

P(t) = P O ( t-s) + 00 ( t-s) [I + P ( s)pO (t-s) -1 P(s)0T (t-s)	 (8)

an expression that leads to the following recursive algorithm given independently ;rP

•	 by Womble and Potter[91-[101, Sidhu [71, and Lainiotis[81:

Algorithm 1: Recursion for P(kd). k = 1.2.3. ...

(i) For a preselected d > 0 integrate ( 2), (4)-(5) to obtain P O W, -DO ( S), POW.

(ii) Compute MIS), k = 1,2,3, ..• recursively, starting with P(0) = n 0 , through

P((k+1)6) = P OW + 00 (6)[I + P(k6 ) u O (d)1 -1 P ( kd)@0(d)	 (9)

Note that step ( ii) is an integration - free step. Equation ( 9) is of

course just ( 8) with t = ( k+t)d and s = kd. The simplicity of (9) makes it an

attractive candidate for use in numerical computation. However, this algorithm

has certain undesirable features which include numerical sensitivity to the

initial matrix no, and a lack of symmetry. One can avoid the influence of no

on the recursions by computing P 0 (k6) and then obtaining P(.) through the

P(kd) = P O ( k6) + 00 (k6)[I + nopO ( k6)1-1n040(kd) (10a)

[this is just (8) with s = 0 and t = kd1 or when no is nonsingular one could

use the symmetric relation

P(k6) = P ONS) + 0 0 ( k6)[n 0 1 + po ( k6)1 -1 41T N O	 (10b)

JPL Technical Memorandum 33-799 	 3
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The result (10) is better numerically because it avoids the cumulative effects

of an ill-conditioned no which can propagate through (9).

Note that (10) requires the computation of (P O (kd) and P O (kd); but these
i

terms are of interest. Monitoring to gives an on-line measure of stability

of the time varying linear system (4); and P O is useful for analyzing the
i

advantages to be gained from smoothing.

i

III. RECURSIONS FOR P O (.), 0 O (.) AND u0(.)

It might seem that the calculation of P O , 0 O , and p O , needed in (10),

would entail considerably more computation than does the recursion (9).

This is in fact not the case as is shown in the following lemma due to Reid

[6,p.21]	 and Redheffer[11], whose results have here been modified to reflect

the shift-invariances (7).

t

Lemma 1:	 For t > s > 0 we have

PO (t)	 = P O (t - s) + 0 0 (t - s)[I + P O (s)P O (t - s)] -1 PO (s) 0 0(t -	 s),

(11)

0 0 (t)	 = 0 0 (t -	 s)[I + P O (s)P O (t	 - s)]- 100(x), (12)

n

P OW = P O W + 0^(s)P O (t - s)[I + P O (s)P O (t - s)]-100(s). (13)

More recently, this lemma has been studied in independent work by Sidhu

and Desai[1] and Ljung et al.[2] where it has been shown that P O (.), 00(-)

and p O (.) can be interpreted as elements of a scattering matrix that can

be used to salve two-point boundary value problems. Then the results of

4
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the lemma have an interpretation in terms of adding layers of a scattering

medium. The time-varying and nonsymmetri •o cases are also considered in

[11-[21.

By setting t = (k+1)6 and s = d in these equations one can obtain recur-

sions that provide P 0 (k6), 0 0 ( k6) and u 0 ( k6) at k = 1,2,3,...; this is left

to the reader ( see also [161). Instead we present a recursion that is of

special value when solving the algebraic RE.

IV. AN INTERVAL DOUBLING ALGORITHM

An algorithm that recursively generates P 0 (.), to(.), and 11 0 (.), at

i
the points t = 2kd, k = 0,1,2, ..., i . e. progresses geometrically (doubling

the interval at each recursion), follows readily from lemma 1. For this,

set s = 2kd and t = 2s = 2k+1 6 in the equations of lemma 1. Thus we have:

Algorithm 2: Interval-Doubling. Integration-Free Recursions

(i) As for algorithm 1, for a preselected 6 > 0, compute PO W, 00(6),

11 0 (6) from (2), (4)-(5).

