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THE THEORY OF THE GRAVITATIONAL POTENTIAL 

APPLIED TO ORBIT PREDICTION 

By James C. Kirkpatrick 
Lyndon B. Johnson Space Center 

SUMMARY 

Because of the significance of high-order-gravitational-potential terms in 
trajectory prediction, an analysis was performed to determine the magnitude of 
position and velocity vector errors associated with the geopotential function. 
The analysis included a complete derivation of the geopotential function and its 
gradient, the transformation of Laplace's equation from Cartesian to spherical 
coordinates, and the analytic solution to Laplace's equation from the transformed 
version obtained in the classical manner of separating the variables. The solu- 
tion, therefore, expreeees the gravitational potential at a point in space in 
terms of the magnitude of its position vector and its orientation in terms of its 
geocentric latitude and east longitude. The method devised by Pines, in which 
direction cosines are used to express the orientation of a point in space, also 
is considered in the solution. 

The effect of varying the order and the degree of the potential function 
was  demonstrated by plotting trajectory integration data on position and velocity 
vector differences for a single orbit and for 32 orbits. In the resulting curves, 
the data for lower order and lower degree potential functions are compared with 
data for an eighth-order model used as a standard. The short- and long- 
duration comparison studies were performed both including and excluding the 
effects of drag. Third-body perturbations considering the Sun and the Moon 
only were included in all studies performed. 

INTRODUCTION 

The question of the importance of high-order-gra vitational-potential per- 
turbations of satellite orbits has been raised many times. The question is not 
without merit, for the inclusion of high-order-potential logic greatly increases 
the storage and executio? time of any numerical integration of trajectory q u a -  
tions of motion. 
have made it possible to minimize the burden of storage and execution time for 
any trajectory integration considering high-order-potential terms, the doubting 
still persists as to the necessity for such terms. This indecision is unfortunate, 
since it is often important to include high-order-gravitationd- potential effects 
for trajectory prediction. A s  a result, this report has been prepared to fully 

Although the works of Pines (ref. l) and Spencer (ref. 2) 



explain not only the potential hnction but also its gradient. since the gravita- 
tional force, being conservative in nature. is therefore derivable from the gra- 
dient of the potential. 

Once the potential function has been derived, its gradient will be obtained. The 
derivation will  be performed in the classical manner; that is, from Laplace's 
equation in spherical coordinates by the method of separating the variables. As 
a result, the solution will require that the position of a point in space be ex- 
pressed in terms of the magnitude of its position vector and that its orientation 
be expressed in terms of its geocentric latitude and east longitude. The work 
of Pines and Spencer (refs. 1 and 2) is essentially a reworking of the classical 
solution in terms of direction cosines to eliminate its isolated shgularities over 
the poles and its costly trigonometric functions. 

To explain the potential hnction, it will be necessary to derive it fully. 

The effect of varying the order of the potential function is illustrated in 
the figures. One series of illustrations considers the position and velocity vec- 
tor differences resulting from a trajectory integration over one single orbit; the 
results of lower order potential functions are compared with an eighth-order 
model as the standard. 
parison study extended over 32 orbits. Both comparison studies are performed 
with and without inclusion of the effects of drag. 

dinates is performed in appendix A.  A concise formulation of the method of 
Pines is given in appendix B. 

Another series of illustrations presents the same com- 

The transformation of Laplace's equation from Cartesian to spherical coor- 

SYMBOLS 

A .R arbitrary constants of power series 

I Aij I determinant of identity matrix formed by excluding i-th row 
and j-th column 

Anm (P function defined in equation (B3) 

a ,b constant coefficients of power series 

elements of the transformation matrix ii a 

a1,a2*a3+ coefficients of the cavitational potential gradient defined in equa- 
tions (B29) * (8301, (B31), and (B32), respectively 

elements of the iriverse transformation matrix bi j 

C arbitrary constant defined in equation (12) 

2 



harmonic coefficient constants 

mass coefficient function defined in equation (B7) 

mass coefficient function defined in equation (I311) 

hypergeometric series function defined in equation (44) 

mass coefficient function defined in equation (B12) 

gravitational parameter 

variable defined in equation (86) 

function defined in equation (52) 

positive integer counter used in equaticn (44); 0 < i < k - 1 
constant used in equation (92) and appendix B; 1 = c l  

positive integer used in equation (111); i = 1, 2 ,  3 

unit base vectors along Cartesian coordinate axes 

integer used in equation (111); kl = 0, 0,  1 

- -  

integer used in equation (111); k2 = 1, -1, 0 

upper limit imposed to avoid negative factorials 

arbitrary constant d e h s d  in equation (15) 

positive integers denoting polynomial degree and order, 
respectively 

Legendre polynomial of the first kind, defined in equation (81) 

Legendre polynomial of the Erst kind, defined in aquatiox, (53) 

Legendre polynomial of the second kind, defined in equation (82) 

Legendre polynomial of the second kind, defined in equation (54) 

positive integers 

spherical coordinate functions 

3 



2 2  R" = a R/ar 

R - tinit vector defined in equation (B9) 

equatorial radiua of attracting body RE 
Rm (8  ,t) ,I (e ,t) real and imaginary parts , respectively , of the complex variable m 

(s + it)m, where i = 6 1  

r 

8 arbitrary constant 

8 direction cosine; 8 = x/r 

magnitude of position vector of reference point 

coefficient defined in equation (103) Tnmt 

t positive integer in text equations (51) and following 

t 

v 

Wrn 

X.Y 9z 

a 

direction cosine in appendix B; t = y/ r  

gravitational potcntial 

complex number defined in equation (B15) 

component magnitudes of posit!( n vector along Cartesian coor- 
dinate axes 

arbitrary constant used in equations (23), (84), and (91); 
a = tim, where i = Fl 

a9P constant coefficients of power series 

h east longitude of reference point 

M (lo function defined in equation (61) 

