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THE THEORY OF THE GRAVITATIONAL POTENTIAL
APPLIED TO ORBIT PREDICTION

By James C. Kirkpatrick
Lyndon B. Johnson Space Center

SUMMARY

Because of the significance of high-order-gravitational-potential terms in
trajectory prediction, an analysis was performed to determine the magnitude of
position and velocity vector errors associated with the geopotential function.
The analysis included a complete derivation of the geopotential function and its
gradient, the transformation of Laplace's equation from Cartesian to spherical
coordinates, and the analytic solution to Laplace's equation from the transformed
version obtained in the classical manner of separating the variables. The solu-
tion, therefore, expresses the gravitational potential at a point in space in
terms of the magnitude of its position vector and its orientation in terms of its
geocentric latitude and east longitude. The method devised by Pines, in which
direction cosines are used to express the orientation of a point in space, also
is considered in the solution.

The effect of varying the order and the degree of the potential function
was demonstrated by plotting trajectory integration data on position and velocity
vector differences for a single orbit and for 32 orbits. In the resulting curves,
the data for lower order and lower degree potential functions are compared with
data for an eighth-order model used as a standard. The short- and long-
duration comparison studies were performed both including and excluding the
effects of drag. Third-body perturbations considering the Sun and the Moon
only were included in all studies performed.

INTRODUCTION

The question of the importance of high-order-gra -ititional-potential per-
turbations of satellite orbits has been raised many times. The question is not
without merit, for the inclusion of high-order-potential lugic greatly increases
the storage and execution time of any numerical integration of trajectory equa-
tions of motion. Although the works of Pines (ref. 1) and Spencer (ref. 2)
have made it possible to minimize the burden of storage and execution time for
any trajectory integration considering high-order-potential terms, the doubting
still persists as to the necessity for such terms. This indecision is unfortunate,
since it is often important to include high-order-gravitationsi- potential effects
for trajectory prediction. As a result, this report has been prepared to fully



explain not only the potential function but also its gradient, since the gravita-
tional force, being conservative in nature, is therefore derivable from the gra-
dient of the potential.

To explain the potential function, it will be necessary to derive it fully.
Once the potential function has been derived, its gradient will be obtained. The
derivation will be performed in the classical manner; that is, from Laplace's
equation in spherical coordinates by the method of separating the variables. As
a result, the solution will require that the position of a point in space be ex-
pressed in terms of the magnitude of its position vector and that its orientation
be expressed in terms of its geocentric latitude and east longitude. The work
of Pines and Spencer (refs. 1 and 2) is essentially a reworking of the classical
solution in terms of direction cosines to eliminate its isolated singularities over
the poles and its costly trigonometric functions.

The effect of varying the order of the potential function is illustrated in
the figures. One series of illustrations considers the position and velocity vec-
tor differences resulting from a trajectory integration over one single orbit; the
results of lower order potential functions are compared with an eighth-order
model as the standard. Another series of illustrations presents the same com-
parison study extended over 32 orbits. Both comparison studies are performed
with and without inclusion of the effects of drag.

The transformation of Laplace's equation from Cartesian to spherical coor-
dinates is performed in appendix A. A concise formulation of the method of
Pines is given in appendix B.

SYMBOLS
A,B arbitrary constants of power series
|Ai.| determinant of identity matrix formed by excluding i-th row
L and j-th column
Anm (")) function defined in equation (B3)
a,b constant coefficients of power series
8y elements of the transformation matrix
8y,89,84,8, coefficients of the gravitational potential gradient defined in equa-
tions (B29), (B30), (B31), and (B32), respectively
bij elements of the 1.verse transformation matrix
C arbitrary constant defined in equation (12)




Cnm’snm harmonic coefficient constants

D nm (s.t) mass coefficient function defined in equation (B7)

E m@®V mass coefficient function defined in equation (B11)

F(a,b;c;d) hypergeometric series function defined in equation (44)

an (s,t) mass coefficient function defined in equation (B12)

g gravitational parameter

h variable defined in equation (86)

I(w) function defined in equation (52)

i positive integer counter used in equation (44); 0<i<k-1

i constant used in equation (92) and appendix B; %= V-1

i positive integer used in equation (111); i=1, 2, 3

i,j.k unit base vectors along Cartesian coordinate axes

k1 integer used in equation (111); kl =0,0,1

k2 integer used in equation (111); k2 =1, -1, 0

2 upper limit imposed to avoid negative factorials

m arbitrary constant defined in equation (15)

n,m positive integers denoting polynomial degree and order,
respectively

an (1)) Legendre polynomial of the first kind, defined in equation (81)

P oo Legendre polynomial of the first kind, defined in equation. (53)

Qnm (1)) Legendre polynomial of the second kind, defined in equation (82)

Qo (1)) Legendre polynomial of the second kind, defined in equation (54)

q.k positive integers

R,® A spherical coordinate functions



R' =3R/0r

R" = 3°R/0r>
R

Rg

R, (s,0),1 (s,0)

(]

unit vector defined in equation (B9)

equatorial radius of attracting body

real and imaginary parts, respectively, of the complex variable
(s +it)™, where i=v-1

magnitude of position vector of reference point

aroitrary constant

direction cosine; s = x/r

coefficient defined in equation (103)

positive integer in text equations (51) and following
direction cosine in appendix B; t=y/r

gravitational potantial

complex number defined in equation (B15)

component magnitudes of positicn vector along Cartesian coor-
dinate axes

arbitrary constant used in equations (23), (84), and (91);
a = tim, where i=v-1

constant coefficients of power series
east longitude of reference point
function defined in equation (61)
direction cosine; u =z/r =sin ¢
variable defined in equation (B4)

geocentric latitude of reference point




Operator

v gradient vector operator
ANALYSIS
Laplace's Equation in Cartesian Coordinates
The derivation of the geopotential function is obtained as the solution of one

of the most important partial differential equations of mathematical physics: La-
place's equation. Laplace's equation is defined as

V2V=0 1)

or
2 2y 52
o'V .9 o'V
—gt g+ —g =0 2)
ox oy oz
where vzv is defined as the Laplacian of the potential function V = V(x,y,2);

%X, y, and z are the component magnitudes of the position vector along the Carte-
sian coordinate axes; and V is the gradient vector operator

_ & .. 9 .., 0
V'F{l"'ﬁ'l"’ﬁ!ﬁ &))]

defined in Cartesian space, with i, j, and k constituting a set of unit base vec-
tors along the coordinate axes. The scalar product of V-V operatingon V gives
Laplace's equation: '

pA z
ox” oy oz
=0 C))

The theory of the solution of Laplace's equation is called potential theory.