(ii) Then recursively compute P O ( 2k6), 0 0 ( 2k6), 110 ( 2k6) through the recursions

PO(2k+16) = P O (2k6) + 0 0 (2k6) [ I + PO(2k6 ) P0(2k6 ) 1-1P0(2k6 ) 00(2k6)

(14)

P O (2k+1 6) = 0 0 (A H I + P 0 (2k6)11 0 (2k 6 ) 1 -1 0 0 (2k6)	 (15)

u C,(2 k+1 6) = 11 0 (2k6) + tT (2k 6)11 0 (2k6)[I + P0(2k6)u0(2k6)1-100(2k6)

(16^

itF1'RODUCIBILI7`i' OF THE
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Q)

When P0 (.) and p 0 (.) are nonsingular matrices, the recursions can be

put in a symmetric form. The symmetric form involves additional matrix inver-

sions. However, exploiting symmetry can reduce certain of the computations

and numerical errors. We omit details of such a formulation because in Section

V the interval doubling algorithm is discussed using matrix square roots

which implicitly preserve both symmetry and positivity of t'he v8^;iance matrices.

Algorithm 2 can be used to solve the algebraic RE:

	

0 = FP + PFT + Q - PDP	 (17)

since P = lim P(t). When (F,Q 112 ) is stabilizable and (F,D 112 ) is detectable,
t +

the limit is independent of the initial value Rol Using II O = 0 it follows that

	

P = P 0 (-) = klim^ P O (2k 6)	 (18)

The idea of using interval doubling algorithms for solving the steady-

state problem and hence the algebraic RE was proposed in [12]. There, an

iterative method, quite different from the one given here, was developed

for discrete-time Lyapunov and Riccati equations. Interval doubling is discussed

in [17-[21 and, as noted there, doubling methods have been used in radiative

transfer problems as well.

It is interesting to note that the above results hold without change

for the discrete-time Riccati equation, i.e. for i = 0,1,2, ...,

P(i+1) = W i W + Q - [VIP(i)H T+C][I+HP(i)HT ] -1 [CT+HP(i)V T ], P(0) = n0

(19)

	6
	

JPL	 Technical Memorandum 33-799

y

t
t..A

i



In this case, we have d = 1 and the algorithm is initialized with

P O (1) = Q - CCT ; 4, 0 0) = ^ - CH ; P O (1) = HTH	 (20)

V. A SQUARE-ROOT INTERVAL DOUBLING ALGORITHM

In most applications the RE ( 2) is such that d > 0 can be so chosen

that P O (d) is a positive definite matrix. It then follows that P OW) is
also positive definite for all k > 1; and thus we can arrange the doubling

algorithm in a symmetric form which is readily put into a square root recursion

Thus, using orthogonal transformation techniques ( see [131), which have been

successfully applied to least squares estimation [141-[151, we now develop

recursions for Ak , r k , and o k , where

PO (2kd)= A kAk ; u O (2k6) = rkr k ; 9 O (2k d) = Qk	 (21)

Here, A  and r  are by construction upper triangular matrices. The definition

of A  and r k is of course arbitrary, our asymmetric choice in (21) results
from the observation that while P O (.) is a variance matrix, Po(.) is an infor-
mation matrix. Further, this choice reduces the number of arithmetic operations

in our square-root algorithm.

To make our square-root algorithm transparent, we start by rewriting

(14)-(16)

Ak+1Ak+1 = AkAk + (^ kAk )CI + XkXk l -1 (o kAk ) T	(22)

r k+l r k+1 = rkrk + (r k@ k ) T [I + XkXk] -1 ( r km k)	 (23)

JPL Technical Memorandum 33-799 	 7
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@k+1 ° m kr k [I + XkX0	 rk@k1
	

(24)

where

Xk = rkAk

The matrix inversions appearing in (22)-(24) can be avoided by utilizing

certain properties of orthogonal transformations:

Lemma 2: Let S be an orthogonal matrix chosen so that

n	 p	 n p

n	 n i ] S = [R 1 0]
	

(25)

where In is the n X n identity matrix, and S is partitioned consistent with

(25) as

S11	 S12
s	 REPRODUCIBILITY (IF T11,

521 1 S22)	 ORIGINAL PAGL I6 P(1i)F

Then,

j

i

r

[In + XXT ] -1 = S11S11	 [ I p + XTX]-1 = S22S22	 (26)

T
`	 Proof: From (25) and the orthogonality of S it follows that I n = RS 11 and

`	 X = RS2 1 . Thus, R = S 1 1 and X = S11S21. Also, from (25) we have [In + XXT]

f̀ 	 = RRT , and hence the first of (26) follows immediately. Next, we note that

since S is orthogonal, S22S21 + S12S11 = 0 and S22S22 + S12S12 = I p ; hence,

}	 8	 JPL Technical Memorandum 33-799
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=	 zi

t

S22 (Ip + XTX )S22 ° S22S22 + S22 S21 S 11 S 11S21 S22 = Ip , which immediately

gives us the other relation in (26).