P direction cosine; p = z/r = sin cp 

variable defined in equation (B4) Pn 

cp geocentric latitude of reference point 



Operator 

V gradient vector operator 

ANALYSIS 

Laplace's Equation in Cartesian Coordinates 

The derivation of the geopotential function is obtained as the solution of one 
of the most important partial differential equations of mathematical physics: La- 
place's equation. Laplace's equation is defined as 

V % = O  

or 

a2v + a% + a2v 
ax2 ay2 z = O  

2 where v V is defined as the Laplacian of the potential function V = V (x ,y , z) ; 
x,  y , and z are the component magnitudes of the position vector along the Carte- 
sian coordinate axes; and V is the gradient vector operator 

defined in Cartesian space, with i, 1, and k constituting a set of unit base vec- 
tors along the coordinate axes. The scalar pi;oduct of V o V  operating on V gives 
Laplace' s equation: 

= o  (4) 

The theory of the solution of Laplace's equation is called potential theory. 

5 



The Solution of Laplace's Equation in Spherical Coordinates 

Laplace's equation in spherical coordinates, expressed in the form developed 
in appendix A ,  is 

= O  (5) 

where r is the magnitude of the position vector to the point in question, <p is he 
geocentric latitude, and h is the east longitude. This equation can be solved an- 
alytically by the technique of separating the variables, which is done by assuming 
a solution of the form 

Therefore, 

'@ A av 
acp=Racp 

Substituting equations (7) to (9) in equetion (5) and dividing by the product of the 
spherical coordinate functions R4h yields 

or 



It is clear that the left-hand side of equation Lt l j  is a function of r only. These- 
fore, if the equality is to hold, each component on the right must be equal to some 
arbitrary constant, say C . Under these conditions, equation (11) becomes 

which leads to the differential equation 

2 2 where R' = aR/ar and RIP = a R / a r  . Solving for the arbitrary constant C in 
equatjm (11) gives 

2 Equation (14) ?an be separated by multiplying both sides of the equation by cos cp 
and rearranging to yield 

Equation (15) implies that h"/h is equal to a constant -m2, and this relationship 
establishes the differential equation 

Furthermore, equation (15) yields 

-c c o 2 q  - y. (17) 

7 



R e a r r ~ g h g  equation (17) yhlds the differential equation 

Equalion (18) can be written in a more concise form by letting p = sin cp; then 
COS cp = ap/acp, and a@/acp can be written 88 

Substituting equation (19) in equation (18) yields 

Equation (20) leads to the differential equation 

(1 - p2)w - 2 p '  + (c - .-+) 0 = 0 
1 - P  

Laplace's equation in spherical coordinates has now been separated into the 
following three second-order differential equations . 

2 r R" + 2rR' - CR = 0 

2 A n + m  h=O 

8 



In these equations, C and m represent arbitrary constnnts . Thus, the mlution 
to equation (5) will  be formed from equation (6) when the b c t i m s  c P ( < p ) ,  R(r)  , 
and A (A) have been determined by solving equations (21). (13) b and (161, 
respectively. 

Equation (21) is known as Legendre's associated differential equation. The 
simpler form of this equation, which results when m = 0, is known as Legendre's 
differential equation. Equation (13) is of the form of Cauchy's (or Euler's) linear 
differential equation, and equation (16) is the differential equation of the undamped 
harmonic oscillator. As a result, solutions to equations (13) and (16) may be ob- 
tained by assuming solutions of the form 

(22) h R(r) = Cr 

where h is a variable defined in equation (86). A is an arbitrary constant, and 
a is an arbitrary constant, and by substituting these functions in the appropriate 
differential equations. The resulting arbitrary constants are then evaluated from 
the initial and boundary conditions of the problem. Equations (13) and (16) will 
be solved after the solution of equation (21) hae been completed. 

The solution of Legendre's associated differential equation will be obtained 
from the solution of Legendre's differential equation, which will be obtained first. 
It will be shown that Legendre's differential equation has a solution in terms of two 
infinite series, each multiplied by one of the arbitrary constants of the solution. 
It will be shown further that, because of the boundary conditions of the problem 
(-1 < p < 1) , one of the arbitrary constants of the solution must be zem. 

Legendre's associated differential equation with m = 0 reduces to the form 

- -  

If the assumption is made that Legendre's differential equation, equation (24) has 
a power series solution of the form 

9 



where q and k are podtive integers. then, when this expression is substituted 
in equation (24). the following expression results. 

W a 

(1 - p*) (q - &)(q - 2k - l)a2kpq-ak-2 -2p (q - 2k)azkp ~ - 2 k -  1 
k=O k=O 

k=O 

Equation (26) reduces to the form 

a 

(27) k=O 

Shifting the index k to k + 1 in the negative term in equatiun (27) and setting 
equal to zero since q L still to be determined gives a-4 

k=O 

Solving for a2k in equation (28) gives the recursive relation 

10 



Since the assumed power series solution was de5ned only for positive values of k 
(i .e. 0 < k < + 0)  setting k = - 1 in equation (29) causes a- = 0 .  Under these 
ConditionS, thZ following relationship results. 

q(q + 1) - c = 0 (30) 

If the constant C is set equ~. to 

C = n(n + 1) (31) 

where n is of necessity, a positive integer greater than or equal to zem then 
modifying the left-hand side of equation (30) by adding and subtracting the product 
nq permits factoring of this equation accordingly. 