The Solution of Laplace's Equation in Spherical Coordinates

Laplace's equation in spherical ccordinates, expressed in the form developed
in appendix A, is

2V 9 (.23V 1 0 ov 1 3"V
v roas)t 5 08P 3p) t—— —%
or s e cp( ? cos ¢ OA
=0 )

where r is the magnitude of the position vector to the point in question, ¢ is the
geocentric latitude, and A is the east longitude. This equation can be solved an-
alytically by the technique of separating the variables, which is done by assuming
a solution of the form

V(r,@.A) =R@ES (@AM 6)
Therefore,
=28 QA
%‘?’,, =R %‘f’—f A ®
g‘x’_ RO %{‘. ()

Substituting equations (7) to (9) in equetion (5) and dividing by the product of the
spherical coordinate functions R®A yields

2
1 (28R 1 2] L1 1 1 3°A
Rox (" 55) * 5cor 0g (00 @ ) * 1 cosly B onl " an
or
2
1 8 /{23R)\ _ 1 0 o 1 10°A
ns;(r F)"[ o8 @ r‘P(me)+cha_ﬂ] an




It is clear that the left-hand side of equation (11) is a function of r only. There-
fore, if the equality is to hold, each component on the right must be equal to scme
arbitrary constant, say C. Under these conditions, equation (11) becomes

= (P8) =c (12)

which leads to the differential equation

r2R" + 2rR' - CR = 0 (13)

where R'=0R/0r and R" = 32R/ar2. Solving for the arbitrary constant C in
equation (11) gives

_ 1 ] o 1 1 3°A .
'C'rmé‘cﬁ(m“’ﬁ)*;};x;z (1)

Equation (14) ~an be separated by multiplying both sides of the equation by cos2<p
and rearranging to yield

2
2 cos 9 o0\ _19°A
-C cos w COS(PW)—Ka—;:f
= -m* (15)
2

Equation (15) implies that A"/A is equel to a constant -m
establishes the differential equation

, and this relationship

A" +m?A =0 (16)
Furthermore, equation (15) yields
2 cos 9 od\ _ __2
_CCOSCP-_EEB_(F (008(95-6)— m (17)



Rearranging equation (17) yields the differential equation

2
1 ) o0 m _

Equation (18) can be written in a more concise form by letting p = sin @; then,
cos ¢ = du/99, and 3®/9¢ can be written as

a9

Substituting equation (19) in equation (18) yields

2
%[(1-;12)%4—:’] + (c- i“pz)dno 20

1

Equation (20) leads to the differential equation

2
(1 - uz)O" -~ 2u0' + (c - l—l“—i) =0 (1)
- B

Laplace's equation in spherical coordinates has now been separated into the
following three second-order differential equations.

2

(l-uz)O"-2p¢'+ (c--"‘—g)o=o (21)
1-p

r2R" + 2rR' - CR = 0 (13)

A" +mZA =0 (16)



In these equations, C and m represent arbitrary constants. Thus, the solution
to equation (5) will be formed from equation (6) when the functions ®(¢), R(r),
and A(A) have been determined by solving equations (21), (13), and (16),
respectively .

Equation (21) is known as Legendre's associated differential equation. The
simpler form of this equation, which results when m = 0, is known as Legendre's
differential equation. Equation (13) is of the form of Cauchy's (or Euler's) linear
differential equation, and equation (16) is the differential equation of the undamped
harmonic oscillator. As a result, solutions to equations (13) and (16) may be ob-
tained by assuming solutions of the form

h

R(r) =Cr (22)

A

AQ) = Ae® (23)

where h is a variable defined in equation (86), A is an arbitrary constant, and
a is an arbitrary constant, and by substituting these functions in the appropriate
differential equations. The resulting arbitrary constants are then evaluated from
the initial and boundary conditions of the problem. Equations (13) and (16) will
be solved after the solution of equation (21) has been completed.

The solution of Legendre's associated differential equation will be obtained
from the solution of Legendre's differential equation, which will be obtained first.
It will be shown that Legendre's differential equation has a solution in terms of two
infinite series, each multiplied by one of the arbitrary constants of the solution.
It will be shown further that, because of the boundary conditions of the problem
(-1 < u < 1), one of the arbitrary constants of the solution must be zero.

Legendre's associated differential equation with m = 0 reduces to the form

(1 - p2)¢" - 20"+ CO =0 (24)

If the assumption is made that Legendre's differential equation, equation (24), has
a power series solution of the form

- -2k
k=0



where q and k are positive integers, then, when this expression is substituted
in equation (24), the following expression results.

(-1 3 @@~ 2 Dag¥ ™2 3y Y @ - Mgyt
k=0 ot

(]
+C Z aghd K =0
k=0

(26)
Equation (26) reduces to the form
Z (@-2k)(q- 2k - 1):::2kyu“‘m"z - [@-2K)(@- Zk +1) - Clay, p9 =0
k=0 @n

Shifting the index k to k + 1 in the negative term in equation (27) and setting
a_y equal to zero since q is still to be determined gives

D @-M@- 2k - Doy pT 2o (q- 2 - 2@~ 2k - D - Clagy 4T H =0

k=0
(28)

Solving for @y in equation (28) gives the recursive relation

_(q-2k -2)(q -2k -1) -C
"k =T TG D Czke2 (29)

10



Since the assumed power series solution was defined only for positive values of k
(i.e., 0 <k <+e), setting k = -1 in equation (29) causes a_, =0. Under these
conditions, the following relationship results.

q(@+1)-C=0 (30)
If the constant C is set equa. to
C=n(n+1) (31)

where n is, of necessity, a positive integer greater than or equal to zero, then
modifying the left-hand side of equation (30) by adding and subtracting the product
nq permits factoring of this equation accordingly .

(@-n)@+n+1)=0 (32)

Equation (32) has two possible solutions.
gq=n (33)
q=-(n+1) (34)

The solution to equation (24) may ncw be written using A and B as the
arbitrary constants of the solution.

o0 L4
_ z : n-2k z : -n-2k-1
®=A Gp B +B ﬁzkp (35)
k=0 k=0

where the constants e and BZk can be computed from the recursive relations

.. (Mm-2k)(n-2k-1)

B2~ " T&H F D C@n = 2K = D) %2k (36)
m+2k+ 1)@+ K+ 2) a7
Pok+2 =~ TR FDCn+ XK+ P2k O

11



If a, and po are the arbitrary constants of the solution, then, for k =0,

- nn-1)

% =" T2Cn - D % (38)

+
By = i By 39)

Wh:n k =1, equations (36) and (37) give
-_@m-2)n -3
" 222n - 3) 2

-nn - D@ -2)(n - 3I)
% I0n - DCn -3 % (40)

_n+3)(n + 4)
Be=—mamn+5 P2

_(+ 1)(n+2)(n+3)(n"4)p (41)
1:24@n + H (2n + 5) 0

Equatio: (35) can now be written in terms of equations (40) and (41), with
a, and ﬂo equalto A and B within an arbitrary constant.

_aln_ _nm-1) n-2 n(n-1)m-2)(n - 3) n-4
°“A[" @ -D* *TT%Gn-DE - ]
eBl L, @+ D@+ 1  @+DO+DO+H@+H 1,
un+I 2Cn + 3) “n+ 1:2:40Cn + 3 (n + 5) p‘rh*'.)'

(42)

Hob=on (ref. 3) points out that equation (42) can be written in the more compact form
0=Ap.nF<-2-, ~n. 1-2n, 7)
+B 1 n+1n+2 2n + 3, 1 (43)
lln_+1' ¢ "% "¢ ¢ ‘2‘

12



where the function F(a,b:c;d) is the hypergeometric series defined as

F(a,bic;d) =1+ d*a(a + Db +1) d2 a(a + 1)(a + 2)b® + 1) + 2) 3

Ie2c(c + D) T23clc + c + 2)

+ ...
k-1
LIl @e+do+b
___1+Zi=0 - ak

k=1 it [ e+
i=0

where the positive integer counter i has limits 0 <i<k - 1.