Having established this lemma it is easy to obtain the following: 	
Z

1 v

'	 Algorithm 3: Square-Root Interval-Doubling Algorithm

l(i)	 Construct an orthogonal S (k) such that

'j

44	 i

	

[ In I r kn k ] S (k) _ [R (k) ; G 7
	

(27)

where R (k) is upper triangular.

(ii) By using implicitly defined orthogonal transformations SA k) and S(k)

construct upper triangular matrices Ak+1 and rk+1 such that

[ Ak 1 O kA kS22 ) 7 SA k) 	 [A k+1 I 0 7

/	
n

SPk) / 

Yk) - 

/ r o+11^ n

where Yk = (S 11))TY k

(iii) 0k+1 = Okrk1S11)Yk 	 X301

Note that significant computational saving can be realized by exploiting

the triangular nature of A k , r k , and S 1 1 ) . Details of the orthogonal trans-

formation can be found in [131 and [141.
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APPENDIX

COMPUTER MECHANIZATION OUTLINE FOR SQUARE-ROOT INTERVAL DOUBLING

INPUT:	 P (N,N)	 A(N,N)
^(N,N)

OUTPUT:	 P, A, 0, updated

PROGRAM MATRICES:

N

Upper Triangular Matrix Factors
Transition

N

1 N

[

WORK

fJ
AT N WORK	 N

N N N

i
W12	 i W13 1 N[Wll

W21	
i W22

i
W23 1 N

MECHANIZATION SKETCH USING QUASI-FORTRAN

D02	 I = 1, 2N
DO 1	 J = 1, 3N J

IL
L

_[I00^

1	 W(I,J)=0.
 0 I 0

2 W(I,I)=1. 1tF'PRODUCIBIL OF THE
+kRU;TNAL PArr, T9 poor

DO 3 J = 2N + 1, 3N
3 W(J - N,J) = 1.	 W23 = I

DO 5 I = 1,N
DO 5 J = I,N
Q = 0.	 W13= XT = (FA)T
DO 4 K =_ I,J

4 a = a + P(J,K)* A(N+I,K) 	 NOTE A(N + I,J) = A(J,I)
5 W(I,J + 2N) = Q

CALL HHL (W, 2N, 2N, 3N, N)

T	 T	 T
I 0 X	

HHL	 S11 S21 0
0 I I	 ST	 ST	 RT

21	 22

I^
i

}



F

This is step i, page 9

DO 7 J = 1,N
DO 	 I=1,N
a =0.	 W =AT^T
DO 6 K _= 1,I	 13

6 a = a + A(N + I,K)KO(J,K)
7 W(I,J + 2N) = a

DO 	 J=1,N
DO 9 I = 1,N
a = 0.	 Al S22 AT ^T

DO 8 K = 1,N
8 a = a +W(N+I, N+K)*W(K, 2N+J)
9 A(I,J) = a

CALL HHL (A, 2N, N, N, N)

S22 AT $T	
HHL	 0	 Eq. (28)

AT	 ^ 
AT

DO 11 I = 1,N
DO 11 J = I,N
Cy = 0.	 Al = Sil r	 (upper triangular)
DO 10 K = I,J

10 a = a + W(I,K)* (K, J)
11 A(I,J) = a

DO 13 J = 1,N
DO 13 I=1,N
a =0.	 r2=Y=Silr
DO 12 K = I,N

12 a = a + A(I,K)* ^(K,J)
13 P(N + I,J) = a

DO 15 J = 1,N
DO 15 I = 1,N
CF = 0.	