( q - n ) ( q + n +  l ) = O  (32) 

Equation (32) has two possible solutions. 

q = n  (33) 

q = - (n + 1) (34) 

The solution to equation (24) may ncw be written using A and B as the 
arbitrary constants of the solution. 

-n-2k-1 a = A C a2kpn-2k + B p2kp (35 1 
k=O k=O 

where the constants a2k and pak can be computed from the recursive relations 

(n - 2k)(n - 2k - 1) 
'2k+2 - - 2 (k + 1) (2 n - 2k - 1) '2k 

(n + 2k + 1)(n + 2k + 2) 
2(k  + 1)(2 n + 2k + 3) p2k 

- 
p2k+2 - 

(36) 

11 



If ab and Bo are the arbitrary constants of the solution, then, for k = 0, 

- (n + 1)(n + 2) 
$2 - 1*2(2n + 3) $0 

Whl n k = 1, equations (36) and (37) give 

(n - 2)(n - 3) 
a 4 =  - 2*2(2n - 3) =2 

,n(n - l)(n - 2)(n - 3) 
'0 

- 
1) (2n - 3) 

- (n + 3)(n + 4) 
$4-  2 .2(2n + 5) $2 

(38 1 

(39 1 

Equati<r (35) can now be written in terms of equations (40) and (41). with 
a,, and Bo equal to A and B within an arbitrary constant. 

1*2(2n + 1)(n + + 3) 2) pa 1 + 1*2*4(2n + 3) (2 n + 5) 
(n + l)(n + 2)(n + 3)(n + 4) 

p'5 + ..] 1 

(42 I 

Hobon (ref. 3) points out that equation (42) can be written in the more compact form 

12 



where the functior. F ia ,b; c; d) is the hypergeometric series defined as 

+ ... 

dk = l +  c i=o k -1 (44) 
k=l k! n (c + i) 

i = O  

where the positive integer counter i has limits 0 < - -  i < k - 1. 
Equations (42) to (44) are not very useful for computational purposes. Equa- 

tion (35) may be written in a more useful form if a. and Po are written as 

,Tubstituting equations (45) and (46) in equations (38) to (41) gives 

13 



Equation (42) can now be written as 

t (-1) (2n - 2t)! pn-2t @@)=A- ,n 1 k t ! ( n  - t)!(n - 
t=O 6 

(n + k)!(n + 2k)! 
k! (2n + 2k + 3)! 

1 
+ B2n 

k=O )r 

where t is a positive integer and lp is the greatest integer equal to n/2 when n 
is an even integer and the greatest integer equal to (n - 1)/2 when n is odd. 
This restriction must be imposed to avoid negative factorials. 

It is clear &om equation (51) that the first series will terminate or converge 
for al l  values of p, including complex values. It is also immediately clear that the 
second series wi l l  diverge for all values of )r such that their absolute values are 
less than unity. Since for the case of the geopotential, the value of p is bounded 
such that -1 < p = sin cp < 1, the second series does not satisfy the boundary con- 
ditions and, a; such, m u s  be disregarded in the solution. Thus, the solution of 
equation (24) is written as 

14 



where Pno(@ and so(@ are Legendre polynomials of the first and second kind, 
of degree n and order zero, respectively. These functions are defined as 

P 

(n + k)! (n + 2k)! 1 SO(@ = 2n k! (2n + 2k + 3 ) !  P+2k+l 
k=O 

(54) 

Therefore, the value of the arbitrary constant B in equation (52) must be zero to 
satisfy the boundary conditions. It should be said, in passing, that the conspicu- 
ous factors 2-" and 2" are there for the purpose of making the value or the poly- 
nomials equal to unity when n # 0 and p = 21. 

replacing the arbitrary constant C by its more convenient form n(n + 1). dis- 
covered in the previous solution, the following expression is obtained. 

By returning to Legendre's associated differential equation (eq . (21)) and 

Equation (55) is Legendre's associated differential equation of degree n and order 
2 m. A power series solution of equation (55) is inconvenient because of the (1 - p ) 

term appearing in the denominator. A more successful approach is to consider a 
solution of the form 

Substituting equation (56) in equation (55) gives a differential equation in M(p) , 

with (I - p ) as a common factor. The functions 0' and 0" are computed 
from equation (56) to be 

2 m/2 

cD'(p) = (I - ~ 1 ~ ) ~ ' "  [pm (1 - p2)-lM(p) + M' (p) 1 (57) 

15 



Substituting equations (56) to (58) in equation (55) gives 

Simplipging equation (59) yields 

... . _  

It ie poesible to obtain a power series solution of equation (60) by assuming 
the solution 

k = O  

wherein a2k is a constant coefficient. Substituting equation (61) in equation (60) 
gives 

k=O k=O 

k=O 

16 



00 00 

k=O k=O 

q-2k = 0 - (n - m)(n + m  + 111 a2kp 

(63) 

Shifting the index in the second summation term from k to k + 1 and again requir- 
ing 

2 
k=O 

The 

a-2 = O  gives 

00 

(q - 2k) (q - 2k - l)a2kpq-2k-2 - [(q - 2k - 2) (q - 2k + 2m - 1) 
k=O 

(64) 

recursive relation may now be obtained by solving for a2k in equation (64). 
Thus, 

- (q - 2k - 2)(q - 2k + 2m - 1) - (n - m)(n + m + 1) (65 1 '2k+2 - '2k - (q - q - 2k 1) 

The numerator of equation (65) can be factored as follows. 