Equations (42) to (44) are not very useful for computational purposes.
tion (35) may be written in a more useful form if ag and po are written as

- (2n)!

2"n!n!

%9

_ 2™t
Po=Tn+ DT

Substituting equaiions (45) and (46) in equations (38) to (41) gives

nn-1) 2n(2n - 1) 2n - 2)!
ZCn -1 8 - 1y - 2)!nm - 1!

(2n - 2)!
2"t - 1)(n - 2)!

_(m+1Dm+2 . 2"n!n!@n + 2)
By~ T3+  Cn+DIGn 7+ D

2 n+ 1M + 2)!
Cn+ T

44)

Equa-

(45)

(46)

47

(48)

13



= -2)(n ~-3), _ (2n - 2)!

a
¢ itn-3) @ - @ - 2)!
- (2n - 2)! (49)
2"2'(n - 2)(n - 4)!
. m+Hm+4 2"m+ DI + 2!
Be= T+ B Tn+ 9T
- zn("ﬁfi)i (sq)T»r 4)! 50
Equation (42) can now be written as
2 t
a1 -D'@n-200!  n-2t
““)‘A;EZt!(n ~HT@ - o7 ¢
t=0
n (@ + k)!(n + 2k)! 1
e D GrOlG I SRIRT Gb
k=0

where t is a positive integer and 2 is the greatest integer equal to n/2 when n
is an even integer and the greatest integer equal to (n - 1)/2 when n is odd.
This restriction must be imposed to avoid negative factorials.

It is clear from equation (51) that the first series will terminate or converge
for all values of u, including complex values. It is also immediately clear that the
second series will diverge for all values of p such that their absolute values are
less than unity. Since for the case of the geopotential, the value of p is bounded
such that -1 < y = sin @ <1, the second series does not satisfy the boundary con-
ditions and, as such, must be disregarded in the solution. Thus, the solution of
equation (24) is written as

I(p) = AP_, () + BQ, o (k) (52)

14




where P rmq.;) and Qno (4) are Legendre polynomials of the first and second kind,
of degree n and order zero, respectively. These functions are defined as

'}
_1 (- l) (2n - 2t)! n-2t
Fno® = on 2 T oTe T # 63
t—
_oN n + K)!(n + 2k)! 1
Qno("‘) =2 kTCn + 2k + )7 |P‘uﬁk-ﬁi (54)
k=0

Therefore, the value of the arbitrary constant B in equation (52) must be zero to
setisfy the boundary conditions. It should be said, in passing, that the conspicu-

ous factors 2 " and 2" are there for the purpose of making the value ol the poly-
nomials equal to unity when n# 0 and p = *1.

By returning to Legendre's associated differential equation (eq. (21)) and
replacing the arbitrary constant C by its more convenient form n(n + 1), dis-
covered in the previous solution, the following expression is obtained.

2

(1 - p2)¢>" - 2u0' + [n(n +1) - Iﬂ_z] ®=0 (55)
T e

Equation (55) is Legendre's associated differential equation of degree n and order

m. A power series solution of equation (55) is inconvenient because of the (1 - pz)
term appearing in the denominator. A more successful approach is to consider a
solution of the form

2 m/2

S = (1 - u) M) (56)

Substituting equation (56) in equation (55) gives a differential equation in M(p),
m/2

with (1 - p.z) as a common factor. The functions ¢' and ¢" are computed

from equation (56) to be
m/2 -1
Q' (u) = ( - p.z) [—um (1 - uz) M) + M (p)] CY))

15




o"(p) = (1 - uz)m/z;[uzm(mi -2) (1 - uz)—l - m(l - uz)-l]M(p)

, -1
- 2um 3 - p’) Mi(u) +M" (u)z (58)

Substituting equations (56) to (58) in equation (55) gives

(1 - uz)M" W) - 2u(m + 1)M' (u) +[mv.2(m - 2) (1 - uz)-l -m+ 2mP2(1 - Ilz)-l

-1
+n(n+1)- mz(l - pz) ]M(u) =0
(59)

Simplifying equation (59) yields

(1 - p2)M"(u) - 2u(m + DM' () + [n(n + 1) - m(m + 1)]M(u) = 0
(60)
(1 - p.z)M"(u) —2u(m+ DM (W) + (- m) (@ +m + DM() = 0

It is possible to obtain a power series solution of equation (60) by assuming
the solution

M) = Z ay T (61)
k=0

wherein 8on is a constant coefficient. Substituting equation (81) in equation (60)
gives

(-9 Z @- 200 (q - 2 - Dagud - quam+ 1) Z (@ - 2K)ag u?
k=0 k=0

2k

+(n-m)(n+m+1) Z a2kuq— =0

=0
(62)
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Z @ - 2K)(q - 2k - Day pT 2. 2 [(q - 2k)(q - 2k +2m + 1)
k=0 =0

q-2k

aM =0

~-n-mn+m+1)] a

(63)

Shifting the index in the second summation term from k to k + 1 and again requir-
ing a,= 0 gives

Z (Q-2Kk)(q - 2k - 1):5121‘y;‘1'2k'2 - Z ((Q-2k-2)(q-2k+2m-1)

k=0 k=0
_ _ qQ-2k-2 _
Mm-m)(n+m+1)] Borc 4o =0
(64)
The recursive relation may now be obtained by solving for 8ok in equation (64).
Thus,
_g-2k-2)(q-2k+2m-1)-(h-mn +m+ 1)
8oy = @-2@G-%-D ez (69)

The numerator of equation (65) can be factored as follows.

_[q-2k-2)-(n-m))i(q-2k-2) +(n+m+1)]
A2k ~ @-M@q-2k-D Sox+z (66

When k =-1, a_

9 = 0 and the following solutions are possible.

q,=n-m @67

gy =-(n+m+1) (68)
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Since for a power series solution, q mustbe constrained to positive integer values,
equation (68) must be associated with a solution to be disregarded. From equation
(67), it is seen that the relation between n and m must always be such that

n>m (69)

The solution of equation (§5) may now be written with A and B as the ar-
bitrary constants of the solution as

o = (1 _ uz) i: ay 2K g i bzku-n-m-qu am
k=0 k=0

where the coefficients 85 and b2k are obtained from the recursive relations

_(n-m-2k)(n -m - 2k - 1)

B+~ " T IRTDCR -k - D Bop (1)
_(n+m+2k+ D(n+m+ 2k + 2)
Dok+2 = * D Cn + 2K +3) Doy (12)

Equations (71) and (72) are identical to equations (36) and (37), respectively,
when m is equal to zero. It is interesting to note that m ‘appears only in the nu-
merator, bearing opposite signs in each recursive relation. Taking for a, and
b, the following values

- (2n)!
a, = (73)
0 Mim - m)t -
) 11
b = 200! (14)
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then for k=0,

_-m@-m-1

82 TCn - 1) 0
=.n-mm-m-1) (2n)!
n-1 2"n! (n - m)!
=- (n - 9! (15)

2"m - D! -m - 2)!

bz:(n+m+1)(n

+m +2)b
Z(Zn +3) 0

_m+m+ D@ +m+2)  2"nlm + m!

n+3) Cn + )7
n
R
When k=1,
_.(n-m-2)(n-m- 3)
QT TGRSy X2

..m-m-2)(n-m- 3, _ (2n - 2)!