Al - Slly
DO 14 K = 1,I

14 a = a + W(K,I)* r(N + K,J)
15 n(I,J) = a

JPL Technical Memorandi.um 33-799 13
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CALL UIN(r , 2N, W, 2N, N) w	 r

DO 17	 J= 1,N
DO 17	 ! = 1,N

= 0.a w 
12	

or
DO 16	 K = 1,J

16	 cy	 = cy + 0,(I,K)*W(K,J)
W(I,N+J)

CALL HHu(r, 2N, N, N, N)

[r] HHL
Updated r, Eq.	 (29)

y	 0

DO 19	 J= 1,N
DO 19	 1 = 1,N
a	 = 0. Updated t Eq.	 (30)
DO 18	 E = 1,N

18	 a	 = CY + W(K,N+K)* K(K,J)
19	 o ( tT)

J
4-
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I

SUBROUTINE HHL(W, NRMAX, NR, NC, NCT)

• ** Lower Triangularization of W * * (SEE FIGURE)
• W(NR, NC), with NRMAX row dimension (NR .LE. NRMAX)
• NCT .LE. NR, NCT .LE. NC
• TW computed, with T orthogonal. The result, a partially lower
• triangular matrix is stored back in the bottom part of W
• Dimension of low triangular matrix is NCT

DIi1ENSION W(NRMAX, NC)

DOUBLE PRECISION DELTA

DATA Z/0./, ONE/1./

NRPNC = NR + NC	 @ 'NR' PLUS 'NC'

NST=NC- NCT +2

S

DO 50 J = NC, NST, -1
Delta = Z
JDIAG = NRPNC - J
DO 10 I = 1, JDIAG

10 DELTA = DELTA + W(I,J)**2
SIG = SQRT ( DELTA )
IF (W(JDIAG, J) .GT.Z) SIG = SIG

W(JDIAG,J) = W(JDIAG,J) - SIG
ALFA = ONE/SIG*W(JDIAG,J))
IF (J.EQ.1) GO TO 35
JM1=J- 1
DO 30 K = 1, JM1

DELTA = Z
DO 20 I = 1, JDIAG

20	 DELTA = DELTA + W(I,K)*W(I,J)
DELTA = DELTA*ALFA

DO 30 I = 1, JDIAG
30 W(I,K) = W(I,K) + DELTA*W(I,J)

35 DO 40 I = 1, JDIAG
40 W(I,J) = Z

W(I,JDIAG) = SIG
50 CONTINUE

(((

	 NCTt

	 (r

	 NCT N

NRMAX JrWll	 (NR HHL I	
` 
CT

1
1
(LW21 W22	 LW21 W22

NC	
Unchanged

FIGURE

r
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SUBROUTINE HHU(W, NRMAX, NR, NC, NCT)

• * * Upper Triangularization of W * * (SEE FIGURE)
• W(NR,NC), with NRMAX row dimension (NR .LE. NRMAX)
• The first NCT columns are triangularized.
• T W computed, with T orthogonal. The result, a partially
• upper triangular matrix is stored back in the top part of W.

NCT	 NCT
DIMENSION W(NRMAX, NC)

DOUBLE PRECISION DELTA 	 NRMAX 

C `411
X 412 } NR	 NCT ! lNR

DATA Z/0./, ONE/1./ 	 LW	 W22	
H

NC	 Unchanged

i

DO 40 J = 1, NCT
DELTA = Z
DO 10 I = J, NR

10	 DELTA = DELTA + S(I,J)**2
SIG = SQRT ( DELTA )
IF W(J,J) .GT. Z) SIG = -SIG

W(J,J) = W(J,J) - SIG
ALFA = ONE /(SIG*W(J,J))
JP1 = J+1

DO 30 K = JP1, NC
DELTA = Z
DO 20 I = J, NR

20	 DELTA = DELTA + W(I,K)*W(I,J)
DELTA = DELTA*SIG

DO 30 I = J, NR
30 W(I,K) = W(I,K) + DELTA*W(I,J)

DO 35 I = JP1, NC
35 W(I,J) = Z

W(J,J) = SIG
40 CONTINUE

FIGURE

a

4



e

SUBROUTINE UIN(W, NWMAX, WINV, NWINM, N)

DIMENSION W(NMAX,N), WINV(NWINM, N)

• W upper triangular
• WINV = W INVERSE COMPUTED
• WINV can replace W

DOUBLE PRECISION Q
• It is good practice to do matrix inversion in double precision

14INV(1,1) = 1./W(1,1)
DO 20 J = 2,N
WINV(J,J) = 1./W(J,J)
JPI = J-1
DO 20 K = 1, JM
c = 0.
DO 10 I = K, JM

10 0 = 0- WINV(K,I*W(I,J)
20 WINV(K,J) = 0*WINV(J,J)

RETURN
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