(66 1 - [(q - 2k - 2) - (n - m)l[(q - 2k - 2) + (n + m + 111 
'2k - (q - 2k) ( Q - 2k - 1) a2k+2 

When k = - 1,  a-2 = 0 and the following solutions are possible. 

q l = n - m  

17 



Since for e power series solution, q must be constrained to positive integer values, 
equation (68) must be associated with a solution to be disregarded. From equation 
(67). it is seen that the relation between n and m must always be such that 

The solution of equation (55) may now be written with A and B as the ar- 
bitrary constants of the solution 88 

where the coef5cients a2k and b2k are obtained from the recursive relations 

(n - m - 2k)(n - m - 2k - 1) 
a2k+2 = - 2m + 1)(2 n - 2k - 1) a2k 

- (n + m + 2k + 1)(n + m + 2k + 2) 
b2k+2 - 2(k + l)(2n + 2k + 3) b2k 

Equations (71) end (72) are identical to equations (36) and (37), respectively, 
when m is equal to zero. It is interesting to note that m 'appears only in the nu- 
merator, bearing opposite signs in each recursive relation. Taking for a. and 
bo the following values 

11 - 2 n! (n + m)! b o -  (2 n + l)! (74) 

18 



thenfor k = O ,  

(n - m)(n - m - 1) 
aO a2 = - 2(2n - 1) 

= -  (n - m)(n - m - 1) 
2(2n - 1) 

(2x1) ! 
2% (n - m)! 

- (n + m + 1)(n + m + 2) 
b2 - 2(2n + 3) 

- - (n + m + 1)(n + m + 2) 2% (n + m)! 
2(2n + 3) (2n + l)! 

When k = 1, 

(n - m - 2)(n - m - 3) 
a2 

a = -  
4 2*2(2n - 3) 

- - -  (n - m - 2)(n - m - 3) .- 
2*2(2n - 3) 

(2n - 2)! 
2"(n - I)! (n - m - 2)! 

- (n + m + 3)(n + m + 4) 
b4 - 2*2(2n + 5) b2 
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The  solutio^ idr @(p) can now be written as 

0 
m 

(79) (n + k)!(n + m + 2k)! 1 

vn+m+ 
+ 6 - k! (an + 2k + 3)! 

k=O 

where II is the greatest integer equal to (n - m ) / i  when (n - m) is an even in- 
teger and the greatest integer equal to (n - m - 1)/2 when (n - m) is odd. This 
restriction is imposed to avoid negative factorials. 

Equatian (79) reduces to equation (51) when m = 0. A s  in the case of equa- 
tion (51), the first series terminates or converges for all positive values of n and 
m such that n > m regardless of the value of p. The second series converges 
only for values a p with a magnitude greater than unity. A s  a result, the series 
must be disregarded in this solution, as the value of p is bounded such that 
-1 < p = sin <p < +1, Therefore, the solution to Legendre's associated djfierential 
equztion may bgwritten as 

whe- a P, (p) and sm (1) are the associated Legendre functions of the first and 
second kind, respectively, each of degree n and order m, defined as 

k=O (r 

The arbitrary constant B in equation (BO) must be set equal to zero to satis@ the 
boundary conditione of the geopotential . 
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Equation (19) written with C = n(n + 1) becomes 

2 r R" : 2rR' - n(n + l ) R  = 0 

Substituting equation (22) in equation (83) fives 

The chwacteristic equation that results from equation (84) is 

h(h - 1) + 2h - n(n + 1) = 0 

h + h - n ( n + l ) = O  2 

By applying the quadratic formula, the values of h become 

h = - f (n + 

or 

hl = n  

ha = -(n + 1) 

The solution of equation (83) becomes 

- (n+l) R = Clrn + CZr 

(83) 

(86) 

(87) 

(88) 

(89) 

Since the potentiai function V is expected to vanish as r * 0 0 ,  the arbitrary con- 
stant C1 must be set equal to zero. The solution reduces to the form 
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The solution to equation (16) is obtained by substituting equation (23) in 
equation (16). This gives 

which gives, for the solution of the characteristic equation, a = fim , where i = a. 
The solution of equation (16) becomes 

(92) 
-imA A(A) = Cem + Se 

where C and S are arbitrary constants of the solution. By ignoring the imagi- 
nary terms, equation (92) can be smplified to 

After substituting equations (80). (89), and (93) in equation (6). the com- 
plete solution to Laplace's equation in spherical coordinates bemmes 

By setting C 
geopotential function reduces to 

and B equal to zero as discussed earlier, the equation for the 

to incorporate The constants Cm and Sm have been written as C, 

all the constants of the solution. These values are determined experimentally and 
may >e found in normalized form in reference 4 and in unnormalieed form in ref- 
erence 5 .  

'nrn 

Equation (95) has units of reciprocal length - be Atten to reflect units 
of kinetic energy eqcared so that its grsdient , 6 .i+* of acceleration by 
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introducing the gravitational parameter g,, which has units of length cubed per 
time squared, and the normalizing parameter RE,  usually the equatorial radius of 
thebody. Thus, 

The harmonic coefficient constants C, and S, require additimd dis- 
cussion. The impossibility of determining values for Sno produced when m = 0 

is of no consequence since sin(0-A) = 0. The values of Cno are a special set 

known as the zonal harmonic coefficients, and are entirely dependent on latitude. 
For values of n and m greater than zero but such that n > m, these constants 
are given the name "tesselpal harmonic coefficients" and are dependent on both lati- 
tude and longitude. When n = m,  these coefficients are given the name "sectoral 
harmonic coefficients" and are entirely dependent on longitude. 