ZIGn-D 2®n - ! - m - 2)!
= @n- 4t an

"M - 2)tm - m - 4)!

p =ntm+n+m+4d,
4 ~2°2(2n + 5) 2

_+m+H@+m+4) 2"+ Din+m+2)! (2n+4)
- ~2°2(Zn + B) Cn+ )7 On+ 3

2"+ D!+ m+ !
- n+3)! (78)
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The solutior ior ®(4) can now be written as

m
¥) 2 t
=(1-42 1 (-1) (2n - 2t)! n-m-2t
e = (1 “) Aon Zt!(n ~ DT - m - DT H
=0

7 =
.2 n mn+k)!( +m + 2k)! 1
* (1 "') B2 kKT (2n + 2K + 3)1 e ()

where 2 is the greatest integer equal to (n - m)/2 when (n - m) is an even in-
teger and the greatest integer equalto (n - m - 1)/2 when (n - m) is odd. This
restriction is imposed to avoid negative factorials.

Equation (79) reduces to equation (51) when m = 0. As in the case of equa-
tion (51), the first series terminates or converges for all positive values of n and
m such that n > m regardless of the value of p. The second series converges
only for values of p with a magnitude greater than unity. As a result, the series
must be disregarded in this solution, as the value of u is bounded such that
-1< p=s8in ¢ < +1., Therefore, the solutlon to Legendre's associated difierential

equation may be written as

o) = Aan n) + BQnm (1)) (80)

whe.e P (u) and Qnm (u) are the associated Legendre functions of the first and
second kind, respectively, each of degree n and order m, defined as

'
t
- 1 (-1) (2n - 2t)! - n-m-2t
PomW) = (1_ ) T Z T -Ditn - m - 2T ¥ (81)
t=0

. n+KIMN+m+ 2k). 1
Qnm(p‘) - (1 ) 2" Z kT(Zn + 2k + 3)1 un+m+§T€+I (82)

The arbitrai'y constant B in equation (80) must be set equal to zero to satisfy the
boundary conditions of the geopotential.
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Equation (13) written with C=n(n + 1) becomes

réR" : 2rR' -n(n + DR = 0 (83)

Substituting equation (22) in equation (83) gives

ahh - De2e 2 4 2aher? ™t - n(n + D= 0 (84)

The characteristic equation that results from equation (84) is

hth-1)+2h-n(n+1)=0

(85)
nl+h-nm+1)=0
By applying the quadratic formula, the values of h become
h=-;-!(n+%-) (86)
or
h,=n 8mn
hy=-(n+1) (88)
The solution of equation (83) becomes
R = Clrn + Czr' (n+1) (89)

Since the potentiai function V is expected to vanish as r -+ e, the arbitrary con-
stant C1 must be set equal to zero. The solution reduces to the form

R=cr (D (90)
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The solution to equation (16) is obtained by substituting equation (23) in
equation (16). This gives

A (a?+n?) =0 (o1)

which gives, for the solution of the characteristic equation, @ = tim, where i = v-1.
The solution of equation (16) becomes

AQ) = Cel™} 4 ge7imA 92)

where C and S are arbitrary constants of the solution. By ignoring the imagi-
nary terms, equation (92) can be simplified to

AQ) = Cm cos(mA) + Sm sin(mA) (93)

After substituting equations (80), (89), and (93) in equation (6), the com-
plete solution to Laplace's equation in spherical coordinates becomes

Vo< E:lrn + Czr'(nﬂ)] %P om (8i0 @) + BQ__ (sin (P)][Cm cos(mA) + S sin(mk)]

(94)

By setting C1 and B equal to zero, as discussed earlier, the equation for the
geopotential function reduces to

(sin @)
V(r,@,A) = Z Z e [cnm cos(mA) +8__ sin(mx)] (95)

n=0 m=0 r

The constants Cm and Sm have been written as C nm and snm to incorporate

all the constants of the solution. These values are determined experimentally and
may “e found in normalized form in reference 4 and in unnormalized form in ref-
erence 5.

Equation (95) has units of reciprocal length ~ * be sritten to reflect units
of kinetic energy squared so that its gradient . *~ « i+ of acceleration by
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introducing the gravitational parameter 8’ which has units of length cubed per

time squared, and the normalizing parameter RE » usually the equatorial radius of
the body. Thus,

n n
g
V.@,A) = E -;E(!:_-E) Z P, _(sin q.)[cnm cos(mA) +§_ sin(mx)] (96)
m=0

n=0

The harmonic coefficient constants C nm and S nm require additionsl dis-
cussion. The impossibility of determining values for Sno produced when m =0
is of no consequence since sin(0*A) = 0. The values of CnO are a special set,

known as the zonal harmonic coefficients, and are entirely dependent on latitude.
For values of n and m greater than zero but such that n > m, these constants

are given the name "tesseral harmonic coefficients" and are dependent on both lati-
tude and longitude. When n =m, these coefficients are given the name "sectoral
harmonic coefficients" and are entirely dependent on longitude.

The Gradient of the Geopotential Function

The gravitational force, being conservative in nature, can be obtained from
the gradient of the geopotential function. To obtain the gradiert of the geopotential
function, equation (96) can be written as

oo n n
g g
V(r,@.A) = TE' Cgo * ?E- (Ef-) Z P (sin cp)[Cnm cos(mA) +S sin(mx)]
n=1 m=0

N

since sin(0°A) = 0 and (R.E/r)o = cos(0-A) = Po0 =1, as may be seen from equa-
tion (81). The term (gECoo) /r is the gravitational potential associated with an
unperturbed inverse square law of force, and the constant C00 = %1, depending on
whether the force is one of attraction or repulsion, respectively. The summation
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terms form that part of the potential associated with the disturbing acceleration.

From equation (97),

-4

n=1 m=0

B 1) ———

n=1 m=0

+('1‘) Z (vp (sin @)] [C,,p, cosCmA) 45, sinn)]

+P__(sin Q)[VE?M cos(mA) +S__ sin(mk)]])

where

Py ann

24

COO + Z (?)n i an(sin lp)[Cnm cos(ml) + S“m sin(mx)]z

(98)

(99)

(100)

(101)

(102)



-nien - 20
2nt! m-tH)!'h-m - 2t)!

v [(;)n-m-m] =@-m- zt)(f-,)n.m-m-lv(;) (1¢4)

=
"

nmt (103)

z 1 xl+yl+:5
W(2)=-te-:—F— (105)

v[cmn cos(mA) +S sin(mx)] = m[-C o SIDGA) +5 cos(mx)]vx (106)

> = are m.@) (107)

OA . OA . 0A
an=%9Y -y dx (109)

73 (110)
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Therefore, by writing x, =x,

x2=y,and Xq = 2,

9V = i+ + k
Fx—l- th; 1 oxg = J
av __BefM\).
oax. T\ 2]}"00
i r
oo R, n n
+ Z (T) 2 P (sin cp)[cnm cos(mA) +§__ sin(mx)]‘
n=1 m=0
B R &
+-E Z -I(R-r—":) 5 Z P__(sin cp)[Cnm cos(m) +§_ sin(mA.)]
n=1 r =0
-
n (111)
RE m 2 Z 2 n-m-2t f
(2 el 25 (-2 ) ZTM()
. t=0
7
y '}
. 2 n-m-2t-1
1 X z 2z
+ l_‘(kl -2z ’2‘)[1 —(F) Z Tnmt(n -m- Zt)(x—_)
t=0
. [Cnm cos(mA) + snm sin(mh)] - 2 i z an(sm )
x + Y m=0
. m[—Cnm sin(mA) + Snm cos(mk)]; z
J

where i=1, 2, 3, k1=0 0,1,

equals (n - m) when (n - m)
(n - m) is odd.

26

and k2 =1,
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Equation (111) is useful in computing the gradient components, but its vec-
tor form can be written concisely as follows.

gV = }:-: E;(E)" _(n ; X yjic‘*‘ zk i pnm(sinq;)[cmcos(mx)
n= r m=0
+S_ sin(mx)] + Zn: V[Pmn(sin Q))] [cnm cos(mA) +§__ sin(mx)]
m=0

P msi )| Cpm Sin(mMA) +8 ( )' -7
+ - in(mA) + A
m sin ¢ 8 nm CO8(m

(112)

It may be seen at once that, in the neighborhood of the poles (that is, where
@ = #90°), A becomes indeterminate and the gradient of the gravitational potential
obtained from equation (112) possesses two isolated singularities. These singular-
ities are eliminated by Pines (ref. 1) and Spencer {ref. 2). A condensed form of the
work of Pines is given in appendix B.

RESULTS AND DISCUSSION

Both the classical method, equation (112), and the Pines method, equation
(B33), have been programed and evaluated on the basis of execution time, storage
requirements, and accuracy. The accuracy study was conducted for an integration
time of approximately 2 days. It was found that, except in the polar regions,
both methods are identical in accuracy. However, the Pines method was approx-
imately 15 times faster and required only ore-third of the storage requirements.
For this reason, the Pines method has been adopted as the formulation to use in
any integration requiring gravitational potential perturbations, especially if both
the gravitational potential and its gradient are required.

A small study was conducted to show the importance of gravitational potential
perturbations, especially those of higher orders. In this study, the position and
velocity vector differences for various potential models of varying order and degree
were each computed with the use of an eighth-order model as the standard. These
differences have been plotted in figures 1 to 4. Figures 1(a) to 1(f) and 2(a) to
2(f) present the differences obtained over the initial orbit at 32 equidistant time
steps in the orbit. Figures 3(a) to 3(f) and 4(a) to 4(f) present differences
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resulting over 32 equally spaced time increments equal to the period of Keplerian
orbit of the initial state. The initial state of the orbit is as follows.

Semimajor axis 6629.656565 kilometers
Eccentricity 0.01

Inclination 0.7854 radian
Longitude of the node 0.17854 radian
Argument of periapsis 0.7854 radian
Eccentric anomaly 0.7854 radian

Julian date 2442332.17

Keplerian period 5372.137432 seconds

The comparison was conducted both by considering potential perturbations only and
by considering potential perturbations together with drag and third-body perturba-
tion from the Sun and the Moon. The atmospheric model in reference 6 was used to
compute density in the drag formulation, and NASA Jet Propulsion Laboratory ephem-
eris tape data were used for the third-body and atmospheric-model perturbations.

The legend for figures 1 to 4 is as follows. Each figure page includes six
curves, which are designated with numbers ranging from 2 to 7. Curves marked
with a "2" are curves in which only second-order or second-degree terms were
considered. Curves marked with a "3" are curves in which both second- and thi.-d-
order or second- and third-degree terms were included. In short, the higher the
number used to designate the curve, the more complete was the extent of the poten-
tial function used. As a result, seventh-order curves show the lowest errors be-
cause they approximate the eighth-order reference more closely.

The results of the study are as follows. High-order-gravitational-potential
models are essential to the accura~cy of a trajectory integration. This statement is
true whether the integration is to be performed over a relatively short period, such
as over one orbit (fig. 1(b)), or (and especially 80) over longer periods (fig.
3()). These curves verify the fact that nothing is gained in accuracy by increas-
ing the degree of the potential model without adding the corresponding tesseral
terms. These facts are also substantiated by the velocity error curves. In fact, the
position error curves, as expected, are virtually identical to the velocity error
curves. Only the scale along the ordinate is different. As a result, this discussion
of results will be confined to the position error curves because the same conclusions
apply for the velocity error curves.

As was stated earlier, comparisons were made with and without the effects of
drag. In both instances, the shapes of the curves were identical except that the
magnitude of the errors for both long- and short-duration runs was slightly higher
when drag effects were not considered. Since the retarding force of the drag was
absent and the effects of the Sun and the Moon are negligible, this result was ex-
pected. The curves show additional interesting effects.

It may be said, intuitively, that the higher the order of the model, the closer

the agreement between the results and the higher order reference would be. The
results of this study show this theory to be true only for the very lowest and the
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highest order comparison curves. For the one-orbit case, although the second-
order model did prove to be the worst of all models compared, the fourth-orc:r
model proved worse than the third-order model and the fifth-, sixth-, and seventh-
order models varied continuously. In the long-duration case, the second- and
seventh-order models were clearly the worst and best, respectively, with the
seventh-order model maintaining almost a constant difference with the reference
model much unlike the rest of the comparison curves, which showed a definite secu-
lar trend. However, the fourth- to sixth-order curves were fairly well grouped,
with the sixth-order curve showing a clearer and more distinct pattern.

When the tesseral terms were removed (figs. 1(b) and 3(b)), all curves of
fourth degree and higher showed the same amount of error. However, when drag
was removed, the short-duration run (one-orbit case) seemed little affected as com-
pared with the case when drag was present. In the long-duration run, all curves,
regardless of the order, showed the same error, which amounted to approximately
576 kilometers after 32 orbits.

No comparison runs were made with the tesseral terms removed from the ref-
erence model. However, from the results concerning the error produced when the
tesseral terms were removed, it may be concluded that beyond the fourth degree,
there is little to be gaired in adding additional zonal terms without the benefit of
their corresponding tesseral terms. .

CONCLUDING REMARKS

It may be concluded from the results of this : 3y that, for any trajectory in-
tegration that extends for any appreciable length of time (especially for more than
one orbit), the inclusion of high-order-gravitational-potential models in the equa-
tions of motion is an absolute requirement if any degree of accuracy is to be achieved.
Errors of 25 kilometers and more are not uncommon if the gravitational potential
terms are excluded.

Lyndon B. Johnson Space Center
National Aeronautics and Space Administration
Houston, Texas, July 31, 1976
986-16-00-00-72
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(a) Eighth-order model reference with drag; lower order models with drag.