The Gradient of the Geopotential Function 

The gravitational force, being conservative in nature can be obtained from 
the gradient of the geapotential function. To obtain the gradierd of the geapotential 
function, equation (96) can be written as 

since sin(0-A) = 0 and (%/r)' = cos(@A) = Poo = 1, as may be seen from equa- 
tion (81). The term (BECOO)/' is the gravitational potential associated with an 
unperturbed inverse square law of force, and the constant Coo = 21* depending on 
whether the force is one of attraction or repulsion, respectively. The summation 
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term arm that part of the p0tCnti.l amocieted with the disturbing I#?celemtim. 
From equation (97). 

where 

sin cp = a/r 
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A. = arctang) (107) 

Substituting equation (109) in equation (108) gives 
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Therefore. by writing x1 = x ,  x2 = y ,  and x3 = 2 9  

l ( l l1 )  m 

t=O 

m 
V n  n-m-2t-1 

+L(k1-2:i)1-($] r x T m t ( n - m -  a)(:) ) 
t=o 

where i = 1, 2 , 3 , kl = 0, 0 , 1 , and k2 = 1 , -1 , 0. respectively, and where P 
equals (n - m) when (n - m) is an even integer and equals (n - m - 1)/2 when 
(n - m) is odd. 
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Equation (111) is useful in computing the gradient components, but its vec- 
tor form can be written concisely as follows. 

L -  J m=O I n=O 

It may be seen at once that, in the neighborhood of the poles (that is, where 
(9 = S O o )  * A becomes indeterminate and the gradient of the gravitational potential 
obtained from equation (112) possesses two isolated singularities . These singular- 
ities are eliminated by Pines (ref. 1) and Spencer (ref. 2). A condensed form of the 
work of Pines is given in appendix B. 

RESULTS AND DISCUSSION 

Both the classical method, equation (112), and the Pines method, equation 
(B33) * have been programed and evaluated on the basis of execution t h e ,  storage 
requirements * and accuracy. The accuracy study was  conducted for an htegration 
time of approximately 2 days. It wa8 found that, except in the polar re@ons, 
both methods are identical in accuracy. However, the Pines method was approx- 
imately 15 times faster and required only ace-third of the storage requirements. 
For this reason, the Pines method has beem adopted as the formulation to use in 
any integration requiring gravitatimal potential perturbations, especially if both 
the gravitational potential and its gradient are required. 

A small study was conducted to show the importance of gravitational potential 
perturbations, especially those of higher orders. In this study , the position and 
velocity vector differences for various potential models of varying order And degree 
were each computed with the use of an eighth-order model as the standard. These 
differences have been plotted in figures 1 to 4. Figures l(a) to l(f) and 2(a) to 
2(f) present the differences obtained over the initial orbit at 32 equidistant time 
steps in the orbit. Figures 3(a) to 3(f) and 4(a) to 4(f) present differences 
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resulting over 32 equally spaced tlme increments equal to the period of Keplerian 
orbit of the initial state. The initial state of the orbit is as follaws . 

Semimajor axis 
Eccentricity 
Inclination 
Longitude of the node 
Argument of periapsis 
Eccentric anomaly 
Julian date 
Keplerian period 

6629.656565 kilometers 
0 . O l  
0.7854 radian 
0.7854 radian 
0.7854 radian 
0.7854 radian 
2442332.17 
5372.137432 seconds 

The comparison w a s  conducted both by considering potential perturbations only and 
by considering potential perturbations together with drag and third-body perturba- 
tion from the Sun and the Moon. The atmospheric model in reference 6 was used to 
compute density in the drag hrmulation, and NASA Jet Propulsion Laboratory ephem- 
eris tape data were used br the third-body and atmospheric-model perturbations. 

The legend for figures 1 to 4 is as follows. Each figure page includes six 
curves , which are designated with numbers ranging from 2 to 7. Curves marked 
with a "2" are curves in which only second-order or second-degree terms were 
considered. Curves marked with a 3" are curves in which both second- and thi-ed- 
order or second- and third-degree terms were included. In short , the higher the 
number used to designate the curve, the more complete was  the extent of the poten- 
tial function used. As a result, seventh-order curves show the lowest errors be- 
cause they approximate the eighth-order reference more closely. 

The results of the study are as f9llows. High-order-gravitational-potential 
models are essential to the accurallg of a trajectory integration. This statement is 
true whether the integration is to be performed over a relatively short period, such 
as over one orbit (5g. 1 (b) 1, or (and especially so) over longer periods (fig. 
3(b)) .  These curves verifv the fact that nothing is gained in accuracy by increas- 
ing the degree of the potential model without adding the corresponding tesseral 
terms. These facts are also substantiated by the velocity error curves. In fact , the 
position error curves, as expected, are virtually identical to the velocity error 
curves. Only the scale along the ordinate is different. A s  a result, this discussion 
of results will be confined to the position error curves because the same conclusions 
apply for the velocity error curves. 

As was stated earlier , comparisons were made with and without the effects of 
drag. In both instances, the shapes of the curves were identical except that the 
magnitude of the errors far both long- and short-duration runs was slightly higher 
when drag effects were not considered. Since the retarding force of the drag was 
absent and the effects of the Sun and the Moon are negligible, this result was ex- 
pected. The curves show additional interesting effects. 