Figure 1.- Position vector differences obtained over the initial orbit. The curves
include the following order or degree terms: (2) second only, (3) second and
third, (4) second to fourth, (5) second to fifth, (6) second to sixth, and (7) second
to seventh.
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Figure 1.- Continued.
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Figure 2.- Velocity vector differences obtained over the initial orbit. The curves
include the following order or degree tezms: (2) second only, (3) second and
third, (4) secor.d to fourth, (5) second to fifth, (6) second to sixth, and (7) second
to saventh.
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Figure 3.- Position vector differences obtained over 32 revolutions. The curves
include the following order or degree terms: (2) second only, (3) second and
third, (4) second to fourth, (5) second to fifth, (6) second to sixth, and (7) second
to seventh.
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Figure 4.- Velocity vector differences obtained over 32 revolutions. The curves
include the following order cr degree terms: (2) second only, (3) sscond and
third, (4) second to fourth, (5) second to fifth, (6) second to sixth, and (7) second

to seventh.
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(b) Eighth-order model reference with drag; lower degree models with drag.
Figure 4.- Continued.
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(d) Eighth-order model reference with drag; lower degree models without drag.
Figure 4.- Continued.
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Figure 4.- Concluded.
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APPENDIX A

THE TRANSFORMATION OF LAPLACE'S EQUATION
FROM CARTESIAN TO SPHERICAL COORDINATES
To accomplish the transformation of Laplace's equation from Cartesian to
spherical coordinates, it is first necessary to establish certain differential relations
that axist between Cartesian and spherical coordinates. These relationships are
estab;ished as follows.
X =T COS ¢ COS A
y=rcos @ sin A (Al)
z=rsing
where r is the magnitude of the position vector to the point in question, ¢ is the
geocentric latitude, A is the east longitude, and x, y, and z are the component
magnitudes of the position vector along the Cartesian coordinate axes. Taking dif-
ferentials of equation (Al) gives
dx=cos @ cos A dr - rsin ¢ cos A d¢ - r cos @ sin A dA
dy =cos @ sin A dr - r sin ¢ sin A dp + r cos @ cos A dA (A2a)
dz =sin @ dr + r cos ¢ do

Writing equation (A2a) in matrix form gives

dx cosqcosA -rsingcosA -rcos ¢ sinAl |dr
dy| =jcospsinA -rsinesinA rcos ¢ cos Al |dy (A2b)
dz sin ¢ r cos ¢ 0 da
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or, by solving for dr, d¢, and dA,

dr cos @ cos A -rsin ¢ cos A -rcoscpsink-ldx
dp| = |cos ¢ sinA -rsingsinA rcos ¢ cos A| |dy (A3)
da sin @ r cos @ 0 dz

To compute the inverse of the preceding matrix, its determinant is first computed by
expanding by minors along the third row

|det| = sm(p(r cos Asm«pcosq)-rzsinzksin(pcoscp)

- rcos @\r cosch coszx + rzcoszh sinzk)
= -r’sin’p cos ¢ - rcos’p cos @
_ .2
= -r“cos @ (A4)

making use of the trigonometric identity sinz(p + cosch = 1. The same identity ap-

plies in the case of A. The inverse may now be obtained by writing the transpose
of the matrix of cofactors (i.e., the adjoint of the matrix) and dividing each term by
the determinant of the matrix. The cofactor of the element a is given by

- ])lﬂ |Ag | where IAi | is the determinant of the matrix formed by excluding the
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i-th row and j-th column of the original matrix. If b
the inverse matrix, then

56

1 (—rzcoszrp cos A) / (—rzcos (p)

= CO8 ¢ COS A

by =- (rzcosztp sin A) / (—rzcos )

= cos ¢ sin A

o
n

b13 = (-rzcoszl. sin @ cos A - rzsinzx sin @ cos }.) / (—rzcos <p)
= gin @
b21 = - (-r sin @ cos @ cos A)/(-rzcos q>)
=-(1/r)sin ¢ cos A
99 = (r sin @ cos ¢ sin ).)/(—rzcos rp)

=-(1/r)sin @ sin A

b23 = -(r coszqa coszx +r cosch sinzx)/(-rzcos cp)
= (1/r)cos @

bgy = (r coszrp sinA+r sinch sin A)/(—rzcos q:)
=-[(sin A)/(r cos @)]

b32 =- (r cosz(p COS A +Tr sinz(p cos 2.)/(—r2cos <p)

(cos A)/(r cos @)

b33= (-r sin @ cos ¢ sin A cos A + r sin ¢ cos ¢ sin A cos A)

0

ij represents the elements of

(AS5a)



Therefore, with the elements of the inverse matrix thus established, it is possible
to write equation (A3) as follows.

dr
de| =

da

CO8 ¢ CO8 A
-%—sincpcosl.

__sina
r cos @

cos ¢ sin A sin @ ||dx
) . 1

-Fsmq)smk 5 Cos @ dy
cos A

Fcos @ 0 dz

(AS5b)

The required derivative relationships can now be obtained from equation (A5b).
These derivatives will be presented with use of the following shorthand notations.

A = sin A

b4 r cos ¢
rxr=0

ryr=0

rzr=0

Pyr =5 sin @ cos A

sin A
X' pcos @
A = cos A
yr rzcos (0]
;‘zr =0

y=cos(psink rz=sin¢p

=-lsin sin A =lcos
‘Py T P P, 7 P

cos A =
y T cos @ A, =0
rx‘p=-sm<pcosz. rxk=-cosq)smx
ry(p:—sincpsinl. ryk=eos(pcosk
rz¢=cos¢ Lo =

=-lcos co8s A =lsin(psink
(pxq) r ¢ Pxr T

=—}-cos sin A =—'-1-sin cos A
<Py(p r P CPY}‘ r ®

=_1. =
Pee = rSIN® Pz =0
A - . 8in ¢ sin A A cos A
p {1V r cos’e xA r cos ¢
A - 8in ¢ cos A A sin A
Y rcose YA rcos ¢
xup:o Az)‘:o

(A6)

y@an
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Using the relationships given in equation (A7), Laplace's equation can be trans-

formed from Cartesian to spherical coordinates.

From equation (Al), it is seen that x, y, and 2z are functions of r, ¢, and
A. Therefore, the potential function V = V(x,y,z) is expressed in termsof r, o,

and A.

Vx = Vrrx + Vq,cpx + v)t}‘x

= +V + V. A
Vy = Vety *VePy * Vady

vz = vrrz * chq’z * vk;‘z

V.__=V_r Pyt Voo

xx Vxr'x* cp x

V. =V . r +V +V A
vy yry " Vye®Py T Vyaly

A

Voz = vzrrz + vz(pq’z * va. z

Expanding equation (A8b) gives

(v r_+Vr +v¢r<p VPt VoA VAL

(v ro"x " Vr'xe * VooPx * VoPxe * Vaprx *

+ (Vr}‘rx VoIt V‘p}‘cpx+v(p<pxx+v A+ VA A.)A'

rrx r xr @ xr Arx

Y)’ (Vm,ry vrryr + vcpr‘Py + V(p(pyr +V

(Vr+Vr +V V, A

+
ro’y ve * VooPy " VoPye * Vaely *
"(er"y*v" VP,V 0 +VA. A_+V

ryr "QAvy- "@TyA Ay

vzz - (Vrrrz ¥ V Tzr vcpr‘pz * v¢¢zr * vhr}‘z * vl."zr)r

* (Vro™2* Vitug * Vou®sz * VoPap * Vaghs

¥ (Vr}\.rz ¥ vrrzk ¥ v(p}»(pz * V(p(p

ZA
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Ar}‘y v)\)‘yr

Ve +V A+VA

+v A +v;.}‘)x

(A8a)

(A8b)

(A9)

(A10)

(All)



Collecting terms from equations (A9) to (All) gives

- 2 2 2 2 2 2 2 2 2
Vzv-Vrr(rx +ry +rz)+V¢¢((;>x +<|>y *"’z)”’n("x +).y +Az)

+2V (r<p +ry<py+r(p) 2er(r>» ry}.y+r7\.

+ 2V(PA(<pxk cpyl.y to, A ) + Vr rxrrx (P(p +r AK

+ ryrry + rycpq)y + ry}‘xy +r,. T, + rzq)q)z + rzkkz
*Vo(Pxrtx * x " Paatx * Pyrly * q’ycpq’y * Pyaty
TPyl t P2 (P Pan z) Vk(l'xr x x ' A'x}‘)tx

+A .r +A
yr'y ¢

voPy * Aty * A gt ”‘ch‘Pz”‘zx"z) (A12)

y

where V is the gradient vector operator. Substituting the derivatives obtained
from equation (A7) in equation (A12) gives

r“+r “+r 2. (cos ¢ cos 7\.)2 + (cos ¢ sin A)z + (sin (p)2

2
cpx2+<py2+<pzz= ( :—,smtpcos 7\) (——smcp sin A) (1 cos cp)

_1
=3 (A14)

. 2 2
a2, 2,2, (_ sin A +(cosk +(0)2
x Yy z r cos @ r cos @
=yt (A15)
rcos ¢
r.e. +ry<py = (cos ¢ cos A)( —smcpcos A) + (cos @ sin A) --l-sm(psm A)

+ sin <p(-11;cos cp)

=0 (A16)
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= (cos ¢ cos A) (— _SIn2A ), (cos ¢ sin k)(r—%}%

rxkx + ryly + rzkz ¥ o8 ¢
+ sin @ (0)
=0 (A17)
1 _. in A
q’7c)‘x+(pyky+q’z z- (—stncpcos A)GF%%_J
1. . cos A cos @,
+(rsmq)sml.)(rcos‘p + = 0
=0 (A18)

= e e
TerTx * rx(p(p + rx)\"x = (0) (cos @ cos L) + (-sin ¢ cos 1)  8in @ cos k)
+ (-cos @ sin A) (— _sy.l_l'_
r cos @

=1 (sin2<p cos®h + sinzx) (A19)
_ . - . 1 .
ryrry + rycp(py + rylxy = (0) (cos ¢ sin A) + (-s8in ¢ 8in A) ( ¢ 8in @ sin A)
COo8 A
+ (cos ¢ cos A) m
= 11—; (sinztp sinzk + coszx) (A20)
= YA
FuxTy * Tap®y * Tpahy = (0) (5in @) + (cos q)(; cos <p) + (0)(0)
= Leos % (A21)
r.r_+r_ @ +r A _+r r +r @ +r _.A +r_r_ +r +rA=-2-
Xr'x X@'x xA'x ‘vry ‘yo'y ‘yAy ‘“zr z ch‘Pz zA"z r
(A22)
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Porty * Prop®x + ‘pxx}‘x = (—2- sin ¢ cos X) (cos ¢ cos A)

1 1 .
+ ( F o scpcosl)(-l-.smcp cosk)

+ (l sin ¢ sin A.) (— r_ség_s&('ﬁ) (A23)

= (—12- sin ¢ sin A) (cos ¢ sin A)
r

+ (— il;cos @ sia x) (— %;sin @ sin x)

+ (— sin ¢ cos }\.)(r—c-co-o%) (A24)

P cpzq,(pz + ‘sz"z = (— ;12_ cos (p) (sin @) + (— lsm qﬁ( cos qﬁ + (0) (0)

=0 (A25)

"!

+ + A
Pyry ¥ PyePy T Pyaty

e T

Prrlx * Pro®x * Pxalty * Pyply * PyoPy * Pyady + 04T,

Xr'x XQ ' x yry yA'Yy
sin
t PPt PR, T
zQ ZA 'z rlcos
(A26)
in A . sin ¢ sin A )
A T +x Py +A A= __2___sm (cos ¢p cos A) + -—fz—r— - =gin ¢ cos A
X TXQTx  UxAX (r cos ¢ r cos ¢ r
+ [-_cosA \( _sinA
r cos @ r cos @
-8in A cos A cos ¢ _ sin A cos A sinzg
rzcos P r cosch
+ sinzk cgs A (A27)
rcos ¢
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cOS A
AT +A_ P +A A= -
yry yo'y ‘yAy (rcoscp

sin cos A 1 . . sin A \/ cos A
+< 2 )<_Fsm(psmk)+(_rcos tp)rcos (p)

r cos’@

) (cos ¢ sin A)

___sin).cos}»coscp_sinAcosksinzg _sin A cos A

r?zos [0} r cosq rEcosch
(A28)
- . 1
}‘zrlz + Az(pcpz + A‘z}».lz = (0) (sin @) + (0) (i" cos cp) + (0) (0)
=0 (A29)
}‘xrrx * }‘xcpcpx * Axk}”x * )‘yrry * }‘ycp‘py * }‘yk}‘y NP P xch(pz * }‘z}»}‘z =0
72.30)
Adding all resulting terms gives
vv=v_m+v_ (L) +v L\ +2v_ o) +2v., (0
rr @ ;2' AN rzcosz(p re rA
2 sin
+2V 0)+V [=1+V [ +V. (0
n® () (p(mw) L ©
_alv +a2v<1 +a2v< 1 +av(g>+av (_ singg)
o ag°\rr) oAl \rlcoste) OT\T) 3P\ rZoos
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If equation (A31) is multiplied through by rz. there results, after some simplifica-
tion,

<

&

2

0 [ 208V 1 9 ov 1 o
vv=2[r +——(cos<p-——)+

ar ( 3?) cos @ 0@ RIT) cosiq) 5

=0 6))

The solution of equation (5) is discussed in the section entitled "Analysis."
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APPENDIX B

THE PINES FORMULATION FOR THE
GEOPOTENTIAL FUNCTION AND ITS GRADIENT

The classical potential function (eq. (96)) and its derivatives (eq. (111) or
(112)) require that the position of a point in space be expressed in terms of geocen-
tric latitude ¢, east longitude A, and magnitude of the position vector r deter-
mined from the component magnitudes along the Cartesian coordinate axes x, y,
and z. Because these orientation angles require for their determination the pro-
jection of the position vector on the equatorial reference pla.. 2, the longitude be-
comes undefined over the poles. What is theoretically two isolated singularities is
actually, for computational purposes, an infinite number of singularities at each of
two isolated regions in the immediate neighborhood of the poles, as the computer
cannot distinguish from zero a computed noninteger number having a magnitude
less than some specified tolerance characteristic of the computer in question. Al-
though a polar orbit, or even a nearly polar orbit, is almost impossible to achieve
because of a number of perturbing influences, the possibility of a singularity other
than at the origin is eliminat>d in this formulation by expressing the orientation of
a point in space in terms of its direction cosines instead of its latitude and longitude.
The direction cosines arc always clearly defined for any direction in space, and the
elimination of all trigonometric functions from the formulation contributes greatly to
decreasing execution time and storage requirements.