It may be said, intuitively, that the higher the order of the model , the closer 
the agreement between the results and the higher order reference would be. The 
results of this study show this theory to be true only for the very lowest and the 
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highest order comparison curves. For the one-orbit case, although the second- 
order model did prove to be the worst of all models compared, tho fourth-oris 
model proved worse than the third-order model and the fifth-, sixth- * and seventh- 
order models varied continuously. In the long-duration case, the second- and 
seventh-order models were clearly the worst and best, respectively, with the 
seventh-order model maintaining almost a constant difference with the reference 
model much unlike the rest of the comparison curves * which showed a definite secu- 
lar trend. However, the fourth- to sixth-order curves were fairly well grouped s 
with the sixth-order curve showing a clearer and more distinct pattern. 

When the tesseral terms were removed (figs. l(b) and 3(b)), all curves of 
fourth degree and higher showed the same amount of error. However, when drag 
was removed, the short-duration run (one-orbit case) seemed little affected as com- 
pared with the case when drag was present. In the long-duration run * all curves, 
regardless of the order, showed the same error, which amounted to approximately 
576 kilometers after 32 orbits. 

No comparison runs were made with the tesseral terms removed from the ref- 
erence model. However * from the results concerning the error produced when the 
tesseral terms were removed, it may be concluded that beyond the fourth degree. 
there is little to be gailred in adding additional zonal terms without the benefit of 
their corresponding tesseral terms. 

CONCLUDING REMARKS 

It may be concluded from the results of this t dy that for any trajectory in- 
tegration that extends for any appreciable length of time (especially for more than 
one orbit) , the inclusion of high-order-gravitational-potential models in the equa- 
tions of motion is an absolute requirement i f  any degree of accuracy is to be achieved. 
Errors of 25 kilometers and more are not uncommon if the gravitational potential 
terms are excluded. 

Lyndon B . Johnson Space Center 
National Aeronautics and Space Administration 

Houston, Texas, July 31, 1976 
986-16-00-00-72 
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Figure 1 .- Position vector differences obtained over the initial orbit. The curves 
include the following order or degree terms: (2) second only, (3) second and 
third, (4) second to fourth, (5) second to fifth, (6) second to sixth, and (7) second 
to seventh. 
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Figure 1 .- Continued. 
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Figure 1.-  Continued. 
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Figure 2.- Continued. 
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Figure 3 .  - Position vector differences obtained over 32 revolutions. The curves 
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Figure 3.-  Continued. 
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APPENDIX A 

To accomp 
spherical coordiI 
that nldst betwee 
estahaished as fo 

THE TRANSRJRMATION OF LAPLACE'S EQUATION 

FROM CARTESIAN TO SPHERICAL COORDINATES 

ish the transformation of Laplace's equation from Cartesian to 
lates, it is first necessary to establish certain differential relations 
I Cartesian and spherical coordinates. These relationships are 
lows. 

I x=rcoscpcosA 

y = r cos cp sin A 

z=rsincp 

(All 

where r is the magnitude of the position vector to the point in question I cp is the 
geocentric latitude, A is the east longitude, and x, y , and e are the component 
magnitudes of the position vector along the Cartesian coordinate axes. Taking dif- 
ferentials of equation (Al l  gives 

I d x = m  <p cos A dr - rsin cp cos A dcp - r cos cp sfn X dA 

dy = cos Q sin A dr - r sin cp sin X d<p + r cos cp co8 A dA 

dz = sin cp dr + r cos cp dcp 

Writing equation (A2a) in matrix form gives 

dx 

dY 

dz 

coscpcosh -rsincpcosA -rCOgcpsinA 

cos Q sin h -r sin Q sin A r cos Q cos A 

sin Q r-cp 0 
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or,  by solving for d r ,  dq. and dx, 

-r cos cp sin A 

rcoscpcosA 

0 

-' dx 

dy 

d t  

dr 

dcp 

dA 

To compute the inverse of the preceding matrix , i.3 determinant is first computed by 
expanding by minors along the third row 

coscpcosA -rsincpcosA 

= coscpsinA -rsi.ncpsinA 

sin cp rcoscp 

2 2  2 2  ldetl = sin <p (-r cos h sin cp co8 cp - r sin A sin cp cos 9) 

2 2 2 2  2 cpcos ~ + r  cos Asin A) 

2 2 .  2 2  = -r sin cp cos cp - r cos cp cos cp 

(A41 2 = -r cos cp 

2 2 making use of the trigonometric identity sin cp + cos cp = 1. The same identity ap- 
plies in the case of A. The inverse may now be obtained by writing the transpose 
of the matrix of cofactors (i .e. , the adjoint of the matrix) and dividing each term by 
the determinant of the matrix. The cofactor of the element a.. is given by 
(- 1.) I A.. I , where I Aij I is the determinant of the matrix formed by excluding the 

i+j 11 

11 
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i-th row and j-th colwnn of the original matrix. If b represents the elements of 
the inverse matrix, then ii 

= -(r 2 2  cos cp sin 9/(-r2- cp) 
12 

=coscpsinh 

b13= (rms 2 2  hs incpcosh-r  2 2  sin 

= sin cp 

b21 = -(-r sin cp cos cp cos L)l(-rEcos cp) 

= -(l/r)sin cp cos A 

b22 = (r sin cp cod cp sin A)/(-r2eos cp) 

= -(l/r)sin cp sin A 

2 = rcoB cpsinh+rsin b31 ( 
=-[(sin L)/(r cos c p ) ]  

b32=-(rcos 2 

= (cos h ) / ( r  cos c p )  

b33 = (-r sin cp cos cp sin h cos h + r sin cp COB (9 sin h cos A) 

= o  

(A5a) 
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Therefore, with the elements d the inveree matrix thus established it is possible 
to write equation (A3) as follows. 