The classi: :l1 expression for the gravitational potential V exerted at a point
in space located at a distance r from the center of the attracting body having ra-
dius RE and gravitational parameter g is given in equation (96) as

oo n n
g
Vr,,A) = 2 : -}1-}) 2 : P__(sin (p)[Cnm cos(mA) +8__ sin(mx)] (96)
n=0 m=0

where Cnm and Snm are the harmonic coefficients of the potential function and
an (sin @) represents the associated Legendre functions of the first kind, of de-

gree n and order m. Since sin ¢ = z/r = 4, where u is a direction cosine, the
associated Legendre functions may be expressed by using Rodrigues' Theorem,
presented here without proof.

m n+m n
P (u)=°°3 ¢ d (uz_ > (B1)
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Equation (B1) is equivalent to equation (81). Equation (B1) is more useful for ana-
lytical purposes, whereas equation (81) is more useful for computational purposes.

Pines (ref. 1) points out that if equation (B1) is written as

- m
P () =cos"pA () B2)

where Anm (p) is defined in terms of the Legendre polynomials Pn (1) obtained
when m = 0 in equation (Bl), the following expression results.

1 dn+m 2 n
A (@)=~ ( -1)
nm'# My gt B

dm
=4 [Pn (u)] (B3)
dp

Then, by writing

r
= g Pn+1 (B4)
eguation (96) may be written as
% n
- m R m |
V= Z Pn Z Anm(p.) [Cnm cos(mi)cos @ + Snm sin(mA)cos (pJ (BS5)
n=0 =0
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From equation (B5), Pines recognizes that the terms coe(ml)cosmcp and
sin (mA)cosmtp are merely the real and imaginary parts of the complex number

(s +it)™, where s and t are the direction cosines (x/r) and (y/r), respective-
ly, and i =v-1. Equation (96) may be written as

V= Z . E A GOD (5,0 (B6)

n=0 m=0
where the mass coefficient function

Dm@t=C R (8t)+S 160D (B7)

and Rm (s,t) and lm (s,t) are the real and imaginary parts of the complex vari-

able (s + it)m mentioned previously. That s =cos A cos ¢ and t = sin A cos ¢
may be established from the right spherical triangle that results from the definition
of @ and A.

Equation (B6) is an expression for the gravitational potential in terms of the
magnitude of the position vector and its direction cosines. Its gradient may be
written as

_f{av _sav _tav _pav
V"‘(b? rds rat rai>‘i
14V 10V. 1oV

where i, j, and k are the unit base vectors along the Cartesian coordinate axes,
v is the gradient vector operator, and

R=si+tj+pk (B9)

The comparable equation for the gradient of equation (96) is

_ov av . ov
Vv—a—r—*m V(sm(p)+a-§- oA (B10)
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Differentiation of equation (B6) requires differentiation of equation (B7),

which gives

oD__ (s,t) oR_(s,t) ol _(s,t)
nm -C m +S m
08 nm 08 nm 08

= m[C B (8D + Snmlm_l(s.t)]

= ml-:nm (s,t)

oD__(s,t) oR_(s,t) a1 (s,t)
nm =C m +S m
~ ot  “nm_ ot “nm°_ ot

=m [—c il (5.0 + stm_l(s,t)]
= anm (s,t)

since from the Cauchy-Riemann conditions,

anm (s.t) _ alm (s,t)
0s - ot

= m_l(sx.t)

oR m (s,t) alm (s,t)
ot " os

= mlm_l(s »t)

(B11)

(B12)

(B13)

(B14)

In equations (B11) and (B12), respectively, the functions Em (s,t) and an (s,t)

are mass coefficient functions. Equations (B13) and (B14) show another advantage
to the Pines formulation in that these differentiations do not have to be performed
because the derivatives can be obtained recursively from previous values of the
real and imaginary parts. This relationship may be seen by writing the complex

number

wh = R_(s.t) +il _(s,0)

(B15)
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or

Wil = R, 0 4, 6.0] G+ in
= [Ra-1te0 - Uy 1.0
+

i[slm_l(s DR (s .t)] (B16)

so that
R (5.) =sR__,(s,t) -tI _ (s,1) (B17)
I, =8k _ (t)+tR (.t (B18)

The recursive computation can easily be performed by setting R (s.t) =1 and
I (s t) = 0.

Differentiation of equation (B6) also requires differentiation of A (u)
Clearly,

0A nm (7))

—— Ay ® (B19)

To compute the matrix Anm (p) recursively, Pines makes use of the recursive re-

lations satisfied by all Legendre polynomials. (Spencer (ref. 2) presents five of
these recursive relations.)

a a .
[Pan @] - b g [Paw] = @+ DRG0 ®20)

i [a0) o

~

Pp-1 ] =B, G0 ®21)
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Writing equations (B20) and (B21) in terms of the A m (u) notation gives

An+1,1(") KAL) =@+ DA L) (B22)
BA () - An-l.l(“) =nA () (B23)

Differentiating equations (B22) and (B23) m times gives

An+1,m+l W=Mm+m+ l)Anm ) + “An,m+1(“) (B24)

M-mA L W =pAL G A ) (B25)

Equation (B25) is the recursive relationship used by Pines in computing the matrix
Anm (u). Spencer shows five different relations by which this computation can be

accomplished. Both authors make use of the initial relationships

Ann(p) = 103¢5¢7¢. . .o(2n - 1) (B26)
and
An.m+1 W = u.Ann(p.) (B27)

Equation (B27) is obtained from equation (B19). Equation (B22) is useful in col-
lecting terms in equation (B8). Equations (B25), (B26), and (B27) reveal another
desirable feature of this formulation in that errors in the direction cosine yu are
diminished by 1/(n - m). Equation (B8) may now be written as

A (al + sa4)i+ (a2 + ta4)_j_ + (83 + ua4)l£ (B28)
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where the coefficients are defined as

Z Pnt1 Z mA__ GWE_,, (5.0)

o n
pn+1
8= }: Z mA__ (WF, (8,0

n=0 m=0

L] p n

E n+l Z Al e @D (8.0
n=0 m=0

=- }: n+l Z LNNORRL (1)) I CRY)

n"o m=0

W = Z Pn+1 Z:m (u) o (501

n"0 m=0

+F__(s -t)i] +AL L GOD ) (s,0K

- A

n+1,me1 WDy (8.OR i

where, from equation (B4),
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(B30)

(B31)

(B32)

(B33)

(B34)



Equation (B33) is suitable for obtaining higher derivatives of the potential
function to be used in 2stimaiing errors realized frcm variations in the harmonic
coefficients. Fines gives these relations in reference 1, but Spencer (ref. 2) shows
this work in better form in that he corrects a few errors found in this part of ref-
erence 1. Spencer's paper is by far the most complete and accurate, as well as the
most comprehensible, and should be preferred to reference 1.

Sample computer program listings for the computation of the gravitational
potential function and the components of its gradient are provided in the following
pages of this appendix. The listings are presented primarily to emphasize the
brevity.
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