dr coscpcosA coscpsinA sincp 

dp = --sincpcosA 1 --sincpsinA 1 ~ c o s c p  1 r r 

r cos cp 0 - sin A cos A 
r cos cp dA 

dx 

dy 

d t  

The required derivative relationships can now be obtained from equation (ASb) . 
These derivatives will be presented with use of the following shorthand notations. 

rx = cos cp cos h 

1 
Qx r = - - 3in cp co8 A 

sin X 
r cos cp Ax = - 

rxr = 0 

r = O  

rzr = 0 

Qxr 2 

Yr 

1 - sin Q, cos h 
r 

cos h 
2 

A = -  
yr r C O S ~  

Azr = 0 

r 

r 

r =coscp 

Qxcp r 

= -sin cp cos A 

= -sin Q sin X 
x 9  

YCp 

=<p 
= ' - C O S Q C O S h  1 

1 = - -cos cp sin A 
cpYQ 2- 

1 = - -sin cp Q z q  r 

A = sin cp s: h 
rcos cp XQ 

A YQ ==-P rcos cp 

Aztp = 0 

Xz = 0 

rxA = -cos cp sin A 

r =coscpcosX 

r = O  

~ X A  r 

YA 

Zh 
1 =-sin cp sin h 

= -.isin cp cos h 'PYA r 

cos A 
r cos cp Axh = - 

sin X A = -  
yX r cos cp 

hzA = 0 
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Using the relationships given in equation (A?) , Laplace's equation can be trans- 
formed from Cartesian to spherical coordinates. 

From equation (Al l  b it is seen that x, y ,  and 2 are hc t ions  of r,  cp.  and 
A .  Therefore, the potential function V = V (x , y 9 z) is expressed in terms of r , cp , 
and A .  

V = V r r x + V  cp +VAAx 
X c p x  

V = V  r + V  cp + V  A Y r Y  c p Y  A Y  

V z = V r r z + V  cp +VALz 
c p z  

v =vZrrz+v cp + V  x J zz zcp z zh z 

Expanding equation (Am) gives 
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Collecting terms from equations (A91 to ( A l l )  gives 

v % = v  rr (. x 2 + r  y '+rZ2) +vcpcpfpX 2 +cpy + Q,3 + V A A ( L  + A y + Az2) 

where 0 is the gradient vector operator. Substituting the derivatives obtained 
from equation (A71 in equation (A12) gives 

r: + ry +. rz = (cos cp cos A) + (cos cp sin A) + (sin cp12 2 2  2 2 

= 1  (A131 

2 2 2 
c p x  2 +cpy  2 + c p z  = ( $sin cp cos A) + (- i s i n  cp sin A) + (;cos cp) 

1 
- 2  r 
- 

- -A r cos cp 

rx'px + ry%J + rzqz = (cos cp cos A) (- sin cp cos A) + (cos cp sin A) (- + sin cp sin A) 

+ sin cp(icos cp) 
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r x A x  + r Y Y  A + rzAz = (cos cp cos A) (- r "E,",̂ , ) + (cos cp sin A) 

cp,xX + cp A + c p , ~ ~  = (- ;sin cp cos A) (- cos cp 
Y Y  sin A 1 

+ (- fs in cp sin A)(~Z~^,) +C-*O 

= O  

+ (-cos <p sin A) 
cos cp (- sin A 

r r + r  = (0) (cos cp sin A) + (-sin cp sin A) (- + sin cp sin A) yr Y Y<pcpY 4. r Y A h y  

+ (cos cp cos A) 
cp ( 

= 3; (sin21p sin 2 A + cos2~) 
r 

(A181 

3 

2 
Zcp% + rzAAz = r + r  A +rzrrz + r  

YcpQY YA Y yp y 
h + r  r + r  rxrrx + rxcp'Px + r x ~  x 
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(A231 

qyrry + qycpqy + cpyAXy - 7 sin q sin X (cos cp sin A)  
- (rl 1 

+ (- 1 cos cp sia .) ( sin cp sin A 

+ (- sin <p cos A)( COS ) (A241 

r ) 
r cos q 

(A261 

xcp xA (cos<pcos~j  + ( s q ) (  i s i n  cp cos Xxrrx + h  
cp + X A = 

rcos q 

+ (  cos^ )(-  sin^ ) 
r cos cp r cos cp 

2 - sin X cos X cos cp + sin A cos A sin rp 
2 r cos2cp r cos cp 

sin A cos A 
2 2  r cos cp 

- 

+ 
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x r + A  cp + h  y h ~ y  = ( ~F) (cos cp sin A )  
r cos cp Yr Y YQ Y 

sin h cos h cos cp - sin h cos X sin cp - sin A cos A 
2 

= -  
r2ms <p r cos2cp rams cp 

(A281 

hzrlDz + h cp =cp z + hZAhz = (O)(sin c p )  + ( 0 )  

(A291 = O  

+ A  h + h Z r r z + X  cp + h  h = O  zcp 2 zh z A + A  r + A  '?;rrx + 'xcpqx + 'xh x yr y ycpqy y~ y 

~ . 3 0 )  

Adding all resulting terms gives 

= O  (A311 
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If equation (A31) is multiplied through by r2, there results, after some simplifica- 
tion, 

The solution of equation (5) is discussed in the section entitled "Analysis. '' 
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APPENDIX B 

THE PINES FORMULATION FOR THE 

GEOPOTENTIAL FUdCTION AND ITS GRADIENT 

The classical pctential function (eq. (96)) and its derivatives (eq. (111) or 
(112)) require that the position of a point in space be expressed in terms of geocen- 
tric latitude 9 ,  east longitude A ,  and magnitude of the position vector r deter- 
mined from the component magnitudes along the Cartesian coordinate axe8 x,  y , 
and z. Because these orientation angles require for their determination the pm- 
jection of the position vector on the equatorial reference ple; 3, the longitude be- 
comes undefined over the poles. What is theoretically two isolated singuiarities is 
actually, for computational purposes, an infinite number of singularities at each of 
two isolated regions in the immediate neighborhood af 'he poles, as the computer 
cannot distinguish h m  zero a computed noninteger number having a magnitude 
less than some specified tolerance characteristic of the computer in question. Al- 
though a polar orbit, or even a nearly polar orbit, is almost impossible to achieve 
because of a number of perturbing influences, the possibility of a singularity other 
than at the origin is eliminatd in this formulation by expressing the orientation of 
a point in space in terms of its direction cosines instead of its latitude and longitude. 
The direction cosines arc always clearly defined for any direction in space, and the 
elimination of al l  trigononetrlc functions from tire formulation contributes greatly to 
decreasing execution time and storage reqiiirements . 

The class11 11 expression for the gravitational potential V exerted at a point 
in space located at a distance r from the center of the attracting body having r3- 
dius % and gravitational parameter gE is given in equation (96) as 

m n 

n=O m=O 
P (sin c p )  knm cos(mA) + S, sin(mh)] (96) 

are the harmonic coefficients of the potential function and where Cnm 
Pnm(sin c p )  represents the associated Legeadre functions of the first kind, of de- 
gree n and order m . Since sin cp = z/r = p, where p ie 8 direction cosine, the 
associated Legendre functions may be expressed by using Rodrigues' Theorem, 
presented here without proof. 

and Snrn 
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Equation (Bl) is equivalent to equation (81). Equation (Bl) is more useful for ana- 
lytical purposes, whereas equation (81) is more useful for oomputationd purposes. 

Pines (ref. 1) points out that if equatim (B1) is written as 

where Am (p) is defined in terms of the Legendre polynomials Pn (p) obtained 
when m = 0 in equation (B1) , the following expression results. 

P n - 7  ,% (>)n - 

equation (96) may be written as 

00 n 

n=O m=O 
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From equation (BS) , Pines recognizes that the terms coe(mA)casmcp and 
sin(mA)cosmcp are merely the real and imaginary parts 9f the complex number 
(8 + it)", where 6 and t are the diredon Cosines (x/r) and (y/r), respective- 
ly, and i = -. Equation (96) may be written as 

n=O m=O 

where the mass coefficient function 

and Rm(s ,t) and Im(s,t) are the real and imaginary parts of the complex vari- 
able (8 + it)m mentioned previously. That 8 = cos A COB cp and t = sin A cos cp 
may be established from the right spherical triangle that results from the definition 
of cp and A .  

Equation (B6) is an expression for the gravitational potential in terms of the 
magnitude of the pxition vector and its direction Cosines. Its gradient may be 
written as 

where i ,  1, and k are the unit base vectors along the Cartesian coordinate axes, 
V is ths gradient vector operator, and 

The compsrable equation for the gradient of equation (96) is 
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Differentiation of equation (B6) requires differentiati- of equatian a?), 
which gives 

since from the Cauchy-Riemann conditions, 

In equations (B11) and (B12), respectively, the functions Em(s,t) and Fm(s,t) 
are mass coefficient functions. Equations (B13) and (B14) show another advantage 
to the Pines formulation in that these differentiations do not have to be performed 
because the derivatives can be obtained recursively from previous values of the 
real and imaginary parts. This relationship may be seen by writing the complex 
number 
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or 

80 that 

The recursive computation can easily be performed by setting Ro (8 ,t) = 1 and 
Io(s,t) = 0.  

Differentiation of equation (B6) a h  requires differentiation of Am(@. 
Clearly, 

To compute the matrix Am@) recursively, Pines makes u8e of the recursive re- 
lations mtisfied by all Legendre polynomials. (Spencer (ref. 2) presents five of 
these recursive relations. ) 
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Writing equations (B20) and (B21) in terms of the Am(p) notation gives 

Differentiating equations 0322) and 0323) m times gives 

Equation (B25) is the recursive relationship used by Pines in computing the matrix 
(p) . Spencer shows five different relations by which this computation can be *nm 

accomplished. Both authors make use of the initial relationships 

Am@) = 1.3.5.7.. . .*(2n - 1) (B26) 

and 

Equation (B27) is obtained from equation (BlS) . Equation (B22) is useful in col- 
lecting terms in equation (B8). Equations (B25) , (B26), and (B27) reveal another 
desirable feature of this formulation in that errors in the direction cosine p are 
diminished by l /(n - m) . Equation (B8) may now be written as 

vv = (81 + sa4)i + (a2 + ta4)i + (a3 + p a 4 ) ~  (B28) 
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where the coefficients are defined as 

Y n=O m=O 

OI n 

OI n 

a0 n 

80 that 

where, from equation (B4) . 
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Equation (B33) is suitable for obtaining higher derivatives of the potential 
function to be used in ostimaiing ermrs realized frcm variations in the harmonic 
coefficients. Pines gives thtse relations in reference 1, but Spencer (ref. 2) shows 
this work in better form in that he corrects a few errors found in this part of ref- 
erence 1. Spencer’s paper is by far the most complete and accurate, 86 well as the 
most comprehensible, and should be preferred to reference 1. 

Sample computer program listings for the computation of the gravitational 
potential function and the components of its gradient are provided in the following 
pages of this appendix. The listings are presented primarily to emphasize the 
brevity. 
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